]> Pileus Git - ~andy/linux/blob - drivers/block/rbd.c
rbd: fix leak of format 2 snapshot context
[~andy/linux] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG       /* Activate rbd_assert() calls */
48
49 /*
50  * The basic unit of block I/O is a sector.  It is interpreted in a
51  * number of contexts in Linux (blk, bio, genhd), but the default is
52  * universally 512 bytes.  These symbols are just slightly more
53  * meaningful than the bare numbers they represent.
54  */
55 #define SECTOR_SHIFT    9
56 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
57
58 #define RBD_DRV_NAME "rbd"
59 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
60
61 #define RBD_MINORS_PER_MAJOR    256             /* max minors per blkdev */
62
63 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
64 #define RBD_MAX_SNAP_NAME_LEN   \
65                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
66
67 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
68
69 #define RBD_SNAP_HEAD_NAME      "-"
70
71 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
72
73 /* This allows a single page to hold an image name sent by OSD */
74 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
75 #define RBD_IMAGE_ID_LEN_MAX    64
76
77 #define RBD_OBJ_PREFIX_LEN_MAX  64
78
79 /* Feature bits */
80
81 #define RBD_FEATURE_LAYERING    (1<<0)
82 #define RBD_FEATURE_STRIPINGV2  (1<<1)
83 #define RBD_FEATURES_ALL \
84             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
85
86 /* Features supported by this (client software) implementation. */
87
88 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
89
90 /*
91  * An RBD device name will be "rbd#", where the "rbd" comes from
92  * RBD_DRV_NAME above, and # is a unique integer identifier.
93  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
94  * enough to hold all possible device names.
95  */
96 #define DEV_NAME_LEN            32
97 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
98
99 /*
100  * block device image metadata (in-memory version)
101  */
102 struct rbd_image_header {
103         /* These four fields never change for a given rbd image */
104         char *object_prefix;
105         u64 features;
106         __u8 obj_order;
107         __u8 crypt_type;
108         __u8 comp_type;
109
110         /* The remaining fields need to be updated occasionally */
111         u64 image_size;
112         struct ceph_snap_context *snapc;
113         char *snap_names;
114         u64 *snap_sizes;
115
116         u64 stripe_unit;
117         u64 stripe_count;
118 };
119
120 /*
121  * An rbd image specification.
122  *
123  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
124  * identify an image.  Each rbd_dev structure includes a pointer to
125  * an rbd_spec structure that encapsulates this identity.
126  *
127  * Each of the id's in an rbd_spec has an associated name.  For a
128  * user-mapped image, the names are supplied and the id's associated
129  * with them are looked up.  For a layered image, a parent image is
130  * defined by the tuple, and the names are looked up.
131  *
132  * An rbd_dev structure contains a parent_spec pointer which is
133  * non-null if the image it represents is a child in a layered
134  * image.  This pointer will refer to the rbd_spec structure used
135  * by the parent rbd_dev for its own identity (i.e., the structure
136  * is shared between the parent and child).
137  *
138  * Since these structures are populated once, during the discovery
139  * phase of image construction, they are effectively immutable so
140  * we make no effort to synchronize access to them.
141  *
142  * Note that code herein does not assume the image name is known (it
143  * could be a null pointer).
144  */
145 struct rbd_spec {
146         u64             pool_id;
147         const char      *pool_name;
148
149         const char      *image_id;
150         const char      *image_name;
151
152         u64             snap_id;
153         const char      *snap_name;
154
155         struct kref     kref;
156 };
157
158 /*
159  * an instance of the client.  multiple devices may share an rbd client.
160  */
161 struct rbd_client {
162         struct ceph_client      *client;
163         struct kref             kref;
164         struct list_head        node;
165 };
166
167 struct rbd_img_request;
168 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
169
170 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
171
172 struct rbd_obj_request;
173 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
174
175 enum obj_request_type {
176         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
177 };
178
179 enum obj_req_flags {
180         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
181         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
182         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
183         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
184 };
185
186 struct rbd_obj_request {
187         const char              *object_name;
188         u64                     offset;         /* object start byte */
189         u64                     length;         /* bytes from offset */
190         unsigned long           flags;
191
192         /*
193          * An object request associated with an image will have its
194          * img_data flag set; a standalone object request will not.
195          *
196          * A standalone object request will have which == BAD_WHICH
197          * and a null obj_request pointer.
198          *
199          * An object request initiated in support of a layered image
200          * object (to check for its existence before a write) will
201          * have which == BAD_WHICH and a non-null obj_request pointer.
202          *
203          * Finally, an object request for rbd image data will have
204          * which != BAD_WHICH, and will have a non-null img_request
205          * pointer.  The value of which will be in the range
206          * 0..(img_request->obj_request_count-1).
207          */
208         union {
209                 struct rbd_obj_request  *obj_request;   /* STAT op */
210                 struct {
211                         struct rbd_img_request  *img_request;
212                         u64                     img_offset;
213                         /* links for img_request->obj_requests list */
214                         struct list_head        links;
215                 };
216         };
217         u32                     which;          /* posn image request list */
218
219         enum obj_request_type   type;
220         union {
221                 struct bio      *bio_list;
222                 struct {
223                         struct page     **pages;
224                         u32             page_count;
225                 };
226         };
227         struct page             **copyup_pages;
228
229         struct ceph_osd_request *osd_req;
230
231         u64                     xferred;        /* bytes transferred */
232         int                     result;
233
234         rbd_obj_callback_t      callback;
235         struct completion       completion;
236
237         struct kref             kref;
238 };
239
240 enum img_req_flags {
241         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
242         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
243         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
244 };
245
246 struct rbd_img_request {
247         struct rbd_device       *rbd_dev;
248         u64                     offset; /* starting image byte offset */
249         u64                     length; /* byte count from offset */
250         unsigned long           flags;
251         union {
252                 u64                     snap_id;        /* for reads */
253                 struct ceph_snap_context *snapc;        /* for writes */
254         };
255         union {
256                 struct request          *rq;            /* block request */
257                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
258         };
259         struct page             **copyup_pages;
260         spinlock_t              completion_lock;/* protects next_completion */
261         u32                     next_completion;
262         rbd_img_callback_t      callback;
263         u64                     xferred;/* aggregate bytes transferred */
264         int                     result; /* first nonzero obj_request result */
265
266         u32                     obj_request_count;
267         struct list_head        obj_requests;   /* rbd_obj_request structs */
268
269         struct kref             kref;
270 };
271
272 #define for_each_obj_request(ireq, oreq) \
273         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
274 #define for_each_obj_request_from(ireq, oreq) \
275         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
276 #define for_each_obj_request_safe(ireq, oreq, n) \
277         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
278
279 struct rbd_mapping {
280         u64                     size;
281         u64                     features;
282         bool                    read_only;
283 };
284
285 /*
286  * a single device
287  */
288 struct rbd_device {
289         int                     dev_id;         /* blkdev unique id */
290
291         int                     major;          /* blkdev assigned major */
292         struct gendisk          *disk;          /* blkdev's gendisk and rq */
293
294         u32                     image_format;   /* Either 1 or 2 */
295         struct rbd_client       *rbd_client;
296
297         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
298
299         spinlock_t              lock;           /* queue, flags, open_count */
300
301         struct rbd_image_header header;
302         unsigned long           flags;          /* possibly lock protected */
303         struct rbd_spec         *spec;
304
305         char                    *header_name;
306
307         struct ceph_file_layout layout;
308
309         struct ceph_osd_event   *watch_event;
310         struct rbd_obj_request  *watch_request;
311
312         struct rbd_spec         *parent_spec;
313         u64                     parent_overlap;
314         struct rbd_device       *parent;
315
316         /* protects updating the header */
317         struct rw_semaphore     header_rwsem;
318
319         struct rbd_mapping      mapping;
320
321         struct list_head        node;
322
323         /* sysfs related */
324         struct device           dev;
325         unsigned long           open_count;     /* protected by lock */
326 };
327
328 /*
329  * Flag bits for rbd_dev->flags.  If atomicity is required,
330  * rbd_dev->lock is used to protect access.
331  *
332  * Currently, only the "removing" flag (which is coupled with the
333  * "open_count" field) requires atomic access.
334  */
335 enum rbd_dev_flags {
336         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
337         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
338 };
339
340 static DEFINE_MUTEX(ctl_mutex);   /* Serialize open/close/setup/teardown */
341
342 static LIST_HEAD(rbd_dev_list);    /* devices */
343 static DEFINE_SPINLOCK(rbd_dev_list_lock);
344
345 static LIST_HEAD(rbd_client_list);              /* clients */
346 static DEFINE_SPINLOCK(rbd_client_list_lock);
347
348 /* Slab caches for frequently-allocated structures */
349
350 static struct kmem_cache        *rbd_img_request_cache;
351 static struct kmem_cache        *rbd_obj_request_cache;
352 static struct kmem_cache        *rbd_segment_name_cache;
353
354 static int rbd_img_request_submit(struct rbd_img_request *img_request);
355
356 static void rbd_dev_device_release(struct device *dev);
357
358 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
359                        size_t count);
360 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
361                           size_t count);
362 static int rbd_dev_image_probe(struct rbd_device *rbd_dev);
363
364 static struct bus_attribute rbd_bus_attrs[] = {
365         __ATTR(add, S_IWUSR, NULL, rbd_add),
366         __ATTR(remove, S_IWUSR, NULL, rbd_remove),
367         __ATTR_NULL
368 };
369
370 static struct bus_type rbd_bus_type = {
371         .name           = "rbd",
372         .bus_attrs      = rbd_bus_attrs,
373 };
374
375 static void rbd_root_dev_release(struct device *dev)
376 {
377 }
378
379 static struct device rbd_root_dev = {
380         .init_name =    "rbd",
381         .release =      rbd_root_dev_release,
382 };
383
384 static __printf(2, 3)
385 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
386 {
387         struct va_format vaf;
388         va_list args;
389
390         va_start(args, fmt);
391         vaf.fmt = fmt;
392         vaf.va = &args;
393
394         if (!rbd_dev)
395                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
396         else if (rbd_dev->disk)
397                 printk(KERN_WARNING "%s: %s: %pV\n",
398                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
399         else if (rbd_dev->spec && rbd_dev->spec->image_name)
400                 printk(KERN_WARNING "%s: image %s: %pV\n",
401                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
402         else if (rbd_dev->spec && rbd_dev->spec->image_id)
403                 printk(KERN_WARNING "%s: id %s: %pV\n",
404                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
405         else    /* punt */
406                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
407                         RBD_DRV_NAME, rbd_dev, &vaf);
408         va_end(args);
409 }
410
411 #ifdef RBD_DEBUG
412 #define rbd_assert(expr)                                                \
413                 if (unlikely(!(expr))) {                                \
414                         printk(KERN_ERR "\nAssertion failure in %s() "  \
415                                                 "at line %d:\n\n"       \
416                                         "\trbd_assert(%s);\n\n",        \
417                                         __func__, __LINE__, #expr);     \
418                         BUG();                                          \
419                 }
420 #else /* !RBD_DEBUG */
421 #  define rbd_assert(expr)      ((void) 0)
422 #endif /* !RBD_DEBUG */
423
424 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
425 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
426 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
427
428 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
429 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev);
430 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
431                                         u64 snap_id);
432 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
433                                 u8 *order, u64 *snap_size);
434 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
435                 u64 *snap_features);
436 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
437
438 static int rbd_open(struct block_device *bdev, fmode_t mode)
439 {
440         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
441         bool removing = false;
442
443         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
444                 return -EROFS;
445
446         spin_lock_irq(&rbd_dev->lock);
447         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
448                 removing = true;
449         else
450                 rbd_dev->open_count++;
451         spin_unlock_irq(&rbd_dev->lock);
452         if (removing)
453                 return -ENOENT;
454
455         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
456         (void) get_device(&rbd_dev->dev);
457         set_device_ro(bdev, rbd_dev->mapping.read_only);
458         mutex_unlock(&ctl_mutex);
459
460         return 0;
461 }
462
463 static int rbd_release(struct gendisk *disk, fmode_t mode)
464 {
465         struct rbd_device *rbd_dev = disk->private_data;
466         unsigned long open_count_before;
467
468         spin_lock_irq(&rbd_dev->lock);
469         open_count_before = rbd_dev->open_count--;
470         spin_unlock_irq(&rbd_dev->lock);
471         rbd_assert(open_count_before > 0);
472
473         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
474         put_device(&rbd_dev->dev);
475         mutex_unlock(&ctl_mutex);
476
477         return 0;
478 }
479
480 static const struct block_device_operations rbd_bd_ops = {
481         .owner                  = THIS_MODULE,
482         .open                   = rbd_open,
483         .release                = rbd_release,
484 };
485
486 /*
487  * Initialize an rbd client instance.
488  * We own *ceph_opts.
489  */
490 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
491 {
492         struct rbd_client *rbdc;
493         int ret = -ENOMEM;
494
495         dout("%s:\n", __func__);
496         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
497         if (!rbdc)
498                 goto out_opt;
499
500         kref_init(&rbdc->kref);
501         INIT_LIST_HEAD(&rbdc->node);
502
503         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
504
505         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
506         if (IS_ERR(rbdc->client))
507                 goto out_mutex;
508         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
509
510         ret = ceph_open_session(rbdc->client);
511         if (ret < 0)
512                 goto out_err;
513
514         spin_lock(&rbd_client_list_lock);
515         list_add_tail(&rbdc->node, &rbd_client_list);
516         spin_unlock(&rbd_client_list_lock);
517
518         mutex_unlock(&ctl_mutex);
519         dout("%s: rbdc %p\n", __func__, rbdc);
520
521         return rbdc;
522
523 out_err:
524         ceph_destroy_client(rbdc->client);
525 out_mutex:
526         mutex_unlock(&ctl_mutex);
527         kfree(rbdc);
528 out_opt:
529         if (ceph_opts)
530                 ceph_destroy_options(ceph_opts);
531         dout("%s: error %d\n", __func__, ret);
532
533         return ERR_PTR(ret);
534 }
535
536 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
537 {
538         kref_get(&rbdc->kref);
539
540         return rbdc;
541 }
542
543 /*
544  * Find a ceph client with specific addr and configuration.  If
545  * found, bump its reference count.
546  */
547 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
548 {
549         struct rbd_client *client_node;
550         bool found = false;
551
552         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
553                 return NULL;
554
555         spin_lock(&rbd_client_list_lock);
556         list_for_each_entry(client_node, &rbd_client_list, node) {
557                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
558                         __rbd_get_client(client_node);
559
560                         found = true;
561                         break;
562                 }
563         }
564         spin_unlock(&rbd_client_list_lock);
565
566         return found ? client_node : NULL;
567 }
568
569 /*
570  * mount options
571  */
572 enum {
573         Opt_last_int,
574         /* int args above */
575         Opt_last_string,
576         /* string args above */
577         Opt_read_only,
578         Opt_read_write,
579         /* Boolean args above */
580         Opt_last_bool,
581 };
582
583 static match_table_t rbd_opts_tokens = {
584         /* int args above */
585         /* string args above */
586         {Opt_read_only, "read_only"},
587         {Opt_read_only, "ro"},          /* Alternate spelling */
588         {Opt_read_write, "read_write"},
589         {Opt_read_write, "rw"},         /* Alternate spelling */
590         /* Boolean args above */
591         {-1, NULL}
592 };
593
594 struct rbd_options {
595         bool    read_only;
596 };
597
598 #define RBD_READ_ONLY_DEFAULT   false
599
600 static int parse_rbd_opts_token(char *c, void *private)
601 {
602         struct rbd_options *rbd_opts = private;
603         substring_t argstr[MAX_OPT_ARGS];
604         int token, intval, ret;
605
606         token = match_token(c, rbd_opts_tokens, argstr);
607         if (token < 0)
608                 return -EINVAL;
609
610         if (token < Opt_last_int) {
611                 ret = match_int(&argstr[0], &intval);
612                 if (ret < 0) {
613                         pr_err("bad mount option arg (not int) "
614                                "at '%s'\n", c);
615                         return ret;
616                 }
617                 dout("got int token %d val %d\n", token, intval);
618         } else if (token > Opt_last_int && token < Opt_last_string) {
619                 dout("got string token %d val %s\n", token,
620                      argstr[0].from);
621         } else if (token > Opt_last_string && token < Opt_last_bool) {
622                 dout("got Boolean token %d\n", token);
623         } else {
624                 dout("got token %d\n", token);
625         }
626
627         switch (token) {
628         case Opt_read_only:
629                 rbd_opts->read_only = true;
630                 break;
631         case Opt_read_write:
632                 rbd_opts->read_only = false;
633                 break;
634         default:
635                 rbd_assert(false);
636                 break;
637         }
638         return 0;
639 }
640
641 /*
642  * Get a ceph client with specific addr and configuration, if one does
643  * not exist create it.
644  */
645 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
646 {
647         struct rbd_client *rbdc;
648
649         rbdc = rbd_client_find(ceph_opts);
650         if (rbdc)       /* using an existing client */
651                 ceph_destroy_options(ceph_opts);
652         else
653                 rbdc = rbd_client_create(ceph_opts);
654
655         return rbdc;
656 }
657
658 /*
659  * Destroy ceph client
660  *
661  * Caller must hold rbd_client_list_lock.
662  */
663 static void rbd_client_release(struct kref *kref)
664 {
665         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
666
667         dout("%s: rbdc %p\n", __func__, rbdc);
668         spin_lock(&rbd_client_list_lock);
669         list_del(&rbdc->node);
670         spin_unlock(&rbd_client_list_lock);
671
672         ceph_destroy_client(rbdc->client);
673         kfree(rbdc);
674 }
675
676 /*
677  * Drop reference to ceph client node. If it's not referenced anymore, release
678  * it.
679  */
680 static void rbd_put_client(struct rbd_client *rbdc)
681 {
682         if (rbdc)
683                 kref_put(&rbdc->kref, rbd_client_release);
684 }
685
686 static bool rbd_image_format_valid(u32 image_format)
687 {
688         return image_format == 1 || image_format == 2;
689 }
690
691 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
692 {
693         size_t size;
694         u32 snap_count;
695
696         /* The header has to start with the magic rbd header text */
697         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
698                 return false;
699
700         /* The bio layer requires at least sector-sized I/O */
701
702         if (ondisk->options.order < SECTOR_SHIFT)
703                 return false;
704
705         /* If we use u64 in a few spots we may be able to loosen this */
706
707         if (ondisk->options.order > 8 * sizeof (int) - 1)
708                 return false;
709
710         /*
711          * The size of a snapshot header has to fit in a size_t, and
712          * that limits the number of snapshots.
713          */
714         snap_count = le32_to_cpu(ondisk->snap_count);
715         size = SIZE_MAX - sizeof (struct ceph_snap_context);
716         if (snap_count > size / sizeof (__le64))
717                 return false;
718
719         /*
720          * Not only that, but the size of the entire the snapshot
721          * header must also be representable in a size_t.
722          */
723         size -= snap_count * sizeof (__le64);
724         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
725                 return false;
726
727         return true;
728 }
729
730 /*
731  * Create a new header structure, translate header format from the on-disk
732  * header.
733  */
734 static int rbd_header_from_disk(struct rbd_image_header *header,
735                                  struct rbd_image_header_ondisk *ondisk)
736 {
737         u32 snap_count;
738         size_t len;
739         size_t size;
740         u32 i;
741
742         memset(header, 0, sizeof (*header));
743
744         snap_count = le32_to_cpu(ondisk->snap_count);
745
746         len = strnlen(ondisk->object_prefix, sizeof (ondisk->object_prefix));
747         header->object_prefix = kmalloc(len + 1, GFP_KERNEL);
748         if (!header->object_prefix)
749                 return -ENOMEM;
750         memcpy(header->object_prefix, ondisk->object_prefix, len);
751         header->object_prefix[len] = '\0';
752
753         if (snap_count) {
754                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
755
756                 /* Save a copy of the snapshot names */
757
758                 if (snap_names_len > (u64) SIZE_MAX)
759                         return -EIO;
760                 header->snap_names = kmalloc(snap_names_len, GFP_KERNEL);
761                 if (!header->snap_names)
762                         goto out_err;
763                 /*
764                  * Note that rbd_dev_v1_header_read() guarantees
765                  * the ondisk buffer we're working with has
766                  * snap_names_len bytes beyond the end of the
767                  * snapshot id array, this memcpy() is safe.
768                  */
769                 memcpy(header->snap_names, &ondisk->snaps[snap_count],
770                         snap_names_len);
771
772                 /* Record each snapshot's size */
773
774                 size = snap_count * sizeof (*header->snap_sizes);
775                 header->snap_sizes = kmalloc(size, GFP_KERNEL);
776                 if (!header->snap_sizes)
777                         goto out_err;
778                 for (i = 0; i < snap_count; i++)
779                         header->snap_sizes[i] =
780                                 le64_to_cpu(ondisk->snaps[i].image_size);
781         } else {
782                 header->snap_names = NULL;
783                 header->snap_sizes = NULL;
784         }
785
786         header->features = 0;   /* No features support in v1 images */
787         header->obj_order = ondisk->options.order;
788         header->crypt_type = ondisk->options.crypt_type;
789         header->comp_type = ondisk->options.comp_type;
790
791         /* Allocate and fill in the snapshot context */
792
793         header->image_size = le64_to_cpu(ondisk->image_size);
794
795         header->snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
796         if (!header->snapc)
797                 goto out_err;
798         header->snapc->seq = le64_to_cpu(ondisk->snap_seq);
799         for (i = 0; i < snap_count; i++)
800                 header->snapc->snaps[i] = le64_to_cpu(ondisk->snaps[i].id);
801
802         return 0;
803
804 out_err:
805         kfree(header->snap_sizes);
806         header->snap_sizes = NULL;
807         kfree(header->snap_names);
808         header->snap_names = NULL;
809         kfree(header->object_prefix);
810         header->object_prefix = NULL;
811
812         return -ENOMEM;
813 }
814
815 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
816 {
817         const char *snap_name;
818
819         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
820
821         /* Skip over names until we find the one we are looking for */
822
823         snap_name = rbd_dev->header.snap_names;
824         while (which--)
825                 snap_name += strlen(snap_name) + 1;
826
827         return kstrdup(snap_name, GFP_KERNEL);
828 }
829
830 /*
831  * Snapshot id comparison function for use with qsort()/bsearch().
832  * Note that result is for snapshots in *descending* order.
833  */
834 static int snapid_compare_reverse(const void *s1, const void *s2)
835 {
836         u64 snap_id1 = *(u64 *)s1;
837         u64 snap_id2 = *(u64 *)s2;
838
839         if (snap_id1 < snap_id2)
840                 return 1;
841         return snap_id1 == snap_id2 ? 0 : -1;
842 }
843
844 /*
845  * Search a snapshot context to see if the given snapshot id is
846  * present.
847  *
848  * Returns the position of the snapshot id in the array if it's found,
849  * or BAD_SNAP_INDEX otherwise.
850  *
851  * Note: The snapshot array is in kept sorted (by the osd) in
852  * reverse order, highest snapshot id first.
853  */
854 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
855 {
856         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
857         u64 *found;
858
859         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
860                                 sizeof (snap_id), snapid_compare_reverse);
861
862         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
863 }
864
865 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
866                                         u64 snap_id)
867 {
868         u32 which;
869
870         which = rbd_dev_snap_index(rbd_dev, snap_id);
871         if (which == BAD_SNAP_INDEX)
872                 return NULL;
873
874         return _rbd_dev_v1_snap_name(rbd_dev, which);
875 }
876
877 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
878 {
879         if (snap_id == CEPH_NOSNAP)
880                 return RBD_SNAP_HEAD_NAME;
881
882         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
883         if (rbd_dev->image_format == 1)
884                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
885
886         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
887 }
888
889 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
890                                 u64 *snap_size)
891 {
892         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
893         if (snap_id == CEPH_NOSNAP) {
894                 *snap_size = rbd_dev->header.image_size;
895         } else if (rbd_dev->image_format == 1) {
896                 u32 which;
897
898                 which = rbd_dev_snap_index(rbd_dev, snap_id);
899                 if (which == BAD_SNAP_INDEX)
900                         return -ENOENT;
901
902                 *snap_size = rbd_dev->header.snap_sizes[which];
903         } else {
904                 u64 size = 0;
905                 int ret;
906
907                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
908                 if (ret)
909                         return ret;
910
911                 *snap_size = size;
912         }
913         return 0;
914 }
915
916 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
917                         u64 *snap_features)
918 {
919         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
920         if (snap_id == CEPH_NOSNAP) {
921                 *snap_features = rbd_dev->header.features;
922         } else if (rbd_dev->image_format == 1) {
923                 *snap_features = 0;     /* No features for format 1 */
924         } else {
925                 u64 features = 0;
926                 int ret;
927
928                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
929                 if (ret)
930                         return ret;
931
932                 *snap_features = features;
933         }
934         return 0;
935 }
936
937 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
938 {
939         const char *snap_name = rbd_dev->spec->snap_name;
940         u64 snap_id;
941         u64 size = 0;
942         u64 features = 0;
943         int ret;
944
945         if (strcmp(snap_name, RBD_SNAP_HEAD_NAME)) {
946                 snap_id = rbd_snap_id_by_name(rbd_dev, snap_name);
947                 if (snap_id == CEPH_NOSNAP)
948                         return -ENOENT;
949         } else {
950                 snap_id = CEPH_NOSNAP;
951         }
952
953         ret = rbd_snap_size(rbd_dev, snap_id, &size);
954         if (ret)
955                 return ret;
956         ret = rbd_snap_features(rbd_dev, snap_id, &features);
957         if (ret)
958                 return ret;
959
960         rbd_dev->mapping.size = size;
961         rbd_dev->mapping.features = features;
962
963         /* If we are mapping a snapshot it must be marked read-only */
964
965         if (snap_id != CEPH_NOSNAP)
966                 rbd_dev->mapping.read_only = true;
967
968         return 0;
969 }
970
971 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
972 {
973         rbd_dev->mapping.size = 0;
974         rbd_dev->mapping.features = 0;
975         rbd_dev->mapping.read_only = true;
976 }
977
978 static void rbd_dev_clear_mapping(struct rbd_device *rbd_dev)
979 {
980         rbd_dev->mapping.size = 0;
981         rbd_dev->mapping.features = 0;
982         rbd_dev->mapping.read_only = true;
983 }
984
985 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
986 {
987         char *name;
988         u64 segment;
989         int ret;
990
991         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
992         if (!name)
993                 return NULL;
994         segment = offset >> rbd_dev->header.obj_order;
995         ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx",
996                         rbd_dev->header.object_prefix, segment);
997         if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
998                 pr_err("error formatting segment name for #%llu (%d)\n",
999                         segment, ret);
1000                 kfree(name);
1001                 name = NULL;
1002         }
1003
1004         return name;
1005 }
1006
1007 static void rbd_segment_name_free(const char *name)
1008 {
1009         /* The explicit cast here is needed to drop the const qualifier */
1010
1011         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1012 }
1013
1014 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1015 {
1016         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1017
1018         return offset & (segment_size - 1);
1019 }
1020
1021 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1022                                 u64 offset, u64 length)
1023 {
1024         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1025
1026         offset &= segment_size - 1;
1027
1028         rbd_assert(length <= U64_MAX - offset);
1029         if (offset + length > segment_size)
1030                 length = segment_size - offset;
1031
1032         return length;
1033 }
1034
1035 /*
1036  * returns the size of an object in the image
1037  */
1038 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1039 {
1040         return 1 << header->obj_order;
1041 }
1042
1043 /*
1044  * bio helpers
1045  */
1046
1047 static void bio_chain_put(struct bio *chain)
1048 {
1049         struct bio *tmp;
1050
1051         while (chain) {
1052                 tmp = chain;
1053                 chain = chain->bi_next;
1054                 bio_put(tmp);
1055         }
1056 }
1057
1058 /*
1059  * zeros a bio chain, starting at specific offset
1060  */
1061 static void zero_bio_chain(struct bio *chain, int start_ofs)
1062 {
1063         struct bio_vec *bv;
1064         unsigned long flags;
1065         void *buf;
1066         int i;
1067         int pos = 0;
1068
1069         while (chain) {
1070                 bio_for_each_segment(bv, chain, i) {
1071                         if (pos + bv->bv_len > start_ofs) {
1072                                 int remainder = max(start_ofs - pos, 0);
1073                                 buf = bvec_kmap_irq(bv, &flags);
1074                                 memset(buf + remainder, 0,
1075                                        bv->bv_len - remainder);
1076                                 bvec_kunmap_irq(buf, &flags);
1077                         }
1078                         pos += bv->bv_len;
1079                 }
1080
1081                 chain = chain->bi_next;
1082         }
1083 }
1084
1085 /*
1086  * similar to zero_bio_chain(), zeros data defined by a page array,
1087  * starting at the given byte offset from the start of the array and
1088  * continuing up to the given end offset.  The pages array is
1089  * assumed to be big enough to hold all bytes up to the end.
1090  */
1091 static void zero_pages(struct page **pages, u64 offset, u64 end)
1092 {
1093         struct page **page = &pages[offset >> PAGE_SHIFT];
1094
1095         rbd_assert(end > offset);
1096         rbd_assert(end - offset <= (u64)SIZE_MAX);
1097         while (offset < end) {
1098                 size_t page_offset;
1099                 size_t length;
1100                 unsigned long flags;
1101                 void *kaddr;
1102
1103                 page_offset = (size_t)(offset & ~PAGE_MASK);
1104                 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
1105                 local_irq_save(flags);
1106                 kaddr = kmap_atomic(*page);
1107                 memset(kaddr + page_offset, 0, length);
1108                 kunmap_atomic(kaddr);
1109                 local_irq_restore(flags);
1110
1111                 offset += length;
1112                 page++;
1113         }
1114 }
1115
1116 /*
1117  * Clone a portion of a bio, starting at the given byte offset
1118  * and continuing for the number of bytes indicated.
1119  */
1120 static struct bio *bio_clone_range(struct bio *bio_src,
1121                                         unsigned int offset,
1122                                         unsigned int len,
1123                                         gfp_t gfpmask)
1124 {
1125         struct bio_vec *bv;
1126         unsigned int resid;
1127         unsigned short idx;
1128         unsigned int voff;
1129         unsigned short end_idx;
1130         unsigned short vcnt;
1131         struct bio *bio;
1132
1133         /* Handle the easy case for the caller */
1134
1135         if (!offset && len == bio_src->bi_size)
1136                 return bio_clone(bio_src, gfpmask);
1137
1138         if (WARN_ON_ONCE(!len))
1139                 return NULL;
1140         if (WARN_ON_ONCE(len > bio_src->bi_size))
1141                 return NULL;
1142         if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1143                 return NULL;
1144
1145         /* Find first affected segment... */
1146
1147         resid = offset;
1148         __bio_for_each_segment(bv, bio_src, idx, 0) {
1149                 if (resid < bv->bv_len)
1150                         break;
1151                 resid -= bv->bv_len;
1152         }
1153         voff = resid;
1154
1155         /* ...and the last affected segment */
1156
1157         resid += len;
1158         __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1159                 if (resid <= bv->bv_len)
1160                         break;
1161                 resid -= bv->bv_len;
1162         }
1163         vcnt = end_idx - idx + 1;
1164
1165         /* Build the clone */
1166
1167         bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1168         if (!bio)
1169                 return NULL;    /* ENOMEM */
1170
1171         bio->bi_bdev = bio_src->bi_bdev;
1172         bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1173         bio->bi_rw = bio_src->bi_rw;
1174         bio->bi_flags |= 1 << BIO_CLONED;
1175
1176         /*
1177          * Copy over our part of the bio_vec, then update the first
1178          * and last (or only) entries.
1179          */
1180         memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1181                         vcnt * sizeof (struct bio_vec));
1182         bio->bi_io_vec[0].bv_offset += voff;
1183         if (vcnt > 1) {
1184                 bio->bi_io_vec[0].bv_len -= voff;
1185                 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1186         } else {
1187                 bio->bi_io_vec[0].bv_len = len;
1188         }
1189
1190         bio->bi_vcnt = vcnt;
1191         bio->bi_size = len;
1192         bio->bi_idx = 0;
1193
1194         return bio;
1195 }
1196
1197 /*
1198  * Clone a portion of a bio chain, starting at the given byte offset
1199  * into the first bio in the source chain and continuing for the
1200  * number of bytes indicated.  The result is another bio chain of
1201  * exactly the given length, or a null pointer on error.
1202  *
1203  * The bio_src and offset parameters are both in-out.  On entry they
1204  * refer to the first source bio and the offset into that bio where
1205  * the start of data to be cloned is located.
1206  *
1207  * On return, bio_src is updated to refer to the bio in the source
1208  * chain that contains first un-cloned byte, and *offset will
1209  * contain the offset of that byte within that bio.
1210  */
1211 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1212                                         unsigned int *offset,
1213                                         unsigned int len,
1214                                         gfp_t gfpmask)
1215 {
1216         struct bio *bi = *bio_src;
1217         unsigned int off = *offset;
1218         struct bio *chain = NULL;
1219         struct bio **end;
1220
1221         /* Build up a chain of clone bios up to the limit */
1222
1223         if (!bi || off >= bi->bi_size || !len)
1224                 return NULL;            /* Nothing to clone */
1225
1226         end = &chain;
1227         while (len) {
1228                 unsigned int bi_size;
1229                 struct bio *bio;
1230
1231                 if (!bi) {
1232                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1233                         goto out_err;   /* EINVAL; ran out of bio's */
1234                 }
1235                 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1236                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1237                 if (!bio)
1238                         goto out_err;   /* ENOMEM */
1239
1240                 *end = bio;
1241                 end = &bio->bi_next;
1242
1243                 off += bi_size;
1244                 if (off == bi->bi_size) {
1245                         bi = bi->bi_next;
1246                         off = 0;
1247                 }
1248                 len -= bi_size;
1249         }
1250         *bio_src = bi;
1251         *offset = off;
1252
1253         return chain;
1254 out_err:
1255         bio_chain_put(chain);
1256
1257         return NULL;
1258 }
1259
1260 /*
1261  * The default/initial value for all object request flags is 0.  For
1262  * each flag, once its value is set to 1 it is never reset to 0
1263  * again.
1264  */
1265 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1266 {
1267         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1268                 struct rbd_device *rbd_dev;
1269
1270                 rbd_dev = obj_request->img_request->rbd_dev;
1271                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1272                         obj_request);
1273         }
1274 }
1275
1276 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1277 {
1278         smp_mb();
1279         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1280 }
1281
1282 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1283 {
1284         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1285                 struct rbd_device *rbd_dev = NULL;
1286
1287                 if (obj_request_img_data_test(obj_request))
1288                         rbd_dev = obj_request->img_request->rbd_dev;
1289                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1290                         obj_request);
1291         }
1292 }
1293
1294 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1295 {
1296         smp_mb();
1297         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1298 }
1299
1300 /*
1301  * This sets the KNOWN flag after (possibly) setting the EXISTS
1302  * flag.  The latter is set based on the "exists" value provided.
1303  *
1304  * Note that for our purposes once an object exists it never goes
1305  * away again.  It's possible that the response from two existence
1306  * checks are separated by the creation of the target object, and
1307  * the first ("doesn't exist") response arrives *after* the second
1308  * ("does exist").  In that case we ignore the second one.
1309  */
1310 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1311                                 bool exists)
1312 {
1313         if (exists)
1314                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1315         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1316         smp_mb();
1317 }
1318
1319 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1320 {
1321         smp_mb();
1322         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1323 }
1324
1325 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1326 {
1327         smp_mb();
1328         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1329 }
1330
1331 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1332 {
1333         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1334                 atomic_read(&obj_request->kref.refcount));
1335         kref_get(&obj_request->kref);
1336 }
1337
1338 static void rbd_obj_request_destroy(struct kref *kref);
1339 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1340 {
1341         rbd_assert(obj_request != NULL);
1342         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1343                 atomic_read(&obj_request->kref.refcount));
1344         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1345 }
1346
1347 static void rbd_img_request_get(struct rbd_img_request *img_request)
1348 {
1349         dout("%s: img %p (was %d)\n", __func__, img_request,
1350                 atomic_read(&img_request->kref.refcount));
1351         kref_get(&img_request->kref);
1352 }
1353
1354 static void rbd_img_request_destroy(struct kref *kref);
1355 static void rbd_img_request_put(struct rbd_img_request *img_request)
1356 {
1357         rbd_assert(img_request != NULL);
1358         dout("%s: img %p (was %d)\n", __func__, img_request,
1359                 atomic_read(&img_request->kref.refcount));
1360         kref_put(&img_request->kref, rbd_img_request_destroy);
1361 }
1362
1363 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1364                                         struct rbd_obj_request *obj_request)
1365 {
1366         rbd_assert(obj_request->img_request == NULL);
1367
1368         /* Image request now owns object's original reference */
1369         obj_request->img_request = img_request;
1370         obj_request->which = img_request->obj_request_count;
1371         rbd_assert(!obj_request_img_data_test(obj_request));
1372         obj_request_img_data_set(obj_request);
1373         rbd_assert(obj_request->which != BAD_WHICH);
1374         img_request->obj_request_count++;
1375         list_add_tail(&obj_request->links, &img_request->obj_requests);
1376         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1377                 obj_request->which);
1378 }
1379
1380 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1381                                         struct rbd_obj_request *obj_request)
1382 {
1383         rbd_assert(obj_request->which != BAD_WHICH);
1384
1385         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1386                 obj_request->which);
1387         list_del(&obj_request->links);
1388         rbd_assert(img_request->obj_request_count > 0);
1389         img_request->obj_request_count--;
1390         rbd_assert(obj_request->which == img_request->obj_request_count);
1391         obj_request->which = BAD_WHICH;
1392         rbd_assert(obj_request_img_data_test(obj_request));
1393         rbd_assert(obj_request->img_request == img_request);
1394         obj_request->img_request = NULL;
1395         obj_request->callback = NULL;
1396         rbd_obj_request_put(obj_request);
1397 }
1398
1399 static bool obj_request_type_valid(enum obj_request_type type)
1400 {
1401         switch (type) {
1402         case OBJ_REQUEST_NODATA:
1403         case OBJ_REQUEST_BIO:
1404         case OBJ_REQUEST_PAGES:
1405                 return true;
1406         default:
1407                 return false;
1408         }
1409 }
1410
1411 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1412                                 struct rbd_obj_request *obj_request)
1413 {
1414         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1415
1416         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1417 }
1418
1419 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1420 {
1421
1422         dout("%s: img %p\n", __func__, img_request);
1423
1424         /*
1425          * If no error occurred, compute the aggregate transfer
1426          * count for the image request.  We could instead use
1427          * atomic64_cmpxchg() to update it as each object request
1428          * completes; not clear which way is better off hand.
1429          */
1430         if (!img_request->result) {
1431                 struct rbd_obj_request *obj_request;
1432                 u64 xferred = 0;
1433
1434                 for_each_obj_request(img_request, obj_request)
1435                         xferred += obj_request->xferred;
1436                 img_request->xferred = xferred;
1437         }
1438
1439         if (img_request->callback)
1440                 img_request->callback(img_request);
1441         else
1442                 rbd_img_request_put(img_request);
1443 }
1444
1445 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1446
1447 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1448 {
1449         dout("%s: obj %p\n", __func__, obj_request);
1450
1451         return wait_for_completion_interruptible(&obj_request->completion);
1452 }
1453
1454 /*
1455  * The default/initial value for all image request flags is 0.  Each
1456  * is conditionally set to 1 at image request initialization time
1457  * and currently never change thereafter.
1458  */
1459 static void img_request_write_set(struct rbd_img_request *img_request)
1460 {
1461         set_bit(IMG_REQ_WRITE, &img_request->flags);
1462         smp_mb();
1463 }
1464
1465 static bool img_request_write_test(struct rbd_img_request *img_request)
1466 {
1467         smp_mb();
1468         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1469 }
1470
1471 static void img_request_child_set(struct rbd_img_request *img_request)
1472 {
1473         set_bit(IMG_REQ_CHILD, &img_request->flags);
1474         smp_mb();
1475 }
1476
1477 static bool img_request_child_test(struct rbd_img_request *img_request)
1478 {
1479         smp_mb();
1480         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1481 }
1482
1483 static void img_request_layered_set(struct rbd_img_request *img_request)
1484 {
1485         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1486         smp_mb();
1487 }
1488
1489 static bool img_request_layered_test(struct rbd_img_request *img_request)
1490 {
1491         smp_mb();
1492         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1493 }
1494
1495 static void
1496 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1497 {
1498         u64 xferred = obj_request->xferred;
1499         u64 length = obj_request->length;
1500
1501         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1502                 obj_request, obj_request->img_request, obj_request->result,
1503                 xferred, length);
1504         /*
1505          * ENOENT means a hole in the image.  We zero-fill the
1506          * entire length of the request.  A short read also implies
1507          * zero-fill to the end of the request.  Either way we
1508          * update the xferred count to indicate the whole request
1509          * was satisfied.
1510          */
1511         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1512         if (obj_request->result == -ENOENT) {
1513                 if (obj_request->type == OBJ_REQUEST_BIO)
1514                         zero_bio_chain(obj_request->bio_list, 0);
1515                 else
1516                         zero_pages(obj_request->pages, 0, length);
1517                 obj_request->result = 0;
1518                 obj_request->xferred = length;
1519         } else if (xferred < length && !obj_request->result) {
1520                 if (obj_request->type == OBJ_REQUEST_BIO)
1521                         zero_bio_chain(obj_request->bio_list, xferred);
1522                 else
1523                         zero_pages(obj_request->pages, xferred, length);
1524                 obj_request->xferred = length;
1525         }
1526         obj_request_done_set(obj_request);
1527 }
1528
1529 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1530 {
1531         dout("%s: obj %p cb %p\n", __func__, obj_request,
1532                 obj_request->callback);
1533         if (obj_request->callback)
1534                 obj_request->callback(obj_request);
1535         else
1536                 complete_all(&obj_request->completion);
1537 }
1538
1539 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1540 {
1541         dout("%s: obj %p\n", __func__, obj_request);
1542         obj_request_done_set(obj_request);
1543 }
1544
1545 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1546 {
1547         struct rbd_img_request *img_request = NULL;
1548         struct rbd_device *rbd_dev = NULL;
1549         bool layered = false;
1550
1551         if (obj_request_img_data_test(obj_request)) {
1552                 img_request = obj_request->img_request;
1553                 layered = img_request && img_request_layered_test(img_request);
1554                 rbd_dev = img_request->rbd_dev;
1555         }
1556
1557         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1558                 obj_request, img_request, obj_request->result,
1559                 obj_request->xferred, obj_request->length);
1560         if (layered && obj_request->result == -ENOENT &&
1561                         obj_request->img_offset < rbd_dev->parent_overlap)
1562                 rbd_img_parent_read(obj_request);
1563         else if (img_request)
1564                 rbd_img_obj_request_read_callback(obj_request);
1565         else
1566                 obj_request_done_set(obj_request);
1567 }
1568
1569 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1570 {
1571         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1572                 obj_request->result, obj_request->length);
1573         /*
1574          * There is no such thing as a successful short write.  Set
1575          * it to our originally-requested length.
1576          */
1577         obj_request->xferred = obj_request->length;
1578         obj_request_done_set(obj_request);
1579 }
1580
1581 /*
1582  * For a simple stat call there's nothing to do.  We'll do more if
1583  * this is part of a write sequence for a layered image.
1584  */
1585 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1586 {
1587         dout("%s: obj %p\n", __func__, obj_request);
1588         obj_request_done_set(obj_request);
1589 }
1590
1591 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1592                                 struct ceph_msg *msg)
1593 {
1594         struct rbd_obj_request *obj_request = osd_req->r_priv;
1595         u16 opcode;
1596
1597         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1598         rbd_assert(osd_req == obj_request->osd_req);
1599         if (obj_request_img_data_test(obj_request)) {
1600                 rbd_assert(obj_request->img_request);
1601                 rbd_assert(obj_request->which != BAD_WHICH);
1602         } else {
1603                 rbd_assert(obj_request->which == BAD_WHICH);
1604         }
1605
1606         if (osd_req->r_result < 0)
1607                 obj_request->result = osd_req->r_result;
1608
1609         BUG_ON(osd_req->r_num_ops > 2);
1610
1611         /*
1612          * We support a 64-bit length, but ultimately it has to be
1613          * passed to blk_end_request(), which takes an unsigned int.
1614          */
1615         obj_request->xferred = osd_req->r_reply_op_len[0];
1616         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1617         opcode = osd_req->r_ops[0].op;
1618         switch (opcode) {
1619         case CEPH_OSD_OP_READ:
1620                 rbd_osd_read_callback(obj_request);
1621                 break;
1622         case CEPH_OSD_OP_WRITE:
1623                 rbd_osd_write_callback(obj_request);
1624                 break;
1625         case CEPH_OSD_OP_STAT:
1626                 rbd_osd_stat_callback(obj_request);
1627                 break;
1628         case CEPH_OSD_OP_CALL:
1629         case CEPH_OSD_OP_NOTIFY_ACK:
1630         case CEPH_OSD_OP_WATCH:
1631                 rbd_osd_trivial_callback(obj_request);
1632                 break;
1633         default:
1634                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1635                         obj_request->object_name, (unsigned short) opcode);
1636                 break;
1637         }
1638
1639         if (obj_request_done_test(obj_request))
1640                 rbd_obj_request_complete(obj_request);
1641 }
1642
1643 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1644 {
1645         struct rbd_img_request *img_request = obj_request->img_request;
1646         struct ceph_osd_request *osd_req = obj_request->osd_req;
1647         u64 snap_id;
1648
1649         rbd_assert(osd_req != NULL);
1650
1651         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1652         ceph_osdc_build_request(osd_req, obj_request->offset,
1653                         NULL, snap_id, NULL);
1654 }
1655
1656 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1657 {
1658         struct rbd_img_request *img_request = obj_request->img_request;
1659         struct ceph_osd_request *osd_req = obj_request->osd_req;
1660         struct ceph_snap_context *snapc;
1661         struct timespec mtime = CURRENT_TIME;
1662
1663         rbd_assert(osd_req != NULL);
1664
1665         snapc = img_request ? img_request->snapc : NULL;
1666         ceph_osdc_build_request(osd_req, obj_request->offset,
1667                         snapc, CEPH_NOSNAP, &mtime);
1668 }
1669
1670 static struct ceph_osd_request *rbd_osd_req_create(
1671                                         struct rbd_device *rbd_dev,
1672                                         bool write_request,
1673                                         struct rbd_obj_request *obj_request)
1674 {
1675         struct ceph_snap_context *snapc = NULL;
1676         struct ceph_osd_client *osdc;
1677         struct ceph_osd_request *osd_req;
1678
1679         if (obj_request_img_data_test(obj_request)) {
1680                 struct rbd_img_request *img_request = obj_request->img_request;
1681
1682                 rbd_assert(write_request ==
1683                                 img_request_write_test(img_request));
1684                 if (write_request)
1685                         snapc = img_request->snapc;
1686         }
1687
1688         /* Allocate and initialize the request, for the single op */
1689
1690         osdc = &rbd_dev->rbd_client->client->osdc;
1691         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1692         if (!osd_req)
1693                 return NULL;    /* ENOMEM */
1694
1695         if (write_request)
1696                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1697         else
1698                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1699
1700         osd_req->r_callback = rbd_osd_req_callback;
1701         osd_req->r_priv = obj_request;
1702
1703         osd_req->r_oid_len = strlen(obj_request->object_name);
1704         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1705         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1706
1707         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1708
1709         return osd_req;
1710 }
1711
1712 /*
1713  * Create a copyup osd request based on the information in the
1714  * object request supplied.  A copyup request has two osd ops,
1715  * a copyup method call, and a "normal" write request.
1716  */
1717 static struct ceph_osd_request *
1718 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1719 {
1720         struct rbd_img_request *img_request;
1721         struct ceph_snap_context *snapc;
1722         struct rbd_device *rbd_dev;
1723         struct ceph_osd_client *osdc;
1724         struct ceph_osd_request *osd_req;
1725
1726         rbd_assert(obj_request_img_data_test(obj_request));
1727         img_request = obj_request->img_request;
1728         rbd_assert(img_request);
1729         rbd_assert(img_request_write_test(img_request));
1730
1731         /* Allocate and initialize the request, for the two ops */
1732
1733         snapc = img_request->snapc;
1734         rbd_dev = img_request->rbd_dev;
1735         osdc = &rbd_dev->rbd_client->client->osdc;
1736         osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1737         if (!osd_req)
1738                 return NULL;    /* ENOMEM */
1739
1740         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1741         osd_req->r_callback = rbd_osd_req_callback;
1742         osd_req->r_priv = obj_request;
1743
1744         osd_req->r_oid_len = strlen(obj_request->object_name);
1745         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1746         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1747
1748         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1749
1750         return osd_req;
1751 }
1752
1753
1754 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1755 {
1756         ceph_osdc_put_request(osd_req);
1757 }
1758
1759 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1760
1761 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1762                                                 u64 offset, u64 length,
1763                                                 enum obj_request_type type)
1764 {
1765         struct rbd_obj_request *obj_request;
1766         size_t size;
1767         char *name;
1768
1769         rbd_assert(obj_request_type_valid(type));
1770
1771         size = strlen(object_name) + 1;
1772         name = kmalloc(size, GFP_KERNEL);
1773         if (!name)
1774                 return NULL;
1775
1776         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1777         if (!obj_request) {
1778                 kfree(name);
1779                 return NULL;
1780         }
1781
1782         obj_request->object_name = memcpy(name, object_name, size);
1783         obj_request->offset = offset;
1784         obj_request->length = length;
1785         obj_request->flags = 0;
1786         obj_request->which = BAD_WHICH;
1787         obj_request->type = type;
1788         INIT_LIST_HEAD(&obj_request->links);
1789         init_completion(&obj_request->completion);
1790         kref_init(&obj_request->kref);
1791
1792         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1793                 offset, length, (int)type, obj_request);
1794
1795         return obj_request;
1796 }
1797
1798 static void rbd_obj_request_destroy(struct kref *kref)
1799 {
1800         struct rbd_obj_request *obj_request;
1801
1802         obj_request = container_of(kref, struct rbd_obj_request, kref);
1803
1804         dout("%s: obj %p\n", __func__, obj_request);
1805
1806         rbd_assert(obj_request->img_request == NULL);
1807         rbd_assert(obj_request->which == BAD_WHICH);
1808
1809         if (obj_request->osd_req)
1810                 rbd_osd_req_destroy(obj_request->osd_req);
1811
1812         rbd_assert(obj_request_type_valid(obj_request->type));
1813         switch (obj_request->type) {
1814         case OBJ_REQUEST_NODATA:
1815                 break;          /* Nothing to do */
1816         case OBJ_REQUEST_BIO:
1817                 if (obj_request->bio_list)
1818                         bio_chain_put(obj_request->bio_list);
1819                 break;
1820         case OBJ_REQUEST_PAGES:
1821                 if (obj_request->pages)
1822                         ceph_release_page_vector(obj_request->pages,
1823                                                 obj_request->page_count);
1824                 break;
1825         }
1826
1827         kfree(obj_request->object_name);
1828         obj_request->object_name = NULL;
1829         kmem_cache_free(rbd_obj_request_cache, obj_request);
1830 }
1831
1832 /*
1833  * Caller is responsible for filling in the list of object requests
1834  * that comprises the image request, and the Linux request pointer
1835  * (if there is one).
1836  */
1837 static struct rbd_img_request *rbd_img_request_create(
1838                                         struct rbd_device *rbd_dev,
1839                                         u64 offset, u64 length,
1840                                         bool write_request,
1841                                         bool child_request)
1842 {
1843         struct rbd_img_request *img_request;
1844
1845         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1846         if (!img_request)
1847                 return NULL;
1848
1849         if (write_request) {
1850                 down_read(&rbd_dev->header_rwsem);
1851                 ceph_get_snap_context(rbd_dev->header.snapc);
1852                 up_read(&rbd_dev->header_rwsem);
1853         }
1854
1855         img_request->rq = NULL;
1856         img_request->rbd_dev = rbd_dev;
1857         img_request->offset = offset;
1858         img_request->length = length;
1859         img_request->flags = 0;
1860         if (write_request) {
1861                 img_request_write_set(img_request);
1862                 img_request->snapc = rbd_dev->header.snapc;
1863         } else {
1864                 img_request->snap_id = rbd_dev->spec->snap_id;
1865         }
1866         if (child_request)
1867                 img_request_child_set(img_request);
1868         if (rbd_dev->parent_spec)
1869                 img_request_layered_set(img_request);
1870         spin_lock_init(&img_request->completion_lock);
1871         img_request->next_completion = 0;
1872         img_request->callback = NULL;
1873         img_request->result = 0;
1874         img_request->obj_request_count = 0;
1875         INIT_LIST_HEAD(&img_request->obj_requests);
1876         kref_init(&img_request->kref);
1877
1878         rbd_img_request_get(img_request);       /* Avoid a warning */
1879         rbd_img_request_put(img_request);       /* TEMPORARY */
1880
1881         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
1882                 write_request ? "write" : "read", offset, length,
1883                 img_request);
1884
1885         return img_request;
1886 }
1887
1888 static void rbd_img_request_destroy(struct kref *kref)
1889 {
1890         struct rbd_img_request *img_request;
1891         struct rbd_obj_request *obj_request;
1892         struct rbd_obj_request *next_obj_request;
1893
1894         img_request = container_of(kref, struct rbd_img_request, kref);
1895
1896         dout("%s: img %p\n", __func__, img_request);
1897
1898         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1899                 rbd_img_obj_request_del(img_request, obj_request);
1900         rbd_assert(img_request->obj_request_count == 0);
1901
1902         if (img_request_write_test(img_request))
1903                 ceph_put_snap_context(img_request->snapc);
1904
1905         if (img_request_child_test(img_request))
1906                 rbd_obj_request_put(img_request->obj_request);
1907
1908         kmem_cache_free(rbd_img_request_cache, img_request);
1909 }
1910
1911 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
1912 {
1913         struct rbd_img_request *img_request;
1914         unsigned int xferred;
1915         int result;
1916         bool more;
1917
1918         rbd_assert(obj_request_img_data_test(obj_request));
1919         img_request = obj_request->img_request;
1920
1921         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
1922         xferred = (unsigned int)obj_request->xferred;
1923         result = obj_request->result;
1924         if (result) {
1925                 struct rbd_device *rbd_dev = img_request->rbd_dev;
1926
1927                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
1928                         img_request_write_test(img_request) ? "write" : "read",
1929                         obj_request->length, obj_request->img_offset,
1930                         obj_request->offset);
1931                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
1932                         result, xferred);
1933                 if (!img_request->result)
1934                         img_request->result = result;
1935         }
1936
1937         /* Image object requests don't own their page array */
1938
1939         if (obj_request->type == OBJ_REQUEST_PAGES) {
1940                 obj_request->pages = NULL;
1941                 obj_request->page_count = 0;
1942         }
1943
1944         if (img_request_child_test(img_request)) {
1945                 rbd_assert(img_request->obj_request != NULL);
1946                 more = obj_request->which < img_request->obj_request_count - 1;
1947         } else {
1948                 rbd_assert(img_request->rq != NULL);
1949                 more = blk_end_request(img_request->rq, result, xferred);
1950         }
1951
1952         return more;
1953 }
1954
1955 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
1956 {
1957         struct rbd_img_request *img_request;
1958         u32 which = obj_request->which;
1959         bool more = true;
1960
1961         rbd_assert(obj_request_img_data_test(obj_request));
1962         img_request = obj_request->img_request;
1963
1964         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1965         rbd_assert(img_request != NULL);
1966         rbd_assert(img_request->obj_request_count > 0);
1967         rbd_assert(which != BAD_WHICH);
1968         rbd_assert(which < img_request->obj_request_count);
1969         rbd_assert(which >= img_request->next_completion);
1970
1971         spin_lock_irq(&img_request->completion_lock);
1972         if (which != img_request->next_completion)
1973                 goto out;
1974
1975         for_each_obj_request_from(img_request, obj_request) {
1976                 rbd_assert(more);
1977                 rbd_assert(which < img_request->obj_request_count);
1978
1979                 if (!obj_request_done_test(obj_request))
1980                         break;
1981                 more = rbd_img_obj_end_request(obj_request);
1982                 which++;
1983         }
1984
1985         rbd_assert(more ^ (which == img_request->obj_request_count));
1986         img_request->next_completion = which;
1987 out:
1988         spin_unlock_irq(&img_request->completion_lock);
1989
1990         if (!more)
1991                 rbd_img_request_complete(img_request);
1992 }
1993
1994 /*
1995  * Split up an image request into one or more object requests, each
1996  * to a different object.  The "type" parameter indicates whether
1997  * "data_desc" is the pointer to the head of a list of bio
1998  * structures, or the base of a page array.  In either case this
1999  * function assumes data_desc describes memory sufficient to hold
2000  * all data described by the image request.
2001  */
2002 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2003                                         enum obj_request_type type,
2004                                         void *data_desc)
2005 {
2006         struct rbd_device *rbd_dev = img_request->rbd_dev;
2007         struct rbd_obj_request *obj_request = NULL;
2008         struct rbd_obj_request *next_obj_request;
2009         bool write_request = img_request_write_test(img_request);
2010         struct bio *bio_list;
2011         unsigned int bio_offset = 0;
2012         struct page **pages;
2013         u64 img_offset;
2014         u64 resid;
2015         u16 opcode;
2016
2017         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2018                 (int)type, data_desc);
2019
2020         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2021         img_offset = img_request->offset;
2022         resid = img_request->length;
2023         rbd_assert(resid > 0);
2024
2025         if (type == OBJ_REQUEST_BIO) {
2026                 bio_list = data_desc;
2027                 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2028         } else {
2029                 rbd_assert(type == OBJ_REQUEST_PAGES);
2030                 pages = data_desc;
2031         }
2032
2033         while (resid) {
2034                 struct ceph_osd_request *osd_req;
2035                 const char *object_name;
2036                 u64 offset;
2037                 u64 length;
2038
2039                 object_name = rbd_segment_name(rbd_dev, img_offset);
2040                 if (!object_name)
2041                         goto out_unwind;
2042                 offset = rbd_segment_offset(rbd_dev, img_offset);
2043                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2044                 obj_request = rbd_obj_request_create(object_name,
2045                                                 offset, length, type);
2046                 /* object request has its own copy of the object name */
2047                 rbd_segment_name_free(object_name);
2048                 if (!obj_request)
2049                         goto out_unwind;
2050
2051                 if (type == OBJ_REQUEST_BIO) {
2052                         unsigned int clone_size;
2053
2054                         rbd_assert(length <= (u64)UINT_MAX);
2055                         clone_size = (unsigned int)length;
2056                         obj_request->bio_list =
2057                                         bio_chain_clone_range(&bio_list,
2058                                                                 &bio_offset,
2059                                                                 clone_size,
2060                                                                 GFP_ATOMIC);
2061                         if (!obj_request->bio_list)
2062                                 goto out_partial;
2063                 } else {
2064                         unsigned int page_count;
2065
2066                         obj_request->pages = pages;
2067                         page_count = (u32)calc_pages_for(offset, length);
2068                         obj_request->page_count = page_count;
2069                         if ((offset + length) & ~PAGE_MASK)
2070                                 page_count--;   /* more on last page */
2071                         pages += page_count;
2072                 }
2073
2074                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2075                                                 obj_request);
2076                 if (!osd_req)
2077                         goto out_partial;
2078                 obj_request->osd_req = osd_req;
2079                 obj_request->callback = rbd_img_obj_callback;
2080
2081                 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2082                                                 0, 0);
2083                 if (type == OBJ_REQUEST_BIO)
2084                         osd_req_op_extent_osd_data_bio(osd_req, 0,
2085                                         obj_request->bio_list, length);
2086                 else
2087                         osd_req_op_extent_osd_data_pages(osd_req, 0,
2088                                         obj_request->pages, length,
2089                                         offset & ~PAGE_MASK, false, false);
2090
2091                 if (write_request)
2092                         rbd_osd_req_format_write(obj_request);
2093                 else
2094                         rbd_osd_req_format_read(obj_request);
2095
2096                 obj_request->img_offset = img_offset;
2097                 rbd_img_obj_request_add(img_request, obj_request);
2098
2099                 img_offset += length;
2100                 resid -= length;
2101         }
2102
2103         return 0;
2104
2105 out_partial:
2106         rbd_obj_request_put(obj_request);
2107 out_unwind:
2108         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2109                 rbd_obj_request_put(obj_request);
2110
2111         return -ENOMEM;
2112 }
2113
2114 static void
2115 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2116 {
2117         struct rbd_img_request *img_request;
2118         struct rbd_device *rbd_dev;
2119         u64 length;
2120         u32 page_count;
2121
2122         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2123         rbd_assert(obj_request_img_data_test(obj_request));
2124         img_request = obj_request->img_request;
2125         rbd_assert(img_request);
2126
2127         rbd_dev = img_request->rbd_dev;
2128         rbd_assert(rbd_dev);
2129         length = (u64)1 << rbd_dev->header.obj_order;
2130         page_count = (u32)calc_pages_for(0, length);
2131
2132         rbd_assert(obj_request->copyup_pages);
2133         ceph_release_page_vector(obj_request->copyup_pages, page_count);
2134         obj_request->copyup_pages = NULL;
2135
2136         /*
2137          * We want the transfer count to reflect the size of the
2138          * original write request.  There is no such thing as a
2139          * successful short write, so if the request was successful
2140          * we can just set it to the originally-requested length.
2141          */
2142         if (!obj_request->result)
2143                 obj_request->xferred = obj_request->length;
2144
2145         /* Finish up with the normal image object callback */
2146
2147         rbd_img_obj_callback(obj_request);
2148 }
2149
2150 static void
2151 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2152 {
2153         struct rbd_obj_request *orig_request;
2154         struct ceph_osd_request *osd_req;
2155         struct ceph_osd_client *osdc;
2156         struct rbd_device *rbd_dev;
2157         struct page **pages;
2158         int result;
2159         u64 obj_size;
2160         u64 xferred;
2161
2162         rbd_assert(img_request_child_test(img_request));
2163
2164         /* First get what we need from the image request */
2165
2166         pages = img_request->copyup_pages;
2167         rbd_assert(pages != NULL);
2168         img_request->copyup_pages = NULL;
2169
2170         orig_request = img_request->obj_request;
2171         rbd_assert(orig_request != NULL);
2172         rbd_assert(orig_request->type == OBJ_REQUEST_BIO);
2173         result = img_request->result;
2174         obj_size = img_request->length;
2175         xferred = img_request->xferred;
2176
2177         rbd_dev = img_request->rbd_dev;
2178         rbd_assert(rbd_dev);
2179         rbd_assert(obj_size == (u64)1 << rbd_dev->header.obj_order);
2180
2181         rbd_img_request_put(img_request);
2182
2183         if (result)
2184                 goto out_err;
2185
2186         /* Allocate the new copyup osd request for the original request */
2187
2188         result = -ENOMEM;
2189         rbd_assert(!orig_request->osd_req);
2190         osd_req = rbd_osd_req_create_copyup(orig_request);
2191         if (!osd_req)
2192                 goto out_err;
2193         orig_request->osd_req = osd_req;
2194         orig_request->copyup_pages = pages;
2195
2196         /* Initialize the copyup op */
2197
2198         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2199         osd_req_op_cls_request_data_pages(osd_req, 0, pages, obj_size, 0,
2200                                                 false, false);
2201
2202         /* Then the original write request op */
2203
2204         osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2205                                         orig_request->offset,
2206                                         orig_request->length, 0, 0);
2207         osd_req_op_extent_osd_data_bio(osd_req, 1, orig_request->bio_list,
2208                                         orig_request->length);
2209
2210         rbd_osd_req_format_write(orig_request);
2211
2212         /* All set, send it off. */
2213
2214         orig_request->callback = rbd_img_obj_copyup_callback;
2215         osdc = &rbd_dev->rbd_client->client->osdc;
2216         result = rbd_obj_request_submit(osdc, orig_request);
2217         if (!result)
2218                 return;
2219 out_err:
2220         /* Record the error code and complete the request */
2221
2222         orig_request->result = result;
2223         orig_request->xferred = 0;
2224         obj_request_done_set(orig_request);
2225         rbd_obj_request_complete(orig_request);
2226 }
2227
2228 /*
2229  * Read from the parent image the range of data that covers the
2230  * entire target of the given object request.  This is used for
2231  * satisfying a layered image write request when the target of an
2232  * object request from the image request does not exist.
2233  *
2234  * A page array big enough to hold the returned data is allocated
2235  * and supplied to rbd_img_request_fill() as the "data descriptor."
2236  * When the read completes, this page array will be transferred to
2237  * the original object request for the copyup operation.
2238  *
2239  * If an error occurs, record it as the result of the original
2240  * object request and mark it done so it gets completed.
2241  */
2242 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2243 {
2244         struct rbd_img_request *img_request = NULL;
2245         struct rbd_img_request *parent_request = NULL;
2246         struct rbd_device *rbd_dev;
2247         u64 img_offset;
2248         u64 length;
2249         struct page **pages = NULL;
2250         u32 page_count;
2251         int result;
2252
2253         rbd_assert(obj_request_img_data_test(obj_request));
2254         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2255
2256         img_request = obj_request->img_request;
2257         rbd_assert(img_request != NULL);
2258         rbd_dev = img_request->rbd_dev;
2259         rbd_assert(rbd_dev->parent != NULL);
2260
2261         /*
2262          * First things first.  The original osd request is of no
2263          * use to use any more, we'll need a new one that can hold
2264          * the two ops in a copyup request.  We'll get that later,
2265          * but for now we can release the old one.
2266          */
2267         rbd_osd_req_destroy(obj_request->osd_req);
2268         obj_request->osd_req = NULL;
2269
2270         /*
2271          * Determine the byte range covered by the object in the
2272          * child image to which the original request was to be sent.
2273          */
2274         img_offset = obj_request->img_offset - obj_request->offset;
2275         length = (u64)1 << rbd_dev->header.obj_order;
2276
2277         /*
2278          * There is no defined parent data beyond the parent
2279          * overlap, so limit what we read at that boundary if
2280          * necessary.
2281          */
2282         if (img_offset + length > rbd_dev->parent_overlap) {
2283                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2284                 length = rbd_dev->parent_overlap - img_offset;
2285         }
2286
2287         /*
2288          * Allocate a page array big enough to receive the data read
2289          * from the parent.
2290          */
2291         page_count = (u32)calc_pages_for(0, length);
2292         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2293         if (IS_ERR(pages)) {
2294                 result = PTR_ERR(pages);
2295                 pages = NULL;
2296                 goto out_err;
2297         }
2298
2299         result = -ENOMEM;
2300         parent_request = rbd_img_request_create(rbd_dev->parent,
2301                                                 img_offset, length,
2302                                                 false, true);
2303         if (!parent_request)
2304                 goto out_err;
2305         rbd_obj_request_get(obj_request);
2306         parent_request->obj_request = obj_request;
2307
2308         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2309         if (result)
2310                 goto out_err;
2311         parent_request->copyup_pages = pages;
2312
2313         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2314         result = rbd_img_request_submit(parent_request);
2315         if (!result)
2316                 return 0;
2317
2318         parent_request->copyup_pages = NULL;
2319         parent_request->obj_request = NULL;
2320         rbd_obj_request_put(obj_request);
2321 out_err:
2322         if (pages)
2323                 ceph_release_page_vector(pages, page_count);
2324         if (parent_request)
2325                 rbd_img_request_put(parent_request);
2326         obj_request->result = result;
2327         obj_request->xferred = 0;
2328         obj_request_done_set(obj_request);
2329
2330         return result;
2331 }
2332
2333 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2334 {
2335         struct rbd_obj_request *orig_request;
2336         int result;
2337
2338         rbd_assert(!obj_request_img_data_test(obj_request));
2339
2340         /*
2341          * All we need from the object request is the original
2342          * request and the result of the STAT op.  Grab those, then
2343          * we're done with the request.
2344          */
2345         orig_request = obj_request->obj_request;
2346         obj_request->obj_request = NULL;
2347         rbd_assert(orig_request);
2348         rbd_assert(orig_request->img_request);
2349
2350         result = obj_request->result;
2351         obj_request->result = 0;
2352
2353         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2354                 obj_request, orig_request, result,
2355                 obj_request->xferred, obj_request->length);
2356         rbd_obj_request_put(obj_request);
2357
2358         rbd_assert(orig_request);
2359         rbd_assert(orig_request->img_request);
2360
2361         /*
2362          * Our only purpose here is to determine whether the object
2363          * exists, and we don't want to treat the non-existence as
2364          * an error.  If something else comes back, transfer the
2365          * error to the original request and complete it now.
2366          */
2367         if (!result) {
2368                 obj_request_existence_set(orig_request, true);
2369         } else if (result == -ENOENT) {
2370                 obj_request_existence_set(orig_request, false);
2371         } else if (result) {
2372                 orig_request->result = result;
2373                 goto out;
2374         }
2375
2376         /*
2377          * Resubmit the original request now that we have recorded
2378          * whether the target object exists.
2379          */
2380         orig_request->result = rbd_img_obj_request_submit(orig_request);
2381 out:
2382         if (orig_request->result)
2383                 rbd_obj_request_complete(orig_request);
2384         rbd_obj_request_put(orig_request);
2385 }
2386
2387 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2388 {
2389         struct rbd_obj_request *stat_request;
2390         struct rbd_device *rbd_dev;
2391         struct ceph_osd_client *osdc;
2392         struct page **pages = NULL;
2393         u32 page_count;
2394         size_t size;
2395         int ret;
2396
2397         /*
2398          * The response data for a STAT call consists of:
2399          *     le64 length;
2400          *     struct {
2401          *         le32 tv_sec;
2402          *         le32 tv_nsec;
2403          *     } mtime;
2404          */
2405         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2406         page_count = (u32)calc_pages_for(0, size);
2407         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2408         if (IS_ERR(pages))
2409                 return PTR_ERR(pages);
2410
2411         ret = -ENOMEM;
2412         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2413                                                         OBJ_REQUEST_PAGES);
2414         if (!stat_request)
2415                 goto out;
2416
2417         rbd_obj_request_get(obj_request);
2418         stat_request->obj_request = obj_request;
2419         stat_request->pages = pages;
2420         stat_request->page_count = page_count;
2421
2422         rbd_assert(obj_request->img_request);
2423         rbd_dev = obj_request->img_request->rbd_dev;
2424         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2425                                                 stat_request);
2426         if (!stat_request->osd_req)
2427                 goto out;
2428         stat_request->callback = rbd_img_obj_exists_callback;
2429
2430         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2431         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2432                                         false, false);
2433         rbd_osd_req_format_read(stat_request);
2434
2435         osdc = &rbd_dev->rbd_client->client->osdc;
2436         ret = rbd_obj_request_submit(osdc, stat_request);
2437 out:
2438         if (ret)
2439                 rbd_obj_request_put(obj_request);
2440
2441         return ret;
2442 }
2443
2444 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2445 {
2446         struct rbd_img_request *img_request;
2447         struct rbd_device *rbd_dev;
2448         bool known;
2449
2450         rbd_assert(obj_request_img_data_test(obj_request));
2451
2452         img_request = obj_request->img_request;
2453         rbd_assert(img_request);
2454         rbd_dev = img_request->rbd_dev;
2455
2456         /*
2457          * Only writes to layered images need special handling.
2458          * Reads and non-layered writes are simple object requests.
2459          * Layered writes that start beyond the end of the overlap
2460          * with the parent have no parent data, so they too are
2461          * simple object requests.  Finally, if the target object is
2462          * known to already exist, its parent data has already been
2463          * copied, so a write to the object can also be handled as a
2464          * simple object request.
2465          */
2466         if (!img_request_write_test(img_request) ||
2467                 !img_request_layered_test(img_request) ||
2468                 rbd_dev->parent_overlap <= obj_request->img_offset ||
2469                 ((known = obj_request_known_test(obj_request)) &&
2470                         obj_request_exists_test(obj_request))) {
2471
2472                 struct rbd_device *rbd_dev;
2473                 struct ceph_osd_client *osdc;
2474
2475                 rbd_dev = obj_request->img_request->rbd_dev;
2476                 osdc = &rbd_dev->rbd_client->client->osdc;
2477
2478                 return rbd_obj_request_submit(osdc, obj_request);
2479         }
2480
2481         /*
2482          * It's a layered write.  The target object might exist but
2483          * we may not know that yet.  If we know it doesn't exist,
2484          * start by reading the data for the full target object from
2485          * the parent so we can use it for a copyup to the target.
2486          */
2487         if (known)
2488                 return rbd_img_obj_parent_read_full(obj_request);
2489
2490         /* We don't know whether the target exists.  Go find out. */
2491
2492         return rbd_img_obj_exists_submit(obj_request);
2493 }
2494
2495 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2496 {
2497         struct rbd_obj_request *obj_request;
2498         struct rbd_obj_request *next_obj_request;
2499
2500         dout("%s: img %p\n", __func__, img_request);
2501         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2502                 int ret;
2503
2504                 ret = rbd_img_obj_request_submit(obj_request);
2505                 if (ret)
2506                         return ret;
2507         }
2508
2509         return 0;
2510 }
2511
2512 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2513 {
2514         struct rbd_obj_request *obj_request;
2515         struct rbd_device *rbd_dev;
2516         u64 obj_end;
2517
2518         rbd_assert(img_request_child_test(img_request));
2519
2520         obj_request = img_request->obj_request;
2521         rbd_assert(obj_request);
2522         rbd_assert(obj_request->img_request);
2523
2524         obj_request->result = img_request->result;
2525         if (obj_request->result)
2526                 goto out;
2527
2528         /*
2529          * We need to zero anything beyond the parent overlap
2530          * boundary.  Since rbd_img_obj_request_read_callback()
2531          * will zero anything beyond the end of a short read, an
2532          * easy way to do this is to pretend the data from the
2533          * parent came up short--ending at the overlap boundary.
2534          */
2535         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2536         obj_end = obj_request->img_offset + obj_request->length;
2537         rbd_dev = obj_request->img_request->rbd_dev;
2538         if (obj_end > rbd_dev->parent_overlap) {
2539                 u64 xferred = 0;
2540
2541                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2542                         xferred = rbd_dev->parent_overlap -
2543                                         obj_request->img_offset;
2544
2545                 obj_request->xferred = min(img_request->xferred, xferred);
2546         } else {
2547                 obj_request->xferred = img_request->xferred;
2548         }
2549 out:
2550         rbd_img_request_put(img_request);
2551         rbd_img_obj_request_read_callback(obj_request);
2552         rbd_obj_request_complete(obj_request);
2553 }
2554
2555 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2556 {
2557         struct rbd_device *rbd_dev;
2558         struct rbd_img_request *img_request;
2559         int result;
2560
2561         rbd_assert(obj_request_img_data_test(obj_request));
2562         rbd_assert(obj_request->img_request != NULL);
2563         rbd_assert(obj_request->result == (s32) -ENOENT);
2564         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2565
2566         rbd_dev = obj_request->img_request->rbd_dev;
2567         rbd_assert(rbd_dev->parent != NULL);
2568         /* rbd_read_finish(obj_request, obj_request->length); */
2569         img_request = rbd_img_request_create(rbd_dev->parent,
2570                                                 obj_request->img_offset,
2571                                                 obj_request->length,
2572                                                 false, true);
2573         result = -ENOMEM;
2574         if (!img_request)
2575                 goto out_err;
2576
2577         rbd_obj_request_get(obj_request);
2578         img_request->obj_request = obj_request;
2579
2580         result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2581                                         obj_request->bio_list);
2582         if (result)
2583                 goto out_err;
2584
2585         img_request->callback = rbd_img_parent_read_callback;
2586         result = rbd_img_request_submit(img_request);
2587         if (result)
2588                 goto out_err;
2589
2590         return;
2591 out_err:
2592         if (img_request)
2593                 rbd_img_request_put(img_request);
2594         obj_request->result = result;
2595         obj_request->xferred = 0;
2596         obj_request_done_set(obj_request);
2597 }
2598
2599 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev, u64 notify_id)
2600 {
2601         struct rbd_obj_request *obj_request;
2602         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2603         int ret;
2604
2605         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2606                                                         OBJ_REQUEST_NODATA);
2607         if (!obj_request)
2608                 return -ENOMEM;
2609
2610         ret = -ENOMEM;
2611         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2612         if (!obj_request->osd_req)
2613                 goto out;
2614         obj_request->callback = rbd_obj_request_put;
2615
2616         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2617                                         notify_id, 0, 0);
2618         rbd_osd_req_format_read(obj_request);
2619
2620         ret = rbd_obj_request_submit(osdc, obj_request);
2621 out:
2622         if (ret)
2623                 rbd_obj_request_put(obj_request);
2624
2625         return ret;
2626 }
2627
2628 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2629 {
2630         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2631
2632         if (!rbd_dev)
2633                 return;
2634
2635         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2636                 rbd_dev->header_name, (unsigned long long)notify_id,
2637                 (unsigned int)opcode);
2638         (void)rbd_dev_refresh(rbd_dev);
2639
2640         rbd_obj_notify_ack(rbd_dev, notify_id);
2641 }
2642
2643 /*
2644  * Request sync osd watch/unwatch.  The value of "start" determines
2645  * whether a watch request is being initiated or torn down.
2646  */
2647 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, int start)
2648 {
2649         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2650         struct rbd_obj_request *obj_request;
2651         int ret;
2652
2653         rbd_assert(start ^ !!rbd_dev->watch_event);
2654         rbd_assert(start ^ !!rbd_dev->watch_request);
2655
2656         if (start) {
2657                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2658                                                 &rbd_dev->watch_event);
2659                 if (ret < 0)
2660                         return ret;
2661                 rbd_assert(rbd_dev->watch_event != NULL);
2662         }
2663
2664         ret = -ENOMEM;
2665         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2666                                                         OBJ_REQUEST_NODATA);
2667         if (!obj_request)
2668                 goto out_cancel;
2669
2670         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2671         if (!obj_request->osd_req)
2672                 goto out_cancel;
2673
2674         if (start)
2675                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2676         else
2677                 ceph_osdc_unregister_linger_request(osdc,
2678                                         rbd_dev->watch_request->osd_req);
2679
2680         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2681                                 rbd_dev->watch_event->cookie, 0, start);
2682         rbd_osd_req_format_write(obj_request);
2683
2684         ret = rbd_obj_request_submit(osdc, obj_request);
2685         if (ret)
2686                 goto out_cancel;
2687         ret = rbd_obj_request_wait(obj_request);
2688         if (ret)
2689                 goto out_cancel;
2690         ret = obj_request->result;
2691         if (ret)
2692                 goto out_cancel;
2693
2694         /*
2695          * A watch request is set to linger, so the underlying osd
2696          * request won't go away until we unregister it.  We retain
2697          * a pointer to the object request during that time (in
2698          * rbd_dev->watch_request), so we'll keep a reference to
2699          * it.  We'll drop that reference (below) after we've
2700          * unregistered it.
2701          */
2702         if (start) {
2703                 rbd_dev->watch_request = obj_request;
2704
2705                 return 0;
2706         }
2707
2708         /* We have successfully torn down the watch request */
2709
2710         rbd_obj_request_put(rbd_dev->watch_request);
2711         rbd_dev->watch_request = NULL;
2712 out_cancel:
2713         /* Cancel the event if we're tearing down, or on error */
2714         ceph_osdc_cancel_event(rbd_dev->watch_event);
2715         rbd_dev->watch_event = NULL;
2716         if (obj_request)
2717                 rbd_obj_request_put(obj_request);
2718
2719         return ret;
2720 }
2721
2722 /*
2723  * Synchronous osd object method call.  Returns the number of bytes
2724  * returned in the outbound buffer, or a negative error code.
2725  */
2726 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2727                              const char *object_name,
2728                              const char *class_name,
2729                              const char *method_name,
2730                              const void *outbound,
2731                              size_t outbound_size,
2732                              void *inbound,
2733                              size_t inbound_size)
2734 {
2735         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2736         struct rbd_obj_request *obj_request;
2737         struct page **pages;
2738         u32 page_count;
2739         int ret;
2740
2741         /*
2742          * Method calls are ultimately read operations.  The result
2743          * should placed into the inbound buffer provided.  They
2744          * also supply outbound data--parameters for the object
2745          * method.  Currently if this is present it will be a
2746          * snapshot id.
2747          */
2748         page_count = (u32)calc_pages_for(0, inbound_size);
2749         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2750         if (IS_ERR(pages))
2751                 return PTR_ERR(pages);
2752
2753         ret = -ENOMEM;
2754         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2755                                                         OBJ_REQUEST_PAGES);
2756         if (!obj_request)
2757                 goto out;
2758
2759         obj_request->pages = pages;
2760         obj_request->page_count = page_count;
2761
2762         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2763         if (!obj_request->osd_req)
2764                 goto out;
2765
2766         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2767                                         class_name, method_name);
2768         if (outbound_size) {
2769                 struct ceph_pagelist *pagelist;
2770
2771                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2772                 if (!pagelist)
2773                         goto out;
2774
2775                 ceph_pagelist_init(pagelist);
2776                 ceph_pagelist_append(pagelist, outbound, outbound_size);
2777                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2778                                                 pagelist);
2779         }
2780         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
2781                                         obj_request->pages, inbound_size,
2782                                         0, false, false);
2783         rbd_osd_req_format_read(obj_request);
2784
2785         ret = rbd_obj_request_submit(osdc, obj_request);
2786         if (ret)
2787                 goto out;
2788         ret = rbd_obj_request_wait(obj_request);
2789         if (ret)
2790                 goto out;
2791
2792         ret = obj_request->result;
2793         if (ret < 0)
2794                 goto out;
2795
2796         rbd_assert(obj_request->xferred < (u64)INT_MAX);
2797         ret = (int)obj_request->xferred;
2798         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
2799 out:
2800         if (obj_request)
2801                 rbd_obj_request_put(obj_request);
2802         else
2803                 ceph_release_page_vector(pages, page_count);
2804
2805         return ret;
2806 }
2807
2808 static void rbd_request_fn(struct request_queue *q)
2809                 __releases(q->queue_lock) __acquires(q->queue_lock)
2810 {
2811         struct rbd_device *rbd_dev = q->queuedata;
2812         bool read_only = rbd_dev->mapping.read_only;
2813         struct request *rq;
2814         int result;
2815
2816         while ((rq = blk_fetch_request(q))) {
2817                 bool write_request = rq_data_dir(rq) == WRITE;
2818                 struct rbd_img_request *img_request;
2819                 u64 offset;
2820                 u64 length;
2821
2822                 /* Ignore any non-FS requests that filter through. */
2823
2824                 if (rq->cmd_type != REQ_TYPE_FS) {
2825                         dout("%s: non-fs request type %d\n", __func__,
2826                                 (int) rq->cmd_type);
2827                         __blk_end_request_all(rq, 0);
2828                         continue;
2829                 }
2830
2831                 /* Ignore/skip any zero-length requests */
2832
2833                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
2834                 length = (u64) blk_rq_bytes(rq);
2835
2836                 if (!length) {
2837                         dout("%s: zero-length request\n", __func__);
2838                         __blk_end_request_all(rq, 0);
2839                         continue;
2840                 }
2841
2842                 spin_unlock_irq(q->queue_lock);
2843
2844                 /* Disallow writes to a read-only device */
2845
2846                 if (write_request) {
2847                         result = -EROFS;
2848                         if (read_only)
2849                                 goto end_request;
2850                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
2851                 }
2852
2853                 /*
2854                  * Quit early if the mapped snapshot no longer
2855                  * exists.  It's still possible the snapshot will
2856                  * have disappeared by the time our request arrives
2857                  * at the osd, but there's no sense in sending it if
2858                  * we already know.
2859                  */
2860                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
2861                         dout("request for non-existent snapshot");
2862                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
2863                         result = -ENXIO;
2864                         goto end_request;
2865                 }
2866
2867                 result = -EINVAL;
2868                 if (offset && length > U64_MAX - offset + 1) {
2869                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
2870                                 offset, length);
2871                         goto end_request;       /* Shouldn't happen */
2872                 }
2873
2874                 result = -ENOMEM;
2875                 img_request = rbd_img_request_create(rbd_dev, offset, length,
2876                                                         write_request, false);
2877                 if (!img_request)
2878                         goto end_request;
2879
2880                 img_request->rq = rq;
2881
2882                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2883                                                 rq->bio);
2884                 if (!result)
2885                         result = rbd_img_request_submit(img_request);
2886                 if (result)
2887                         rbd_img_request_put(img_request);
2888 end_request:
2889                 spin_lock_irq(q->queue_lock);
2890                 if (result < 0) {
2891                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
2892                                 write_request ? "write" : "read",
2893                                 length, offset, result);
2894
2895                         __blk_end_request_all(rq, result);
2896                 }
2897         }
2898 }
2899
2900 /*
2901  * a queue callback. Makes sure that we don't create a bio that spans across
2902  * multiple osd objects. One exception would be with a single page bios,
2903  * which we handle later at bio_chain_clone_range()
2904  */
2905 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2906                           struct bio_vec *bvec)
2907 {
2908         struct rbd_device *rbd_dev = q->queuedata;
2909         sector_t sector_offset;
2910         sector_t sectors_per_obj;
2911         sector_t obj_sector_offset;
2912         int ret;
2913
2914         /*
2915          * Find how far into its rbd object the partition-relative
2916          * bio start sector is to offset relative to the enclosing
2917          * device.
2918          */
2919         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
2920         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
2921         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
2922
2923         /*
2924          * Compute the number of bytes from that offset to the end
2925          * of the object.  Account for what's already used by the bio.
2926          */
2927         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
2928         if (ret > bmd->bi_size)
2929                 ret -= bmd->bi_size;
2930         else
2931                 ret = 0;
2932
2933         /*
2934          * Don't send back more than was asked for.  And if the bio
2935          * was empty, let the whole thing through because:  "Note
2936          * that a block device *must* allow a single page to be
2937          * added to an empty bio."
2938          */
2939         rbd_assert(bvec->bv_len <= PAGE_SIZE);
2940         if (ret > (int) bvec->bv_len || !bmd->bi_size)
2941                 ret = (int) bvec->bv_len;
2942
2943         return ret;
2944 }
2945
2946 static void rbd_free_disk(struct rbd_device *rbd_dev)
2947 {
2948         struct gendisk *disk = rbd_dev->disk;
2949
2950         if (!disk)
2951                 return;
2952
2953         rbd_dev->disk = NULL;
2954         if (disk->flags & GENHD_FL_UP) {
2955                 del_gendisk(disk);
2956                 if (disk->queue)
2957                         blk_cleanup_queue(disk->queue);
2958         }
2959         put_disk(disk);
2960 }
2961
2962 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
2963                                 const char *object_name,
2964                                 u64 offset, u64 length, void *buf)
2965
2966 {
2967         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2968         struct rbd_obj_request *obj_request;
2969         struct page **pages = NULL;
2970         u32 page_count;
2971         size_t size;
2972         int ret;
2973
2974         page_count = (u32) calc_pages_for(offset, length);
2975         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2976         if (IS_ERR(pages))
2977                 ret = PTR_ERR(pages);
2978
2979         ret = -ENOMEM;
2980         obj_request = rbd_obj_request_create(object_name, offset, length,
2981                                                         OBJ_REQUEST_PAGES);
2982         if (!obj_request)
2983                 goto out;
2984
2985         obj_request->pages = pages;
2986         obj_request->page_count = page_count;
2987
2988         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2989         if (!obj_request->osd_req)
2990                 goto out;
2991
2992         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
2993                                         offset, length, 0, 0);
2994         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
2995                                         obj_request->pages,
2996                                         obj_request->length,
2997                                         obj_request->offset & ~PAGE_MASK,
2998                                         false, false);
2999         rbd_osd_req_format_read(obj_request);
3000
3001         ret = rbd_obj_request_submit(osdc, obj_request);
3002         if (ret)
3003                 goto out;
3004         ret = rbd_obj_request_wait(obj_request);
3005         if (ret)
3006                 goto out;
3007
3008         ret = obj_request->result;
3009         if (ret < 0)
3010                 goto out;
3011
3012         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3013         size = (size_t) obj_request->xferred;
3014         ceph_copy_from_page_vector(pages, buf, 0, size);
3015         rbd_assert(size <= (size_t)INT_MAX);
3016         ret = (int)size;
3017 out:
3018         if (obj_request)
3019                 rbd_obj_request_put(obj_request);
3020         else
3021                 ceph_release_page_vector(pages, page_count);
3022
3023         return ret;
3024 }
3025
3026 /*
3027  * Read the complete header for the given rbd device.
3028  *
3029  * Returns a pointer to a dynamically-allocated buffer containing
3030  * the complete and validated header.  Caller can pass the address
3031  * of a variable that will be filled in with the version of the
3032  * header object at the time it was read.
3033  *
3034  * Returns a pointer-coded errno if a failure occurs.
3035  */
3036 static struct rbd_image_header_ondisk *
3037 rbd_dev_v1_header_read(struct rbd_device *rbd_dev)
3038 {
3039         struct rbd_image_header_ondisk *ondisk = NULL;
3040         u32 snap_count = 0;
3041         u64 names_size = 0;
3042         u32 want_count;
3043         int ret;
3044
3045         /*
3046          * The complete header will include an array of its 64-bit
3047          * snapshot ids, followed by the names of those snapshots as
3048          * a contiguous block of NUL-terminated strings.  Note that
3049          * the number of snapshots could change by the time we read
3050          * it in, in which case we re-read it.
3051          */
3052         do {
3053                 size_t size;
3054
3055                 kfree(ondisk);
3056
3057                 size = sizeof (*ondisk);
3058                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3059                 size += names_size;
3060                 ondisk = kmalloc(size, GFP_KERNEL);
3061                 if (!ondisk)
3062                         return ERR_PTR(-ENOMEM);
3063
3064                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3065                                        0, size, ondisk);
3066                 if (ret < 0)
3067                         goto out_err;
3068                 if ((size_t)ret < size) {
3069                         ret = -ENXIO;
3070                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3071                                 size, ret);
3072                         goto out_err;
3073                 }
3074                 if (!rbd_dev_ondisk_valid(ondisk)) {
3075                         ret = -ENXIO;
3076                         rbd_warn(rbd_dev, "invalid header");
3077                         goto out_err;
3078                 }
3079
3080                 names_size = le64_to_cpu(ondisk->snap_names_len);
3081                 want_count = snap_count;
3082                 snap_count = le32_to_cpu(ondisk->snap_count);
3083         } while (snap_count != want_count);
3084
3085         return ondisk;
3086
3087 out_err:
3088         kfree(ondisk);
3089
3090         return ERR_PTR(ret);
3091 }
3092
3093 /*
3094  * reload the ondisk the header
3095  */
3096 static int rbd_read_header(struct rbd_device *rbd_dev,
3097                            struct rbd_image_header *header)
3098 {
3099         struct rbd_image_header_ondisk *ondisk;
3100         int ret;
3101
3102         ondisk = rbd_dev_v1_header_read(rbd_dev);
3103         if (IS_ERR(ondisk))
3104                 return PTR_ERR(ondisk);
3105         ret = rbd_header_from_disk(header, ondisk);
3106         kfree(ondisk);
3107
3108         return ret;
3109 }
3110
3111 static void rbd_update_mapping_size(struct rbd_device *rbd_dev)
3112 {
3113         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
3114                 return;
3115
3116         if (rbd_dev->mapping.size != rbd_dev->header.image_size) {
3117                 sector_t size;
3118
3119                 rbd_dev->mapping.size = rbd_dev->header.image_size;
3120                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3121                 dout("setting size to %llu sectors", (unsigned long long)size);
3122                 set_capacity(rbd_dev->disk, size);
3123         }
3124 }
3125
3126 /*
3127  * only read the first part of the ondisk header, without the snaps info
3128  */
3129 static int rbd_dev_v1_refresh(struct rbd_device *rbd_dev)
3130 {
3131         int ret;
3132         struct rbd_image_header h;
3133
3134         ret = rbd_read_header(rbd_dev, &h);
3135         if (ret < 0)
3136                 return ret;
3137
3138         down_write(&rbd_dev->header_rwsem);
3139
3140         /* Update image size, and check for resize of mapped image */
3141         rbd_dev->header.image_size = h.image_size;
3142         rbd_update_mapping_size(rbd_dev);
3143
3144         /* rbd_dev->header.object_prefix shouldn't change */
3145         kfree(rbd_dev->header.snap_sizes);
3146         kfree(rbd_dev->header.snap_names);
3147         /* osd requests may still refer to snapc */
3148         ceph_put_snap_context(rbd_dev->header.snapc);
3149
3150         rbd_dev->header.image_size = h.image_size;
3151         rbd_dev->header.snapc = h.snapc;
3152         rbd_dev->header.snap_names = h.snap_names;
3153         rbd_dev->header.snap_sizes = h.snap_sizes;
3154         /* Free the extra copy of the object prefix */
3155         if (strcmp(rbd_dev->header.object_prefix, h.object_prefix))
3156                 rbd_warn(rbd_dev, "object prefix changed (ignoring)");
3157         kfree(h.object_prefix);
3158
3159         up_write(&rbd_dev->header_rwsem);
3160
3161         return ret;
3162 }
3163
3164 /*
3165  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3166  * has disappeared from the (just updated) snapshot context.
3167  */
3168 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3169 {
3170         u64 snap_id;
3171
3172         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3173                 return;
3174
3175         snap_id = rbd_dev->spec->snap_id;
3176         if (snap_id == CEPH_NOSNAP)
3177                 return;
3178
3179         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3180                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3181 }
3182
3183 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3184 {
3185         u64 image_size;
3186         int ret;
3187
3188         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3189         image_size = rbd_dev->header.image_size;
3190         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3191         if (rbd_dev->image_format == 1)
3192                 ret = rbd_dev_v1_refresh(rbd_dev);
3193         else
3194                 ret = rbd_dev_v2_refresh(rbd_dev);
3195
3196         /* If it's a mapped snapshot, validate its EXISTS flag */
3197
3198         rbd_exists_validate(rbd_dev);
3199         mutex_unlock(&ctl_mutex);
3200         if (ret)
3201                 rbd_warn(rbd_dev, "got notification but failed to "
3202                            " update snaps: %d\n", ret);
3203         if (image_size != rbd_dev->header.image_size)
3204                 revalidate_disk(rbd_dev->disk);
3205
3206         return ret;
3207 }
3208
3209 static int rbd_init_disk(struct rbd_device *rbd_dev)
3210 {
3211         struct gendisk *disk;
3212         struct request_queue *q;
3213         u64 segment_size;
3214
3215         /* create gendisk info */
3216         disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3217         if (!disk)
3218                 return -ENOMEM;
3219
3220         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3221                  rbd_dev->dev_id);
3222         disk->major = rbd_dev->major;
3223         disk->first_minor = 0;
3224         disk->fops = &rbd_bd_ops;
3225         disk->private_data = rbd_dev;
3226
3227         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3228         if (!q)
3229                 goto out_disk;
3230
3231         /* We use the default size, but let's be explicit about it. */
3232         blk_queue_physical_block_size(q, SECTOR_SIZE);
3233
3234         /* set io sizes to object size */
3235         segment_size = rbd_obj_bytes(&rbd_dev->header);
3236         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3237         blk_queue_max_segment_size(q, segment_size);
3238         blk_queue_io_min(q, segment_size);
3239         blk_queue_io_opt(q, segment_size);
3240
3241         blk_queue_merge_bvec(q, rbd_merge_bvec);
3242         disk->queue = q;
3243
3244         q->queuedata = rbd_dev;
3245
3246         rbd_dev->disk = disk;
3247
3248         return 0;
3249 out_disk:
3250         put_disk(disk);
3251
3252         return -ENOMEM;
3253 }
3254
3255 /*
3256   sysfs
3257 */
3258
3259 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3260 {
3261         return container_of(dev, struct rbd_device, dev);
3262 }
3263
3264 static ssize_t rbd_size_show(struct device *dev,
3265                              struct device_attribute *attr, char *buf)
3266 {
3267         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3268
3269         return sprintf(buf, "%llu\n",
3270                 (unsigned long long)rbd_dev->mapping.size);
3271 }
3272
3273 /*
3274  * Note this shows the features for whatever's mapped, which is not
3275  * necessarily the base image.
3276  */
3277 static ssize_t rbd_features_show(struct device *dev,
3278                              struct device_attribute *attr, char *buf)
3279 {
3280         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3281
3282         return sprintf(buf, "0x%016llx\n",
3283                         (unsigned long long)rbd_dev->mapping.features);
3284 }
3285
3286 static ssize_t rbd_major_show(struct device *dev,
3287                               struct device_attribute *attr, char *buf)
3288 {
3289         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3290
3291         if (rbd_dev->major)
3292                 return sprintf(buf, "%d\n", rbd_dev->major);
3293
3294         return sprintf(buf, "(none)\n");
3295
3296 }
3297
3298 static ssize_t rbd_client_id_show(struct device *dev,
3299                                   struct device_attribute *attr, char *buf)
3300 {
3301         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3302
3303         return sprintf(buf, "client%lld\n",
3304                         ceph_client_id(rbd_dev->rbd_client->client));
3305 }
3306
3307 static ssize_t rbd_pool_show(struct device *dev,
3308                              struct device_attribute *attr, char *buf)
3309 {
3310         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3311
3312         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3313 }
3314
3315 static ssize_t rbd_pool_id_show(struct device *dev,
3316                              struct device_attribute *attr, char *buf)
3317 {
3318         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3319
3320         return sprintf(buf, "%llu\n",
3321                         (unsigned long long) rbd_dev->spec->pool_id);
3322 }
3323
3324 static ssize_t rbd_name_show(struct device *dev,
3325                              struct device_attribute *attr, char *buf)
3326 {
3327         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3328
3329         if (rbd_dev->spec->image_name)
3330                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3331
3332         return sprintf(buf, "(unknown)\n");
3333 }
3334
3335 static ssize_t rbd_image_id_show(struct device *dev,
3336                              struct device_attribute *attr, char *buf)
3337 {
3338         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3339
3340         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3341 }
3342
3343 /*
3344  * Shows the name of the currently-mapped snapshot (or
3345  * RBD_SNAP_HEAD_NAME for the base image).
3346  */
3347 static ssize_t rbd_snap_show(struct device *dev,
3348                              struct device_attribute *attr,
3349                              char *buf)
3350 {
3351         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3352
3353         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3354 }
3355
3356 /*
3357  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3358  * for the parent image.  If there is no parent, simply shows
3359  * "(no parent image)".
3360  */
3361 static ssize_t rbd_parent_show(struct device *dev,
3362                              struct device_attribute *attr,
3363                              char *buf)
3364 {
3365         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3366         struct rbd_spec *spec = rbd_dev->parent_spec;
3367         int count;
3368         char *bufp = buf;
3369
3370         if (!spec)
3371                 return sprintf(buf, "(no parent image)\n");
3372
3373         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3374                         (unsigned long long) spec->pool_id, spec->pool_name);
3375         if (count < 0)
3376                 return count;
3377         bufp += count;
3378
3379         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3380                         spec->image_name ? spec->image_name : "(unknown)");
3381         if (count < 0)
3382                 return count;
3383         bufp += count;
3384
3385         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3386                         (unsigned long long) spec->snap_id, spec->snap_name);
3387         if (count < 0)
3388                 return count;
3389         bufp += count;
3390
3391         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3392         if (count < 0)
3393                 return count;
3394         bufp += count;
3395
3396         return (ssize_t) (bufp - buf);
3397 }
3398
3399 static ssize_t rbd_image_refresh(struct device *dev,
3400                                  struct device_attribute *attr,
3401                                  const char *buf,
3402                                  size_t size)
3403 {
3404         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3405         int ret;
3406
3407         ret = rbd_dev_refresh(rbd_dev);
3408
3409         return ret < 0 ? ret : size;
3410 }
3411
3412 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3413 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3414 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3415 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3416 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3417 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3418 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3419 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3420 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3421 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3422 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3423
3424 static struct attribute *rbd_attrs[] = {
3425         &dev_attr_size.attr,
3426         &dev_attr_features.attr,
3427         &dev_attr_major.attr,
3428         &dev_attr_client_id.attr,
3429         &dev_attr_pool.attr,
3430         &dev_attr_pool_id.attr,
3431         &dev_attr_name.attr,
3432         &dev_attr_image_id.attr,
3433         &dev_attr_current_snap.attr,
3434         &dev_attr_parent.attr,
3435         &dev_attr_refresh.attr,
3436         NULL
3437 };
3438
3439 static struct attribute_group rbd_attr_group = {
3440         .attrs = rbd_attrs,
3441 };
3442
3443 static const struct attribute_group *rbd_attr_groups[] = {
3444         &rbd_attr_group,
3445         NULL
3446 };
3447
3448 static void rbd_sysfs_dev_release(struct device *dev)
3449 {
3450 }
3451
3452 static struct device_type rbd_device_type = {
3453         .name           = "rbd",
3454         .groups         = rbd_attr_groups,
3455         .release        = rbd_sysfs_dev_release,
3456 };
3457
3458 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3459 {
3460         kref_get(&spec->kref);
3461
3462         return spec;
3463 }
3464
3465 static void rbd_spec_free(struct kref *kref);
3466 static void rbd_spec_put(struct rbd_spec *spec)
3467 {
3468         if (spec)
3469                 kref_put(&spec->kref, rbd_spec_free);
3470 }
3471
3472 static struct rbd_spec *rbd_spec_alloc(void)
3473 {
3474         struct rbd_spec *spec;
3475
3476         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3477         if (!spec)
3478                 return NULL;
3479         kref_init(&spec->kref);
3480
3481         return spec;
3482 }
3483
3484 static void rbd_spec_free(struct kref *kref)
3485 {
3486         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3487
3488         kfree(spec->pool_name);
3489         kfree(spec->image_id);
3490         kfree(spec->image_name);
3491         kfree(spec->snap_name);
3492         kfree(spec);
3493 }
3494
3495 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3496                                 struct rbd_spec *spec)
3497 {
3498         struct rbd_device *rbd_dev;
3499
3500         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3501         if (!rbd_dev)
3502                 return NULL;
3503
3504         spin_lock_init(&rbd_dev->lock);
3505         rbd_dev->flags = 0;
3506         INIT_LIST_HEAD(&rbd_dev->node);
3507         init_rwsem(&rbd_dev->header_rwsem);
3508
3509         rbd_dev->spec = spec;
3510         rbd_dev->rbd_client = rbdc;
3511
3512         /* Initialize the layout used for all rbd requests */
3513
3514         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3515         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3516         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3517         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3518
3519         return rbd_dev;
3520 }
3521
3522 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3523 {
3524         rbd_put_client(rbd_dev->rbd_client);
3525         rbd_spec_put(rbd_dev->spec);
3526         kfree(rbd_dev);
3527 }
3528
3529 /*
3530  * Get the size and object order for an image snapshot, or if
3531  * snap_id is CEPH_NOSNAP, gets this information for the base
3532  * image.
3533  */
3534 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3535                                 u8 *order, u64 *snap_size)
3536 {
3537         __le64 snapid = cpu_to_le64(snap_id);
3538         int ret;
3539         struct {
3540                 u8 order;
3541                 __le64 size;
3542         } __attribute__ ((packed)) size_buf = { 0 };
3543
3544         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3545                                 "rbd", "get_size",
3546                                 &snapid, sizeof (snapid),
3547                                 &size_buf, sizeof (size_buf));
3548         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3549         if (ret < 0)
3550                 return ret;
3551         if (ret < sizeof (size_buf))
3552                 return -ERANGE;
3553
3554         if (order)
3555                 *order = size_buf.order;
3556         *snap_size = le64_to_cpu(size_buf.size);
3557
3558         dout("  snap_id 0x%016llx order = %u, snap_size = %llu\n",
3559                 (unsigned long long)snap_id, (unsigned int)*order,
3560                 (unsigned long long)*snap_size);
3561
3562         return 0;
3563 }
3564
3565 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3566 {
3567         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3568                                         &rbd_dev->header.obj_order,
3569                                         &rbd_dev->header.image_size);
3570 }
3571
3572 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3573 {
3574         void *reply_buf;
3575         int ret;
3576         void *p;
3577
3578         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3579         if (!reply_buf)
3580                 return -ENOMEM;
3581
3582         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3583                                 "rbd", "get_object_prefix", NULL, 0,
3584                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3585         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3586         if (ret < 0)
3587                 goto out;
3588
3589         p = reply_buf;
3590         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3591                                                 p + ret, NULL, GFP_NOIO);
3592         ret = 0;
3593
3594         if (IS_ERR(rbd_dev->header.object_prefix)) {
3595                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3596                 rbd_dev->header.object_prefix = NULL;
3597         } else {
3598                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3599         }
3600 out:
3601         kfree(reply_buf);
3602
3603         return ret;
3604 }
3605
3606 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3607                 u64 *snap_features)
3608 {
3609         __le64 snapid = cpu_to_le64(snap_id);
3610         struct {
3611                 __le64 features;
3612                 __le64 incompat;
3613         } __attribute__ ((packed)) features_buf = { 0 };
3614         u64 incompat;
3615         int ret;
3616
3617         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3618                                 "rbd", "get_features",
3619                                 &snapid, sizeof (snapid),
3620                                 &features_buf, sizeof (features_buf));
3621         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3622         if (ret < 0)
3623                 return ret;
3624         if (ret < sizeof (features_buf))
3625                 return -ERANGE;
3626
3627         incompat = le64_to_cpu(features_buf.incompat);
3628         if (incompat & ~RBD_FEATURES_SUPPORTED)
3629                 return -ENXIO;
3630
3631         *snap_features = le64_to_cpu(features_buf.features);
3632
3633         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3634                 (unsigned long long)snap_id,
3635                 (unsigned long long)*snap_features,
3636                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3637
3638         return 0;
3639 }
3640
3641 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3642 {
3643         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3644                                                 &rbd_dev->header.features);
3645 }
3646
3647 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3648 {
3649         struct rbd_spec *parent_spec;
3650         size_t size;
3651         void *reply_buf = NULL;
3652         __le64 snapid;
3653         void *p;
3654         void *end;
3655         char *image_id;
3656         u64 overlap;
3657         int ret;
3658
3659         parent_spec = rbd_spec_alloc();
3660         if (!parent_spec)
3661                 return -ENOMEM;
3662
3663         size = sizeof (__le64) +                                /* pool_id */
3664                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3665                 sizeof (__le64) +                               /* snap_id */
3666                 sizeof (__le64);                                /* overlap */
3667         reply_buf = kmalloc(size, GFP_KERNEL);
3668         if (!reply_buf) {
3669                 ret = -ENOMEM;
3670                 goto out_err;
3671         }
3672
3673         snapid = cpu_to_le64(CEPH_NOSNAP);
3674         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3675                                 "rbd", "get_parent",
3676                                 &snapid, sizeof (snapid),
3677                                 reply_buf, size);
3678         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3679         if (ret < 0)
3680                 goto out_err;
3681
3682         p = reply_buf;
3683         end = reply_buf + ret;
3684         ret = -ERANGE;
3685         ceph_decode_64_safe(&p, end, parent_spec->pool_id, out_err);
3686         if (parent_spec->pool_id == CEPH_NOPOOL)
3687                 goto out;       /* No parent?  No problem. */
3688
3689         /* The ceph file layout needs to fit pool id in 32 bits */
3690
3691         ret = -EIO;
3692         if (parent_spec->pool_id > (u64)U32_MAX) {
3693                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3694                         (unsigned long long)parent_spec->pool_id, U32_MAX);
3695                 goto out_err;
3696         }
3697
3698         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3699         if (IS_ERR(image_id)) {
3700                 ret = PTR_ERR(image_id);
3701                 goto out_err;
3702         }
3703         parent_spec->image_id = image_id;
3704         ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3705         ceph_decode_64_safe(&p, end, overlap, out_err);
3706
3707         rbd_dev->parent_overlap = overlap;
3708         rbd_dev->parent_spec = parent_spec;
3709         parent_spec = NULL;     /* rbd_dev now owns this */
3710 out:
3711         ret = 0;
3712 out_err:
3713         kfree(reply_buf);
3714         rbd_spec_put(parent_spec);
3715
3716         return ret;
3717 }
3718
3719 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3720 {
3721         struct {
3722                 __le64 stripe_unit;
3723                 __le64 stripe_count;
3724         } __attribute__ ((packed)) striping_info_buf = { 0 };
3725         size_t size = sizeof (striping_info_buf);
3726         void *p;
3727         u64 obj_size;
3728         u64 stripe_unit;
3729         u64 stripe_count;
3730         int ret;
3731
3732         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3733                                 "rbd", "get_stripe_unit_count", NULL, 0,
3734                                 (char *)&striping_info_buf, size);
3735         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3736         if (ret < 0)
3737                 return ret;
3738         if (ret < size)
3739                 return -ERANGE;
3740
3741         /*
3742          * We don't actually support the "fancy striping" feature
3743          * (STRIPINGV2) yet, but if the striping sizes are the
3744          * defaults the behavior is the same as before.  So find
3745          * out, and only fail if the image has non-default values.
3746          */
3747         ret = -EINVAL;
3748         obj_size = (u64)1 << rbd_dev->header.obj_order;
3749         p = &striping_info_buf;
3750         stripe_unit = ceph_decode_64(&p);
3751         if (stripe_unit != obj_size) {
3752                 rbd_warn(rbd_dev, "unsupported stripe unit "
3753                                 "(got %llu want %llu)",
3754                                 stripe_unit, obj_size);
3755                 return -EINVAL;
3756         }
3757         stripe_count = ceph_decode_64(&p);
3758         if (stripe_count != 1) {
3759                 rbd_warn(rbd_dev, "unsupported stripe count "
3760                                 "(got %llu want 1)", stripe_count);
3761                 return -EINVAL;
3762         }
3763         rbd_dev->header.stripe_unit = stripe_unit;
3764         rbd_dev->header.stripe_count = stripe_count;
3765
3766         return 0;
3767 }
3768
3769 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3770 {
3771         size_t image_id_size;
3772         char *image_id;
3773         void *p;
3774         void *end;
3775         size_t size;
3776         void *reply_buf = NULL;
3777         size_t len = 0;
3778         char *image_name = NULL;
3779         int ret;
3780
3781         rbd_assert(!rbd_dev->spec->image_name);
3782
3783         len = strlen(rbd_dev->spec->image_id);
3784         image_id_size = sizeof (__le32) + len;
3785         image_id = kmalloc(image_id_size, GFP_KERNEL);
3786         if (!image_id)
3787                 return NULL;
3788
3789         p = image_id;
3790         end = image_id + image_id_size;
3791         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
3792
3793         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
3794         reply_buf = kmalloc(size, GFP_KERNEL);
3795         if (!reply_buf)
3796                 goto out;
3797
3798         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
3799                                 "rbd", "dir_get_name",
3800                                 image_id, image_id_size,
3801                                 reply_buf, size);
3802         if (ret < 0)
3803                 goto out;
3804         p = reply_buf;
3805         end = reply_buf + ret;
3806
3807         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
3808         if (IS_ERR(image_name))
3809                 image_name = NULL;
3810         else
3811                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
3812 out:
3813         kfree(reply_buf);
3814         kfree(image_id);
3815
3816         return image_name;
3817 }
3818
3819 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3820 {
3821         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3822         const char *snap_name;
3823         u32 which = 0;
3824
3825         /* Skip over names until we find the one we are looking for */
3826
3827         snap_name = rbd_dev->header.snap_names;
3828         while (which < snapc->num_snaps) {
3829                 if (!strcmp(name, snap_name))
3830                         return snapc->snaps[which];
3831                 snap_name += strlen(snap_name) + 1;
3832                 which++;
3833         }
3834         return CEPH_NOSNAP;
3835 }
3836
3837 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3838 {
3839         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3840         u32 which;
3841         bool found = false;
3842         u64 snap_id;
3843
3844         for (which = 0; !found && which < snapc->num_snaps; which++) {
3845                 const char *snap_name;
3846
3847                 snap_id = snapc->snaps[which];
3848                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
3849                 if (IS_ERR(snap_name))
3850                         break;
3851                 found = !strcmp(name, snap_name);
3852                 kfree(snap_name);
3853         }
3854         return found ? snap_id : CEPH_NOSNAP;
3855 }
3856
3857 /*
3858  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
3859  * no snapshot by that name is found, or if an error occurs.
3860  */
3861 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3862 {
3863         if (rbd_dev->image_format == 1)
3864                 return rbd_v1_snap_id_by_name(rbd_dev, name);
3865
3866         return rbd_v2_snap_id_by_name(rbd_dev, name);
3867 }
3868
3869 /*
3870  * When an rbd image has a parent image, it is identified by the
3871  * pool, image, and snapshot ids (not names).  This function fills
3872  * in the names for those ids.  (It's OK if we can't figure out the
3873  * name for an image id, but the pool and snapshot ids should always
3874  * exist and have names.)  All names in an rbd spec are dynamically
3875  * allocated.
3876  *
3877  * When an image being mapped (not a parent) is probed, we have the
3878  * pool name and pool id, image name and image id, and the snapshot
3879  * name.  The only thing we're missing is the snapshot id.
3880  */
3881 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
3882 {
3883         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3884         struct rbd_spec *spec = rbd_dev->spec;
3885         const char *pool_name;
3886         const char *image_name;
3887         const char *snap_name;
3888         int ret;
3889
3890         /*
3891          * An image being mapped will have the pool name (etc.), but
3892          * we need to look up the snapshot id.
3893          */
3894         if (spec->pool_name) {
3895                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
3896                         u64 snap_id;
3897
3898                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
3899                         if (snap_id == CEPH_NOSNAP)
3900                                 return -ENOENT;
3901                         spec->snap_id = snap_id;
3902                 } else {
3903                         spec->snap_id = CEPH_NOSNAP;
3904                 }
3905
3906                 return 0;
3907         }
3908
3909         /* Get the pool name; we have to make our own copy of this */
3910
3911         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
3912         if (!pool_name) {
3913                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
3914                 return -EIO;
3915         }
3916         pool_name = kstrdup(pool_name, GFP_KERNEL);
3917         if (!pool_name)
3918                 return -ENOMEM;
3919
3920         /* Fetch the image name; tolerate failure here */
3921
3922         image_name = rbd_dev_image_name(rbd_dev);
3923         if (!image_name)
3924                 rbd_warn(rbd_dev, "unable to get image name");
3925
3926         /* Look up the snapshot name, and make a copy */
3927
3928         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
3929         if (!snap_name) {
3930                 ret = -ENOMEM;
3931                 goto out_err;
3932         }
3933
3934         spec->pool_name = pool_name;
3935         spec->image_name = image_name;
3936         spec->snap_name = snap_name;
3937
3938         return 0;
3939 out_err:
3940         kfree(image_name);
3941         kfree(pool_name);
3942
3943         return ret;
3944 }
3945
3946 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
3947 {
3948         size_t size;
3949         int ret;
3950         void *reply_buf;
3951         void *p;
3952         void *end;
3953         u64 seq;
3954         u32 snap_count;
3955         struct ceph_snap_context *snapc;
3956         u32 i;
3957
3958         /*
3959          * We'll need room for the seq value (maximum snapshot id),
3960          * snapshot count, and array of that many snapshot ids.
3961          * For now we have a fixed upper limit on the number we're
3962          * prepared to receive.
3963          */
3964         size = sizeof (__le64) + sizeof (__le32) +
3965                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
3966         reply_buf = kzalloc(size, GFP_KERNEL);
3967         if (!reply_buf)
3968                 return -ENOMEM;
3969
3970         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3971                                 "rbd", "get_snapcontext", NULL, 0,
3972                                 reply_buf, size);
3973         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3974         if (ret < 0)
3975                 goto out;
3976
3977         p = reply_buf;
3978         end = reply_buf + ret;
3979         ret = -ERANGE;
3980         ceph_decode_64_safe(&p, end, seq, out);
3981         ceph_decode_32_safe(&p, end, snap_count, out);
3982
3983         /*
3984          * Make sure the reported number of snapshot ids wouldn't go
3985          * beyond the end of our buffer.  But before checking that,
3986          * make sure the computed size of the snapshot context we
3987          * allocate is representable in a size_t.
3988          */
3989         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
3990                                  / sizeof (u64)) {
3991                 ret = -EINVAL;
3992                 goto out;
3993         }
3994         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
3995                 goto out;
3996         ret = 0;
3997
3998         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
3999         if (!snapc) {
4000                 ret = -ENOMEM;
4001                 goto out;
4002         }
4003         snapc->seq = seq;
4004         for (i = 0; i < snap_count; i++)
4005                 snapc->snaps[i] = ceph_decode_64(&p);
4006
4007         ceph_put_snap_context(rbd_dev->header.snapc);
4008         rbd_dev->header.snapc = snapc;
4009
4010         dout("  snap context seq = %llu, snap_count = %u\n",
4011                 (unsigned long long)seq, (unsigned int)snap_count);
4012 out:
4013         kfree(reply_buf);
4014
4015         return ret;
4016 }
4017
4018 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4019                                         u64 snap_id)
4020 {
4021         size_t size;
4022         void *reply_buf;
4023         __le64 snapid;
4024         int ret;
4025         void *p;
4026         void *end;
4027         char *snap_name;
4028
4029         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4030         reply_buf = kmalloc(size, GFP_KERNEL);
4031         if (!reply_buf)
4032                 return ERR_PTR(-ENOMEM);
4033
4034         snapid = cpu_to_le64(snap_id);
4035         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4036                                 "rbd", "get_snapshot_name",
4037                                 &snapid, sizeof (snapid),
4038                                 reply_buf, size);
4039         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4040         if (ret < 0) {
4041                 snap_name = ERR_PTR(ret);
4042                 goto out;
4043         }
4044
4045         p = reply_buf;
4046         end = reply_buf + ret;
4047         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4048         if (IS_ERR(snap_name))
4049                 goto out;
4050
4051         dout("  snap_id 0x%016llx snap_name = %s\n",
4052                 (unsigned long long)snap_id, snap_name);
4053 out:
4054         kfree(reply_buf);
4055
4056         return snap_name;
4057 }
4058
4059 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev)
4060 {
4061         int ret;
4062
4063         down_write(&rbd_dev->header_rwsem);
4064
4065         ret = rbd_dev_v2_image_size(rbd_dev);
4066         if (ret)
4067                 goto out;
4068         rbd_update_mapping_size(rbd_dev);
4069
4070         ret = rbd_dev_v2_snap_context(rbd_dev);
4071         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4072         if (ret)
4073                 goto out;
4074 out:
4075         up_write(&rbd_dev->header_rwsem);
4076
4077         return ret;
4078 }
4079
4080 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4081 {
4082         struct device *dev;
4083         int ret;
4084
4085         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4086
4087         dev = &rbd_dev->dev;
4088         dev->bus = &rbd_bus_type;
4089         dev->type = &rbd_device_type;
4090         dev->parent = &rbd_root_dev;
4091         dev->release = rbd_dev_device_release;
4092         dev_set_name(dev, "%d", rbd_dev->dev_id);
4093         ret = device_register(dev);
4094
4095         mutex_unlock(&ctl_mutex);
4096
4097         return ret;
4098 }
4099
4100 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4101 {
4102         device_unregister(&rbd_dev->dev);
4103 }
4104
4105 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4106
4107 /*
4108  * Get a unique rbd identifier for the given new rbd_dev, and add
4109  * the rbd_dev to the global list.  The minimum rbd id is 1.
4110  */
4111 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4112 {
4113         rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4114
4115         spin_lock(&rbd_dev_list_lock);
4116         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4117         spin_unlock(&rbd_dev_list_lock);
4118         dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4119                 (unsigned long long) rbd_dev->dev_id);
4120 }
4121
4122 /*
4123  * Remove an rbd_dev from the global list, and record that its
4124  * identifier is no longer in use.
4125  */
4126 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4127 {
4128         struct list_head *tmp;
4129         int rbd_id = rbd_dev->dev_id;
4130         int max_id;
4131
4132         rbd_assert(rbd_id > 0);
4133
4134         dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4135                 (unsigned long long) rbd_dev->dev_id);
4136         spin_lock(&rbd_dev_list_lock);
4137         list_del_init(&rbd_dev->node);
4138
4139         /*
4140          * If the id being "put" is not the current maximum, there
4141          * is nothing special we need to do.
4142          */
4143         if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4144                 spin_unlock(&rbd_dev_list_lock);
4145                 return;
4146         }
4147
4148         /*
4149          * We need to update the current maximum id.  Search the
4150          * list to find out what it is.  We're more likely to find
4151          * the maximum at the end, so search the list backward.
4152          */
4153         max_id = 0;
4154         list_for_each_prev(tmp, &rbd_dev_list) {
4155                 struct rbd_device *rbd_dev;
4156
4157                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4158                 if (rbd_dev->dev_id > max_id)
4159                         max_id = rbd_dev->dev_id;
4160         }
4161         spin_unlock(&rbd_dev_list_lock);
4162
4163         /*
4164          * The max id could have been updated by rbd_dev_id_get(), in
4165          * which case it now accurately reflects the new maximum.
4166          * Be careful not to overwrite the maximum value in that
4167          * case.
4168          */
4169         atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4170         dout("  max dev id has been reset\n");
4171 }
4172
4173 /*
4174  * Skips over white space at *buf, and updates *buf to point to the
4175  * first found non-space character (if any). Returns the length of
4176  * the token (string of non-white space characters) found.  Note
4177  * that *buf must be terminated with '\0'.
4178  */
4179 static inline size_t next_token(const char **buf)
4180 {
4181         /*
4182         * These are the characters that produce nonzero for
4183         * isspace() in the "C" and "POSIX" locales.
4184         */
4185         const char *spaces = " \f\n\r\t\v";
4186
4187         *buf += strspn(*buf, spaces);   /* Find start of token */
4188
4189         return strcspn(*buf, spaces);   /* Return token length */
4190 }
4191
4192 /*
4193  * Finds the next token in *buf, and if the provided token buffer is
4194  * big enough, copies the found token into it.  The result, if
4195  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4196  * must be terminated with '\0' on entry.
4197  *
4198  * Returns the length of the token found (not including the '\0').
4199  * Return value will be 0 if no token is found, and it will be >=
4200  * token_size if the token would not fit.
4201  *
4202  * The *buf pointer will be updated to point beyond the end of the
4203  * found token.  Note that this occurs even if the token buffer is
4204  * too small to hold it.
4205  */
4206 static inline size_t copy_token(const char **buf,
4207                                 char *token,
4208                                 size_t token_size)
4209 {
4210         size_t len;
4211
4212         len = next_token(buf);
4213         if (len < token_size) {
4214                 memcpy(token, *buf, len);
4215                 *(token + len) = '\0';
4216         }
4217         *buf += len;
4218
4219         return len;
4220 }
4221
4222 /*
4223  * Finds the next token in *buf, dynamically allocates a buffer big
4224  * enough to hold a copy of it, and copies the token into the new
4225  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4226  * that a duplicate buffer is created even for a zero-length token.
4227  *
4228  * Returns a pointer to the newly-allocated duplicate, or a null
4229  * pointer if memory for the duplicate was not available.  If
4230  * the lenp argument is a non-null pointer, the length of the token
4231  * (not including the '\0') is returned in *lenp.
4232  *
4233  * If successful, the *buf pointer will be updated to point beyond
4234  * the end of the found token.
4235  *
4236  * Note: uses GFP_KERNEL for allocation.
4237  */
4238 static inline char *dup_token(const char **buf, size_t *lenp)
4239 {
4240         char *dup;
4241         size_t len;
4242
4243         len = next_token(buf);
4244         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4245         if (!dup)
4246                 return NULL;
4247         *(dup + len) = '\0';
4248         *buf += len;
4249
4250         if (lenp)
4251                 *lenp = len;
4252
4253         return dup;
4254 }
4255
4256 /*
4257  * Parse the options provided for an "rbd add" (i.e., rbd image
4258  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4259  * and the data written is passed here via a NUL-terminated buffer.
4260  * Returns 0 if successful or an error code otherwise.
4261  *
4262  * The information extracted from these options is recorded in
4263  * the other parameters which return dynamically-allocated
4264  * structures:
4265  *  ceph_opts
4266  *      The address of a pointer that will refer to a ceph options
4267  *      structure.  Caller must release the returned pointer using
4268  *      ceph_destroy_options() when it is no longer needed.
4269  *  rbd_opts
4270  *      Address of an rbd options pointer.  Fully initialized by
4271  *      this function; caller must release with kfree().
4272  *  spec
4273  *      Address of an rbd image specification pointer.  Fully
4274  *      initialized by this function based on parsed options.
4275  *      Caller must release with rbd_spec_put().
4276  *
4277  * The options passed take this form:
4278  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4279  * where:
4280  *  <mon_addrs>
4281  *      A comma-separated list of one or more monitor addresses.
4282  *      A monitor address is an ip address, optionally followed
4283  *      by a port number (separated by a colon).
4284  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4285  *  <options>
4286  *      A comma-separated list of ceph and/or rbd options.
4287  *  <pool_name>
4288  *      The name of the rados pool containing the rbd image.
4289  *  <image_name>
4290  *      The name of the image in that pool to map.
4291  *  <snap_id>
4292  *      An optional snapshot id.  If provided, the mapping will
4293  *      present data from the image at the time that snapshot was
4294  *      created.  The image head is used if no snapshot id is
4295  *      provided.  Snapshot mappings are always read-only.
4296  */
4297 static int rbd_add_parse_args(const char *buf,
4298                                 struct ceph_options **ceph_opts,
4299                                 struct rbd_options **opts,
4300                                 struct rbd_spec **rbd_spec)
4301 {
4302         size_t len;
4303         char *options;
4304         const char *mon_addrs;
4305         char *snap_name;
4306         size_t mon_addrs_size;
4307         struct rbd_spec *spec = NULL;
4308         struct rbd_options *rbd_opts = NULL;
4309         struct ceph_options *copts;
4310         int ret;
4311
4312         /* The first four tokens are required */
4313
4314         len = next_token(&buf);
4315         if (!len) {
4316                 rbd_warn(NULL, "no monitor address(es) provided");
4317                 return -EINVAL;
4318         }
4319         mon_addrs = buf;
4320         mon_addrs_size = len + 1;
4321         buf += len;
4322
4323         ret = -EINVAL;
4324         options = dup_token(&buf, NULL);
4325         if (!options)
4326                 return -ENOMEM;
4327         if (!*options) {
4328                 rbd_warn(NULL, "no options provided");
4329                 goto out_err;
4330         }
4331
4332         spec = rbd_spec_alloc();
4333         if (!spec)
4334                 goto out_mem;
4335
4336         spec->pool_name = dup_token(&buf, NULL);
4337         if (!spec->pool_name)
4338                 goto out_mem;
4339         if (!*spec->pool_name) {
4340                 rbd_warn(NULL, "no pool name provided");
4341                 goto out_err;
4342         }
4343
4344         spec->image_name = dup_token(&buf, NULL);
4345         if (!spec->image_name)
4346                 goto out_mem;
4347         if (!*spec->image_name) {
4348                 rbd_warn(NULL, "no image name provided");
4349                 goto out_err;
4350         }
4351
4352         /*
4353          * Snapshot name is optional; default is to use "-"
4354          * (indicating the head/no snapshot).
4355          */
4356         len = next_token(&buf);
4357         if (!len) {
4358                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4359                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4360         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4361                 ret = -ENAMETOOLONG;
4362                 goto out_err;
4363         }
4364         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4365         if (!snap_name)
4366                 goto out_mem;
4367         *(snap_name + len) = '\0';
4368         spec->snap_name = snap_name;
4369
4370         /* Initialize all rbd options to the defaults */
4371
4372         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4373         if (!rbd_opts)
4374                 goto out_mem;
4375
4376         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4377
4378         copts = ceph_parse_options(options, mon_addrs,
4379                                         mon_addrs + mon_addrs_size - 1,
4380                                         parse_rbd_opts_token, rbd_opts);
4381         if (IS_ERR(copts)) {
4382                 ret = PTR_ERR(copts);
4383                 goto out_err;
4384         }
4385         kfree(options);
4386
4387         *ceph_opts = copts;
4388         *opts = rbd_opts;
4389         *rbd_spec = spec;
4390
4391         return 0;
4392 out_mem:
4393         ret = -ENOMEM;
4394 out_err:
4395         kfree(rbd_opts);
4396         rbd_spec_put(spec);
4397         kfree(options);
4398
4399         return ret;
4400 }
4401
4402 /*
4403  * An rbd format 2 image has a unique identifier, distinct from the
4404  * name given to it by the user.  Internally, that identifier is
4405  * what's used to specify the names of objects related to the image.
4406  *
4407  * A special "rbd id" object is used to map an rbd image name to its
4408  * id.  If that object doesn't exist, then there is no v2 rbd image
4409  * with the supplied name.
4410  *
4411  * This function will record the given rbd_dev's image_id field if
4412  * it can be determined, and in that case will return 0.  If any
4413  * errors occur a negative errno will be returned and the rbd_dev's
4414  * image_id field will be unchanged (and should be NULL).
4415  */
4416 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4417 {
4418         int ret;
4419         size_t size;
4420         char *object_name;
4421         void *response;
4422         char *image_id;
4423
4424         /*
4425          * When probing a parent image, the image id is already
4426          * known (and the image name likely is not).  There's no
4427          * need to fetch the image id again in this case.  We
4428          * do still need to set the image format though.
4429          */
4430         if (rbd_dev->spec->image_id) {
4431                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4432
4433                 return 0;
4434         }
4435
4436         /*
4437          * First, see if the format 2 image id file exists, and if
4438          * so, get the image's persistent id from it.
4439          */
4440         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4441         object_name = kmalloc(size, GFP_NOIO);
4442         if (!object_name)
4443                 return -ENOMEM;
4444         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4445         dout("rbd id object name is %s\n", object_name);
4446
4447         /* Response will be an encoded string, which includes a length */
4448
4449         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4450         response = kzalloc(size, GFP_NOIO);
4451         if (!response) {
4452                 ret = -ENOMEM;
4453                 goto out;
4454         }
4455
4456         /* If it doesn't exist we'll assume it's a format 1 image */
4457
4458         ret = rbd_obj_method_sync(rbd_dev, object_name,
4459                                 "rbd", "get_id", NULL, 0,
4460                                 response, RBD_IMAGE_ID_LEN_MAX);
4461         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4462         if (ret == -ENOENT) {
4463                 image_id = kstrdup("", GFP_KERNEL);
4464                 ret = image_id ? 0 : -ENOMEM;
4465                 if (!ret)
4466                         rbd_dev->image_format = 1;
4467         } else if (ret > sizeof (__le32)) {
4468                 void *p = response;
4469
4470                 image_id = ceph_extract_encoded_string(&p, p + ret,
4471                                                 NULL, GFP_NOIO);
4472                 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4473                 if (!ret)
4474                         rbd_dev->image_format = 2;
4475         } else {
4476                 ret = -EINVAL;
4477         }
4478
4479         if (!ret) {
4480                 rbd_dev->spec->image_id = image_id;
4481                 dout("image_id is %s\n", image_id);
4482         }
4483 out:
4484         kfree(response);
4485         kfree(object_name);
4486
4487         return ret;
4488 }
4489
4490 /* Undo whatever state changes are made by v1 or v2 image probe */
4491
4492 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4493 {
4494         struct rbd_image_header *header;
4495
4496         rbd_dev_remove_parent(rbd_dev);
4497         rbd_spec_put(rbd_dev->parent_spec);
4498         rbd_dev->parent_spec = NULL;
4499         rbd_dev->parent_overlap = 0;
4500
4501         /* Free dynamic fields from the header, then zero it out */
4502
4503         header = &rbd_dev->header;
4504         ceph_put_snap_context(header->snapc);
4505         kfree(header->snap_sizes);
4506         kfree(header->snap_names);
4507         kfree(header->object_prefix);
4508         memset(header, 0, sizeof (*header));
4509 }
4510
4511 static int rbd_dev_v1_probe(struct rbd_device *rbd_dev)
4512 {
4513         int ret;
4514
4515         /* Populate rbd image metadata */
4516
4517         ret = rbd_read_header(rbd_dev, &rbd_dev->header);
4518         if (ret < 0)
4519                 goto out_err;
4520
4521         /* Version 1 images have no parent (no layering) */
4522
4523         rbd_dev->parent_spec = NULL;
4524         rbd_dev->parent_overlap = 0;
4525
4526         dout("discovered version 1 image, header name is %s\n",
4527                 rbd_dev->header_name);
4528
4529         return 0;
4530
4531 out_err:
4532         kfree(rbd_dev->header_name);
4533         rbd_dev->header_name = NULL;
4534         kfree(rbd_dev->spec->image_id);
4535         rbd_dev->spec->image_id = NULL;
4536
4537         return ret;
4538 }
4539
4540 static int rbd_dev_v2_probe(struct rbd_device *rbd_dev)
4541 {
4542         int ret;
4543
4544         ret = rbd_dev_v2_image_size(rbd_dev);
4545         if (ret)
4546                 goto out_err;
4547
4548         /* Get the object prefix (a.k.a. block_name) for the image */
4549
4550         ret = rbd_dev_v2_object_prefix(rbd_dev);
4551         if (ret)
4552                 goto out_err;
4553
4554         /* Get the and check features for the image */
4555
4556         ret = rbd_dev_v2_features(rbd_dev);
4557         if (ret)
4558                 goto out_err;
4559
4560         /* If the image supports layering, get the parent info */
4561
4562         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
4563                 ret = rbd_dev_v2_parent_info(rbd_dev);
4564                 if (ret)
4565                         goto out_err;
4566
4567                 /*
4568                  * Don't print a warning for parent images.  We can
4569                  * tell this point because we won't know its pool
4570                  * name yet (just its pool id).
4571                  */
4572                 if (rbd_dev->spec->pool_name)
4573                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4574                                         "is EXPERIMENTAL!");
4575         }
4576
4577         /* If the image supports fancy striping, get its parameters */
4578
4579         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4580                 ret = rbd_dev_v2_striping_info(rbd_dev);
4581                 if (ret < 0)
4582                         goto out_err;
4583         }
4584
4585         /* crypto and compression type aren't (yet) supported for v2 images */
4586
4587         rbd_dev->header.crypt_type = 0;
4588         rbd_dev->header.comp_type = 0;
4589
4590         /* Get the snapshot context, plus the header version */
4591
4592         ret = rbd_dev_v2_snap_context(rbd_dev);
4593         if (ret)
4594                 goto out_err;
4595
4596         dout("discovered version 2 image, header name is %s\n",
4597                 rbd_dev->header_name);
4598
4599         return 0;
4600 out_err:
4601         rbd_dev->parent_overlap = 0;
4602         rbd_spec_put(rbd_dev->parent_spec);
4603         rbd_dev->parent_spec = NULL;
4604         kfree(rbd_dev->header_name);
4605         rbd_dev->header_name = NULL;
4606         kfree(rbd_dev->header.object_prefix);
4607         rbd_dev->header.object_prefix = NULL;
4608
4609         return ret;
4610 }
4611
4612 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4613 {
4614         struct rbd_device *parent = NULL;
4615         struct rbd_spec *parent_spec;
4616         struct rbd_client *rbdc;
4617         int ret;
4618
4619         if (!rbd_dev->parent_spec)
4620                 return 0;
4621         /*
4622          * We need to pass a reference to the client and the parent
4623          * spec when creating the parent rbd_dev.  Images related by
4624          * parent/child relationships always share both.
4625          */
4626         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4627         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4628
4629         ret = -ENOMEM;
4630         parent = rbd_dev_create(rbdc, parent_spec);
4631         if (!parent)
4632                 goto out_err;
4633
4634         ret = rbd_dev_image_probe(parent);
4635         if (ret < 0)
4636                 goto out_err;
4637         rbd_dev->parent = parent;
4638
4639         return 0;
4640 out_err:
4641         if (parent) {
4642                 rbd_spec_put(rbd_dev->parent_spec);
4643                 kfree(rbd_dev->header_name);
4644                 rbd_dev_destroy(parent);
4645         } else {
4646                 rbd_put_client(rbdc);
4647                 rbd_spec_put(parent_spec);
4648         }
4649
4650         return ret;
4651 }
4652
4653 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4654 {
4655         int ret;
4656
4657         ret = rbd_dev_mapping_set(rbd_dev);
4658         if (ret)
4659                 return ret;
4660
4661         /* generate unique id: find highest unique id, add one */
4662         rbd_dev_id_get(rbd_dev);
4663
4664         /* Fill in the device name, now that we have its id. */
4665         BUILD_BUG_ON(DEV_NAME_LEN
4666                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4667         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4668
4669         /* Get our block major device number. */
4670
4671         ret = register_blkdev(0, rbd_dev->name);
4672         if (ret < 0)
4673                 goto err_out_id;
4674         rbd_dev->major = ret;
4675
4676         /* Set up the blkdev mapping. */
4677
4678         ret = rbd_init_disk(rbd_dev);
4679         if (ret)
4680                 goto err_out_blkdev;
4681
4682         ret = rbd_bus_add_dev(rbd_dev);
4683         if (ret)
4684                 goto err_out_disk;
4685
4686         /* Everything's ready.  Announce the disk to the world. */
4687
4688         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4689         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4690         add_disk(rbd_dev->disk);
4691
4692         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4693                 (unsigned long long) rbd_dev->mapping.size);
4694
4695         return ret;
4696
4697 err_out_disk:
4698         rbd_free_disk(rbd_dev);
4699 err_out_blkdev:
4700         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4701 err_out_id:
4702         rbd_dev_id_put(rbd_dev);
4703         rbd_dev_mapping_clear(rbd_dev);
4704
4705         return ret;
4706 }
4707
4708 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4709 {
4710         struct rbd_spec *spec = rbd_dev->spec;
4711         size_t size;
4712
4713         /* Record the header object name for this rbd image. */
4714
4715         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4716
4717         if (rbd_dev->image_format == 1)
4718                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4719         else
4720                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4721
4722         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4723         if (!rbd_dev->header_name)
4724                 return -ENOMEM;
4725
4726         if (rbd_dev->image_format == 1)
4727                 sprintf(rbd_dev->header_name, "%s%s",
4728                         spec->image_name, RBD_SUFFIX);
4729         else
4730                 sprintf(rbd_dev->header_name, "%s%s",
4731                         RBD_HEADER_PREFIX, spec->image_id);
4732         return 0;
4733 }
4734
4735 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4736 {
4737         int ret;
4738
4739         rbd_dev_unprobe(rbd_dev);
4740         ret = rbd_dev_header_watch_sync(rbd_dev, 0);
4741         if (ret)
4742                 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
4743         kfree(rbd_dev->header_name);
4744         rbd_dev->header_name = NULL;
4745         rbd_dev->image_format = 0;
4746         kfree(rbd_dev->spec->image_id);
4747         rbd_dev->spec->image_id = NULL;
4748
4749         rbd_dev_destroy(rbd_dev);
4750 }
4751
4752 /*
4753  * Probe for the existence of the header object for the given rbd
4754  * device.  For format 2 images this includes determining the image
4755  * id.
4756  */
4757 static int rbd_dev_image_probe(struct rbd_device *rbd_dev)
4758 {
4759         int ret;
4760         int tmp;
4761
4762         /*
4763          * Get the id from the image id object.  If it's not a
4764          * format 2 image, we'll get ENOENT back, and we'll assume
4765          * it's a format 1 image.
4766          */
4767         ret = rbd_dev_image_id(rbd_dev);
4768         if (ret)
4769                 return ret;
4770         rbd_assert(rbd_dev->spec->image_id);
4771         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4772
4773         ret = rbd_dev_header_name(rbd_dev);
4774         if (ret)
4775                 goto err_out_format;
4776
4777         ret = rbd_dev_header_watch_sync(rbd_dev, 1);
4778         if (ret)
4779                 goto out_header_name;
4780
4781         if (rbd_dev->image_format == 1)
4782                 ret = rbd_dev_v1_probe(rbd_dev);
4783         else
4784                 ret = rbd_dev_v2_probe(rbd_dev);
4785         if (ret)
4786                 goto err_out_watch;
4787
4788         ret = rbd_dev_spec_update(rbd_dev);
4789         if (ret)
4790                 goto err_out_probe;
4791
4792         ret = rbd_dev_probe_parent(rbd_dev);
4793         if (!ret)
4794                 return 0;
4795
4796 err_out_probe:
4797         rbd_dev_unprobe(rbd_dev);
4798 err_out_watch:
4799         tmp = rbd_dev_header_watch_sync(rbd_dev, 0);
4800         if (tmp)
4801                 rbd_warn(rbd_dev, "unable to tear down watch request\n");
4802 out_header_name:
4803         kfree(rbd_dev->header_name);
4804         rbd_dev->header_name = NULL;
4805 err_out_format:
4806         rbd_dev->image_format = 0;
4807         kfree(rbd_dev->spec->image_id);
4808         rbd_dev->spec->image_id = NULL;
4809
4810         dout("probe failed, returning %d\n", ret);
4811
4812         return ret;
4813 }
4814
4815 static ssize_t rbd_add(struct bus_type *bus,
4816                        const char *buf,
4817                        size_t count)
4818 {
4819         struct rbd_device *rbd_dev = NULL;
4820         struct ceph_options *ceph_opts = NULL;
4821         struct rbd_options *rbd_opts = NULL;
4822         struct rbd_spec *spec = NULL;
4823         struct rbd_client *rbdc;
4824         struct ceph_osd_client *osdc;
4825         int rc = -ENOMEM;
4826
4827         if (!try_module_get(THIS_MODULE))
4828                 return -ENODEV;
4829
4830         /* parse add command */
4831         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4832         if (rc < 0)
4833                 goto err_out_module;
4834
4835         rbdc = rbd_get_client(ceph_opts);
4836         if (IS_ERR(rbdc)) {
4837                 rc = PTR_ERR(rbdc);
4838                 goto err_out_args;
4839         }
4840         ceph_opts = NULL;       /* rbd_dev client now owns this */
4841
4842         /* pick the pool */
4843         osdc = &rbdc->client->osdc;
4844         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
4845         if (rc < 0)
4846                 goto err_out_client;
4847         spec->pool_id = (u64)rc;
4848
4849         /* The ceph file layout needs to fit pool id in 32 bits */
4850
4851         if (spec->pool_id > (u64)U32_MAX) {
4852                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
4853                                 (unsigned long long)spec->pool_id, U32_MAX);
4854                 rc = -EIO;
4855                 goto err_out_client;
4856         }
4857
4858         rbd_dev = rbd_dev_create(rbdc, spec);
4859         if (!rbd_dev)
4860                 goto err_out_client;
4861         rbdc = NULL;            /* rbd_dev now owns this */
4862         spec = NULL;            /* rbd_dev now owns this */
4863
4864         rbd_dev->mapping.read_only = rbd_opts->read_only;
4865         kfree(rbd_opts);
4866         rbd_opts = NULL;        /* done with this */
4867
4868         rc = rbd_dev_image_probe(rbd_dev);
4869         if (rc < 0)
4870                 goto err_out_rbd_dev;
4871
4872         rc = rbd_dev_device_setup(rbd_dev);
4873         if (!rc)
4874                 return count;
4875
4876         rbd_dev_image_release(rbd_dev);
4877 err_out_rbd_dev:
4878         rbd_dev_destroy(rbd_dev);
4879 err_out_client:
4880         rbd_put_client(rbdc);
4881 err_out_args:
4882         if (ceph_opts)
4883                 ceph_destroy_options(ceph_opts);
4884         kfree(rbd_opts);
4885         rbd_spec_put(spec);
4886 err_out_module:
4887         module_put(THIS_MODULE);
4888
4889         dout("Error adding device %s\n", buf);
4890
4891         return (ssize_t)rc;
4892 }
4893
4894 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
4895 {
4896         struct list_head *tmp;
4897         struct rbd_device *rbd_dev;
4898
4899         spin_lock(&rbd_dev_list_lock);
4900         list_for_each(tmp, &rbd_dev_list) {
4901                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4902                 if (rbd_dev->dev_id == dev_id) {
4903                         spin_unlock(&rbd_dev_list_lock);
4904                         return rbd_dev;
4905                 }
4906         }
4907         spin_unlock(&rbd_dev_list_lock);
4908         return NULL;
4909 }
4910
4911 static void rbd_dev_device_release(struct device *dev)
4912 {
4913         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4914
4915         rbd_free_disk(rbd_dev);
4916         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4917         rbd_dev_clear_mapping(rbd_dev);
4918         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4919         rbd_dev->major = 0;
4920         rbd_dev_id_put(rbd_dev);
4921         rbd_dev_mapping_clear(rbd_dev);
4922 }
4923
4924 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
4925 {
4926         while (rbd_dev->parent) {
4927                 struct rbd_device *first = rbd_dev;
4928                 struct rbd_device *second = first->parent;
4929                 struct rbd_device *third;
4930
4931                 /*
4932                  * Follow to the parent with no grandparent and
4933                  * remove it.
4934                  */
4935                 while (second && (third = second->parent)) {
4936                         first = second;
4937                         second = third;
4938                 }
4939                 rbd_assert(second);
4940                 rbd_dev_image_release(second);
4941                 first->parent = NULL;
4942                 first->parent_overlap = 0;
4943
4944                 rbd_assert(first->parent_spec);
4945                 rbd_spec_put(first->parent_spec);
4946                 first->parent_spec = NULL;
4947         }
4948 }
4949
4950 static ssize_t rbd_remove(struct bus_type *bus,
4951                           const char *buf,
4952                           size_t count)
4953 {
4954         struct rbd_device *rbd_dev = NULL;
4955         int target_id;
4956         unsigned long ul;
4957         int ret;
4958
4959         ret = strict_strtoul(buf, 10, &ul);
4960         if (ret)
4961                 return ret;
4962
4963         /* convert to int; abort if we lost anything in the conversion */
4964         target_id = (int) ul;
4965         if (target_id != ul)
4966                 return -EINVAL;
4967
4968         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4969
4970         rbd_dev = __rbd_get_dev(target_id);
4971         if (!rbd_dev) {
4972                 ret = -ENOENT;
4973                 goto done;
4974         }
4975
4976         spin_lock_irq(&rbd_dev->lock);
4977         if (rbd_dev->open_count)
4978                 ret = -EBUSY;
4979         else
4980                 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
4981         spin_unlock_irq(&rbd_dev->lock);
4982         if (ret < 0)
4983                 goto done;
4984         ret = count;
4985         rbd_bus_del_dev(rbd_dev);
4986         rbd_dev_image_release(rbd_dev);
4987         module_put(THIS_MODULE);
4988 done:
4989         mutex_unlock(&ctl_mutex);
4990
4991         return ret;
4992 }
4993
4994 /*
4995  * create control files in sysfs
4996  * /sys/bus/rbd/...
4997  */
4998 static int rbd_sysfs_init(void)
4999 {
5000         int ret;
5001
5002         ret = device_register(&rbd_root_dev);
5003         if (ret < 0)
5004                 return ret;
5005
5006         ret = bus_register(&rbd_bus_type);
5007         if (ret < 0)
5008                 device_unregister(&rbd_root_dev);
5009
5010         return ret;
5011 }
5012
5013 static void rbd_sysfs_cleanup(void)
5014 {
5015         bus_unregister(&rbd_bus_type);
5016         device_unregister(&rbd_root_dev);
5017 }
5018
5019 static int rbd_slab_init(void)
5020 {
5021         rbd_assert(!rbd_img_request_cache);
5022         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5023                                         sizeof (struct rbd_img_request),
5024                                         __alignof__(struct rbd_img_request),
5025                                         0, NULL);
5026         if (!rbd_img_request_cache)
5027                 return -ENOMEM;
5028
5029         rbd_assert(!rbd_obj_request_cache);
5030         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5031                                         sizeof (struct rbd_obj_request),
5032                                         __alignof__(struct rbd_obj_request),
5033                                         0, NULL);
5034         if (!rbd_obj_request_cache)
5035                 goto out_err;
5036
5037         rbd_assert(!rbd_segment_name_cache);
5038         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5039                                         MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5040         if (rbd_segment_name_cache)
5041                 return 0;
5042 out_err:
5043         if (rbd_obj_request_cache) {
5044                 kmem_cache_destroy(rbd_obj_request_cache);
5045                 rbd_obj_request_cache = NULL;
5046         }
5047
5048         kmem_cache_destroy(rbd_img_request_cache);
5049         rbd_img_request_cache = NULL;
5050
5051         return -ENOMEM;
5052 }
5053
5054 static void rbd_slab_exit(void)
5055 {
5056         rbd_assert(rbd_segment_name_cache);
5057         kmem_cache_destroy(rbd_segment_name_cache);
5058         rbd_segment_name_cache = NULL;
5059
5060         rbd_assert(rbd_obj_request_cache);
5061         kmem_cache_destroy(rbd_obj_request_cache);
5062         rbd_obj_request_cache = NULL;
5063
5064         rbd_assert(rbd_img_request_cache);
5065         kmem_cache_destroy(rbd_img_request_cache);
5066         rbd_img_request_cache = NULL;
5067 }
5068
5069 static int __init rbd_init(void)
5070 {
5071         int rc;
5072
5073         if (!libceph_compatible(NULL)) {
5074                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5075
5076                 return -EINVAL;
5077         }
5078         rc = rbd_slab_init();
5079         if (rc)
5080                 return rc;
5081         rc = rbd_sysfs_init();
5082         if (rc)
5083                 rbd_slab_exit();
5084         else
5085                 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5086
5087         return rc;
5088 }
5089
5090 static void __exit rbd_exit(void)
5091 {
5092         rbd_sysfs_cleanup();
5093         rbd_slab_exit();
5094 }
5095
5096 module_init(rbd_init);
5097 module_exit(rbd_exit);
5098
5099 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5100 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5101 MODULE_DESCRIPTION("rados block device");
5102
5103 /* following authorship retained from original osdblk.c */
5104 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5105
5106 MODULE_LICENSE("GPL");