]> Pileus Git - ~andy/linux/blob - drivers/block/rbd.c
44c44c6071eda44f1f8a614b50ae28bd36ca544f
[~andy/linux] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG       /* Activate rbd_assert() calls */
48
49 /*
50  * The basic unit of block I/O is a sector.  It is interpreted in a
51  * number of contexts in Linux (blk, bio, genhd), but the default is
52  * universally 512 bytes.  These symbols are just slightly more
53  * meaningful than the bare numbers they represent.
54  */
55 #define SECTOR_SHIFT    9
56 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
57
58 /*
59  * Increment the given counter and return its updated value.
60  * If the counter is already 0 it will not be incremented.
61  * If the counter is already at its maximum value returns
62  * -EINVAL without updating it.
63  */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66         unsigned int counter;
67
68         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69         if (counter <= (unsigned int)INT_MAX)
70                 return (int)counter;
71
72         atomic_dec(v);
73
74         return -EINVAL;
75 }
76
77 /* Decrement the counter.  Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80         int counter;
81
82         counter = atomic_dec_return(v);
83         if (counter >= 0)
84                 return counter;
85
86         atomic_inc(v);
87
88         return -EINVAL;
89 }
90
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
93
94 #define RBD_MINORS_PER_MAJOR    256             /* max minors per blkdev */
95
96 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
97 #define RBD_MAX_SNAP_NAME_LEN   \
98                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
99
100 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
101
102 #define RBD_SNAP_HEAD_NAME      "-"
103
104 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
105
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX    64
109
110 #define RBD_OBJ_PREFIX_LEN_MAX  64
111
112 /* Feature bits */
113
114 #define RBD_FEATURE_LAYERING    (1<<0)
115 #define RBD_FEATURE_STRIPINGV2  (1<<1)
116 #define RBD_FEATURES_ALL \
117             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
118
119 /* Features supported by this (client software) implementation. */
120
121 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
122
123 /*
124  * An RBD device name will be "rbd#", where the "rbd" comes from
125  * RBD_DRV_NAME above, and # is a unique integer identifier.
126  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127  * enough to hold all possible device names.
128  */
129 #define DEV_NAME_LEN            32
130 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
131
132 /*
133  * block device image metadata (in-memory version)
134  */
135 struct rbd_image_header {
136         /* These six fields never change for a given rbd image */
137         char *object_prefix;
138         __u8 obj_order;
139         __u8 crypt_type;
140         __u8 comp_type;
141         u64 stripe_unit;
142         u64 stripe_count;
143         u64 features;           /* Might be changeable someday? */
144
145         /* The remaining fields need to be updated occasionally */
146         u64 image_size;
147         struct ceph_snap_context *snapc;
148         char *snap_names;       /* format 1 only */
149         u64 *snap_sizes;        /* format 1 only */
150 };
151
152 /*
153  * An rbd image specification.
154  *
155  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156  * identify an image.  Each rbd_dev structure includes a pointer to
157  * an rbd_spec structure that encapsulates this identity.
158  *
159  * Each of the id's in an rbd_spec has an associated name.  For a
160  * user-mapped image, the names are supplied and the id's associated
161  * with them are looked up.  For a layered image, a parent image is
162  * defined by the tuple, and the names are looked up.
163  *
164  * An rbd_dev structure contains a parent_spec pointer which is
165  * non-null if the image it represents is a child in a layered
166  * image.  This pointer will refer to the rbd_spec structure used
167  * by the parent rbd_dev for its own identity (i.e., the structure
168  * is shared between the parent and child).
169  *
170  * Since these structures are populated once, during the discovery
171  * phase of image construction, they are effectively immutable so
172  * we make no effort to synchronize access to them.
173  *
174  * Note that code herein does not assume the image name is known (it
175  * could be a null pointer).
176  */
177 struct rbd_spec {
178         u64             pool_id;
179         const char      *pool_name;
180
181         const char      *image_id;
182         const char      *image_name;
183
184         u64             snap_id;
185         const char      *snap_name;
186
187         struct kref     kref;
188 };
189
190 /*
191  * an instance of the client.  multiple devices may share an rbd client.
192  */
193 struct rbd_client {
194         struct ceph_client      *client;
195         struct kref             kref;
196         struct list_head        node;
197 };
198
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
201
202 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
203
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
206
207 enum obj_request_type {
208         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
209 };
210
211 enum obj_req_flags {
212         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
213         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
214         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
215         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
216 };
217
218 struct rbd_obj_request {
219         const char              *object_name;
220         u64                     offset;         /* object start byte */
221         u64                     length;         /* bytes from offset */
222         unsigned long           flags;
223
224         /*
225          * An object request associated with an image will have its
226          * img_data flag set; a standalone object request will not.
227          *
228          * A standalone object request will have which == BAD_WHICH
229          * and a null obj_request pointer.
230          *
231          * An object request initiated in support of a layered image
232          * object (to check for its existence before a write) will
233          * have which == BAD_WHICH and a non-null obj_request pointer.
234          *
235          * Finally, an object request for rbd image data will have
236          * which != BAD_WHICH, and will have a non-null img_request
237          * pointer.  The value of which will be in the range
238          * 0..(img_request->obj_request_count-1).
239          */
240         union {
241                 struct rbd_obj_request  *obj_request;   /* STAT op */
242                 struct {
243                         struct rbd_img_request  *img_request;
244                         u64                     img_offset;
245                         /* links for img_request->obj_requests list */
246                         struct list_head        links;
247                 };
248         };
249         u32                     which;          /* posn image request list */
250
251         enum obj_request_type   type;
252         union {
253                 struct bio      *bio_list;
254                 struct {
255                         struct page     **pages;
256                         u32             page_count;
257                 };
258         };
259         struct page             **copyup_pages;
260         u32                     copyup_page_count;
261
262         struct ceph_osd_request *osd_req;
263
264         u64                     xferred;        /* bytes transferred */
265         int                     result;
266
267         rbd_obj_callback_t      callback;
268         struct completion       completion;
269
270         struct kref             kref;
271 };
272
273 enum img_req_flags {
274         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
275         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
276         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
277 };
278
279 struct rbd_img_request {
280         struct rbd_device       *rbd_dev;
281         u64                     offset; /* starting image byte offset */
282         u64                     length; /* byte count from offset */
283         unsigned long           flags;
284         union {
285                 u64                     snap_id;        /* for reads */
286                 struct ceph_snap_context *snapc;        /* for writes */
287         };
288         union {
289                 struct request          *rq;            /* block request */
290                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
291         };
292         struct page             **copyup_pages;
293         u32                     copyup_page_count;
294         spinlock_t              completion_lock;/* protects next_completion */
295         u32                     next_completion;
296         rbd_img_callback_t      callback;
297         u64                     xferred;/* aggregate bytes transferred */
298         int                     result; /* first nonzero obj_request result */
299
300         u32                     obj_request_count;
301         struct list_head        obj_requests;   /* rbd_obj_request structs */
302
303         struct kref             kref;
304 };
305
306 #define for_each_obj_request(ireq, oreq) \
307         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
312
313 struct rbd_mapping {
314         u64                     size;
315         u64                     features;
316         bool                    read_only;
317 };
318
319 /*
320  * a single device
321  */
322 struct rbd_device {
323         int                     dev_id;         /* blkdev unique id */
324
325         int                     major;          /* blkdev assigned major */
326         struct gendisk          *disk;          /* blkdev's gendisk and rq */
327
328         u32                     image_format;   /* Either 1 or 2 */
329         struct rbd_client       *rbd_client;
330
331         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
332
333         spinlock_t              lock;           /* queue, flags, open_count */
334
335         struct rbd_image_header header;
336         unsigned long           flags;          /* possibly lock protected */
337         struct rbd_spec         *spec;
338
339         char                    *header_name;
340
341         struct ceph_file_layout layout;
342
343         struct ceph_osd_event   *watch_event;
344         struct rbd_obj_request  *watch_request;
345
346         struct rbd_spec         *parent_spec;
347         u64                     parent_overlap;
348         atomic_t                parent_ref;
349         struct rbd_device       *parent;
350
351         /* protects updating the header */
352         struct rw_semaphore     header_rwsem;
353
354         struct rbd_mapping      mapping;
355
356         struct list_head        node;
357
358         /* sysfs related */
359         struct device           dev;
360         unsigned long           open_count;     /* protected by lock */
361 };
362
363 /*
364  * Flag bits for rbd_dev->flags.  If atomicity is required,
365  * rbd_dev->lock is used to protect access.
366  *
367  * Currently, only the "removing" flag (which is coupled with the
368  * "open_count" field) requires atomic access.
369  */
370 enum rbd_dev_flags {
371         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
372         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
373 };
374
375 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
376
377 static LIST_HEAD(rbd_dev_list);    /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
379
380 static LIST_HEAD(rbd_client_list);              /* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
382
383 /* Slab caches for frequently-allocated structures */
384
385 static struct kmem_cache        *rbd_img_request_cache;
386 static struct kmem_cache        *rbd_obj_request_cache;
387 static struct kmem_cache        *rbd_segment_name_cache;
388
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
390
391 static void rbd_dev_device_release(struct device *dev);
392
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
394                        size_t count);
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
396                           size_t count);
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
399
400 static struct bus_attribute rbd_bus_attrs[] = {
401         __ATTR(add, S_IWUSR, NULL, rbd_add),
402         __ATTR(remove, S_IWUSR, NULL, rbd_remove),
403         __ATTR_NULL
404 };
405
406 static struct bus_type rbd_bus_type = {
407         .name           = "rbd",
408         .bus_attrs      = rbd_bus_attrs,
409 };
410
411 static void rbd_root_dev_release(struct device *dev)
412 {
413 }
414
415 static struct device rbd_root_dev = {
416         .init_name =    "rbd",
417         .release =      rbd_root_dev_release,
418 };
419
420 static __printf(2, 3)
421 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
422 {
423         struct va_format vaf;
424         va_list args;
425
426         va_start(args, fmt);
427         vaf.fmt = fmt;
428         vaf.va = &args;
429
430         if (!rbd_dev)
431                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
432         else if (rbd_dev->disk)
433                 printk(KERN_WARNING "%s: %s: %pV\n",
434                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
435         else if (rbd_dev->spec && rbd_dev->spec->image_name)
436                 printk(KERN_WARNING "%s: image %s: %pV\n",
437                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
438         else if (rbd_dev->spec && rbd_dev->spec->image_id)
439                 printk(KERN_WARNING "%s: id %s: %pV\n",
440                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
441         else    /* punt */
442                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
443                         RBD_DRV_NAME, rbd_dev, &vaf);
444         va_end(args);
445 }
446
447 #ifdef RBD_DEBUG
448 #define rbd_assert(expr)                                                \
449                 if (unlikely(!(expr))) {                                \
450                         printk(KERN_ERR "\nAssertion failure in %s() "  \
451                                                 "at line %d:\n\n"       \
452                                         "\trbd_assert(%s);\n\n",        \
453                                         __func__, __LINE__, #expr);     \
454                         BUG();                                          \
455                 }
456 #else /* !RBD_DEBUG */
457 #  define rbd_assert(expr)      ((void) 0)
458 #endif /* !RBD_DEBUG */
459
460 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
461 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
462 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
463
464 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
465 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
466 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
467 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
468                                         u64 snap_id);
469 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
470                                 u8 *order, u64 *snap_size);
471 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
472                 u64 *snap_features);
473 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
474
475 static int rbd_open(struct block_device *bdev, fmode_t mode)
476 {
477         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
478         bool removing = false;
479
480         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
481                 return -EROFS;
482
483         spin_lock_irq(&rbd_dev->lock);
484         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
485                 removing = true;
486         else
487                 rbd_dev->open_count++;
488         spin_unlock_irq(&rbd_dev->lock);
489         if (removing)
490                 return -ENOENT;
491
492         (void) get_device(&rbd_dev->dev);
493         set_device_ro(bdev, rbd_dev->mapping.read_only);
494
495         return 0;
496 }
497
498 static void rbd_release(struct gendisk *disk, fmode_t mode)
499 {
500         struct rbd_device *rbd_dev = disk->private_data;
501         unsigned long open_count_before;
502
503         spin_lock_irq(&rbd_dev->lock);
504         open_count_before = rbd_dev->open_count--;
505         spin_unlock_irq(&rbd_dev->lock);
506         rbd_assert(open_count_before > 0);
507
508         put_device(&rbd_dev->dev);
509 }
510
511 static const struct block_device_operations rbd_bd_ops = {
512         .owner                  = THIS_MODULE,
513         .open                   = rbd_open,
514         .release                = rbd_release,
515 };
516
517 /*
518  * Initialize an rbd client instance.  Success or not, this function
519  * consumes ceph_opts.  Caller holds client_mutex.
520  */
521 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
522 {
523         struct rbd_client *rbdc;
524         int ret = -ENOMEM;
525
526         dout("%s:\n", __func__);
527         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
528         if (!rbdc)
529                 goto out_opt;
530
531         kref_init(&rbdc->kref);
532         INIT_LIST_HEAD(&rbdc->node);
533
534         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
535         if (IS_ERR(rbdc->client))
536                 goto out_rbdc;
537         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
538
539         ret = ceph_open_session(rbdc->client);
540         if (ret < 0)
541                 goto out_client;
542
543         spin_lock(&rbd_client_list_lock);
544         list_add_tail(&rbdc->node, &rbd_client_list);
545         spin_unlock(&rbd_client_list_lock);
546
547         dout("%s: rbdc %p\n", __func__, rbdc);
548
549         return rbdc;
550 out_client:
551         ceph_destroy_client(rbdc->client);
552 out_rbdc:
553         kfree(rbdc);
554 out_opt:
555         if (ceph_opts)
556                 ceph_destroy_options(ceph_opts);
557         dout("%s: error %d\n", __func__, ret);
558
559         return ERR_PTR(ret);
560 }
561
562 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
563 {
564         kref_get(&rbdc->kref);
565
566         return rbdc;
567 }
568
569 /*
570  * Find a ceph client with specific addr and configuration.  If
571  * found, bump its reference count.
572  */
573 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
574 {
575         struct rbd_client *client_node;
576         bool found = false;
577
578         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
579                 return NULL;
580
581         spin_lock(&rbd_client_list_lock);
582         list_for_each_entry(client_node, &rbd_client_list, node) {
583                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
584                         __rbd_get_client(client_node);
585
586                         found = true;
587                         break;
588                 }
589         }
590         spin_unlock(&rbd_client_list_lock);
591
592         return found ? client_node : NULL;
593 }
594
595 /*
596  * mount options
597  */
598 enum {
599         Opt_last_int,
600         /* int args above */
601         Opt_last_string,
602         /* string args above */
603         Opt_read_only,
604         Opt_read_write,
605         /* Boolean args above */
606         Opt_last_bool,
607 };
608
609 static match_table_t rbd_opts_tokens = {
610         /* int args above */
611         /* string args above */
612         {Opt_read_only, "read_only"},
613         {Opt_read_only, "ro"},          /* Alternate spelling */
614         {Opt_read_write, "read_write"},
615         {Opt_read_write, "rw"},         /* Alternate spelling */
616         /* Boolean args above */
617         {-1, NULL}
618 };
619
620 struct rbd_options {
621         bool    read_only;
622 };
623
624 #define RBD_READ_ONLY_DEFAULT   false
625
626 static int parse_rbd_opts_token(char *c, void *private)
627 {
628         struct rbd_options *rbd_opts = private;
629         substring_t argstr[MAX_OPT_ARGS];
630         int token, intval, ret;
631
632         token = match_token(c, rbd_opts_tokens, argstr);
633         if (token < 0)
634                 return -EINVAL;
635
636         if (token < Opt_last_int) {
637                 ret = match_int(&argstr[0], &intval);
638                 if (ret < 0) {
639                         pr_err("bad mount option arg (not int) "
640                                "at '%s'\n", c);
641                         return ret;
642                 }
643                 dout("got int token %d val %d\n", token, intval);
644         } else if (token > Opt_last_int && token < Opt_last_string) {
645                 dout("got string token %d val %s\n", token,
646                      argstr[0].from);
647         } else if (token > Opt_last_string && token < Opt_last_bool) {
648                 dout("got Boolean token %d\n", token);
649         } else {
650                 dout("got token %d\n", token);
651         }
652
653         switch (token) {
654         case Opt_read_only:
655                 rbd_opts->read_only = true;
656                 break;
657         case Opt_read_write:
658                 rbd_opts->read_only = false;
659                 break;
660         default:
661                 rbd_assert(false);
662                 break;
663         }
664         return 0;
665 }
666
667 /*
668  * Get a ceph client with specific addr and configuration, if one does
669  * not exist create it.  Either way, ceph_opts is consumed by this
670  * function.
671  */
672 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
673 {
674         struct rbd_client *rbdc;
675
676         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
677         rbdc = rbd_client_find(ceph_opts);
678         if (rbdc)       /* using an existing client */
679                 ceph_destroy_options(ceph_opts);
680         else
681                 rbdc = rbd_client_create(ceph_opts);
682         mutex_unlock(&client_mutex);
683
684         return rbdc;
685 }
686
687 /*
688  * Destroy ceph client
689  *
690  * Caller must hold rbd_client_list_lock.
691  */
692 static void rbd_client_release(struct kref *kref)
693 {
694         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
695
696         dout("%s: rbdc %p\n", __func__, rbdc);
697         spin_lock(&rbd_client_list_lock);
698         list_del(&rbdc->node);
699         spin_unlock(&rbd_client_list_lock);
700
701         ceph_destroy_client(rbdc->client);
702         kfree(rbdc);
703 }
704
705 /*
706  * Drop reference to ceph client node. If it's not referenced anymore, release
707  * it.
708  */
709 static void rbd_put_client(struct rbd_client *rbdc)
710 {
711         if (rbdc)
712                 kref_put(&rbdc->kref, rbd_client_release);
713 }
714
715 static bool rbd_image_format_valid(u32 image_format)
716 {
717         return image_format == 1 || image_format == 2;
718 }
719
720 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
721 {
722         size_t size;
723         u32 snap_count;
724
725         /* The header has to start with the magic rbd header text */
726         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
727                 return false;
728
729         /* The bio layer requires at least sector-sized I/O */
730
731         if (ondisk->options.order < SECTOR_SHIFT)
732                 return false;
733
734         /* If we use u64 in a few spots we may be able to loosen this */
735
736         if (ondisk->options.order > 8 * sizeof (int) - 1)
737                 return false;
738
739         /*
740          * The size of a snapshot header has to fit in a size_t, and
741          * that limits the number of snapshots.
742          */
743         snap_count = le32_to_cpu(ondisk->snap_count);
744         size = SIZE_MAX - sizeof (struct ceph_snap_context);
745         if (snap_count > size / sizeof (__le64))
746                 return false;
747
748         /*
749          * Not only that, but the size of the entire the snapshot
750          * header must also be representable in a size_t.
751          */
752         size -= snap_count * sizeof (__le64);
753         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
754                 return false;
755
756         return true;
757 }
758
759 /*
760  * Fill an rbd image header with information from the given format 1
761  * on-disk header.
762  */
763 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
764                                  struct rbd_image_header_ondisk *ondisk)
765 {
766         struct rbd_image_header *header = &rbd_dev->header;
767         bool first_time = header->object_prefix == NULL;
768         struct ceph_snap_context *snapc;
769         char *object_prefix = NULL;
770         char *snap_names = NULL;
771         u64 *snap_sizes = NULL;
772         u32 snap_count;
773         size_t size;
774         int ret = -ENOMEM;
775         u32 i;
776
777         /* Allocate this now to avoid having to handle failure below */
778
779         if (first_time) {
780                 size_t len;
781
782                 len = strnlen(ondisk->object_prefix,
783                                 sizeof (ondisk->object_prefix));
784                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
785                 if (!object_prefix)
786                         return -ENOMEM;
787                 memcpy(object_prefix, ondisk->object_prefix, len);
788                 object_prefix[len] = '\0';
789         }
790
791         /* Allocate the snapshot context and fill it in */
792
793         snap_count = le32_to_cpu(ondisk->snap_count);
794         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
795         if (!snapc)
796                 goto out_err;
797         snapc->seq = le64_to_cpu(ondisk->snap_seq);
798         if (snap_count) {
799                 struct rbd_image_snap_ondisk *snaps;
800                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
801
802                 /* We'll keep a copy of the snapshot names... */
803
804                 if (snap_names_len > (u64)SIZE_MAX)
805                         goto out_2big;
806                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
807                 if (!snap_names)
808                         goto out_err;
809
810                 /* ...as well as the array of their sizes. */
811
812                 size = snap_count * sizeof (*header->snap_sizes);
813                 snap_sizes = kmalloc(size, GFP_KERNEL);
814                 if (!snap_sizes)
815                         goto out_err;
816
817                 /*
818                  * Copy the names, and fill in each snapshot's id
819                  * and size.
820                  *
821                  * Note that rbd_dev_v1_header_info() guarantees the
822                  * ondisk buffer we're working with has
823                  * snap_names_len bytes beyond the end of the
824                  * snapshot id array, this memcpy() is safe.
825                  */
826                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
827                 snaps = ondisk->snaps;
828                 for (i = 0; i < snap_count; i++) {
829                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
830                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
831                 }
832         }
833
834         /* We won't fail any more, fill in the header */
835
836         if (first_time) {
837                 header->object_prefix = object_prefix;
838                 header->obj_order = ondisk->options.order;
839                 header->crypt_type = ondisk->options.crypt_type;
840                 header->comp_type = ondisk->options.comp_type;
841                 /* The rest aren't used for format 1 images */
842                 header->stripe_unit = 0;
843                 header->stripe_count = 0;
844                 header->features = 0;
845         } else {
846                 ceph_put_snap_context(header->snapc);
847                 kfree(header->snap_names);
848                 kfree(header->snap_sizes);
849         }
850
851         /* The remaining fields always get updated (when we refresh) */
852
853         header->image_size = le64_to_cpu(ondisk->image_size);
854         header->snapc = snapc;
855         header->snap_names = snap_names;
856         header->snap_sizes = snap_sizes;
857
858         /* Make sure mapping size is consistent with header info */
859
860         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
861                 if (rbd_dev->mapping.size != header->image_size)
862                         rbd_dev->mapping.size = header->image_size;
863
864         return 0;
865 out_2big:
866         ret = -EIO;
867 out_err:
868         kfree(snap_sizes);
869         kfree(snap_names);
870         ceph_put_snap_context(snapc);
871         kfree(object_prefix);
872
873         return ret;
874 }
875
876 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
877 {
878         const char *snap_name;
879
880         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
881
882         /* Skip over names until we find the one we are looking for */
883
884         snap_name = rbd_dev->header.snap_names;
885         while (which--)
886                 snap_name += strlen(snap_name) + 1;
887
888         return kstrdup(snap_name, GFP_KERNEL);
889 }
890
891 /*
892  * Snapshot id comparison function for use with qsort()/bsearch().
893  * Note that result is for snapshots in *descending* order.
894  */
895 static int snapid_compare_reverse(const void *s1, const void *s2)
896 {
897         u64 snap_id1 = *(u64 *)s1;
898         u64 snap_id2 = *(u64 *)s2;
899
900         if (snap_id1 < snap_id2)
901                 return 1;
902         return snap_id1 == snap_id2 ? 0 : -1;
903 }
904
905 /*
906  * Search a snapshot context to see if the given snapshot id is
907  * present.
908  *
909  * Returns the position of the snapshot id in the array if it's found,
910  * or BAD_SNAP_INDEX otherwise.
911  *
912  * Note: The snapshot array is in kept sorted (by the osd) in
913  * reverse order, highest snapshot id first.
914  */
915 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
916 {
917         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
918         u64 *found;
919
920         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
921                                 sizeof (snap_id), snapid_compare_reverse);
922
923         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
924 }
925
926 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
927                                         u64 snap_id)
928 {
929         u32 which;
930
931         which = rbd_dev_snap_index(rbd_dev, snap_id);
932         if (which == BAD_SNAP_INDEX)
933                 return NULL;
934
935         return _rbd_dev_v1_snap_name(rbd_dev, which);
936 }
937
938 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
939 {
940         if (snap_id == CEPH_NOSNAP)
941                 return RBD_SNAP_HEAD_NAME;
942
943         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
944         if (rbd_dev->image_format == 1)
945                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
946
947         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
948 }
949
950 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
951                                 u64 *snap_size)
952 {
953         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
954         if (snap_id == CEPH_NOSNAP) {
955                 *snap_size = rbd_dev->header.image_size;
956         } else if (rbd_dev->image_format == 1) {
957                 u32 which;
958
959                 which = rbd_dev_snap_index(rbd_dev, snap_id);
960                 if (which == BAD_SNAP_INDEX)
961                         return -ENOENT;
962
963                 *snap_size = rbd_dev->header.snap_sizes[which];
964         } else {
965                 u64 size = 0;
966                 int ret;
967
968                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
969                 if (ret)
970                         return ret;
971
972                 *snap_size = size;
973         }
974         return 0;
975 }
976
977 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
978                         u64 *snap_features)
979 {
980         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
981         if (snap_id == CEPH_NOSNAP) {
982                 *snap_features = rbd_dev->header.features;
983         } else if (rbd_dev->image_format == 1) {
984                 *snap_features = 0;     /* No features for format 1 */
985         } else {
986                 u64 features = 0;
987                 int ret;
988
989                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
990                 if (ret)
991                         return ret;
992
993                 *snap_features = features;
994         }
995         return 0;
996 }
997
998 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
999 {
1000         u64 snap_id = rbd_dev->spec->snap_id;
1001         u64 size = 0;
1002         u64 features = 0;
1003         int ret;
1004
1005         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1006         if (ret)
1007                 return ret;
1008         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1009         if (ret)
1010                 return ret;
1011
1012         rbd_dev->mapping.size = size;
1013         rbd_dev->mapping.features = features;
1014
1015         return 0;
1016 }
1017
1018 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1019 {
1020         rbd_dev->mapping.size = 0;
1021         rbd_dev->mapping.features = 0;
1022 }
1023
1024 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1025 {
1026         char *name;
1027         u64 segment;
1028         int ret;
1029         char *name_format;
1030
1031         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1032         if (!name)
1033                 return NULL;
1034         segment = offset >> rbd_dev->header.obj_order;
1035         name_format = "%s.%012llx";
1036         if (rbd_dev->image_format == 2)
1037                 name_format = "%s.%016llx";
1038         ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, name_format,
1039                         rbd_dev->header.object_prefix, segment);
1040         if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1041                 pr_err("error formatting segment name for #%llu (%d)\n",
1042                         segment, ret);
1043                 kfree(name);
1044                 name = NULL;
1045         }
1046
1047         return name;
1048 }
1049
1050 static void rbd_segment_name_free(const char *name)
1051 {
1052         /* The explicit cast here is needed to drop the const qualifier */
1053
1054         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1055 }
1056
1057 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1058 {
1059         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1060
1061         return offset & (segment_size - 1);
1062 }
1063
1064 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1065                                 u64 offset, u64 length)
1066 {
1067         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1068
1069         offset &= segment_size - 1;
1070
1071         rbd_assert(length <= U64_MAX - offset);
1072         if (offset + length > segment_size)
1073                 length = segment_size - offset;
1074
1075         return length;
1076 }
1077
1078 /*
1079  * returns the size of an object in the image
1080  */
1081 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1082 {
1083         return 1 << header->obj_order;
1084 }
1085
1086 /*
1087  * bio helpers
1088  */
1089
1090 static void bio_chain_put(struct bio *chain)
1091 {
1092         struct bio *tmp;
1093
1094         while (chain) {
1095                 tmp = chain;
1096                 chain = chain->bi_next;
1097                 bio_put(tmp);
1098         }
1099 }
1100
1101 /*
1102  * zeros a bio chain, starting at specific offset
1103  */
1104 static void zero_bio_chain(struct bio *chain, int start_ofs)
1105 {
1106         struct bio_vec *bv;
1107         unsigned long flags;
1108         void *buf;
1109         int i;
1110         int pos = 0;
1111
1112         while (chain) {
1113                 bio_for_each_segment(bv, chain, i) {
1114                         if (pos + bv->bv_len > start_ofs) {
1115                                 int remainder = max(start_ofs - pos, 0);
1116                                 buf = bvec_kmap_irq(bv, &flags);
1117                                 memset(buf + remainder, 0,
1118                                        bv->bv_len - remainder);
1119                                 flush_dcache_page(bv->bv_page);
1120                                 bvec_kunmap_irq(buf, &flags);
1121                         }
1122                         pos += bv->bv_len;
1123                 }
1124
1125                 chain = chain->bi_next;
1126         }
1127 }
1128
1129 /*
1130  * similar to zero_bio_chain(), zeros data defined by a page array,
1131  * starting at the given byte offset from the start of the array and
1132  * continuing up to the given end offset.  The pages array is
1133  * assumed to be big enough to hold all bytes up to the end.
1134  */
1135 static void zero_pages(struct page **pages, u64 offset, u64 end)
1136 {
1137         struct page **page = &pages[offset >> PAGE_SHIFT];
1138
1139         rbd_assert(end > offset);
1140         rbd_assert(end - offset <= (u64)SIZE_MAX);
1141         while (offset < end) {
1142                 size_t page_offset;
1143                 size_t length;
1144                 unsigned long flags;
1145                 void *kaddr;
1146
1147                 page_offset = offset & ~PAGE_MASK;
1148                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1149                 local_irq_save(flags);
1150                 kaddr = kmap_atomic(*page);
1151                 memset(kaddr + page_offset, 0, length);
1152                 flush_dcache_page(*page);
1153                 kunmap_atomic(kaddr);
1154                 local_irq_restore(flags);
1155
1156                 offset += length;
1157                 page++;
1158         }
1159 }
1160
1161 /*
1162  * Clone a portion of a bio, starting at the given byte offset
1163  * and continuing for the number of bytes indicated.
1164  */
1165 static struct bio *bio_clone_range(struct bio *bio_src,
1166                                         unsigned int offset,
1167                                         unsigned int len,
1168                                         gfp_t gfpmask)
1169 {
1170         struct bio_vec *bv;
1171         unsigned int resid;
1172         unsigned short idx;
1173         unsigned int voff;
1174         unsigned short end_idx;
1175         unsigned short vcnt;
1176         struct bio *bio;
1177
1178         /* Handle the easy case for the caller */
1179
1180         if (!offset && len == bio_src->bi_size)
1181                 return bio_clone(bio_src, gfpmask);
1182
1183         if (WARN_ON_ONCE(!len))
1184                 return NULL;
1185         if (WARN_ON_ONCE(len > bio_src->bi_size))
1186                 return NULL;
1187         if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1188                 return NULL;
1189
1190         /* Find first affected segment... */
1191
1192         resid = offset;
1193         bio_for_each_segment(bv, bio_src, idx) {
1194                 if (resid < bv->bv_len)
1195                         break;
1196                 resid -= bv->bv_len;
1197         }
1198         voff = resid;
1199
1200         /* ...and the last affected segment */
1201
1202         resid += len;
1203         __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1204                 if (resid <= bv->bv_len)
1205                         break;
1206                 resid -= bv->bv_len;
1207         }
1208         vcnt = end_idx - idx + 1;
1209
1210         /* Build the clone */
1211
1212         bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1213         if (!bio)
1214                 return NULL;    /* ENOMEM */
1215
1216         bio->bi_bdev = bio_src->bi_bdev;
1217         bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1218         bio->bi_rw = bio_src->bi_rw;
1219         bio->bi_flags |= 1 << BIO_CLONED;
1220
1221         /*
1222          * Copy over our part of the bio_vec, then update the first
1223          * and last (or only) entries.
1224          */
1225         memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1226                         vcnt * sizeof (struct bio_vec));
1227         bio->bi_io_vec[0].bv_offset += voff;
1228         if (vcnt > 1) {
1229                 bio->bi_io_vec[0].bv_len -= voff;
1230                 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1231         } else {
1232                 bio->bi_io_vec[0].bv_len = len;
1233         }
1234
1235         bio->bi_vcnt = vcnt;
1236         bio->bi_size = len;
1237         bio->bi_idx = 0;
1238
1239         return bio;
1240 }
1241
1242 /*
1243  * Clone a portion of a bio chain, starting at the given byte offset
1244  * into the first bio in the source chain and continuing for the
1245  * number of bytes indicated.  The result is another bio chain of
1246  * exactly the given length, or a null pointer on error.
1247  *
1248  * The bio_src and offset parameters are both in-out.  On entry they
1249  * refer to the first source bio and the offset into that bio where
1250  * the start of data to be cloned is located.
1251  *
1252  * On return, bio_src is updated to refer to the bio in the source
1253  * chain that contains first un-cloned byte, and *offset will
1254  * contain the offset of that byte within that bio.
1255  */
1256 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1257                                         unsigned int *offset,
1258                                         unsigned int len,
1259                                         gfp_t gfpmask)
1260 {
1261         struct bio *bi = *bio_src;
1262         unsigned int off = *offset;
1263         struct bio *chain = NULL;
1264         struct bio **end;
1265
1266         /* Build up a chain of clone bios up to the limit */
1267
1268         if (!bi || off >= bi->bi_size || !len)
1269                 return NULL;            /* Nothing to clone */
1270
1271         end = &chain;
1272         while (len) {
1273                 unsigned int bi_size;
1274                 struct bio *bio;
1275
1276                 if (!bi) {
1277                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1278                         goto out_err;   /* EINVAL; ran out of bio's */
1279                 }
1280                 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1281                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1282                 if (!bio)
1283                         goto out_err;   /* ENOMEM */
1284
1285                 *end = bio;
1286                 end = &bio->bi_next;
1287
1288                 off += bi_size;
1289                 if (off == bi->bi_size) {
1290                         bi = bi->bi_next;
1291                         off = 0;
1292                 }
1293                 len -= bi_size;
1294         }
1295         *bio_src = bi;
1296         *offset = off;
1297
1298         return chain;
1299 out_err:
1300         bio_chain_put(chain);
1301
1302         return NULL;
1303 }
1304
1305 /*
1306  * The default/initial value for all object request flags is 0.  For
1307  * each flag, once its value is set to 1 it is never reset to 0
1308  * again.
1309  */
1310 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1311 {
1312         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1313                 struct rbd_device *rbd_dev;
1314
1315                 rbd_dev = obj_request->img_request->rbd_dev;
1316                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1317                         obj_request);
1318         }
1319 }
1320
1321 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1322 {
1323         smp_mb();
1324         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1325 }
1326
1327 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1328 {
1329         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1330                 struct rbd_device *rbd_dev = NULL;
1331
1332                 if (obj_request_img_data_test(obj_request))
1333                         rbd_dev = obj_request->img_request->rbd_dev;
1334                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1335                         obj_request);
1336         }
1337 }
1338
1339 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1340 {
1341         smp_mb();
1342         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1343 }
1344
1345 /*
1346  * This sets the KNOWN flag after (possibly) setting the EXISTS
1347  * flag.  The latter is set based on the "exists" value provided.
1348  *
1349  * Note that for our purposes once an object exists it never goes
1350  * away again.  It's possible that the response from two existence
1351  * checks are separated by the creation of the target object, and
1352  * the first ("doesn't exist") response arrives *after* the second
1353  * ("does exist").  In that case we ignore the second one.
1354  */
1355 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1356                                 bool exists)
1357 {
1358         if (exists)
1359                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1360         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1361         smp_mb();
1362 }
1363
1364 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1365 {
1366         smp_mb();
1367         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1368 }
1369
1370 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1371 {
1372         smp_mb();
1373         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1374 }
1375
1376 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1377 {
1378         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1379                 atomic_read(&obj_request->kref.refcount));
1380         kref_get(&obj_request->kref);
1381 }
1382
1383 static void rbd_obj_request_destroy(struct kref *kref);
1384 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1385 {
1386         rbd_assert(obj_request != NULL);
1387         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1388                 atomic_read(&obj_request->kref.refcount));
1389         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1390 }
1391
1392 static bool img_request_child_test(struct rbd_img_request *img_request);
1393 static void rbd_parent_request_destroy(struct kref *kref);
1394 static void rbd_img_request_destroy(struct kref *kref);
1395 static void rbd_img_request_put(struct rbd_img_request *img_request)
1396 {
1397         rbd_assert(img_request != NULL);
1398         dout("%s: img %p (was %d)\n", __func__, img_request,
1399                 atomic_read(&img_request->kref.refcount));
1400         if (img_request_child_test(img_request))
1401                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1402         else
1403                 kref_put(&img_request->kref, rbd_img_request_destroy);
1404 }
1405
1406 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1407                                         struct rbd_obj_request *obj_request)
1408 {
1409         rbd_assert(obj_request->img_request == NULL);
1410
1411         /* Image request now owns object's original reference */
1412         obj_request->img_request = img_request;
1413         obj_request->which = img_request->obj_request_count;
1414         rbd_assert(!obj_request_img_data_test(obj_request));
1415         obj_request_img_data_set(obj_request);
1416         rbd_assert(obj_request->which != BAD_WHICH);
1417         img_request->obj_request_count++;
1418         list_add_tail(&obj_request->links, &img_request->obj_requests);
1419         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1420                 obj_request->which);
1421 }
1422
1423 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1424                                         struct rbd_obj_request *obj_request)
1425 {
1426         rbd_assert(obj_request->which != BAD_WHICH);
1427
1428         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1429                 obj_request->which);
1430         list_del(&obj_request->links);
1431         rbd_assert(img_request->obj_request_count > 0);
1432         img_request->obj_request_count--;
1433         rbd_assert(obj_request->which == img_request->obj_request_count);
1434         obj_request->which = BAD_WHICH;
1435         rbd_assert(obj_request_img_data_test(obj_request));
1436         rbd_assert(obj_request->img_request == img_request);
1437         obj_request->img_request = NULL;
1438         obj_request->callback = NULL;
1439         rbd_obj_request_put(obj_request);
1440 }
1441
1442 static bool obj_request_type_valid(enum obj_request_type type)
1443 {
1444         switch (type) {
1445         case OBJ_REQUEST_NODATA:
1446         case OBJ_REQUEST_BIO:
1447         case OBJ_REQUEST_PAGES:
1448                 return true;
1449         default:
1450                 return false;
1451         }
1452 }
1453
1454 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1455                                 struct rbd_obj_request *obj_request)
1456 {
1457         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1458
1459         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1460 }
1461
1462 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1463 {
1464
1465         dout("%s: img %p\n", __func__, img_request);
1466
1467         /*
1468          * If no error occurred, compute the aggregate transfer
1469          * count for the image request.  We could instead use
1470          * atomic64_cmpxchg() to update it as each object request
1471          * completes; not clear which way is better off hand.
1472          */
1473         if (!img_request->result) {
1474                 struct rbd_obj_request *obj_request;
1475                 u64 xferred = 0;
1476
1477                 for_each_obj_request(img_request, obj_request)
1478                         xferred += obj_request->xferred;
1479                 img_request->xferred = xferred;
1480         }
1481
1482         if (img_request->callback)
1483                 img_request->callback(img_request);
1484         else
1485                 rbd_img_request_put(img_request);
1486 }
1487
1488 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1489
1490 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1491 {
1492         dout("%s: obj %p\n", __func__, obj_request);
1493
1494         return wait_for_completion_interruptible(&obj_request->completion);
1495 }
1496
1497 /*
1498  * The default/initial value for all image request flags is 0.  Each
1499  * is conditionally set to 1 at image request initialization time
1500  * and currently never change thereafter.
1501  */
1502 static void img_request_write_set(struct rbd_img_request *img_request)
1503 {
1504         set_bit(IMG_REQ_WRITE, &img_request->flags);
1505         smp_mb();
1506 }
1507
1508 static bool img_request_write_test(struct rbd_img_request *img_request)
1509 {
1510         smp_mb();
1511         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1512 }
1513
1514 static void img_request_child_set(struct rbd_img_request *img_request)
1515 {
1516         set_bit(IMG_REQ_CHILD, &img_request->flags);
1517         smp_mb();
1518 }
1519
1520 static void img_request_child_clear(struct rbd_img_request *img_request)
1521 {
1522         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1523         smp_mb();
1524 }
1525
1526 static bool img_request_child_test(struct rbd_img_request *img_request)
1527 {
1528         smp_mb();
1529         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1530 }
1531
1532 static void img_request_layered_set(struct rbd_img_request *img_request)
1533 {
1534         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1535         smp_mb();
1536 }
1537
1538 static void img_request_layered_clear(struct rbd_img_request *img_request)
1539 {
1540         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1541         smp_mb();
1542 }
1543
1544 static bool img_request_layered_test(struct rbd_img_request *img_request)
1545 {
1546         smp_mb();
1547         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1548 }
1549
1550 static void
1551 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1552 {
1553         u64 xferred = obj_request->xferred;
1554         u64 length = obj_request->length;
1555
1556         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1557                 obj_request, obj_request->img_request, obj_request->result,
1558                 xferred, length);
1559         /*
1560          * ENOENT means a hole in the image.  We zero-fill the
1561          * entire length of the request.  A short read also implies
1562          * zero-fill to the end of the request.  Either way we
1563          * update the xferred count to indicate the whole request
1564          * was satisfied.
1565          */
1566         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1567         if (obj_request->result == -ENOENT) {
1568                 if (obj_request->type == OBJ_REQUEST_BIO)
1569                         zero_bio_chain(obj_request->bio_list, 0);
1570                 else
1571                         zero_pages(obj_request->pages, 0, length);
1572                 obj_request->result = 0;
1573                 obj_request->xferred = length;
1574         } else if (xferred < length && !obj_request->result) {
1575                 if (obj_request->type == OBJ_REQUEST_BIO)
1576                         zero_bio_chain(obj_request->bio_list, xferred);
1577                 else
1578                         zero_pages(obj_request->pages, xferred, length);
1579                 obj_request->xferred = length;
1580         }
1581         obj_request_done_set(obj_request);
1582 }
1583
1584 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1585 {
1586         dout("%s: obj %p cb %p\n", __func__, obj_request,
1587                 obj_request->callback);
1588         if (obj_request->callback)
1589                 obj_request->callback(obj_request);
1590         else
1591                 complete_all(&obj_request->completion);
1592 }
1593
1594 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1595 {
1596         dout("%s: obj %p\n", __func__, obj_request);
1597         obj_request_done_set(obj_request);
1598 }
1599
1600 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1601 {
1602         struct rbd_img_request *img_request = NULL;
1603         struct rbd_device *rbd_dev = NULL;
1604         bool layered = false;
1605
1606         if (obj_request_img_data_test(obj_request)) {
1607                 img_request = obj_request->img_request;
1608                 layered = img_request && img_request_layered_test(img_request);
1609                 rbd_dev = img_request->rbd_dev;
1610         }
1611
1612         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1613                 obj_request, img_request, obj_request->result,
1614                 obj_request->xferred, obj_request->length);
1615         if (layered && obj_request->result == -ENOENT &&
1616                         obj_request->img_offset < rbd_dev->parent_overlap)
1617                 rbd_img_parent_read(obj_request);
1618         else if (img_request)
1619                 rbd_img_obj_request_read_callback(obj_request);
1620         else
1621                 obj_request_done_set(obj_request);
1622 }
1623
1624 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1625 {
1626         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1627                 obj_request->result, obj_request->length);
1628         /*
1629          * There is no such thing as a successful short write.  Set
1630          * it to our originally-requested length.
1631          */
1632         obj_request->xferred = obj_request->length;
1633         obj_request_done_set(obj_request);
1634 }
1635
1636 /*
1637  * For a simple stat call there's nothing to do.  We'll do more if
1638  * this is part of a write sequence for a layered image.
1639  */
1640 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1641 {
1642         dout("%s: obj %p\n", __func__, obj_request);
1643         obj_request_done_set(obj_request);
1644 }
1645
1646 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1647                                 struct ceph_msg *msg)
1648 {
1649         struct rbd_obj_request *obj_request = osd_req->r_priv;
1650         u16 opcode;
1651
1652         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1653         rbd_assert(osd_req == obj_request->osd_req);
1654         if (obj_request_img_data_test(obj_request)) {
1655                 rbd_assert(obj_request->img_request);
1656                 rbd_assert(obj_request->which != BAD_WHICH);
1657         } else {
1658                 rbd_assert(obj_request->which == BAD_WHICH);
1659         }
1660
1661         if (osd_req->r_result < 0)
1662                 obj_request->result = osd_req->r_result;
1663
1664         BUG_ON(osd_req->r_num_ops > 2);
1665
1666         /*
1667          * We support a 64-bit length, but ultimately it has to be
1668          * passed to blk_end_request(), which takes an unsigned int.
1669          */
1670         obj_request->xferred = osd_req->r_reply_op_len[0];
1671         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1672         opcode = osd_req->r_ops[0].op;
1673         switch (opcode) {
1674         case CEPH_OSD_OP_READ:
1675                 rbd_osd_read_callback(obj_request);
1676                 break;
1677         case CEPH_OSD_OP_WRITE:
1678                 rbd_osd_write_callback(obj_request);
1679                 break;
1680         case CEPH_OSD_OP_STAT:
1681                 rbd_osd_stat_callback(obj_request);
1682                 break;
1683         case CEPH_OSD_OP_CALL:
1684         case CEPH_OSD_OP_NOTIFY_ACK:
1685         case CEPH_OSD_OP_WATCH:
1686                 rbd_osd_trivial_callback(obj_request);
1687                 break;
1688         default:
1689                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1690                         obj_request->object_name, (unsigned short) opcode);
1691                 break;
1692         }
1693
1694         if (obj_request_done_test(obj_request))
1695                 rbd_obj_request_complete(obj_request);
1696 }
1697
1698 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1699 {
1700         struct rbd_img_request *img_request = obj_request->img_request;
1701         struct ceph_osd_request *osd_req = obj_request->osd_req;
1702         u64 snap_id;
1703
1704         rbd_assert(osd_req != NULL);
1705
1706         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1707         ceph_osdc_build_request(osd_req, obj_request->offset,
1708                         NULL, snap_id, NULL);
1709 }
1710
1711 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1712 {
1713         struct rbd_img_request *img_request = obj_request->img_request;
1714         struct ceph_osd_request *osd_req = obj_request->osd_req;
1715         struct ceph_snap_context *snapc;
1716         struct timespec mtime = CURRENT_TIME;
1717
1718         rbd_assert(osd_req != NULL);
1719
1720         snapc = img_request ? img_request->snapc : NULL;
1721         ceph_osdc_build_request(osd_req, obj_request->offset,
1722                         snapc, CEPH_NOSNAP, &mtime);
1723 }
1724
1725 static struct ceph_osd_request *rbd_osd_req_create(
1726                                         struct rbd_device *rbd_dev,
1727                                         bool write_request,
1728                                         struct rbd_obj_request *obj_request)
1729 {
1730         struct ceph_snap_context *snapc = NULL;
1731         struct ceph_osd_client *osdc;
1732         struct ceph_osd_request *osd_req;
1733
1734         if (obj_request_img_data_test(obj_request)) {
1735                 struct rbd_img_request *img_request = obj_request->img_request;
1736
1737                 rbd_assert(write_request ==
1738                                 img_request_write_test(img_request));
1739                 if (write_request)
1740                         snapc = img_request->snapc;
1741         }
1742
1743         /* Allocate and initialize the request, for the single op */
1744
1745         osdc = &rbd_dev->rbd_client->client->osdc;
1746         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1747         if (!osd_req)
1748                 return NULL;    /* ENOMEM */
1749
1750         if (write_request)
1751                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1752         else
1753                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1754
1755         osd_req->r_callback = rbd_osd_req_callback;
1756         osd_req->r_priv = obj_request;
1757
1758         osd_req->r_oid_len = strlen(obj_request->object_name);
1759         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1760         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1761
1762         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1763
1764         return osd_req;
1765 }
1766
1767 /*
1768  * Create a copyup osd request based on the information in the
1769  * object request supplied.  A copyup request has two osd ops,
1770  * a copyup method call, and a "normal" write request.
1771  */
1772 static struct ceph_osd_request *
1773 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1774 {
1775         struct rbd_img_request *img_request;
1776         struct ceph_snap_context *snapc;
1777         struct rbd_device *rbd_dev;
1778         struct ceph_osd_client *osdc;
1779         struct ceph_osd_request *osd_req;
1780
1781         rbd_assert(obj_request_img_data_test(obj_request));
1782         img_request = obj_request->img_request;
1783         rbd_assert(img_request);
1784         rbd_assert(img_request_write_test(img_request));
1785
1786         /* Allocate and initialize the request, for the two ops */
1787
1788         snapc = img_request->snapc;
1789         rbd_dev = img_request->rbd_dev;
1790         osdc = &rbd_dev->rbd_client->client->osdc;
1791         osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1792         if (!osd_req)
1793                 return NULL;    /* ENOMEM */
1794
1795         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1796         osd_req->r_callback = rbd_osd_req_callback;
1797         osd_req->r_priv = obj_request;
1798
1799         osd_req->r_oid_len = strlen(obj_request->object_name);
1800         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1801         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1802
1803         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1804
1805         return osd_req;
1806 }
1807
1808
1809 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1810 {
1811         ceph_osdc_put_request(osd_req);
1812 }
1813
1814 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1815
1816 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1817                                                 u64 offset, u64 length,
1818                                                 enum obj_request_type type)
1819 {
1820         struct rbd_obj_request *obj_request;
1821         size_t size;
1822         char *name;
1823
1824         rbd_assert(obj_request_type_valid(type));
1825
1826         size = strlen(object_name) + 1;
1827         name = kmalloc(size, GFP_KERNEL);
1828         if (!name)
1829                 return NULL;
1830
1831         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1832         if (!obj_request) {
1833                 kfree(name);
1834                 return NULL;
1835         }
1836
1837         obj_request->object_name = memcpy(name, object_name, size);
1838         obj_request->offset = offset;
1839         obj_request->length = length;
1840         obj_request->flags = 0;
1841         obj_request->which = BAD_WHICH;
1842         obj_request->type = type;
1843         INIT_LIST_HEAD(&obj_request->links);
1844         init_completion(&obj_request->completion);
1845         kref_init(&obj_request->kref);
1846
1847         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1848                 offset, length, (int)type, obj_request);
1849
1850         return obj_request;
1851 }
1852
1853 static void rbd_obj_request_destroy(struct kref *kref)
1854 {
1855         struct rbd_obj_request *obj_request;
1856
1857         obj_request = container_of(kref, struct rbd_obj_request, kref);
1858
1859         dout("%s: obj %p\n", __func__, obj_request);
1860
1861         rbd_assert(obj_request->img_request == NULL);
1862         rbd_assert(obj_request->which == BAD_WHICH);
1863
1864         if (obj_request->osd_req)
1865                 rbd_osd_req_destroy(obj_request->osd_req);
1866
1867         rbd_assert(obj_request_type_valid(obj_request->type));
1868         switch (obj_request->type) {
1869         case OBJ_REQUEST_NODATA:
1870                 break;          /* Nothing to do */
1871         case OBJ_REQUEST_BIO:
1872                 if (obj_request->bio_list)
1873                         bio_chain_put(obj_request->bio_list);
1874                 break;
1875         case OBJ_REQUEST_PAGES:
1876                 if (obj_request->pages)
1877                         ceph_release_page_vector(obj_request->pages,
1878                                                 obj_request->page_count);
1879                 break;
1880         }
1881
1882         kfree(obj_request->object_name);
1883         obj_request->object_name = NULL;
1884         kmem_cache_free(rbd_obj_request_cache, obj_request);
1885 }
1886
1887 /* It's OK to call this for a device with no parent */
1888
1889 static void rbd_spec_put(struct rbd_spec *spec);
1890 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1891 {
1892         rbd_dev_remove_parent(rbd_dev);
1893         rbd_spec_put(rbd_dev->parent_spec);
1894         rbd_dev->parent_spec = NULL;
1895         rbd_dev->parent_overlap = 0;
1896 }
1897
1898 /*
1899  * Parent image reference counting is used to determine when an
1900  * image's parent fields can be safely torn down--after there are no
1901  * more in-flight requests to the parent image.  When the last
1902  * reference is dropped, cleaning them up is safe.
1903  */
1904 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1905 {
1906         int counter;
1907
1908         if (!rbd_dev->parent_spec)
1909                 return;
1910
1911         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1912         if (counter > 0)
1913                 return;
1914
1915         /* Last reference; clean up parent data structures */
1916
1917         if (!counter)
1918                 rbd_dev_unparent(rbd_dev);
1919         else
1920                 rbd_warn(rbd_dev, "parent reference underflow\n");
1921 }
1922
1923 /*
1924  * If an image has a non-zero parent overlap, get a reference to its
1925  * parent.
1926  *
1927  * We must get the reference before checking for the overlap to
1928  * coordinate properly with zeroing the parent overlap in
1929  * rbd_dev_v2_parent_info() when an image gets flattened.  We
1930  * drop it again if there is no overlap.
1931  *
1932  * Returns true if the rbd device has a parent with a non-zero
1933  * overlap and a reference for it was successfully taken, or
1934  * false otherwise.
1935  */
1936 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1937 {
1938         int counter;
1939
1940         if (!rbd_dev->parent_spec)
1941                 return false;
1942
1943         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1944         if (counter > 0 && rbd_dev->parent_overlap)
1945                 return true;
1946
1947         /* Image was flattened, but parent is not yet torn down */
1948
1949         if (counter < 0)
1950                 rbd_warn(rbd_dev, "parent reference overflow\n");
1951
1952         return false;
1953 }
1954
1955 /*
1956  * Caller is responsible for filling in the list of object requests
1957  * that comprises the image request, and the Linux request pointer
1958  * (if there is one).
1959  */
1960 static struct rbd_img_request *rbd_img_request_create(
1961                                         struct rbd_device *rbd_dev,
1962                                         u64 offset, u64 length,
1963                                         bool write_request)
1964 {
1965         struct rbd_img_request *img_request;
1966
1967         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1968         if (!img_request)
1969                 return NULL;
1970
1971         if (write_request) {
1972                 down_read(&rbd_dev->header_rwsem);
1973                 ceph_get_snap_context(rbd_dev->header.snapc);
1974                 up_read(&rbd_dev->header_rwsem);
1975         }
1976
1977         img_request->rq = NULL;
1978         img_request->rbd_dev = rbd_dev;
1979         img_request->offset = offset;
1980         img_request->length = length;
1981         img_request->flags = 0;
1982         if (write_request) {
1983                 img_request_write_set(img_request);
1984                 img_request->snapc = rbd_dev->header.snapc;
1985         } else {
1986                 img_request->snap_id = rbd_dev->spec->snap_id;
1987         }
1988         if (rbd_dev_parent_get(rbd_dev))
1989                 img_request_layered_set(img_request);
1990         spin_lock_init(&img_request->completion_lock);
1991         img_request->next_completion = 0;
1992         img_request->callback = NULL;
1993         img_request->result = 0;
1994         img_request->obj_request_count = 0;
1995         INIT_LIST_HEAD(&img_request->obj_requests);
1996         kref_init(&img_request->kref);
1997
1998         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
1999                 write_request ? "write" : "read", offset, length,
2000                 img_request);
2001
2002         return img_request;
2003 }
2004
2005 static void rbd_img_request_destroy(struct kref *kref)
2006 {
2007         struct rbd_img_request *img_request;
2008         struct rbd_obj_request *obj_request;
2009         struct rbd_obj_request *next_obj_request;
2010
2011         img_request = container_of(kref, struct rbd_img_request, kref);
2012
2013         dout("%s: img %p\n", __func__, img_request);
2014
2015         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2016                 rbd_img_obj_request_del(img_request, obj_request);
2017         rbd_assert(img_request->obj_request_count == 0);
2018
2019         if (img_request_layered_test(img_request)) {
2020                 img_request_layered_clear(img_request);
2021                 rbd_dev_parent_put(img_request->rbd_dev);
2022         }
2023
2024         if (img_request_write_test(img_request))
2025                 ceph_put_snap_context(img_request->snapc);
2026
2027         kmem_cache_free(rbd_img_request_cache, img_request);
2028 }
2029
2030 static struct rbd_img_request *rbd_parent_request_create(
2031                                         struct rbd_obj_request *obj_request,
2032                                         u64 img_offset, u64 length)
2033 {
2034         struct rbd_img_request *parent_request;
2035         struct rbd_device *rbd_dev;
2036
2037         rbd_assert(obj_request->img_request);
2038         rbd_dev = obj_request->img_request->rbd_dev;
2039
2040         parent_request = rbd_img_request_create(rbd_dev->parent,
2041                                                 img_offset, length, false);
2042         if (!parent_request)
2043                 return NULL;
2044
2045         img_request_child_set(parent_request);
2046         rbd_obj_request_get(obj_request);
2047         parent_request->obj_request = obj_request;
2048
2049         return parent_request;
2050 }
2051
2052 static void rbd_parent_request_destroy(struct kref *kref)
2053 {
2054         struct rbd_img_request *parent_request;
2055         struct rbd_obj_request *orig_request;
2056
2057         parent_request = container_of(kref, struct rbd_img_request, kref);
2058         orig_request = parent_request->obj_request;
2059
2060         parent_request->obj_request = NULL;
2061         rbd_obj_request_put(orig_request);
2062         img_request_child_clear(parent_request);
2063
2064         rbd_img_request_destroy(kref);
2065 }
2066
2067 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2068 {
2069         struct rbd_img_request *img_request;
2070         unsigned int xferred;
2071         int result;
2072         bool more;
2073
2074         rbd_assert(obj_request_img_data_test(obj_request));
2075         img_request = obj_request->img_request;
2076
2077         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2078         xferred = (unsigned int)obj_request->xferred;
2079         result = obj_request->result;
2080         if (result) {
2081                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2082
2083                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2084                         img_request_write_test(img_request) ? "write" : "read",
2085                         obj_request->length, obj_request->img_offset,
2086                         obj_request->offset);
2087                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2088                         result, xferred);
2089                 if (!img_request->result)
2090                         img_request->result = result;
2091         }
2092
2093         /* Image object requests don't own their page array */
2094
2095         if (obj_request->type == OBJ_REQUEST_PAGES) {
2096                 obj_request->pages = NULL;
2097                 obj_request->page_count = 0;
2098         }
2099
2100         if (img_request_child_test(img_request)) {
2101                 rbd_assert(img_request->obj_request != NULL);
2102                 more = obj_request->which < img_request->obj_request_count - 1;
2103         } else {
2104                 rbd_assert(img_request->rq != NULL);
2105                 more = blk_end_request(img_request->rq, result, xferred);
2106         }
2107
2108         return more;
2109 }
2110
2111 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2112 {
2113         struct rbd_img_request *img_request;
2114         u32 which = obj_request->which;
2115         bool more = true;
2116
2117         rbd_assert(obj_request_img_data_test(obj_request));
2118         img_request = obj_request->img_request;
2119
2120         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2121         rbd_assert(img_request != NULL);
2122         rbd_assert(img_request->obj_request_count > 0);
2123         rbd_assert(which != BAD_WHICH);
2124         rbd_assert(which < img_request->obj_request_count);
2125         rbd_assert(which >= img_request->next_completion);
2126
2127         spin_lock_irq(&img_request->completion_lock);
2128         if (which != img_request->next_completion)
2129                 goto out;
2130
2131         for_each_obj_request_from(img_request, obj_request) {
2132                 rbd_assert(more);
2133                 rbd_assert(which < img_request->obj_request_count);
2134
2135                 if (!obj_request_done_test(obj_request))
2136                         break;
2137                 more = rbd_img_obj_end_request(obj_request);
2138                 which++;
2139         }
2140
2141         rbd_assert(more ^ (which == img_request->obj_request_count));
2142         img_request->next_completion = which;
2143 out:
2144         spin_unlock_irq(&img_request->completion_lock);
2145
2146         if (!more)
2147                 rbd_img_request_complete(img_request);
2148 }
2149
2150 /*
2151  * Split up an image request into one or more object requests, each
2152  * to a different object.  The "type" parameter indicates whether
2153  * "data_desc" is the pointer to the head of a list of bio
2154  * structures, or the base of a page array.  In either case this
2155  * function assumes data_desc describes memory sufficient to hold
2156  * all data described by the image request.
2157  */
2158 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2159                                         enum obj_request_type type,
2160                                         void *data_desc)
2161 {
2162         struct rbd_device *rbd_dev = img_request->rbd_dev;
2163         struct rbd_obj_request *obj_request = NULL;
2164         struct rbd_obj_request *next_obj_request;
2165         bool write_request = img_request_write_test(img_request);
2166         struct bio *bio_list;
2167         unsigned int bio_offset = 0;
2168         struct page **pages;
2169         u64 img_offset;
2170         u64 resid;
2171         u16 opcode;
2172
2173         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2174                 (int)type, data_desc);
2175
2176         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2177         img_offset = img_request->offset;
2178         resid = img_request->length;
2179         rbd_assert(resid > 0);
2180
2181         if (type == OBJ_REQUEST_BIO) {
2182                 bio_list = data_desc;
2183                 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2184         } else {
2185                 rbd_assert(type == OBJ_REQUEST_PAGES);
2186                 pages = data_desc;
2187         }
2188
2189         while (resid) {
2190                 struct ceph_osd_request *osd_req;
2191                 const char *object_name;
2192                 u64 offset;
2193                 u64 length;
2194
2195                 object_name = rbd_segment_name(rbd_dev, img_offset);
2196                 if (!object_name)
2197                         goto out_unwind;
2198                 offset = rbd_segment_offset(rbd_dev, img_offset);
2199                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2200                 obj_request = rbd_obj_request_create(object_name,
2201                                                 offset, length, type);
2202                 /* object request has its own copy of the object name */
2203                 rbd_segment_name_free(object_name);
2204                 if (!obj_request)
2205                         goto out_unwind;
2206
2207                 if (type == OBJ_REQUEST_BIO) {
2208                         unsigned int clone_size;
2209
2210                         rbd_assert(length <= (u64)UINT_MAX);
2211                         clone_size = (unsigned int)length;
2212                         obj_request->bio_list =
2213                                         bio_chain_clone_range(&bio_list,
2214                                                                 &bio_offset,
2215                                                                 clone_size,
2216                                                                 GFP_ATOMIC);
2217                         if (!obj_request->bio_list)
2218                                 goto out_partial;
2219                 } else {
2220                         unsigned int page_count;
2221
2222                         obj_request->pages = pages;
2223                         page_count = (u32)calc_pages_for(offset, length);
2224                         obj_request->page_count = page_count;
2225                         if ((offset + length) & ~PAGE_MASK)
2226                                 page_count--;   /* more on last page */
2227                         pages += page_count;
2228                 }
2229
2230                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2231                                                 obj_request);
2232                 if (!osd_req)
2233                         goto out_partial;
2234                 obj_request->osd_req = osd_req;
2235                 obj_request->callback = rbd_img_obj_callback;
2236
2237                 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2238                                                 0, 0);
2239                 if (type == OBJ_REQUEST_BIO)
2240                         osd_req_op_extent_osd_data_bio(osd_req, 0,
2241                                         obj_request->bio_list, length);
2242                 else
2243                         osd_req_op_extent_osd_data_pages(osd_req, 0,
2244                                         obj_request->pages, length,
2245                                         offset & ~PAGE_MASK, false, false);
2246
2247                 /*
2248                  * set obj_request->img_request before formatting
2249                  * the osd_request so that it gets the right snapc
2250                  */
2251                 rbd_img_obj_request_add(img_request, obj_request);
2252                 if (write_request)
2253                         rbd_osd_req_format_write(obj_request);
2254                 else
2255                         rbd_osd_req_format_read(obj_request);
2256
2257                 obj_request->img_offset = img_offset;
2258
2259                 img_offset += length;
2260                 resid -= length;
2261         }
2262
2263         return 0;
2264
2265 out_partial:
2266         rbd_obj_request_put(obj_request);
2267 out_unwind:
2268         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2269                 rbd_obj_request_put(obj_request);
2270
2271         return -ENOMEM;
2272 }
2273
2274 static void
2275 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2276 {
2277         struct rbd_img_request *img_request;
2278         struct rbd_device *rbd_dev;
2279         struct page **pages;
2280         u32 page_count;
2281
2282         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2283         rbd_assert(obj_request_img_data_test(obj_request));
2284         img_request = obj_request->img_request;
2285         rbd_assert(img_request);
2286
2287         rbd_dev = img_request->rbd_dev;
2288         rbd_assert(rbd_dev);
2289
2290         pages = obj_request->copyup_pages;
2291         rbd_assert(pages != NULL);
2292         obj_request->copyup_pages = NULL;
2293         page_count = obj_request->copyup_page_count;
2294         rbd_assert(page_count);
2295         obj_request->copyup_page_count = 0;
2296         ceph_release_page_vector(pages, page_count);
2297
2298         /*
2299          * We want the transfer count to reflect the size of the
2300          * original write request.  There is no such thing as a
2301          * successful short write, so if the request was successful
2302          * we can just set it to the originally-requested length.
2303          */
2304         if (!obj_request->result)
2305                 obj_request->xferred = obj_request->length;
2306
2307         /* Finish up with the normal image object callback */
2308
2309         rbd_img_obj_callback(obj_request);
2310 }
2311
2312 static void
2313 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2314 {
2315         struct rbd_obj_request *orig_request;
2316         struct ceph_osd_request *osd_req;
2317         struct ceph_osd_client *osdc;
2318         struct rbd_device *rbd_dev;
2319         struct page **pages;
2320         u32 page_count;
2321         int img_result;
2322         u64 parent_length;
2323         u64 offset;
2324         u64 length;
2325
2326         rbd_assert(img_request_child_test(img_request));
2327
2328         /* First get what we need from the image request */
2329
2330         pages = img_request->copyup_pages;
2331         rbd_assert(pages != NULL);
2332         img_request->copyup_pages = NULL;
2333         page_count = img_request->copyup_page_count;
2334         rbd_assert(page_count);
2335         img_request->copyup_page_count = 0;
2336
2337         orig_request = img_request->obj_request;
2338         rbd_assert(orig_request != NULL);
2339         rbd_assert(obj_request_type_valid(orig_request->type));
2340         img_result = img_request->result;
2341         parent_length = img_request->length;
2342         rbd_assert(parent_length == img_request->xferred);
2343         rbd_img_request_put(img_request);
2344
2345         rbd_assert(orig_request->img_request);
2346         rbd_dev = orig_request->img_request->rbd_dev;
2347         rbd_assert(rbd_dev);
2348
2349         /*
2350          * If the overlap has become 0 (most likely because the
2351          * image has been flattened) we need to free the pages
2352          * and re-submit the original write request.
2353          */
2354         if (!rbd_dev->parent_overlap) {
2355                 struct ceph_osd_client *osdc;
2356
2357                 ceph_release_page_vector(pages, page_count);
2358                 osdc = &rbd_dev->rbd_client->client->osdc;
2359                 img_result = rbd_obj_request_submit(osdc, orig_request);
2360                 if (!img_result)
2361                         return;
2362         }
2363
2364         if (img_result)
2365                 goto out_err;
2366
2367         /*
2368          * The original osd request is of no use to use any more.
2369          * We need a new one that can hold the two ops in a copyup
2370          * request.  Allocate the new copyup osd request for the
2371          * original request, and release the old one.
2372          */
2373         img_result = -ENOMEM;
2374         osd_req = rbd_osd_req_create_copyup(orig_request);
2375         if (!osd_req)
2376                 goto out_err;
2377         rbd_osd_req_destroy(orig_request->osd_req);
2378         orig_request->osd_req = osd_req;
2379         orig_request->copyup_pages = pages;
2380         orig_request->copyup_page_count = page_count;
2381
2382         /* Initialize the copyup op */
2383
2384         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2385         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2386                                                 false, false);
2387
2388         /* Then the original write request op */
2389
2390         offset = orig_request->offset;
2391         length = orig_request->length;
2392         osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2393                                         offset, length, 0, 0);
2394         if (orig_request->type == OBJ_REQUEST_BIO)
2395                 osd_req_op_extent_osd_data_bio(osd_req, 1,
2396                                         orig_request->bio_list, length);
2397         else
2398                 osd_req_op_extent_osd_data_pages(osd_req, 1,
2399                                         orig_request->pages, length,
2400                                         offset & ~PAGE_MASK, false, false);
2401
2402         rbd_osd_req_format_write(orig_request);
2403
2404         /* All set, send it off. */
2405
2406         orig_request->callback = rbd_img_obj_copyup_callback;
2407         osdc = &rbd_dev->rbd_client->client->osdc;
2408         img_result = rbd_obj_request_submit(osdc, orig_request);
2409         if (!img_result)
2410                 return;
2411 out_err:
2412         /* Record the error code and complete the request */
2413
2414         orig_request->result = img_result;
2415         orig_request->xferred = 0;
2416         obj_request_done_set(orig_request);
2417         rbd_obj_request_complete(orig_request);
2418 }
2419
2420 /*
2421  * Read from the parent image the range of data that covers the
2422  * entire target of the given object request.  This is used for
2423  * satisfying a layered image write request when the target of an
2424  * object request from the image request does not exist.
2425  *
2426  * A page array big enough to hold the returned data is allocated
2427  * and supplied to rbd_img_request_fill() as the "data descriptor."
2428  * When the read completes, this page array will be transferred to
2429  * the original object request for the copyup operation.
2430  *
2431  * If an error occurs, record it as the result of the original
2432  * object request and mark it done so it gets completed.
2433  */
2434 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2435 {
2436         struct rbd_img_request *img_request = NULL;
2437         struct rbd_img_request *parent_request = NULL;
2438         struct rbd_device *rbd_dev;
2439         u64 img_offset;
2440         u64 length;
2441         struct page **pages = NULL;
2442         u32 page_count;
2443         int result;
2444
2445         rbd_assert(obj_request_img_data_test(obj_request));
2446         rbd_assert(obj_request_type_valid(obj_request->type));
2447
2448         img_request = obj_request->img_request;
2449         rbd_assert(img_request != NULL);
2450         rbd_dev = img_request->rbd_dev;
2451         rbd_assert(rbd_dev->parent != NULL);
2452
2453         /*
2454          * Determine the byte range covered by the object in the
2455          * child image to which the original request was to be sent.
2456          */
2457         img_offset = obj_request->img_offset - obj_request->offset;
2458         length = (u64)1 << rbd_dev->header.obj_order;
2459
2460         /*
2461          * There is no defined parent data beyond the parent
2462          * overlap, so limit what we read at that boundary if
2463          * necessary.
2464          */
2465         if (img_offset + length > rbd_dev->parent_overlap) {
2466                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2467                 length = rbd_dev->parent_overlap - img_offset;
2468         }
2469
2470         /*
2471          * Allocate a page array big enough to receive the data read
2472          * from the parent.
2473          */
2474         page_count = (u32)calc_pages_for(0, length);
2475         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2476         if (IS_ERR(pages)) {
2477                 result = PTR_ERR(pages);
2478                 pages = NULL;
2479                 goto out_err;
2480         }
2481
2482         result = -ENOMEM;
2483         parent_request = rbd_parent_request_create(obj_request,
2484                                                 img_offset, length);
2485         if (!parent_request)
2486                 goto out_err;
2487
2488         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2489         if (result)
2490                 goto out_err;
2491         parent_request->copyup_pages = pages;
2492         parent_request->copyup_page_count = page_count;
2493
2494         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2495         result = rbd_img_request_submit(parent_request);
2496         if (!result)
2497                 return 0;
2498
2499         parent_request->copyup_pages = NULL;
2500         parent_request->copyup_page_count = 0;
2501         parent_request->obj_request = NULL;
2502         rbd_obj_request_put(obj_request);
2503 out_err:
2504         if (pages)
2505                 ceph_release_page_vector(pages, page_count);
2506         if (parent_request)
2507                 rbd_img_request_put(parent_request);
2508         obj_request->result = result;
2509         obj_request->xferred = 0;
2510         obj_request_done_set(obj_request);
2511
2512         return result;
2513 }
2514
2515 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2516 {
2517         struct rbd_obj_request *orig_request;
2518         struct rbd_device *rbd_dev;
2519         int result;
2520
2521         rbd_assert(!obj_request_img_data_test(obj_request));
2522
2523         /*
2524          * All we need from the object request is the original
2525          * request and the result of the STAT op.  Grab those, then
2526          * we're done with the request.
2527          */
2528         orig_request = obj_request->obj_request;
2529         obj_request->obj_request = NULL;
2530         rbd_obj_request_put(orig_request);
2531         rbd_assert(orig_request);
2532         rbd_assert(orig_request->img_request);
2533
2534         result = obj_request->result;
2535         obj_request->result = 0;
2536
2537         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2538                 obj_request, orig_request, result,
2539                 obj_request->xferred, obj_request->length);
2540         rbd_obj_request_put(obj_request);
2541
2542         /*
2543          * If the overlap has become 0 (most likely because the
2544          * image has been flattened) we need to free the pages
2545          * and re-submit the original write request.
2546          */
2547         rbd_dev = orig_request->img_request->rbd_dev;
2548         if (!rbd_dev->parent_overlap) {
2549                 struct ceph_osd_client *osdc;
2550
2551                 osdc = &rbd_dev->rbd_client->client->osdc;
2552                 result = rbd_obj_request_submit(osdc, orig_request);
2553                 if (!result)
2554                         return;
2555         }
2556
2557         /*
2558          * Our only purpose here is to determine whether the object
2559          * exists, and we don't want to treat the non-existence as
2560          * an error.  If something else comes back, transfer the
2561          * error to the original request and complete it now.
2562          */
2563         if (!result) {
2564                 obj_request_existence_set(orig_request, true);
2565         } else if (result == -ENOENT) {
2566                 obj_request_existence_set(orig_request, false);
2567         } else if (result) {
2568                 orig_request->result = result;
2569                 goto out;
2570         }
2571
2572         /*
2573          * Resubmit the original request now that we have recorded
2574          * whether the target object exists.
2575          */
2576         orig_request->result = rbd_img_obj_request_submit(orig_request);
2577 out:
2578         if (orig_request->result)
2579                 rbd_obj_request_complete(orig_request);
2580 }
2581
2582 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2583 {
2584         struct rbd_obj_request *stat_request;
2585         struct rbd_device *rbd_dev;
2586         struct ceph_osd_client *osdc;
2587         struct page **pages = NULL;
2588         u32 page_count;
2589         size_t size;
2590         int ret;
2591
2592         /*
2593          * The response data for a STAT call consists of:
2594          *     le64 length;
2595          *     struct {
2596          *         le32 tv_sec;
2597          *         le32 tv_nsec;
2598          *     } mtime;
2599          */
2600         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2601         page_count = (u32)calc_pages_for(0, size);
2602         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2603         if (IS_ERR(pages))
2604                 return PTR_ERR(pages);
2605
2606         ret = -ENOMEM;
2607         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2608                                                         OBJ_REQUEST_PAGES);
2609         if (!stat_request)
2610                 goto out;
2611
2612         rbd_obj_request_get(obj_request);
2613         stat_request->obj_request = obj_request;
2614         stat_request->pages = pages;
2615         stat_request->page_count = page_count;
2616
2617         rbd_assert(obj_request->img_request);
2618         rbd_dev = obj_request->img_request->rbd_dev;
2619         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2620                                                 stat_request);
2621         if (!stat_request->osd_req)
2622                 goto out;
2623         stat_request->callback = rbd_img_obj_exists_callback;
2624
2625         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2626         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2627                                         false, false);
2628         rbd_osd_req_format_read(stat_request);
2629
2630         osdc = &rbd_dev->rbd_client->client->osdc;
2631         ret = rbd_obj_request_submit(osdc, stat_request);
2632 out:
2633         if (ret)
2634                 rbd_obj_request_put(obj_request);
2635
2636         return ret;
2637 }
2638
2639 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2640 {
2641         struct rbd_img_request *img_request;
2642         struct rbd_device *rbd_dev;
2643         bool known;
2644
2645         rbd_assert(obj_request_img_data_test(obj_request));
2646
2647         img_request = obj_request->img_request;
2648         rbd_assert(img_request);
2649         rbd_dev = img_request->rbd_dev;
2650
2651         /*
2652          * Only writes to layered images need special handling.
2653          * Reads and non-layered writes are simple object requests.
2654          * Layered writes that start beyond the end of the overlap
2655          * with the parent have no parent data, so they too are
2656          * simple object requests.  Finally, if the target object is
2657          * known to already exist, its parent data has already been
2658          * copied, so a write to the object can also be handled as a
2659          * simple object request.
2660          */
2661         if (!img_request_write_test(img_request) ||
2662                 !img_request_layered_test(img_request) ||
2663                 rbd_dev->parent_overlap <= obj_request->img_offset ||
2664                 ((known = obj_request_known_test(obj_request)) &&
2665                         obj_request_exists_test(obj_request))) {
2666
2667                 struct rbd_device *rbd_dev;
2668                 struct ceph_osd_client *osdc;
2669
2670                 rbd_dev = obj_request->img_request->rbd_dev;
2671                 osdc = &rbd_dev->rbd_client->client->osdc;
2672
2673                 return rbd_obj_request_submit(osdc, obj_request);
2674         }
2675
2676         /*
2677          * It's a layered write.  The target object might exist but
2678          * we may not know that yet.  If we know it doesn't exist,
2679          * start by reading the data for the full target object from
2680          * the parent so we can use it for a copyup to the target.
2681          */
2682         if (known)
2683                 return rbd_img_obj_parent_read_full(obj_request);
2684
2685         /* We don't know whether the target exists.  Go find out. */
2686
2687         return rbd_img_obj_exists_submit(obj_request);
2688 }
2689
2690 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2691 {
2692         struct rbd_obj_request *obj_request;
2693         struct rbd_obj_request *next_obj_request;
2694
2695         dout("%s: img %p\n", __func__, img_request);
2696         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2697                 int ret;
2698
2699                 ret = rbd_img_obj_request_submit(obj_request);
2700                 if (ret)
2701                         return ret;
2702         }
2703
2704         return 0;
2705 }
2706
2707 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2708 {
2709         struct rbd_obj_request *obj_request;
2710         struct rbd_device *rbd_dev;
2711         u64 obj_end;
2712         u64 img_xferred;
2713         int img_result;
2714
2715         rbd_assert(img_request_child_test(img_request));
2716
2717         /* First get what we need from the image request and release it */
2718
2719         obj_request = img_request->obj_request;
2720         img_xferred = img_request->xferred;
2721         img_result = img_request->result;
2722         rbd_img_request_put(img_request);
2723
2724         /*
2725          * If the overlap has become 0 (most likely because the
2726          * image has been flattened) we need to re-submit the
2727          * original request.
2728          */
2729         rbd_assert(obj_request);
2730         rbd_assert(obj_request->img_request);
2731         rbd_dev = obj_request->img_request->rbd_dev;
2732         if (!rbd_dev->parent_overlap) {
2733                 struct ceph_osd_client *osdc;
2734
2735                 osdc = &rbd_dev->rbd_client->client->osdc;
2736                 img_result = rbd_obj_request_submit(osdc, obj_request);
2737                 if (!img_result)
2738                         return;
2739         }
2740
2741         obj_request->result = img_result;
2742         if (obj_request->result)
2743                 goto out;
2744
2745         /*
2746          * We need to zero anything beyond the parent overlap
2747          * boundary.  Since rbd_img_obj_request_read_callback()
2748          * will zero anything beyond the end of a short read, an
2749          * easy way to do this is to pretend the data from the
2750          * parent came up short--ending at the overlap boundary.
2751          */
2752         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2753         obj_end = obj_request->img_offset + obj_request->length;
2754         if (obj_end > rbd_dev->parent_overlap) {
2755                 u64 xferred = 0;
2756
2757                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2758                         xferred = rbd_dev->parent_overlap -
2759                                         obj_request->img_offset;
2760
2761                 obj_request->xferred = min(img_xferred, xferred);
2762         } else {
2763                 obj_request->xferred = img_xferred;
2764         }
2765 out:
2766         rbd_img_obj_request_read_callback(obj_request);
2767         rbd_obj_request_complete(obj_request);
2768 }
2769
2770 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2771 {
2772         struct rbd_img_request *img_request;
2773         int result;
2774
2775         rbd_assert(obj_request_img_data_test(obj_request));
2776         rbd_assert(obj_request->img_request != NULL);
2777         rbd_assert(obj_request->result == (s32) -ENOENT);
2778         rbd_assert(obj_request_type_valid(obj_request->type));
2779
2780         /* rbd_read_finish(obj_request, obj_request->length); */
2781         img_request = rbd_parent_request_create(obj_request,
2782                                                 obj_request->img_offset,
2783                                                 obj_request->length);
2784         result = -ENOMEM;
2785         if (!img_request)
2786                 goto out_err;
2787
2788         if (obj_request->type == OBJ_REQUEST_BIO)
2789                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2790                                                 obj_request->bio_list);
2791         else
2792                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2793                                                 obj_request->pages);
2794         if (result)
2795                 goto out_err;
2796
2797         img_request->callback = rbd_img_parent_read_callback;
2798         result = rbd_img_request_submit(img_request);
2799         if (result)
2800                 goto out_err;
2801
2802         return;
2803 out_err:
2804         if (img_request)
2805                 rbd_img_request_put(img_request);
2806         obj_request->result = result;
2807         obj_request->xferred = 0;
2808         obj_request_done_set(obj_request);
2809 }
2810
2811 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev, u64 notify_id)
2812 {
2813         struct rbd_obj_request *obj_request;
2814         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2815         int ret;
2816
2817         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2818                                                         OBJ_REQUEST_NODATA);
2819         if (!obj_request)
2820                 return -ENOMEM;
2821
2822         ret = -ENOMEM;
2823         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2824         if (!obj_request->osd_req)
2825                 goto out;
2826         obj_request->callback = rbd_obj_request_put;
2827
2828         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2829                                         notify_id, 0, 0);
2830         rbd_osd_req_format_read(obj_request);
2831
2832         ret = rbd_obj_request_submit(osdc, obj_request);
2833 out:
2834         if (ret)
2835                 rbd_obj_request_put(obj_request);
2836
2837         return ret;
2838 }
2839
2840 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2841 {
2842         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2843         int ret;
2844
2845         if (!rbd_dev)
2846                 return;
2847
2848         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2849                 rbd_dev->header_name, (unsigned long long)notify_id,
2850                 (unsigned int)opcode);
2851         ret = rbd_dev_refresh(rbd_dev);
2852         if (ret)
2853                 rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2854
2855         rbd_obj_notify_ack(rbd_dev, notify_id);
2856 }
2857
2858 /*
2859  * Request sync osd watch/unwatch.  The value of "start" determines
2860  * whether a watch request is being initiated or torn down.
2861  */
2862 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2863 {
2864         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2865         struct rbd_obj_request *obj_request;
2866         int ret;
2867
2868         rbd_assert(start ^ !!rbd_dev->watch_event);
2869         rbd_assert(start ^ !!rbd_dev->watch_request);
2870
2871         if (start) {
2872                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2873                                                 &rbd_dev->watch_event);
2874                 if (ret < 0)
2875                         return ret;
2876                 rbd_assert(rbd_dev->watch_event != NULL);
2877         }
2878
2879         ret = -ENOMEM;
2880         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2881                                                         OBJ_REQUEST_NODATA);
2882         if (!obj_request)
2883                 goto out_cancel;
2884
2885         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2886         if (!obj_request->osd_req)
2887                 goto out_cancel;
2888
2889         if (start)
2890                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2891         else
2892                 ceph_osdc_unregister_linger_request(osdc,
2893                                         rbd_dev->watch_request->osd_req);
2894
2895         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2896                                 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2897         rbd_osd_req_format_write(obj_request);
2898
2899         ret = rbd_obj_request_submit(osdc, obj_request);
2900         if (ret)
2901                 goto out_cancel;
2902         ret = rbd_obj_request_wait(obj_request);
2903         if (ret)
2904                 goto out_cancel;
2905         ret = obj_request->result;
2906         if (ret)
2907                 goto out_cancel;
2908
2909         /*
2910          * A watch request is set to linger, so the underlying osd
2911          * request won't go away until we unregister it.  We retain
2912          * a pointer to the object request during that time (in
2913          * rbd_dev->watch_request), so we'll keep a reference to
2914          * it.  We'll drop that reference (below) after we've
2915          * unregistered it.
2916          */
2917         if (start) {
2918                 rbd_dev->watch_request = obj_request;
2919
2920                 return 0;
2921         }
2922
2923         /* We have successfully torn down the watch request */
2924
2925         rbd_obj_request_put(rbd_dev->watch_request);
2926         rbd_dev->watch_request = NULL;
2927 out_cancel:
2928         /* Cancel the event if we're tearing down, or on error */
2929         ceph_osdc_cancel_event(rbd_dev->watch_event);
2930         rbd_dev->watch_event = NULL;
2931         if (obj_request)
2932                 rbd_obj_request_put(obj_request);
2933
2934         return ret;
2935 }
2936
2937 /*
2938  * Synchronous osd object method call.  Returns the number of bytes
2939  * returned in the outbound buffer, or a negative error code.
2940  */
2941 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2942                              const char *object_name,
2943                              const char *class_name,
2944                              const char *method_name,
2945                              const void *outbound,
2946                              size_t outbound_size,
2947                              void *inbound,
2948                              size_t inbound_size)
2949 {
2950         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2951         struct rbd_obj_request *obj_request;
2952         struct page **pages;
2953         u32 page_count;
2954         int ret;
2955
2956         /*
2957          * Method calls are ultimately read operations.  The result
2958          * should placed into the inbound buffer provided.  They
2959          * also supply outbound data--parameters for the object
2960          * method.  Currently if this is present it will be a
2961          * snapshot id.
2962          */
2963         page_count = (u32)calc_pages_for(0, inbound_size);
2964         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2965         if (IS_ERR(pages))
2966                 return PTR_ERR(pages);
2967
2968         ret = -ENOMEM;
2969         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2970                                                         OBJ_REQUEST_PAGES);
2971         if (!obj_request)
2972                 goto out;
2973
2974         obj_request->pages = pages;
2975         obj_request->page_count = page_count;
2976
2977         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2978         if (!obj_request->osd_req)
2979                 goto out;
2980
2981         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2982                                         class_name, method_name);
2983         if (outbound_size) {
2984                 struct ceph_pagelist *pagelist;
2985
2986                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2987                 if (!pagelist)
2988                         goto out;
2989
2990                 ceph_pagelist_init(pagelist);
2991                 ceph_pagelist_append(pagelist, outbound, outbound_size);
2992                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2993                                                 pagelist);
2994         }
2995         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
2996                                         obj_request->pages, inbound_size,
2997                                         0, false, false);
2998         rbd_osd_req_format_read(obj_request);
2999
3000         ret = rbd_obj_request_submit(osdc, obj_request);
3001         if (ret)
3002                 goto out;
3003         ret = rbd_obj_request_wait(obj_request);
3004         if (ret)
3005                 goto out;
3006
3007         ret = obj_request->result;
3008         if (ret < 0)
3009                 goto out;
3010
3011         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3012         ret = (int)obj_request->xferred;
3013         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3014 out:
3015         if (obj_request)
3016                 rbd_obj_request_put(obj_request);
3017         else
3018                 ceph_release_page_vector(pages, page_count);
3019
3020         return ret;
3021 }
3022
3023 static void rbd_request_fn(struct request_queue *q)
3024                 __releases(q->queue_lock) __acquires(q->queue_lock)
3025 {
3026         struct rbd_device *rbd_dev = q->queuedata;
3027         bool read_only = rbd_dev->mapping.read_only;
3028         struct request *rq;
3029         int result;
3030
3031         while ((rq = blk_fetch_request(q))) {
3032                 bool write_request = rq_data_dir(rq) == WRITE;
3033                 struct rbd_img_request *img_request;
3034                 u64 offset;
3035                 u64 length;
3036
3037                 /* Ignore any non-FS requests that filter through. */
3038
3039                 if (rq->cmd_type != REQ_TYPE_FS) {
3040                         dout("%s: non-fs request type %d\n", __func__,
3041                                 (int) rq->cmd_type);
3042                         __blk_end_request_all(rq, 0);
3043                         continue;
3044                 }
3045
3046                 /* Ignore/skip any zero-length requests */
3047
3048                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3049                 length = (u64) blk_rq_bytes(rq);
3050
3051                 if (!length) {
3052                         dout("%s: zero-length request\n", __func__);
3053                         __blk_end_request_all(rq, 0);
3054                         continue;
3055                 }
3056
3057                 spin_unlock_irq(q->queue_lock);
3058
3059                 /* Disallow writes to a read-only device */
3060
3061                 if (write_request) {
3062                         result = -EROFS;
3063                         if (read_only)
3064                                 goto end_request;
3065                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3066                 }
3067
3068                 /*
3069                  * Quit early if the mapped snapshot no longer
3070                  * exists.  It's still possible the snapshot will
3071                  * have disappeared by the time our request arrives
3072                  * at the osd, but there's no sense in sending it if
3073                  * we already know.
3074                  */
3075                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3076                         dout("request for non-existent snapshot");
3077                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3078                         result = -ENXIO;
3079                         goto end_request;
3080                 }
3081
3082                 result = -EINVAL;
3083                 if (offset && length > U64_MAX - offset + 1) {
3084                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3085                                 offset, length);
3086                         goto end_request;       /* Shouldn't happen */
3087                 }
3088
3089                 result = -EIO;
3090                 if (offset + length > rbd_dev->mapping.size) {
3091                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3092                                 offset, length, rbd_dev->mapping.size);
3093                         goto end_request;
3094                 }
3095
3096                 result = -ENOMEM;
3097                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3098                                                         write_request);
3099                 if (!img_request)
3100                         goto end_request;
3101
3102                 img_request->rq = rq;
3103
3104                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3105                                                 rq->bio);
3106                 if (!result)
3107                         result = rbd_img_request_submit(img_request);
3108                 if (result)
3109                         rbd_img_request_put(img_request);
3110 end_request:
3111                 spin_lock_irq(q->queue_lock);
3112                 if (result < 0) {
3113                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3114                                 write_request ? "write" : "read",
3115                                 length, offset, result);
3116
3117                         __blk_end_request_all(rq, result);
3118                 }
3119         }
3120 }
3121
3122 /*
3123  * a queue callback. Makes sure that we don't create a bio that spans across
3124  * multiple osd objects. One exception would be with a single page bios,
3125  * which we handle later at bio_chain_clone_range()
3126  */
3127 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3128                           struct bio_vec *bvec)
3129 {
3130         struct rbd_device *rbd_dev = q->queuedata;
3131         sector_t sector_offset;
3132         sector_t sectors_per_obj;
3133         sector_t obj_sector_offset;
3134         int ret;
3135
3136         /*
3137          * Find how far into its rbd object the partition-relative
3138          * bio start sector is to offset relative to the enclosing
3139          * device.
3140          */
3141         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3142         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3143         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3144
3145         /*
3146          * Compute the number of bytes from that offset to the end
3147          * of the object.  Account for what's already used by the bio.
3148          */
3149         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3150         if (ret > bmd->bi_size)
3151                 ret -= bmd->bi_size;
3152         else
3153                 ret = 0;
3154
3155         /*
3156          * Don't send back more than was asked for.  And if the bio
3157          * was empty, let the whole thing through because:  "Note
3158          * that a block device *must* allow a single page to be
3159          * added to an empty bio."
3160          */
3161         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3162         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3163                 ret = (int) bvec->bv_len;
3164
3165         return ret;
3166 }
3167
3168 static void rbd_free_disk(struct rbd_device *rbd_dev)
3169 {
3170         struct gendisk *disk = rbd_dev->disk;
3171
3172         if (!disk)
3173                 return;
3174
3175         rbd_dev->disk = NULL;
3176         if (disk->flags & GENHD_FL_UP) {
3177                 del_gendisk(disk);
3178                 if (disk->queue)
3179                         blk_cleanup_queue(disk->queue);
3180         }
3181         put_disk(disk);
3182 }
3183
3184 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3185                                 const char *object_name,
3186                                 u64 offset, u64 length, void *buf)
3187
3188 {
3189         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3190         struct rbd_obj_request *obj_request;
3191         struct page **pages = NULL;
3192         u32 page_count;
3193         size_t size;
3194         int ret;
3195
3196         page_count = (u32) calc_pages_for(offset, length);
3197         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3198         if (IS_ERR(pages))
3199                 ret = PTR_ERR(pages);
3200
3201         ret = -ENOMEM;
3202         obj_request = rbd_obj_request_create(object_name, offset, length,
3203                                                         OBJ_REQUEST_PAGES);
3204         if (!obj_request)
3205                 goto out;
3206
3207         obj_request->pages = pages;
3208         obj_request->page_count = page_count;
3209
3210         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3211         if (!obj_request->osd_req)
3212                 goto out;
3213
3214         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3215                                         offset, length, 0, 0);
3216         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3217                                         obj_request->pages,
3218                                         obj_request->length,
3219                                         obj_request->offset & ~PAGE_MASK,
3220                                         false, false);
3221         rbd_osd_req_format_read(obj_request);
3222
3223         ret = rbd_obj_request_submit(osdc, obj_request);
3224         if (ret)
3225                 goto out;
3226         ret = rbd_obj_request_wait(obj_request);
3227         if (ret)
3228                 goto out;
3229
3230         ret = obj_request->result;
3231         if (ret < 0)
3232                 goto out;
3233
3234         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3235         size = (size_t) obj_request->xferred;
3236         ceph_copy_from_page_vector(pages, buf, 0, size);
3237         rbd_assert(size <= (size_t)INT_MAX);
3238         ret = (int)size;
3239 out:
3240         if (obj_request)
3241                 rbd_obj_request_put(obj_request);
3242         else
3243                 ceph_release_page_vector(pages, page_count);
3244
3245         return ret;
3246 }
3247
3248 /*
3249  * Read the complete header for the given rbd device.  On successful
3250  * return, the rbd_dev->header field will contain up-to-date
3251  * information about the image.
3252  */
3253 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3254 {
3255         struct rbd_image_header_ondisk *ondisk = NULL;
3256         u32 snap_count = 0;
3257         u64 names_size = 0;
3258         u32 want_count;
3259         int ret;
3260
3261         /*
3262          * The complete header will include an array of its 64-bit
3263          * snapshot ids, followed by the names of those snapshots as
3264          * a contiguous block of NUL-terminated strings.  Note that
3265          * the number of snapshots could change by the time we read
3266          * it in, in which case we re-read it.
3267          */
3268         do {
3269                 size_t size;
3270
3271                 kfree(ondisk);
3272
3273                 size = sizeof (*ondisk);
3274                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3275                 size += names_size;
3276                 ondisk = kmalloc(size, GFP_KERNEL);
3277                 if (!ondisk)
3278                         return -ENOMEM;
3279
3280                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3281                                        0, size, ondisk);
3282                 if (ret < 0)
3283                         goto out;
3284                 if ((size_t)ret < size) {
3285                         ret = -ENXIO;
3286                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3287                                 size, ret);
3288                         goto out;
3289                 }
3290                 if (!rbd_dev_ondisk_valid(ondisk)) {
3291                         ret = -ENXIO;
3292                         rbd_warn(rbd_dev, "invalid header");
3293                         goto out;
3294                 }
3295
3296                 names_size = le64_to_cpu(ondisk->snap_names_len);
3297                 want_count = snap_count;
3298                 snap_count = le32_to_cpu(ondisk->snap_count);
3299         } while (snap_count != want_count);
3300
3301         ret = rbd_header_from_disk(rbd_dev, ondisk);
3302 out:
3303         kfree(ondisk);
3304
3305         return ret;
3306 }
3307
3308 /*
3309  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3310  * has disappeared from the (just updated) snapshot context.
3311  */
3312 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3313 {
3314         u64 snap_id;
3315
3316         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3317                 return;
3318
3319         snap_id = rbd_dev->spec->snap_id;
3320         if (snap_id == CEPH_NOSNAP)
3321                 return;
3322
3323         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3324                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3325 }
3326
3327 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3328 {
3329         u64 mapping_size;
3330         int ret;
3331
3332         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3333         down_write(&rbd_dev->header_rwsem);
3334         mapping_size = rbd_dev->mapping.size;
3335         if (rbd_dev->image_format == 1)
3336                 ret = rbd_dev_v1_header_info(rbd_dev);
3337         else
3338                 ret = rbd_dev_v2_header_info(rbd_dev);
3339
3340         /* If it's a mapped snapshot, validate its EXISTS flag */
3341
3342         rbd_exists_validate(rbd_dev);
3343         up_write(&rbd_dev->header_rwsem);
3344
3345         if (mapping_size != rbd_dev->mapping.size) {
3346                 sector_t size;
3347
3348                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3349                 dout("setting size to %llu sectors", (unsigned long long)size);
3350                 set_capacity(rbd_dev->disk, size);
3351                 revalidate_disk(rbd_dev->disk);
3352         }
3353
3354         return ret;
3355 }
3356
3357 static int rbd_init_disk(struct rbd_device *rbd_dev)
3358 {
3359         struct gendisk *disk;
3360         struct request_queue *q;
3361         u64 segment_size;
3362
3363         /* create gendisk info */
3364         disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3365         if (!disk)
3366                 return -ENOMEM;
3367
3368         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3369                  rbd_dev->dev_id);
3370         disk->major = rbd_dev->major;
3371         disk->first_minor = 0;
3372         disk->fops = &rbd_bd_ops;
3373         disk->private_data = rbd_dev;
3374
3375         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3376         if (!q)
3377                 goto out_disk;
3378
3379         /* We use the default size, but let's be explicit about it. */
3380         blk_queue_physical_block_size(q, SECTOR_SIZE);
3381
3382         /* set io sizes to object size */
3383         segment_size = rbd_obj_bytes(&rbd_dev->header);
3384         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3385         blk_queue_max_segment_size(q, segment_size);
3386         blk_queue_io_min(q, segment_size);
3387         blk_queue_io_opt(q, segment_size);
3388
3389         blk_queue_merge_bvec(q, rbd_merge_bvec);
3390         disk->queue = q;
3391
3392         q->queuedata = rbd_dev;
3393
3394         rbd_dev->disk = disk;
3395
3396         return 0;
3397 out_disk:
3398         put_disk(disk);
3399
3400         return -ENOMEM;
3401 }
3402
3403 /*
3404   sysfs
3405 */
3406
3407 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3408 {
3409         return container_of(dev, struct rbd_device, dev);
3410 }
3411
3412 static ssize_t rbd_size_show(struct device *dev,
3413                              struct device_attribute *attr, char *buf)
3414 {
3415         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3416
3417         return sprintf(buf, "%llu\n",
3418                 (unsigned long long)rbd_dev->mapping.size);
3419 }
3420
3421 /*
3422  * Note this shows the features for whatever's mapped, which is not
3423  * necessarily the base image.
3424  */
3425 static ssize_t rbd_features_show(struct device *dev,
3426                              struct device_attribute *attr, char *buf)
3427 {
3428         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3429
3430         return sprintf(buf, "0x%016llx\n",
3431                         (unsigned long long)rbd_dev->mapping.features);
3432 }
3433
3434 static ssize_t rbd_major_show(struct device *dev,
3435                               struct device_attribute *attr, char *buf)
3436 {
3437         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3438
3439         if (rbd_dev->major)
3440                 return sprintf(buf, "%d\n", rbd_dev->major);
3441
3442         return sprintf(buf, "(none)\n");
3443
3444 }
3445
3446 static ssize_t rbd_client_id_show(struct device *dev,
3447                                   struct device_attribute *attr, char *buf)
3448 {
3449         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3450
3451         return sprintf(buf, "client%lld\n",
3452                         ceph_client_id(rbd_dev->rbd_client->client));
3453 }
3454
3455 static ssize_t rbd_pool_show(struct device *dev,
3456                              struct device_attribute *attr, char *buf)
3457 {
3458         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3459
3460         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3461 }
3462
3463 static ssize_t rbd_pool_id_show(struct device *dev,
3464                              struct device_attribute *attr, char *buf)
3465 {
3466         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3467
3468         return sprintf(buf, "%llu\n",
3469                         (unsigned long long) rbd_dev->spec->pool_id);
3470 }
3471
3472 static ssize_t rbd_name_show(struct device *dev,
3473                              struct device_attribute *attr, char *buf)
3474 {
3475         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3476
3477         if (rbd_dev->spec->image_name)
3478                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3479
3480         return sprintf(buf, "(unknown)\n");
3481 }
3482
3483 static ssize_t rbd_image_id_show(struct device *dev,
3484                              struct device_attribute *attr, char *buf)
3485 {
3486         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3487
3488         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3489 }
3490
3491 /*
3492  * Shows the name of the currently-mapped snapshot (or
3493  * RBD_SNAP_HEAD_NAME for the base image).
3494  */
3495 static ssize_t rbd_snap_show(struct device *dev,
3496                              struct device_attribute *attr,
3497                              char *buf)
3498 {
3499         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3500
3501         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3502 }
3503
3504 /*
3505  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3506  * for the parent image.  If there is no parent, simply shows
3507  * "(no parent image)".
3508  */
3509 static ssize_t rbd_parent_show(struct device *dev,
3510                              struct device_attribute *attr,
3511                              char *buf)
3512 {
3513         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3514         struct rbd_spec *spec = rbd_dev->parent_spec;
3515         int count;
3516         char *bufp = buf;
3517
3518         if (!spec)
3519                 return sprintf(buf, "(no parent image)\n");
3520
3521         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3522                         (unsigned long long) spec->pool_id, spec->pool_name);
3523         if (count < 0)
3524                 return count;
3525         bufp += count;
3526
3527         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3528                         spec->image_name ? spec->image_name : "(unknown)");
3529         if (count < 0)
3530                 return count;
3531         bufp += count;
3532
3533         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3534                         (unsigned long long) spec->snap_id, spec->snap_name);
3535         if (count < 0)
3536                 return count;
3537         bufp += count;
3538
3539         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3540         if (count < 0)
3541                 return count;
3542         bufp += count;
3543
3544         return (ssize_t) (bufp - buf);
3545 }
3546
3547 static ssize_t rbd_image_refresh(struct device *dev,
3548                                  struct device_attribute *attr,
3549                                  const char *buf,
3550                                  size_t size)
3551 {
3552         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3553         int ret;
3554
3555         ret = rbd_dev_refresh(rbd_dev);
3556         if (ret)
3557                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3558
3559         return ret < 0 ? ret : size;
3560 }
3561
3562 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3563 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3564 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3565 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3566 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3567 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3568 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3569 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3570 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3571 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3572 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3573
3574 static struct attribute *rbd_attrs[] = {
3575         &dev_attr_size.attr,
3576         &dev_attr_features.attr,
3577         &dev_attr_major.attr,
3578         &dev_attr_client_id.attr,
3579         &dev_attr_pool.attr,
3580         &dev_attr_pool_id.attr,
3581         &dev_attr_name.attr,
3582         &dev_attr_image_id.attr,
3583         &dev_attr_current_snap.attr,
3584         &dev_attr_parent.attr,
3585         &dev_attr_refresh.attr,
3586         NULL
3587 };
3588
3589 static struct attribute_group rbd_attr_group = {
3590         .attrs = rbd_attrs,
3591 };
3592
3593 static const struct attribute_group *rbd_attr_groups[] = {
3594         &rbd_attr_group,
3595         NULL
3596 };
3597
3598 static void rbd_sysfs_dev_release(struct device *dev)
3599 {
3600 }
3601
3602 static struct device_type rbd_device_type = {
3603         .name           = "rbd",
3604         .groups         = rbd_attr_groups,
3605         .release        = rbd_sysfs_dev_release,
3606 };
3607
3608 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3609 {
3610         kref_get(&spec->kref);
3611
3612         return spec;
3613 }
3614
3615 static void rbd_spec_free(struct kref *kref);
3616 static void rbd_spec_put(struct rbd_spec *spec)
3617 {
3618         if (spec)
3619                 kref_put(&spec->kref, rbd_spec_free);
3620 }
3621
3622 static struct rbd_spec *rbd_spec_alloc(void)
3623 {
3624         struct rbd_spec *spec;
3625
3626         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3627         if (!spec)
3628                 return NULL;
3629         kref_init(&spec->kref);
3630
3631         return spec;
3632 }
3633
3634 static void rbd_spec_free(struct kref *kref)
3635 {
3636         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3637
3638         kfree(spec->pool_name);
3639         kfree(spec->image_id);
3640         kfree(spec->image_name);
3641         kfree(spec->snap_name);
3642         kfree(spec);
3643 }
3644
3645 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3646                                 struct rbd_spec *spec)
3647 {
3648         struct rbd_device *rbd_dev;
3649
3650         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3651         if (!rbd_dev)
3652                 return NULL;
3653
3654         spin_lock_init(&rbd_dev->lock);
3655         rbd_dev->flags = 0;
3656         atomic_set(&rbd_dev->parent_ref, 0);
3657         INIT_LIST_HEAD(&rbd_dev->node);
3658         init_rwsem(&rbd_dev->header_rwsem);
3659
3660         rbd_dev->spec = spec;
3661         rbd_dev->rbd_client = rbdc;
3662
3663         /* Initialize the layout used for all rbd requests */
3664
3665         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3666         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3667         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3668         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3669
3670         return rbd_dev;
3671 }
3672
3673 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3674 {
3675         rbd_put_client(rbd_dev->rbd_client);
3676         rbd_spec_put(rbd_dev->spec);
3677         kfree(rbd_dev);
3678 }
3679
3680 /*
3681  * Get the size and object order for an image snapshot, or if
3682  * snap_id is CEPH_NOSNAP, gets this information for the base
3683  * image.
3684  */
3685 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3686                                 u8 *order, u64 *snap_size)
3687 {
3688         __le64 snapid = cpu_to_le64(snap_id);
3689         int ret;
3690         struct {
3691                 u8 order;
3692                 __le64 size;
3693         } __attribute__ ((packed)) size_buf = { 0 };
3694
3695         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3696                                 "rbd", "get_size",
3697                                 &snapid, sizeof (snapid),
3698                                 &size_buf, sizeof (size_buf));
3699         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3700         if (ret < 0)
3701                 return ret;
3702         if (ret < sizeof (size_buf))
3703                 return -ERANGE;
3704
3705         if (order)
3706                 *order = size_buf.order;
3707         *snap_size = le64_to_cpu(size_buf.size);
3708
3709         dout("  snap_id 0x%016llx order = %u, snap_size = %llu\n",
3710                 (unsigned long long)snap_id, (unsigned int)*order,
3711                 (unsigned long long)*snap_size);
3712
3713         return 0;
3714 }
3715
3716 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3717 {
3718         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3719                                         &rbd_dev->header.obj_order,
3720                                         &rbd_dev->header.image_size);
3721 }
3722
3723 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3724 {
3725         void *reply_buf;
3726         int ret;
3727         void *p;
3728
3729         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3730         if (!reply_buf)
3731                 return -ENOMEM;
3732
3733         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3734                                 "rbd", "get_object_prefix", NULL, 0,
3735                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3736         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3737         if (ret < 0)
3738                 goto out;
3739
3740         p = reply_buf;
3741         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3742                                                 p + ret, NULL, GFP_NOIO);
3743         ret = 0;
3744
3745         if (IS_ERR(rbd_dev->header.object_prefix)) {
3746                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3747                 rbd_dev->header.object_prefix = NULL;
3748         } else {
3749                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3750         }
3751 out:
3752         kfree(reply_buf);
3753
3754         return ret;
3755 }
3756
3757 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3758                 u64 *snap_features)
3759 {
3760         __le64 snapid = cpu_to_le64(snap_id);
3761         struct {
3762                 __le64 features;
3763                 __le64 incompat;
3764         } __attribute__ ((packed)) features_buf = { 0 };
3765         u64 incompat;
3766         int ret;
3767
3768         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3769                                 "rbd", "get_features",
3770                                 &snapid, sizeof (snapid),
3771                                 &features_buf, sizeof (features_buf));
3772         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3773         if (ret < 0)
3774                 return ret;
3775         if (ret < sizeof (features_buf))
3776                 return -ERANGE;
3777
3778         incompat = le64_to_cpu(features_buf.incompat);
3779         if (incompat & ~RBD_FEATURES_SUPPORTED)
3780                 return -ENXIO;
3781
3782         *snap_features = le64_to_cpu(features_buf.features);
3783
3784         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3785                 (unsigned long long)snap_id,
3786                 (unsigned long long)*snap_features,
3787                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3788
3789         return 0;
3790 }
3791
3792 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3793 {
3794         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3795                                                 &rbd_dev->header.features);
3796 }
3797
3798 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3799 {
3800         struct rbd_spec *parent_spec;
3801         size_t size;
3802         void *reply_buf = NULL;
3803         __le64 snapid;
3804         void *p;
3805         void *end;
3806         u64 pool_id;
3807         char *image_id;
3808         u64 snap_id;
3809         u64 overlap;
3810         int ret;
3811
3812         parent_spec = rbd_spec_alloc();
3813         if (!parent_spec)
3814                 return -ENOMEM;
3815
3816         size = sizeof (__le64) +                                /* pool_id */
3817                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3818                 sizeof (__le64) +                               /* snap_id */
3819                 sizeof (__le64);                                /* overlap */
3820         reply_buf = kmalloc(size, GFP_KERNEL);
3821         if (!reply_buf) {
3822                 ret = -ENOMEM;
3823                 goto out_err;
3824         }
3825
3826         snapid = cpu_to_le64(CEPH_NOSNAP);
3827         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3828                                 "rbd", "get_parent",
3829                                 &snapid, sizeof (snapid),
3830                                 reply_buf, size);
3831         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3832         if (ret < 0)
3833                 goto out_err;
3834
3835         p = reply_buf;
3836         end = reply_buf + ret;
3837         ret = -ERANGE;
3838         ceph_decode_64_safe(&p, end, pool_id, out_err);
3839         if (pool_id == CEPH_NOPOOL) {
3840                 /*
3841                  * Either the parent never existed, or we have
3842                  * record of it but the image got flattened so it no
3843                  * longer has a parent.  When the parent of a
3844                  * layered image disappears we immediately set the
3845                  * overlap to 0.  The effect of this is that all new
3846                  * requests will be treated as if the image had no
3847                  * parent.
3848                  */
3849                 if (rbd_dev->parent_overlap) {
3850                         rbd_dev->parent_overlap = 0;
3851                         smp_mb();
3852                         rbd_dev_parent_put(rbd_dev);
3853                         pr_info("%s: clone image has been flattened\n",
3854                                 rbd_dev->disk->disk_name);
3855                 }
3856
3857                 goto out;       /* No parent?  No problem. */
3858         }
3859
3860         /* The ceph file layout needs to fit pool id in 32 bits */
3861
3862         ret = -EIO;
3863         if (pool_id > (u64)U32_MAX) {
3864                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3865                         (unsigned long long)pool_id, U32_MAX);
3866                 goto out_err;
3867         }
3868
3869         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3870         if (IS_ERR(image_id)) {
3871                 ret = PTR_ERR(image_id);
3872                 goto out_err;
3873         }
3874         ceph_decode_64_safe(&p, end, snap_id, out_err);
3875         ceph_decode_64_safe(&p, end, overlap, out_err);
3876
3877         /*
3878          * The parent won't change (except when the clone is
3879          * flattened, already handled that).  So we only need to
3880          * record the parent spec we have not already done so.
3881          */
3882         if (!rbd_dev->parent_spec) {
3883                 parent_spec->pool_id = pool_id;
3884                 parent_spec->image_id = image_id;
3885                 parent_spec->snap_id = snap_id;
3886                 rbd_dev->parent_spec = parent_spec;
3887                 parent_spec = NULL;     /* rbd_dev now owns this */
3888         }
3889
3890         /*
3891          * We always update the parent overlap.  If it's zero we
3892          * treat it specially.
3893          */
3894         rbd_dev->parent_overlap = overlap;
3895         smp_mb();
3896         if (!overlap) {
3897
3898                 /* A null parent_spec indicates it's the initial probe */
3899
3900                 if (parent_spec) {
3901                         /*
3902                          * The overlap has become zero, so the clone
3903                          * must have been resized down to 0 at some
3904                          * point.  Treat this the same as a flatten.
3905                          */
3906                         rbd_dev_parent_put(rbd_dev);
3907                         pr_info("%s: clone image now standalone\n",
3908                                 rbd_dev->disk->disk_name);
3909                 } else {
3910                         /*
3911                          * For the initial probe, if we find the
3912                          * overlap is zero we just pretend there was
3913                          * no parent image.
3914                          */
3915                         rbd_warn(rbd_dev, "ignoring parent of "
3916                                                 "clone with overlap 0\n");
3917                 }
3918         }
3919 out:
3920         ret = 0;
3921 out_err:
3922         kfree(reply_buf);
3923         rbd_spec_put(parent_spec);
3924
3925         return ret;
3926 }
3927
3928 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3929 {
3930         struct {
3931                 __le64 stripe_unit;
3932                 __le64 stripe_count;
3933         } __attribute__ ((packed)) striping_info_buf = { 0 };
3934         size_t size = sizeof (striping_info_buf);
3935         void *p;
3936         u64 obj_size;
3937         u64 stripe_unit;
3938         u64 stripe_count;
3939         int ret;
3940
3941         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3942                                 "rbd", "get_stripe_unit_count", NULL, 0,
3943                                 (char *)&striping_info_buf, size);
3944         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3945         if (ret < 0)
3946                 return ret;
3947         if (ret < size)
3948                 return -ERANGE;
3949
3950         /*
3951          * We don't actually support the "fancy striping" feature
3952          * (STRIPINGV2) yet, but if the striping sizes are the
3953          * defaults the behavior is the same as before.  So find
3954          * out, and only fail if the image has non-default values.
3955          */
3956         ret = -EINVAL;
3957         obj_size = (u64)1 << rbd_dev->header.obj_order;
3958         p = &striping_info_buf;
3959         stripe_unit = ceph_decode_64(&p);
3960         if (stripe_unit != obj_size) {
3961                 rbd_warn(rbd_dev, "unsupported stripe unit "
3962                                 "(got %llu want %llu)",
3963                                 stripe_unit, obj_size);
3964                 return -EINVAL;
3965         }
3966         stripe_count = ceph_decode_64(&p);
3967         if (stripe_count != 1) {
3968                 rbd_warn(rbd_dev, "unsupported stripe count "
3969                                 "(got %llu want 1)", stripe_count);
3970                 return -EINVAL;
3971         }
3972         rbd_dev->header.stripe_unit = stripe_unit;
3973         rbd_dev->header.stripe_count = stripe_count;
3974
3975         return 0;
3976 }
3977
3978 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3979 {
3980         size_t image_id_size;
3981         char *image_id;
3982         void *p;
3983         void *end;
3984         size_t size;
3985         void *reply_buf = NULL;
3986         size_t len = 0;
3987         char *image_name = NULL;
3988         int ret;
3989
3990         rbd_assert(!rbd_dev->spec->image_name);
3991
3992         len = strlen(rbd_dev->spec->image_id);
3993         image_id_size = sizeof (__le32) + len;
3994         image_id = kmalloc(image_id_size, GFP_KERNEL);
3995         if (!image_id)
3996                 return NULL;
3997
3998         p = image_id;
3999         end = image_id + image_id_size;
4000         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4001
4002         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4003         reply_buf = kmalloc(size, GFP_KERNEL);
4004         if (!reply_buf)
4005                 goto out;
4006
4007         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4008                                 "rbd", "dir_get_name",
4009                                 image_id, image_id_size,
4010                                 reply_buf, size);
4011         if (ret < 0)
4012                 goto out;
4013         p = reply_buf;
4014         end = reply_buf + ret;
4015
4016         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4017         if (IS_ERR(image_name))
4018                 image_name = NULL;
4019         else
4020                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4021 out:
4022         kfree(reply_buf);
4023         kfree(image_id);
4024
4025         return image_name;
4026 }
4027
4028 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4029 {
4030         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4031         const char *snap_name;
4032         u32 which = 0;
4033
4034         /* Skip over names until we find the one we are looking for */
4035
4036         snap_name = rbd_dev->header.snap_names;
4037         while (which < snapc->num_snaps) {
4038                 if (!strcmp(name, snap_name))
4039                         return snapc->snaps[which];
4040                 snap_name += strlen(snap_name) + 1;
4041                 which++;
4042         }
4043         return CEPH_NOSNAP;
4044 }
4045
4046 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4047 {
4048         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4049         u32 which;
4050         bool found = false;
4051         u64 snap_id;
4052
4053         for (which = 0; !found && which < snapc->num_snaps; which++) {
4054                 const char *snap_name;
4055
4056                 snap_id = snapc->snaps[which];
4057                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4058                 if (IS_ERR(snap_name))
4059                         break;
4060                 found = !strcmp(name, snap_name);
4061                 kfree(snap_name);
4062         }
4063         return found ? snap_id : CEPH_NOSNAP;
4064 }
4065
4066 /*
4067  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4068  * no snapshot by that name is found, or if an error occurs.
4069  */
4070 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4071 {
4072         if (rbd_dev->image_format == 1)
4073                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4074
4075         return rbd_v2_snap_id_by_name(rbd_dev, name);
4076 }
4077
4078 /*
4079  * When an rbd image has a parent image, it is identified by the
4080  * pool, image, and snapshot ids (not names).  This function fills
4081  * in the names for those ids.  (It's OK if we can't figure out the
4082  * name for an image id, but the pool and snapshot ids should always
4083  * exist and have names.)  All names in an rbd spec are dynamically
4084  * allocated.
4085  *
4086  * When an image being mapped (not a parent) is probed, we have the
4087  * pool name and pool id, image name and image id, and the snapshot
4088  * name.  The only thing we're missing is the snapshot id.
4089  */
4090 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4091 {
4092         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4093         struct rbd_spec *spec = rbd_dev->spec;
4094         const char *pool_name;
4095         const char *image_name;
4096         const char *snap_name;
4097         int ret;
4098
4099         /*
4100          * An image being mapped will have the pool name (etc.), but
4101          * we need to look up the snapshot id.
4102          */
4103         if (spec->pool_name) {
4104                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4105                         u64 snap_id;
4106
4107                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4108                         if (snap_id == CEPH_NOSNAP)
4109                                 return -ENOENT;
4110                         spec->snap_id = snap_id;
4111                 } else {
4112                         spec->snap_id = CEPH_NOSNAP;
4113                 }
4114
4115                 return 0;
4116         }
4117
4118         /* Get the pool name; we have to make our own copy of this */
4119
4120         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4121         if (!pool_name) {
4122                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4123                 return -EIO;
4124         }
4125         pool_name = kstrdup(pool_name, GFP_KERNEL);
4126         if (!pool_name)
4127                 return -ENOMEM;
4128
4129         /* Fetch the image name; tolerate failure here */
4130
4131         image_name = rbd_dev_image_name(rbd_dev);
4132         if (!image_name)
4133                 rbd_warn(rbd_dev, "unable to get image name");
4134
4135         /* Look up the snapshot name, and make a copy */
4136
4137         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4138         if (!snap_name) {
4139                 ret = -ENOMEM;
4140                 goto out_err;
4141         }
4142
4143         spec->pool_name = pool_name;
4144         spec->image_name = image_name;
4145         spec->snap_name = snap_name;
4146
4147         return 0;
4148 out_err:
4149         kfree(image_name);
4150         kfree(pool_name);
4151
4152         return ret;
4153 }
4154
4155 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4156 {
4157         size_t size;
4158         int ret;
4159         void *reply_buf;
4160         void *p;
4161         void *end;
4162         u64 seq;
4163         u32 snap_count;
4164         struct ceph_snap_context *snapc;
4165         u32 i;
4166
4167         /*
4168          * We'll need room for the seq value (maximum snapshot id),
4169          * snapshot count, and array of that many snapshot ids.
4170          * For now we have a fixed upper limit on the number we're
4171          * prepared to receive.
4172          */
4173         size = sizeof (__le64) + sizeof (__le32) +
4174                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4175         reply_buf = kzalloc(size, GFP_KERNEL);
4176         if (!reply_buf)
4177                 return -ENOMEM;
4178
4179         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4180                                 "rbd", "get_snapcontext", NULL, 0,
4181                                 reply_buf, size);
4182         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4183         if (ret < 0)
4184                 goto out;
4185
4186         p = reply_buf;
4187         end = reply_buf + ret;
4188         ret = -ERANGE;
4189         ceph_decode_64_safe(&p, end, seq, out);
4190         ceph_decode_32_safe(&p, end, snap_count, out);
4191
4192         /*
4193          * Make sure the reported number of snapshot ids wouldn't go
4194          * beyond the end of our buffer.  But before checking that,
4195          * make sure the computed size of the snapshot context we
4196          * allocate is representable in a size_t.
4197          */
4198         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4199                                  / sizeof (u64)) {
4200                 ret = -EINVAL;
4201                 goto out;
4202         }
4203         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4204                 goto out;
4205         ret = 0;
4206
4207         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4208         if (!snapc) {
4209                 ret = -ENOMEM;
4210                 goto out;
4211         }
4212         snapc->seq = seq;
4213         for (i = 0; i < snap_count; i++)
4214                 snapc->snaps[i] = ceph_decode_64(&p);
4215
4216         ceph_put_snap_context(rbd_dev->header.snapc);
4217         rbd_dev->header.snapc = snapc;
4218
4219         dout("  snap context seq = %llu, snap_count = %u\n",
4220                 (unsigned long long)seq, (unsigned int)snap_count);
4221 out:
4222         kfree(reply_buf);
4223
4224         return ret;
4225 }
4226
4227 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4228                                         u64 snap_id)
4229 {
4230         size_t size;
4231         void *reply_buf;
4232         __le64 snapid;
4233         int ret;
4234         void *p;
4235         void *end;
4236         char *snap_name;
4237
4238         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4239         reply_buf = kmalloc(size, GFP_KERNEL);
4240         if (!reply_buf)
4241                 return ERR_PTR(-ENOMEM);
4242
4243         snapid = cpu_to_le64(snap_id);
4244         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4245                                 "rbd", "get_snapshot_name",
4246                                 &snapid, sizeof (snapid),
4247                                 reply_buf, size);
4248         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4249         if (ret < 0) {
4250                 snap_name = ERR_PTR(ret);
4251                 goto out;
4252         }
4253
4254         p = reply_buf;
4255         end = reply_buf + ret;
4256         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4257         if (IS_ERR(snap_name))
4258                 goto out;
4259
4260         dout("  snap_id 0x%016llx snap_name = %s\n",
4261                 (unsigned long long)snap_id, snap_name);
4262 out:
4263         kfree(reply_buf);
4264
4265         return snap_name;
4266 }
4267
4268 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4269 {
4270         bool first_time = rbd_dev->header.object_prefix == NULL;
4271         int ret;
4272
4273         ret = rbd_dev_v2_image_size(rbd_dev);
4274         if (ret)
4275                 return ret;
4276
4277         if (first_time) {
4278                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4279                 if (ret)
4280                         return ret;
4281         }
4282
4283         /*
4284          * If the image supports layering, get the parent info.  We
4285          * need to probe the first time regardless.  Thereafter we
4286          * only need to if there's a parent, to see if it has
4287          * disappeared due to the mapped image getting flattened.
4288          */
4289         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4290                         (first_time || rbd_dev->parent_spec)) {
4291                 bool warn;
4292
4293                 ret = rbd_dev_v2_parent_info(rbd_dev);
4294                 if (ret)
4295                         return ret;
4296
4297                 /*
4298                  * Print a warning if this is the initial probe and
4299                  * the image has a parent.  Don't print it if the
4300                  * image now being probed is itself a parent.  We
4301                  * can tell at this point because we won't know its
4302                  * pool name yet (just its pool id).
4303                  */
4304                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4305                 if (first_time && warn)
4306                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4307                                         "is EXPERIMENTAL!");
4308         }
4309
4310         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4311                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4312                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4313
4314         ret = rbd_dev_v2_snap_context(rbd_dev);
4315         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4316
4317         return ret;
4318 }
4319
4320 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4321 {
4322         struct device *dev;
4323         int ret;
4324
4325         dev = &rbd_dev->dev;
4326         dev->bus = &rbd_bus_type;
4327         dev->type = &rbd_device_type;
4328         dev->parent = &rbd_root_dev;
4329         dev->release = rbd_dev_device_release;
4330         dev_set_name(dev, "%d", rbd_dev->dev_id);
4331         ret = device_register(dev);
4332
4333         return ret;
4334 }
4335
4336 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4337 {
4338         device_unregister(&rbd_dev->dev);
4339 }
4340
4341 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4342
4343 /*
4344  * Get a unique rbd identifier for the given new rbd_dev, and add
4345  * the rbd_dev to the global list.  The minimum rbd id is 1.
4346  */
4347 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4348 {
4349         rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4350
4351         spin_lock(&rbd_dev_list_lock);
4352         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4353         spin_unlock(&rbd_dev_list_lock);
4354         dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4355                 (unsigned long long) rbd_dev->dev_id);
4356 }
4357
4358 /*
4359  * Remove an rbd_dev from the global list, and record that its
4360  * identifier is no longer in use.
4361  */
4362 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4363 {
4364         struct list_head *tmp;
4365         int rbd_id = rbd_dev->dev_id;
4366         int max_id;
4367
4368         rbd_assert(rbd_id > 0);
4369
4370         dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4371                 (unsigned long long) rbd_dev->dev_id);
4372         spin_lock(&rbd_dev_list_lock);
4373         list_del_init(&rbd_dev->node);
4374
4375         /*
4376          * If the id being "put" is not the current maximum, there
4377          * is nothing special we need to do.
4378          */
4379         if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4380                 spin_unlock(&rbd_dev_list_lock);
4381                 return;
4382         }
4383
4384         /*
4385          * We need to update the current maximum id.  Search the
4386          * list to find out what it is.  We're more likely to find
4387          * the maximum at the end, so search the list backward.
4388          */
4389         max_id = 0;
4390         list_for_each_prev(tmp, &rbd_dev_list) {
4391                 struct rbd_device *rbd_dev;
4392
4393                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4394                 if (rbd_dev->dev_id > max_id)
4395                         max_id = rbd_dev->dev_id;
4396         }
4397         spin_unlock(&rbd_dev_list_lock);
4398
4399         /*
4400          * The max id could have been updated by rbd_dev_id_get(), in
4401          * which case it now accurately reflects the new maximum.
4402          * Be careful not to overwrite the maximum value in that
4403          * case.
4404          */
4405         atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4406         dout("  max dev id has been reset\n");
4407 }
4408
4409 /*
4410  * Skips over white space at *buf, and updates *buf to point to the
4411  * first found non-space character (if any). Returns the length of
4412  * the token (string of non-white space characters) found.  Note
4413  * that *buf must be terminated with '\0'.
4414  */
4415 static inline size_t next_token(const char **buf)
4416 {
4417         /*
4418         * These are the characters that produce nonzero for
4419         * isspace() in the "C" and "POSIX" locales.
4420         */
4421         const char *spaces = " \f\n\r\t\v";
4422
4423         *buf += strspn(*buf, spaces);   /* Find start of token */
4424
4425         return strcspn(*buf, spaces);   /* Return token length */
4426 }
4427
4428 /*
4429  * Finds the next token in *buf, and if the provided token buffer is
4430  * big enough, copies the found token into it.  The result, if
4431  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4432  * must be terminated with '\0' on entry.
4433  *
4434  * Returns the length of the token found (not including the '\0').
4435  * Return value will be 0 if no token is found, and it will be >=
4436  * token_size if the token would not fit.
4437  *
4438  * The *buf pointer will be updated to point beyond the end of the
4439  * found token.  Note that this occurs even if the token buffer is
4440  * too small to hold it.
4441  */
4442 static inline size_t copy_token(const char **buf,
4443                                 char *token,
4444                                 size_t token_size)
4445 {
4446         size_t len;
4447
4448         len = next_token(buf);
4449         if (len < token_size) {
4450                 memcpy(token, *buf, len);
4451                 *(token + len) = '\0';
4452         }
4453         *buf += len;
4454
4455         return len;
4456 }
4457
4458 /*
4459  * Finds the next token in *buf, dynamically allocates a buffer big
4460  * enough to hold a copy of it, and copies the token into the new
4461  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4462  * that a duplicate buffer is created even for a zero-length token.
4463  *
4464  * Returns a pointer to the newly-allocated duplicate, or a null
4465  * pointer if memory for the duplicate was not available.  If
4466  * the lenp argument is a non-null pointer, the length of the token
4467  * (not including the '\0') is returned in *lenp.
4468  *
4469  * If successful, the *buf pointer will be updated to point beyond
4470  * the end of the found token.
4471  *
4472  * Note: uses GFP_KERNEL for allocation.
4473  */
4474 static inline char *dup_token(const char **buf, size_t *lenp)
4475 {
4476         char *dup;
4477         size_t len;
4478
4479         len = next_token(buf);
4480         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4481         if (!dup)
4482                 return NULL;
4483         *(dup + len) = '\0';
4484         *buf += len;
4485
4486         if (lenp)
4487                 *lenp = len;
4488
4489         return dup;
4490 }
4491
4492 /*
4493  * Parse the options provided for an "rbd add" (i.e., rbd image
4494  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4495  * and the data written is passed here via a NUL-terminated buffer.
4496  * Returns 0 if successful or an error code otherwise.
4497  *
4498  * The information extracted from these options is recorded in
4499  * the other parameters which return dynamically-allocated
4500  * structures:
4501  *  ceph_opts
4502  *      The address of a pointer that will refer to a ceph options
4503  *      structure.  Caller must release the returned pointer using
4504  *      ceph_destroy_options() when it is no longer needed.
4505  *  rbd_opts
4506  *      Address of an rbd options pointer.  Fully initialized by
4507  *      this function; caller must release with kfree().
4508  *  spec
4509  *      Address of an rbd image specification pointer.  Fully
4510  *      initialized by this function based on parsed options.
4511  *      Caller must release with rbd_spec_put().
4512  *
4513  * The options passed take this form:
4514  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4515  * where:
4516  *  <mon_addrs>
4517  *      A comma-separated list of one or more monitor addresses.
4518  *      A monitor address is an ip address, optionally followed
4519  *      by a port number (separated by a colon).
4520  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4521  *  <options>
4522  *      A comma-separated list of ceph and/or rbd options.
4523  *  <pool_name>
4524  *      The name of the rados pool containing the rbd image.
4525  *  <image_name>
4526  *      The name of the image in that pool to map.
4527  *  <snap_id>
4528  *      An optional snapshot id.  If provided, the mapping will
4529  *      present data from the image at the time that snapshot was
4530  *      created.  The image head is used if no snapshot id is
4531  *      provided.  Snapshot mappings are always read-only.
4532  */
4533 static int rbd_add_parse_args(const char *buf,
4534                                 struct ceph_options **ceph_opts,
4535                                 struct rbd_options **opts,
4536                                 struct rbd_spec **rbd_spec)
4537 {
4538         size_t len;
4539         char *options;
4540         const char *mon_addrs;
4541         char *snap_name;
4542         size_t mon_addrs_size;
4543         struct rbd_spec *spec = NULL;
4544         struct rbd_options *rbd_opts = NULL;
4545         struct ceph_options *copts;
4546         int ret;
4547
4548         /* The first four tokens are required */
4549
4550         len = next_token(&buf);
4551         if (!len) {
4552                 rbd_warn(NULL, "no monitor address(es) provided");
4553                 return -EINVAL;
4554         }
4555         mon_addrs = buf;
4556         mon_addrs_size = len + 1;
4557         buf += len;
4558
4559         ret = -EINVAL;
4560         options = dup_token(&buf, NULL);
4561         if (!options)
4562                 return -ENOMEM;
4563         if (!*options) {
4564                 rbd_warn(NULL, "no options provided");
4565                 goto out_err;
4566         }
4567
4568         spec = rbd_spec_alloc();
4569         if (!spec)
4570                 goto out_mem;
4571
4572         spec->pool_name = dup_token(&buf, NULL);
4573         if (!spec->pool_name)
4574                 goto out_mem;
4575         if (!*spec->pool_name) {
4576                 rbd_warn(NULL, "no pool name provided");
4577                 goto out_err;
4578         }
4579
4580         spec->image_name = dup_token(&buf, NULL);
4581         if (!spec->image_name)
4582                 goto out_mem;
4583         if (!*spec->image_name) {
4584                 rbd_warn(NULL, "no image name provided");
4585                 goto out_err;
4586         }
4587
4588         /*
4589          * Snapshot name is optional; default is to use "-"
4590          * (indicating the head/no snapshot).
4591          */
4592         len = next_token(&buf);
4593         if (!len) {
4594                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4595                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4596         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4597                 ret = -ENAMETOOLONG;
4598                 goto out_err;
4599         }
4600         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4601         if (!snap_name)
4602                 goto out_mem;
4603         *(snap_name + len) = '\0';
4604         spec->snap_name = snap_name;
4605
4606         /* Initialize all rbd options to the defaults */
4607
4608         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4609         if (!rbd_opts)
4610                 goto out_mem;
4611
4612         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4613
4614         copts = ceph_parse_options(options, mon_addrs,
4615                                         mon_addrs + mon_addrs_size - 1,
4616                                         parse_rbd_opts_token, rbd_opts);
4617         if (IS_ERR(copts)) {
4618                 ret = PTR_ERR(copts);
4619                 goto out_err;
4620         }
4621         kfree(options);
4622
4623         *ceph_opts = copts;
4624         *opts = rbd_opts;
4625         *rbd_spec = spec;
4626
4627         return 0;
4628 out_mem:
4629         ret = -ENOMEM;
4630 out_err:
4631         kfree(rbd_opts);
4632         rbd_spec_put(spec);
4633         kfree(options);
4634
4635         return ret;
4636 }
4637
4638 /*
4639  * An rbd format 2 image has a unique identifier, distinct from the
4640  * name given to it by the user.  Internally, that identifier is
4641  * what's used to specify the names of objects related to the image.
4642  *
4643  * A special "rbd id" object is used to map an rbd image name to its
4644  * id.  If that object doesn't exist, then there is no v2 rbd image
4645  * with the supplied name.
4646  *
4647  * This function will record the given rbd_dev's image_id field if
4648  * it can be determined, and in that case will return 0.  If any
4649  * errors occur a negative errno will be returned and the rbd_dev's
4650  * image_id field will be unchanged (and should be NULL).
4651  */
4652 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4653 {
4654         int ret;
4655         size_t size;
4656         char *object_name;
4657         void *response;
4658         char *image_id;
4659
4660         /*
4661          * When probing a parent image, the image id is already
4662          * known (and the image name likely is not).  There's no
4663          * need to fetch the image id again in this case.  We
4664          * do still need to set the image format though.
4665          */
4666         if (rbd_dev->spec->image_id) {
4667                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4668
4669                 return 0;
4670         }
4671
4672         /*
4673          * First, see if the format 2 image id file exists, and if
4674          * so, get the image's persistent id from it.
4675          */
4676         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4677         object_name = kmalloc(size, GFP_NOIO);
4678         if (!object_name)
4679                 return -ENOMEM;
4680         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4681         dout("rbd id object name is %s\n", object_name);
4682
4683         /* Response will be an encoded string, which includes a length */
4684
4685         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4686         response = kzalloc(size, GFP_NOIO);
4687         if (!response) {
4688                 ret = -ENOMEM;
4689                 goto out;
4690         }
4691
4692         /* If it doesn't exist we'll assume it's a format 1 image */
4693
4694         ret = rbd_obj_method_sync(rbd_dev, object_name,
4695                                 "rbd", "get_id", NULL, 0,
4696                                 response, RBD_IMAGE_ID_LEN_MAX);
4697         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4698         if (ret == -ENOENT) {
4699                 image_id = kstrdup("", GFP_KERNEL);
4700                 ret = image_id ? 0 : -ENOMEM;
4701                 if (!ret)
4702                         rbd_dev->image_format = 1;
4703         } else if (ret > sizeof (__le32)) {
4704                 void *p = response;
4705
4706                 image_id = ceph_extract_encoded_string(&p, p + ret,
4707                                                 NULL, GFP_NOIO);
4708                 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4709                 if (!ret)
4710                         rbd_dev->image_format = 2;
4711         } else {
4712                 ret = -EINVAL;
4713         }
4714
4715         if (!ret) {
4716                 rbd_dev->spec->image_id = image_id;
4717                 dout("image_id is %s\n", image_id);
4718         }
4719 out:
4720         kfree(response);
4721         kfree(object_name);
4722
4723         return ret;
4724 }
4725
4726 /*
4727  * Undo whatever state changes are made by v1 or v2 header info
4728  * call.
4729  */
4730 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4731 {
4732         struct rbd_image_header *header;
4733
4734         /* Drop parent reference unless it's already been done (or none) */
4735
4736         if (rbd_dev->parent_overlap)
4737                 rbd_dev_parent_put(rbd_dev);
4738
4739         /* Free dynamic fields from the header, then zero it out */
4740
4741         header = &rbd_dev->header;
4742         ceph_put_snap_context(header->snapc);
4743         kfree(header->snap_sizes);
4744         kfree(header->snap_names);
4745         kfree(header->object_prefix);
4746         memset(header, 0, sizeof (*header));
4747 }
4748
4749 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4750 {
4751         int ret;
4752
4753         ret = rbd_dev_v2_object_prefix(rbd_dev);
4754         if (ret)
4755                 goto out_err;
4756
4757         /*
4758          * Get the and check features for the image.  Currently the
4759          * features are assumed to never change.
4760          */
4761         ret = rbd_dev_v2_features(rbd_dev);
4762         if (ret)
4763                 goto out_err;
4764
4765         /* If the image supports fancy striping, get its parameters */
4766
4767         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4768                 ret = rbd_dev_v2_striping_info(rbd_dev);
4769                 if (ret < 0)
4770                         goto out_err;
4771         }
4772         /* No support for crypto and compression type format 2 images */
4773
4774         return 0;
4775 out_err:
4776         rbd_dev->header.features = 0;
4777         kfree(rbd_dev->header.object_prefix);
4778         rbd_dev->header.object_prefix = NULL;
4779
4780         return ret;
4781 }
4782
4783 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4784 {
4785         struct rbd_device *parent = NULL;
4786         struct rbd_spec *parent_spec;
4787         struct rbd_client *rbdc;
4788         int ret;
4789
4790         if (!rbd_dev->parent_spec)
4791                 return 0;
4792         /*
4793          * We need to pass a reference to the client and the parent
4794          * spec when creating the parent rbd_dev.  Images related by
4795          * parent/child relationships always share both.
4796          */
4797         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4798         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4799
4800         ret = -ENOMEM;
4801         parent = rbd_dev_create(rbdc, parent_spec);
4802         if (!parent)
4803                 goto out_err;
4804
4805         ret = rbd_dev_image_probe(parent, false);
4806         if (ret < 0)
4807                 goto out_err;
4808         rbd_dev->parent = parent;
4809         atomic_set(&rbd_dev->parent_ref, 1);
4810
4811         return 0;
4812 out_err:
4813         if (parent) {
4814                 rbd_dev_unparent(rbd_dev);
4815                 kfree(rbd_dev->header_name);
4816                 rbd_dev_destroy(parent);
4817         } else {
4818                 rbd_put_client(rbdc);
4819                 rbd_spec_put(parent_spec);
4820         }
4821
4822         return ret;
4823 }
4824
4825 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4826 {
4827         int ret;
4828
4829         /* generate unique id: find highest unique id, add one */
4830         rbd_dev_id_get(rbd_dev);
4831
4832         /* Fill in the device name, now that we have its id. */
4833         BUILD_BUG_ON(DEV_NAME_LEN
4834                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4835         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4836
4837         /* Get our block major device number. */
4838
4839         ret = register_blkdev(0, rbd_dev->name);
4840         if (ret < 0)
4841                 goto err_out_id;
4842         rbd_dev->major = ret;
4843
4844         /* Set up the blkdev mapping. */
4845
4846         ret = rbd_init_disk(rbd_dev);
4847         if (ret)
4848                 goto err_out_blkdev;
4849
4850         ret = rbd_dev_mapping_set(rbd_dev);
4851         if (ret)
4852                 goto err_out_disk;
4853         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4854
4855         ret = rbd_bus_add_dev(rbd_dev);
4856         if (ret)
4857                 goto err_out_mapping;
4858
4859         /* Everything's ready.  Announce the disk to the world. */
4860
4861         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4862         add_disk(rbd_dev->disk);
4863
4864         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4865                 (unsigned long long) rbd_dev->mapping.size);
4866
4867         return ret;
4868
4869 err_out_mapping:
4870         rbd_dev_mapping_clear(rbd_dev);
4871 err_out_disk:
4872         rbd_free_disk(rbd_dev);
4873 err_out_blkdev:
4874         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4875 err_out_id:
4876         rbd_dev_id_put(rbd_dev);
4877         rbd_dev_mapping_clear(rbd_dev);
4878
4879         return ret;
4880 }
4881
4882 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4883 {
4884         struct rbd_spec *spec = rbd_dev->spec;
4885         size_t size;
4886
4887         /* Record the header object name for this rbd image. */
4888
4889         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4890
4891         if (rbd_dev->image_format == 1)
4892                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4893         else
4894                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4895
4896         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4897         if (!rbd_dev->header_name)
4898                 return -ENOMEM;
4899
4900         if (rbd_dev->image_format == 1)
4901                 sprintf(rbd_dev->header_name, "%s%s",
4902                         spec->image_name, RBD_SUFFIX);
4903         else
4904                 sprintf(rbd_dev->header_name, "%s%s",
4905                         RBD_HEADER_PREFIX, spec->image_id);
4906         return 0;
4907 }
4908
4909 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4910 {
4911         rbd_dev_unprobe(rbd_dev);
4912         kfree(rbd_dev->header_name);
4913         rbd_dev->header_name = NULL;
4914         rbd_dev->image_format = 0;
4915         kfree(rbd_dev->spec->image_id);
4916         rbd_dev->spec->image_id = NULL;
4917
4918         rbd_dev_destroy(rbd_dev);
4919 }
4920
4921 /*
4922  * Probe for the existence of the header object for the given rbd
4923  * device.  If this image is the one being mapped (i.e., not a
4924  * parent), initiate a watch on its header object before using that
4925  * object to get detailed information about the rbd image.
4926  */
4927 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4928 {
4929         int ret;
4930         int tmp;
4931
4932         /*
4933          * Get the id from the image id object.  Unless there's an
4934          * error, rbd_dev->spec->image_id will be filled in with
4935          * a dynamically-allocated string, and rbd_dev->image_format
4936          * will be set to either 1 or 2.
4937          */
4938         ret = rbd_dev_image_id(rbd_dev);
4939         if (ret)
4940                 return ret;
4941         rbd_assert(rbd_dev->spec->image_id);
4942         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4943
4944         ret = rbd_dev_header_name(rbd_dev);
4945         if (ret)
4946                 goto err_out_format;
4947
4948         if (mapping) {
4949                 ret = rbd_dev_header_watch_sync(rbd_dev, true);
4950                 if (ret)
4951                         goto out_header_name;
4952         }
4953
4954         if (rbd_dev->image_format == 1)
4955                 ret = rbd_dev_v1_header_info(rbd_dev);
4956         else
4957                 ret = rbd_dev_v2_header_info(rbd_dev);
4958         if (ret)
4959                 goto err_out_watch;
4960
4961         ret = rbd_dev_spec_update(rbd_dev);
4962         if (ret)
4963                 goto err_out_probe;
4964
4965         ret = rbd_dev_probe_parent(rbd_dev);
4966         if (ret)
4967                 goto err_out_probe;
4968
4969         dout("discovered format %u image, header name is %s\n",
4970                 rbd_dev->image_format, rbd_dev->header_name);
4971
4972         return 0;
4973 err_out_probe:
4974         rbd_dev_unprobe(rbd_dev);
4975 err_out_watch:
4976         if (mapping) {
4977                 tmp = rbd_dev_header_watch_sync(rbd_dev, false);
4978                 if (tmp)
4979                         rbd_warn(rbd_dev, "unable to tear down "
4980                                         "watch request (%d)\n", tmp);
4981         }
4982 out_header_name:
4983         kfree(rbd_dev->header_name);
4984         rbd_dev->header_name = NULL;
4985 err_out_format:
4986         rbd_dev->image_format = 0;
4987         kfree(rbd_dev->spec->image_id);
4988         rbd_dev->spec->image_id = NULL;
4989
4990         dout("probe failed, returning %d\n", ret);
4991
4992         return ret;
4993 }
4994
4995 static ssize_t rbd_add(struct bus_type *bus,
4996                        const char *buf,
4997                        size_t count)
4998 {
4999         struct rbd_device *rbd_dev = NULL;
5000         struct ceph_options *ceph_opts = NULL;
5001         struct rbd_options *rbd_opts = NULL;
5002         struct rbd_spec *spec = NULL;
5003         struct rbd_client *rbdc;
5004         struct ceph_osd_client *osdc;
5005         bool read_only;
5006         int rc = -ENOMEM;
5007
5008         if (!try_module_get(THIS_MODULE))
5009                 return -ENODEV;
5010
5011         /* parse add command */
5012         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5013         if (rc < 0)
5014                 goto err_out_module;
5015         read_only = rbd_opts->read_only;
5016         kfree(rbd_opts);
5017         rbd_opts = NULL;        /* done with this */
5018
5019         rbdc = rbd_get_client(ceph_opts);
5020         if (IS_ERR(rbdc)) {
5021                 rc = PTR_ERR(rbdc);
5022                 goto err_out_args;
5023         }
5024
5025         /* pick the pool */
5026         osdc = &rbdc->client->osdc;
5027         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5028         if (rc < 0)
5029                 goto err_out_client;
5030         spec->pool_id = (u64)rc;
5031
5032         /* The ceph file layout needs to fit pool id in 32 bits */
5033
5034         if (spec->pool_id > (u64)U32_MAX) {
5035                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5036                                 (unsigned long long)spec->pool_id, U32_MAX);
5037                 rc = -EIO;
5038                 goto err_out_client;
5039         }
5040
5041         rbd_dev = rbd_dev_create(rbdc, spec);
5042         if (!rbd_dev)
5043                 goto err_out_client;
5044         rbdc = NULL;            /* rbd_dev now owns this */
5045         spec = NULL;            /* rbd_dev now owns this */
5046
5047         rc = rbd_dev_image_probe(rbd_dev, true);
5048         if (rc < 0)
5049                 goto err_out_rbd_dev;
5050
5051         /* If we are mapping a snapshot it must be marked read-only */
5052
5053         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5054                 read_only = true;
5055         rbd_dev->mapping.read_only = read_only;
5056
5057         rc = rbd_dev_device_setup(rbd_dev);
5058         if (rc) {
5059                 rbd_dev_image_release(rbd_dev);
5060                 goto err_out_module;
5061         }
5062
5063         return count;
5064
5065 err_out_rbd_dev:
5066         rbd_dev_destroy(rbd_dev);
5067 err_out_client:
5068         rbd_put_client(rbdc);
5069 err_out_args:
5070         rbd_spec_put(spec);
5071 err_out_module:
5072         module_put(THIS_MODULE);
5073
5074         dout("Error adding device %s\n", buf);
5075
5076         return (ssize_t)rc;
5077 }
5078
5079 static void rbd_dev_device_release(struct device *dev)
5080 {
5081         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5082
5083         rbd_free_disk(rbd_dev);
5084         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5085         rbd_dev_mapping_clear(rbd_dev);
5086         unregister_blkdev(rbd_dev->major, rbd_dev->name);
5087         rbd_dev->major = 0;
5088         rbd_dev_id_put(rbd_dev);
5089         rbd_dev_mapping_clear(rbd_dev);
5090 }
5091
5092 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5093 {
5094         while (rbd_dev->parent) {
5095                 struct rbd_device *first = rbd_dev;
5096                 struct rbd_device *second = first->parent;
5097                 struct rbd_device *third;
5098
5099                 /*
5100                  * Follow to the parent with no grandparent and
5101                  * remove it.
5102                  */
5103                 while (second && (third = second->parent)) {
5104                         first = second;
5105                         second = third;
5106                 }
5107                 rbd_assert(second);
5108                 rbd_dev_image_release(second);
5109                 first->parent = NULL;
5110                 first->parent_overlap = 0;
5111
5112                 rbd_assert(first->parent_spec);
5113                 rbd_spec_put(first->parent_spec);
5114                 first->parent_spec = NULL;
5115         }
5116 }
5117
5118 static ssize_t rbd_remove(struct bus_type *bus,
5119                           const char *buf,
5120                           size_t count)
5121 {
5122         struct rbd_device *rbd_dev = NULL;
5123         struct list_head *tmp;
5124         int dev_id;
5125         unsigned long ul;
5126         bool already = false;
5127         int ret;
5128
5129         ret = strict_strtoul(buf, 10, &ul);
5130         if (ret)
5131                 return ret;
5132
5133         /* convert to int; abort if we lost anything in the conversion */
5134         dev_id = (int)ul;
5135         if (dev_id != ul)
5136                 return -EINVAL;
5137
5138         ret = -ENOENT;
5139         spin_lock(&rbd_dev_list_lock);
5140         list_for_each(tmp, &rbd_dev_list) {
5141                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5142                 if (rbd_dev->dev_id == dev_id) {
5143                         ret = 0;
5144                         break;
5145                 }
5146         }
5147         if (!ret) {
5148                 spin_lock_irq(&rbd_dev->lock);
5149                 if (rbd_dev->open_count)
5150                         ret = -EBUSY;
5151                 else
5152                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5153                                                         &rbd_dev->flags);
5154                 spin_unlock_irq(&rbd_dev->lock);
5155         }
5156         spin_unlock(&rbd_dev_list_lock);
5157         if (ret < 0 || already)
5158                 return ret;
5159
5160         rbd_bus_del_dev(rbd_dev);
5161         ret = rbd_dev_header_watch_sync(rbd_dev, false);
5162         if (ret)
5163                 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5164         rbd_dev_image_release(rbd_dev);
5165         module_put(THIS_MODULE);
5166
5167         return count;
5168 }
5169
5170 /*
5171  * create control files in sysfs
5172  * /sys/bus/rbd/...
5173  */
5174 static int rbd_sysfs_init(void)
5175 {
5176         int ret;
5177
5178         ret = device_register(&rbd_root_dev);
5179         if (ret < 0)
5180                 return ret;
5181
5182         ret = bus_register(&rbd_bus_type);
5183         if (ret < 0)
5184                 device_unregister(&rbd_root_dev);
5185
5186         return ret;
5187 }
5188
5189 static void rbd_sysfs_cleanup(void)
5190 {
5191         bus_unregister(&rbd_bus_type);
5192         device_unregister(&rbd_root_dev);
5193 }
5194
5195 static int rbd_slab_init(void)
5196 {
5197         rbd_assert(!rbd_img_request_cache);
5198         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5199                                         sizeof (struct rbd_img_request),
5200                                         __alignof__(struct rbd_img_request),
5201                                         0, NULL);
5202         if (!rbd_img_request_cache)
5203                 return -ENOMEM;
5204
5205         rbd_assert(!rbd_obj_request_cache);
5206         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5207                                         sizeof (struct rbd_obj_request),
5208                                         __alignof__(struct rbd_obj_request),
5209                                         0, NULL);
5210         if (!rbd_obj_request_cache)
5211                 goto out_err;
5212
5213         rbd_assert(!rbd_segment_name_cache);
5214         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5215                                         MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5216         if (rbd_segment_name_cache)
5217                 return 0;
5218 out_err:
5219         if (rbd_obj_request_cache) {
5220                 kmem_cache_destroy(rbd_obj_request_cache);
5221                 rbd_obj_request_cache = NULL;
5222         }
5223
5224         kmem_cache_destroy(rbd_img_request_cache);
5225         rbd_img_request_cache = NULL;
5226
5227         return -ENOMEM;
5228 }
5229
5230 static void rbd_slab_exit(void)
5231 {
5232         rbd_assert(rbd_segment_name_cache);
5233         kmem_cache_destroy(rbd_segment_name_cache);
5234         rbd_segment_name_cache = NULL;
5235
5236         rbd_assert(rbd_obj_request_cache);
5237         kmem_cache_destroy(rbd_obj_request_cache);
5238         rbd_obj_request_cache = NULL;
5239
5240         rbd_assert(rbd_img_request_cache);
5241         kmem_cache_destroy(rbd_img_request_cache);
5242         rbd_img_request_cache = NULL;
5243 }
5244
5245 static int __init rbd_init(void)
5246 {
5247         int rc;
5248
5249         if (!libceph_compatible(NULL)) {
5250                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5251
5252                 return -EINVAL;
5253         }
5254         rc = rbd_slab_init();
5255         if (rc)
5256                 return rc;
5257         rc = rbd_sysfs_init();
5258         if (rc)
5259                 rbd_slab_exit();
5260         else
5261                 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5262
5263         return rc;
5264 }
5265
5266 static void __exit rbd_exit(void)
5267 {
5268         rbd_sysfs_cleanup();
5269         rbd_slab_exit();
5270 }
5271
5272 module_init(rbd_init);
5273 module_exit(rbd_exit);
5274
5275 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5276 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5277 MODULE_DESCRIPTION("rados block device");
5278
5279 /* following authorship retained from original osdblk.c */
5280 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5281
5282 MODULE_LICENSE("GPL");