]> Pileus Git - ~andy/linux/blob - drivers/block/rbd.c
rbd: drop original request earlier for existence check
[~andy/linux] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG       /* Activate rbd_assert() calls */
48
49 /*
50  * The basic unit of block I/O is a sector.  It is interpreted in a
51  * number of contexts in Linux (blk, bio, genhd), but the default is
52  * universally 512 bytes.  These symbols are just slightly more
53  * meaningful than the bare numbers they represent.
54  */
55 #define SECTOR_SHIFT    9
56 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
57
58 /*
59  * Increment the given counter and return its updated value.
60  * If the counter is already 0 it will not be incremented.
61  * If the counter is already at its maximum value returns
62  * -EINVAL without updating it.
63  */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66         unsigned int counter;
67
68         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69         if (counter <= (unsigned int)INT_MAX)
70                 return (int)counter;
71
72         atomic_dec(v);
73
74         return -EINVAL;
75 }
76
77 /* Decrement the counter.  Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80         int counter;
81
82         counter = atomic_dec_return(v);
83         if (counter >= 0)
84                 return counter;
85
86         atomic_inc(v);
87
88         return -EINVAL;
89 }
90
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
93
94 #define RBD_MINORS_PER_MAJOR    256             /* max minors per blkdev */
95
96 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
97 #define RBD_MAX_SNAP_NAME_LEN   \
98                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
99
100 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
101
102 #define RBD_SNAP_HEAD_NAME      "-"
103
104 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
105
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX    64
109
110 #define RBD_OBJ_PREFIX_LEN_MAX  64
111
112 /* Feature bits */
113
114 #define RBD_FEATURE_LAYERING    (1<<0)
115 #define RBD_FEATURE_STRIPINGV2  (1<<1)
116 #define RBD_FEATURES_ALL \
117             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
118
119 /* Features supported by this (client software) implementation. */
120
121 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
122
123 /*
124  * An RBD device name will be "rbd#", where the "rbd" comes from
125  * RBD_DRV_NAME above, and # is a unique integer identifier.
126  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127  * enough to hold all possible device names.
128  */
129 #define DEV_NAME_LEN            32
130 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
131
132 /*
133  * block device image metadata (in-memory version)
134  */
135 struct rbd_image_header {
136         /* These six fields never change for a given rbd image */
137         char *object_prefix;
138         __u8 obj_order;
139         __u8 crypt_type;
140         __u8 comp_type;
141         u64 stripe_unit;
142         u64 stripe_count;
143         u64 features;           /* Might be changeable someday? */
144
145         /* The remaining fields need to be updated occasionally */
146         u64 image_size;
147         struct ceph_snap_context *snapc;
148         char *snap_names;       /* format 1 only */
149         u64 *snap_sizes;        /* format 1 only */
150 };
151
152 /*
153  * An rbd image specification.
154  *
155  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156  * identify an image.  Each rbd_dev structure includes a pointer to
157  * an rbd_spec structure that encapsulates this identity.
158  *
159  * Each of the id's in an rbd_spec has an associated name.  For a
160  * user-mapped image, the names are supplied and the id's associated
161  * with them are looked up.  For a layered image, a parent image is
162  * defined by the tuple, and the names are looked up.
163  *
164  * An rbd_dev structure contains a parent_spec pointer which is
165  * non-null if the image it represents is a child in a layered
166  * image.  This pointer will refer to the rbd_spec structure used
167  * by the parent rbd_dev for its own identity (i.e., the structure
168  * is shared between the parent and child).
169  *
170  * Since these structures are populated once, during the discovery
171  * phase of image construction, they are effectively immutable so
172  * we make no effort to synchronize access to them.
173  *
174  * Note that code herein does not assume the image name is known (it
175  * could be a null pointer).
176  */
177 struct rbd_spec {
178         u64             pool_id;
179         const char      *pool_name;
180
181         const char      *image_id;
182         const char      *image_name;
183
184         u64             snap_id;
185         const char      *snap_name;
186
187         struct kref     kref;
188 };
189
190 /*
191  * an instance of the client.  multiple devices may share an rbd client.
192  */
193 struct rbd_client {
194         struct ceph_client      *client;
195         struct kref             kref;
196         struct list_head        node;
197 };
198
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
201
202 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
203
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
206
207 enum obj_request_type {
208         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
209 };
210
211 enum obj_req_flags {
212         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
213         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
214         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
215         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
216 };
217
218 struct rbd_obj_request {
219         const char              *object_name;
220         u64                     offset;         /* object start byte */
221         u64                     length;         /* bytes from offset */
222         unsigned long           flags;
223
224         /*
225          * An object request associated with an image will have its
226          * img_data flag set; a standalone object request will not.
227          *
228          * A standalone object request will have which == BAD_WHICH
229          * and a null obj_request pointer.
230          *
231          * An object request initiated in support of a layered image
232          * object (to check for its existence before a write) will
233          * have which == BAD_WHICH and a non-null obj_request pointer.
234          *
235          * Finally, an object request for rbd image data will have
236          * which != BAD_WHICH, and will have a non-null img_request
237          * pointer.  The value of which will be in the range
238          * 0..(img_request->obj_request_count-1).
239          */
240         union {
241                 struct rbd_obj_request  *obj_request;   /* STAT op */
242                 struct {
243                         struct rbd_img_request  *img_request;
244                         u64                     img_offset;
245                         /* links for img_request->obj_requests list */
246                         struct list_head        links;
247                 };
248         };
249         u32                     which;          /* posn image request list */
250
251         enum obj_request_type   type;
252         union {
253                 struct bio      *bio_list;
254                 struct {
255                         struct page     **pages;
256                         u32             page_count;
257                 };
258         };
259         struct page             **copyup_pages;
260         u32                     copyup_page_count;
261
262         struct ceph_osd_request *osd_req;
263
264         u64                     xferred;        /* bytes transferred */
265         int                     result;
266
267         rbd_obj_callback_t      callback;
268         struct completion       completion;
269
270         struct kref             kref;
271 };
272
273 enum img_req_flags {
274         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
275         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
276         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
277 };
278
279 struct rbd_img_request {
280         struct rbd_device       *rbd_dev;
281         u64                     offset; /* starting image byte offset */
282         u64                     length; /* byte count from offset */
283         unsigned long           flags;
284         union {
285                 u64                     snap_id;        /* for reads */
286                 struct ceph_snap_context *snapc;        /* for writes */
287         };
288         union {
289                 struct request          *rq;            /* block request */
290                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
291         };
292         struct page             **copyup_pages;
293         u32                     copyup_page_count;
294         spinlock_t              completion_lock;/* protects next_completion */
295         u32                     next_completion;
296         rbd_img_callback_t      callback;
297         u64                     xferred;/* aggregate bytes transferred */
298         int                     result; /* first nonzero obj_request result */
299
300         u32                     obj_request_count;
301         struct list_head        obj_requests;   /* rbd_obj_request structs */
302
303         struct kref             kref;
304 };
305
306 #define for_each_obj_request(ireq, oreq) \
307         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
312
313 struct rbd_mapping {
314         u64                     size;
315         u64                     features;
316         bool                    read_only;
317 };
318
319 /*
320  * a single device
321  */
322 struct rbd_device {
323         int                     dev_id;         /* blkdev unique id */
324
325         int                     major;          /* blkdev assigned major */
326         struct gendisk          *disk;          /* blkdev's gendisk and rq */
327
328         u32                     image_format;   /* Either 1 or 2 */
329         struct rbd_client       *rbd_client;
330
331         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
332
333         spinlock_t              lock;           /* queue, flags, open_count */
334
335         struct rbd_image_header header;
336         unsigned long           flags;          /* possibly lock protected */
337         struct rbd_spec         *spec;
338
339         char                    *header_name;
340
341         struct ceph_file_layout layout;
342
343         struct ceph_osd_event   *watch_event;
344         struct rbd_obj_request  *watch_request;
345
346         struct rbd_spec         *parent_spec;
347         u64                     parent_overlap;
348         atomic_t                parent_ref;
349         struct rbd_device       *parent;
350
351         /* protects updating the header */
352         struct rw_semaphore     header_rwsem;
353
354         struct rbd_mapping      mapping;
355
356         struct list_head        node;
357
358         /* sysfs related */
359         struct device           dev;
360         unsigned long           open_count;     /* protected by lock */
361 };
362
363 /*
364  * Flag bits for rbd_dev->flags.  If atomicity is required,
365  * rbd_dev->lock is used to protect access.
366  *
367  * Currently, only the "removing" flag (which is coupled with the
368  * "open_count" field) requires atomic access.
369  */
370 enum rbd_dev_flags {
371         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
372         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
373 };
374
375 static DEFINE_MUTEX(ctl_mutex);   /* Serialize open/close/setup/teardown */
376
377 static LIST_HEAD(rbd_dev_list);    /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
379
380 static LIST_HEAD(rbd_client_list);              /* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
382
383 /* Slab caches for frequently-allocated structures */
384
385 static struct kmem_cache        *rbd_img_request_cache;
386 static struct kmem_cache        *rbd_obj_request_cache;
387 static struct kmem_cache        *rbd_segment_name_cache;
388
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
390
391 static void rbd_dev_device_release(struct device *dev);
392
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
394                        size_t count);
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
396                           size_t count);
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
399
400 static struct bus_attribute rbd_bus_attrs[] = {
401         __ATTR(add, S_IWUSR, NULL, rbd_add),
402         __ATTR(remove, S_IWUSR, NULL, rbd_remove),
403         __ATTR_NULL
404 };
405
406 static struct bus_type rbd_bus_type = {
407         .name           = "rbd",
408         .bus_attrs      = rbd_bus_attrs,
409 };
410
411 static void rbd_root_dev_release(struct device *dev)
412 {
413 }
414
415 static struct device rbd_root_dev = {
416         .init_name =    "rbd",
417         .release =      rbd_root_dev_release,
418 };
419
420 static __printf(2, 3)
421 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
422 {
423         struct va_format vaf;
424         va_list args;
425
426         va_start(args, fmt);
427         vaf.fmt = fmt;
428         vaf.va = &args;
429
430         if (!rbd_dev)
431                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
432         else if (rbd_dev->disk)
433                 printk(KERN_WARNING "%s: %s: %pV\n",
434                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
435         else if (rbd_dev->spec && rbd_dev->spec->image_name)
436                 printk(KERN_WARNING "%s: image %s: %pV\n",
437                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
438         else if (rbd_dev->spec && rbd_dev->spec->image_id)
439                 printk(KERN_WARNING "%s: id %s: %pV\n",
440                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
441         else    /* punt */
442                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
443                         RBD_DRV_NAME, rbd_dev, &vaf);
444         va_end(args);
445 }
446
447 #ifdef RBD_DEBUG
448 #define rbd_assert(expr)                                                \
449                 if (unlikely(!(expr))) {                                \
450                         printk(KERN_ERR "\nAssertion failure in %s() "  \
451                                                 "at line %d:\n\n"       \
452                                         "\trbd_assert(%s);\n\n",        \
453                                         __func__, __LINE__, #expr);     \
454                         BUG();                                          \
455                 }
456 #else /* !RBD_DEBUG */
457 #  define rbd_assert(expr)      ((void) 0)
458 #endif /* !RBD_DEBUG */
459
460 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
461 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
462 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
463
464 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
465 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
466 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
467 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
468                                         u64 snap_id);
469 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
470                                 u8 *order, u64 *snap_size);
471 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
472                 u64 *snap_features);
473 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
474
475 static int rbd_open(struct block_device *bdev, fmode_t mode)
476 {
477         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
478         bool removing = false;
479
480         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
481                 return -EROFS;
482
483         spin_lock_irq(&rbd_dev->lock);
484         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
485                 removing = true;
486         else
487                 rbd_dev->open_count++;
488         spin_unlock_irq(&rbd_dev->lock);
489         if (removing)
490                 return -ENOENT;
491
492         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
493         (void) get_device(&rbd_dev->dev);
494         set_device_ro(bdev, rbd_dev->mapping.read_only);
495         mutex_unlock(&ctl_mutex);
496
497         return 0;
498 }
499
500 static void rbd_release(struct gendisk *disk, fmode_t mode)
501 {
502         struct rbd_device *rbd_dev = disk->private_data;
503         unsigned long open_count_before;
504
505         spin_lock_irq(&rbd_dev->lock);
506         open_count_before = rbd_dev->open_count--;
507         spin_unlock_irq(&rbd_dev->lock);
508         rbd_assert(open_count_before > 0);
509
510         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
511         put_device(&rbd_dev->dev);
512         mutex_unlock(&ctl_mutex);
513 }
514
515 static const struct block_device_operations rbd_bd_ops = {
516         .owner                  = THIS_MODULE,
517         .open                   = rbd_open,
518         .release                = rbd_release,
519 };
520
521 /*
522  * Initialize an rbd client instance.  Success or not, this function
523  * consumes ceph_opts.
524  */
525 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
526 {
527         struct rbd_client *rbdc;
528         int ret = -ENOMEM;
529
530         dout("%s:\n", __func__);
531         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
532         if (!rbdc)
533                 goto out_opt;
534
535         kref_init(&rbdc->kref);
536         INIT_LIST_HEAD(&rbdc->node);
537
538         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
539
540         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
541         if (IS_ERR(rbdc->client))
542                 goto out_mutex;
543         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
544
545         ret = ceph_open_session(rbdc->client);
546         if (ret < 0)
547                 goto out_err;
548
549         spin_lock(&rbd_client_list_lock);
550         list_add_tail(&rbdc->node, &rbd_client_list);
551         spin_unlock(&rbd_client_list_lock);
552
553         mutex_unlock(&ctl_mutex);
554         dout("%s: rbdc %p\n", __func__, rbdc);
555
556         return rbdc;
557
558 out_err:
559         ceph_destroy_client(rbdc->client);
560 out_mutex:
561         mutex_unlock(&ctl_mutex);
562         kfree(rbdc);
563 out_opt:
564         if (ceph_opts)
565                 ceph_destroy_options(ceph_opts);
566         dout("%s: error %d\n", __func__, ret);
567
568         return ERR_PTR(ret);
569 }
570
571 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
572 {
573         kref_get(&rbdc->kref);
574
575         return rbdc;
576 }
577
578 /*
579  * Find a ceph client with specific addr and configuration.  If
580  * found, bump its reference count.
581  */
582 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
583 {
584         struct rbd_client *client_node;
585         bool found = false;
586
587         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
588                 return NULL;
589
590         spin_lock(&rbd_client_list_lock);
591         list_for_each_entry(client_node, &rbd_client_list, node) {
592                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
593                         __rbd_get_client(client_node);
594
595                         found = true;
596                         break;
597                 }
598         }
599         spin_unlock(&rbd_client_list_lock);
600
601         return found ? client_node : NULL;
602 }
603
604 /*
605  * mount options
606  */
607 enum {
608         Opt_last_int,
609         /* int args above */
610         Opt_last_string,
611         /* string args above */
612         Opt_read_only,
613         Opt_read_write,
614         /* Boolean args above */
615         Opt_last_bool,
616 };
617
618 static match_table_t rbd_opts_tokens = {
619         /* int args above */
620         /* string args above */
621         {Opt_read_only, "read_only"},
622         {Opt_read_only, "ro"},          /* Alternate spelling */
623         {Opt_read_write, "read_write"},
624         {Opt_read_write, "rw"},         /* Alternate spelling */
625         /* Boolean args above */
626         {-1, NULL}
627 };
628
629 struct rbd_options {
630         bool    read_only;
631 };
632
633 #define RBD_READ_ONLY_DEFAULT   false
634
635 static int parse_rbd_opts_token(char *c, void *private)
636 {
637         struct rbd_options *rbd_opts = private;
638         substring_t argstr[MAX_OPT_ARGS];
639         int token, intval, ret;
640
641         token = match_token(c, rbd_opts_tokens, argstr);
642         if (token < 0)
643                 return -EINVAL;
644
645         if (token < Opt_last_int) {
646                 ret = match_int(&argstr[0], &intval);
647                 if (ret < 0) {
648                         pr_err("bad mount option arg (not int) "
649                                "at '%s'\n", c);
650                         return ret;
651                 }
652                 dout("got int token %d val %d\n", token, intval);
653         } else if (token > Opt_last_int && token < Opt_last_string) {
654                 dout("got string token %d val %s\n", token,
655                      argstr[0].from);
656         } else if (token > Opt_last_string && token < Opt_last_bool) {
657                 dout("got Boolean token %d\n", token);
658         } else {
659                 dout("got token %d\n", token);
660         }
661
662         switch (token) {
663         case Opt_read_only:
664                 rbd_opts->read_only = true;
665                 break;
666         case Opt_read_write:
667                 rbd_opts->read_only = false;
668                 break;
669         default:
670                 rbd_assert(false);
671                 break;
672         }
673         return 0;
674 }
675
676 /*
677  * Get a ceph client with specific addr and configuration, if one does
678  * not exist create it.  Either way, ceph_opts is consumed by this
679  * function.
680  */
681 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
682 {
683         struct rbd_client *rbdc;
684
685         rbdc = rbd_client_find(ceph_opts);
686         if (rbdc)       /* using an existing client */
687                 ceph_destroy_options(ceph_opts);
688         else
689                 rbdc = rbd_client_create(ceph_opts);
690
691         return rbdc;
692 }
693
694 /*
695  * Destroy ceph client
696  *
697  * Caller must hold rbd_client_list_lock.
698  */
699 static void rbd_client_release(struct kref *kref)
700 {
701         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
702
703         dout("%s: rbdc %p\n", __func__, rbdc);
704         spin_lock(&rbd_client_list_lock);
705         list_del(&rbdc->node);
706         spin_unlock(&rbd_client_list_lock);
707
708         ceph_destroy_client(rbdc->client);
709         kfree(rbdc);
710 }
711
712 /*
713  * Drop reference to ceph client node. If it's not referenced anymore, release
714  * it.
715  */
716 static void rbd_put_client(struct rbd_client *rbdc)
717 {
718         if (rbdc)
719                 kref_put(&rbdc->kref, rbd_client_release);
720 }
721
722 static bool rbd_image_format_valid(u32 image_format)
723 {
724         return image_format == 1 || image_format == 2;
725 }
726
727 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
728 {
729         size_t size;
730         u32 snap_count;
731
732         /* The header has to start with the magic rbd header text */
733         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
734                 return false;
735
736         /* The bio layer requires at least sector-sized I/O */
737
738         if (ondisk->options.order < SECTOR_SHIFT)
739                 return false;
740
741         /* If we use u64 in a few spots we may be able to loosen this */
742
743         if (ondisk->options.order > 8 * sizeof (int) - 1)
744                 return false;
745
746         /*
747          * The size of a snapshot header has to fit in a size_t, and
748          * that limits the number of snapshots.
749          */
750         snap_count = le32_to_cpu(ondisk->snap_count);
751         size = SIZE_MAX - sizeof (struct ceph_snap_context);
752         if (snap_count > size / sizeof (__le64))
753                 return false;
754
755         /*
756          * Not only that, but the size of the entire the snapshot
757          * header must also be representable in a size_t.
758          */
759         size -= snap_count * sizeof (__le64);
760         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
761                 return false;
762
763         return true;
764 }
765
766 /*
767  * Fill an rbd image header with information from the given format 1
768  * on-disk header.
769  */
770 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
771                                  struct rbd_image_header_ondisk *ondisk)
772 {
773         struct rbd_image_header *header = &rbd_dev->header;
774         bool first_time = header->object_prefix == NULL;
775         struct ceph_snap_context *snapc;
776         char *object_prefix = NULL;
777         char *snap_names = NULL;
778         u64 *snap_sizes = NULL;
779         u32 snap_count;
780         size_t size;
781         int ret = -ENOMEM;
782         u32 i;
783
784         /* Allocate this now to avoid having to handle failure below */
785
786         if (first_time) {
787                 size_t len;
788
789                 len = strnlen(ondisk->object_prefix,
790                                 sizeof (ondisk->object_prefix));
791                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
792                 if (!object_prefix)
793                         return -ENOMEM;
794                 memcpy(object_prefix, ondisk->object_prefix, len);
795                 object_prefix[len] = '\0';
796         }
797
798         /* Allocate the snapshot context and fill it in */
799
800         snap_count = le32_to_cpu(ondisk->snap_count);
801         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
802         if (!snapc)
803                 goto out_err;
804         snapc->seq = le64_to_cpu(ondisk->snap_seq);
805         if (snap_count) {
806                 struct rbd_image_snap_ondisk *snaps;
807                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
808
809                 /* We'll keep a copy of the snapshot names... */
810
811                 if (snap_names_len > (u64)SIZE_MAX)
812                         goto out_2big;
813                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
814                 if (!snap_names)
815                         goto out_err;
816
817                 /* ...as well as the array of their sizes. */
818
819                 size = snap_count * sizeof (*header->snap_sizes);
820                 snap_sizes = kmalloc(size, GFP_KERNEL);
821                 if (!snap_sizes)
822                         goto out_err;
823
824                 /*
825                  * Copy the names, and fill in each snapshot's id
826                  * and size.
827                  *
828                  * Note that rbd_dev_v1_header_info() guarantees the
829                  * ondisk buffer we're working with has
830                  * snap_names_len bytes beyond the end of the
831                  * snapshot id array, this memcpy() is safe.
832                  */
833                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
834                 snaps = ondisk->snaps;
835                 for (i = 0; i < snap_count; i++) {
836                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
837                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
838                 }
839         }
840
841         /* We won't fail any more, fill in the header */
842
843         down_write(&rbd_dev->header_rwsem);
844         if (first_time) {
845                 header->object_prefix = object_prefix;
846                 header->obj_order = ondisk->options.order;
847                 header->crypt_type = ondisk->options.crypt_type;
848                 header->comp_type = ondisk->options.comp_type;
849                 /* The rest aren't used for format 1 images */
850                 header->stripe_unit = 0;
851                 header->stripe_count = 0;
852                 header->features = 0;
853         } else {
854                 ceph_put_snap_context(header->snapc);
855                 kfree(header->snap_names);
856                 kfree(header->snap_sizes);
857         }
858
859         /* The remaining fields always get updated (when we refresh) */
860
861         header->image_size = le64_to_cpu(ondisk->image_size);
862         header->snapc = snapc;
863         header->snap_names = snap_names;
864         header->snap_sizes = snap_sizes;
865
866         /* Make sure mapping size is consistent with header info */
867
868         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
869                 if (rbd_dev->mapping.size != header->image_size)
870                         rbd_dev->mapping.size = header->image_size;
871
872         up_write(&rbd_dev->header_rwsem);
873
874         return 0;
875 out_2big:
876         ret = -EIO;
877 out_err:
878         kfree(snap_sizes);
879         kfree(snap_names);
880         ceph_put_snap_context(snapc);
881         kfree(object_prefix);
882
883         return ret;
884 }
885
886 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
887 {
888         const char *snap_name;
889
890         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
891
892         /* Skip over names until we find the one we are looking for */
893
894         snap_name = rbd_dev->header.snap_names;
895         while (which--)
896                 snap_name += strlen(snap_name) + 1;
897
898         return kstrdup(snap_name, GFP_KERNEL);
899 }
900
901 /*
902  * Snapshot id comparison function for use with qsort()/bsearch().
903  * Note that result is for snapshots in *descending* order.
904  */
905 static int snapid_compare_reverse(const void *s1, const void *s2)
906 {
907         u64 snap_id1 = *(u64 *)s1;
908         u64 snap_id2 = *(u64 *)s2;
909
910         if (snap_id1 < snap_id2)
911                 return 1;
912         return snap_id1 == snap_id2 ? 0 : -1;
913 }
914
915 /*
916  * Search a snapshot context to see if the given snapshot id is
917  * present.
918  *
919  * Returns the position of the snapshot id in the array if it's found,
920  * or BAD_SNAP_INDEX otherwise.
921  *
922  * Note: The snapshot array is in kept sorted (by the osd) in
923  * reverse order, highest snapshot id first.
924  */
925 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
926 {
927         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
928         u64 *found;
929
930         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
931                                 sizeof (snap_id), snapid_compare_reverse);
932
933         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
934 }
935
936 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
937                                         u64 snap_id)
938 {
939         u32 which;
940
941         which = rbd_dev_snap_index(rbd_dev, snap_id);
942         if (which == BAD_SNAP_INDEX)
943                 return NULL;
944
945         return _rbd_dev_v1_snap_name(rbd_dev, which);
946 }
947
948 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
949 {
950         if (snap_id == CEPH_NOSNAP)
951                 return RBD_SNAP_HEAD_NAME;
952
953         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
954         if (rbd_dev->image_format == 1)
955                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
956
957         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
958 }
959
960 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
961                                 u64 *snap_size)
962 {
963         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
964         if (snap_id == CEPH_NOSNAP) {
965                 *snap_size = rbd_dev->header.image_size;
966         } else if (rbd_dev->image_format == 1) {
967                 u32 which;
968
969                 which = rbd_dev_snap_index(rbd_dev, snap_id);
970                 if (which == BAD_SNAP_INDEX)
971                         return -ENOENT;
972
973                 *snap_size = rbd_dev->header.snap_sizes[which];
974         } else {
975                 u64 size = 0;
976                 int ret;
977
978                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
979                 if (ret)
980                         return ret;
981
982                 *snap_size = size;
983         }
984         return 0;
985 }
986
987 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
988                         u64 *snap_features)
989 {
990         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
991         if (snap_id == CEPH_NOSNAP) {
992                 *snap_features = rbd_dev->header.features;
993         } else if (rbd_dev->image_format == 1) {
994                 *snap_features = 0;     /* No features for format 1 */
995         } else {
996                 u64 features = 0;
997                 int ret;
998
999                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1000                 if (ret)
1001                         return ret;
1002
1003                 *snap_features = features;
1004         }
1005         return 0;
1006 }
1007
1008 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1009 {
1010         u64 snap_id = rbd_dev->spec->snap_id;
1011         u64 size = 0;
1012         u64 features = 0;
1013         int ret;
1014
1015         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1016         if (ret)
1017                 return ret;
1018         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1019         if (ret)
1020                 return ret;
1021
1022         rbd_dev->mapping.size = size;
1023         rbd_dev->mapping.features = features;
1024
1025         return 0;
1026 }
1027
1028 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1029 {
1030         rbd_dev->mapping.size = 0;
1031         rbd_dev->mapping.features = 0;
1032 }
1033
1034 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1035 {
1036         char *name;
1037         u64 segment;
1038         int ret;
1039         char *name_format;
1040
1041         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1042         if (!name)
1043                 return NULL;
1044         segment = offset >> rbd_dev->header.obj_order;
1045         name_format = "%s.%012llx";
1046         if (rbd_dev->image_format == 2)
1047                 name_format = "%s.%016llx";
1048         ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, name_format,
1049                         rbd_dev->header.object_prefix, segment);
1050         if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1051                 pr_err("error formatting segment name for #%llu (%d)\n",
1052                         segment, ret);
1053                 kfree(name);
1054                 name = NULL;
1055         }
1056
1057         return name;
1058 }
1059
1060 static void rbd_segment_name_free(const char *name)
1061 {
1062         /* The explicit cast here is needed to drop the const qualifier */
1063
1064         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1065 }
1066
1067 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1068 {
1069         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1070
1071         return offset & (segment_size - 1);
1072 }
1073
1074 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1075                                 u64 offset, u64 length)
1076 {
1077         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1078
1079         offset &= segment_size - 1;
1080
1081         rbd_assert(length <= U64_MAX - offset);
1082         if (offset + length > segment_size)
1083                 length = segment_size - offset;
1084
1085         return length;
1086 }
1087
1088 /*
1089  * returns the size of an object in the image
1090  */
1091 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1092 {
1093         return 1 << header->obj_order;
1094 }
1095
1096 /*
1097  * bio helpers
1098  */
1099
1100 static void bio_chain_put(struct bio *chain)
1101 {
1102         struct bio *tmp;
1103
1104         while (chain) {
1105                 tmp = chain;
1106                 chain = chain->bi_next;
1107                 bio_put(tmp);
1108         }
1109 }
1110
1111 /*
1112  * zeros a bio chain, starting at specific offset
1113  */
1114 static void zero_bio_chain(struct bio *chain, int start_ofs)
1115 {
1116         struct bio_vec *bv;
1117         unsigned long flags;
1118         void *buf;
1119         int i;
1120         int pos = 0;
1121
1122         while (chain) {
1123                 bio_for_each_segment(bv, chain, i) {
1124                         if (pos + bv->bv_len > start_ofs) {
1125                                 int remainder = max(start_ofs - pos, 0);
1126                                 buf = bvec_kmap_irq(bv, &flags);
1127                                 memset(buf + remainder, 0,
1128                                        bv->bv_len - remainder);
1129                                 bvec_kunmap_irq(buf, &flags);
1130                         }
1131                         pos += bv->bv_len;
1132                 }
1133
1134                 chain = chain->bi_next;
1135         }
1136 }
1137
1138 /*
1139  * similar to zero_bio_chain(), zeros data defined by a page array,
1140  * starting at the given byte offset from the start of the array and
1141  * continuing up to the given end offset.  The pages array is
1142  * assumed to be big enough to hold all bytes up to the end.
1143  */
1144 static void zero_pages(struct page **pages, u64 offset, u64 end)
1145 {
1146         struct page **page = &pages[offset >> PAGE_SHIFT];
1147
1148         rbd_assert(end > offset);
1149         rbd_assert(end - offset <= (u64)SIZE_MAX);
1150         while (offset < end) {
1151                 size_t page_offset;
1152                 size_t length;
1153                 unsigned long flags;
1154                 void *kaddr;
1155
1156                 page_offset = offset & ~PAGE_MASK;
1157                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1158                 local_irq_save(flags);
1159                 kaddr = kmap_atomic(*page);
1160                 memset(kaddr + page_offset, 0, length);
1161                 kunmap_atomic(kaddr);
1162                 local_irq_restore(flags);
1163
1164                 offset += length;
1165                 page++;
1166         }
1167 }
1168
1169 /*
1170  * Clone a portion of a bio, starting at the given byte offset
1171  * and continuing for the number of bytes indicated.
1172  */
1173 static struct bio *bio_clone_range(struct bio *bio_src,
1174                                         unsigned int offset,
1175                                         unsigned int len,
1176                                         gfp_t gfpmask)
1177 {
1178         struct bio_vec *bv;
1179         unsigned int resid;
1180         unsigned short idx;
1181         unsigned int voff;
1182         unsigned short end_idx;
1183         unsigned short vcnt;
1184         struct bio *bio;
1185
1186         /* Handle the easy case for the caller */
1187
1188         if (!offset && len == bio_src->bi_size)
1189                 return bio_clone(bio_src, gfpmask);
1190
1191         if (WARN_ON_ONCE(!len))
1192                 return NULL;
1193         if (WARN_ON_ONCE(len > bio_src->bi_size))
1194                 return NULL;
1195         if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1196                 return NULL;
1197
1198         /* Find first affected segment... */
1199
1200         resid = offset;
1201         bio_for_each_segment(bv, bio_src, idx) {
1202                 if (resid < bv->bv_len)
1203                         break;
1204                 resid -= bv->bv_len;
1205         }
1206         voff = resid;
1207
1208         /* ...and the last affected segment */
1209
1210         resid += len;
1211         __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1212                 if (resid <= bv->bv_len)
1213                         break;
1214                 resid -= bv->bv_len;
1215         }
1216         vcnt = end_idx - idx + 1;
1217
1218         /* Build the clone */
1219
1220         bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1221         if (!bio)
1222                 return NULL;    /* ENOMEM */
1223
1224         bio->bi_bdev = bio_src->bi_bdev;
1225         bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1226         bio->bi_rw = bio_src->bi_rw;
1227         bio->bi_flags |= 1 << BIO_CLONED;
1228
1229         /*
1230          * Copy over our part of the bio_vec, then update the first
1231          * and last (or only) entries.
1232          */
1233         memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1234                         vcnt * sizeof (struct bio_vec));
1235         bio->bi_io_vec[0].bv_offset += voff;
1236         if (vcnt > 1) {
1237                 bio->bi_io_vec[0].bv_len -= voff;
1238                 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1239         } else {
1240                 bio->bi_io_vec[0].bv_len = len;
1241         }
1242
1243         bio->bi_vcnt = vcnt;
1244         bio->bi_size = len;
1245         bio->bi_idx = 0;
1246
1247         return bio;
1248 }
1249
1250 /*
1251  * Clone a portion of a bio chain, starting at the given byte offset
1252  * into the first bio in the source chain and continuing for the
1253  * number of bytes indicated.  The result is another bio chain of
1254  * exactly the given length, or a null pointer on error.
1255  *
1256  * The bio_src and offset parameters are both in-out.  On entry they
1257  * refer to the first source bio and the offset into that bio where
1258  * the start of data to be cloned is located.
1259  *
1260  * On return, bio_src is updated to refer to the bio in the source
1261  * chain that contains first un-cloned byte, and *offset will
1262  * contain the offset of that byte within that bio.
1263  */
1264 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1265                                         unsigned int *offset,
1266                                         unsigned int len,
1267                                         gfp_t gfpmask)
1268 {
1269         struct bio *bi = *bio_src;
1270         unsigned int off = *offset;
1271         struct bio *chain = NULL;
1272         struct bio **end;
1273
1274         /* Build up a chain of clone bios up to the limit */
1275
1276         if (!bi || off >= bi->bi_size || !len)
1277                 return NULL;            /* Nothing to clone */
1278
1279         end = &chain;
1280         while (len) {
1281                 unsigned int bi_size;
1282                 struct bio *bio;
1283
1284                 if (!bi) {
1285                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1286                         goto out_err;   /* EINVAL; ran out of bio's */
1287                 }
1288                 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1289                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1290                 if (!bio)
1291                         goto out_err;   /* ENOMEM */
1292
1293                 *end = bio;
1294                 end = &bio->bi_next;
1295
1296                 off += bi_size;
1297                 if (off == bi->bi_size) {
1298                         bi = bi->bi_next;
1299                         off = 0;
1300                 }
1301                 len -= bi_size;
1302         }
1303         *bio_src = bi;
1304         *offset = off;
1305
1306         return chain;
1307 out_err:
1308         bio_chain_put(chain);
1309
1310         return NULL;
1311 }
1312
1313 /*
1314  * The default/initial value for all object request flags is 0.  For
1315  * each flag, once its value is set to 1 it is never reset to 0
1316  * again.
1317  */
1318 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1319 {
1320         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1321                 struct rbd_device *rbd_dev;
1322
1323                 rbd_dev = obj_request->img_request->rbd_dev;
1324                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1325                         obj_request);
1326         }
1327 }
1328
1329 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1330 {
1331         smp_mb();
1332         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1333 }
1334
1335 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1336 {
1337         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1338                 struct rbd_device *rbd_dev = NULL;
1339
1340                 if (obj_request_img_data_test(obj_request))
1341                         rbd_dev = obj_request->img_request->rbd_dev;
1342                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1343                         obj_request);
1344         }
1345 }
1346
1347 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1348 {
1349         smp_mb();
1350         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1351 }
1352
1353 /*
1354  * This sets the KNOWN flag after (possibly) setting the EXISTS
1355  * flag.  The latter is set based on the "exists" value provided.
1356  *
1357  * Note that for our purposes once an object exists it never goes
1358  * away again.  It's possible that the response from two existence
1359  * checks are separated by the creation of the target object, and
1360  * the first ("doesn't exist") response arrives *after* the second
1361  * ("does exist").  In that case we ignore the second one.
1362  */
1363 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1364                                 bool exists)
1365 {
1366         if (exists)
1367                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1368         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1369         smp_mb();
1370 }
1371
1372 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1373 {
1374         smp_mb();
1375         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1376 }
1377
1378 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1379 {
1380         smp_mb();
1381         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1382 }
1383
1384 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1385 {
1386         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1387                 atomic_read(&obj_request->kref.refcount));
1388         kref_get(&obj_request->kref);
1389 }
1390
1391 static void rbd_obj_request_destroy(struct kref *kref);
1392 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1393 {
1394         rbd_assert(obj_request != NULL);
1395         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1396                 atomic_read(&obj_request->kref.refcount));
1397         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1398 }
1399
1400 static bool img_request_child_test(struct rbd_img_request *img_request);
1401 static void rbd_parent_request_destroy(struct kref *kref);
1402 static void rbd_img_request_destroy(struct kref *kref);
1403 static void rbd_img_request_put(struct rbd_img_request *img_request)
1404 {
1405         rbd_assert(img_request != NULL);
1406         dout("%s: img %p (was %d)\n", __func__, img_request,
1407                 atomic_read(&img_request->kref.refcount));
1408         if (img_request_child_test(img_request))
1409                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1410         else
1411                 kref_put(&img_request->kref, rbd_img_request_destroy);
1412 }
1413
1414 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1415                                         struct rbd_obj_request *obj_request)
1416 {
1417         rbd_assert(obj_request->img_request == NULL);
1418
1419         /* Image request now owns object's original reference */
1420         obj_request->img_request = img_request;
1421         obj_request->which = img_request->obj_request_count;
1422         rbd_assert(!obj_request_img_data_test(obj_request));
1423         obj_request_img_data_set(obj_request);
1424         rbd_assert(obj_request->which != BAD_WHICH);
1425         img_request->obj_request_count++;
1426         list_add_tail(&obj_request->links, &img_request->obj_requests);
1427         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1428                 obj_request->which);
1429 }
1430
1431 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1432                                         struct rbd_obj_request *obj_request)
1433 {
1434         rbd_assert(obj_request->which != BAD_WHICH);
1435
1436         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1437                 obj_request->which);
1438         list_del(&obj_request->links);
1439         rbd_assert(img_request->obj_request_count > 0);
1440         img_request->obj_request_count--;
1441         rbd_assert(obj_request->which == img_request->obj_request_count);
1442         obj_request->which = BAD_WHICH;
1443         rbd_assert(obj_request_img_data_test(obj_request));
1444         rbd_assert(obj_request->img_request == img_request);
1445         obj_request->img_request = NULL;
1446         obj_request->callback = NULL;
1447         rbd_obj_request_put(obj_request);
1448 }
1449
1450 static bool obj_request_type_valid(enum obj_request_type type)
1451 {
1452         switch (type) {
1453         case OBJ_REQUEST_NODATA:
1454         case OBJ_REQUEST_BIO:
1455         case OBJ_REQUEST_PAGES:
1456                 return true;
1457         default:
1458                 return false;
1459         }
1460 }
1461
1462 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1463                                 struct rbd_obj_request *obj_request)
1464 {
1465         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1466
1467         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1468 }
1469
1470 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1471 {
1472
1473         dout("%s: img %p\n", __func__, img_request);
1474
1475         /*
1476          * If no error occurred, compute the aggregate transfer
1477          * count for the image request.  We could instead use
1478          * atomic64_cmpxchg() to update it as each object request
1479          * completes; not clear which way is better off hand.
1480          */
1481         if (!img_request->result) {
1482                 struct rbd_obj_request *obj_request;
1483                 u64 xferred = 0;
1484
1485                 for_each_obj_request(img_request, obj_request)
1486                         xferred += obj_request->xferred;
1487                 img_request->xferred = xferred;
1488         }
1489
1490         if (img_request->callback)
1491                 img_request->callback(img_request);
1492         else
1493                 rbd_img_request_put(img_request);
1494 }
1495
1496 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1497
1498 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1499 {
1500         dout("%s: obj %p\n", __func__, obj_request);
1501
1502         return wait_for_completion_interruptible(&obj_request->completion);
1503 }
1504
1505 /*
1506  * The default/initial value for all image request flags is 0.  Each
1507  * is conditionally set to 1 at image request initialization time
1508  * and currently never change thereafter.
1509  */
1510 static void img_request_write_set(struct rbd_img_request *img_request)
1511 {
1512         set_bit(IMG_REQ_WRITE, &img_request->flags);
1513         smp_mb();
1514 }
1515
1516 static bool img_request_write_test(struct rbd_img_request *img_request)
1517 {
1518         smp_mb();
1519         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1520 }
1521
1522 static void img_request_child_set(struct rbd_img_request *img_request)
1523 {
1524         set_bit(IMG_REQ_CHILD, &img_request->flags);
1525         smp_mb();
1526 }
1527
1528 static void img_request_child_clear(struct rbd_img_request *img_request)
1529 {
1530         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1531         smp_mb();
1532 }
1533
1534 static bool img_request_child_test(struct rbd_img_request *img_request)
1535 {
1536         smp_mb();
1537         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1538 }
1539
1540 static void img_request_layered_set(struct rbd_img_request *img_request)
1541 {
1542         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1543         smp_mb();
1544 }
1545
1546 static void img_request_layered_clear(struct rbd_img_request *img_request)
1547 {
1548         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1549         smp_mb();
1550 }
1551
1552 static bool img_request_layered_test(struct rbd_img_request *img_request)
1553 {
1554         smp_mb();
1555         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1556 }
1557
1558 static void
1559 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1560 {
1561         u64 xferred = obj_request->xferred;
1562         u64 length = obj_request->length;
1563
1564         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1565                 obj_request, obj_request->img_request, obj_request->result,
1566                 xferred, length);
1567         /*
1568          * ENOENT means a hole in the image.  We zero-fill the
1569          * entire length of the request.  A short read also implies
1570          * zero-fill to the end of the request.  Either way we
1571          * update the xferred count to indicate the whole request
1572          * was satisfied.
1573          */
1574         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1575         if (obj_request->result == -ENOENT) {
1576                 if (obj_request->type == OBJ_REQUEST_BIO)
1577                         zero_bio_chain(obj_request->bio_list, 0);
1578                 else
1579                         zero_pages(obj_request->pages, 0, length);
1580                 obj_request->result = 0;
1581                 obj_request->xferred = length;
1582         } else if (xferred < length && !obj_request->result) {
1583                 if (obj_request->type == OBJ_REQUEST_BIO)
1584                         zero_bio_chain(obj_request->bio_list, xferred);
1585                 else
1586                         zero_pages(obj_request->pages, xferred, length);
1587                 obj_request->xferred = length;
1588         }
1589         obj_request_done_set(obj_request);
1590 }
1591
1592 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1593 {
1594         dout("%s: obj %p cb %p\n", __func__, obj_request,
1595                 obj_request->callback);
1596         if (obj_request->callback)
1597                 obj_request->callback(obj_request);
1598         else
1599                 complete_all(&obj_request->completion);
1600 }
1601
1602 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1603 {
1604         dout("%s: obj %p\n", __func__, obj_request);
1605         obj_request_done_set(obj_request);
1606 }
1607
1608 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1609 {
1610         struct rbd_img_request *img_request = NULL;
1611         struct rbd_device *rbd_dev = NULL;
1612         bool layered = false;
1613
1614         if (obj_request_img_data_test(obj_request)) {
1615                 img_request = obj_request->img_request;
1616                 layered = img_request && img_request_layered_test(img_request);
1617                 rbd_dev = img_request->rbd_dev;
1618         }
1619
1620         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1621                 obj_request, img_request, obj_request->result,
1622                 obj_request->xferred, obj_request->length);
1623         if (layered && obj_request->result == -ENOENT &&
1624                         obj_request->img_offset < rbd_dev->parent_overlap)
1625                 rbd_img_parent_read(obj_request);
1626         else if (img_request)
1627                 rbd_img_obj_request_read_callback(obj_request);
1628         else
1629                 obj_request_done_set(obj_request);
1630 }
1631
1632 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1633 {
1634         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1635                 obj_request->result, obj_request->length);
1636         /*
1637          * There is no such thing as a successful short write.  Set
1638          * it to our originally-requested length.
1639          */
1640         obj_request->xferred = obj_request->length;
1641         obj_request_done_set(obj_request);
1642 }
1643
1644 /*
1645  * For a simple stat call there's nothing to do.  We'll do more if
1646  * this is part of a write sequence for a layered image.
1647  */
1648 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1649 {
1650         dout("%s: obj %p\n", __func__, obj_request);
1651         obj_request_done_set(obj_request);
1652 }
1653
1654 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1655                                 struct ceph_msg *msg)
1656 {
1657         struct rbd_obj_request *obj_request = osd_req->r_priv;
1658         u16 opcode;
1659
1660         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1661         rbd_assert(osd_req == obj_request->osd_req);
1662         if (obj_request_img_data_test(obj_request)) {
1663                 rbd_assert(obj_request->img_request);
1664                 rbd_assert(obj_request->which != BAD_WHICH);
1665         } else {
1666                 rbd_assert(obj_request->which == BAD_WHICH);
1667         }
1668
1669         if (osd_req->r_result < 0)
1670                 obj_request->result = osd_req->r_result;
1671
1672         BUG_ON(osd_req->r_num_ops > 2);
1673
1674         /*
1675          * We support a 64-bit length, but ultimately it has to be
1676          * passed to blk_end_request(), which takes an unsigned int.
1677          */
1678         obj_request->xferred = osd_req->r_reply_op_len[0];
1679         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1680         opcode = osd_req->r_ops[0].op;
1681         switch (opcode) {
1682         case CEPH_OSD_OP_READ:
1683                 rbd_osd_read_callback(obj_request);
1684                 break;
1685         case CEPH_OSD_OP_WRITE:
1686                 rbd_osd_write_callback(obj_request);
1687                 break;
1688         case CEPH_OSD_OP_STAT:
1689                 rbd_osd_stat_callback(obj_request);
1690                 break;
1691         case CEPH_OSD_OP_CALL:
1692         case CEPH_OSD_OP_NOTIFY_ACK:
1693         case CEPH_OSD_OP_WATCH:
1694                 rbd_osd_trivial_callback(obj_request);
1695                 break;
1696         default:
1697                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1698                         obj_request->object_name, (unsigned short) opcode);
1699                 break;
1700         }
1701
1702         if (obj_request_done_test(obj_request))
1703                 rbd_obj_request_complete(obj_request);
1704 }
1705
1706 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1707 {
1708         struct rbd_img_request *img_request = obj_request->img_request;
1709         struct ceph_osd_request *osd_req = obj_request->osd_req;
1710         u64 snap_id;
1711
1712         rbd_assert(osd_req != NULL);
1713
1714         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1715         ceph_osdc_build_request(osd_req, obj_request->offset,
1716                         NULL, snap_id, NULL);
1717 }
1718
1719 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1720 {
1721         struct rbd_img_request *img_request = obj_request->img_request;
1722         struct ceph_osd_request *osd_req = obj_request->osd_req;
1723         struct ceph_snap_context *snapc;
1724         struct timespec mtime = CURRENT_TIME;
1725
1726         rbd_assert(osd_req != NULL);
1727
1728         snapc = img_request ? img_request->snapc : NULL;
1729         ceph_osdc_build_request(osd_req, obj_request->offset,
1730                         snapc, CEPH_NOSNAP, &mtime);
1731 }
1732
1733 static struct ceph_osd_request *rbd_osd_req_create(
1734                                         struct rbd_device *rbd_dev,
1735                                         bool write_request,
1736                                         struct rbd_obj_request *obj_request)
1737 {
1738         struct ceph_snap_context *snapc = NULL;
1739         struct ceph_osd_client *osdc;
1740         struct ceph_osd_request *osd_req;
1741
1742         if (obj_request_img_data_test(obj_request)) {
1743                 struct rbd_img_request *img_request = obj_request->img_request;
1744
1745                 rbd_assert(write_request ==
1746                                 img_request_write_test(img_request));
1747                 if (write_request)
1748                         snapc = img_request->snapc;
1749         }
1750
1751         /* Allocate and initialize the request, for the single op */
1752
1753         osdc = &rbd_dev->rbd_client->client->osdc;
1754         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1755         if (!osd_req)
1756                 return NULL;    /* ENOMEM */
1757
1758         if (write_request)
1759                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1760         else
1761                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1762
1763         osd_req->r_callback = rbd_osd_req_callback;
1764         osd_req->r_priv = obj_request;
1765
1766         osd_req->r_oid_len = strlen(obj_request->object_name);
1767         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1768         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1769
1770         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1771
1772         return osd_req;
1773 }
1774
1775 /*
1776  * Create a copyup osd request based on the information in the
1777  * object request supplied.  A copyup request has two osd ops,
1778  * a copyup method call, and a "normal" write request.
1779  */
1780 static struct ceph_osd_request *
1781 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1782 {
1783         struct rbd_img_request *img_request;
1784         struct ceph_snap_context *snapc;
1785         struct rbd_device *rbd_dev;
1786         struct ceph_osd_client *osdc;
1787         struct ceph_osd_request *osd_req;
1788
1789         rbd_assert(obj_request_img_data_test(obj_request));
1790         img_request = obj_request->img_request;
1791         rbd_assert(img_request);
1792         rbd_assert(img_request_write_test(img_request));
1793
1794         /* Allocate and initialize the request, for the two ops */
1795
1796         snapc = img_request->snapc;
1797         rbd_dev = img_request->rbd_dev;
1798         osdc = &rbd_dev->rbd_client->client->osdc;
1799         osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1800         if (!osd_req)
1801                 return NULL;    /* ENOMEM */
1802
1803         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1804         osd_req->r_callback = rbd_osd_req_callback;
1805         osd_req->r_priv = obj_request;
1806
1807         osd_req->r_oid_len = strlen(obj_request->object_name);
1808         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1809         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1810
1811         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1812
1813         return osd_req;
1814 }
1815
1816
1817 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1818 {
1819         ceph_osdc_put_request(osd_req);
1820 }
1821
1822 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1823
1824 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1825                                                 u64 offset, u64 length,
1826                                                 enum obj_request_type type)
1827 {
1828         struct rbd_obj_request *obj_request;
1829         size_t size;
1830         char *name;
1831
1832         rbd_assert(obj_request_type_valid(type));
1833
1834         size = strlen(object_name) + 1;
1835         name = kmalloc(size, GFP_KERNEL);
1836         if (!name)
1837                 return NULL;
1838
1839         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1840         if (!obj_request) {
1841                 kfree(name);
1842                 return NULL;
1843         }
1844
1845         obj_request->object_name = memcpy(name, object_name, size);
1846         obj_request->offset = offset;
1847         obj_request->length = length;
1848         obj_request->flags = 0;
1849         obj_request->which = BAD_WHICH;
1850         obj_request->type = type;
1851         INIT_LIST_HEAD(&obj_request->links);
1852         init_completion(&obj_request->completion);
1853         kref_init(&obj_request->kref);
1854
1855         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1856                 offset, length, (int)type, obj_request);
1857
1858         return obj_request;
1859 }
1860
1861 static void rbd_obj_request_destroy(struct kref *kref)
1862 {
1863         struct rbd_obj_request *obj_request;
1864
1865         obj_request = container_of(kref, struct rbd_obj_request, kref);
1866
1867         dout("%s: obj %p\n", __func__, obj_request);
1868
1869         rbd_assert(obj_request->img_request == NULL);
1870         rbd_assert(obj_request->which == BAD_WHICH);
1871
1872         if (obj_request->osd_req)
1873                 rbd_osd_req_destroy(obj_request->osd_req);
1874
1875         rbd_assert(obj_request_type_valid(obj_request->type));
1876         switch (obj_request->type) {
1877         case OBJ_REQUEST_NODATA:
1878                 break;          /* Nothing to do */
1879         case OBJ_REQUEST_BIO:
1880                 if (obj_request->bio_list)
1881                         bio_chain_put(obj_request->bio_list);
1882                 break;
1883         case OBJ_REQUEST_PAGES:
1884                 if (obj_request->pages)
1885                         ceph_release_page_vector(obj_request->pages,
1886                                                 obj_request->page_count);
1887                 break;
1888         }
1889
1890         kfree(obj_request->object_name);
1891         obj_request->object_name = NULL;
1892         kmem_cache_free(rbd_obj_request_cache, obj_request);
1893 }
1894
1895 /* It's OK to call this for a device with no parent */
1896
1897 static void rbd_spec_put(struct rbd_spec *spec);
1898 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1899 {
1900         rbd_dev_remove_parent(rbd_dev);
1901         rbd_spec_put(rbd_dev->parent_spec);
1902         rbd_dev->parent_spec = NULL;
1903         rbd_dev->parent_overlap = 0;
1904 }
1905
1906 /*
1907  * Parent image reference counting is used to determine when an
1908  * image's parent fields can be safely torn down--after there are no
1909  * more in-flight requests to the parent image.  When the last
1910  * reference is dropped, cleaning them up is safe.
1911  */
1912 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1913 {
1914         int counter;
1915
1916         if (!rbd_dev->parent_spec)
1917                 return;
1918
1919         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1920         if (counter > 0)
1921                 return;
1922
1923         /* Last reference; clean up parent data structures */
1924
1925         if (!counter)
1926                 rbd_dev_unparent(rbd_dev);
1927         else
1928                 rbd_warn(rbd_dev, "parent reference underflow\n");
1929 }
1930
1931 /*
1932  * If an image has a non-zero parent overlap, get a reference to its
1933  * parent.
1934  *
1935  * We must get the reference before checking for the overlap to
1936  * coordinate properly with zeroing the parent overlap in
1937  * rbd_dev_v2_parent_info() when an image gets flattened.  We
1938  * drop it again if there is no overlap.
1939  *
1940  * Returns true if the rbd device has a parent with a non-zero
1941  * overlap and a reference for it was successfully taken, or
1942  * false otherwise.
1943  */
1944 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1945 {
1946         int counter;
1947
1948         if (!rbd_dev->parent_spec)
1949                 return false;
1950
1951         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1952         if (counter > 0 && rbd_dev->parent_overlap)
1953                 return true;
1954
1955         /* Image was flattened, but parent is not yet torn down */
1956
1957         if (counter < 0)
1958                 rbd_warn(rbd_dev, "parent reference overflow\n");
1959
1960         return false;
1961 }
1962
1963 /*
1964  * Caller is responsible for filling in the list of object requests
1965  * that comprises the image request, and the Linux request pointer
1966  * (if there is one).
1967  */
1968 static struct rbd_img_request *rbd_img_request_create(
1969                                         struct rbd_device *rbd_dev,
1970                                         u64 offset, u64 length,
1971                                         bool write_request)
1972 {
1973         struct rbd_img_request *img_request;
1974
1975         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1976         if (!img_request)
1977                 return NULL;
1978
1979         if (write_request) {
1980                 down_read(&rbd_dev->header_rwsem);
1981                 ceph_get_snap_context(rbd_dev->header.snapc);
1982                 up_read(&rbd_dev->header_rwsem);
1983         }
1984
1985         img_request->rq = NULL;
1986         img_request->rbd_dev = rbd_dev;
1987         img_request->offset = offset;
1988         img_request->length = length;
1989         img_request->flags = 0;
1990         if (write_request) {
1991                 img_request_write_set(img_request);
1992                 img_request->snapc = rbd_dev->header.snapc;
1993         } else {
1994                 img_request->snap_id = rbd_dev->spec->snap_id;
1995         }
1996         if (rbd_dev_parent_get(rbd_dev))
1997                 img_request_layered_set(img_request);
1998         spin_lock_init(&img_request->completion_lock);
1999         img_request->next_completion = 0;
2000         img_request->callback = NULL;
2001         img_request->result = 0;
2002         img_request->obj_request_count = 0;
2003         INIT_LIST_HEAD(&img_request->obj_requests);
2004         kref_init(&img_request->kref);
2005
2006         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2007                 write_request ? "write" : "read", offset, length,
2008                 img_request);
2009
2010         return img_request;
2011 }
2012
2013 static void rbd_img_request_destroy(struct kref *kref)
2014 {
2015         struct rbd_img_request *img_request;
2016         struct rbd_obj_request *obj_request;
2017         struct rbd_obj_request *next_obj_request;
2018
2019         img_request = container_of(kref, struct rbd_img_request, kref);
2020
2021         dout("%s: img %p\n", __func__, img_request);
2022
2023         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2024                 rbd_img_obj_request_del(img_request, obj_request);
2025         rbd_assert(img_request->obj_request_count == 0);
2026
2027         if (img_request_layered_test(img_request)) {
2028                 img_request_layered_clear(img_request);
2029                 rbd_dev_parent_put(img_request->rbd_dev);
2030         }
2031
2032         if (img_request_write_test(img_request))
2033                 ceph_put_snap_context(img_request->snapc);
2034
2035         kmem_cache_free(rbd_img_request_cache, img_request);
2036 }
2037
2038 static struct rbd_img_request *rbd_parent_request_create(
2039                                         struct rbd_obj_request *obj_request,
2040                                         u64 img_offset, u64 length)
2041 {
2042         struct rbd_img_request *parent_request;
2043         struct rbd_device *rbd_dev;
2044
2045         rbd_assert(obj_request->img_request);
2046         rbd_dev = obj_request->img_request->rbd_dev;
2047
2048         parent_request = rbd_img_request_create(rbd_dev->parent,
2049                                                 img_offset, length, false);
2050         if (!parent_request)
2051                 return NULL;
2052
2053         img_request_child_set(parent_request);
2054         rbd_obj_request_get(obj_request);
2055         parent_request->obj_request = obj_request;
2056
2057         return parent_request;
2058 }
2059
2060 static void rbd_parent_request_destroy(struct kref *kref)
2061 {
2062         struct rbd_img_request *parent_request;
2063         struct rbd_obj_request *orig_request;
2064
2065         parent_request = container_of(kref, struct rbd_img_request, kref);
2066         orig_request = parent_request->obj_request;
2067
2068         parent_request->obj_request = NULL;
2069         rbd_obj_request_put(orig_request);
2070         img_request_child_clear(parent_request);
2071
2072         rbd_img_request_destroy(kref);
2073 }
2074
2075 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2076 {
2077         struct rbd_img_request *img_request;
2078         unsigned int xferred;
2079         int result;
2080         bool more;
2081
2082         rbd_assert(obj_request_img_data_test(obj_request));
2083         img_request = obj_request->img_request;
2084
2085         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2086         xferred = (unsigned int)obj_request->xferred;
2087         result = obj_request->result;
2088         if (result) {
2089                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2090
2091                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2092                         img_request_write_test(img_request) ? "write" : "read",
2093                         obj_request->length, obj_request->img_offset,
2094                         obj_request->offset);
2095                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2096                         result, xferred);
2097                 if (!img_request->result)
2098                         img_request->result = result;
2099         }
2100
2101         /* Image object requests don't own their page array */
2102
2103         if (obj_request->type == OBJ_REQUEST_PAGES) {
2104                 obj_request->pages = NULL;
2105                 obj_request->page_count = 0;
2106         }
2107
2108         if (img_request_child_test(img_request)) {
2109                 rbd_assert(img_request->obj_request != NULL);
2110                 more = obj_request->which < img_request->obj_request_count - 1;
2111         } else {
2112                 rbd_assert(img_request->rq != NULL);
2113                 more = blk_end_request(img_request->rq, result, xferred);
2114         }
2115
2116         return more;
2117 }
2118
2119 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2120 {
2121         struct rbd_img_request *img_request;
2122         u32 which = obj_request->which;
2123         bool more = true;
2124
2125         rbd_assert(obj_request_img_data_test(obj_request));
2126         img_request = obj_request->img_request;
2127
2128         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2129         rbd_assert(img_request != NULL);
2130         rbd_assert(img_request->obj_request_count > 0);
2131         rbd_assert(which != BAD_WHICH);
2132         rbd_assert(which < img_request->obj_request_count);
2133         rbd_assert(which >= img_request->next_completion);
2134
2135         spin_lock_irq(&img_request->completion_lock);
2136         if (which != img_request->next_completion)
2137                 goto out;
2138
2139         for_each_obj_request_from(img_request, obj_request) {
2140                 rbd_assert(more);
2141                 rbd_assert(which < img_request->obj_request_count);
2142
2143                 if (!obj_request_done_test(obj_request))
2144                         break;
2145                 more = rbd_img_obj_end_request(obj_request);
2146                 which++;
2147         }
2148
2149         rbd_assert(more ^ (which == img_request->obj_request_count));
2150         img_request->next_completion = which;
2151 out:
2152         spin_unlock_irq(&img_request->completion_lock);
2153
2154         if (!more)
2155                 rbd_img_request_complete(img_request);
2156 }
2157
2158 /*
2159  * Split up an image request into one or more object requests, each
2160  * to a different object.  The "type" parameter indicates whether
2161  * "data_desc" is the pointer to the head of a list of bio
2162  * structures, or the base of a page array.  In either case this
2163  * function assumes data_desc describes memory sufficient to hold
2164  * all data described by the image request.
2165  */
2166 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2167                                         enum obj_request_type type,
2168                                         void *data_desc)
2169 {
2170         struct rbd_device *rbd_dev = img_request->rbd_dev;
2171         struct rbd_obj_request *obj_request = NULL;
2172         struct rbd_obj_request *next_obj_request;
2173         bool write_request = img_request_write_test(img_request);
2174         struct bio *bio_list;
2175         unsigned int bio_offset = 0;
2176         struct page **pages;
2177         u64 img_offset;
2178         u64 resid;
2179         u16 opcode;
2180
2181         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2182                 (int)type, data_desc);
2183
2184         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2185         img_offset = img_request->offset;
2186         resid = img_request->length;
2187         rbd_assert(resid > 0);
2188
2189         if (type == OBJ_REQUEST_BIO) {
2190                 bio_list = data_desc;
2191                 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2192         } else {
2193                 rbd_assert(type == OBJ_REQUEST_PAGES);
2194                 pages = data_desc;
2195         }
2196
2197         while (resid) {
2198                 struct ceph_osd_request *osd_req;
2199                 const char *object_name;
2200                 u64 offset;
2201                 u64 length;
2202
2203                 object_name = rbd_segment_name(rbd_dev, img_offset);
2204                 if (!object_name)
2205                         goto out_unwind;
2206                 offset = rbd_segment_offset(rbd_dev, img_offset);
2207                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2208                 obj_request = rbd_obj_request_create(object_name,
2209                                                 offset, length, type);
2210                 /* object request has its own copy of the object name */
2211                 rbd_segment_name_free(object_name);
2212                 if (!obj_request)
2213                         goto out_unwind;
2214
2215                 if (type == OBJ_REQUEST_BIO) {
2216                         unsigned int clone_size;
2217
2218                         rbd_assert(length <= (u64)UINT_MAX);
2219                         clone_size = (unsigned int)length;
2220                         obj_request->bio_list =
2221                                         bio_chain_clone_range(&bio_list,
2222                                                                 &bio_offset,
2223                                                                 clone_size,
2224                                                                 GFP_ATOMIC);
2225                         if (!obj_request->bio_list)
2226                                 goto out_partial;
2227                 } else {
2228                         unsigned int page_count;
2229
2230                         obj_request->pages = pages;
2231                         page_count = (u32)calc_pages_for(offset, length);
2232                         obj_request->page_count = page_count;
2233                         if ((offset + length) & ~PAGE_MASK)
2234                                 page_count--;   /* more on last page */
2235                         pages += page_count;
2236                 }
2237
2238                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2239                                                 obj_request);
2240                 if (!osd_req)
2241                         goto out_partial;
2242                 obj_request->osd_req = osd_req;
2243                 obj_request->callback = rbd_img_obj_callback;
2244
2245                 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2246                                                 0, 0);
2247                 if (type == OBJ_REQUEST_BIO)
2248                         osd_req_op_extent_osd_data_bio(osd_req, 0,
2249                                         obj_request->bio_list, length);
2250                 else
2251                         osd_req_op_extent_osd_data_pages(osd_req, 0,
2252                                         obj_request->pages, length,
2253                                         offset & ~PAGE_MASK, false, false);
2254
2255                 /*
2256                  * set obj_request->img_request before formatting
2257                  * the osd_request so that it gets the right snapc
2258                  */
2259                 rbd_img_obj_request_add(img_request, obj_request);
2260                 if (write_request)
2261                         rbd_osd_req_format_write(obj_request);
2262                 else
2263                         rbd_osd_req_format_read(obj_request);
2264
2265                 obj_request->img_offset = img_offset;
2266
2267                 img_offset += length;
2268                 resid -= length;
2269         }
2270
2271         return 0;
2272
2273 out_partial:
2274         rbd_obj_request_put(obj_request);
2275 out_unwind:
2276         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2277                 rbd_obj_request_put(obj_request);
2278
2279         return -ENOMEM;
2280 }
2281
2282 static void
2283 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2284 {
2285         struct rbd_img_request *img_request;
2286         struct rbd_device *rbd_dev;
2287         struct page **pages;
2288         u32 page_count;
2289
2290         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2291         rbd_assert(obj_request_img_data_test(obj_request));
2292         img_request = obj_request->img_request;
2293         rbd_assert(img_request);
2294
2295         rbd_dev = img_request->rbd_dev;
2296         rbd_assert(rbd_dev);
2297
2298         pages = obj_request->copyup_pages;
2299         rbd_assert(pages != NULL);
2300         obj_request->copyup_pages = NULL;
2301         page_count = obj_request->copyup_page_count;
2302         rbd_assert(page_count);
2303         obj_request->copyup_page_count = 0;
2304         ceph_release_page_vector(pages, page_count);
2305
2306         /*
2307          * We want the transfer count to reflect the size of the
2308          * original write request.  There is no such thing as a
2309          * successful short write, so if the request was successful
2310          * we can just set it to the originally-requested length.
2311          */
2312         if (!obj_request->result)
2313                 obj_request->xferred = obj_request->length;
2314
2315         /* Finish up with the normal image object callback */
2316
2317         rbd_img_obj_callback(obj_request);
2318 }
2319
2320 static void
2321 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2322 {
2323         struct rbd_obj_request *orig_request;
2324         struct ceph_osd_request *osd_req;
2325         struct ceph_osd_client *osdc;
2326         struct rbd_device *rbd_dev;
2327         struct page **pages;
2328         u32 page_count;
2329         int img_result;
2330         u64 parent_length;
2331         u64 offset;
2332         u64 length;
2333
2334         rbd_assert(img_request_child_test(img_request));
2335
2336         /* First get what we need from the image request */
2337
2338         pages = img_request->copyup_pages;
2339         rbd_assert(pages != NULL);
2340         img_request->copyup_pages = NULL;
2341         page_count = img_request->copyup_page_count;
2342         rbd_assert(page_count);
2343         img_request->copyup_page_count = 0;
2344
2345         orig_request = img_request->obj_request;
2346         rbd_assert(orig_request != NULL);
2347         rbd_assert(obj_request_type_valid(orig_request->type));
2348         img_result = img_request->result;
2349         parent_length = img_request->length;
2350         rbd_assert(parent_length == img_request->xferred);
2351         rbd_img_request_put(img_request);
2352
2353         rbd_assert(orig_request->img_request);
2354         rbd_dev = orig_request->img_request->rbd_dev;
2355         rbd_assert(rbd_dev);
2356
2357         /*
2358          * If the overlap has become 0 (most likely because the
2359          * image has been flattened) we need to free the pages
2360          * and re-submit the original write request.
2361          */
2362         if (!rbd_dev->parent_overlap) {
2363                 struct ceph_osd_client *osdc;
2364
2365                 ceph_release_page_vector(pages, page_count);
2366                 osdc = &rbd_dev->rbd_client->client->osdc;
2367                 img_result = rbd_obj_request_submit(osdc, orig_request);
2368                 if (!img_result)
2369                         return;
2370         }
2371
2372         if (img_result)
2373                 goto out_err;
2374
2375         /*
2376          * The original osd request is of no use to use any more.
2377          * We need a new one that can hold the two ops in a copyup
2378          * request.  Allocate the new copyup osd request for the
2379          * original request, and release the old one.
2380          */
2381         img_result = -ENOMEM;
2382         osd_req = rbd_osd_req_create_copyup(orig_request);
2383         if (!osd_req)
2384                 goto out_err;
2385         rbd_osd_req_destroy(orig_request->osd_req);
2386         orig_request->osd_req = osd_req;
2387         orig_request->copyup_pages = pages;
2388         orig_request->copyup_page_count = page_count;
2389
2390         /* Initialize the copyup op */
2391
2392         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2393         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2394                                                 false, false);
2395
2396         /* Then the original write request op */
2397
2398         offset = orig_request->offset;
2399         length = orig_request->length;
2400         osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2401                                         offset, length, 0, 0);
2402         if (orig_request->type == OBJ_REQUEST_BIO)
2403                 osd_req_op_extent_osd_data_bio(osd_req, 1,
2404                                         orig_request->bio_list, length);
2405         else
2406                 osd_req_op_extent_osd_data_pages(osd_req, 1,
2407                                         orig_request->pages, length,
2408                                         offset & ~PAGE_MASK, false, false);
2409
2410         rbd_osd_req_format_write(orig_request);
2411
2412         /* All set, send it off. */
2413
2414         orig_request->callback = rbd_img_obj_copyup_callback;
2415         osdc = &rbd_dev->rbd_client->client->osdc;
2416         img_result = rbd_obj_request_submit(osdc, orig_request);
2417         if (!img_result)
2418                 return;
2419 out_err:
2420         /* Record the error code and complete the request */
2421
2422         orig_request->result = img_result;
2423         orig_request->xferred = 0;
2424         obj_request_done_set(orig_request);
2425         rbd_obj_request_complete(orig_request);
2426 }
2427
2428 /*
2429  * Read from the parent image the range of data that covers the
2430  * entire target of the given object request.  This is used for
2431  * satisfying a layered image write request when the target of an
2432  * object request from the image request does not exist.
2433  *
2434  * A page array big enough to hold the returned data is allocated
2435  * and supplied to rbd_img_request_fill() as the "data descriptor."
2436  * When the read completes, this page array will be transferred to
2437  * the original object request for the copyup operation.
2438  *
2439  * If an error occurs, record it as the result of the original
2440  * object request and mark it done so it gets completed.
2441  */
2442 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2443 {
2444         struct rbd_img_request *img_request = NULL;
2445         struct rbd_img_request *parent_request = NULL;
2446         struct rbd_device *rbd_dev;
2447         u64 img_offset;
2448         u64 length;
2449         struct page **pages = NULL;
2450         u32 page_count;
2451         int result;
2452
2453         rbd_assert(obj_request_img_data_test(obj_request));
2454         rbd_assert(obj_request_type_valid(obj_request->type));
2455
2456         img_request = obj_request->img_request;
2457         rbd_assert(img_request != NULL);
2458         rbd_dev = img_request->rbd_dev;
2459         rbd_assert(rbd_dev->parent != NULL);
2460
2461         /*
2462          * Determine the byte range covered by the object in the
2463          * child image to which the original request was to be sent.
2464          */
2465         img_offset = obj_request->img_offset - obj_request->offset;
2466         length = (u64)1 << rbd_dev->header.obj_order;
2467
2468         /*
2469          * There is no defined parent data beyond the parent
2470          * overlap, so limit what we read at that boundary if
2471          * necessary.
2472          */
2473         if (img_offset + length > rbd_dev->parent_overlap) {
2474                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2475                 length = rbd_dev->parent_overlap - img_offset;
2476         }
2477
2478         /*
2479          * Allocate a page array big enough to receive the data read
2480          * from the parent.
2481          */
2482         page_count = (u32)calc_pages_for(0, length);
2483         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2484         if (IS_ERR(pages)) {
2485                 result = PTR_ERR(pages);
2486                 pages = NULL;
2487                 goto out_err;
2488         }
2489
2490         result = -ENOMEM;
2491         parent_request = rbd_parent_request_create(obj_request,
2492                                                 img_offset, length);
2493         if (!parent_request)
2494                 goto out_err;
2495
2496         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2497         if (result)
2498                 goto out_err;
2499         parent_request->copyup_pages = pages;
2500         parent_request->copyup_page_count = page_count;
2501
2502         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2503         result = rbd_img_request_submit(parent_request);
2504         if (!result)
2505                 return 0;
2506
2507         parent_request->copyup_pages = NULL;
2508         parent_request->copyup_page_count = 0;
2509         parent_request->obj_request = NULL;
2510         rbd_obj_request_put(obj_request);
2511 out_err:
2512         if (pages)
2513                 ceph_release_page_vector(pages, page_count);
2514         if (parent_request)
2515                 rbd_img_request_put(parent_request);
2516         obj_request->result = result;
2517         obj_request->xferred = 0;
2518         obj_request_done_set(obj_request);
2519
2520         return result;
2521 }
2522
2523 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2524 {
2525         struct rbd_obj_request *orig_request;
2526         struct rbd_device *rbd_dev;
2527         int result;
2528
2529         rbd_assert(!obj_request_img_data_test(obj_request));
2530
2531         /*
2532          * All we need from the object request is the original
2533          * request and the result of the STAT op.  Grab those, then
2534          * we're done with the request.
2535          */
2536         orig_request = obj_request->obj_request;
2537         obj_request->obj_request = NULL;
2538         rbd_obj_request_put(orig_request);
2539         rbd_assert(orig_request);
2540         rbd_assert(orig_request->img_request);
2541
2542         result = obj_request->result;
2543         obj_request->result = 0;
2544
2545         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2546                 obj_request, orig_request, result,
2547                 obj_request->xferred, obj_request->length);
2548         rbd_obj_request_put(obj_request);
2549
2550         /*
2551          * If the overlap has become 0 (most likely because the
2552          * image has been flattened) we need to free the pages
2553          * and re-submit the original write request.
2554          */
2555         rbd_dev = orig_request->img_request->rbd_dev;
2556         if (!rbd_dev->parent_overlap) {
2557                 struct ceph_osd_client *osdc;
2558
2559                 osdc = &rbd_dev->rbd_client->client->osdc;
2560                 result = rbd_obj_request_submit(osdc, orig_request);
2561                 if (!result)
2562                         return;
2563         }
2564
2565         /*
2566          * Our only purpose here is to determine whether the object
2567          * exists, and we don't want to treat the non-existence as
2568          * an error.  If something else comes back, transfer the
2569          * error to the original request and complete it now.
2570          */
2571         if (!result) {
2572                 obj_request_existence_set(orig_request, true);
2573         } else if (result == -ENOENT) {
2574                 obj_request_existence_set(orig_request, false);
2575         } else if (result) {
2576                 orig_request->result = result;
2577                 goto out;
2578         }
2579
2580         /*
2581          * Resubmit the original request now that we have recorded
2582          * whether the target object exists.
2583          */
2584         orig_request->result = rbd_img_obj_request_submit(orig_request);
2585 out:
2586         if (orig_request->result)
2587                 rbd_obj_request_complete(orig_request);
2588 }
2589
2590 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2591 {
2592         struct rbd_obj_request *stat_request;
2593         struct rbd_device *rbd_dev;
2594         struct ceph_osd_client *osdc;
2595         struct page **pages = NULL;
2596         u32 page_count;
2597         size_t size;
2598         int ret;
2599
2600         /*
2601          * The response data for a STAT call consists of:
2602          *     le64 length;
2603          *     struct {
2604          *         le32 tv_sec;
2605          *         le32 tv_nsec;
2606          *     } mtime;
2607          */
2608         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2609         page_count = (u32)calc_pages_for(0, size);
2610         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2611         if (IS_ERR(pages))
2612                 return PTR_ERR(pages);
2613
2614         ret = -ENOMEM;
2615         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2616                                                         OBJ_REQUEST_PAGES);
2617         if (!stat_request)
2618                 goto out;
2619
2620         rbd_obj_request_get(obj_request);
2621         stat_request->obj_request = obj_request;
2622         stat_request->pages = pages;
2623         stat_request->page_count = page_count;
2624
2625         rbd_assert(obj_request->img_request);
2626         rbd_dev = obj_request->img_request->rbd_dev;
2627         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2628                                                 stat_request);
2629         if (!stat_request->osd_req)
2630                 goto out;
2631         stat_request->callback = rbd_img_obj_exists_callback;
2632
2633         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2634         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2635                                         false, false);
2636         rbd_osd_req_format_read(stat_request);
2637
2638         osdc = &rbd_dev->rbd_client->client->osdc;
2639         ret = rbd_obj_request_submit(osdc, stat_request);
2640 out:
2641         if (ret)
2642                 rbd_obj_request_put(obj_request);
2643
2644         return ret;
2645 }
2646
2647 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2648 {
2649         struct rbd_img_request *img_request;
2650         struct rbd_device *rbd_dev;
2651         bool known;
2652
2653         rbd_assert(obj_request_img_data_test(obj_request));
2654
2655         img_request = obj_request->img_request;
2656         rbd_assert(img_request);
2657         rbd_dev = img_request->rbd_dev;
2658
2659         /*
2660          * Only writes to layered images need special handling.
2661          * Reads and non-layered writes are simple object requests.
2662          * Layered writes that start beyond the end of the overlap
2663          * with the parent have no parent data, so they too are
2664          * simple object requests.  Finally, if the target object is
2665          * known to already exist, its parent data has already been
2666          * copied, so a write to the object can also be handled as a
2667          * simple object request.
2668          */
2669         if (!img_request_write_test(img_request) ||
2670                 !img_request_layered_test(img_request) ||
2671                 rbd_dev->parent_overlap <= obj_request->img_offset ||
2672                 ((known = obj_request_known_test(obj_request)) &&
2673                         obj_request_exists_test(obj_request))) {
2674
2675                 struct rbd_device *rbd_dev;
2676                 struct ceph_osd_client *osdc;
2677
2678                 rbd_dev = obj_request->img_request->rbd_dev;
2679                 osdc = &rbd_dev->rbd_client->client->osdc;
2680
2681                 return rbd_obj_request_submit(osdc, obj_request);
2682         }
2683
2684         /*
2685          * It's a layered write.  The target object might exist but
2686          * we may not know that yet.  If we know it doesn't exist,
2687          * start by reading the data for the full target object from
2688          * the parent so we can use it for a copyup to the target.
2689          */
2690         if (known)
2691                 return rbd_img_obj_parent_read_full(obj_request);
2692
2693         /* We don't know whether the target exists.  Go find out. */
2694
2695         return rbd_img_obj_exists_submit(obj_request);
2696 }
2697
2698 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2699 {
2700         struct rbd_obj_request *obj_request;
2701         struct rbd_obj_request *next_obj_request;
2702
2703         dout("%s: img %p\n", __func__, img_request);
2704         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2705                 int ret;
2706
2707                 ret = rbd_img_obj_request_submit(obj_request);
2708                 if (ret)
2709                         return ret;
2710         }
2711
2712         return 0;
2713 }
2714
2715 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2716 {
2717         struct rbd_obj_request *obj_request;
2718         struct rbd_device *rbd_dev;
2719         u64 obj_end;
2720         u64 img_xferred;
2721         int img_result;
2722
2723         rbd_assert(img_request_child_test(img_request));
2724
2725         /* First get what we need from the image request and release it */
2726
2727         obj_request = img_request->obj_request;
2728         img_xferred = img_request->xferred;
2729         img_result = img_request->result;
2730         rbd_img_request_put(img_request);
2731
2732         /*
2733          * If the overlap has become 0 (most likely because the
2734          * image has been flattened) we need to re-submit the
2735          * original request.
2736          */
2737         rbd_assert(obj_request);
2738         rbd_assert(obj_request->img_request);
2739         rbd_dev = obj_request->img_request->rbd_dev;
2740         if (!rbd_dev->parent_overlap) {
2741                 struct ceph_osd_client *osdc;
2742
2743                 osdc = &rbd_dev->rbd_client->client->osdc;
2744                 img_result = rbd_obj_request_submit(osdc, obj_request);
2745                 if (!img_result)
2746                         return;
2747         }
2748
2749         obj_request->result = img_result;
2750         if (obj_request->result)
2751                 goto out;
2752
2753         /*
2754          * We need to zero anything beyond the parent overlap
2755          * boundary.  Since rbd_img_obj_request_read_callback()
2756          * will zero anything beyond the end of a short read, an
2757          * easy way to do this is to pretend the data from the
2758          * parent came up short--ending at the overlap boundary.
2759          */
2760         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2761         obj_end = obj_request->img_offset + obj_request->length;
2762         if (obj_end > rbd_dev->parent_overlap) {
2763                 u64 xferred = 0;
2764
2765                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2766                         xferred = rbd_dev->parent_overlap -
2767                                         obj_request->img_offset;
2768
2769                 obj_request->xferred = min(img_xferred, xferred);
2770         } else {
2771                 obj_request->xferred = img_xferred;
2772         }
2773 out:
2774         rbd_img_obj_request_read_callback(obj_request);
2775         rbd_obj_request_complete(obj_request);
2776 }
2777
2778 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2779 {
2780         struct rbd_img_request *img_request;
2781         int result;
2782
2783         rbd_assert(obj_request_img_data_test(obj_request));
2784         rbd_assert(obj_request->img_request != NULL);
2785         rbd_assert(obj_request->result == (s32) -ENOENT);
2786         rbd_assert(obj_request_type_valid(obj_request->type));
2787
2788         /* rbd_read_finish(obj_request, obj_request->length); */
2789         img_request = rbd_parent_request_create(obj_request,
2790                                                 obj_request->img_offset,
2791                                                 obj_request->length);
2792         result = -ENOMEM;
2793         if (!img_request)
2794                 goto out_err;
2795
2796         if (obj_request->type == OBJ_REQUEST_BIO)
2797                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2798                                                 obj_request->bio_list);
2799         else
2800                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2801                                                 obj_request->pages);
2802         if (result)
2803                 goto out_err;
2804
2805         img_request->callback = rbd_img_parent_read_callback;
2806         result = rbd_img_request_submit(img_request);
2807         if (result)
2808                 goto out_err;
2809
2810         return;
2811 out_err:
2812         if (img_request)
2813                 rbd_img_request_put(img_request);
2814         obj_request->result = result;
2815         obj_request->xferred = 0;
2816         obj_request_done_set(obj_request);
2817 }
2818
2819 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev, u64 notify_id)
2820 {
2821         struct rbd_obj_request *obj_request;
2822         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2823         int ret;
2824
2825         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2826                                                         OBJ_REQUEST_NODATA);
2827         if (!obj_request)
2828                 return -ENOMEM;
2829
2830         ret = -ENOMEM;
2831         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2832         if (!obj_request->osd_req)
2833                 goto out;
2834         obj_request->callback = rbd_obj_request_put;
2835
2836         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2837                                         notify_id, 0, 0);
2838         rbd_osd_req_format_read(obj_request);
2839
2840         ret = rbd_obj_request_submit(osdc, obj_request);
2841 out:
2842         if (ret)
2843                 rbd_obj_request_put(obj_request);
2844
2845         return ret;
2846 }
2847
2848 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2849 {
2850         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2851         int ret;
2852
2853         if (!rbd_dev)
2854                 return;
2855
2856         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2857                 rbd_dev->header_name, (unsigned long long)notify_id,
2858                 (unsigned int)opcode);
2859         ret = rbd_dev_refresh(rbd_dev);
2860         if (ret)
2861                 rbd_warn(rbd_dev, ": header refresh error (%d)\n", ret);
2862
2863         rbd_obj_notify_ack(rbd_dev, notify_id);
2864 }
2865
2866 /*
2867  * Request sync osd watch/unwatch.  The value of "start" determines
2868  * whether a watch request is being initiated or torn down.
2869  */
2870 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2871 {
2872         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2873         struct rbd_obj_request *obj_request;
2874         int ret;
2875
2876         rbd_assert(start ^ !!rbd_dev->watch_event);
2877         rbd_assert(start ^ !!rbd_dev->watch_request);
2878
2879         if (start) {
2880                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2881                                                 &rbd_dev->watch_event);
2882                 if (ret < 0)
2883                         return ret;
2884                 rbd_assert(rbd_dev->watch_event != NULL);
2885         }
2886
2887         ret = -ENOMEM;
2888         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2889                                                         OBJ_REQUEST_NODATA);
2890         if (!obj_request)
2891                 goto out_cancel;
2892
2893         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2894         if (!obj_request->osd_req)
2895                 goto out_cancel;
2896
2897         if (start)
2898                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2899         else
2900                 ceph_osdc_unregister_linger_request(osdc,
2901                                         rbd_dev->watch_request->osd_req);
2902
2903         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2904                                 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2905         rbd_osd_req_format_write(obj_request);
2906
2907         ret = rbd_obj_request_submit(osdc, obj_request);
2908         if (ret)
2909                 goto out_cancel;
2910         ret = rbd_obj_request_wait(obj_request);
2911         if (ret)
2912                 goto out_cancel;
2913         ret = obj_request->result;
2914         if (ret)
2915                 goto out_cancel;
2916
2917         /*
2918          * A watch request is set to linger, so the underlying osd
2919          * request won't go away until we unregister it.  We retain
2920          * a pointer to the object request during that time (in
2921          * rbd_dev->watch_request), so we'll keep a reference to
2922          * it.  We'll drop that reference (below) after we've
2923          * unregistered it.
2924          */
2925         if (start) {
2926                 rbd_dev->watch_request = obj_request;
2927
2928                 return 0;
2929         }
2930
2931         /* We have successfully torn down the watch request */
2932
2933         rbd_obj_request_put(rbd_dev->watch_request);
2934         rbd_dev->watch_request = NULL;
2935 out_cancel:
2936         /* Cancel the event if we're tearing down, or on error */
2937         ceph_osdc_cancel_event(rbd_dev->watch_event);
2938         rbd_dev->watch_event = NULL;
2939         if (obj_request)
2940                 rbd_obj_request_put(obj_request);
2941
2942         return ret;
2943 }
2944
2945 /*
2946  * Synchronous osd object method call.  Returns the number of bytes
2947  * returned in the outbound buffer, or a negative error code.
2948  */
2949 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2950                              const char *object_name,
2951                              const char *class_name,
2952                              const char *method_name,
2953                              const void *outbound,
2954                              size_t outbound_size,
2955                              void *inbound,
2956                              size_t inbound_size)
2957 {
2958         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2959         struct rbd_obj_request *obj_request;
2960         struct page **pages;
2961         u32 page_count;
2962         int ret;
2963
2964         /*
2965          * Method calls are ultimately read operations.  The result
2966          * should placed into the inbound buffer provided.  They
2967          * also supply outbound data--parameters for the object
2968          * method.  Currently if this is present it will be a
2969          * snapshot id.
2970          */
2971         page_count = (u32)calc_pages_for(0, inbound_size);
2972         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2973         if (IS_ERR(pages))
2974                 return PTR_ERR(pages);
2975
2976         ret = -ENOMEM;
2977         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2978                                                         OBJ_REQUEST_PAGES);
2979         if (!obj_request)
2980                 goto out;
2981
2982         obj_request->pages = pages;
2983         obj_request->page_count = page_count;
2984
2985         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2986         if (!obj_request->osd_req)
2987                 goto out;
2988
2989         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2990                                         class_name, method_name);
2991         if (outbound_size) {
2992                 struct ceph_pagelist *pagelist;
2993
2994                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2995                 if (!pagelist)
2996                         goto out;
2997
2998                 ceph_pagelist_init(pagelist);
2999                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3000                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3001                                                 pagelist);
3002         }
3003         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3004                                         obj_request->pages, inbound_size,
3005                                         0, false, false);
3006         rbd_osd_req_format_read(obj_request);
3007
3008         ret = rbd_obj_request_submit(osdc, obj_request);
3009         if (ret)
3010                 goto out;
3011         ret = rbd_obj_request_wait(obj_request);
3012         if (ret)
3013                 goto out;
3014
3015         ret = obj_request->result;
3016         if (ret < 0)
3017                 goto out;
3018
3019         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3020         ret = (int)obj_request->xferred;
3021         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3022 out:
3023         if (obj_request)
3024                 rbd_obj_request_put(obj_request);
3025         else
3026                 ceph_release_page_vector(pages, page_count);
3027
3028         return ret;
3029 }
3030
3031 static void rbd_request_fn(struct request_queue *q)
3032                 __releases(q->queue_lock) __acquires(q->queue_lock)
3033 {
3034         struct rbd_device *rbd_dev = q->queuedata;
3035         bool read_only = rbd_dev->mapping.read_only;
3036         struct request *rq;
3037         int result;
3038
3039         while ((rq = blk_fetch_request(q))) {
3040                 bool write_request = rq_data_dir(rq) == WRITE;
3041                 struct rbd_img_request *img_request;
3042                 u64 offset;
3043                 u64 length;
3044
3045                 /* Ignore any non-FS requests that filter through. */
3046
3047                 if (rq->cmd_type != REQ_TYPE_FS) {
3048                         dout("%s: non-fs request type %d\n", __func__,
3049                                 (int) rq->cmd_type);
3050                         __blk_end_request_all(rq, 0);
3051                         continue;
3052                 }
3053
3054                 /* Ignore/skip any zero-length requests */
3055
3056                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3057                 length = (u64) blk_rq_bytes(rq);
3058
3059                 if (!length) {
3060                         dout("%s: zero-length request\n", __func__);
3061                         __blk_end_request_all(rq, 0);
3062                         continue;
3063                 }
3064
3065                 spin_unlock_irq(q->queue_lock);
3066
3067                 /* Disallow writes to a read-only device */
3068
3069                 if (write_request) {
3070                         result = -EROFS;
3071                         if (read_only)
3072                                 goto end_request;
3073                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3074                 }
3075
3076                 /*
3077                  * Quit early if the mapped snapshot no longer
3078                  * exists.  It's still possible the snapshot will
3079                  * have disappeared by the time our request arrives
3080                  * at the osd, but there's no sense in sending it if
3081                  * we already know.
3082                  */
3083                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3084                         dout("request for non-existent snapshot");
3085                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3086                         result = -ENXIO;
3087                         goto end_request;
3088                 }
3089
3090                 result = -EINVAL;
3091                 if (offset && length > U64_MAX - offset + 1) {
3092                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3093                                 offset, length);
3094                         goto end_request;       /* Shouldn't happen */
3095                 }
3096
3097                 result = -EIO;
3098                 if (offset + length > rbd_dev->mapping.size) {
3099                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3100                                 offset, length, rbd_dev->mapping.size);
3101                         goto end_request;
3102                 }
3103
3104                 result = -ENOMEM;
3105                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3106                                                         write_request);
3107                 if (!img_request)
3108                         goto end_request;
3109
3110                 img_request->rq = rq;
3111
3112                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3113                                                 rq->bio);
3114                 if (!result)
3115                         result = rbd_img_request_submit(img_request);
3116                 if (result)
3117                         rbd_img_request_put(img_request);
3118 end_request:
3119                 spin_lock_irq(q->queue_lock);
3120                 if (result < 0) {
3121                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3122                                 write_request ? "write" : "read",
3123                                 length, offset, result);
3124
3125                         __blk_end_request_all(rq, result);
3126                 }
3127         }
3128 }
3129
3130 /*
3131  * a queue callback. Makes sure that we don't create a bio that spans across
3132  * multiple osd objects. One exception would be with a single page bios,
3133  * which we handle later at bio_chain_clone_range()
3134  */
3135 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3136                           struct bio_vec *bvec)
3137 {
3138         struct rbd_device *rbd_dev = q->queuedata;
3139         sector_t sector_offset;
3140         sector_t sectors_per_obj;
3141         sector_t obj_sector_offset;
3142         int ret;
3143
3144         /*
3145          * Find how far into its rbd object the partition-relative
3146          * bio start sector is to offset relative to the enclosing
3147          * device.
3148          */
3149         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3150         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3151         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3152
3153         /*
3154          * Compute the number of bytes from that offset to the end
3155          * of the object.  Account for what's already used by the bio.
3156          */
3157         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3158         if (ret > bmd->bi_size)
3159                 ret -= bmd->bi_size;
3160         else
3161                 ret = 0;
3162
3163         /*
3164          * Don't send back more than was asked for.  And if the bio
3165          * was empty, let the whole thing through because:  "Note
3166          * that a block device *must* allow a single page to be
3167          * added to an empty bio."
3168          */
3169         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3170         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3171                 ret = (int) bvec->bv_len;
3172
3173         return ret;
3174 }
3175
3176 static void rbd_free_disk(struct rbd_device *rbd_dev)
3177 {
3178         struct gendisk *disk = rbd_dev->disk;
3179
3180         if (!disk)
3181                 return;
3182
3183         rbd_dev->disk = NULL;
3184         if (disk->flags & GENHD_FL_UP) {
3185                 del_gendisk(disk);
3186                 if (disk->queue)
3187                         blk_cleanup_queue(disk->queue);
3188         }
3189         put_disk(disk);
3190 }
3191
3192 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3193                                 const char *object_name,
3194                                 u64 offset, u64 length, void *buf)
3195
3196 {
3197         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3198         struct rbd_obj_request *obj_request;
3199         struct page **pages = NULL;
3200         u32 page_count;
3201         size_t size;
3202         int ret;
3203
3204         page_count = (u32) calc_pages_for(offset, length);
3205         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3206         if (IS_ERR(pages))
3207                 ret = PTR_ERR(pages);
3208
3209         ret = -ENOMEM;
3210         obj_request = rbd_obj_request_create(object_name, offset, length,
3211                                                         OBJ_REQUEST_PAGES);
3212         if (!obj_request)
3213                 goto out;
3214
3215         obj_request->pages = pages;
3216         obj_request->page_count = page_count;
3217
3218         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3219         if (!obj_request->osd_req)
3220                 goto out;
3221
3222         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3223                                         offset, length, 0, 0);
3224         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3225                                         obj_request->pages,
3226                                         obj_request->length,
3227                                         obj_request->offset & ~PAGE_MASK,
3228                                         false, false);
3229         rbd_osd_req_format_read(obj_request);
3230
3231         ret = rbd_obj_request_submit(osdc, obj_request);
3232         if (ret)
3233                 goto out;
3234         ret = rbd_obj_request_wait(obj_request);
3235         if (ret)
3236                 goto out;
3237
3238         ret = obj_request->result;
3239         if (ret < 0)
3240                 goto out;
3241
3242         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3243         size = (size_t) obj_request->xferred;
3244         ceph_copy_from_page_vector(pages, buf, 0, size);
3245         rbd_assert(size <= (size_t)INT_MAX);
3246         ret = (int)size;
3247 out:
3248         if (obj_request)
3249                 rbd_obj_request_put(obj_request);
3250         else
3251                 ceph_release_page_vector(pages, page_count);
3252
3253         return ret;
3254 }
3255
3256 /*
3257  * Read the complete header for the given rbd device.  On successful
3258  * return, the rbd_dev->header field will contain up-to-date
3259  * information about the image.
3260  */
3261 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3262 {
3263         struct rbd_image_header_ondisk *ondisk = NULL;
3264         u32 snap_count = 0;
3265         u64 names_size = 0;
3266         u32 want_count;
3267         int ret;
3268
3269         /*
3270          * The complete header will include an array of its 64-bit
3271          * snapshot ids, followed by the names of those snapshots as
3272          * a contiguous block of NUL-terminated strings.  Note that
3273          * the number of snapshots could change by the time we read
3274          * it in, in which case we re-read it.
3275          */
3276         do {
3277                 size_t size;
3278
3279                 kfree(ondisk);
3280
3281                 size = sizeof (*ondisk);
3282                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3283                 size += names_size;
3284                 ondisk = kmalloc(size, GFP_KERNEL);
3285                 if (!ondisk)
3286                         return -ENOMEM;
3287
3288                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3289                                        0, size, ondisk);
3290                 if (ret < 0)
3291                         goto out;
3292                 if ((size_t)ret < size) {
3293                         ret = -ENXIO;
3294                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3295                                 size, ret);
3296                         goto out;
3297                 }
3298                 if (!rbd_dev_ondisk_valid(ondisk)) {
3299                         ret = -ENXIO;
3300                         rbd_warn(rbd_dev, "invalid header");
3301                         goto out;
3302                 }
3303
3304                 names_size = le64_to_cpu(ondisk->snap_names_len);
3305                 want_count = snap_count;
3306                 snap_count = le32_to_cpu(ondisk->snap_count);
3307         } while (snap_count != want_count);
3308
3309         ret = rbd_header_from_disk(rbd_dev, ondisk);
3310 out:
3311         kfree(ondisk);
3312
3313         return ret;
3314 }
3315
3316 /*
3317  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3318  * has disappeared from the (just updated) snapshot context.
3319  */
3320 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3321 {
3322         u64 snap_id;
3323
3324         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3325                 return;
3326
3327         snap_id = rbd_dev->spec->snap_id;
3328         if (snap_id == CEPH_NOSNAP)
3329                 return;
3330
3331         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3332                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3333 }
3334
3335 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3336 {
3337         u64 mapping_size;
3338         int ret;
3339
3340         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3341         mapping_size = rbd_dev->mapping.size;
3342         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3343         if (rbd_dev->image_format == 1)
3344                 ret = rbd_dev_v1_header_info(rbd_dev);
3345         else
3346                 ret = rbd_dev_v2_header_info(rbd_dev);
3347
3348         /* If it's a mapped snapshot, validate its EXISTS flag */
3349
3350         rbd_exists_validate(rbd_dev);
3351         mutex_unlock(&ctl_mutex);
3352         if (mapping_size != rbd_dev->mapping.size) {
3353                 sector_t size;
3354
3355                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3356                 dout("setting size to %llu sectors", (unsigned long long)size);
3357                 set_capacity(rbd_dev->disk, size);
3358                 revalidate_disk(rbd_dev->disk);
3359         }
3360
3361         return ret;
3362 }
3363
3364 static int rbd_init_disk(struct rbd_device *rbd_dev)
3365 {
3366         struct gendisk *disk;
3367         struct request_queue *q;
3368         u64 segment_size;
3369
3370         /* create gendisk info */
3371         disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3372         if (!disk)
3373                 return -ENOMEM;
3374
3375         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3376                  rbd_dev->dev_id);
3377         disk->major = rbd_dev->major;
3378         disk->first_minor = 0;
3379         disk->fops = &rbd_bd_ops;
3380         disk->private_data = rbd_dev;
3381
3382         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3383         if (!q)
3384                 goto out_disk;
3385
3386         /* We use the default size, but let's be explicit about it. */
3387         blk_queue_physical_block_size(q, SECTOR_SIZE);
3388
3389         /* set io sizes to object size */
3390         segment_size = rbd_obj_bytes(&rbd_dev->header);
3391         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3392         blk_queue_max_segment_size(q, segment_size);
3393         blk_queue_io_min(q, segment_size);
3394         blk_queue_io_opt(q, segment_size);
3395
3396         blk_queue_merge_bvec(q, rbd_merge_bvec);
3397         disk->queue = q;
3398
3399         q->queuedata = rbd_dev;
3400
3401         rbd_dev->disk = disk;
3402
3403         return 0;
3404 out_disk:
3405         put_disk(disk);
3406
3407         return -ENOMEM;
3408 }
3409
3410 /*
3411   sysfs
3412 */
3413
3414 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3415 {
3416         return container_of(dev, struct rbd_device, dev);
3417 }
3418
3419 static ssize_t rbd_size_show(struct device *dev,
3420                              struct device_attribute *attr, char *buf)
3421 {
3422         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3423
3424         return sprintf(buf, "%llu\n",
3425                 (unsigned long long)rbd_dev->mapping.size);
3426 }
3427
3428 /*
3429  * Note this shows the features for whatever's mapped, which is not
3430  * necessarily the base image.
3431  */
3432 static ssize_t rbd_features_show(struct device *dev,
3433                              struct device_attribute *attr, char *buf)
3434 {
3435         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3436
3437         return sprintf(buf, "0x%016llx\n",
3438                         (unsigned long long)rbd_dev->mapping.features);
3439 }
3440
3441 static ssize_t rbd_major_show(struct device *dev,
3442                               struct device_attribute *attr, char *buf)
3443 {
3444         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3445
3446         if (rbd_dev->major)
3447                 return sprintf(buf, "%d\n", rbd_dev->major);
3448
3449         return sprintf(buf, "(none)\n");
3450
3451 }
3452
3453 static ssize_t rbd_client_id_show(struct device *dev,
3454                                   struct device_attribute *attr, char *buf)
3455 {
3456         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3457
3458         return sprintf(buf, "client%lld\n",
3459                         ceph_client_id(rbd_dev->rbd_client->client));
3460 }
3461
3462 static ssize_t rbd_pool_show(struct device *dev,
3463                              struct device_attribute *attr, char *buf)
3464 {
3465         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3466
3467         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3468 }
3469
3470 static ssize_t rbd_pool_id_show(struct device *dev,
3471                              struct device_attribute *attr, char *buf)
3472 {
3473         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3474
3475         return sprintf(buf, "%llu\n",
3476                         (unsigned long long) rbd_dev->spec->pool_id);
3477 }
3478
3479 static ssize_t rbd_name_show(struct device *dev,
3480                              struct device_attribute *attr, char *buf)
3481 {
3482         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3483
3484         if (rbd_dev->spec->image_name)
3485                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3486
3487         return sprintf(buf, "(unknown)\n");
3488 }
3489
3490 static ssize_t rbd_image_id_show(struct device *dev,
3491                              struct device_attribute *attr, char *buf)
3492 {
3493         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3494
3495         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3496 }
3497
3498 /*
3499  * Shows the name of the currently-mapped snapshot (or
3500  * RBD_SNAP_HEAD_NAME for the base image).
3501  */
3502 static ssize_t rbd_snap_show(struct device *dev,
3503                              struct device_attribute *attr,
3504                              char *buf)
3505 {
3506         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3507
3508         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3509 }
3510
3511 /*
3512  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3513  * for the parent image.  If there is no parent, simply shows
3514  * "(no parent image)".
3515  */
3516 static ssize_t rbd_parent_show(struct device *dev,
3517                              struct device_attribute *attr,
3518                              char *buf)
3519 {
3520         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3521         struct rbd_spec *spec = rbd_dev->parent_spec;
3522         int count;
3523         char *bufp = buf;
3524
3525         if (!spec)
3526                 return sprintf(buf, "(no parent image)\n");
3527
3528         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3529                         (unsigned long long) spec->pool_id, spec->pool_name);
3530         if (count < 0)
3531                 return count;
3532         bufp += count;
3533
3534         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3535                         spec->image_name ? spec->image_name : "(unknown)");
3536         if (count < 0)
3537                 return count;
3538         bufp += count;
3539
3540         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3541                         (unsigned long long) spec->snap_id, spec->snap_name);
3542         if (count < 0)
3543                 return count;
3544         bufp += count;
3545
3546         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3547         if (count < 0)
3548                 return count;
3549         bufp += count;
3550
3551         return (ssize_t) (bufp - buf);
3552 }
3553
3554 static ssize_t rbd_image_refresh(struct device *dev,
3555                                  struct device_attribute *attr,
3556                                  const char *buf,
3557                                  size_t size)
3558 {
3559         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3560         int ret;
3561
3562         ret = rbd_dev_refresh(rbd_dev);
3563         if (ret)
3564                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3565
3566         return ret < 0 ? ret : size;
3567 }
3568
3569 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3570 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3571 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3572 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3573 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3574 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3575 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3576 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3577 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3578 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3579 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3580
3581 static struct attribute *rbd_attrs[] = {
3582         &dev_attr_size.attr,
3583         &dev_attr_features.attr,
3584         &dev_attr_major.attr,
3585         &dev_attr_client_id.attr,
3586         &dev_attr_pool.attr,
3587         &dev_attr_pool_id.attr,
3588         &dev_attr_name.attr,
3589         &dev_attr_image_id.attr,
3590         &dev_attr_current_snap.attr,
3591         &dev_attr_parent.attr,
3592         &dev_attr_refresh.attr,
3593         NULL
3594 };
3595
3596 static struct attribute_group rbd_attr_group = {
3597         .attrs = rbd_attrs,
3598 };
3599
3600 static const struct attribute_group *rbd_attr_groups[] = {
3601         &rbd_attr_group,
3602         NULL
3603 };
3604
3605 static void rbd_sysfs_dev_release(struct device *dev)
3606 {
3607 }
3608
3609 static struct device_type rbd_device_type = {
3610         .name           = "rbd",
3611         .groups         = rbd_attr_groups,
3612         .release        = rbd_sysfs_dev_release,
3613 };
3614
3615 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3616 {
3617         kref_get(&spec->kref);
3618
3619         return spec;
3620 }
3621
3622 static void rbd_spec_free(struct kref *kref);
3623 static void rbd_spec_put(struct rbd_spec *spec)
3624 {
3625         if (spec)
3626                 kref_put(&spec->kref, rbd_spec_free);
3627 }
3628
3629 static struct rbd_spec *rbd_spec_alloc(void)
3630 {
3631         struct rbd_spec *spec;
3632
3633         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3634         if (!spec)
3635                 return NULL;
3636         kref_init(&spec->kref);
3637
3638         return spec;
3639 }
3640
3641 static void rbd_spec_free(struct kref *kref)
3642 {
3643         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3644
3645         kfree(spec->pool_name);
3646         kfree(spec->image_id);
3647         kfree(spec->image_name);
3648         kfree(spec->snap_name);
3649         kfree(spec);
3650 }
3651
3652 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3653                                 struct rbd_spec *spec)
3654 {
3655         struct rbd_device *rbd_dev;
3656
3657         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3658         if (!rbd_dev)
3659                 return NULL;
3660
3661         spin_lock_init(&rbd_dev->lock);
3662         rbd_dev->flags = 0;
3663         atomic_set(&rbd_dev->parent_ref, 0);
3664         INIT_LIST_HEAD(&rbd_dev->node);
3665         init_rwsem(&rbd_dev->header_rwsem);
3666
3667         rbd_dev->spec = spec;
3668         rbd_dev->rbd_client = rbdc;
3669
3670         /* Initialize the layout used for all rbd requests */
3671
3672         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3673         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3674         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3675         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3676
3677         return rbd_dev;
3678 }
3679
3680 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3681 {
3682         rbd_put_client(rbd_dev->rbd_client);
3683         rbd_spec_put(rbd_dev->spec);
3684         kfree(rbd_dev);
3685 }
3686
3687 /*
3688  * Get the size and object order for an image snapshot, or if
3689  * snap_id is CEPH_NOSNAP, gets this information for the base
3690  * image.
3691  */
3692 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3693                                 u8 *order, u64 *snap_size)
3694 {
3695         __le64 snapid = cpu_to_le64(snap_id);
3696         int ret;
3697         struct {
3698                 u8 order;
3699                 __le64 size;
3700         } __attribute__ ((packed)) size_buf = { 0 };
3701
3702         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3703                                 "rbd", "get_size",
3704                                 &snapid, sizeof (snapid),
3705                                 &size_buf, sizeof (size_buf));
3706         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3707         if (ret < 0)
3708                 return ret;
3709         if (ret < sizeof (size_buf))
3710                 return -ERANGE;
3711
3712         if (order)
3713                 *order = size_buf.order;
3714         *snap_size = le64_to_cpu(size_buf.size);
3715
3716         dout("  snap_id 0x%016llx order = %u, snap_size = %llu\n",
3717                 (unsigned long long)snap_id, (unsigned int)*order,
3718                 (unsigned long long)*snap_size);
3719
3720         return 0;
3721 }
3722
3723 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3724 {
3725         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3726                                         &rbd_dev->header.obj_order,
3727                                         &rbd_dev->header.image_size);
3728 }
3729
3730 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3731 {
3732         void *reply_buf;
3733         int ret;
3734         void *p;
3735
3736         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3737         if (!reply_buf)
3738                 return -ENOMEM;
3739
3740         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3741                                 "rbd", "get_object_prefix", NULL, 0,
3742                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3743         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3744         if (ret < 0)
3745                 goto out;
3746
3747         p = reply_buf;
3748         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3749                                                 p + ret, NULL, GFP_NOIO);
3750         ret = 0;
3751
3752         if (IS_ERR(rbd_dev->header.object_prefix)) {
3753                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3754                 rbd_dev->header.object_prefix = NULL;
3755         } else {
3756                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3757         }
3758 out:
3759         kfree(reply_buf);
3760
3761         return ret;
3762 }
3763
3764 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3765                 u64 *snap_features)
3766 {
3767         __le64 snapid = cpu_to_le64(snap_id);
3768         struct {
3769                 __le64 features;
3770                 __le64 incompat;
3771         } __attribute__ ((packed)) features_buf = { 0 };
3772         u64 incompat;
3773         int ret;
3774
3775         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3776                                 "rbd", "get_features",
3777                                 &snapid, sizeof (snapid),
3778                                 &features_buf, sizeof (features_buf));
3779         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3780         if (ret < 0)
3781                 return ret;
3782         if (ret < sizeof (features_buf))
3783                 return -ERANGE;
3784
3785         incompat = le64_to_cpu(features_buf.incompat);
3786         if (incompat & ~RBD_FEATURES_SUPPORTED)
3787                 return -ENXIO;
3788
3789         *snap_features = le64_to_cpu(features_buf.features);
3790
3791         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3792                 (unsigned long long)snap_id,
3793                 (unsigned long long)*snap_features,
3794                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3795
3796         return 0;
3797 }
3798
3799 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3800 {
3801         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3802                                                 &rbd_dev->header.features);
3803 }
3804
3805 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3806 {
3807         struct rbd_spec *parent_spec;
3808         size_t size;
3809         void *reply_buf = NULL;
3810         __le64 snapid;
3811         void *p;
3812         void *end;
3813         u64 pool_id;
3814         char *image_id;
3815         u64 overlap;
3816         int ret;
3817
3818         parent_spec = rbd_spec_alloc();
3819         if (!parent_spec)
3820                 return -ENOMEM;
3821
3822         size = sizeof (__le64) +                                /* pool_id */
3823                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3824                 sizeof (__le64) +                               /* snap_id */
3825                 sizeof (__le64);                                /* overlap */
3826         reply_buf = kmalloc(size, GFP_KERNEL);
3827         if (!reply_buf) {
3828                 ret = -ENOMEM;
3829                 goto out_err;
3830         }
3831
3832         snapid = cpu_to_le64(CEPH_NOSNAP);
3833         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3834                                 "rbd", "get_parent",
3835                                 &snapid, sizeof (snapid),
3836                                 reply_buf, size);
3837         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3838         if (ret < 0)
3839                 goto out_err;
3840
3841         p = reply_buf;
3842         end = reply_buf + ret;
3843         ret = -ERANGE;
3844         ceph_decode_64_safe(&p, end, pool_id, out_err);
3845         if (pool_id == CEPH_NOPOOL) {
3846                 /*
3847                  * Either the parent never existed, or we have
3848                  * record of it but the image got flattened so it no
3849                  * longer has a parent.  When the parent of a
3850                  * layered image disappears we immediately set the
3851                  * overlap to 0.  The effect of this is that all new
3852                  * requests will be treated as if the image had no
3853                  * parent.
3854                  */
3855                 if (rbd_dev->parent_overlap) {
3856                         rbd_dev->parent_overlap = 0;
3857                         smp_mb();
3858                         rbd_dev_parent_put(rbd_dev);
3859                         pr_info("%s: clone image has been flattened\n",
3860                                 rbd_dev->disk->disk_name);
3861                 }
3862
3863                 goto out;       /* No parent?  No problem. */
3864         }
3865
3866         /* The ceph file layout needs to fit pool id in 32 bits */
3867
3868         ret = -EIO;
3869         if (pool_id > (u64)U32_MAX) {
3870                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3871                         (unsigned long long)pool_id, U32_MAX);
3872                 goto out_err;
3873         }
3874         parent_spec->pool_id = pool_id;
3875
3876         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3877         if (IS_ERR(image_id)) {
3878                 ret = PTR_ERR(image_id);
3879                 goto out_err;
3880         }
3881         parent_spec->image_id = image_id;
3882         ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3883         ceph_decode_64_safe(&p, end, overlap, out_err);
3884
3885         if (overlap) {
3886                 rbd_spec_put(rbd_dev->parent_spec);
3887                 rbd_dev->parent_spec = parent_spec;
3888                 parent_spec = NULL;     /* rbd_dev now owns this */
3889                 rbd_dev->parent_overlap = overlap;
3890         } else {
3891                 rbd_warn(rbd_dev, "ignoring parent of clone with overlap 0\n");
3892         }
3893 out:
3894         ret = 0;
3895 out_err:
3896         kfree(reply_buf);
3897         rbd_spec_put(parent_spec);
3898
3899         return ret;
3900 }
3901
3902 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3903 {
3904         struct {
3905                 __le64 stripe_unit;
3906                 __le64 stripe_count;
3907         } __attribute__ ((packed)) striping_info_buf = { 0 };
3908         size_t size = sizeof (striping_info_buf);
3909         void *p;
3910         u64 obj_size;
3911         u64 stripe_unit;
3912         u64 stripe_count;
3913         int ret;
3914
3915         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3916                                 "rbd", "get_stripe_unit_count", NULL, 0,
3917                                 (char *)&striping_info_buf, size);
3918         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3919         if (ret < 0)
3920                 return ret;
3921         if (ret < size)
3922                 return -ERANGE;
3923
3924         /*
3925          * We don't actually support the "fancy striping" feature
3926          * (STRIPINGV2) yet, but if the striping sizes are the
3927          * defaults the behavior is the same as before.  So find
3928          * out, and only fail if the image has non-default values.
3929          */
3930         ret = -EINVAL;
3931         obj_size = (u64)1 << rbd_dev->header.obj_order;
3932         p = &striping_info_buf;
3933         stripe_unit = ceph_decode_64(&p);
3934         if (stripe_unit != obj_size) {
3935                 rbd_warn(rbd_dev, "unsupported stripe unit "
3936                                 "(got %llu want %llu)",
3937                                 stripe_unit, obj_size);
3938                 return -EINVAL;
3939         }
3940         stripe_count = ceph_decode_64(&p);
3941         if (stripe_count != 1) {
3942                 rbd_warn(rbd_dev, "unsupported stripe count "
3943                                 "(got %llu want 1)", stripe_count);
3944                 return -EINVAL;
3945         }
3946         rbd_dev->header.stripe_unit = stripe_unit;
3947         rbd_dev->header.stripe_count = stripe_count;
3948
3949         return 0;
3950 }
3951
3952 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3953 {
3954         size_t image_id_size;
3955         char *image_id;
3956         void *p;
3957         void *end;
3958         size_t size;
3959         void *reply_buf = NULL;
3960         size_t len = 0;
3961         char *image_name = NULL;
3962         int ret;
3963
3964         rbd_assert(!rbd_dev->spec->image_name);
3965
3966         len = strlen(rbd_dev->spec->image_id);
3967         image_id_size = sizeof (__le32) + len;
3968         image_id = kmalloc(image_id_size, GFP_KERNEL);
3969         if (!image_id)
3970                 return NULL;
3971
3972         p = image_id;
3973         end = image_id + image_id_size;
3974         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
3975
3976         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
3977         reply_buf = kmalloc(size, GFP_KERNEL);
3978         if (!reply_buf)
3979                 goto out;
3980
3981         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
3982                                 "rbd", "dir_get_name",
3983                                 image_id, image_id_size,
3984                                 reply_buf, size);
3985         if (ret < 0)
3986                 goto out;
3987         p = reply_buf;
3988         end = reply_buf + ret;
3989
3990         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
3991         if (IS_ERR(image_name))
3992                 image_name = NULL;
3993         else
3994                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
3995 out:
3996         kfree(reply_buf);
3997         kfree(image_id);
3998
3999         return image_name;
4000 }
4001
4002 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4003 {
4004         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4005         const char *snap_name;
4006         u32 which = 0;
4007
4008         /* Skip over names until we find the one we are looking for */
4009
4010         snap_name = rbd_dev->header.snap_names;
4011         while (which < snapc->num_snaps) {
4012                 if (!strcmp(name, snap_name))
4013                         return snapc->snaps[which];
4014                 snap_name += strlen(snap_name) + 1;
4015                 which++;
4016         }
4017         return CEPH_NOSNAP;
4018 }
4019
4020 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4021 {
4022         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4023         u32 which;
4024         bool found = false;
4025         u64 snap_id;
4026
4027         for (which = 0; !found && which < snapc->num_snaps; which++) {
4028                 const char *snap_name;
4029
4030                 snap_id = snapc->snaps[which];
4031                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4032                 if (IS_ERR(snap_name))
4033                         break;
4034                 found = !strcmp(name, snap_name);
4035                 kfree(snap_name);
4036         }
4037         return found ? snap_id : CEPH_NOSNAP;
4038 }
4039
4040 /*
4041  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4042  * no snapshot by that name is found, or if an error occurs.
4043  */
4044 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4045 {
4046         if (rbd_dev->image_format == 1)
4047                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4048
4049         return rbd_v2_snap_id_by_name(rbd_dev, name);
4050 }
4051
4052 /*
4053  * When an rbd image has a parent image, it is identified by the
4054  * pool, image, and snapshot ids (not names).  This function fills
4055  * in the names for those ids.  (It's OK if we can't figure out the
4056  * name for an image id, but the pool and snapshot ids should always
4057  * exist and have names.)  All names in an rbd spec are dynamically
4058  * allocated.
4059  *
4060  * When an image being mapped (not a parent) is probed, we have the
4061  * pool name and pool id, image name and image id, and the snapshot
4062  * name.  The only thing we're missing is the snapshot id.
4063  */
4064 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4065 {
4066         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4067         struct rbd_spec *spec = rbd_dev->spec;
4068         const char *pool_name;
4069         const char *image_name;
4070         const char *snap_name;
4071         int ret;
4072
4073         /*
4074          * An image being mapped will have the pool name (etc.), but
4075          * we need to look up the snapshot id.
4076          */
4077         if (spec->pool_name) {
4078                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4079                         u64 snap_id;
4080
4081                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4082                         if (snap_id == CEPH_NOSNAP)
4083                                 return -ENOENT;
4084                         spec->snap_id = snap_id;
4085                 } else {
4086                         spec->snap_id = CEPH_NOSNAP;
4087                 }
4088
4089                 return 0;
4090         }
4091
4092         /* Get the pool name; we have to make our own copy of this */
4093
4094         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4095         if (!pool_name) {
4096                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4097                 return -EIO;
4098         }
4099         pool_name = kstrdup(pool_name, GFP_KERNEL);
4100         if (!pool_name)
4101                 return -ENOMEM;
4102
4103         /* Fetch the image name; tolerate failure here */
4104
4105         image_name = rbd_dev_image_name(rbd_dev);
4106         if (!image_name)
4107                 rbd_warn(rbd_dev, "unable to get image name");
4108
4109         /* Look up the snapshot name, and make a copy */
4110
4111         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4112         if (!snap_name) {
4113                 ret = -ENOMEM;
4114                 goto out_err;
4115         }
4116
4117         spec->pool_name = pool_name;
4118         spec->image_name = image_name;
4119         spec->snap_name = snap_name;
4120
4121         return 0;
4122 out_err:
4123         kfree(image_name);
4124         kfree(pool_name);
4125
4126         return ret;
4127 }
4128
4129 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4130 {
4131         size_t size;
4132         int ret;
4133         void *reply_buf;
4134         void *p;
4135         void *end;
4136         u64 seq;
4137         u32 snap_count;
4138         struct ceph_snap_context *snapc;
4139         u32 i;
4140
4141         /*
4142          * We'll need room for the seq value (maximum snapshot id),
4143          * snapshot count, and array of that many snapshot ids.
4144          * For now we have a fixed upper limit on the number we're
4145          * prepared to receive.
4146          */
4147         size = sizeof (__le64) + sizeof (__le32) +
4148                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4149         reply_buf = kzalloc(size, GFP_KERNEL);
4150         if (!reply_buf)
4151                 return -ENOMEM;
4152
4153         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4154                                 "rbd", "get_snapcontext", NULL, 0,
4155                                 reply_buf, size);
4156         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4157         if (ret < 0)
4158                 goto out;
4159
4160         p = reply_buf;
4161         end = reply_buf + ret;
4162         ret = -ERANGE;
4163         ceph_decode_64_safe(&p, end, seq, out);
4164         ceph_decode_32_safe(&p, end, snap_count, out);
4165
4166         /*
4167          * Make sure the reported number of snapshot ids wouldn't go
4168          * beyond the end of our buffer.  But before checking that,
4169          * make sure the computed size of the snapshot context we
4170          * allocate is representable in a size_t.
4171          */
4172         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4173                                  / sizeof (u64)) {
4174                 ret = -EINVAL;
4175                 goto out;
4176         }
4177         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4178                 goto out;
4179         ret = 0;
4180
4181         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4182         if (!snapc) {
4183                 ret = -ENOMEM;
4184                 goto out;
4185         }
4186         snapc->seq = seq;
4187         for (i = 0; i < snap_count; i++)
4188                 snapc->snaps[i] = ceph_decode_64(&p);
4189
4190         ceph_put_snap_context(rbd_dev->header.snapc);
4191         rbd_dev->header.snapc = snapc;
4192
4193         dout("  snap context seq = %llu, snap_count = %u\n",
4194                 (unsigned long long)seq, (unsigned int)snap_count);
4195 out:
4196         kfree(reply_buf);
4197
4198         return ret;
4199 }
4200
4201 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4202                                         u64 snap_id)
4203 {
4204         size_t size;
4205         void *reply_buf;
4206         __le64 snapid;
4207         int ret;
4208         void *p;
4209         void *end;
4210         char *snap_name;
4211
4212         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4213         reply_buf = kmalloc(size, GFP_KERNEL);
4214         if (!reply_buf)
4215                 return ERR_PTR(-ENOMEM);
4216
4217         snapid = cpu_to_le64(snap_id);
4218         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4219                                 "rbd", "get_snapshot_name",
4220                                 &snapid, sizeof (snapid),
4221                                 reply_buf, size);
4222         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4223         if (ret < 0) {
4224                 snap_name = ERR_PTR(ret);
4225                 goto out;
4226         }
4227
4228         p = reply_buf;
4229         end = reply_buf + ret;
4230         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4231         if (IS_ERR(snap_name))
4232                 goto out;
4233
4234         dout("  snap_id 0x%016llx snap_name = %s\n",
4235                 (unsigned long long)snap_id, snap_name);
4236 out:
4237         kfree(reply_buf);
4238
4239         return snap_name;
4240 }
4241
4242 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4243 {
4244         bool first_time = rbd_dev->header.object_prefix == NULL;
4245         int ret;
4246
4247         down_write(&rbd_dev->header_rwsem);
4248
4249         ret = rbd_dev_v2_image_size(rbd_dev);
4250         if (ret)
4251                 goto out;
4252
4253         if (first_time) {
4254                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4255                 if (ret)
4256                         goto out;
4257         }
4258
4259         /*
4260          * If the image supports layering, get the parent info.  We
4261          * need to probe the first time regardless.  Thereafter we
4262          * only need to if there's a parent, to see if it has
4263          * disappeared due to the mapped image getting flattened.
4264          */
4265         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4266                         (first_time || rbd_dev->parent_spec)) {
4267                 bool warn;
4268
4269                 ret = rbd_dev_v2_parent_info(rbd_dev);
4270                 if (ret)
4271                         goto out;
4272
4273                 /*
4274                  * Print a warning if this is the initial probe and
4275                  * the image has a parent.  Don't print it if the
4276                  * image now being probed is itself a parent.  We
4277                  * can tell at this point because we won't know its
4278                  * pool name yet (just its pool id).
4279                  */
4280                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4281                 if (first_time && warn)
4282                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4283                                         "is EXPERIMENTAL!");
4284         }
4285
4286         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4287                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4288                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4289
4290         ret = rbd_dev_v2_snap_context(rbd_dev);
4291         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4292 out:
4293         up_write(&rbd_dev->header_rwsem);
4294
4295         return ret;
4296 }
4297
4298 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4299 {
4300         struct device *dev;
4301         int ret;
4302
4303         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4304
4305         dev = &rbd_dev->dev;
4306         dev->bus = &rbd_bus_type;
4307         dev->type = &rbd_device_type;
4308         dev->parent = &rbd_root_dev;
4309         dev->release = rbd_dev_device_release;
4310         dev_set_name(dev, "%d", rbd_dev->dev_id);
4311         ret = device_register(dev);
4312
4313         mutex_unlock(&ctl_mutex);
4314
4315         return ret;
4316 }
4317
4318 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4319 {
4320         device_unregister(&rbd_dev->dev);
4321 }
4322
4323 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4324
4325 /*
4326  * Get a unique rbd identifier for the given new rbd_dev, and add
4327  * the rbd_dev to the global list.  The minimum rbd id is 1.
4328  */
4329 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4330 {
4331         rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4332
4333         spin_lock(&rbd_dev_list_lock);
4334         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4335         spin_unlock(&rbd_dev_list_lock);
4336         dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4337                 (unsigned long long) rbd_dev->dev_id);
4338 }
4339
4340 /*
4341  * Remove an rbd_dev from the global list, and record that its
4342  * identifier is no longer in use.
4343  */
4344 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4345 {
4346         struct list_head *tmp;
4347         int rbd_id = rbd_dev->dev_id;
4348         int max_id;
4349
4350         rbd_assert(rbd_id > 0);
4351
4352         dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4353                 (unsigned long long) rbd_dev->dev_id);
4354         spin_lock(&rbd_dev_list_lock);
4355         list_del_init(&rbd_dev->node);
4356
4357         /*
4358          * If the id being "put" is not the current maximum, there
4359          * is nothing special we need to do.
4360          */
4361         if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4362                 spin_unlock(&rbd_dev_list_lock);
4363                 return;
4364         }
4365
4366         /*
4367          * We need to update the current maximum id.  Search the
4368          * list to find out what it is.  We're more likely to find
4369          * the maximum at the end, so search the list backward.
4370          */
4371         max_id = 0;
4372         list_for_each_prev(tmp, &rbd_dev_list) {
4373                 struct rbd_device *rbd_dev;
4374
4375                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4376                 if (rbd_dev->dev_id > max_id)
4377                         max_id = rbd_dev->dev_id;
4378         }
4379         spin_unlock(&rbd_dev_list_lock);
4380
4381         /*
4382          * The max id could have been updated by rbd_dev_id_get(), in
4383          * which case it now accurately reflects the new maximum.
4384          * Be careful not to overwrite the maximum value in that
4385          * case.
4386          */
4387         atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4388         dout("  max dev id has been reset\n");
4389 }
4390
4391 /*
4392  * Skips over white space at *buf, and updates *buf to point to the
4393  * first found non-space character (if any). Returns the length of
4394  * the token (string of non-white space characters) found.  Note
4395  * that *buf must be terminated with '\0'.
4396  */
4397 static inline size_t next_token(const char **buf)
4398 {
4399         /*
4400         * These are the characters that produce nonzero for
4401         * isspace() in the "C" and "POSIX" locales.
4402         */
4403         const char *spaces = " \f\n\r\t\v";
4404
4405         *buf += strspn(*buf, spaces);   /* Find start of token */
4406
4407         return strcspn(*buf, spaces);   /* Return token length */
4408 }
4409
4410 /*
4411  * Finds the next token in *buf, and if the provided token buffer is
4412  * big enough, copies the found token into it.  The result, if
4413  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4414  * must be terminated with '\0' on entry.
4415  *
4416  * Returns the length of the token found (not including the '\0').
4417  * Return value will be 0 if no token is found, and it will be >=
4418  * token_size if the token would not fit.
4419  *
4420  * The *buf pointer will be updated to point beyond the end of the
4421  * found token.  Note that this occurs even if the token buffer is
4422  * too small to hold it.
4423  */
4424 static inline size_t copy_token(const char **buf,
4425                                 char *token,
4426                                 size_t token_size)
4427 {
4428         size_t len;
4429
4430         len = next_token(buf);
4431         if (len < token_size) {
4432                 memcpy(token, *buf, len);
4433                 *(token + len) = '\0';
4434         }
4435         *buf += len;
4436
4437         return len;
4438 }
4439
4440 /*
4441  * Finds the next token in *buf, dynamically allocates a buffer big
4442  * enough to hold a copy of it, and copies the token into the new
4443  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4444  * that a duplicate buffer is created even for a zero-length token.
4445  *
4446  * Returns a pointer to the newly-allocated duplicate, or a null
4447  * pointer if memory for the duplicate was not available.  If
4448  * the lenp argument is a non-null pointer, the length of the token
4449  * (not including the '\0') is returned in *lenp.
4450  *
4451  * If successful, the *buf pointer will be updated to point beyond
4452  * the end of the found token.
4453  *
4454  * Note: uses GFP_KERNEL for allocation.
4455  */
4456 static inline char *dup_token(const char **buf, size_t *lenp)
4457 {
4458         char *dup;
4459         size_t len;
4460
4461         len = next_token(buf);
4462         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4463         if (!dup)
4464                 return NULL;
4465         *(dup + len) = '\0';
4466         *buf += len;
4467
4468         if (lenp)
4469                 *lenp = len;
4470
4471         return dup;
4472 }
4473
4474 /*
4475  * Parse the options provided for an "rbd add" (i.e., rbd image
4476  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4477  * and the data written is passed here via a NUL-terminated buffer.
4478  * Returns 0 if successful or an error code otherwise.
4479  *
4480  * The information extracted from these options is recorded in
4481  * the other parameters which return dynamically-allocated
4482  * structures:
4483  *  ceph_opts
4484  *      The address of a pointer that will refer to a ceph options
4485  *      structure.  Caller must release the returned pointer using
4486  *      ceph_destroy_options() when it is no longer needed.
4487  *  rbd_opts
4488  *      Address of an rbd options pointer.  Fully initialized by
4489  *      this function; caller must release with kfree().
4490  *  spec
4491  *      Address of an rbd image specification pointer.  Fully
4492  *      initialized by this function based on parsed options.
4493  *      Caller must release with rbd_spec_put().
4494  *
4495  * The options passed take this form:
4496  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4497  * where:
4498  *  <mon_addrs>
4499  *      A comma-separated list of one or more monitor addresses.
4500  *      A monitor address is an ip address, optionally followed
4501  *      by a port number (separated by a colon).
4502  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4503  *  <options>
4504  *      A comma-separated list of ceph and/or rbd options.
4505  *  <pool_name>
4506  *      The name of the rados pool containing the rbd image.
4507  *  <image_name>
4508  *      The name of the image in that pool to map.
4509  *  <snap_id>
4510  *      An optional snapshot id.  If provided, the mapping will
4511  *      present data from the image at the time that snapshot was
4512  *      created.  The image head is used if no snapshot id is
4513  *      provided.  Snapshot mappings are always read-only.
4514  */
4515 static int rbd_add_parse_args(const char *buf,
4516                                 struct ceph_options **ceph_opts,
4517                                 struct rbd_options **opts,
4518                                 struct rbd_spec **rbd_spec)
4519 {
4520         size_t len;
4521         char *options;
4522         const char *mon_addrs;
4523         char *snap_name;
4524         size_t mon_addrs_size;
4525         struct rbd_spec *spec = NULL;
4526         struct rbd_options *rbd_opts = NULL;
4527         struct ceph_options *copts;
4528         int ret;
4529
4530         /* The first four tokens are required */
4531
4532         len = next_token(&buf);
4533         if (!len) {
4534                 rbd_warn(NULL, "no monitor address(es) provided");
4535                 return -EINVAL;
4536         }
4537         mon_addrs = buf;
4538         mon_addrs_size = len + 1;
4539         buf += len;
4540
4541         ret = -EINVAL;
4542         options = dup_token(&buf, NULL);
4543         if (!options)
4544                 return -ENOMEM;
4545         if (!*options) {
4546                 rbd_warn(NULL, "no options provided");
4547                 goto out_err;
4548         }
4549
4550         spec = rbd_spec_alloc();
4551         if (!spec)
4552                 goto out_mem;
4553
4554         spec->pool_name = dup_token(&buf, NULL);
4555         if (!spec->pool_name)
4556                 goto out_mem;
4557         if (!*spec->pool_name) {
4558                 rbd_warn(NULL, "no pool name provided");
4559                 goto out_err;
4560         }
4561
4562         spec->image_name = dup_token(&buf, NULL);
4563         if (!spec->image_name)
4564                 goto out_mem;
4565         if (!*spec->image_name) {
4566                 rbd_warn(NULL, "no image name provided");
4567                 goto out_err;
4568         }
4569
4570         /*
4571          * Snapshot name is optional; default is to use "-"
4572          * (indicating the head/no snapshot).
4573          */
4574         len = next_token(&buf);
4575         if (!len) {
4576                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4577                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4578         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4579                 ret = -ENAMETOOLONG;
4580                 goto out_err;
4581         }
4582         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4583         if (!snap_name)
4584                 goto out_mem;
4585         *(snap_name + len) = '\0';
4586         spec->snap_name = snap_name;
4587
4588         /* Initialize all rbd options to the defaults */
4589
4590         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4591         if (!rbd_opts)
4592                 goto out_mem;
4593
4594         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4595
4596         copts = ceph_parse_options(options, mon_addrs,
4597                                         mon_addrs + mon_addrs_size - 1,
4598                                         parse_rbd_opts_token, rbd_opts);
4599         if (IS_ERR(copts)) {
4600                 ret = PTR_ERR(copts);
4601                 goto out_err;
4602         }
4603         kfree(options);
4604
4605         *ceph_opts = copts;
4606         *opts = rbd_opts;
4607         *rbd_spec = spec;
4608
4609         return 0;
4610 out_mem:
4611         ret = -ENOMEM;
4612 out_err:
4613         kfree(rbd_opts);
4614         rbd_spec_put(spec);
4615         kfree(options);
4616
4617         return ret;
4618 }
4619
4620 /*
4621  * An rbd format 2 image has a unique identifier, distinct from the
4622  * name given to it by the user.  Internally, that identifier is
4623  * what's used to specify the names of objects related to the image.
4624  *
4625  * A special "rbd id" object is used to map an rbd image name to its
4626  * id.  If that object doesn't exist, then there is no v2 rbd image
4627  * with the supplied name.
4628  *
4629  * This function will record the given rbd_dev's image_id field if
4630  * it can be determined, and in that case will return 0.  If any
4631  * errors occur a negative errno will be returned and the rbd_dev's
4632  * image_id field will be unchanged (and should be NULL).
4633  */
4634 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4635 {
4636         int ret;
4637         size_t size;
4638         char *object_name;
4639         void *response;
4640         char *image_id;
4641
4642         /*
4643          * When probing a parent image, the image id is already
4644          * known (and the image name likely is not).  There's no
4645          * need to fetch the image id again in this case.  We
4646          * do still need to set the image format though.
4647          */
4648         if (rbd_dev->spec->image_id) {
4649                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4650
4651                 return 0;
4652         }
4653
4654         /*
4655          * First, see if the format 2 image id file exists, and if
4656          * so, get the image's persistent id from it.
4657          */
4658         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4659         object_name = kmalloc(size, GFP_NOIO);
4660         if (!object_name)
4661                 return -ENOMEM;
4662         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4663         dout("rbd id object name is %s\n", object_name);
4664
4665         /* Response will be an encoded string, which includes a length */
4666
4667         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4668         response = kzalloc(size, GFP_NOIO);
4669         if (!response) {
4670                 ret = -ENOMEM;
4671                 goto out;
4672         }
4673
4674         /* If it doesn't exist we'll assume it's a format 1 image */
4675
4676         ret = rbd_obj_method_sync(rbd_dev, object_name,
4677                                 "rbd", "get_id", NULL, 0,
4678                                 response, RBD_IMAGE_ID_LEN_MAX);
4679         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4680         if (ret == -ENOENT) {
4681                 image_id = kstrdup("", GFP_KERNEL);
4682                 ret = image_id ? 0 : -ENOMEM;
4683                 if (!ret)
4684                         rbd_dev->image_format = 1;
4685         } else if (ret > sizeof (__le32)) {
4686                 void *p = response;
4687
4688                 image_id = ceph_extract_encoded_string(&p, p + ret,
4689                                                 NULL, GFP_NOIO);
4690                 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4691                 if (!ret)
4692                         rbd_dev->image_format = 2;
4693         } else {
4694                 ret = -EINVAL;
4695         }
4696
4697         if (!ret) {
4698                 rbd_dev->spec->image_id = image_id;
4699                 dout("image_id is %s\n", image_id);
4700         }
4701 out:
4702         kfree(response);
4703         kfree(object_name);
4704
4705         return ret;
4706 }
4707
4708 /*
4709  * Undo whatever state changes are made by v1 or v2 header info
4710  * call.
4711  */
4712 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4713 {
4714         struct rbd_image_header *header;
4715
4716         /* Drop parent reference unless it's already been done (or none) */
4717
4718         if (rbd_dev->parent_overlap)
4719                 rbd_dev_parent_put(rbd_dev);
4720
4721         /* Free dynamic fields from the header, then zero it out */
4722
4723         header = &rbd_dev->header;
4724         ceph_put_snap_context(header->snapc);
4725         kfree(header->snap_sizes);
4726         kfree(header->snap_names);
4727         kfree(header->object_prefix);
4728         memset(header, 0, sizeof (*header));
4729 }
4730
4731 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4732 {
4733         int ret;
4734
4735         ret = rbd_dev_v2_object_prefix(rbd_dev);
4736         if (ret)
4737                 goto out_err;
4738
4739         /*
4740          * Get the and check features for the image.  Currently the
4741          * features are assumed to never change.
4742          */
4743         ret = rbd_dev_v2_features(rbd_dev);
4744         if (ret)
4745                 goto out_err;
4746
4747         /* If the image supports fancy striping, get its parameters */
4748
4749         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4750                 ret = rbd_dev_v2_striping_info(rbd_dev);
4751                 if (ret < 0)
4752                         goto out_err;
4753         }
4754         /* No support for crypto and compression type format 2 images */
4755
4756         return 0;
4757 out_err:
4758         rbd_dev->header.features = 0;
4759         kfree(rbd_dev->header.object_prefix);
4760         rbd_dev->header.object_prefix = NULL;
4761
4762         return ret;
4763 }
4764
4765 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4766 {
4767         struct rbd_device *parent = NULL;
4768         struct rbd_spec *parent_spec;
4769         struct rbd_client *rbdc;
4770         int ret;
4771
4772         if (!rbd_dev->parent_spec)
4773                 return 0;
4774         /*
4775          * We need to pass a reference to the client and the parent
4776          * spec when creating the parent rbd_dev.  Images related by
4777          * parent/child relationships always share both.
4778          */
4779         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4780         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4781
4782         ret = -ENOMEM;
4783         parent = rbd_dev_create(rbdc, parent_spec);
4784         if (!parent)
4785                 goto out_err;
4786
4787         ret = rbd_dev_image_probe(parent, false);
4788         if (ret < 0)
4789                 goto out_err;
4790         rbd_dev->parent = parent;
4791         atomic_set(&rbd_dev->parent_ref, 1);
4792
4793         return 0;
4794 out_err:
4795         if (parent) {
4796                 rbd_dev_unparent(rbd_dev);
4797                 kfree(rbd_dev->header_name);
4798                 rbd_dev_destroy(parent);
4799         } else {
4800                 rbd_put_client(rbdc);
4801                 rbd_spec_put(parent_spec);
4802         }
4803
4804         return ret;
4805 }
4806
4807 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4808 {
4809         int ret;
4810
4811         /* generate unique id: find highest unique id, add one */
4812         rbd_dev_id_get(rbd_dev);
4813
4814         /* Fill in the device name, now that we have its id. */
4815         BUILD_BUG_ON(DEV_NAME_LEN
4816                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4817         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4818
4819         /* Get our block major device number. */
4820
4821         ret = register_blkdev(0, rbd_dev->name);
4822         if (ret < 0)
4823                 goto err_out_id;
4824         rbd_dev->major = ret;
4825
4826         /* Set up the blkdev mapping. */
4827
4828         ret = rbd_init_disk(rbd_dev);
4829         if (ret)
4830                 goto err_out_blkdev;
4831
4832         ret = rbd_dev_mapping_set(rbd_dev);
4833         if (ret)
4834                 goto err_out_disk;
4835         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4836
4837         ret = rbd_bus_add_dev(rbd_dev);
4838         if (ret)
4839                 goto err_out_mapping;
4840
4841         /* Everything's ready.  Announce the disk to the world. */
4842
4843         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4844         add_disk(rbd_dev->disk);
4845
4846         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4847                 (unsigned long long) rbd_dev->mapping.size);
4848
4849         return ret;
4850
4851 err_out_mapping:
4852         rbd_dev_mapping_clear(rbd_dev);
4853 err_out_disk:
4854         rbd_free_disk(rbd_dev);
4855 err_out_blkdev:
4856         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4857 err_out_id:
4858         rbd_dev_id_put(rbd_dev);
4859         rbd_dev_mapping_clear(rbd_dev);
4860
4861         return ret;
4862 }
4863
4864 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4865 {
4866         struct rbd_spec *spec = rbd_dev->spec;
4867         size_t size;
4868
4869         /* Record the header object name for this rbd image. */
4870
4871         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4872
4873         if (rbd_dev->image_format == 1)
4874                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4875         else
4876                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4877
4878         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4879         if (!rbd_dev->header_name)
4880                 return -ENOMEM;
4881
4882         if (rbd_dev->image_format == 1)
4883                 sprintf(rbd_dev->header_name, "%s%s",
4884                         spec->image_name, RBD_SUFFIX);
4885         else
4886                 sprintf(rbd_dev->header_name, "%s%s",
4887                         RBD_HEADER_PREFIX, spec->image_id);
4888         return 0;
4889 }
4890
4891 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4892 {
4893         rbd_dev_unprobe(rbd_dev);
4894         kfree(rbd_dev->header_name);
4895         rbd_dev->header_name = NULL;
4896         rbd_dev->image_format = 0;
4897         kfree(rbd_dev->spec->image_id);
4898         rbd_dev->spec->image_id = NULL;
4899
4900         rbd_dev_destroy(rbd_dev);
4901 }
4902
4903 /*
4904  * Probe for the existence of the header object for the given rbd
4905  * device.  If this image is the one being mapped (i.e., not a
4906  * parent), initiate a watch on its header object before using that
4907  * object to get detailed information about the rbd image.
4908  */
4909 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4910 {
4911         int ret;
4912         int tmp;
4913
4914         /*
4915          * Get the id from the image id object.  Unless there's an
4916          * error, rbd_dev->spec->image_id will be filled in with
4917          * a dynamically-allocated string, and rbd_dev->image_format
4918          * will be set to either 1 or 2.
4919          */
4920         ret = rbd_dev_image_id(rbd_dev);
4921         if (ret)
4922                 return ret;
4923         rbd_assert(rbd_dev->spec->image_id);
4924         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4925
4926         ret = rbd_dev_header_name(rbd_dev);
4927         if (ret)
4928                 goto err_out_format;
4929
4930         if (mapping) {
4931                 ret = rbd_dev_header_watch_sync(rbd_dev, true);
4932                 if (ret)
4933                         goto out_header_name;
4934         }
4935
4936         if (rbd_dev->image_format == 1)
4937                 ret = rbd_dev_v1_header_info(rbd_dev);
4938         else
4939                 ret = rbd_dev_v2_header_info(rbd_dev);
4940         if (ret)
4941                 goto err_out_watch;
4942
4943         ret = rbd_dev_spec_update(rbd_dev);
4944         if (ret)
4945                 goto err_out_probe;
4946
4947         ret = rbd_dev_probe_parent(rbd_dev);
4948         if (ret)
4949                 goto err_out_probe;
4950
4951         dout("discovered format %u image, header name is %s\n",
4952                 rbd_dev->image_format, rbd_dev->header_name);
4953
4954         return 0;
4955 err_out_probe:
4956         rbd_dev_unprobe(rbd_dev);
4957 err_out_watch:
4958         if (mapping) {
4959                 tmp = rbd_dev_header_watch_sync(rbd_dev, false);
4960                 if (tmp)
4961                         rbd_warn(rbd_dev, "unable to tear down "
4962                                         "watch request (%d)\n", tmp);
4963         }
4964 out_header_name:
4965         kfree(rbd_dev->header_name);
4966         rbd_dev->header_name = NULL;
4967 err_out_format:
4968         rbd_dev->image_format = 0;
4969         kfree(rbd_dev->spec->image_id);
4970         rbd_dev->spec->image_id = NULL;
4971
4972         dout("probe failed, returning %d\n", ret);
4973
4974         return ret;
4975 }
4976
4977 static ssize_t rbd_add(struct bus_type *bus,
4978                        const char *buf,
4979                        size_t count)
4980 {
4981         struct rbd_device *rbd_dev = NULL;
4982         struct ceph_options *ceph_opts = NULL;
4983         struct rbd_options *rbd_opts = NULL;
4984         struct rbd_spec *spec = NULL;
4985         struct rbd_client *rbdc;
4986         struct ceph_osd_client *osdc;
4987         bool read_only;
4988         int rc = -ENOMEM;
4989
4990         if (!try_module_get(THIS_MODULE))
4991                 return -ENODEV;
4992
4993         /* parse add command */
4994         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4995         if (rc < 0)
4996                 goto err_out_module;
4997         read_only = rbd_opts->read_only;
4998         kfree(rbd_opts);
4999         rbd_opts = NULL;        /* done with this */
5000
5001         rbdc = rbd_get_client(ceph_opts);
5002         if (IS_ERR(rbdc)) {
5003                 rc = PTR_ERR(rbdc);
5004                 goto err_out_args;
5005         }
5006
5007         /* pick the pool */
5008         osdc = &rbdc->client->osdc;
5009         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5010         if (rc < 0)
5011                 goto err_out_client;
5012         spec->pool_id = (u64)rc;
5013
5014         /* The ceph file layout needs to fit pool id in 32 bits */
5015
5016         if (spec->pool_id > (u64)U32_MAX) {
5017                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5018                                 (unsigned long long)spec->pool_id, U32_MAX);
5019                 rc = -EIO;
5020                 goto err_out_client;
5021         }
5022
5023         rbd_dev = rbd_dev_create(rbdc, spec);
5024         if (!rbd_dev)
5025                 goto err_out_client;
5026         rbdc = NULL;            /* rbd_dev now owns this */
5027         spec = NULL;            /* rbd_dev now owns this */
5028
5029         rc = rbd_dev_image_probe(rbd_dev, true);
5030         if (rc < 0)
5031                 goto err_out_rbd_dev;
5032
5033         /* If we are mapping a snapshot it must be marked read-only */
5034
5035         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5036                 read_only = true;
5037         rbd_dev->mapping.read_only = read_only;
5038
5039         rc = rbd_dev_device_setup(rbd_dev);
5040         if (rc) {
5041                 rbd_dev_image_release(rbd_dev);
5042                 goto err_out_module;
5043         }
5044
5045         return count;
5046
5047 err_out_rbd_dev:
5048         rbd_dev_destroy(rbd_dev);
5049 err_out_client:
5050         rbd_put_client(rbdc);
5051 err_out_args:
5052         rbd_spec_put(spec);
5053 err_out_module:
5054         module_put(THIS_MODULE);
5055
5056         dout("Error adding device %s\n", buf);
5057
5058         return (ssize_t)rc;
5059 }
5060
5061 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
5062 {
5063         struct list_head *tmp;
5064         struct rbd_device *rbd_dev;
5065
5066         spin_lock(&rbd_dev_list_lock);
5067         list_for_each(tmp, &rbd_dev_list) {
5068                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5069                 if (rbd_dev->dev_id == dev_id) {
5070                         spin_unlock(&rbd_dev_list_lock);
5071                         return rbd_dev;
5072                 }
5073         }
5074         spin_unlock(&rbd_dev_list_lock);
5075         return NULL;
5076 }
5077
5078 static void rbd_dev_device_release(struct device *dev)
5079 {
5080         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5081
5082         rbd_free_disk(rbd_dev);
5083         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5084         rbd_dev_mapping_clear(rbd_dev);
5085         unregister_blkdev(rbd_dev->major, rbd_dev->name);
5086         rbd_dev->major = 0;
5087         rbd_dev_id_put(rbd_dev);
5088         rbd_dev_mapping_clear(rbd_dev);
5089 }
5090
5091 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5092 {
5093         while (rbd_dev->parent) {
5094                 struct rbd_device *first = rbd_dev;
5095                 struct rbd_device *second = first->parent;
5096                 struct rbd_device *third;
5097
5098                 /*
5099                  * Follow to the parent with no grandparent and
5100                  * remove it.
5101                  */
5102                 while (second && (third = second->parent)) {
5103                         first = second;
5104                         second = third;
5105                 }
5106                 rbd_assert(second);
5107                 rbd_dev_image_release(second);
5108                 first->parent = NULL;
5109                 first->parent_overlap = 0;
5110
5111                 rbd_assert(first->parent_spec);
5112                 rbd_spec_put(first->parent_spec);
5113                 first->parent_spec = NULL;
5114         }
5115 }
5116
5117 static ssize_t rbd_remove(struct bus_type *bus,
5118                           const char *buf,
5119                           size_t count)
5120 {
5121         struct rbd_device *rbd_dev = NULL;
5122         int target_id;
5123         unsigned long ul;
5124         int ret;
5125
5126         ret = strict_strtoul(buf, 10, &ul);
5127         if (ret)
5128                 return ret;
5129
5130         /* convert to int; abort if we lost anything in the conversion */
5131         target_id = (int) ul;
5132         if (target_id != ul)
5133                 return -EINVAL;
5134
5135         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
5136
5137         rbd_dev = __rbd_get_dev(target_id);
5138         if (!rbd_dev) {
5139                 ret = -ENOENT;
5140                 goto done;
5141         }
5142
5143         spin_lock_irq(&rbd_dev->lock);
5144         if (rbd_dev->open_count)
5145                 ret = -EBUSY;
5146         else
5147                 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
5148         spin_unlock_irq(&rbd_dev->lock);
5149         if (ret < 0)
5150                 goto done;
5151         rbd_bus_del_dev(rbd_dev);
5152         ret = rbd_dev_header_watch_sync(rbd_dev, false);
5153         if (ret)
5154                 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5155         rbd_dev_image_release(rbd_dev);
5156         module_put(THIS_MODULE);
5157         ret = count;
5158 done:
5159         mutex_unlock(&ctl_mutex);
5160
5161         return ret;
5162 }
5163
5164 /*
5165  * create control files in sysfs
5166  * /sys/bus/rbd/...
5167  */
5168 static int rbd_sysfs_init(void)
5169 {
5170         int ret;
5171
5172         ret = device_register(&rbd_root_dev);
5173         if (ret < 0)
5174                 return ret;
5175
5176         ret = bus_register(&rbd_bus_type);
5177         if (ret < 0)
5178                 device_unregister(&rbd_root_dev);
5179
5180         return ret;
5181 }
5182
5183 static void rbd_sysfs_cleanup(void)
5184 {
5185         bus_unregister(&rbd_bus_type);
5186         device_unregister(&rbd_root_dev);
5187 }
5188
5189 static int rbd_slab_init(void)
5190 {
5191         rbd_assert(!rbd_img_request_cache);
5192         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5193                                         sizeof (struct rbd_img_request),
5194                                         __alignof__(struct rbd_img_request),
5195                                         0, NULL);
5196         if (!rbd_img_request_cache)
5197                 return -ENOMEM;
5198
5199         rbd_assert(!rbd_obj_request_cache);
5200         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5201                                         sizeof (struct rbd_obj_request),
5202                                         __alignof__(struct rbd_obj_request),
5203                                         0, NULL);
5204         if (!rbd_obj_request_cache)
5205                 goto out_err;
5206
5207         rbd_assert(!rbd_segment_name_cache);
5208         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5209                                         MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5210         if (rbd_segment_name_cache)
5211                 return 0;
5212 out_err:
5213         if (rbd_obj_request_cache) {
5214                 kmem_cache_destroy(rbd_obj_request_cache);
5215                 rbd_obj_request_cache = NULL;
5216         }
5217
5218         kmem_cache_destroy(rbd_img_request_cache);
5219         rbd_img_request_cache = NULL;
5220
5221         return -ENOMEM;
5222 }
5223
5224 static void rbd_slab_exit(void)
5225 {
5226         rbd_assert(rbd_segment_name_cache);
5227         kmem_cache_destroy(rbd_segment_name_cache);
5228         rbd_segment_name_cache = NULL;
5229
5230         rbd_assert(rbd_obj_request_cache);
5231         kmem_cache_destroy(rbd_obj_request_cache);
5232         rbd_obj_request_cache = NULL;
5233
5234         rbd_assert(rbd_img_request_cache);
5235         kmem_cache_destroy(rbd_img_request_cache);
5236         rbd_img_request_cache = NULL;
5237 }
5238
5239 static int __init rbd_init(void)
5240 {
5241         int rc;
5242
5243         if (!libceph_compatible(NULL)) {
5244                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5245
5246                 return -EINVAL;
5247         }
5248         rc = rbd_slab_init();
5249         if (rc)
5250                 return rc;
5251         rc = rbd_sysfs_init();
5252         if (rc)
5253                 rbd_slab_exit();
5254         else
5255                 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5256
5257         return rc;
5258 }
5259
5260 static void __exit rbd_exit(void)
5261 {
5262         rbd_sysfs_cleanup();
5263         rbd_slab_exit();
5264 }
5265
5266 module_init(rbd_init);
5267 module_exit(rbd_exit);
5268
5269 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5270 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5271 MODULE_DESCRIPTION("rados block device");
5272
5273 /* following authorship retained from original osdblk.c */
5274 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5275
5276 MODULE_LICENSE("GPL");