]> Pileus Git - ~andy/linux/blob - drivers/block/rbd.c
rbd: allocate image object names with a slab allocator
[~andy/linux] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG       /* Activate rbd_assert() calls */
48
49 /*
50  * The basic unit of block I/O is a sector.  It is interpreted in a
51  * number of contexts in Linux (blk, bio, genhd), but the default is
52  * universally 512 bytes.  These symbols are just slightly more
53  * meaningful than the bare numbers they represent.
54  */
55 #define SECTOR_SHIFT    9
56 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
57
58 #define RBD_DRV_NAME "rbd"
59 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
60
61 #define RBD_MINORS_PER_MAJOR    256             /* max minors per blkdev */
62
63 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
64 #define RBD_MAX_SNAP_NAME_LEN   \
65                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
66
67 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
68
69 #define RBD_SNAP_HEAD_NAME      "-"
70
71 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
72
73 /* This allows a single page to hold an image name sent by OSD */
74 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
75 #define RBD_IMAGE_ID_LEN_MAX    64
76
77 #define RBD_OBJ_PREFIX_LEN_MAX  64
78
79 /* Feature bits */
80
81 #define RBD_FEATURE_LAYERING    (1<<0)
82 #define RBD_FEATURE_STRIPINGV2  (1<<1)
83 #define RBD_FEATURES_ALL \
84             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
85
86 /* Features supported by this (client software) implementation. */
87
88 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
89
90 /*
91  * An RBD device name will be "rbd#", where the "rbd" comes from
92  * RBD_DRV_NAME above, and # is a unique integer identifier.
93  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
94  * enough to hold all possible device names.
95  */
96 #define DEV_NAME_LEN            32
97 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
98
99 /*
100  * block device image metadata (in-memory version)
101  */
102 struct rbd_image_header {
103         /* These four fields never change for a given rbd image */
104         char *object_prefix;
105         u64 features;
106         __u8 obj_order;
107         __u8 crypt_type;
108         __u8 comp_type;
109
110         /* The remaining fields need to be updated occasionally */
111         u64 image_size;
112         struct ceph_snap_context *snapc;
113         char *snap_names;
114         u64 *snap_sizes;
115
116         u64 stripe_unit;
117         u64 stripe_count;
118 };
119
120 /*
121  * An rbd image specification.
122  *
123  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
124  * identify an image.  Each rbd_dev structure includes a pointer to
125  * an rbd_spec structure that encapsulates this identity.
126  *
127  * Each of the id's in an rbd_spec has an associated name.  For a
128  * user-mapped image, the names are supplied and the id's associated
129  * with them are looked up.  For a layered image, a parent image is
130  * defined by the tuple, and the names are looked up.
131  *
132  * An rbd_dev structure contains a parent_spec pointer which is
133  * non-null if the image it represents is a child in a layered
134  * image.  This pointer will refer to the rbd_spec structure used
135  * by the parent rbd_dev for its own identity (i.e., the structure
136  * is shared between the parent and child).
137  *
138  * Since these structures are populated once, during the discovery
139  * phase of image construction, they are effectively immutable so
140  * we make no effort to synchronize access to them.
141  *
142  * Note that code herein does not assume the image name is known (it
143  * could be a null pointer).
144  */
145 struct rbd_spec {
146         u64             pool_id;
147         const char      *pool_name;
148
149         const char      *image_id;
150         const char      *image_name;
151
152         u64             snap_id;
153         const char      *snap_name;
154
155         struct kref     kref;
156 };
157
158 /*
159  * an instance of the client.  multiple devices may share an rbd client.
160  */
161 struct rbd_client {
162         struct ceph_client      *client;
163         struct kref             kref;
164         struct list_head        node;
165 };
166
167 struct rbd_img_request;
168 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
169
170 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
171
172 struct rbd_obj_request;
173 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
174
175 enum obj_request_type {
176         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
177 };
178
179 enum obj_req_flags {
180         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
181         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
182         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
183         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
184 };
185
186 struct rbd_obj_request {
187         const char              *object_name;
188         u64                     offset;         /* object start byte */
189         u64                     length;         /* bytes from offset */
190         unsigned long           flags;
191
192         /*
193          * An object request associated with an image will have its
194          * img_data flag set; a standalone object request will not.
195          *
196          * A standalone object request will have which == BAD_WHICH
197          * and a null obj_request pointer.
198          *
199          * An object request initiated in support of a layered image
200          * object (to check for its existence before a write) will
201          * have which == BAD_WHICH and a non-null obj_request pointer.
202          *
203          * Finally, an object request for rbd image data will have
204          * which != BAD_WHICH, and will have a non-null img_request
205          * pointer.  The value of which will be in the range
206          * 0..(img_request->obj_request_count-1).
207          */
208         union {
209                 struct rbd_obj_request  *obj_request;   /* STAT op */
210                 struct {
211                         struct rbd_img_request  *img_request;
212                         u64                     img_offset;
213                         /* links for img_request->obj_requests list */
214                         struct list_head        links;
215                 };
216         };
217         u32                     which;          /* posn image request list */
218
219         enum obj_request_type   type;
220         union {
221                 struct bio      *bio_list;
222                 struct {
223                         struct page     **pages;
224                         u32             page_count;
225                 };
226         };
227         struct page             **copyup_pages;
228
229         struct ceph_osd_request *osd_req;
230
231         u64                     xferred;        /* bytes transferred */
232         int                     result;
233
234         rbd_obj_callback_t      callback;
235         struct completion       completion;
236
237         struct kref             kref;
238 };
239
240 enum img_req_flags {
241         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
242         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
243         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
244 };
245
246 struct rbd_img_request {
247         struct rbd_device       *rbd_dev;
248         u64                     offset; /* starting image byte offset */
249         u64                     length; /* byte count from offset */
250         unsigned long           flags;
251         union {
252                 u64                     snap_id;        /* for reads */
253                 struct ceph_snap_context *snapc;        /* for writes */
254         };
255         union {
256                 struct request          *rq;            /* block request */
257                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
258         };
259         struct page             **copyup_pages;
260         spinlock_t              completion_lock;/* protects next_completion */
261         u32                     next_completion;
262         rbd_img_callback_t      callback;
263         u64                     xferred;/* aggregate bytes transferred */
264         int                     result; /* first nonzero obj_request result */
265
266         u32                     obj_request_count;
267         struct list_head        obj_requests;   /* rbd_obj_request structs */
268
269         struct kref             kref;
270 };
271
272 #define for_each_obj_request(ireq, oreq) \
273         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
274 #define for_each_obj_request_from(ireq, oreq) \
275         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
276 #define for_each_obj_request_safe(ireq, oreq, n) \
277         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
278
279 struct rbd_mapping {
280         u64                     size;
281         u64                     features;
282         bool                    read_only;
283 };
284
285 /*
286  * a single device
287  */
288 struct rbd_device {
289         int                     dev_id;         /* blkdev unique id */
290
291         int                     major;          /* blkdev assigned major */
292         struct gendisk          *disk;          /* blkdev's gendisk and rq */
293
294         u32                     image_format;   /* Either 1 or 2 */
295         struct rbd_client       *rbd_client;
296
297         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
298
299         spinlock_t              lock;           /* queue, flags, open_count */
300
301         struct rbd_image_header header;
302         unsigned long           flags;          /* possibly lock protected */
303         struct rbd_spec         *spec;
304
305         char                    *header_name;
306
307         struct ceph_file_layout layout;
308
309         struct ceph_osd_event   *watch_event;
310         struct rbd_obj_request  *watch_request;
311
312         struct rbd_spec         *parent_spec;
313         u64                     parent_overlap;
314         struct rbd_device       *parent;
315
316         /* protects updating the header */
317         struct rw_semaphore     header_rwsem;
318
319         struct rbd_mapping      mapping;
320
321         struct list_head        node;
322
323         /* sysfs related */
324         struct device           dev;
325         unsigned long           open_count;     /* protected by lock */
326 };
327
328 /*
329  * Flag bits for rbd_dev->flags.  If atomicity is required,
330  * rbd_dev->lock is used to protect access.
331  *
332  * Currently, only the "removing" flag (which is coupled with the
333  * "open_count" field) requires atomic access.
334  */
335 enum rbd_dev_flags {
336         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
337         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
338 };
339
340 static DEFINE_MUTEX(ctl_mutex);   /* Serialize open/close/setup/teardown */
341
342 static LIST_HEAD(rbd_dev_list);    /* devices */
343 static DEFINE_SPINLOCK(rbd_dev_list_lock);
344
345 static LIST_HEAD(rbd_client_list);              /* clients */
346 static DEFINE_SPINLOCK(rbd_client_list_lock);
347
348 /* Slab caches for frequently-allocated structures */
349
350 static struct kmem_cache        *rbd_img_request_cache;
351 static struct kmem_cache        *rbd_obj_request_cache;
352 static struct kmem_cache        *rbd_segment_name_cache;
353
354 static int rbd_img_request_submit(struct rbd_img_request *img_request);
355
356 static void rbd_dev_device_release(struct device *dev);
357
358 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
359                        size_t count);
360 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
361                           size_t count);
362 static int rbd_dev_image_probe(struct rbd_device *rbd_dev);
363
364 static struct bus_attribute rbd_bus_attrs[] = {
365         __ATTR(add, S_IWUSR, NULL, rbd_add),
366         __ATTR(remove, S_IWUSR, NULL, rbd_remove),
367         __ATTR_NULL
368 };
369
370 static struct bus_type rbd_bus_type = {
371         .name           = "rbd",
372         .bus_attrs      = rbd_bus_attrs,
373 };
374
375 static void rbd_root_dev_release(struct device *dev)
376 {
377 }
378
379 static struct device rbd_root_dev = {
380         .init_name =    "rbd",
381         .release =      rbd_root_dev_release,
382 };
383
384 static __printf(2, 3)
385 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
386 {
387         struct va_format vaf;
388         va_list args;
389
390         va_start(args, fmt);
391         vaf.fmt = fmt;
392         vaf.va = &args;
393
394         if (!rbd_dev)
395                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
396         else if (rbd_dev->disk)
397                 printk(KERN_WARNING "%s: %s: %pV\n",
398                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
399         else if (rbd_dev->spec && rbd_dev->spec->image_name)
400                 printk(KERN_WARNING "%s: image %s: %pV\n",
401                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
402         else if (rbd_dev->spec && rbd_dev->spec->image_id)
403                 printk(KERN_WARNING "%s: id %s: %pV\n",
404                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
405         else    /* punt */
406                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
407                         RBD_DRV_NAME, rbd_dev, &vaf);
408         va_end(args);
409 }
410
411 #ifdef RBD_DEBUG
412 #define rbd_assert(expr)                                                \
413                 if (unlikely(!(expr))) {                                \
414                         printk(KERN_ERR "\nAssertion failure in %s() "  \
415                                                 "at line %d:\n\n"       \
416                                         "\trbd_assert(%s);\n\n",        \
417                                         __func__, __LINE__, #expr);     \
418                         BUG();                                          \
419                 }
420 #else /* !RBD_DEBUG */
421 #  define rbd_assert(expr)      ((void) 0)
422 #endif /* !RBD_DEBUG */
423
424 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
425 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
426 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
427
428 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
429 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev);
430 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
431                                         u64 snap_id);
432 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
433                                 u8 *order, u64 *snap_size);
434 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
435                 u64 *snap_features);
436 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
437
438 static int rbd_open(struct block_device *bdev, fmode_t mode)
439 {
440         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
441         bool removing = false;
442
443         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
444                 return -EROFS;
445
446         spin_lock_irq(&rbd_dev->lock);
447         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
448                 removing = true;
449         else
450                 rbd_dev->open_count++;
451         spin_unlock_irq(&rbd_dev->lock);
452         if (removing)
453                 return -ENOENT;
454
455         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
456         (void) get_device(&rbd_dev->dev);
457         set_device_ro(bdev, rbd_dev->mapping.read_only);
458         mutex_unlock(&ctl_mutex);
459
460         return 0;
461 }
462
463 static int rbd_release(struct gendisk *disk, fmode_t mode)
464 {
465         struct rbd_device *rbd_dev = disk->private_data;
466         unsigned long open_count_before;
467
468         spin_lock_irq(&rbd_dev->lock);
469         open_count_before = rbd_dev->open_count--;
470         spin_unlock_irq(&rbd_dev->lock);
471         rbd_assert(open_count_before > 0);
472
473         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
474         put_device(&rbd_dev->dev);
475         mutex_unlock(&ctl_mutex);
476
477         return 0;
478 }
479
480 static const struct block_device_operations rbd_bd_ops = {
481         .owner                  = THIS_MODULE,
482         .open                   = rbd_open,
483         .release                = rbd_release,
484 };
485
486 /*
487  * Initialize an rbd client instance.
488  * We own *ceph_opts.
489  */
490 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
491 {
492         struct rbd_client *rbdc;
493         int ret = -ENOMEM;
494
495         dout("%s:\n", __func__);
496         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
497         if (!rbdc)
498                 goto out_opt;
499
500         kref_init(&rbdc->kref);
501         INIT_LIST_HEAD(&rbdc->node);
502
503         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
504
505         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
506         if (IS_ERR(rbdc->client))
507                 goto out_mutex;
508         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
509
510         ret = ceph_open_session(rbdc->client);
511         if (ret < 0)
512                 goto out_err;
513
514         spin_lock(&rbd_client_list_lock);
515         list_add_tail(&rbdc->node, &rbd_client_list);
516         spin_unlock(&rbd_client_list_lock);
517
518         mutex_unlock(&ctl_mutex);
519         dout("%s: rbdc %p\n", __func__, rbdc);
520
521         return rbdc;
522
523 out_err:
524         ceph_destroy_client(rbdc->client);
525 out_mutex:
526         mutex_unlock(&ctl_mutex);
527         kfree(rbdc);
528 out_opt:
529         if (ceph_opts)
530                 ceph_destroy_options(ceph_opts);
531         dout("%s: error %d\n", __func__, ret);
532
533         return ERR_PTR(ret);
534 }
535
536 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
537 {
538         kref_get(&rbdc->kref);
539
540         return rbdc;
541 }
542
543 /*
544  * Find a ceph client with specific addr and configuration.  If
545  * found, bump its reference count.
546  */
547 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
548 {
549         struct rbd_client *client_node;
550         bool found = false;
551
552         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
553                 return NULL;
554
555         spin_lock(&rbd_client_list_lock);
556         list_for_each_entry(client_node, &rbd_client_list, node) {
557                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
558                         __rbd_get_client(client_node);
559
560                         found = true;
561                         break;
562                 }
563         }
564         spin_unlock(&rbd_client_list_lock);
565
566         return found ? client_node : NULL;
567 }
568
569 /*
570  * mount options
571  */
572 enum {
573         Opt_last_int,
574         /* int args above */
575         Opt_last_string,
576         /* string args above */
577         Opt_read_only,
578         Opt_read_write,
579         /* Boolean args above */
580         Opt_last_bool,
581 };
582
583 static match_table_t rbd_opts_tokens = {
584         /* int args above */
585         /* string args above */
586         {Opt_read_only, "read_only"},
587         {Opt_read_only, "ro"},          /* Alternate spelling */
588         {Opt_read_write, "read_write"},
589         {Opt_read_write, "rw"},         /* Alternate spelling */
590         /* Boolean args above */
591         {-1, NULL}
592 };
593
594 struct rbd_options {
595         bool    read_only;
596 };
597
598 #define RBD_READ_ONLY_DEFAULT   false
599
600 static int parse_rbd_opts_token(char *c, void *private)
601 {
602         struct rbd_options *rbd_opts = private;
603         substring_t argstr[MAX_OPT_ARGS];
604         int token, intval, ret;
605
606         token = match_token(c, rbd_opts_tokens, argstr);
607         if (token < 0)
608                 return -EINVAL;
609
610         if (token < Opt_last_int) {
611                 ret = match_int(&argstr[0], &intval);
612                 if (ret < 0) {
613                         pr_err("bad mount option arg (not int) "
614                                "at '%s'\n", c);
615                         return ret;
616                 }
617                 dout("got int token %d val %d\n", token, intval);
618         } else if (token > Opt_last_int && token < Opt_last_string) {
619                 dout("got string token %d val %s\n", token,
620                      argstr[0].from);
621         } else if (token > Opt_last_string && token < Opt_last_bool) {
622                 dout("got Boolean token %d\n", token);
623         } else {
624                 dout("got token %d\n", token);
625         }
626
627         switch (token) {
628         case Opt_read_only:
629                 rbd_opts->read_only = true;
630                 break;
631         case Opt_read_write:
632                 rbd_opts->read_only = false;
633                 break;
634         default:
635                 rbd_assert(false);
636                 break;
637         }
638         return 0;
639 }
640
641 /*
642  * Get a ceph client with specific addr and configuration, if one does
643  * not exist create it.
644  */
645 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
646 {
647         struct rbd_client *rbdc;
648
649         rbdc = rbd_client_find(ceph_opts);
650         if (rbdc)       /* using an existing client */
651                 ceph_destroy_options(ceph_opts);
652         else
653                 rbdc = rbd_client_create(ceph_opts);
654
655         return rbdc;
656 }
657
658 /*
659  * Destroy ceph client
660  *
661  * Caller must hold rbd_client_list_lock.
662  */
663 static void rbd_client_release(struct kref *kref)
664 {
665         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
666
667         dout("%s: rbdc %p\n", __func__, rbdc);
668         spin_lock(&rbd_client_list_lock);
669         list_del(&rbdc->node);
670         spin_unlock(&rbd_client_list_lock);
671
672         ceph_destroy_client(rbdc->client);
673         kfree(rbdc);
674 }
675
676 /*
677  * Drop reference to ceph client node. If it's not referenced anymore, release
678  * it.
679  */
680 static void rbd_put_client(struct rbd_client *rbdc)
681 {
682         if (rbdc)
683                 kref_put(&rbdc->kref, rbd_client_release);
684 }
685
686 static bool rbd_image_format_valid(u32 image_format)
687 {
688         return image_format == 1 || image_format == 2;
689 }
690
691 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
692 {
693         size_t size;
694         u32 snap_count;
695
696         /* The header has to start with the magic rbd header text */
697         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
698                 return false;
699
700         /* The bio layer requires at least sector-sized I/O */
701
702         if (ondisk->options.order < SECTOR_SHIFT)
703                 return false;
704
705         /* If we use u64 in a few spots we may be able to loosen this */
706
707         if (ondisk->options.order > 8 * sizeof (int) - 1)
708                 return false;
709
710         /*
711          * The size of a snapshot header has to fit in a size_t, and
712          * that limits the number of snapshots.
713          */
714         snap_count = le32_to_cpu(ondisk->snap_count);
715         size = SIZE_MAX - sizeof (struct ceph_snap_context);
716         if (snap_count > size / sizeof (__le64))
717                 return false;
718
719         /*
720          * Not only that, but the size of the entire the snapshot
721          * header must also be representable in a size_t.
722          */
723         size -= snap_count * sizeof (__le64);
724         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
725                 return false;
726
727         return true;
728 }
729
730 /*
731  * Create a new header structure, translate header format from the on-disk
732  * header.
733  */
734 static int rbd_header_from_disk(struct rbd_image_header *header,
735                                  struct rbd_image_header_ondisk *ondisk)
736 {
737         u32 snap_count;
738         size_t len;
739         size_t size;
740         u32 i;
741
742         memset(header, 0, sizeof (*header));
743
744         snap_count = le32_to_cpu(ondisk->snap_count);
745
746         len = strnlen(ondisk->object_prefix, sizeof (ondisk->object_prefix));
747         header->object_prefix = kmalloc(len + 1, GFP_KERNEL);
748         if (!header->object_prefix)
749                 return -ENOMEM;
750         memcpy(header->object_prefix, ondisk->object_prefix, len);
751         header->object_prefix[len] = '\0';
752
753         if (snap_count) {
754                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
755
756                 /* Save a copy of the snapshot names */
757
758                 if (snap_names_len > (u64) SIZE_MAX)
759                         return -EIO;
760                 header->snap_names = kmalloc(snap_names_len, GFP_KERNEL);
761                 if (!header->snap_names)
762                         goto out_err;
763                 /*
764                  * Note that rbd_dev_v1_header_read() guarantees
765                  * the ondisk buffer we're working with has
766                  * snap_names_len bytes beyond the end of the
767                  * snapshot id array, this memcpy() is safe.
768                  */
769                 memcpy(header->snap_names, &ondisk->snaps[snap_count],
770                         snap_names_len);
771
772                 /* Record each snapshot's size */
773
774                 size = snap_count * sizeof (*header->snap_sizes);
775                 header->snap_sizes = kmalloc(size, GFP_KERNEL);
776                 if (!header->snap_sizes)
777                         goto out_err;
778                 for (i = 0; i < snap_count; i++)
779                         header->snap_sizes[i] =
780                                 le64_to_cpu(ondisk->snaps[i].image_size);
781         } else {
782                 header->snap_names = NULL;
783                 header->snap_sizes = NULL;
784         }
785
786         header->features = 0;   /* No features support in v1 images */
787         header->obj_order = ondisk->options.order;
788         header->crypt_type = ondisk->options.crypt_type;
789         header->comp_type = ondisk->options.comp_type;
790
791         /* Allocate and fill in the snapshot context */
792
793         header->image_size = le64_to_cpu(ondisk->image_size);
794
795         header->snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
796         if (!header->snapc)
797                 goto out_err;
798         header->snapc->seq = le64_to_cpu(ondisk->snap_seq);
799         for (i = 0; i < snap_count; i++)
800                 header->snapc->snaps[i] = le64_to_cpu(ondisk->snaps[i].id);
801
802         return 0;
803
804 out_err:
805         kfree(header->snap_sizes);
806         header->snap_sizes = NULL;
807         kfree(header->snap_names);
808         header->snap_names = NULL;
809         kfree(header->object_prefix);
810         header->object_prefix = NULL;
811
812         return -ENOMEM;
813 }
814
815 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
816 {
817         const char *snap_name;
818
819         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
820
821         /* Skip over names until we find the one we are looking for */
822
823         snap_name = rbd_dev->header.snap_names;
824         while (which--)
825                 snap_name += strlen(snap_name) + 1;
826
827         return kstrdup(snap_name, GFP_KERNEL);
828 }
829
830 /*
831  * Snapshot id comparison function for use with qsort()/bsearch().
832  * Note that result is for snapshots in *descending* order.
833  */
834 static int snapid_compare_reverse(const void *s1, const void *s2)
835 {
836         u64 snap_id1 = *(u64 *)s1;
837         u64 snap_id2 = *(u64 *)s2;
838
839         if (snap_id1 < snap_id2)
840                 return 1;
841         return snap_id1 == snap_id2 ? 0 : -1;
842 }
843
844 /*
845  * Search a snapshot context to see if the given snapshot id is
846  * present.
847  *
848  * Returns the position of the snapshot id in the array if it's found,
849  * or BAD_SNAP_INDEX otherwise.
850  *
851  * Note: The snapshot array is in kept sorted (by the osd) in
852  * reverse order, highest snapshot id first.
853  */
854 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
855 {
856         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
857         u64 *found;
858
859         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
860                                 sizeof (snap_id), snapid_compare_reverse);
861
862         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
863 }
864
865 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
866                                         u64 snap_id)
867 {
868         u32 which;
869
870         which = rbd_dev_snap_index(rbd_dev, snap_id);
871         if (which == BAD_SNAP_INDEX)
872                 return NULL;
873
874         return _rbd_dev_v1_snap_name(rbd_dev, which);
875 }
876
877 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
878 {
879         if (snap_id == CEPH_NOSNAP)
880                 return RBD_SNAP_HEAD_NAME;
881
882         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
883         if (rbd_dev->image_format == 1)
884                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
885
886         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
887 }
888
889 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
890                                 u64 *snap_size)
891 {
892         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
893         if (snap_id == CEPH_NOSNAP) {
894                 *snap_size = rbd_dev->header.image_size;
895         } else if (rbd_dev->image_format == 1) {
896                 u32 which;
897
898                 which = rbd_dev_snap_index(rbd_dev, snap_id);
899                 if (which == BAD_SNAP_INDEX)
900                         return -ENOENT;
901
902                 *snap_size = rbd_dev->header.snap_sizes[which];
903         } else {
904                 u64 size = 0;
905                 int ret;
906
907                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
908                 if (ret)
909                         return ret;
910
911                 *snap_size = size;
912         }
913         return 0;
914 }
915
916 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
917                         u64 *snap_features)
918 {
919         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
920         if (snap_id == CEPH_NOSNAP) {
921                 *snap_features = rbd_dev->header.features;
922         } else if (rbd_dev->image_format == 1) {
923                 *snap_features = 0;     /* No features for format 1 */
924         } else {
925                 u64 features = 0;
926                 int ret;
927
928                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
929                 if (ret)
930                         return ret;
931
932                 *snap_features = features;
933         }
934         return 0;
935 }
936
937 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
938 {
939         const char *snap_name = rbd_dev->spec->snap_name;
940         u64 snap_id;
941         u64 size = 0;
942         u64 features = 0;
943         int ret;
944
945         if (strcmp(snap_name, RBD_SNAP_HEAD_NAME)) {
946                 snap_id = rbd_snap_id_by_name(rbd_dev, snap_name);
947                 if (snap_id == CEPH_NOSNAP)
948                         return -ENOENT;
949         } else {
950                 snap_id = CEPH_NOSNAP;
951         }
952
953         ret = rbd_snap_size(rbd_dev, snap_id, &size);
954         if (ret)
955                 return ret;
956         ret = rbd_snap_features(rbd_dev, snap_id, &features);
957         if (ret)
958                 return ret;
959
960         rbd_dev->mapping.size = size;
961         rbd_dev->mapping.features = features;
962
963         /* If we are mapping a snapshot it must be marked read-only */
964
965         if (snap_id != CEPH_NOSNAP)
966                 rbd_dev->mapping.read_only = true;
967
968         return 0;
969 }
970
971 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
972 {
973         rbd_dev->mapping.size = 0;
974         rbd_dev->mapping.features = 0;
975         rbd_dev->mapping.read_only = true;
976 }
977
978 static void rbd_dev_clear_mapping(struct rbd_device *rbd_dev)
979 {
980         rbd_dev->mapping.size = 0;
981         rbd_dev->mapping.features = 0;
982         rbd_dev->mapping.read_only = true;
983 }
984
985 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
986 {
987         char *name;
988         u64 segment;
989         int ret;
990
991         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
992         if (!name)
993                 return NULL;
994         segment = offset >> rbd_dev->header.obj_order;
995         ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx",
996                         rbd_dev->header.object_prefix, segment);
997         if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
998                 pr_err("error formatting segment name for #%llu (%d)\n",
999                         segment, ret);
1000                 kfree(name);
1001                 name = NULL;
1002         }
1003
1004         return name;
1005 }
1006
1007 static void rbd_segment_name_free(const char *name)
1008 {
1009         /* The explicit cast here is needed to drop the const qualifier */
1010
1011         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1012 }
1013
1014 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1015 {
1016         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1017
1018         return offset & (segment_size - 1);
1019 }
1020
1021 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1022                                 u64 offset, u64 length)
1023 {
1024         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1025
1026         offset &= segment_size - 1;
1027
1028         rbd_assert(length <= U64_MAX - offset);
1029         if (offset + length > segment_size)
1030                 length = segment_size - offset;
1031
1032         return length;
1033 }
1034
1035 /*
1036  * returns the size of an object in the image
1037  */
1038 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1039 {
1040         return 1 << header->obj_order;
1041 }
1042
1043 /*
1044  * bio helpers
1045  */
1046
1047 static void bio_chain_put(struct bio *chain)
1048 {
1049         struct bio *tmp;
1050
1051         while (chain) {
1052                 tmp = chain;
1053                 chain = chain->bi_next;
1054                 bio_put(tmp);
1055         }
1056 }
1057
1058 /*
1059  * zeros a bio chain, starting at specific offset
1060  */
1061 static void zero_bio_chain(struct bio *chain, int start_ofs)
1062 {
1063         struct bio_vec *bv;
1064         unsigned long flags;
1065         void *buf;
1066         int i;
1067         int pos = 0;
1068
1069         while (chain) {
1070                 bio_for_each_segment(bv, chain, i) {
1071                         if (pos + bv->bv_len > start_ofs) {
1072                                 int remainder = max(start_ofs - pos, 0);
1073                                 buf = bvec_kmap_irq(bv, &flags);
1074                                 memset(buf + remainder, 0,
1075                                        bv->bv_len - remainder);
1076                                 bvec_kunmap_irq(buf, &flags);
1077                         }
1078                         pos += bv->bv_len;
1079                 }
1080
1081                 chain = chain->bi_next;
1082         }
1083 }
1084
1085 /*
1086  * similar to zero_bio_chain(), zeros data defined by a page array,
1087  * starting at the given byte offset from the start of the array and
1088  * continuing up to the given end offset.  The pages array is
1089  * assumed to be big enough to hold all bytes up to the end.
1090  */
1091 static void zero_pages(struct page **pages, u64 offset, u64 end)
1092 {
1093         struct page **page = &pages[offset >> PAGE_SHIFT];
1094
1095         rbd_assert(end > offset);
1096         rbd_assert(end - offset <= (u64)SIZE_MAX);
1097         while (offset < end) {
1098                 size_t page_offset;
1099                 size_t length;
1100                 unsigned long flags;
1101                 void *kaddr;
1102
1103                 page_offset = (size_t)(offset & ~PAGE_MASK);
1104                 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
1105                 local_irq_save(flags);
1106                 kaddr = kmap_atomic(*page);
1107                 memset(kaddr + page_offset, 0, length);
1108                 kunmap_atomic(kaddr);
1109                 local_irq_restore(flags);
1110
1111                 offset += length;
1112                 page++;
1113         }
1114 }
1115
1116 /*
1117  * Clone a portion of a bio, starting at the given byte offset
1118  * and continuing for the number of bytes indicated.
1119  */
1120 static struct bio *bio_clone_range(struct bio *bio_src,
1121                                         unsigned int offset,
1122                                         unsigned int len,
1123                                         gfp_t gfpmask)
1124 {
1125         struct bio_vec *bv;
1126         unsigned int resid;
1127         unsigned short idx;
1128         unsigned int voff;
1129         unsigned short end_idx;
1130         unsigned short vcnt;
1131         struct bio *bio;
1132
1133         /* Handle the easy case for the caller */
1134
1135         if (!offset && len == bio_src->bi_size)
1136                 return bio_clone(bio_src, gfpmask);
1137
1138         if (WARN_ON_ONCE(!len))
1139                 return NULL;
1140         if (WARN_ON_ONCE(len > bio_src->bi_size))
1141                 return NULL;
1142         if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1143                 return NULL;
1144
1145         /* Find first affected segment... */
1146
1147         resid = offset;
1148         __bio_for_each_segment(bv, bio_src, idx, 0) {
1149                 if (resid < bv->bv_len)
1150                         break;
1151                 resid -= bv->bv_len;
1152         }
1153         voff = resid;
1154
1155         /* ...and the last affected segment */
1156
1157         resid += len;
1158         __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1159                 if (resid <= bv->bv_len)
1160                         break;
1161                 resid -= bv->bv_len;
1162         }
1163         vcnt = end_idx - idx + 1;
1164
1165         /* Build the clone */
1166
1167         bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1168         if (!bio)
1169                 return NULL;    /* ENOMEM */
1170
1171         bio->bi_bdev = bio_src->bi_bdev;
1172         bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1173         bio->bi_rw = bio_src->bi_rw;
1174         bio->bi_flags |= 1 << BIO_CLONED;
1175
1176         /*
1177          * Copy over our part of the bio_vec, then update the first
1178          * and last (or only) entries.
1179          */
1180         memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1181                         vcnt * sizeof (struct bio_vec));
1182         bio->bi_io_vec[0].bv_offset += voff;
1183         if (vcnt > 1) {
1184                 bio->bi_io_vec[0].bv_len -= voff;
1185                 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1186         } else {
1187                 bio->bi_io_vec[0].bv_len = len;
1188         }
1189
1190         bio->bi_vcnt = vcnt;
1191         bio->bi_size = len;
1192         bio->bi_idx = 0;
1193
1194         return bio;
1195 }
1196
1197 /*
1198  * Clone a portion of a bio chain, starting at the given byte offset
1199  * into the first bio in the source chain and continuing for the
1200  * number of bytes indicated.  The result is another bio chain of
1201  * exactly the given length, or a null pointer on error.
1202  *
1203  * The bio_src and offset parameters are both in-out.  On entry they
1204  * refer to the first source bio and the offset into that bio where
1205  * the start of data to be cloned is located.
1206  *
1207  * On return, bio_src is updated to refer to the bio in the source
1208  * chain that contains first un-cloned byte, and *offset will
1209  * contain the offset of that byte within that bio.
1210  */
1211 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1212                                         unsigned int *offset,
1213                                         unsigned int len,
1214                                         gfp_t gfpmask)
1215 {
1216         struct bio *bi = *bio_src;
1217         unsigned int off = *offset;
1218         struct bio *chain = NULL;
1219         struct bio **end;
1220
1221         /* Build up a chain of clone bios up to the limit */
1222
1223         if (!bi || off >= bi->bi_size || !len)
1224                 return NULL;            /* Nothing to clone */
1225
1226         end = &chain;
1227         while (len) {
1228                 unsigned int bi_size;
1229                 struct bio *bio;
1230
1231                 if (!bi) {
1232                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1233                         goto out_err;   /* EINVAL; ran out of bio's */
1234                 }
1235                 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1236                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1237                 if (!bio)
1238                         goto out_err;   /* ENOMEM */
1239
1240                 *end = bio;
1241                 end = &bio->bi_next;
1242
1243                 off += bi_size;
1244                 if (off == bi->bi_size) {
1245                         bi = bi->bi_next;
1246                         off = 0;
1247                 }
1248                 len -= bi_size;
1249         }
1250         *bio_src = bi;
1251         *offset = off;
1252
1253         return chain;
1254 out_err:
1255         bio_chain_put(chain);
1256
1257         return NULL;
1258 }
1259
1260 /*
1261  * The default/initial value for all object request flags is 0.  For
1262  * each flag, once its value is set to 1 it is never reset to 0
1263  * again.
1264  */
1265 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1266 {
1267         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1268                 struct rbd_device *rbd_dev;
1269
1270                 rbd_dev = obj_request->img_request->rbd_dev;
1271                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1272                         obj_request);
1273         }
1274 }
1275
1276 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1277 {
1278         smp_mb();
1279         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1280 }
1281
1282 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1283 {
1284         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1285                 struct rbd_device *rbd_dev = NULL;
1286
1287                 if (obj_request_img_data_test(obj_request))
1288                         rbd_dev = obj_request->img_request->rbd_dev;
1289                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1290                         obj_request);
1291         }
1292 }
1293
1294 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1295 {
1296         smp_mb();
1297         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1298 }
1299
1300 /*
1301  * This sets the KNOWN flag after (possibly) setting the EXISTS
1302  * flag.  The latter is set based on the "exists" value provided.
1303  *
1304  * Note that for our purposes once an object exists it never goes
1305  * away again.  It's possible that the response from two existence
1306  * checks are separated by the creation of the target object, and
1307  * the first ("doesn't exist") response arrives *after* the second
1308  * ("does exist").  In that case we ignore the second one.
1309  */
1310 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1311                                 bool exists)
1312 {
1313         if (exists)
1314                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1315         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1316         smp_mb();
1317 }
1318
1319 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1320 {
1321         smp_mb();
1322         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1323 }
1324
1325 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1326 {
1327         smp_mb();
1328         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1329 }
1330
1331 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1332 {
1333         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1334                 atomic_read(&obj_request->kref.refcount));
1335         kref_get(&obj_request->kref);
1336 }
1337
1338 static void rbd_obj_request_destroy(struct kref *kref);
1339 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1340 {
1341         rbd_assert(obj_request != NULL);
1342         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1343                 atomic_read(&obj_request->kref.refcount));
1344         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1345 }
1346
1347 static void rbd_img_request_get(struct rbd_img_request *img_request)
1348 {
1349         dout("%s: img %p (was %d)\n", __func__, img_request,
1350                 atomic_read(&img_request->kref.refcount));
1351         kref_get(&img_request->kref);
1352 }
1353
1354 static void rbd_img_request_destroy(struct kref *kref);
1355 static void rbd_img_request_put(struct rbd_img_request *img_request)
1356 {
1357         rbd_assert(img_request != NULL);
1358         dout("%s: img %p (was %d)\n", __func__, img_request,
1359                 atomic_read(&img_request->kref.refcount));
1360         kref_put(&img_request->kref, rbd_img_request_destroy);
1361 }
1362
1363 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1364                                         struct rbd_obj_request *obj_request)
1365 {
1366         rbd_assert(obj_request->img_request == NULL);
1367
1368         /* Image request now owns object's original reference */
1369         obj_request->img_request = img_request;
1370         obj_request->which = img_request->obj_request_count;
1371         rbd_assert(!obj_request_img_data_test(obj_request));
1372         obj_request_img_data_set(obj_request);
1373         rbd_assert(obj_request->which != BAD_WHICH);
1374         img_request->obj_request_count++;
1375         list_add_tail(&obj_request->links, &img_request->obj_requests);
1376         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1377                 obj_request->which);
1378 }
1379
1380 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1381                                         struct rbd_obj_request *obj_request)
1382 {
1383         rbd_assert(obj_request->which != BAD_WHICH);
1384
1385         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1386                 obj_request->which);
1387         list_del(&obj_request->links);
1388         rbd_assert(img_request->obj_request_count > 0);
1389         img_request->obj_request_count--;
1390         rbd_assert(obj_request->which == img_request->obj_request_count);
1391         obj_request->which = BAD_WHICH;
1392         rbd_assert(obj_request_img_data_test(obj_request));
1393         rbd_assert(obj_request->img_request == img_request);
1394         obj_request->img_request = NULL;
1395         obj_request->callback = NULL;
1396         rbd_obj_request_put(obj_request);
1397 }
1398
1399 static bool obj_request_type_valid(enum obj_request_type type)
1400 {
1401         switch (type) {
1402         case OBJ_REQUEST_NODATA:
1403         case OBJ_REQUEST_BIO:
1404         case OBJ_REQUEST_PAGES:
1405                 return true;
1406         default:
1407                 return false;
1408         }
1409 }
1410
1411 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1412                                 struct rbd_obj_request *obj_request)
1413 {
1414         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1415
1416         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1417 }
1418
1419 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1420 {
1421
1422         dout("%s: img %p\n", __func__, img_request);
1423
1424         /*
1425          * If no error occurred, compute the aggregate transfer
1426          * count for the image request.  We could instead use
1427          * atomic64_cmpxchg() to update it as each object request
1428          * completes; not clear which way is better off hand.
1429          */
1430         if (!img_request->result) {
1431                 struct rbd_obj_request *obj_request;
1432                 u64 xferred = 0;
1433
1434                 for_each_obj_request(img_request, obj_request)
1435                         xferred += obj_request->xferred;
1436                 img_request->xferred = xferred;
1437         }
1438
1439         if (img_request->callback)
1440                 img_request->callback(img_request);
1441         else
1442                 rbd_img_request_put(img_request);
1443 }
1444
1445 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1446
1447 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1448 {
1449         dout("%s: obj %p\n", __func__, obj_request);
1450
1451         return wait_for_completion_interruptible(&obj_request->completion);
1452 }
1453
1454 /*
1455  * The default/initial value for all image request flags is 0.  Each
1456  * is conditionally set to 1 at image request initialization time
1457  * and currently never change thereafter.
1458  */
1459 static void img_request_write_set(struct rbd_img_request *img_request)
1460 {
1461         set_bit(IMG_REQ_WRITE, &img_request->flags);
1462         smp_mb();
1463 }
1464
1465 static bool img_request_write_test(struct rbd_img_request *img_request)
1466 {
1467         smp_mb();
1468         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1469 }
1470
1471 static void img_request_child_set(struct rbd_img_request *img_request)
1472 {
1473         set_bit(IMG_REQ_CHILD, &img_request->flags);
1474         smp_mb();
1475 }
1476
1477 static bool img_request_child_test(struct rbd_img_request *img_request)
1478 {
1479         smp_mb();
1480         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1481 }
1482
1483 static void img_request_layered_set(struct rbd_img_request *img_request)
1484 {
1485         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1486         smp_mb();
1487 }
1488
1489 static bool img_request_layered_test(struct rbd_img_request *img_request)
1490 {
1491         smp_mb();
1492         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1493 }
1494
1495 static void
1496 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1497 {
1498         u64 xferred = obj_request->xferred;
1499         u64 length = obj_request->length;
1500
1501         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1502                 obj_request, obj_request->img_request, obj_request->result,
1503                 xferred, length);
1504         /*
1505          * ENOENT means a hole in the image.  We zero-fill the
1506          * entire length of the request.  A short read also implies
1507          * zero-fill to the end of the request.  Either way we
1508          * update the xferred count to indicate the whole request
1509          * was satisfied.
1510          */
1511         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1512         if (obj_request->result == -ENOENT) {
1513                 if (obj_request->type == OBJ_REQUEST_BIO)
1514                         zero_bio_chain(obj_request->bio_list, 0);
1515                 else
1516                         zero_pages(obj_request->pages, 0, length);
1517                 obj_request->result = 0;
1518                 obj_request->xferred = length;
1519         } else if (xferred < length && !obj_request->result) {
1520                 if (obj_request->type == OBJ_REQUEST_BIO)
1521                         zero_bio_chain(obj_request->bio_list, xferred);
1522                 else
1523                         zero_pages(obj_request->pages, xferred, length);
1524                 obj_request->xferred = length;
1525         }
1526         obj_request_done_set(obj_request);
1527 }
1528
1529 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1530 {
1531         dout("%s: obj %p cb %p\n", __func__, obj_request,
1532                 obj_request->callback);
1533         if (obj_request->callback)
1534                 obj_request->callback(obj_request);
1535         else
1536                 complete_all(&obj_request->completion);
1537 }
1538
1539 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1540 {
1541         dout("%s: obj %p\n", __func__, obj_request);
1542         obj_request_done_set(obj_request);
1543 }
1544
1545 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1546 {
1547         struct rbd_img_request *img_request = NULL;
1548         struct rbd_device *rbd_dev = NULL;
1549         bool layered = false;
1550
1551         if (obj_request_img_data_test(obj_request)) {
1552                 img_request = obj_request->img_request;
1553                 layered = img_request && img_request_layered_test(img_request);
1554                 rbd_dev = img_request->rbd_dev;
1555         }
1556
1557         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1558                 obj_request, img_request, obj_request->result,
1559                 obj_request->xferred, obj_request->length);
1560         if (layered && obj_request->result == -ENOENT &&
1561                         obj_request->img_offset < rbd_dev->parent_overlap)
1562                 rbd_img_parent_read(obj_request);
1563         else if (img_request)
1564                 rbd_img_obj_request_read_callback(obj_request);
1565         else
1566                 obj_request_done_set(obj_request);
1567 }
1568
1569 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1570 {
1571         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1572                 obj_request->result, obj_request->length);
1573         /*
1574          * There is no such thing as a successful short write.  Set
1575          * it to our originally-requested length.
1576          */
1577         obj_request->xferred = obj_request->length;
1578         obj_request_done_set(obj_request);
1579 }
1580
1581 /*
1582  * For a simple stat call there's nothing to do.  We'll do more if
1583  * this is part of a write sequence for a layered image.
1584  */
1585 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1586 {
1587         dout("%s: obj %p\n", __func__, obj_request);
1588         obj_request_done_set(obj_request);
1589 }
1590
1591 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1592                                 struct ceph_msg *msg)
1593 {
1594         struct rbd_obj_request *obj_request = osd_req->r_priv;
1595         u16 opcode;
1596
1597         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1598         rbd_assert(osd_req == obj_request->osd_req);
1599         if (obj_request_img_data_test(obj_request)) {
1600                 rbd_assert(obj_request->img_request);
1601                 rbd_assert(obj_request->which != BAD_WHICH);
1602         } else {
1603                 rbd_assert(obj_request->which == BAD_WHICH);
1604         }
1605
1606         if (osd_req->r_result < 0)
1607                 obj_request->result = osd_req->r_result;
1608
1609         BUG_ON(osd_req->r_num_ops > 2);
1610
1611         /*
1612          * We support a 64-bit length, but ultimately it has to be
1613          * passed to blk_end_request(), which takes an unsigned int.
1614          */
1615         obj_request->xferred = osd_req->r_reply_op_len[0];
1616         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1617         opcode = osd_req->r_ops[0].op;
1618         switch (opcode) {
1619         case CEPH_OSD_OP_READ:
1620                 rbd_osd_read_callback(obj_request);
1621                 break;
1622         case CEPH_OSD_OP_WRITE:
1623                 rbd_osd_write_callback(obj_request);
1624                 break;
1625         case CEPH_OSD_OP_STAT:
1626                 rbd_osd_stat_callback(obj_request);
1627                 break;
1628         case CEPH_OSD_OP_CALL:
1629         case CEPH_OSD_OP_NOTIFY_ACK:
1630         case CEPH_OSD_OP_WATCH:
1631                 rbd_osd_trivial_callback(obj_request);
1632                 break;
1633         default:
1634                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1635                         obj_request->object_name, (unsigned short) opcode);
1636                 break;
1637         }
1638
1639         if (obj_request_done_test(obj_request))
1640                 rbd_obj_request_complete(obj_request);
1641 }
1642
1643 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1644 {
1645         struct rbd_img_request *img_request = obj_request->img_request;
1646         struct ceph_osd_request *osd_req = obj_request->osd_req;
1647         u64 snap_id;
1648
1649         rbd_assert(osd_req != NULL);
1650
1651         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1652         ceph_osdc_build_request(osd_req, obj_request->offset,
1653                         NULL, snap_id, NULL);
1654 }
1655
1656 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1657 {
1658         struct rbd_img_request *img_request = obj_request->img_request;
1659         struct ceph_osd_request *osd_req = obj_request->osd_req;
1660         struct ceph_snap_context *snapc;
1661         struct timespec mtime = CURRENT_TIME;
1662
1663         rbd_assert(osd_req != NULL);
1664
1665         snapc = img_request ? img_request->snapc : NULL;
1666         ceph_osdc_build_request(osd_req, obj_request->offset,
1667                         snapc, CEPH_NOSNAP, &mtime);
1668 }
1669
1670 static struct ceph_osd_request *rbd_osd_req_create(
1671                                         struct rbd_device *rbd_dev,
1672                                         bool write_request,
1673                                         struct rbd_obj_request *obj_request)
1674 {
1675         struct ceph_snap_context *snapc = NULL;
1676         struct ceph_osd_client *osdc;
1677         struct ceph_osd_request *osd_req;
1678
1679         if (obj_request_img_data_test(obj_request)) {
1680                 struct rbd_img_request *img_request = obj_request->img_request;
1681
1682                 rbd_assert(write_request ==
1683                                 img_request_write_test(img_request));
1684                 if (write_request)
1685                         snapc = img_request->snapc;
1686         }
1687
1688         /* Allocate and initialize the request, for the single op */
1689
1690         osdc = &rbd_dev->rbd_client->client->osdc;
1691         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1692         if (!osd_req)
1693                 return NULL;    /* ENOMEM */
1694
1695         if (write_request)
1696                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1697         else
1698                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1699
1700         osd_req->r_callback = rbd_osd_req_callback;
1701         osd_req->r_priv = obj_request;
1702
1703         osd_req->r_oid_len = strlen(obj_request->object_name);
1704         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1705         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1706
1707         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1708
1709         return osd_req;
1710 }
1711
1712 /*
1713  * Create a copyup osd request based on the information in the
1714  * object request supplied.  A copyup request has two osd ops,
1715  * a copyup method call, and a "normal" write request.
1716  */
1717 static struct ceph_osd_request *
1718 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1719 {
1720         struct rbd_img_request *img_request;
1721         struct ceph_snap_context *snapc;
1722         struct rbd_device *rbd_dev;
1723         struct ceph_osd_client *osdc;
1724         struct ceph_osd_request *osd_req;
1725
1726         rbd_assert(obj_request_img_data_test(obj_request));
1727         img_request = obj_request->img_request;
1728         rbd_assert(img_request);
1729         rbd_assert(img_request_write_test(img_request));
1730
1731         /* Allocate and initialize the request, for the two ops */
1732
1733         snapc = img_request->snapc;
1734         rbd_dev = img_request->rbd_dev;
1735         osdc = &rbd_dev->rbd_client->client->osdc;
1736         osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1737         if (!osd_req)
1738                 return NULL;    /* ENOMEM */
1739
1740         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1741         osd_req->r_callback = rbd_osd_req_callback;
1742         osd_req->r_priv = obj_request;
1743
1744         osd_req->r_oid_len = strlen(obj_request->object_name);
1745         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1746         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1747
1748         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1749
1750         return osd_req;
1751 }
1752
1753
1754 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1755 {
1756         ceph_osdc_put_request(osd_req);
1757 }
1758
1759 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1760
1761 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1762                                                 u64 offset, u64 length,
1763                                                 enum obj_request_type type)
1764 {
1765         struct rbd_obj_request *obj_request;
1766         size_t size;
1767         char *name;
1768
1769         rbd_assert(obj_request_type_valid(type));
1770
1771         size = strlen(object_name) + 1;
1772         name = kmalloc(size, GFP_KERNEL);
1773         if (!name)
1774                 return NULL;
1775
1776         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1777         if (!obj_request) {
1778                 kfree(name);
1779                 return NULL;
1780         }
1781
1782         obj_request->object_name = memcpy(name, object_name, size);
1783         obj_request->offset = offset;
1784         obj_request->length = length;
1785         obj_request->flags = 0;
1786         obj_request->which = BAD_WHICH;
1787         obj_request->type = type;
1788         INIT_LIST_HEAD(&obj_request->links);
1789         init_completion(&obj_request->completion);
1790         kref_init(&obj_request->kref);
1791
1792         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1793                 offset, length, (int)type, obj_request);
1794
1795         return obj_request;
1796 }
1797
1798 static void rbd_obj_request_destroy(struct kref *kref)
1799 {
1800         struct rbd_obj_request *obj_request;
1801
1802         obj_request = container_of(kref, struct rbd_obj_request, kref);
1803
1804         dout("%s: obj %p\n", __func__, obj_request);
1805
1806         rbd_assert(obj_request->img_request == NULL);
1807         rbd_assert(obj_request->which == BAD_WHICH);
1808
1809         if (obj_request->osd_req)
1810                 rbd_osd_req_destroy(obj_request->osd_req);
1811
1812         rbd_assert(obj_request_type_valid(obj_request->type));
1813         switch (obj_request->type) {
1814         case OBJ_REQUEST_NODATA:
1815                 break;          /* Nothing to do */
1816         case OBJ_REQUEST_BIO:
1817                 if (obj_request->bio_list)
1818                         bio_chain_put(obj_request->bio_list);
1819                 break;
1820         case OBJ_REQUEST_PAGES:
1821                 if (obj_request->pages)
1822                         ceph_release_page_vector(obj_request->pages,
1823                                                 obj_request->page_count);
1824                 break;
1825         }
1826
1827         kfree(obj_request->object_name);
1828         obj_request->object_name = NULL;
1829         kmem_cache_free(rbd_obj_request_cache, obj_request);
1830 }
1831
1832 /*
1833  * Caller is responsible for filling in the list of object requests
1834  * that comprises the image request, and the Linux request pointer
1835  * (if there is one).
1836  */
1837 static struct rbd_img_request *rbd_img_request_create(
1838                                         struct rbd_device *rbd_dev,
1839                                         u64 offset, u64 length,
1840                                         bool write_request,
1841                                         bool child_request)
1842 {
1843         struct rbd_img_request *img_request;
1844
1845         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1846         if (!img_request)
1847                 return NULL;
1848
1849         if (write_request) {
1850                 down_read(&rbd_dev->header_rwsem);
1851                 ceph_get_snap_context(rbd_dev->header.snapc);
1852                 up_read(&rbd_dev->header_rwsem);
1853         }
1854
1855         img_request->rq = NULL;
1856         img_request->rbd_dev = rbd_dev;
1857         img_request->offset = offset;
1858         img_request->length = length;
1859         img_request->flags = 0;
1860         if (write_request) {
1861                 img_request_write_set(img_request);
1862                 img_request->snapc = rbd_dev->header.snapc;
1863         } else {
1864                 img_request->snap_id = rbd_dev->spec->snap_id;
1865         }
1866         if (child_request)
1867                 img_request_child_set(img_request);
1868         if (rbd_dev->parent_spec)
1869                 img_request_layered_set(img_request);
1870         spin_lock_init(&img_request->completion_lock);
1871         img_request->next_completion = 0;
1872         img_request->callback = NULL;
1873         img_request->result = 0;
1874         img_request->obj_request_count = 0;
1875         INIT_LIST_HEAD(&img_request->obj_requests);
1876         kref_init(&img_request->kref);
1877
1878         rbd_img_request_get(img_request);       /* Avoid a warning */
1879         rbd_img_request_put(img_request);       /* TEMPORARY */
1880
1881         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
1882                 write_request ? "write" : "read", offset, length,
1883                 img_request);
1884
1885         return img_request;
1886 }
1887
1888 static void rbd_img_request_destroy(struct kref *kref)
1889 {
1890         struct rbd_img_request *img_request;
1891         struct rbd_obj_request *obj_request;
1892         struct rbd_obj_request *next_obj_request;
1893
1894         img_request = container_of(kref, struct rbd_img_request, kref);
1895
1896         dout("%s: img %p\n", __func__, img_request);
1897
1898         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1899                 rbd_img_obj_request_del(img_request, obj_request);
1900         rbd_assert(img_request->obj_request_count == 0);
1901
1902         if (img_request_write_test(img_request))
1903                 ceph_put_snap_context(img_request->snapc);
1904
1905         if (img_request_child_test(img_request))
1906                 rbd_obj_request_put(img_request->obj_request);
1907
1908         kmem_cache_free(rbd_img_request_cache, img_request);
1909 }
1910
1911 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
1912 {
1913         struct rbd_img_request *img_request;
1914         unsigned int xferred;
1915         int result;
1916         bool more;
1917
1918         rbd_assert(obj_request_img_data_test(obj_request));
1919         img_request = obj_request->img_request;
1920
1921         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
1922         xferred = (unsigned int)obj_request->xferred;
1923         result = obj_request->result;
1924         if (result) {
1925                 struct rbd_device *rbd_dev = img_request->rbd_dev;
1926
1927                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
1928                         img_request_write_test(img_request) ? "write" : "read",
1929                         obj_request->length, obj_request->img_offset,
1930                         obj_request->offset);
1931                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
1932                         result, xferred);
1933                 if (!img_request->result)
1934                         img_request->result = result;
1935         }
1936
1937         /* Image object requests don't own their page array */
1938
1939         if (obj_request->type == OBJ_REQUEST_PAGES) {
1940                 obj_request->pages = NULL;
1941                 obj_request->page_count = 0;
1942         }
1943
1944         if (img_request_child_test(img_request)) {
1945                 rbd_assert(img_request->obj_request != NULL);
1946                 more = obj_request->which < img_request->obj_request_count - 1;
1947         } else {
1948                 rbd_assert(img_request->rq != NULL);
1949                 more = blk_end_request(img_request->rq, result, xferred);
1950         }
1951
1952         return more;
1953 }
1954
1955 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
1956 {
1957         struct rbd_img_request *img_request;
1958         u32 which = obj_request->which;
1959         bool more = true;
1960
1961         rbd_assert(obj_request_img_data_test(obj_request));
1962         img_request = obj_request->img_request;
1963
1964         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1965         rbd_assert(img_request != NULL);
1966         rbd_assert(img_request->obj_request_count > 0);
1967         rbd_assert(which != BAD_WHICH);
1968         rbd_assert(which < img_request->obj_request_count);
1969         rbd_assert(which >= img_request->next_completion);
1970
1971         spin_lock_irq(&img_request->completion_lock);
1972         if (which != img_request->next_completion)
1973                 goto out;
1974
1975         for_each_obj_request_from(img_request, obj_request) {
1976                 rbd_assert(more);
1977                 rbd_assert(which < img_request->obj_request_count);
1978
1979                 if (!obj_request_done_test(obj_request))
1980                         break;
1981                 more = rbd_img_obj_end_request(obj_request);
1982                 which++;
1983         }
1984
1985         rbd_assert(more ^ (which == img_request->obj_request_count));
1986         img_request->next_completion = which;
1987 out:
1988         spin_unlock_irq(&img_request->completion_lock);
1989
1990         if (!more)
1991                 rbd_img_request_complete(img_request);
1992 }
1993
1994 /*
1995  * Split up an image request into one or more object requests, each
1996  * to a different object.  The "type" parameter indicates whether
1997  * "data_desc" is the pointer to the head of a list of bio
1998  * structures, or the base of a page array.  In either case this
1999  * function assumes data_desc describes memory sufficient to hold
2000  * all data described by the image request.
2001  */
2002 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2003                                         enum obj_request_type type,
2004                                         void *data_desc)
2005 {
2006         struct rbd_device *rbd_dev = img_request->rbd_dev;
2007         struct rbd_obj_request *obj_request = NULL;
2008         struct rbd_obj_request *next_obj_request;
2009         bool write_request = img_request_write_test(img_request);
2010         struct bio *bio_list;
2011         unsigned int bio_offset = 0;
2012         struct page **pages;
2013         u64 img_offset;
2014         u64 resid;
2015         u16 opcode;
2016
2017         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2018                 (int)type, data_desc);
2019
2020         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2021         img_offset = img_request->offset;
2022         resid = img_request->length;
2023         rbd_assert(resid > 0);
2024
2025         if (type == OBJ_REQUEST_BIO) {
2026                 bio_list = data_desc;
2027                 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2028         } else {
2029                 rbd_assert(type == OBJ_REQUEST_PAGES);
2030                 pages = data_desc;
2031         }
2032
2033         while (resid) {
2034                 struct ceph_osd_request *osd_req;
2035                 const char *object_name;
2036                 u64 offset;
2037                 u64 length;
2038
2039                 object_name = rbd_segment_name(rbd_dev, img_offset);
2040                 if (!object_name)
2041                         goto out_unwind;
2042                 offset = rbd_segment_offset(rbd_dev, img_offset);
2043                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2044                 obj_request = rbd_obj_request_create(object_name,
2045                                                 offset, length, type);
2046                 /* object request has its own copy of the object name */
2047                 rbd_segment_name_free(object_name);
2048                 if (!obj_request)
2049                         goto out_unwind;
2050
2051                 if (type == OBJ_REQUEST_BIO) {
2052                         unsigned int clone_size;
2053
2054                         rbd_assert(length <= (u64)UINT_MAX);
2055                         clone_size = (unsigned int)length;
2056                         obj_request->bio_list =
2057                                         bio_chain_clone_range(&bio_list,
2058                                                                 &bio_offset,
2059                                                                 clone_size,
2060                                                                 GFP_ATOMIC);
2061                         if (!obj_request->bio_list)
2062                                 goto out_partial;
2063                 } else {
2064                         unsigned int page_count;
2065
2066                         obj_request->pages = pages;
2067                         page_count = (u32)calc_pages_for(offset, length);
2068                         obj_request->page_count = page_count;
2069                         if ((offset + length) & ~PAGE_MASK)
2070                                 page_count--;   /* more on last page */
2071                         pages += page_count;
2072                 }
2073
2074                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2075                                                 obj_request);
2076                 if (!osd_req)
2077                         goto out_partial;
2078                 obj_request->osd_req = osd_req;
2079                 obj_request->callback = rbd_img_obj_callback;
2080
2081                 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2082                                                 0, 0);
2083                 if (type == OBJ_REQUEST_BIO)
2084                         osd_req_op_extent_osd_data_bio(osd_req, 0,
2085                                         obj_request->bio_list, length);
2086                 else
2087                         osd_req_op_extent_osd_data_pages(osd_req, 0,
2088                                         obj_request->pages, length,
2089                                         offset & ~PAGE_MASK, false, false);
2090
2091                 if (write_request)
2092                         rbd_osd_req_format_write(obj_request);
2093                 else
2094                         rbd_osd_req_format_read(obj_request);
2095
2096                 obj_request->img_offset = img_offset;
2097                 rbd_img_obj_request_add(img_request, obj_request);
2098
2099                 img_offset += length;
2100                 resid -= length;
2101         }
2102
2103         return 0;
2104
2105 out_partial:
2106         rbd_obj_request_put(obj_request);
2107 out_unwind:
2108         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2109                 rbd_obj_request_put(obj_request);
2110
2111         return -ENOMEM;
2112 }
2113
2114 static void
2115 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2116 {
2117         struct rbd_img_request *img_request;
2118         struct rbd_device *rbd_dev;
2119         u64 length;
2120         u32 page_count;
2121
2122         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2123         rbd_assert(obj_request_img_data_test(obj_request));
2124         img_request = obj_request->img_request;
2125         rbd_assert(img_request);
2126
2127         rbd_dev = img_request->rbd_dev;
2128         rbd_assert(rbd_dev);
2129         length = (u64)1 << rbd_dev->header.obj_order;
2130         page_count = (u32)calc_pages_for(0, length);
2131
2132         rbd_assert(obj_request->copyup_pages);
2133         ceph_release_page_vector(obj_request->copyup_pages, page_count);
2134         obj_request->copyup_pages = NULL;
2135
2136         /*
2137          * We want the transfer count to reflect the size of the
2138          * original write request.  There is no such thing as a
2139          * successful short write, so if the request was successful
2140          * we can just set it to the originally-requested length.
2141          */
2142         if (!obj_request->result)
2143                 obj_request->xferred = obj_request->length;
2144
2145         /* Finish up with the normal image object callback */
2146
2147         rbd_img_obj_callback(obj_request);
2148 }
2149
2150 static void
2151 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2152 {
2153         struct rbd_obj_request *orig_request;
2154         struct ceph_osd_request *osd_req;
2155         struct ceph_osd_client *osdc;
2156         struct rbd_device *rbd_dev;
2157         struct page **pages;
2158         int result;
2159         u64 obj_size;
2160         u64 xferred;
2161
2162         rbd_assert(img_request_child_test(img_request));
2163
2164         /* First get what we need from the image request */
2165
2166         pages = img_request->copyup_pages;
2167         rbd_assert(pages != NULL);
2168         img_request->copyup_pages = NULL;
2169
2170         orig_request = img_request->obj_request;
2171         rbd_assert(orig_request != NULL);
2172         rbd_assert(orig_request->type == OBJ_REQUEST_BIO);
2173         result = img_request->result;
2174         obj_size = img_request->length;
2175         xferred = img_request->xferred;
2176
2177         rbd_dev = img_request->rbd_dev;
2178         rbd_assert(rbd_dev);
2179         rbd_assert(obj_size == (u64)1 << rbd_dev->header.obj_order);
2180
2181         rbd_img_request_put(img_request);
2182
2183         if (result)
2184                 goto out_err;
2185
2186         /* Allocate the new copyup osd request for the original request */
2187
2188         result = -ENOMEM;
2189         rbd_assert(!orig_request->osd_req);
2190         osd_req = rbd_osd_req_create_copyup(orig_request);
2191         if (!osd_req)
2192                 goto out_err;
2193         orig_request->osd_req = osd_req;
2194         orig_request->copyup_pages = pages;
2195
2196         /* Initialize the copyup op */
2197
2198         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2199         osd_req_op_cls_request_data_pages(osd_req, 0, pages, obj_size, 0,
2200                                                 false, false);
2201
2202         /* Then the original write request op */
2203
2204         osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2205                                         orig_request->offset,
2206                                         orig_request->length, 0, 0);
2207         osd_req_op_extent_osd_data_bio(osd_req, 1, orig_request->bio_list,
2208                                         orig_request->length);
2209
2210         rbd_osd_req_format_write(orig_request);
2211
2212         /* All set, send it off. */
2213
2214         orig_request->callback = rbd_img_obj_copyup_callback;
2215         osdc = &rbd_dev->rbd_client->client->osdc;
2216         result = rbd_obj_request_submit(osdc, orig_request);
2217         if (!result)
2218                 return;
2219 out_err:
2220         /* Record the error code and complete the request */
2221
2222         orig_request->result = result;
2223         orig_request->xferred = 0;
2224         obj_request_done_set(orig_request);
2225         rbd_obj_request_complete(orig_request);
2226 }
2227
2228 /*
2229  * Read from the parent image the range of data that covers the
2230  * entire target of the given object request.  This is used for
2231  * satisfying a layered image write request when the target of an
2232  * object request from the image request does not exist.
2233  *
2234  * A page array big enough to hold the returned data is allocated
2235  * and supplied to rbd_img_request_fill() as the "data descriptor."
2236  * When the read completes, this page array will be transferred to
2237  * the original object request for the copyup operation.
2238  *
2239  * If an error occurs, record it as the result of the original
2240  * object request and mark it done so it gets completed.
2241  */
2242 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2243 {
2244         struct rbd_img_request *img_request = NULL;
2245         struct rbd_img_request *parent_request = NULL;
2246         struct rbd_device *rbd_dev;
2247         u64 img_offset;
2248         u64 length;
2249         struct page **pages = NULL;
2250         u32 page_count;
2251         int result;
2252
2253         rbd_assert(obj_request_img_data_test(obj_request));
2254         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2255
2256         img_request = obj_request->img_request;
2257         rbd_assert(img_request != NULL);
2258         rbd_dev = img_request->rbd_dev;
2259         rbd_assert(rbd_dev->parent != NULL);
2260
2261         /*
2262          * First things first.  The original osd request is of no
2263          * use to use any more, we'll need a new one that can hold
2264          * the two ops in a copyup request.  We'll get that later,
2265          * but for now we can release the old one.
2266          */
2267         rbd_osd_req_destroy(obj_request->osd_req);
2268         obj_request->osd_req = NULL;
2269
2270         /*
2271          * Determine the byte range covered by the object in the
2272          * child image to which the original request was to be sent.
2273          */
2274         img_offset = obj_request->img_offset - obj_request->offset;
2275         length = (u64)1 << rbd_dev->header.obj_order;
2276
2277         /*
2278          * There is no defined parent data beyond the parent
2279          * overlap, so limit what we read at that boundary if
2280          * necessary.
2281          */
2282         if (img_offset + length > rbd_dev->parent_overlap) {
2283                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2284                 length = rbd_dev->parent_overlap - img_offset;
2285         }
2286
2287         /*
2288          * Allocate a page array big enough to receive the data read
2289          * from the parent.
2290          */
2291         page_count = (u32)calc_pages_for(0, length);
2292         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2293         if (IS_ERR(pages)) {
2294                 result = PTR_ERR(pages);
2295                 pages = NULL;
2296                 goto out_err;
2297         }
2298
2299         result = -ENOMEM;
2300         parent_request = rbd_img_request_create(rbd_dev->parent,
2301                                                 img_offset, length,
2302                                                 false, true);
2303         if (!parent_request)
2304                 goto out_err;
2305         rbd_obj_request_get(obj_request);
2306         parent_request->obj_request = obj_request;
2307
2308         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2309         if (result)
2310                 goto out_err;
2311         parent_request->copyup_pages = pages;
2312
2313         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2314         result = rbd_img_request_submit(parent_request);
2315         if (!result)
2316                 return 0;
2317
2318         parent_request->copyup_pages = NULL;
2319         parent_request->obj_request = NULL;
2320         rbd_obj_request_put(obj_request);
2321 out_err:
2322         if (pages)
2323                 ceph_release_page_vector(pages, page_count);
2324         if (parent_request)
2325                 rbd_img_request_put(parent_request);
2326         obj_request->result = result;
2327         obj_request->xferred = 0;
2328         obj_request_done_set(obj_request);
2329
2330         return result;
2331 }
2332
2333 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2334 {
2335         struct rbd_obj_request *orig_request;
2336         int result;
2337
2338         rbd_assert(!obj_request_img_data_test(obj_request));
2339
2340         /*
2341          * All we need from the object request is the original
2342          * request and the result of the STAT op.  Grab those, then
2343          * we're done with the request.
2344          */
2345         orig_request = obj_request->obj_request;
2346         obj_request->obj_request = NULL;
2347         rbd_assert(orig_request);
2348         rbd_assert(orig_request->img_request);
2349
2350         result = obj_request->result;
2351         obj_request->result = 0;
2352
2353         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2354                 obj_request, orig_request, result,
2355                 obj_request->xferred, obj_request->length);
2356         rbd_obj_request_put(obj_request);
2357
2358         rbd_assert(orig_request);
2359         rbd_assert(orig_request->img_request);
2360
2361         /*
2362          * Our only purpose here is to determine whether the object
2363          * exists, and we don't want to treat the non-existence as
2364          * an error.  If something else comes back, transfer the
2365          * error to the original request and complete it now.
2366          */
2367         if (!result) {
2368                 obj_request_existence_set(orig_request, true);
2369         } else if (result == -ENOENT) {
2370                 obj_request_existence_set(orig_request, false);
2371         } else if (result) {
2372                 orig_request->result = result;
2373                 goto out;
2374         }
2375
2376         /*
2377          * Resubmit the original request now that we have recorded
2378          * whether the target object exists.
2379          */
2380         orig_request->result = rbd_img_obj_request_submit(orig_request);
2381 out:
2382         if (orig_request->result)
2383                 rbd_obj_request_complete(orig_request);
2384         rbd_obj_request_put(orig_request);
2385 }
2386
2387 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2388 {
2389         struct rbd_obj_request *stat_request;
2390         struct rbd_device *rbd_dev;
2391         struct ceph_osd_client *osdc;
2392         struct page **pages = NULL;
2393         u32 page_count;
2394         size_t size;
2395         int ret;
2396
2397         /*
2398          * The response data for a STAT call consists of:
2399          *     le64 length;
2400          *     struct {
2401          *         le32 tv_sec;
2402          *         le32 tv_nsec;
2403          *     } mtime;
2404          */
2405         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2406         page_count = (u32)calc_pages_for(0, size);
2407         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2408         if (IS_ERR(pages))
2409                 return PTR_ERR(pages);
2410
2411         ret = -ENOMEM;
2412         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2413                                                         OBJ_REQUEST_PAGES);
2414         if (!stat_request)
2415                 goto out;
2416
2417         rbd_obj_request_get(obj_request);
2418         stat_request->obj_request = obj_request;
2419         stat_request->pages = pages;
2420         stat_request->page_count = page_count;
2421
2422         rbd_assert(obj_request->img_request);
2423         rbd_dev = obj_request->img_request->rbd_dev;
2424         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2425                                                 stat_request);
2426         if (!stat_request->osd_req)
2427                 goto out;
2428         stat_request->callback = rbd_img_obj_exists_callback;
2429
2430         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2431         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2432                                         false, false);
2433         rbd_osd_req_format_read(stat_request);
2434
2435         osdc = &rbd_dev->rbd_client->client->osdc;
2436         ret = rbd_obj_request_submit(osdc, stat_request);
2437 out:
2438         if (ret)
2439                 rbd_obj_request_put(obj_request);
2440
2441         return ret;
2442 }
2443
2444 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2445 {
2446         struct rbd_img_request *img_request;
2447         struct rbd_device *rbd_dev;
2448         bool known;
2449
2450         rbd_assert(obj_request_img_data_test(obj_request));
2451
2452         img_request = obj_request->img_request;
2453         rbd_assert(img_request);
2454         rbd_dev = img_request->rbd_dev;
2455
2456         /*
2457          * Only writes to layered images need special handling.
2458          * Reads and non-layered writes are simple object requests.
2459          * Layered writes that start beyond the end of the overlap
2460          * with the parent have no parent data, so they too are
2461          * simple object requests.  Finally, if the target object is
2462          * known to already exist, its parent data has already been
2463          * copied, so a write to the object can also be handled as a
2464          * simple object request.
2465          */
2466         if (!img_request_write_test(img_request) ||
2467                 !img_request_layered_test(img_request) ||
2468                 rbd_dev->parent_overlap <= obj_request->img_offset ||
2469                 ((known = obj_request_known_test(obj_request)) &&
2470                         obj_request_exists_test(obj_request))) {
2471
2472                 struct rbd_device *rbd_dev;
2473                 struct ceph_osd_client *osdc;
2474
2475                 rbd_dev = obj_request->img_request->rbd_dev;
2476                 osdc = &rbd_dev->rbd_client->client->osdc;
2477
2478                 return rbd_obj_request_submit(osdc, obj_request);
2479         }
2480
2481         /*
2482          * It's a layered write.  The target object might exist but
2483          * we may not know that yet.  If we know it doesn't exist,
2484          * start by reading the data for the full target object from
2485          * the parent so we can use it for a copyup to the target.
2486          */
2487         if (known)
2488                 return rbd_img_obj_parent_read_full(obj_request);
2489
2490         /* We don't know whether the target exists.  Go find out. */
2491
2492         return rbd_img_obj_exists_submit(obj_request);
2493 }
2494
2495 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2496 {
2497         struct rbd_obj_request *obj_request;
2498         struct rbd_obj_request *next_obj_request;
2499
2500         dout("%s: img %p\n", __func__, img_request);
2501         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2502                 int ret;
2503
2504                 ret = rbd_img_obj_request_submit(obj_request);
2505                 if (ret)
2506                         return ret;
2507         }
2508
2509         return 0;
2510 }
2511
2512 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2513 {
2514         struct rbd_obj_request *obj_request;
2515         struct rbd_device *rbd_dev;
2516         u64 obj_end;
2517
2518         rbd_assert(img_request_child_test(img_request));
2519
2520         obj_request = img_request->obj_request;
2521         rbd_assert(obj_request);
2522         rbd_assert(obj_request->img_request);
2523
2524         obj_request->result = img_request->result;
2525         if (obj_request->result)
2526                 goto out;
2527
2528         /*
2529          * We need to zero anything beyond the parent overlap
2530          * boundary.  Since rbd_img_obj_request_read_callback()
2531          * will zero anything beyond the end of a short read, an
2532          * easy way to do this is to pretend the data from the
2533          * parent came up short--ending at the overlap boundary.
2534          */
2535         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2536         obj_end = obj_request->img_offset + obj_request->length;
2537         rbd_dev = obj_request->img_request->rbd_dev;
2538         if (obj_end > rbd_dev->parent_overlap) {
2539                 u64 xferred = 0;
2540
2541                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2542                         xferred = rbd_dev->parent_overlap -
2543                                         obj_request->img_offset;
2544
2545                 obj_request->xferred = min(img_request->xferred, xferred);
2546         } else {
2547                 obj_request->xferred = img_request->xferred;
2548         }
2549 out:
2550         rbd_img_obj_request_read_callback(obj_request);
2551         rbd_obj_request_complete(obj_request);
2552 }
2553
2554 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2555 {
2556         struct rbd_device *rbd_dev;
2557         struct rbd_img_request *img_request;
2558         int result;
2559
2560         rbd_assert(obj_request_img_data_test(obj_request));
2561         rbd_assert(obj_request->img_request != NULL);
2562         rbd_assert(obj_request->result == (s32) -ENOENT);
2563         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2564
2565         rbd_dev = obj_request->img_request->rbd_dev;
2566         rbd_assert(rbd_dev->parent != NULL);
2567         /* rbd_read_finish(obj_request, obj_request->length); */
2568         img_request = rbd_img_request_create(rbd_dev->parent,
2569                                                 obj_request->img_offset,
2570                                                 obj_request->length,
2571                                                 false, true);
2572         result = -ENOMEM;
2573         if (!img_request)
2574                 goto out_err;
2575
2576         rbd_obj_request_get(obj_request);
2577         img_request->obj_request = obj_request;
2578
2579         result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2580                                         obj_request->bio_list);
2581         if (result)
2582                 goto out_err;
2583
2584         img_request->callback = rbd_img_parent_read_callback;
2585         result = rbd_img_request_submit(img_request);
2586         if (result)
2587                 goto out_err;
2588
2589         return;
2590 out_err:
2591         if (img_request)
2592                 rbd_img_request_put(img_request);
2593         obj_request->result = result;
2594         obj_request->xferred = 0;
2595         obj_request_done_set(obj_request);
2596 }
2597
2598 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev, u64 notify_id)
2599 {
2600         struct rbd_obj_request *obj_request;
2601         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2602         int ret;
2603
2604         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2605                                                         OBJ_REQUEST_NODATA);
2606         if (!obj_request)
2607                 return -ENOMEM;
2608
2609         ret = -ENOMEM;
2610         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2611         if (!obj_request->osd_req)
2612                 goto out;
2613         obj_request->callback = rbd_obj_request_put;
2614
2615         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2616                                         notify_id, 0, 0);
2617         rbd_osd_req_format_read(obj_request);
2618
2619         ret = rbd_obj_request_submit(osdc, obj_request);
2620 out:
2621         if (ret)
2622                 rbd_obj_request_put(obj_request);
2623
2624         return ret;
2625 }
2626
2627 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2628 {
2629         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2630
2631         if (!rbd_dev)
2632                 return;
2633
2634         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2635                 rbd_dev->header_name, (unsigned long long)notify_id,
2636                 (unsigned int)opcode);
2637         (void)rbd_dev_refresh(rbd_dev);
2638
2639         rbd_obj_notify_ack(rbd_dev, notify_id);
2640 }
2641
2642 /*
2643  * Request sync osd watch/unwatch.  The value of "start" determines
2644  * whether a watch request is being initiated or torn down.
2645  */
2646 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, int start)
2647 {
2648         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2649         struct rbd_obj_request *obj_request;
2650         int ret;
2651
2652         rbd_assert(start ^ !!rbd_dev->watch_event);
2653         rbd_assert(start ^ !!rbd_dev->watch_request);
2654
2655         if (start) {
2656                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2657                                                 &rbd_dev->watch_event);
2658                 if (ret < 0)
2659                         return ret;
2660                 rbd_assert(rbd_dev->watch_event != NULL);
2661         }
2662
2663         ret = -ENOMEM;
2664         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2665                                                         OBJ_REQUEST_NODATA);
2666         if (!obj_request)
2667                 goto out_cancel;
2668
2669         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2670         if (!obj_request->osd_req)
2671                 goto out_cancel;
2672
2673         if (start)
2674                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2675         else
2676                 ceph_osdc_unregister_linger_request(osdc,
2677                                         rbd_dev->watch_request->osd_req);
2678
2679         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2680                                 rbd_dev->watch_event->cookie, 0, start);
2681         rbd_osd_req_format_write(obj_request);
2682
2683         ret = rbd_obj_request_submit(osdc, obj_request);
2684         if (ret)
2685                 goto out_cancel;
2686         ret = rbd_obj_request_wait(obj_request);
2687         if (ret)
2688                 goto out_cancel;
2689         ret = obj_request->result;
2690         if (ret)
2691                 goto out_cancel;
2692
2693         /*
2694          * A watch request is set to linger, so the underlying osd
2695          * request won't go away until we unregister it.  We retain
2696          * a pointer to the object request during that time (in
2697          * rbd_dev->watch_request), so we'll keep a reference to
2698          * it.  We'll drop that reference (below) after we've
2699          * unregistered it.
2700          */
2701         if (start) {
2702                 rbd_dev->watch_request = obj_request;
2703
2704                 return 0;
2705         }
2706
2707         /* We have successfully torn down the watch request */
2708
2709         rbd_obj_request_put(rbd_dev->watch_request);
2710         rbd_dev->watch_request = NULL;
2711 out_cancel:
2712         /* Cancel the event if we're tearing down, or on error */
2713         ceph_osdc_cancel_event(rbd_dev->watch_event);
2714         rbd_dev->watch_event = NULL;
2715         if (obj_request)
2716                 rbd_obj_request_put(obj_request);
2717
2718         return ret;
2719 }
2720
2721 /*
2722  * Synchronous osd object method call.  Returns the number of bytes
2723  * returned in the outbound buffer, or a negative error code.
2724  */
2725 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2726                              const char *object_name,
2727                              const char *class_name,
2728                              const char *method_name,
2729                              const void *outbound,
2730                              size_t outbound_size,
2731                              void *inbound,
2732                              size_t inbound_size)
2733 {
2734         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2735         struct rbd_obj_request *obj_request;
2736         struct page **pages;
2737         u32 page_count;
2738         int ret;
2739
2740         /*
2741          * Method calls are ultimately read operations.  The result
2742          * should placed into the inbound buffer provided.  They
2743          * also supply outbound data--parameters for the object
2744          * method.  Currently if this is present it will be a
2745          * snapshot id.
2746          */
2747         page_count = (u32)calc_pages_for(0, inbound_size);
2748         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2749         if (IS_ERR(pages))
2750                 return PTR_ERR(pages);
2751
2752         ret = -ENOMEM;
2753         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2754                                                         OBJ_REQUEST_PAGES);
2755         if (!obj_request)
2756                 goto out;
2757
2758         obj_request->pages = pages;
2759         obj_request->page_count = page_count;
2760
2761         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2762         if (!obj_request->osd_req)
2763                 goto out;
2764
2765         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2766                                         class_name, method_name);
2767         if (outbound_size) {
2768                 struct ceph_pagelist *pagelist;
2769
2770                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2771                 if (!pagelist)
2772                         goto out;
2773
2774                 ceph_pagelist_init(pagelist);
2775                 ceph_pagelist_append(pagelist, outbound, outbound_size);
2776                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2777                                                 pagelist);
2778         }
2779         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
2780                                         obj_request->pages, inbound_size,
2781                                         0, false, false);
2782         rbd_osd_req_format_read(obj_request);
2783
2784         ret = rbd_obj_request_submit(osdc, obj_request);
2785         if (ret)
2786                 goto out;
2787         ret = rbd_obj_request_wait(obj_request);
2788         if (ret)
2789                 goto out;
2790
2791         ret = obj_request->result;
2792         if (ret < 0)
2793                 goto out;
2794
2795         rbd_assert(obj_request->xferred < (u64)INT_MAX);
2796         ret = (int)obj_request->xferred;
2797         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
2798 out:
2799         if (obj_request)
2800                 rbd_obj_request_put(obj_request);
2801         else
2802                 ceph_release_page_vector(pages, page_count);
2803
2804         return ret;
2805 }
2806
2807 static void rbd_request_fn(struct request_queue *q)
2808                 __releases(q->queue_lock) __acquires(q->queue_lock)
2809 {
2810         struct rbd_device *rbd_dev = q->queuedata;
2811         bool read_only = rbd_dev->mapping.read_only;
2812         struct request *rq;
2813         int result;
2814
2815         while ((rq = blk_fetch_request(q))) {
2816                 bool write_request = rq_data_dir(rq) == WRITE;
2817                 struct rbd_img_request *img_request;
2818                 u64 offset;
2819                 u64 length;
2820
2821                 /* Ignore any non-FS requests that filter through. */
2822
2823                 if (rq->cmd_type != REQ_TYPE_FS) {
2824                         dout("%s: non-fs request type %d\n", __func__,
2825                                 (int) rq->cmd_type);
2826                         __blk_end_request_all(rq, 0);
2827                         continue;
2828                 }
2829
2830                 /* Ignore/skip any zero-length requests */
2831
2832                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
2833                 length = (u64) blk_rq_bytes(rq);
2834
2835                 if (!length) {
2836                         dout("%s: zero-length request\n", __func__);
2837                         __blk_end_request_all(rq, 0);
2838                         continue;
2839                 }
2840
2841                 spin_unlock_irq(q->queue_lock);
2842
2843                 /* Disallow writes to a read-only device */
2844
2845                 if (write_request) {
2846                         result = -EROFS;
2847                         if (read_only)
2848                                 goto end_request;
2849                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
2850                 }
2851
2852                 /*
2853                  * Quit early if the mapped snapshot no longer
2854                  * exists.  It's still possible the snapshot will
2855                  * have disappeared by the time our request arrives
2856                  * at the osd, but there's no sense in sending it if
2857                  * we already know.
2858                  */
2859                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
2860                         dout("request for non-existent snapshot");
2861                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
2862                         result = -ENXIO;
2863                         goto end_request;
2864                 }
2865
2866                 result = -EINVAL;
2867                 if (offset && length > U64_MAX - offset + 1) {
2868                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
2869                                 offset, length);
2870                         goto end_request;       /* Shouldn't happen */
2871                 }
2872
2873                 result = -ENOMEM;
2874                 img_request = rbd_img_request_create(rbd_dev, offset, length,
2875                                                         write_request, false);
2876                 if (!img_request)
2877                         goto end_request;
2878
2879                 img_request->rq = rq;
2880
2881                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2882                                                 rq->bio);
2883                 if (!result)
2884                         result = rbd_img_request_submit(img_request);
2885                 if (result)
2886                         rbd_img_request_put(img_request);
2887 end_request:
2888                 spin_lock_irq(q->queue_lock);
2889                 if (result < 0) {
2890                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
2891                                 write_request ? "write" : "read",
2892                                 length, offset, result);
2893
2894                         __blk_end_request_all(rq, result);
2895                 }
2896         }
2897 }
2898
2899 /*
2900  * a queue callback. Makes sure that we don't create a bio that spans across
2901  * multiple osd objects. One exception would be with a single page bios,
2902  * which we handle later at bio_chain_clone_range()
2903  */
2904 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2905                           struct bio_vec *bvec)
2906 {
2907         struct rbd_device *rbd_dev = q->queuedata;
2908         sector_t sector_offset;
2909         sector_t sectors_per_obj;
2910         sector_t obj_sector_offset;
2911         int ret;
2912
2913         /*
2914          * Find how far into its rbd object the partition-relative
2915          * bio start sector is to offset relative to the enclosing
2916          * device.
2917          */
2918         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
2919         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
2920         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
2921
2922         /*
2923          * Compute the number of bytes from that offset to the end
2924          * of the object.  Account for what's already used by the bio.
2925          */
2926         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
2927         if (ret > bmd->bi_size)
2928                 ret -= bmd->bi_size;
2929         else
2930                 ret = 0;
2931
2932         /*
2933          * Don't send back more than was asked for.  And if the bio
2934          * was empty, let the whole thing through because:  "Note
2935          * that a block device *must* allow a single page to be
2936          * added to an empty bio."
2937          */
2938         rbd_assert(bvec->bv_len <= PAGE_SIZE);
2939         if (ret > (int) bvec->bv_len || !bmd->bi_size)
2940                 ret = (int) bvec->bv_len;
2941
2942         return ret;
2943 }
2944
2945 static void rbd_free_disk(struct rbd_device *rbd_dev)
2946 {
2947         struct gendisk *disk = rbd_dev->disk;
2948
2949         if (!disk)
2950                 return;
2951
2952         rbd_dev->disk = NULL;
2953         if (disk->flags & GENHD_FL_UP) {
2954                 del_gendisk(disk);
2955                 if (disk->queue)
2956                         blk_cleanup_queue(disk->queue);
2957         }
2958         put_disk(disk);
2959 }
2960
2961 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
2962                                 const char *object_name,
2963                                 u64 offset, u64 length, void *buf)
2964
2965 {
2966         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2967         struct rbd_obj_request *obj_request;
2968         struct page **pages = NULL;
2969         u32 page_count;
2970         size_t size;
2971         int ret;
2972
2973         page_count = (u32) calc_pages_for(offset, length);
2974         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2975         if (IS_ERR(pages))
2976                 ret = PTR_ERR(pages);
2977
2978         ret = -ENOMEM;
2979         obj_request = rbd_obj_request_create(object_name, offset, length,
2980                                                         OBJ_REQUEST_PAGES);
2981         if (!obj_request)
2982                 goto out;
2983
2984         obj_request->pages = pages;
2985         obj_request->page_count = page_count;
2986
2987         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2988         if (!obj_request->osd_req)
2989                 goto out;
2990
2991         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
2992                                         offset, length, 0, 0);
2993         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
2994                                         obj_request->pages,
2995                                         obj_request->length,
2996                                         obj_request->offset & ~PAGE_MASK,
2997                                         false, false);
2998         rbd_osd_req_format_read(obj_request);
2999
3000         ret = rbd_obj_request_submit(osdc, obj_request);
3001         if (ret)
3002                 goto out;
3003         ret = rbd_obj_request_wait(obj_request);
3004         if (ret)
3005                 goto out;
3006
3007         ret = obj_request->result;
3008         if (ret < 0)
3009                 goto out;
3010
3011         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3012         size = (size_t) obj_request->xferred;
3013         ceph_copy_from_page_vector(pages, buf, 0, size);
3014         rbd_assert(size <= (size_t)INT_MAX);
3015         ret = (int)size;
3016 out:
3017         if (obj_request)
3018                 rbd_obj_request_put(obj_request);
3019         else
3020                 ceph_release_page_vector(pages, page_count);
3021
3022         return ret;
3023 }
3024
3025 /*
3026  * Read the complete header for the given rbd device.
3027  *
3028  * Returns a pointer to a dynamically-allocated buffer containing
3029  * the complete and validated header.  Caller can pass the address
3030  * of a variable that will be filled in with the version of the
3031  * header object at the time it was read.
3032  *
3033  * Returns a pointer-coded errno if a failure occurs.
3034  */
3035 static struct rbd_image_header_ondisk *
3036 rbd_dev_v1_header_read(struct rbd_device *rbd_dev)
3037 {
3038         struct rbd_image_header_ondisk *ondisk = NULL;
3039         u32 snap_count = 0;
3040         u64 names_size = 0;
3041         u32 want_count;
3042         int ret;
3043
3044         /*
3045          * The complete header will include an array of its 64-bit
3046          * snapshot ids, followed by the names of those snapshots as
3047          * a contiguous block of NUL-terminated strings.  Note that
3048          * the number of snapshots could change by the time we read
3049          * it in, in which case we re-read it.
3050          */
3051         do {
3052                 size_t size;
3053
3054                 kfree(ondisk);
3055
3056                 size = sizeof (*ondisk);
3057                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3058                 size += names_size;
3059                 ondisk = kmalloc(size, GFP_KERNEL);
3060                 if (!ondisk)
3061                         return ERR_PTR(-ENOMEM);
3062
3063                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3064                                        0, size, ondisk);
3065                 if (ret < 0)
3066                         goto out_err;
3067                 if ((size_t)ret < size) {
3068                         ret = -ENXIO;
3069                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3070                                 size, ret);
3071                         goto out_err;
3072                 }
3073                 if (!rbd_dev_ondisk_valid(ondisk)) {
3074                         ret = -ENXIO;
3075                         rbd_warn(rbd_dev, "invalid header");
3076                         goto out_err;
3077                 }
3078
3079                 names_size = le64_to_cpu(ondisk->snap_names_len);
3080                 want_count = snap_count;
3081                 snap_count = le32_to_cpu(ondisk->snap_count);
3082         } while (snap_count != want_count);
3083
3084         return ondisk;
3085
3086 out_err:
3087         kfree(ondisk);
3088
3089         return ERR_PTR(ret);
3090 }
3091
3092 /*
3093  * reload the ondisk the header
3094  */
3095 static int rbd_read_header(struct rbd_device *rbd_dev,
3096                            struct rbd_image_header *header)
3097 {
3098         struct rbd_image_header_ondisk *ondisk;
3099         int ret;
3100
3101         ondisk = rbd_dev_v1_header_read(rbd_dev);
3102         if (IS_ERR(ondisk))
3103                 return PTR_ERR(ondisk);
3104         ret = rbd_header_from_disk(header, ondisk);
3105         kfree(ondisk);
3106
3107         return ret;
3108 }
3109
3110 static void rbd_update_mapping_size(struct rbd_device *rbd_dev)
3111 {
3112         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
3113                 return;
3114
3115         if (rbd_dev->mapping.size != rbd_dev->header.image_size) {
3116                 sector_t size;
3117
3118                 rbd_dev->mapping.size = rbd_dev->header.image_size;
3119                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3120                 dout("setting size to %llu sectors", (unsigned long long)size);
3121                 set_capacity(rbd_dev->disk, size);
3122         }
3123 }
3124
3125 /*
3126  * only read the first part of the ondisk header, without the snaps info
3127  */
3128 static int rbd_dev_v1_refresh(struct rbd_device *rbd_dev)
3129 {
3130         int ret;
3131         struct rbd_image_header h;
3132
3133         ret = rbd_read_header(rbd_dev, &h);
3134         if (ret < 0)
3135                 return ret;
3136
3137         down_write(&rbd_dev->header_rwsem);
3138
3139         /* Update image size, and check for resize of mapped image */
3140         rbd_dev->header.image_size = h.image_size;
3141         rbd_update_mapping_size(rbd_dev);
3142
3143         /* rbd_dev->header.object_prefix shouldn't change */
3144         kfree(rbd_dev->header.snap_sizes);
3145         kfree(rbd_dev->header.snap_names);
3146         /* osd requests may still refer to snapc */
3147         ceph_put_snap_context(rbd_dev->header.snapc);
3148
3149         rbd_dev->header.image_size = h.image_size;
3150         rbd_dev->header.snapc = h.snapc;
3151         rbd_dev->header.snap_names = h.snap_names;
3152         rbd_dev->header.snap_sizes = h.snap_sizes;
3153         /* Free the extra copy of the object prefix */
3154         if (strcmp(rbd_dev->header.object_prefix, h.object_prefix))
3155                 rbd_warn(rbd_dev, "object prefix changed (ignoring)");
3156         kfree(h.object_prefix);
3157
3158         up_write(&rbd_dev->header_rwsem);
3159
3160         return ret;
3161 }
3162
3163 /*
3164  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3165  * has disappeared from the (just updated) snapshot context.
3166  */
3167 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3168 {
3169         u64 snap_id;
3170
3171         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3172                 return;
3173
3174         snap_id = rbd_dev->spec->snap_id;
3175         if (snap_id == CEPH_NOSNAP)
3176                 return;
3177
3178         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3179                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3180 }
3181
3182 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3183 {
3184         u64 image_size;
3185         int ret;
3186
3187         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3188         image_size = rbd_dev->header.image_size;
3189         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3190         if (rbd_dev->image_format == 1)
3191                 ret = rbd_dev_v1_refresh(rbd_dev);
3192         else
3193                 ret = rbd_dev_v2_refresh(rbd_dev);
3194
3195         /* If it's a mapped snapshot, validate its EXISTS flag */
3196
3197         rbd_exists_validate(rbd_dev);
3198         mutex_unlock(&ctl_mutex);
3199         if (ret)
3200                 rbd_warn(rbd_dev, "got notification but failed to "
3201                            " update snaps: %d\n", ret);
3202         if (image_size != rbd_dev->header.image_size)
3203                 revalidate_disk(rbd_dev->disk);
3204
3205         return ret;
3206 }
3207
3208 static int rbd_init_disk(struct rbd_device *rbd_dev)
3209 {
3210         struct gendisk *disk;
3211         struct request_queue *q;
3212         u64 segment_size;
3213
3214         /* create gendisk info */
3215         disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3216         if (!disk)
3217                 return -ENOMEM;
3218
3219         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3220                  rbd_dev->dev_id);
3221         disk->major = rbd_dev->major;
3222         disk->first_minor = 0;
3223         disk->fops = &rbd_bd_ops;
3224         disk->private_data = rbd_dev;
3225
3226         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3227         if (!q)
3228                 goto out_disk;
3229
3230         /* We use the default size, but let's be explicit about it. */
3231         blk_queue_physical_block_size(q, SECTOR_SIZE);
3232
3233         /* set io sizes to object size */
3234         segment_size = rbd_obj_bytes(&rbd_dev->header);
3235         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3236         blk_queue_max_segment_size(q, segment_size);
3237         blk_queue_io_min(q, segment_size);
3238         blk_queue_io_opt(q, segment_size);
3239
3240         blk_queue_merge_bvec(q, rbd_merge_bvec);
3241         disk->queue = q;
3242
3243         q->queuedata = rbd_dev;
3244
3245         rbd_dev->disk = disk;
3246
3247         return 0;
3248 out_disk:
3249         put_disk(disk);
3250
3251         return -ENOMEM;
3252 }
3253
3254 /*
3255   sysfs
3256 */
3257
3258 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3259 {
3260         return container_of(dev, struct rbd_device, dev);
3261 }
3262
3263 static ssize_t rbd_size_show(struct device *dev,
3264                              struct device_attribute *attr, char *buf)
3265 {
3266         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3267
3268         return sprintf(buf, "%llu\n",
3269                 (unsigned long long)rbd_dev->mapping.size);
3270 }
3271
3272 /*
3273  * Note this shows the features for whatever's mapped, which is not
3274  * necessarily the base image.
3275  */
3276 static ssize_t rbd_features_show(struct device *dev,
3277                              struct device_attribute *attr, char *buf)
3278 {
3279         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3280
3281         return sprintf(buf, "0x%016llx\n",
3282                         (unsigned long long)rbd_dev->mapping.features);
3283 }
3284
3285 static ssize_t rbd_major_show(struct device *dev,
3286                               struct device_attribute *attr, char *buf)
3287 {
3288         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3289
3290         if (rbd_dev->major)
3291                 return sprintf(buf, "%d\n", rbd_dev->major);
3292
3293         return sprintf(buf, "(none)\n");
3294
3295 }
3296
3297 static ssize_t rbd_client_id_show(struct device *dev,
3298                                   struct device_attribute *attr, char *buf)
3299 {
3300         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3301
3302         return sprintf(buf, "client%lld\n",
3303                         ceph_client_id(rbd_dev->rbd_client->client));
3304 }
3305
3306 static ssize_t rbd_pool_show(struct device *dev,
3307                              struct device_attribute *attr, char *buf)
3308 {
3309         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3310
3311         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3312 }
3313
3314 static ssize_t rbd_pool_id_show(struct device *dev,
3315                              struct device_attribute *attr, char *buf)
3316 {
3317         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3318
3319         return sprintf(buf, "%llu\n",
3320                         (unsigned long long) rbd_dev->spec->pool_id);
3321 }
3322
3323 static ssize_t rbd_name_show(struct device *dev,
3324                              struct device_attribute *attr, char *buf)
3325 {
3326         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3327
3328         if (rbd_dev->spec->image_name)
3329                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3330
3331         return sprintf(buf, "(unknown)\n");
3332 }
3333
3334 static ssize_t rbd_image_id_show(struct device *dev,
3335                              struct device_attribute *attr, char *buf)
3336 {
3337         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3338
3339         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3340 }
3341
3342 /*
3343  * Shows the name of the currently-mapped snapshot (or
3344  * RBD_SNAP_HEAD_NAME for the base image).
3345  */
3346 static ssize_t rbd_snap_show(struct device *dev,
3347                              struct device_attribute *attr,
3348                              char *buf)
3349 {
3350         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3351
3352         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3353 }
3354
3355 /*
3356  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3357  * for the parent image.  If there is no parent, simply shows
3358  * "(no parent image)".
3359  */
3360 static ssize_t rbd_parent_show(struct device *dev,
3361                              struct device_attribute *attr,
3362                              char *buf)
3363 {
3364         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3365         struct rbd_spec *spec = rbd_dev->parent_spec;
3366         int count;
3367         char *bufp = buf;
3368
3369         if (!spec)
3370                 return sprintf(buf, "(no parent image)\n");
3371
3372         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3373                         (unsigned long long) spec->pool_id, spec->pool_name);
3374         if (count < 0)
3375                 return count;
3376         bufp += count;
3377
3378         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3379                         spec->image_name ? spec->image_name : "(unknown)");
3380         if (count < 0)
3381                 return count;
3382         bufp += count;
3383
3384         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3385                         (unsigned long long) spec->snap_id, spec->snap_name);
3386         if (count < 0)
3387                 return count;
3388         bufp += count;
3389
3390         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3391         if (count < 0)
3392                 return count;
3393         bufp += count;
3394
3395         return (ssize_t) (bufp - buf);
3396 }
3397
3398 static ssize_t rbd_image_refresh(struct device *dev,
3399                                  struct device_attribute *attr,
3400                                  const char *buf,
3401                                  size_t size)
3402 {
3403         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3404         int ret;
3405
3406         ret = rbd_dev_refresh(rbd_dev);
3407
3408         return ret < 0 ? ret : size;
3409 }
3410
3411 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3412 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3413 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3414 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3415 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3416 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3417 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3418 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3419 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3420 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3421 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3422
3423 static struct attribute *rbd_attrs[] = {
3424         &dev_attr_size.attr,
3425         &dev_attr_features.attr,
3426         &dev_attr_major.attr,
3427         &dev_attr_client_id.attr,
3428         &dev_attr_pool.attr,
3429         &dev_attr_pool_id.attr,
3430         &dev_attr_name.attr,
3431         &dev_attr_image_id.attr,
3432         &dev_attr_current_snap.attr,
3433         &dev_attr_parent.attr,
3434         &dev_attr_refresh.attr,
3435         NULL
3436 };
3437
3438 static struct attribute_group rbd_attr_group = {
3439         .attrs = rbd_attrs,
3440 };
3441
3442 static const struct attribute_group *rbd_attr_groups[] = {
3443         &rbd_attr_group,
3444         NULL
3445 };
3446
3447 static void rbd_sysfs_dev_release(struct device *dev)
3448 {
3449 }
3450
3451 static struct device_type rbd_device_type = {
3452         .name           = "rbd",
3453         .groups         = rbd_attr_groups,
3454         .release        = rbd_sysfs_dev_release,
3455 };
3456
3457 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3458 {
3459         kref_get(&spec->kref);
3460
3461         return spec;
3462 }
3463
3464 static void rbd_spec_free(struct kref *kref);
3465 static void rbd_spec_put(struct rbd_spec *spec)
3466 {
3467         if (spec)
3468                 kref_put(&spec->kref, rbd_spec_free);
3469 }
3470
3471 static struct rbd_spec *rbd_spec_alloc(void)
3472 {
3473         struct rbd_spec *spec;
3474
3475         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3476         if (!spec)
3477                 return NULL;
3478         kref_init(&spec->kref);
3479
3480         return spec;
3481 }
3482
3483 static void rbd_spec_free(struct kref *kref)
3484 {
3485         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3486
3487         kfree(spec->pool_name);
3488         kfree(spec->image_id);
3489         kfree(spec->image_name);
3490         kfree(spec->snap_name);
3491         kfree(spec);
3492 }
3493
3494 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3495                                 struct rbd_spec *spec)
3496 {
3497         struct rbd_device *rbd_dev;
3498
3499         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3500         if (!rbd_dev)
3501                 return NULL;
3502
3503         spin_lock_init(&rbd_dev->lock);
3504         rbd_dev->flags = 0;
3505         INIT_LIST_HEAD(&rbd_dev->node);
3506         init_rwsem(&rbd_dev->header_rwsem);
3507
3508         rbd_dev->spec = spec;
3509         rbd_dev->rbd_client = rbdc;
3510
3511         /* Initialize the layout used for all rbd requests */
3512
3513         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3514         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3515         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3516         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3517
3518         return rbd_dev;
3519 }
3520
3521 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3522 {
3523         rbd_put_client(rbd_dev->rbd_client);
3524         rbd_spec_put(rbd_dev->spec);
3525         kfree(rbd_dev);
3526 }
3527
3528 /*
3529  * Get the size and object order for an image snapshot, or if
3530  * snap_id is CEPH_NOSNAP, gets this information for the base
3531  * image.
3532  */
3533 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3534                                 u8 *order, u64 *snap_size)
3535 {
3536         __le64 snapid = cpu_to_le64(snap_id);
3537         int ret;
3538         struct {
3539                 u8 order;
3540                 __le64 size;
3541         } __attribute__ ((packed)) size_buf = { 0 };
3542
3543         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3544                                 "rbd", "get_size",
3545                                 &snapid, sizeof (snapid),
3546                                 &size_buf, sizeof (size_buf));
3547         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3548         if (ret < 0)
3549                 return ret;
3550         if (ret < sizeof (size_buf))
3551                 return -ERANGE;
3552
3553         if (order)
3554                 *order = size_buf.order;
3555         *snap_size = le64_to_cpu(size_buf.size);
3556
3557         dout("  snap_id 0x%016llx order = %u, snap_size = %llu\n",
3558                 (unsigned long long)snap_id, (unsigned int)*order,
3559                 (unsigned long long)*snap_size);
3560
3561         return 0;
3562 }
3563
3564 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3565 {
3566         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3567                                         &rbd_dev->header.obj_order,
3568                                         &rbd_dev->header.image_size);
3569 }
3570
3571 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3572 {
3573         void *reply_buf;
3574         int ret;
3575         void *p;
3576
3577         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3578         if (!reply_buf)
3579                 return -ENOMEM;
3580
3581         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3582                                 "rbd", "get_object_prefix", NULL, 0,
3583                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3584         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3585         if (ret < 0)
3586                 goto out;
3587
3588         p = reply_buf;
3589         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3590                                                 p + ret, NULL, GFP_NOIO);
3591         ret = 0;
3592
3593         if (IS_ERR(rbd_dev->header.object_prefix)) {
3594                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3595                 rbd_dev->header.object_prefix = NULL;
3596         } else {
3597                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3598         }
3599 out:
3600         kfree(reply_buf);
3601
3602         return ret;
3603 }
3604
3605 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3606                 u64 *snap_features)
3607 {
3608         __le64 snapid = cpu_to_le64(snap_id);
3609         struct {
3610                 __le64 features;
3611                 __le64 incompat;
3612         } __attribute__ ((packed)) features_buf = { 0 };
3613         u64 incompat;
3614         int ret;
3615
3616         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3617                                 "rbd", "get_features",
3618                                 &snapid, sizeof (snapid),
3619                                 &features_buf, sizeof (features_buf));
3620         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3621         if (ret < 0)
3622                 return ret;
3623         if (ret < sizeof (features_buf))
3624                 return -ERANGE;
3625
3626         incompat = le64_to_cpu(features_buf.incompat);
3627         if (incompat & ~RBD_FEATURES_SUPPORTED)
3628                 return -ENXIO;
3629
3630         *snap_features = le64_to_cpu(features_buf.features);
3631
3632         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3633                 (unsigned long long)snap_id,
3634                 (unsigned long long)*snap_features,
3635                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3636
3637         return 0;
3638 }
3639
3640 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3641 {
3642         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3643                                                 &rbd_dev->header.features);
3644 }
3645
3646 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3647 {
3648         struct rbd_spec *parent_spec;
3649         size_t size;
3650         void *reply_buf = NULL;
3651         __le64 snapid;
3652         void *p;
3653         void *end;
3654         char *image_id;
3655         u64 overlap;
3656         int ret;
3657
3658         parent_spec = rbd_spec_alloc();
3659         if (!parent_spec)
3660                 return -ENOMEM;
3661
3662         size = sizeof (__le64) +                                /* pool_id */
3663                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3664                 sizeof (__le64) +                               /* snap_id */
3665                 sizeof (__le64);                                /* overlap */
3666         reply_buf = kmalloc(size, GFP_KERNEL);
3667         if (!reply_buf) {
3668                 ret = -ENOMEM;
3669                 goto out_err;
3670         }
3671
3672         snapid = cpu_to_le64(CEPH_NOSNAP);
3673         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3674                                 "rbd", "get_parent",
3675                                 &snapid, sizeof (snapid),
3676                                 reply_buf, size);
3677         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3678         if (ret < 0)
3679                 goto out_err;
3680
3681         p = reply_buf;
3682         end = reply_buf + ret;
3683         ret = -ERANGE;
3684         ceph_decode_64_safe(&p, end, parent_spec->pool_id, out_err);
3685         if (parent_spec->pool_id == CEPH_NOPOOL)
3686                 goto out;       /* No parent?  No problem. */
3687
3688         /* The ceph file layout needs to fit pool id in 32 bits */
3689
3690         ret = -EIO;
3691         if (parent_spec->pool_id > (u64)U32_MAX) {
3692                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3693                         (unsigned long long)parent_spec->pool_id, U32_MAX);
3694                 goto out_err;
3695         }
3696
3697         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3698         if (IS_ERR(image_id)) {
3699                 ret = PTR_ERR(image_id);
3700                 goto out_err;
3701         }
3702         parent_spec->image_id = image_id;
3703         ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3704         ceph_decode_64_safe(&p, end, overlap, out_err);
3705
3706         rbd_dev->parent_overlap = overlap;
3707         rbd_dev->parent_spec = parent_spec;
3708         parent_spec = NULL;     /* rbd_dev now owns this */
3709 out:
3710         ret = 0;
3711 out_err:
3712         kfree(reply_buf);
3713         rbd_spec_put(parent_spec);
3714
3715         return ret;
3716 }
3717
3718 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3719 {
3720         struct {
3721                 __le64 stripe_unit;
3722                 __le64 stripe_count;
3723         } __attribute__ ((packed)) striping_info_buf = { 0 };
3724         size_t size = sizeof (striping_info_buf);
3725         void *p;
3726         u64 obj_size;
3727         u64 stripe_unit;
3728         u64 stripe_count;
3729         int ret;
3730
3731         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3732                                 "rbd", "get_stripe_unit_count", NULL, 0,
3733                                 (char *)&striping_info_buf, size);
3734         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3735         if (ret < 0)
3736                 return ret;
3737         if (ret < size)
3738                 return -ERANGE;
3739
3740         /*
3741          * We don't actually support the "fancy striping" feature
3742          * (STRIPINGV2) yet, but if the striping sizes are the
3743          * defaults the behavior is the same as before.  So find
3744          * out, and only fail if the image has non-default values.
3745          */
3746         ret = -EINVAL;
3747         obj_size = (u64)1 << rbd_dev->header.obj_order;
3748         p = &striping_info_buf;
3749         stripe_unit = ceph_decode_64(&p);
3750         if (stripe_unit != obj_size) {
3751                 rbd_warn(rbd_dev, "unsupported stripe unit "
3752                                 "(got %llu want %llu)",
3753                                 stripe_unit, obj_size);
3754                 return -EINVAL;
3755         }
3756         stripe_count = ceph_decode_64(&p);
3757         if (stripe_count != 1) {
3758                 rbd_warn(rbd_dev, "unsupported stripe count "
3759                                 "(got %llu want 1)", stripe_count);
3760                 return -EINVAL;
3761         }
3762         rbd_dev->header.stripe_unit = stripe_unit;
3763         rbd_dev->header.stripe_count = stripe_count;
3764
3765         return 0;
3766 }
3767
3768 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3769 {
3770         size_t image_id_size;
3771         char *image_id;
3772         void *p;
3773         void *end;
3774         size_t size;
3775         void *reply_buf = NULL;
3776         size_t len = 0;
3777         char *image_name = NULL;
3778         int ret;
3779
3780         rbd_assert(!rbd_dev->spec->image_name);
3781
3782         len = strlen(rbd_dev->spec->image_id);
3783         image_id_size = sizeof (__le32) + len;
3784         image_id = kmalloc(image_id_size, GFP_KERNEL);
3785         if (!image_id)
3786                 return NULL;
3787
3788         p = image_id;
3789         end = image_id + image_id_size;
3790         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
3791
3792         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
3793         reply_buf = kmalloc(size, GFP_KERNEL);
3794         if (!reply_buf)
3795                 goto out;
3796
3797         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
3798                                 "rbd", "dir_get_name",
3799                                 image_id, image_id_size,
3800                                 reply_buf, size);
3801         if (ret < 0)
3802                 goto out;
3803         p = reply_buf;
3804         end = reply_buf + ret;
3805
3806         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
3807         if (IS_ERR(image_name))
3808                 image_name = NULL;
3809         else
3810                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
3811 out:
3812         kfree(reply_buf);
3813         kfree(image_id);
3814
3815         return image_name;
3816 }
3817
3818 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3819 {
3820         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3821         const char *snap_name;
3822         u32 which = 0;
3823
3824         /* Skip over names until we find the one we are looking for */
3825
3826         snap_name = rbd_dev->header.snap_names;
3827         while (which < snapc->num_snaps) {
3828                 if (!strcmp(name, snap_name))
3829                         return snapc->snaps[which];
3830                 snap_name += strlen(snap_name) + 1;
3831                 which++;
3832         }
3833         return CEPH_NOSNAP;
3834 }
3835
3836 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3837 {
3838         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3839         u32 which;
3840         bool found = false;
3841         u64 snap_id;
3842
3843         for (which = 0; !found && which < snapc->num_snaps; which++) {
3844                 const char *snap_name;
3845
3846                 snap_id = snapc->snaps[which];
3847                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
3848                 if (IS_ERR(snap_name))
3849                         break;
3850                 found = !strcmp(name, snap_name);
3851                 kfree(snap_name);
3852         }
3853         return found ? snap_id : CEPH_NOSNAP;
3854 }
3855
3856 /*
3857  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
3858  * no snapshot by that name is found, or if an error occurs.
3859  */
3860 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3861 {
3862         if (rbd_dev->image_format == 1)
3863                 return rbd_v1_snap_id_by_name(rbd_dev, name);
3864
3865         return rbd_v2_snap_id_by_name(rbd_dev, name);
3866 }
3867
3868 /*
3869  * When an rbd image has a parent image, it is identified by the
3870  * pool, image, and snapshot ids (not names).  This function fills
3871  * in the names for those ids.  (It's OK if we can't figure out the
3872  * name for an image id, but the pool and snapshot ids should always
3873  * exist and have names.)  All names in an rbd spec are dynamically
3874  * allocated.
3875  *
3876  * When an image being mapped (not a parent) is probed, we have the
3877  * pool name and pool id, image name and image id, and the snapshot
3878  * name.  The only thing we're missing is the snapshot id.
3879  */
3880 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
3881 {
3882         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3883         struct rbd_spec *spec = rbd_dev->spec;
3884         const char *pool_name;
3885         const char *image_name;
3886         const char *snap_name;
3887         int ret;
3888
3889         /*
3890          * An image being mapped will have the pool name (etc.), but
3891          * we need to look up the snapshot id.
3892          */
3893         if (spec->pool_name) {
3894                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
3895                         u64 snap_id;
3896
3897                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
3898                         if (snap_id == CEPH_NOSNAP)
3899                                 return -ENOENT;
3900                         spec->snap_id = snap_id;
3901                 } else {
3902                         spec->snap_id = CEPH_NOSNAP;
3903                 }
3904
3905                 return 0;
3906         }
3907
3908         /* Get the pool name; we have to make our own copy of this */
3909
3910         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
3911         if (!pool_name) {
3912                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
3913                 return -EIO;
3914         }
3915         pool_name = kstrdup(pool_name, GFP_KERNEL);
3916         if (!pool_name)
3917                 return -ENOMEM;
3918
3919         /* Fetch the image name; tolerate failure here */
3920
3921         image_name = rbd_dev_image_name(rbd_dev);
3922         if (!image_name)
3923                 rbd_warn(rbd_dev, "unable to get image name");
3924
3925         /* Look up the snapshot name, and make a copy */
3926
3927         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
3928         if (!snap_name) {
3929                 ret = -ENOMEM;
3930                 goto out_err;
3931         }
3932
3933         spec->pool_name = pool_name;
3934         spec->image_name = image_name;
3935         spec->snap_name = snap_name;
3936
3937         return 0;
3938 out_err:
3939         kfree(image_name);
3940         kfree(pool_name);
3941
3942         return ret;
3943 }
3944
3945 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
3946 {
3947         size_t size;
3948         int ret;
3949         void *reply_buf;
3950         void *p;
3951         void *end;
3952         u64 seq;
3953         u32 snap_count;
3954         struct ceph_snap_context *snapc;
3955         u32 i;
3956
3957         /*
3958          * We'll need room for the seq value (maximum snapshot id),
3959          * snapshot count, and array of that many snapshot ids.
3960          * For now we have a fixed upper limit on the number we're
3961          * prepared to receive.
3962          */
3963         size = sizeof (__le64) + sizeof (__le32) +
3964                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
3965         reply_buf = kzalloc(size, GFP_KERNEL);
3966         if (!reply_buf)
3967                 return -ENOMEM;
3968
3969         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3970                                 "rbd", "get_snapcontext", NULL, 0,
3971                                 reply_buf, size);
3972         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3973         if (ret < 0)
3974                 goto out;
3975
3976         p = reply_buf;
3977         end = reply_buf + ret;
3978         ret = -ERANGE;
3979         ceph_decode_64_safe(&p, end, seq, out);
3980         ceph_decode_32_safe(&p, end, snap_count, out);
3981
3982         /*
3983          * Make sure the reported number of snapshot ids wouldn't go
3984          * beyond the end of our buffer.  But before checking that,
3985          * make sure the computed size of the snapshot context we
3986          * allocate is representable in a size_t.
3987          */
3988         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
3989                                  / sizeof (u64)) {
3990                 ret = -EINVAL;
3991                 goto out;
3992         }
3993         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
3994                 goto out;
3995         ret = 0;
3996
3997         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
3998         if (!snapc) {
3999                 ret = -ENOMEM;
4000                 goto out;
4001         }
4002         snapc->seq = seq;
4003         for (i = 0; i < snap_count; i++)
4004                 snapc->snaps[i] = ceph_decode_64(&p);
4005
4006         rbd_dev->header.snapc = snapc;
4007
4008         dout("  snap context seq = %llu, snap_count = %u\n",
4009                 (unsigned long long)seq, (unsigned int)snap_count);
4010 out:
4011         kfree(reply_buf);
4012
4013         return ret;
4014 }
4015
4016 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4017                                         u64 snap_id)
4018 {
4019         size_t size;
4020         void *reply_buf;
4021         __le64 snapid;
4022         int ret;
4023         void *p;
4024         void *end;
4025         char *snap_name;
4026
4027         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4028         reply_buf = kmalloc(size, GFP_KERNEL);
4029         if (!reply_buf)
4030                 return ERR_PTR(-ENOMEM);
4031
4032         snapid = cpu_to_le64(snap_id);
4033         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4034                                 "rbd", "get_snapshot_name",
4035                                 &snapid, sizeof (snapid),
4036                                 reply_buf, size);
4037         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4038         if (ret < 0) {
4039                 snap_name = ERR_PTR(ret);
4040                 goto out;
4041         }
4042
4043         p = reply_buf;
4044         end = reply_buf + ret;
4045         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4046         if (IS_ERR(snap_name))
4047                 goto out;
4048
4049         dout("  snap_id 0x%016llx snap_name = %s\n",
4050                 (unsigned long long)snap_id, snap_name);
4051 out:
4052         kfree(reply_buf);
4053
4054         return snap_name;
4055 }
4056
4057 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev)
4058 {
4059         int ret;
4060
4061         down_write(&rbd_dev->header_rwsem);
4062
4063         ret = rbd_dev_v2_image_size(rbd_dev);
4064         if (ret)
4065                 goto out;
4066         rbd_update_mapping_size(rbd_dev);
4067
4068         ret = rbd_dev_v2_snap_context(rbd_dev);
4069         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4070         if (ret)
4071                 goto out;
4072 out:
4073         up_write(&rbd_dev->header_rwsem);
4074
4075         return ret;
4076 }
4077
4078 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4079 {
4080         struct device *dev;
4081         int ret;
4082
4083         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4084
4085         dev = &rbd_dev->dev;
4086         dev->bus = &rbd_bus_type;
4087         dev->type = &rbd_device_type;
4088         dev->parent = &rbd_root_dev;
4089         dev->release = rbd_dev_device_release;
4090         dev_set_name(dev, "%d", rbd_dev->dev_id);
4091         ret = device_register(dev);
4092
4093         mutex_unlock(&ctl_mutex);
4094
4095         return ret;
4096 }
4097
4098 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4099 {
4100         device_unregister(&rbd_dev->dev);
4101 }
4102
4103 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4104
4105 /*
4106  * Get a unique rbd identifier for the given new rbd_dev, and add
4107  * the rbd_dev to the global list.  The minimum rbd id is 1.
4108  */
4109 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4110 {
4111         rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4112
4113         spin_lock(&rbd_dev_list_lock);
4114         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4115         spin_unlock(&rbd_dev_list_lock);
4116         dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4117                 (unsigned long long) rbd_dev->dev_id);
4118 }
4119
4120 /*
4121  * Remove an rbd_dev from the global list, and record that its
4122  * identifier is no longer in use.
4123  */
4124 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4125 {
4126         struct list_head *tmp;
4127         int rbd_id = rbd_dev->dev_id;
4128         int max_id;
4129
4130         rbd_assert(rbd_id > 0);
4131
4132         dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4133                 (unsigned long long) rbd_dev->dev_id);
4134         spin_lock(&rbd_dev_list_lock);
4135         list_del_init(&rbd_dev->node);
4136
4137         /*
4138          * If the id being "put" is not the current maximum, there
4139          * is nothing special we need to do.
4140          */
4141         if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4142                 spin_unlock(&rbd_dev_list_lock);
4143                 return;
4144         }
4145
4146         /*
4147          * We need to update the current maximum id.  Search the
4148          * list to find out what it is.  We're more likely to find
4149          * the maximum at the end, so search the list backward.
4150          */
4151         max_id = 0;
4152         list_for_each_prev(tmp, &rbd_dev_list) {
4153                 struct rbd_device *rbd_dev;
4154
4155                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4156                 if (rbd_dev->dev_id > max_id)
4157                         max_id = rbd_dev->dev_id;
4158         }
4159         spin_unlock(&rbd_dev_list_lock);
4160
4161         /*
4162          * The max id could have been updated by rbd_dev_id_get(), in
4163          * which case it now accurately reflects the new maximum.
4164          * Be careful not to overwrite the maximum value in that
4165          * case.
4166          */
4167         atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4168         dout("  max dev id has been reset\n");
4169 }
4170
4171 /*
4172  * Skips over white space at *buf, and updates *buf to point to the
4173  * first found non-space character (if any). Returns the length of
4174  * the token (string of non-white space characters) found.  Note
4175  * that *buf must be terminated with '\0'.
4176  */
4177 static inline size_t next_token(const char **buf)
4178 {
4179         /*
4180         * These are the characters that produce nonzero for
4181         * isspace() in the "C" and "POSIX" locales.
4182         */
4183         const char *spaces = " \f\n\r\t\v";
4184
4185         *buf += strspn(*buf, spaces);   /* Find start of token */
4186
4187         return strcspn(*buf, spaces);   /* Return token length */
4188 }
4189
4190 /*
4191  * Finds the next token in *buf, and if the provided token buffer is
4192  * big enough, copies the found token into it.  The result, if
4193  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4194  * must be terminated with '\0' on entry.
4195  *
4196  * Returns the length of the token found (not including the '\0').
4197  * Return value will be 0 if no token is found, and it will be >=
4198  * token_size if the token would not fit.
4199  *
4200  * The *buf pointer will be updated to point beyond the end of the
4201  * found token.  Note that this occurs even if the token buffer is
4202  * too small to hold it.
4203  */
4204 static inline size_t copy_token(const char **buf,
4205                                 char *token,
4206                                 size_t token_size)
4207 {
4208         size_t len;
4209
4210         len = next_token(buf);
4211         if (len < token_size) {
4212                 memcpy(token, *buf, len);
4213                 *(token + len) = '\0';
4214         }
4215         *buf += len;
4216
4217         return len;
4218 }
4219
4220 /*
4221  * Finds the next token in *buf, dynamically allocates a buffer big
4222  * enough to hold a copy of it, and copies the token into the new
4223  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4224  * that a duplicate buffer is created even for a zero-length token.
4225  *
4226  * Returns a pointer to the newly-allocated duplicate, or a null
4227  * pointer if memory for the duplicate was not available.  If
4228  * the lenp argument is a non-null pointer, the length of the token
4229  * (not including the '\0') is returned in *lenp.
4230  *
4231  * If successful, the *buf pointer will be updated to point beyond
4232  * the end of the found token.
4233  *
4234  * Note: uses GFP_KERNEL for allocation.
4235  */
4236 static inline char *dup_token(const char **buf, size_t *lenp)
4237 {
4238         char *dup;
4239         size_t len;
4240
4241         len = next_token(buf);
4242         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4243         if (!dup)
4244                 return NULL;
4245         *(dup + len) = '\0';
4246         *buf += len;
4247
4248         if (lenp)
4249                 *lenp = len;
4250
4251         return dup;
4252 }
4253
4254 /*
4255  * Parse the options provided for an "rbd add" (i.e., rbd image
4256  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4257  * and the data written is passed here via a NUL-terminated buffer.
4258  * Returns 0 if successful or an error code otherwise.
4259  *
4260  * The information extracted from these options is recorded in
4261  * the other parameters which return dynamically-allocated
4262  * structures:
4263  *  ceph_opts
4264  *      The address of a pointer that will refer to a ceph options
4265  *      structure.  Caller must release the returned pointer using
4266  *      ceph_destroy_options() when it is no longer needed.
4267  *  rbd_opts
4268  *      Address of an rbd options pointer.  Fully initialized by
4269  *      this function; caller must release with kfree().
4270  *  spec
4271  *      Address of an rbd image specification pointer.  Fully
4272  *      initialized by this function based on parsed options.
4273  *      Caller must release with rbd_spec_put().
4274  *
4275  * The options passed take this form:
4276  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4277  * where:
4278  *  <mon_addrs>
4279  *      A comma-separated list of one or more monitor addresses.
4280  *      A monitor address is an ip address, optionally followed
4281  *      by a port number (separated by a colon).
4282  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4283  *  <options>
4284  *      A comma-separated list of ceph and/or rbd options.
4285  *  <pool_name>
4286  *      The name of the rados pool containing the rbd image.
4287  *  <image_name>
4288  *      The name of the image in that pool to map.
4289  *  <snap_id>
4290  *      An optional snapshot id.  If provided, the mapping will
4291  *      present data from the image at the time that snapshot was
4292  *      created.  The image head is used if no snapshot id is
4293  *      provided.  Snapshot mappings are always read-only.
4294  */
4295 static int rbd_add_parse_args(const char *buf,
4296                                 struct ceph_options **ceph_opts,
4297                                 struct rbd_options **opts,
4298                                 struct rbd_spec **rbd_spec)
4299 {
4300         size_t len;
4301         char *options;
4302         const char *mon_addrs;
4303         char *snap_name;
4304         size_t mon_addrs_size;
4305         struct rbd_spec *spec = NULL;
4306         struct rbd_options *rbd_opts = NULL;
4307         struct ceph_options *copts;
4308         int ret;
4309
4310         /* The first four tokens are required */
4311
4312         len = next_token(&buf);
4313         if (!len) {
4314                 rbd_warn(NULL, "no monitor address(es) provided");
4315                 return -EINVAL;
4316         }
4317         mon_addrs = buf;
4318         mon_addrs_size = len + 1;
4319         buf += len;
4320
4321         ret = -EINVAL;
4322         options = dup_token(&buf, NULL);
4323         if (!options)
4324                 return -ENOMEM;
4325         if (!*options) {
4326                 rbd_warn(NULL, "no options provided");
4327                 goto out_err;
4328         }
4329
4330         spec = rbd_spec_alloc();
4331         if (!spec)
4332                 goto out_mem;
4333
4334         spec->pool_name = dup_token(&buf, NULL);
4335         if (!spec->pool_name)
4336                 goto out_mem;
4337         if (!*spec->pool_name) {
4338                 rbd_warn(NULL, "no pool name provided");
4339                 goto out_err;
4340         }
4341
4342         spec->image_name = dup_token(&buf, NULL);
4343         if (!spec->image_name)
4344                 goto out_mem;
4345         if (!*spec->image_name) {
4346                 rbd_warn(NULL, "no image name provided");
4347                 goto out_err;
4348         }
4349
4350         /*
4351          * Snapshot name is optional; default is to use "-"
4352          * (indicating the head/no snapshot).
4353          */
4354         len = next_token(&buf);
4355         if (!len) {
4356                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4357                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4358         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4359                 ret = -ENAMETOOLONG;
4360                 goto out_err;
4361         }
4362         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4363         if (!snap_name)
4364                 goto out_mem;
4365         *(snap_name + len) = '\0';
4366         spec->snap_name = snap_name;
4367
4368         /* Initialize all rbd options to the defaults */
4369
4370         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4371         if (!rbd_opts)
4372                 goto out_mem;
4373
4374         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4375
4376         copts = ceph_parse_options(options, mon_addrs,
4377                                         mon_addrs + mon_addrs_size - 1,
4378                                         parse_rbd_opts_token, rbd_opts);
4379         if (IS_ERR(copts)) {
4380                 ret = PTR_ERR(copts);
4381                 goto out_err;
4382         }
4383         kfree(options);
4384
4385         *ceph_opts = copts;
4386         *opts = rbd_opts;
4387         *rbd_spec = spec;
4388
4389         return 0;
4390 out_mem:
4391         ret = -ENOMEM;
4392 out_err:
4393         kfree(rbd_opts);
4394         rbd_spec_put(spec);
4395         kfree(options);
4396
4397         return ret;
4398 }
4399
4400 /*
4401  * An rbd format 2 image has a unique identifier, distinct from the
4402  * name given to it by the user.  Internally, that identifier is
4403  * what's used to specify the names of objects related to the image.
4404  *
4405  * A special "rbd id" object is used to map an rbd image name to its
4406  * id.  If that object doesn't exist, then there is no v2 rbd image
4407  * with the supplied name.
4408  *
4409  * This function will record the given rbd_dev's image_id field if
4410  * it can be determined, and in that case will return 0.  If any
4411  * errors occur a negative errno will be returned and the rbd_dev's
4412  * image_id field will be unchanged (and should be NULL).
4413  */
4414 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4415 {
4416         int ret;
4417         size_t size;
4418         char *object_name;
4419         void *response;
4420         char *image_id;
4421
4422         /*
4423          * When probing a parent image, the image id is already
4424          * known (and the image name likely is not).  There's no
4425          * need to fetch the image id again in this case.  We
4426          * do still need to set the image format though.
4427          */
4428         if (rbd_dev->spec->image_id) {
4429                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4430
4431                 return 0;
4432         }
4433
4434         /*
4435          * First, see if the format 2 image id file exists, and if
4436          * so, get the image's persistent id from it.
4437          */
4438         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4439         object_name = kmalloc(size, GFP_NOIO);
4440         if (!object_name)
4441                 return -ENOMEM;
4442         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4443         dout("rbd id object name is %s\n", object_name);
4444
4445         /* Response will be an encoded string, which includes a length */
4446
4447         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4448         response = kzalloc(size, GFP_NOIO);
4449         if (!response) {
4450                 ret = -ENOMEM;
4451                 goto out;
4452         }
4453
4454         /* If it doesn't exist we'll assume it's a format 1 image */
4455
4456         ret = rbd_obj_method_sync(rbd_dev, object_name,
4457                                 "rbd", "get_id", NULL, 0,
4458                                 response, RBD_IMAGE_ID_LEN_MAX);
4459         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4460         if (ret == -ENOENT) {
4461                 image_id = kstrdup("", GFP_KERNEL);
4462                 ret = image_id ? 0 : -ENOMEM;
4463                 if (!ret)
4464                         rbd_dev->image_format = 1;
4465         } else if (ret > sizeof (__le32)) {
4466                 void *p = response;
4467
4468                 image_id = ceph_extract_encoded_string(&p, p + ret,
4469                                                 NULL, GFP_NOIO);
4470                 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4471                 if (!ret)
4472                         rbd_dev->image_format = 2;
4473         } else {
4474                 ret = -EINVAL;
4475         }
4476
4477         if (!ret) {
4478                 rbd_dev->spec->image_id = image_id;
4479                 dout("image_id is %s\n", image_id);
4480         }
4481 out:
4482         kfree(response);
4483         kfree(object_name);
4484
4485         return ret;
4486 }
4487
4488 /* Undo whatever state changes are made by v1 or v2 image probe */
4489
4490 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4491 {
4492         struct rbd_image_header *header;
4493
4494         rbd_dev_remove_parent(rbd_dev);
4495         rbd_spec_put(rbd_dev->parent_spec);
4496         rbd_dev->parent_spec = NULL;
4497         rbd_dev->parent_overlap = 0;
4498
4499         /* Free dynamic fields from the header, then zero it out */
4500
4501         header = &rbd_dev->header;
4502         ceph_put_snap_context(header->snapc);
4503         kfree(header->snap_sizes);
4504         kfree(header->snap_names);
4505         kfree(header->object_prefix);
4506         memset(header, 0, sizeof (*header));
4507 }
4508
4509 static int rbd_dev_v1_probe(struct rbd_device *rbd_dev)
4510 {
4511         int ret;
4512
4513         /* Populate rbd image metadata */
4514
4515         ret = rbd_read_header(rbd_dev, &rbd_dev->header);
4516         if (ret < 0)
4517                 goto out_err;
4518
4519         /* Version 1 images have no parent (no layering) */
4520
4521         rbd_dev->parent_spec = NULL;
4522         rbd_dev->parent_overlap = 0;
4523
4524         dout("discovered version 1 image, header name is %s\n",
4525                 rbd_dev->header_name);
4526
4527         return 0;
4528
4529 out_err:
4530         kfree(rbd_dev->header_name);
4531         rbd_dev->header_name = NULL;
4532         kfree(rbd_dev->spec->image_id);
4533         rbd_dev->spec->image_id = NULL;
4534
4535         return ret;
4536 }
4537
4538 static int rbd_dev_v2_probe(struct rbd_device *rbd_dev)
4539 {
4540         int ret;
4541
4542         ret = rbd_dev_v2_image_size(rbd_dev);
4543         if (ret)
4544                 goto out_err;
4545
4546         /* Get the object prefix (a.k.a. block_name) for the image */
4547
4548         ret = rbd_dev_v2_object_prefix(rbd_dev);
4549         if (ret)
4550                 goto out_err;
4551
4552         /* Get the and check features for the image */
4553
4554         ret = rbd_dev_v2_features(rbd_dev);
4555         if (ret)
4556                 goto out_err;
4557
4558         /* If the image supports layering, get the parent info */
4559
4560         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
4561                 ret = rbd_dev_v2_parent_info(rbd_dev);
4562                 if (ret)
4563                         goto out_err;
4564
4565                 /*
4566                  * Don't print a warning for parent images.  We can
4567                  * tell this point because we won't know its pool
4568                  * name yet (just its pool id).
4569                  */
4570                 if (rbd_dev->spec->pool_name)
4571                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4572                                         "is EXPERIMENTAL!");
4573         }
4574
4575         /* If the image supports fancy striping, get its parameters */
4576
4577         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4578                 ret = rbd_dev_v2_striping_info(rbd_dev);
4579                 if (ret < 0)
4580                         goto out_err;
4581         }
4582
4583         /* crypto and compression type aren't (yet) supported for v2 images */
4584
4585         rbd_dev->header.crypt_type = 0;
4586         rbd_dev->header.comp_type = 0;
4587
4588         /* Get the snapshot context, plus the header version */
4589
4590         ret = rbd_dev_v2_snap_context(rbd_dev);
4591         if (ret)
4592                 goto out_err;
4593
4594         dout("discovered version 2 image, header name is %s\n",
4595                 rbd_dev->header_name);
4596
4597         return 0;
4598 out_err:
4599         rbd_dev->parent_overlap = 0;
4600         rbd_spec_put(rbd_dev->parent_spec);
4601         rbd_dev->parent_spec = NULL;
4602         kfree(rbd_dev->header_name);
4603         rbd_dev->header_name = NULL;
4604         kfree(rbd_dev->header.object_prefix);
4605         rbd_dev->header.object_prefix = NULL;
4606
4607         return ret;
4608 }
4609
4610 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4611 {
4612         struct rbd_device *parent = NULL;
4613         struct rbd_spec *parent_spec;
4614         struct rbd_client *rbdc;
4615         int ret;
4616
4617         if (!rbd_dev->parent_spec)
4618                 return 0;
4619         /*
4620          * We need to pass a reference to the client and the parent
4621          * spec when creating the parent rbd_dev.  Images related by
4622          * parent/child relationships always share both.
4623          */
4624         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4625         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4626
4627         ret = -ENOMEM;
4628         parent = rbd_dev_create(rbdc, parent_spec);
4629         if (!parent)
4630                 goto out_err;
4631
4632         ret = rbd_dev_image_probe(parent);
4633         if (ret < 0)
4634                 goto out_err;
4635         rbd_dev->parent = parent;
4636
4637         return 0;
4638 out_err:
4639         if (parent) {
4640                 rbd_spec_put(rbd_dev->parent_spec);
4641                 kfree(rbd_dev->header_name);
4642                 rbd_dev_destroy(parent);
4643         } else {
4644                 rbd_put_client(rbdc);
4645                 rbd_spec_put(parent_spec);
4646         }
4647
4648         return ret;
4649 }
4650
4651 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4652 {
4653         int ret;
4654
4655         ret = rbd_dev_mapping_set(rbd_dev);
4656         if (ret)
4657                 return ret;
4658
4659         /* generate unique id: find highest unique id, add one */
4660         rbd_dev_id_get(rbd_dev);
4661
4662         /* Fill in the device name, now that we have its id. */
4663         BUILD_BUG_ON(DEV_NAME_LEN
4664                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4665         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4666
4667         /* Get our block major device number. */
4668
4669         ret = register_blkdev(0, rbd_dev->name);
4670         if (ret < 0)
4671                 goto err_out_id;
4672         rbd_dev->major = ret;
4673
4674         /* Set up the blkdev mapping. */
4675
4676         ret = rbd_init_disk(rbd_dev);
4677         if (ret)
4678                 goto err_out_blkdev;
4679
4680         ret = rbd_bus_add_dev(rbd_dev);
4681         if (ret)
4682                 goto err_out_disk;
4683
4684         /* Everything's ready.  Announce the disk to the world. */
4685
4686         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4687         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4688         add_disk(rbd_dev->disk);
4689
4690         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4691                 (unsigned long long) rbd_dev->mapping.size);
4692
4693         return ret;
4694
4695 err_out_disk:
4696         rbd_free_disk(rbd_dev);
4697 err_out_blkdev:
4698         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4699 err_out_id:
4700         rbd_dev_id_put(rbd_dev);
4701         rbd_dev_mapping_clear(rbd_dev);
4702
4703         return ret;
4704 }
4705
4706 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4707 {
4708         struct rbd_spec *spec = rbd_dev->spec;
4709         size_t size;
4710
4711         /* Record the header object name for this rbd image. */
4712
4713         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4714
4715         if (rbd_dev->image_format == 1)
4716                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4717         else
4718                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4719
4720         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4721         if (!rbd_dev->header_name)
4722                 return -ENOMEM;
4723
4724         if (rbd_dev->image_format == 1)
4725                 sprintf(rbd_dev->header_name, "%s%s",
4726                         spec->image_name, RBD_SUFFIX);
4727         else
4728                 sprintf(rbd_dev->header_name, "%s%s",
4729                         RBD_HEADER_PREFIX, spec->image_id);
4730         return 0;
4731 }
4732
4733 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4734 {
4735         int ret;
4736
4737         rbd_dev_unprobe(rbd_dev);
4738         ret = rbd_dev_header_watch_sync(rbd_dev, 0);
4739         if (ret)
4740                 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
4741         kfree(rbd_dev->header_name);
4742         rbd_dev->header_name = NULL;
4743         rbd_dev->image_format = 0;
4744         kfree(rbd_dev->spec->image_id);
4745         rbd_dev->spec->image_id = NULL;
4746
4747         rbd_dev_destroy(rbd_dev);
4748 }
4749
4750 /*
4751  * Probe for the existence of the header object for the given rbd
4752  * device.  For format 2 images this includes determining the image
4753  * id.
4754  */
4755 static int rbd_dev_image_probe(struct rbd_device *rbd_dev)
4756 {
4757         int ret;
4758         int tmp;
4759
4760         /*
4761          * Get the id from the image id object.  If it's not a
4762          * format 2 image, we'll get ENOENT back, and we'll assume
4763          * it's a format 1 image.
4764          */
4765         ret = rbd_dev_image_id(rbd_dev);
4766         if (ret)
4767                 return ret;
4768         rbd_assert(rbd_dev->spec->image_id);
4769         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4770
4771         ret = rbd_dev_header_name(rbd_dev);
4772         if (ret)
4773                 goto err_out_format;
4774
4775         ret = rbd_dev_header_watch_sync(rbd_dev, 1);
4776         if (ret)
4777                 goto out_header_name;
4778
4779         if (rbd_dev->image_format == 1)
4780                 ret = rbd_dev_v1_probe(rbd_dev);
4781         else
4782                 ret = rbd_dev_v2_probe(rbd_dev);
4783         if (ret)
4784                 goto err_out_watch;
4785
4786         ret = rbd_dev_spec_update(rbd_dev);
4787         if (ret)
4788                 goto err_out_probe;
4789
4790         ret = rbd_dev_probe_parent(rbd_dev);
4791         if (!ret)
4792                 return 0;
4793
4794 err_out_probe:
4795         rbd_dev_unprobe(rbd_dev);
4796 err_out_watch:
4797         tmp = rbd_dev_header_watch_sync(rbd_dev, 0);
4798         if (tmp)
4799                 rbd_warn(rbd_dev, "unable to tear down watch request\n");
4800 out_header_name:
4801         kfree(rbd_dev->header_name);
4802         rbd_dev->header_name = NULL;
4803 err_out_format:
4804         rbd_dev->image_format = 0;
4805         kfree(rbd_dev->spec->image_id);
4806         rbd_dev->spec->image_id = NULL;
4807
4808         dout("probe failed, returning %d\n", ret);
4809
4810         return ret;
4811 }
4812
4813 static ssize_t rbd_add(struct bus_type *bus,
4814                        const char *buf,
4815                        size_t count)
4816 {
4817         struct rbd_device *rbd_dev = NULL;
4818         struct ceph_options *ceph_opts = NULL;
4819         struct rbd_options *rbd_opts = NULL;
4820         struct rbd_spec *spec = NULL;
4821         struct rbd_client *rbdc;
4822         struct ceph_osd_client *osdc;
4823         int rc = -ENOMEM;
4824
4825         if (!try_module_get(THIS_MODULE))
4826                 return -ENODEV;
4827
4828         /* parse add command */
4829         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4830         if (rc < 0)
4831                 goto err_out_module;
4832
4833         rbdc = rbd_get_client(ceph_opts);
4834         if (IS_ERR(rbdc)) {
4835                 rc = PTR_ERR(rbdc);
4836                 goto err_out_args;
4837         }
4838         ceph_opts = NULL;       /* rbd_dev client now owns this */
4839
4840         /* pick the pool */
4841         osdc = &rbdc->client->osdc;
4842         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
4843         if (rc < 0)
4844                 goto err_out_client;
4845         spec->pool_id = (u64)rc;
4846
4847         /* The ceph file layout needs to fit pool id in 32 bits */
4848
4849         if (spec->pool_id > (u64)U32_MAX) {
4850                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
4851                                 (unsigned long long)spec->pool_id, U32_MAX);
4852                 rc = -EIO;
4853                 goto err_out_client;
4854         }
4855
4856         rbd_dev = rbd_dev_create(rbdc, spec);
4857         if (!rbd_dev)
4858                 goto err_out_client;
4859         rbdc = NULL;            /* rbd_dev now owns this */
4860         spec = NULL;            /* rbd_dev now owns this */
4861
4862         rbd_dev->mapping.read_only = rbd_opts->read_only;
4863         kfree(rbd_opts);
4864         rbd_opts = NULL;        /* done with this */
4865
4866         rc = rbd_dev_image_probe(rbd_dev);
4867         if (rc < 0)
4868                 goto err_out_rbd_dev;
4869
4870         rc = rbd_dev_device_setup(rbd_dev);
4871         if (!rc)
4872                 return count;
4873
4874         rbd_dev_image_release(rbd_dev);
4875 err_out_rbd_dev:
4876         rbd_dev_destroy(rbd_dev);
4877 err_out_client:
4878         rbd_put_client(rbdc);
4879 err_out_args:
4880         if (ceph_opts)
4881                 ceph_destroy_options(ceph_opts);
4882         kfree(rbd_opts);
4883         rbd_spec_put(spec);
4884 err_out_module:
4885         module_put(THIS_MODULE);
4886
4887         dout("Error adding device %s\n", buf);
4888
4889         return (ssize_t)rc;
4890 }
4891
4892 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
4893 {
4894         struct list_head *tmp;
4895         struct rbd_device *rbd_dev;
4896
4897         spin_lock(&rbd_dev_list_lock);
4898         list_for_each(tmp, &rbd_dev_list) {
4899                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4900                 if (rbd_dev->dev_id == dev_id) {
4901                         spin_unlock(&rbd_dev_list_lock);
4902                         return rbd_dev;
4903                 }
4904         }
4905         spin_unlock(&rbd_dev_list_lock);
4906         return NULL;
4907 }
4908
4909 static void rbd_dev_device_release(struct device *dev)
4910 {
4911         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4912
4913         rbd_free_disk(rbd_dev);
4914         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4915         rbd_dev_clear_mapping(rbd_dev);
4916         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4917         rbd_dev->major = 0;
4918         rbd_dev_id_put(rbd_dev);
4919         rbd_dev_mapping_clear(rbd_dev);
4920 }
4921
4922 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
4923 {
4924         while (rbd_dev->parent) {
4925                 struct rbd_device *first = rbd_dev;
4926                 struct rbd_device *second = first->parent;
4927                 struct rbd_device *third;
4928
4929                 /*
4930                  * Follow to the parent with no grandparent and
4931                  * remove it.
4932                  */
4933                 while (second && (third = second->parent)) {
4934                         first = second;
4935                         second = third;
4936                 }
4937                 rbd_assert(second);
4938                 rbd_dev_image_release(second);
4939                 first->parent = NULL;
4940                 first->parent_overlap = 0;
4941
4942                 rbd_assert(first->parent_spec);
4943                 rbd_spec_put(first->parent_spec);
4944                 first->parent_spec = NULL;
4945         }
4946 }
4947
4948 static ssize_t rbd_remove(struct bus_type *bus,
4949                           const char *buf,
4950                           size_t count)
4951 {
4952         struct rbd_device *rbd_dev = NULL;
4953         int target_id;
4954         unsigned long ul;
4955         int ret;
4956
4957         ret = strict_strtoul(buf, 10, &ul);
4958         if (ret)
4959                 return ret;
4960
4961         /* convert to int; abort if we lost anything in the conversion */
4962         target_id = (int) ul;
4963         if (target_id != ul)
4964                 return -EINVAL;
4965
4966         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4967
4968         rbd_dev = __rbd_get_dev(target_id);
4969         if (!rbd_dev) {
4970                 ret = -ENOENT;
4971                 goto done;
4972         }
4973
4974         spin_lock_irq(&rbd_dev->lock);
4975         if (rbd_dev->open_count)
4976                 ret = -EBUSY;
4977         else
4978                 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
4979         spin_unlock_irq(&rbd_dev->lock);
4980         if (ret < 0)
4981                 goto done;
4982         ret = count;
4983         rbd_bus_del_dev(rbd_dev);
4984         rbd_dev_image_release(rbd_dev);
4985         module_put(THIS_MODULE);
4986 done:
4987         mutex_unlock(&ctl_mutex);
4988
4989         return ret;
4990 }
4991
4992 /*
4993  * create control files in sysfs
4994  * /sys/bus/rbd/...
4995  */
4996 static int rbd_sysfs_init(void)
4997 {
4998         int ret;
4999
5000         ret = device_register(&rbd_root_dev);
5001         if (ret < 0)
5002                 return ret;
5003
5004         ret = bus_register(&rbd_bus_type);
5005         if (ret < 0)
5006                 device_unregister(&rbd_root_dev);
5007
5008         return ret;
5009 }
5010
5011 static void rbd_sysfs_cleanup(void)
5012 {
5013         bus_unregister(&rbd_bus_type);
5014         device_unregister(&rbd_root_dev);
5015 }
5016
5017 static int rbd_slab_init(void)
5018 {
5019         rbd_assert(!rbd_img_request_cache);
5020         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5021                                         sizeof (struct rbd_img_request),
5022                                         __alignof__(struct rbd_img_request),
5023                                         0, NULL);
5024         if (!rbd_img_request_cache)
5025                 return -ENOMEM;
5026
5027         rbd_assert(!rbd_obj_request_cache);
5028         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5029                                         sizeof (struct rbd_obj_request),
5030                                         __alignof__(struct rbd_obj_request),
5031                                         0, NULL);
5032         if (!rbd_obj_request_cache)
5033                 goto out_err;
5034
5035         rbd_assert(!rbd_segment_name_cache);
5036         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5037                                         MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5038         if (rbd_segment_name_cache)
5039                 return 0;
5040 out_err:
5041         if (rbd_obj_request_cache) {
5042                 kmem_cache_destroy(rbd_obj_request_cache);
5043                 rbd_obj_request_cache = NULL;
5044         }
5045
5046         kmem_cache_destroy(rbd_img_request_cache);
5047         rbd_img_request_cache = NULL;
5048
5049         return -ENOMEM;
5050 }
5051
5052 static void rbd_slab_exit(void)
5053 {
5054         rbd_assert(rbd_segment_name_cache);
5055         kmem_cache_destroy(rbd_segment_name_cache);
5056         rbd_segment_name_cache = NULL;
5057
5058         rbd_assert(rbd_obj_request_cache);
5059         kmem_cache_destroy(rbd_obj_request_cache);
5060         rbd_obj_request_cache = NULL;
5061
5062         rbd_assert(rbd_img_request_cache);
5063         kmem_cache_destroy(rbd_img_request_cache);
5064         rbd_img_request_cache = NULL;
5065 }
5066
5067 static int __init rbd_init(void)
5068 {
5069         int rc;
5070
5071         if (!libceph_compatible(NULL)) {
5072                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5073
5074                 return -EINVAL;
5075         }
5076         rc = rbd_slab_init();
5077         if (rc)
5078                 return rc;
5079         rc = rbd_sysfs_init();
5080         if (rc)
5081                 rbd_slab_exit();
5082         else
5083                 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5084
5085         return rc;
5086 }
5087
5088 static void __exit rbd_exit(void)
5089 {
5090         rbd_sysfs_cleanup();
5091         rbd_slab_exit();
5092 }
5093
5094 module_init(rbd_init);
5095 module_exit(rbd_exit);
5096
5097 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5098 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5099 MODULE_DESCRIPTION("rados block device");
5100
5101 /* following authorship retained from original osdblk.c */
5102 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5103
5104 MODULE_LICENSE("GPL");