]> Pileus Git - ~andy/linux/blob - drivers/block/nvme-core.c
Merge remote-tracking branches 'regulator/fix/ab3100' and 'regulator/fix/s2mps11...
[~andy/linux] / drivers / block / nvme-core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/fs.h>
26 #include <linux/genhd.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kthread.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/ptrace.h>
40 #include <linux/sched.h>
41 #include <linux/slab.h>
42 #include <linux/types.h>
43 #include <scsi/sg.h>
44 #include <asm-generic/io-64-nonatomic-lo-hi.h>
45
46 #define NVME_Q_DEPTH 1024
47 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
48 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
49 #define NVME_MINORS 64
50 #define ADMIN_TIMEOUT   (60 * HZ)
51
52 static int nvme_major;
53 module_param(nvme_major, int, 0);
54
55 static int use_threaded_interrupts;
56 module_param(use_threaded_interrupts, int, 0);
57
58 static DEFINE_SPINLOCK(dev_list_lock);
59 static LIST_HEAD(dev_list);
60 static struct task_struct *nvme_thread;
61
62 /*
63  * An NVM Express queue.  Each device has at least two (one for admin
64  * commands and one for I/O commands).
65  */
66 struct nvme_queue {
67         struct device *q_dmadev;
68         struct nvme_dev *dev;
69         spinlock_t q_lock;
70         struct nvme_command *sq_cmds;
71         volatile struct nvme_completion *cqes;
72         dma_addr_t sq_dma_addr;
73         dma_addr_t cq_dma_addr;
74         wait_queue_head_t sq_full;
75         wait_queue_t sq_cong_wait;
76         struct bio_list sq_cong;
77         u32 __iomem *q_db;
78         u16 q_depth;
79         u16 cq_vector;
80         u16 sq_head;
81         u16 sq_tail;
82         u16 cq_head;
83         u8 cq_phase;
84         u8 cqe_seen;
85         u8 q_suspended;
86         unsigned long cmdid_data[];
87 };
88
89 /*
90  * Check we didin't inadvertently grow the command struct
91  */
92 static inline void _nvme_check_size(void)
93 {
94         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
95         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
96         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
97         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
98         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
99         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
100         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
101         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
102         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
103         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
104         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
105 }
106
107 typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
108                                                 struct nvme_completion *);
109
110 struct nvme_cmd_info {
111         nvme_completion_fn fn;
112         void *ctx;
113         unsigned long timeout;
114 };
115
116 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
117 {
118         return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
119 }
120
121 static unsigned nvme_queue_extra(int depth)
122 {
123         return DIV_ROUND_UP(depth, 8) + (depth * sizeof(struct nvme_cmd_info));
124 }
125
126 /**
127  * alloc_cmdid() - Allocate a Command ID
128  * @nvmeq: The queue that will be used for this command
129  * @ctx: A pointer that will be passed to the handler
130  * @handler: The function to call on completion
131  *
132  * Allocate a Command ID for a queue.  The data passed in will
133  * be passed to the completion handler.  This is implemented by using
134  * the bottom two bits of the ctx pointer to store the handler ID.
135  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
136  * We can change this if it becomes a problem.
137  *
138  * May be called with local interrupts disabled and the q_lock held,
139  * or with interrupts enabled and no locks held.
140  */
141 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
142                                 nvme_completion_fn handler, unsigned timeout)
143 {
144         int depth = nvmeq->q_depth - 1;
145         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
146         int cmdid;
147
148         do {
149                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
150                 if (cmdid >= depth)
151                         return -EBUSY;
152         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
153
154         info[cmdid].fn = handler;
155         info[cmdid].ctx = ctx;
156         info[cmdid].timeout = jiffies + timeout;
157         return cmdid;
158 }
159
160 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
161                                 nvme_completion_fn handler, unsigned timeout)
162 {
163         int cmdid;
164         wait_event_killable(nvmeq->sq_full,
165                 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
166         return (cmdid < 0) ? -EINTR : cmdid;
167 }
168
169 /* Special values must be less than 0x1000 */
170 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
171 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
172 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
173 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
174 #define CMD_CTX_FLUSH           (0x318 + CMD_CTX_BASE)
175
176 static void special_completion(struct nvme_dev *dev, void *ctx,
177                                                 struct nvme_completion *cqe)
178 {
179         if (ctx == CMD_CTX_CANCELLED)
180                 return;
181         if (ctx == CMD_CTX_FLUSH)
182                 return;
183         if (ctx == CMD_CTX_COMPLETED) {
184                 dev_warn(&dev->pci_dev->dev,
185                                 "completed id %d twice on queue %d\n",
186                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
187                 return;
188         }
189         if (ctx == CMD_CTX_INVALID) {
190                 dev_warn(&dev->pci_dev->dev,
191                                 "invalid id %d completed on queue %d\n",
192                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
193                 return;
194         }
195
196         dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
197 }
198
199 /*
200  * Called with local interrupts disabled and the q_lock held.  May not sleep.
201  */
202 static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
203                                                 nvme_completion_fn *fn)
204 {
205         void *ctx;
206         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
207
208         if (cmdid >= nvmeq->q_depth) {
209                 *fn = special_completion;
210                 return CMD_CTX_INVALID;
211         }
212         if (fn)
213                 *fn = info[cmdid].fn;
214         ctx = info[cmdid].ctx;
215         info[cmdid].fn = special_completion;
216         info[cmdid].ctx = CMD_CTX_COMPLETED;
217         clear_bit(cmdid, nvmeq->cmdid_data);
218         wake_up(&nvmeq->sq_full);
219         return ctx;
220 }
221
222 static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
223                                                 nvme_completion_fn *fn)
224 {
225         void *ctx;
226         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
227         if (fn)
228                 *fn = info[cmdid].fn;
229         ctx = info[cmdid].ctx;
230         info[cmdid].fn = special_completion;
231         info[cmdid].ctx = CMD_CTX_CANCELLED;
232         return ctx;
233 }
234
235 struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
236 {
237         return dev->queues[get_cpu() + 1];
238 }
239
240 void put_nvmeq(struct nvme_queue *nvmeq)
241 {
242         put_cpu();
243 }
244
245 /**
246  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
247  * @nvmeq: The queue to use
248  * @cmd: The command to send
249  *
250  * Safe to use from interrupt context
251  */
252 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
253 {
254         unsigned long flags;
255         u16 tail;
256         spin_lock_irqsave(&nvmeq->q_lock, flags);
257         tail = nvmeq->sq_tail;
258         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
259         if (++tail == nvmeq->q_depth)
260                 tail = 0;
261         writel(tail, nvmeq->q_db);
262         nvmeq->sq_tail = tail;
263         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
264
265         return 0;
266 }
267
268 static __le64 **iod_list(struct nvme_iod *iod)
269 {
270         return ((void *)iod) + iod->offset;
271 }
272
273 /*
274  * Will slightly overestimate the number of pages needed.  This is OK
275  * as it only leads to a small amount of wasted memory for the lifetime of
276  * the I/O.
277  */
278 static int nvme_npages(unsigned size)
279 {
280         unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
281         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
282 }
283
284 static struct nvme_iod *
285 nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
286 {
287         struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
288                                 sizeof(__le64 *) * nvme_npages(nbytes) +
289                                 sizeof(struct scatterlist) * nseg, gfp);
290
291         if (iod) {
292                 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
293                 iod->npages = -1;
294                 iod->length = nbytes;
295                 iod->nents = 0;
296                 iod->start_time = jiffies;
297         }
298
299         return iod;
300 }
301
302 void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
303 {
304         const int last_prp = PAGE_SIZE / 8 - 1;
305         int i;
306         __le64 **list = iod_list(iod);
307         dma_addr_t prp_dma = iod->first_dma;
308
309         if (iod->npages == 0)
310                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
311         for (i = 0; i < iod->npages; i++) {
312                 __le64 *prp_list = list[i];
313                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
314                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
315                 prp_dma = next_prp_dma;
316         }
317         kfree(iod);
318 }
319
320 static void nvme_start_io_acct(struct bio *bio)
321 {
322         struct gendisk *disk = bio->bi_bdev->bd_disk;
323         const int rw = bio_data_dir(bio);
324         int cpu = part_stat_lock();
325         part_round_stats(cpu, &disk->part0);
326         part_stat_inc(cpu, &disk->part0, ios[rw]);
327         part_stat_add(cpu, &disk->part0, sectors[rw], bio_sectors(bio));
328         part_inc_in_flight(&disk->part0, rw);
329         part_stat_unlock();
330 }
331
332 static void nvme_end_io_acct(struct bio *bio, unsigned long start_time)
333 {
334         struct gendisk *disk = bio->bi_bdev->bd_disk;
335         const int rw = bio_data_dir(bio);
336         unsigned long duration = jiffies - start_time;
337         int cpu = part_stat_lock();
338         part_stat_add(cpu, &disk->part0, ticks[rw], duration);
339         part_round_stats(cpu, &disk->part0);
340         part_dec_in_flight(&disk->part0, rw);
341         part_stat_unlock();
342 }
343
344 static void bio_completion(struct nvme_dev *dev, void *ctx,
345                                                 struct nvme_completion *cqe)
346 {
347         struct nvme_iod *iod = ctx;
348         struct bio *bio = iod->private;
349         u16 status = le16_to_cpup(&cqe->status) >> 1;
350
351         if (iod->nents) {
352                 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
353                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
354                 nvme_end_io_acct(bio, iod->start_time);
355         }
356         nvme_free_iod(dev, iod);
357         if (status)
358                 bio_endio(bio, -EIO);
359         else
360                 bio_endio(bio, 0);
361 }
362
363 /* length is in bytes.  gfp flags indicates whether we may sleep. */
364 int nvme_setup_prps(struct nvme_dev *dev, struct nvme_common_command *cmd,
365                         struct nvme_iod *iod, int total_len, gfp_t gfp)
366 {
367         struct dma_pool *pool;
368         int length = total_len;
369         struct scatterlist *sg = iod->sg;
370         int dma_len = sg_dma_len(sg);
371         u64 dma_addr = sg_dma_address(sg);
372         int offset = offset_in_page(dma_addr);
373         __le64 *prp_list;
374         __le64 **list = iod_list(iod);
375         dma_addr_t prp_dma;
376         int nprps, i;
377
378         cmd->prp1 = cpu_to_le64(dma_addr);
379         length -= (PAGE_SIZE - offset);
380         if (length <= 0)
381                 return total_len;
382
383         dma_len -= (PAGE_SIZE - offset);
384         if (dma_len) {
385                 dma_addr += (PAGE_SIZE - offset);
386         } else {
387                 sg = sg_next(sg);
388                 dma_addr = sg_dma_address(sg);
389                 dma_len = sg_dma_len(sg);
390         }
391
392         if (length <= PAGE_SIZE) {
393                 cmd->prp2 = cpu_to_le64(dma_addr);
394                 return total_len;
395         }
396
397         nprps = DIV_ROUND_UP(length, PAGE_SIZE);
398         if (nprps <= (256 / 8)) {
399                 pool = dev->prp_small_pool;
400                 iod->npages = 0;
401         } else {
402                 pool = dev->prp_page_pool;
403                 iod->npages = 1;
404         }
405
406         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
407         if (!prp_list) {
408                 cmd->prp2 = cpu_to_le64(dma_addr);
409                 iod->npages = -1;
410                 return (total_len - length) + PAGE_SIZE;
411         }
412         list[0] = prp_list;
413         iod->first_dma = prp_dma;
414         cmd->prp2 = cpu_to_le64(prp_dma);
415         i = 0;
416         for (;;) {
417                 if (i == PAGE_SIZE / 8) {
418                         __le64 *old_prp_list = prp_list;
419                         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
420                         if (!prp_list)
421                                 return total_len - length;
422                         list[iod->npages++] = prp_list;
423                         prp_list[0] = old_prp_list[i - 1];
424                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
425                         i = 1;
426                 }
427                 prp_list[i++] = cpu_to_le64(dma_addr);
428                 dma_len -= PAGE_SIZE;
429                 dma_addr += PAGE_SIZE;
430                 length -= PAGE_SIZE;
431                 if (length <= 0)
432                         break;
433                 if (dma_len > 0)
434                         continue;
435                 BUG_ON(dma_len < 0);
436                 sg = sg_next(sg);
437                 dma_addr = sg_dma_address(sg);
438                 dma_len = sg_dma_len(sg);
439         }
440
441         return total_len;
442 }
443
444 static int nvme_split_and_submit(struct bio *bio, struct nvme_queue *nvmeq,
445                                  int len)
446 {
447         struct bio *split = bio_split(bio, len >> 9, GFP_ATOMIC, NULL);
448         if (!split)
449                 return -ENOMEM;
450
451         bio_chain(split, bio);
452
453         if (bio_list_empty(&nvmeq->sq_cong))
454                 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
455         bio_list_add(&nvmeq->sq_cong, split);
456         bio_list_add(&nvmeq->sq_cong, bio);
457
458         return 0;
459 }
460
461 /* NVMe scatterlists require no holes in the virtual address */
462 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)   ((vec2)->bv_offset || \
463                         (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
464
465 static int nvme_map_bio(struct nvme_queue *nvmeq, struct nvme_iod *iod,
466                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
467 {
468         struct bio_vec bvec, bvprv;
469         struct bvec_iter iter;
470         struct scatterlist *sg = NULL;
471         int length = 0, nsegs = 0, split_len = bio->bi_iter.bi_size;
472         int first = 1;
473
474         if (nvmeq->dev->stripe_size)
475                 split_len = nvmeq->dev->stripe_size -
476                         ((bio->bi_iter.bi_sector << 9) &
477                          (nvmeq->dev->stripe_size - 1));
478
479         sg_init_table(iod->sg, psegs);
480         bio_for_each_segment(bvec, bio, iter) {
481                 if (!first && BIOVEC_PHYS_MERGEABLE(&bvprv, &bvec)) {
482                         sg->length += bvec.bv_len;
483                 } else {
484                         if (!first && BIOVEC_NOT_VIRT_MERGEABLE(&bvprv, &bvec))
485                                 return nvme_split_and_submit(bio, nvmeq,
486                                                              length);
487
488                         sg = sg ? sg + 1 : iod->sg;
489                         sg_set_page(sg, bvec.bv_page,
490                                     bvec.bv_len, bvec.bv_offset);
491                         nsegs++;
492                 }
493
494                 if (split_len - length < bvec.bv_len)
495                         return nvme_split_and_submit(bio, nvmeq, split_len);
496                 length += bvec.bv_len;
497                 bvprv = bvec;
498                 first = 0;
499         }
500         iod->nents = nsegs;
501         sg_mark_end(sg);
502         if (dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir) == 0)
503                 return -ENOMEM;
504
505         BUG_ON(length != bio->bi_iter.bi_size);
506         return length;
507 }
508
509 /*
510  * We reuse the small pool to allocate the 16-byte range here as it is not
511  * worth having a special pool for these or additional cases to handle freeing
512  * the iod.
513  */
514 static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
515                 struct bio *bio, struct nvme_iod *iod, int cmdid)
516 {
517         struct nvme_dsm_range *range;
518         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
519
520         range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
521                                                         &iod->first_dma);
522         if (!range)
523                 return -ENOMEM;
524
525         iod_list(iod)[0] = (__le64 *)range;
526         iod->npages = 0;
527
528         range->cattr = cpu_to_le32(0);
529         range->nlb = cpu_to_le32(bio->bi_iter.bi_size >> ns->lba_shift);
530         range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_iter.bi_sector));
531
532         memset(cmnd, 0, sizeof(*cmnd));
533         cmnd->dsm.opcode = nvme_cmd_dsm;
534         cmnd->dsm.command_id = cmdid;
535         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
536         cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
537         cmnd->dsm.nr = 0;
538         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
539
540         if (++nvmeq->sq_tail == nvmeq->q_depth)
541                 nvmeq->sq_tail = 0;
542         writel(nvmeq->sq_tail, nvmeq->q_db);
543
544         return 0;
545 }
546
547 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
548                                                                 int cmdid)
549 {
550         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
551
552         memset(cmnd, 0, sizeof(*cmnd));
553         cmnd->common.opcode = nvme_cmd_flush;
554         cmnd->common.command_id = cmdid;
555         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
556
557         if (++nvmeq->sq_tail == nvmeq->q_depth)
558                 nvmeq->sq_tail = 0;
559         writel(nvmeq->sq_tail, nvmeq->q_db);
560
561         return 0;
562 }
563
564 int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
565 {
566         int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
567                                         special_completion, NVME_IO_TIMEOUT);
568         if (unlikely(cmdid < 0))
569                 return cmdid;
570
571         return nvme_submit_flush(nvmeq, ns, cmdid);
572 }
573
574 /*
575  * Called with local interrupts disabled and the q_lock held.  May not sleep.
576  */
577 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
578                                                                 struct bio *bio)
579 {
580         struct nvme_command *cmnd;
581         struct nvme_iod *iod;
582         enum dma_data_direction dma_dir;
583         int cmdid, length, result;
584         u16 control;
585         u32 dsmgmt;
586         int psegs = bio_phys_segments(ns->queue, bio);
587
588         if ((bio->bi_rw & REQ_FLUSH) && psegs) {
589                 result = nvme_submit_flush_data(nvmeq, ns);
590                 if (result)
591                         return result;
592         }
593
594         result = -ENOMEM;
595         iod = nvme_alloc_iod(psegs, bio->bi_iter.bi_size, GFP_ATOMIC);
596         if (!iod)
597                 goto nomem;
598         iod->private = bio;
599
600         result = -EBUSY;
601         cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
602         if (unlikely(cmdid < 0))
603                 goto free_iod;
604
605         if (bio->bi_rw & REQ_DISCARD) {
606                 result = nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
607                 if (result)
608                         goto free_cmdid;
609                 return result;
610         }
611         if ((bio->bi_rw & REQ_FLUSH) && !psegs)
612                 return nvme_submit_flush(nvmeq, ns, cmdid);
613
614         control = 0;
615         if (bio->bi_rw & REQ_FUA)
616                 control |= NVME_RW_FUA;
617         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
618                 control |= NVME_RW_LR;
619
620         dsmgmt = 0;
621         if (bio->bi_rw & REQ_RAHEAD)
622                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
623
624         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
625
626         memset(cmnd, 0, sizeof(*cmnd));
627         if (bio_data_dir(bio)) {
628                 cmnd->rw.opcode = nvme_cmd_write;
629                 dma_dir = DMA_TO_DEVICE;
630         } else {
631                 cmnd->rw.opcode = nvme_cmd_read;
632                 dma_dir = DMA_FROM_DEVICE;
633         }
634
635         result = nvme_map_bio(nvmeq, iod, bio, dma_dir, psegs);
636         if (result <= 0)
637                 goto free_cmdid;
638         length = result;
639
640         cmnd->rw.command_id = cmdid;
641         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
642         length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
643                                                                 GFP_ATOMIC);
644         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_iter.bi_sector));
645         cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
646         cmnd->rw.control = cpu_to_le16(control);
647         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
648
649         nvme_start_io_acct(bio);
650         if (++nvmeq->sq_tail == nvmeq->q_depth)
651                 nvmeq->sq_tail = 0;
652         writel(nvmeq->sq_tail, nvmeq->q_db);
653
654         return 0;
655
656  free_cmdid:
657         free_cmdid(nvmeq, cmdid, NULL);
658  free_iod:
659         nvme_free_iod(nvmeq->dev, iod);
660  nomem:
661         return result;
662 }
663
664 static int nvme_process_cq(struct nvme_queue *nvmeq)
665 {
666         u16 head, phase;
667
668         head = nvmeq->cq_head;
669         phase = nvmeq->cq_phase;
670
671         for (;;) {
672                 void *ctx;
673                 nvme_completion_fn fn;
674                 struct nvme_completion cqe = nvmeq->cqes[head];
675                 if ((le16_to_cpu(cqe.status) & 1) != phase)
676                         break;
677                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
678                 if (++head == nvmeq->q_depth) {
679                         head = 0;
680                         phase = !phase;
681                 }
682
683                 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
684                 fn(nvmeq->dev, ctx, &cqe);
685         }
686
687         /* If the controller ignores the cq head doorbell and continuously
688          * writes to the queue, it is theoretically possible to wrap around
689          * the queue twice and mistakenly return IRQ_NONE.  Linux only
690          * requires that 0.1% of your interrupts are handled, so this isn't
691          * a big problem.
692          */
693         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
694                 return 0;
695
696         writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
697         nvmeq->cq_head = head;
698         nvmeq->cq_phase = phase;
699
700         nvmeq->cqe_seen = 1;
701         return 1;
702 }
703
704 static void nvme_make_request(struct request_queue *q, struct bio *bio)
705 {
706         struct nvme_ns *ns = q->queuedata;
707         struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
708         int result = -EBUSY;
709
710         if (!nvmeq) {
711                 put_nvmeq(NULL);
712                 bio_endio(bio, -EIO);
713                 return;
714         }
715
716         spin_lock_irq(&nvmeq->q_lock);
717         if (!nvmeq->q_suspended && bio_list_empty(&nvmeq->sq_cong))
718                 result = nvme_submit_bio_queue(nvmeq, ns, bio);
719         if (unlikely(result)) {
720                 if (bio_list_empty(&nvmeq->sq_cong))
721                         add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
722                 bio_list_add(&nvmeq->sq_cong, bio);
723         }
724
725         nvme_process_cq(nvmeq);
726         spin_unlock_irq(&nvmeq->q_lock);
727         put_nvmeq(nvmeq);
728 }
729
730 static irqreturn_t nvme_irq(int irq, void *data)
731 {
732         irqreturn_t result;
733         struct nvme_queue *nvmeq = data;
734         spin_lock(&nvmeq->q_lock);
735         nvme_process_cq(nvmeq);
736         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
737         nvmeq->cqe_seen = 0;
738         spin_unlock(&nvmeq->q_lock);
739         return result;
740 }
741
742 static irqreturn_t nvme_irq_check(int irq, void *data)
743 {
744         struct nvme_queue *nvmeq = data;
745         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
746         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
747                 return IRQ_NONE;
748         return IRQ_WAKE_THREAD;
749 }
750
751 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
752 {
753         spin_lock_irq(&nvmeq->q_lock);
754         cancel_cmdid(nvmeq, cmdid, NULL);
755         spin_unlock_irq(&nvmeq->q_lock);
756 }
757
758 struct sync_cmd_info {
759         struct task_struct *task;
760         u32 result;
761         int status;
762 };
763
764 static void sync_completion(struct nvme_dev *dev, void *ctx,
765                                                 struct nvme_completion *cqe)
766 {
767         struct sync_cmd_info *cmdinfo = ctx;
768         cmdinfo->result = le32_to_cpup(&cqe->result);
769         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
770         wake_up_process(cmdinfo->task);
771 }
772
773 /*
774  * Returns 0 on success.  If the result is negative, it's a Linux error code;
775  * if the result is positive, it's an NVM Express status code
776  */
777 int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
778                                                 u32 *result, unsigned timeout)
779 {
780         int cmdid;
781         struct sync_cmd_info cmdinfo;
782
783         cmdinfo.task = current;
784         cmdinfo.status = -EINTR;
785
786         cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
787                                                                 timeout);
788         if (cmdid < 0)
789                 return cmdid;
790         cmd->common.command_id = cmdid;
791
792         set_current_state(TASK_KILLABLE);
793         nvme_submit_cmd(nvmeq, cmd);
794         schedule_timeout(timeout);
795
796         if (cmdinfo.status == -EINTR) {
797                 nvme_abort_command(nvmeq, cmdid);
798                 return -EINTR;
799         }
800
801         if (result)
802                 *result = cmdinfo.result;
803
804         return cmdinfo.status;
805 }
806
807 int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
808                                                                 u32 *result)
809 {
810         return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
811 }
812
813 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
814 {
815         int status;
816         struct nvme_command c;
817
818         memset(&c, 0, sizeof(c));
819         c.delete_queue.opcode = opcode;
820         c.delete_queue.qid = cpu_to_le16(id);
821
822         status = nvme_submit_admin_cmd(dev, &c, NULL);
823         if (status)
824                 return -EIO;
825         return 0;
826 }
827
828 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
829                                                 struct nvme_queue *nvmeq)
830 {
831         int status;
832         struct nvme_command c;
833         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
834
835         memset(&c, 0, sizeof(c));
836         c.create_cq.opcode = nvme_admin_create_cq;
837         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
838         c.create_cq.cqid = cpu_to_le16(qid);
839         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
840         c.create_cq.cq_flags = cpu_to_le16(flags);
841         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
842
843         status = nvme_submit_admin_cmd(dev, &c, NULL);
844         if (status)
845                 return -EIO;
846         return 0;
847 }
848
849 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
850                                                 struct nvme_queue *nvmeq)
851 {
852         int status;
853         struct nvme_command c;
854         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
855
856         memset(&c, 0, sizeof(c));
857         c.create_sq.opcode = nvme_admin_create_sq;
858         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
859         c.create_sq.sqid = cpu_to_le16(qid);
860         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
861         c.create_sq.sq_flags = cpu_to_le16(flags);
862         c.create_sq.cqid = cpu_to_le16(qid);
863
864         status = nvme_submit_admin_cmd(dev, &c, NULL);
865         if (status)
866                 return -EIO;
867         return 0;
868 }
869
870 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
871 {
872         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
873 }
874
875 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
876 {
877         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
878 }
879
880 int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
881                                                         dma_addr_t dma_addr)
882 {
883         struct nvme_command c;
884
885         memset(&c, 0, sizeof(c));
886         c.identify.opcode = nvme_admin_identify;
887         c.identify.nsid = cpu_to_le32(nsid);
888         c.identify.prp1 = cpu_to_le64(dma_addr);
889         c.identify.cns = cpu_to_le32(cns);
890
891         return nvme_submit_admin_cmd(dev, &c, NULL);
892 }
893
894 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
895                                         dma_addr_t dma_addr, u32 *result)
896 {
897         struct nvme_command c;
898
899         memset(&c, 0, sizeof(c));
900         c.features.opcode = nvme_admin_get_features;
901         c.features.nsid = cpu_to_le32(nsid);
902         c.features.prp1 = cpu_to_le64(dma_addr);
903         c.features.fid = cpu_to_le32(fid);
904
905         return nvme_submit_admin_cmd(dev, &c, result);
906 }
907
908 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
909                                         dma_addr_t dma_addr, u32 *result)
910 {
911         struct nvme_command c;
912
913         memset(&c, 0, sizeof(c));
914         c.features.opcode = nvme_admin_set_features;
915         c.features.prp1 = cpu_to_le64(dma_addr);
916         c.features.fid = cpu_to_le32(fid);
917         c.features.dword11 = cpu_to_le32(dword11);
918
919         return nvme_submit_admin_cmd(dev, &c, result);
920 }
921
922 /**
923  * nvme_cancel_ios - Cancel outstanding I/Os
924  * @queue: The queue to cancel I/Os on
925  * @timeout: True to only cancel I/Os which have timed out
926  */
927 static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
928 {
929         int depth = nvmeq->q_depth - 1;
930         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
931         unsigned long now = jiffies;
932         int cmdid;
933
934         for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
935                 void *ctx;
936                 nvme_completion_fn fn;
937                 static struct nvme_completion cqe = {
938                         .status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
939                 };
940
941                 if (timeout && !time_after(now, info[cmdid].timeout))
942                         continue;
943                 if (info[cmdid].ctx == CMD_CTX_CANCELLED)
944                         continue;
945                 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d\n", cmdid);
946                 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
947                 fn(nvmeq->dev, ctx, &cqe);
948         }
949 }
950
951 static void nvme_free_queue(struct nvme_queue *nvmeq)
952 {
953         spin_lock_irq(&nvmeq->q_lock);
954         while (bio_list_peek(&nvmeq->sq_cong)) {
955                 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
956                 bio_endio(bio, -EIO);
957         }
958         spin_unlock_irq(&nvmeq->q_lock);
959
960         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
961                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
962         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
963                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
964         kfree(nvmeq);
965 }
966
967 static void nvme_free_queues(struct nvme_dev *dev)
968 {
969         int i;
970
971         for (i = dev->queue_count - 1; i >= 0; i--) {
972                 nvme_free_queue(dev->queues[i]);
973                 dev->queue_count--;
974                 dev->queues[i] = NULL;
975         }
976 }
977
978 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
979 {
980         struct nvme_queue *nvmeq = dev->queues[qid];
981         int vector = dev->entry[nvmeq->cq_vector].vector;
982
983         spin_lock_irq(&nvmeq->q_lock);
984         if (nvmeq->q_suspended) {
985                 spin_unlock_irq(&nvmeq->q_lock);
986                 return;
987         }
988         nvmeq->q_suspended = 1;
989         spin_unlock_irq(&nvmeq->q_lock);
990
991         irq_set_affinity_hint(vector, NULL);
992         free_irq(vector, nvmeq);
993
994         /* Don't tell the adapter to delete the admin queue */
995         if (qid) {
996                 adapter_delete_sq(dev, qid);
997                 adapter_delete_cq(dev, qid);
998         }
999
1000         spin_lock_irq(&nvmeq->q_lock);
1001         nvme_process_cq(nvmeq);
1002         nvme_cancel_ios(nvmeq, false);
1003         spin_unlock_irq(&nvmeq->q_lock);
1004 }
1005
1006 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1007                                                         int depth, int vector)
1008 {
1009         struct device *dmadev = &dev->pci_dev->dev;
1010         unsigned extra = nvme_queue_extra(depth);
1011         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
1012         if (!nvmeq)
1013                 return NULL;
1014
1015         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
1016                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
1017         if (!nvmeq->cqes)
1018                 goto free_nvmeq;
1019         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
1020
1021         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1022                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1023         if (!nvmeq->sq_cmds)
1024                 goto free_cqdma;
1025
1026         nvmeq->q_dmadev = dmadev;
1027         nvmeq->dev = dev;
1028         spin_lock_init(&nvmeq->q_lock);
1029         nvmeq->cq_head = 0;
1030         nvmeq->cq_phase = 1;
1031         init_waitqueue_head(&nvmeq->sq_full);
1032         init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
1033         bio_list_init(&nvmeq->sq_cong);
1034         nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
1035         nvmeq->q_depth = depth;
1036         nvmeq->cq_vector = vector;
1037         nvmeq->q_suspended = 1;
1038         dev->queue_count++;
1039
1040         return nvmeq;
1041
1042  free_cqdma:
1043         dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1044                                                         nvmeq->cq_dma_addr);
1045  free_nvmeq:
1046         kfree(nvmeq);
1047         return NULL;
1048 }
1049
1050 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1051                                                         const char *name)
1052 {
1053         if (use_threaded_interrupts)
1054                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1055                                         nvme_irq_check, nvme_irq,
1056                                         IRQF_DISABLED | IRQF_SHARED,
1057                                         name, nvmeq);
1058         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1059                                 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
1060 }
1061
1062 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1063 {
1064         struct nvme_dev *dev = nvmeq->dev;
1065         unsigned extra = nvme_queue_extra(nvmeq->q_depth);
1066
1067         nvmeq->sq_tail = 0;
1068         nvmeq->cq_head = 0;
1069         nvmeq->cq_phase = 1;
1070         nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
1071         memset(nvmeq->cmdid_data, 0, extra);
1072         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1073         nvme_cancel_ios(nvmeq, false);
1074         nvmeq->q_suspended = 0;
1075 }
1076
1077 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1078 {
1079         struct nvme_dev *dev = nvmeq->dev;
1080         int result;
1081
1082         result = adapter_alloc_cq(dev, qid, nvmeq);
1083         if (result < 0)
1084                 return result;
1085
1086         result = adapter_alloc_sq(dev, qid, nvmeq);
1087         if (result < 0)
1088                 goto release_cq;
1089
1090         result = queue_request_irq(dev, nvmeq, "nvme");
1091         if (result < 0)
1092                 goto release_sq;
1093
1094         spin_lock(&nvmeq->q_lock);
1095         nvme_init_queue(nvmeq, qid);
1096         spin_unlock(&nvmeq->q_lock);
1097
1098         return result;
1099
1100  release_sq:
1101         adapter_delete_sq(dev, qid);
1102  release_cq:
1103         adapter_delete_cq(dev, qid);
1104         return result;
1105 }
1106
1107 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1108 {
1109         unsigned long timeout;
1110         u32 bit = enabled ? NVME_CSTS_RDY : 0;
1111
1112         timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1113
1114         while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1115                 msleep(100);
1116                 if (fatal_signal_pending(current))
1117                         return -EINTR;
1118                 if (time_after(jiffies, timeout)) {
1119                         dev_err(&dev->pci_dev->dev,
1120                                 "Device not ready; aborting initialisation\n");
1121                         return -ENODEV;
1122                 }
1123         }
1124
1125         return 0;
1126 }
1127
1128 /*
1129  * If the device has been passed off to us in an enabled state, just clear
1130  * the enabled bit.  The spec says we should set the 'shutdown notification
1131  * bits', but doing so may cause the device to complete commands to the
1132  * admin queue ... and we don't know what memory that might be pointing at!
1133  */
1134 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1135 {
1136         u32 cc = readl(&dev->bar->cc);
1137
1138         if (cc & NVME_CC_ENABLE)
1139                 writel(cc & ~NVME_CC_ENABLE, &dev->bar->cc);
1140         return nvme_wait_ready(dev, cap, false);
1141 }
1142
1143 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1144 {
1145         return nvme_wait_ready(dev, cap, true);
1146 }
1147
1148 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1149 {
1150         unsigned long timeout;
1151         u32 cc;
1152
1153         cc = (readl(&dev->bar->cc) & ~NVME_CC_SHN_MASK) | NVME_CC_SHN_NORMAL;
1154         writel(cc, &dev->bar->cc);
1155
1156         timeout = 2 * HZ + jiffies;
1157         while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1158                                                         NVME_CSTS_SHST_CMPLT) {
1159                 msleep(100);
1160                 if (fatal_signal_pending(current))
1161                         return -EINTR;
1162                 if (time_after(jiffies, timeout)) {
1163                         dev_err(&dev->pci_dev->dev,
1164                                 "Device shutdown incomplete; abort shutdown\n");
1165                         return -ENODEV;
1166                 }
1167         }
1168
1169         return 0;
1170 }
1171
1172 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1173 {
1174         int result;
1175         u32 aqa;
1176         u64 cap = readq(&dev->bar->cap);
1177         struct nvme_queue *nvmeq;
1178
1179         result = nvme_disable_ctrl(dev, cap);
1180         if (result < 0)
1181                 return result;
1182
1183         nvmeq = dev->queues[0];
1184         if (!nvmeq) {
1185                 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
1186                 if (!nvmeq)
1187                         return -ENOMEM;
1188                 dev->queues[0] = nvmeq;
1189         }
1190
1191         aqa = nvmeq->q_depth - 1;
1192         aqa |= aqa << 16;
1193
1194         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1195         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1196         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1197         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1198
1199         writel(aqa, &dev->bar->aqa);
1200         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1201         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1202         writel(dev->ctrl_config, &dev->bar->cc);
1203
1204         result = nvme_enable_ctrl(dev, cap);
1205         if (result)
1206                 return result;
1207
1208         result = queue_request_irq(dev, nvmeq, "nvme admin");
1209         if (result)
1210                 return result;
1211
1212         spin_lock(&nvmeq->q_lock);
1213         nvme_init_queue(nvmeq, 0);
1214         spin_unlock(&nvmeq->q_lock);
1215         return result;
1216 }
1217
1218 struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1219                                 unsigned long addr, unsigned length)
1220 {
1221         int i, err, count, nents, offset;
1222         struct scatterlist *sg;
1223         struct page **pages;
1224         struct nvme_iod *iod;
1225
1226         if (addr & 3)
1227                 return ERR_PTR(-EINVAL);
1228         if (!length || length > INT_MAX - PAGE_SIZE)
1229                 return ERR_PTR(-EINVAL);
1230
1231         offset = offset_in_page(addr);
1232         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1233         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1234         if (!pages)
1235                 return ERR_PTR(-ENOMEM);
1236
1237         err = get_user_pages_fast(addr, count, 1, pages);
1238         if (err < count) {
1239                 count = err;
1240                 err = -EFAULT;
1241                 goto put_pages;
1242         }
1243
1244         iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1245         sg = iod->sg;
1246         sg_init_table(sg, count);
1247         for (i = 0; i < count; i++) {
1248                 sg_set_page(&sg[i], pages[i],
1249                             min_t(unsigned, length, PAGE_SIZE - offset),
1250                             offset);
1251                 length -= (PAGE_SIZE - offset);
1252                 offset = 0;
1253         }
1254         sg_mark_end(&sg[i - 1]);
1255         iod->nents = count;
1256
1257         err = -ENOMEM;
1258         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1259                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1260         if (!nents)
1261                 goto free_iod;
1262
1263         kfree(pages);
1264         return iod;
1265
1266  free_iod:
1267         kfree(iod);
1268  put_pages:
1269         for (i = 0; i < count; i++)
1270                 put_page(pages[i]);
1271         kfree(pages);
1272         return ERR_PTR(err);
1273 }
1274
1275 void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1276                         struct nvme_iod *iod)
1277 {
1278         int i;
1279
1280         dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1281                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1282
1283         for (i = 0; i < iod->nents; i++)
1284                 put_page(sg_page(&iod->sg[i]));
1285 }
1286
1287 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1288 {
1289         struct nvme_dev *dev = ns->dev;
1290         struct nvme_queue *nvmeq;
1291         struct nvme_user_io io;
1292         struct nvme_command c;
1293         unsigned length, meta_len;
1294         int status, i;
1295         struct nvme_iod *iod, *meta_iod = NULL;
1296         dma_addr_t meta_dma_addr;
1297         void *meta, *uninitialized_var(meta_mem);
1298
1299         if (copy_from_user(&io, uio, sizeof(io)))
1300                 return -EFAULT;
1301         length = (io.nblocks + 1) << ns->lba_shift;
1302         meta_len = (io.nblocks + 1) * ns->ms;
1303
1304         if (meta_len && ((io.metadata & 3) || !io.metadata))
1305                 return -EINVAL;
1306
1307         switch (io.opcode) {
1308         case nvme_cmd_write:
1309         case nvme_cmd_read:
1310         case nvme_cmd_compare:
1311                 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1312                 break;
1313         default:
1314                 return -EINVAL;
1315         }
1316
1317         if (IS_ERR(iod))
1318                 return PTR_ERR(iod);
1319
1320         memset(&c, 0, sizeof(c));
1321         c.rw.opcode = io.opcode;
1322         c.rw.flags = io.flags;
1323         c.rw.nsid = cpu_to_le32(ns->ns_id);
1324         c.rw.slba = cpu_to_le64(io.slba);
1325         c.rw.length = cpu_to_le16(io.nblocks);
1326         c.rw.control = cpu_to_le16(io.control);
1327         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1328         c.rw.reftag = cpu_to_le32(io.reftag);
1329         c.rw.apptag = cpu_to_le16(io.apptag);
1330         c.rw.appmask = cpu_to_le16(io.appmask);
1331
1332         if (meta_len) {
1333                 meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata,
1334                                                                 meta_len);
1335                 if (IS_ERR(meta_iod)) {
1336                         status = PTR_ERR(meta_iod);
1337                         meta_iod = NULL;
1338                         goto unmap;
1339                 }
1340
1341                 meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1342                                                 &meta_dma_addr, GFP_KERNEL);
1343                 if (!meta_mem) {
1344                         status = -ENOMEM;
1345                         goto unmap;
1346                 }
1347
1348                 if (io.opcode & 1) {
1349                         int meta_offset = 0;
1350
1351                         for (i = 0; i < meta_iod->nents; i++) {
1352                                 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1353                                                 meta_iod->sg[i].offset;
1354                                 memcpy(meta_mem + meta_offset, meta,
1355                                                 meta_iod->sg[i].length);
1356                                 kunmap_atomic(meta);
1357                                 meta_offset += meta_iod->sg[i].length;
1358                         }
1359                 }
1360
1361                 c.rw.metadata = cpu_to_le64(meta_dma_addr);
1362         }
1363
1364         length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
1365
1366         nvmeq = get_nvmeq(dev);
1367         /*
1368          * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1369          * disabled.  We may be preempted at any point, and be rescheduled
1370          * to a different CPU.  That will cause cacheline bouncing, but no
1371          * additional races since q_lock already protects against other CPUs.
1372          */
1373         put_nvmeq(nvmeq);
1374         if (length != (io.nblocks + 1) << ns->lba_shift)
1375                 status = -ENOMEM;
1376         else if (!nvmeq || nvmeq->q_suspended)
1377                 status = -EBUSY;
1378         else
1379                 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
1380
1381         if (meta_len) {
1382                 if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1383                         int meta_offset = 0;
1384
1385                         for (i = 0; i < meta_iod->nents; i++) {
1386                                 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1387                                                 meta_iod->sg[i].offset;
1388                                 memcpy(meta, meta_mem + meta_offset,
1389                                                 meta_iod->sg[i].length);
1390                                 kunmap_atomic(meta);
1391                                 meta_offset += meta_iod->sg[i].length;
1392                         }
1393                 }
1394
1395                 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1396                                                                 meta_dma_addr);
1397         }
1398
1399  unmap:
1400         nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1401         nvme_free_iod(dev, iod);
1402
1403         if (meta_iod) {
1404                 nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1405                 nvme_free_iod(dev, meta_iod);
1406         }
1407
1408         return status;
1409 }
1410
1411 static int nvme_user_admin_cmd(struct nvme_dev *dev,
1412                                         struct nvme_admin_cmd __user *ucmd)
1413 {
1414         struct nvme_admin_cmd cmd;
1415         struct nvme_command c;
1416         int status, length;
1417         struct nvme_iod *uninitialized_var(iod);
1418         unsigned timeout;
1419
1420         if (!capable(CAP_SYS_ADMIN))
1421                 return -EACCES;
1422         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1423                 return -EFAULT;
1424
1425         memset(&c, 0, sizeof(c));
1426         c.common.opcode = cmd.opcode;
1427         c.common.flags = cmd.flags;
1428         c.common.nsid = cpu_to_le32(cmd.nsid);
1429         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1430         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1431         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1432         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1433         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1434         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1435         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1436         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1437
1438         length = cmd.data_len;
1439         if (cmd.data_len) {
1440                 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1441                                                                 length);
1442                 if (IS_ERR(iod))
1443                         return PTR_ERR(iod);
1444                 length = nvme_setup_prps(dev, &c.common, iod, length,
1445                                                                 GFP_KERNEL);
1446         }
1447
1448         timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1449                                                                 ADMIN_TIMEOUT;
1450         if (length != cmd.data_len)
1451                 status = -ENOMEM;
1452         else
1453                 status = nvme_submit_sync_cmd(dev->queues[0], &c, &cmd.result,
1454                                                                 timeout);
1455
1456         if (cmd.data_len) {
1457                 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1458                 nvme_free_iod(dev, iod);
1459         }
1460
1461         if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1462                                                         sizeof(cmd.result)))
1463                 status = -EFAULT;
1464
1465         return status;
1466 }
1467
1468 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1469                                                         unsigned long arg)
1470 {
1471         struct nvme_ns *ns = bdev->bd_disk->private_data;
1472
1473         switch (cmd) {
1474         case NVME_IOCTL_ID:
1475                 force_successful_syscall_return();
1476                 return ns->ns_id;
1477         case NVME_IOCTL_ADMIN_CMD:
1478                 return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
1479         case NVME_IOCTL_SUBMIT_IO:
1480                 return nvme_submit_io(ns, (void __user *)arg);
1481         case SG_GET_VERSION_NUM:
1482                 return nvme_sg_get_version_num((void __user *)arg);
1483         case SG_IO:
1484                 return nvme_sg_io(ns, (void __user *)arg);
1485         default:
1486                 return -ENOTTY;
1487         }
1488 }
1489
1490 static const struct block_device_operations nvme_fops = {
1491         .owner          = THIS_MODULE,
1492         .ioctl          = nvme_ioctl,
1493         .compat_ioctl   = nvme_ioctl,
1494 };
1495
1496 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1497 {
1498         while (bio_list_peek(&nvmeq->sq_cong)) {
1499                 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1500                 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1501
1502                 if (bio_list_empty(&nvmeq->sq_cong))
1503                         remove_wait_queue(&nvmeq->sq_full,
1504                                                         &nvmeq->sq_cong_wait);
1505                 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1506                         if (bio_list_empty(&nvmeq->sq_cong))
1507                                 add_wait_queue(&nvmeq->sq_full,
1508                                                         &nvmeq->sq_cong_wait);
1509                         bio_list_add_head(&nvmeq->sq_cong, bio);
1510                         break;
1511                 }
1512         }
1513 }
1514
1515 static int nvme_kthread(void *data)
1516 {
1517         struct nvme_dev *dev;
1518
1519         while (!kthread_should_stop()) {
1520                 set_current_state(TASK_INTERRUPTIBLE);
1521                 spin_lock(&dev_list_lock);
1522                 list_for_each_entry(dev, &dev_list, node) {
1523                         int i;
1524                         for (i = 0; i < dev->queue_count; i++) {
1525                                 struct nvme_queue *nvmeq = dev->queues[i];
1526                                 if (!nvmeq)
1527                                         continue;
1528                                 spin_lock_irq(&nvmeq->q_lock);
1529                                 if (nvmeq->q_suspended)
1530                                         goto unlock;
1531                                 nvme_process_cq(nvmeq);
1532                                 nvme_cancel_ios(nvmeq, true);
1533                                 nvme_resubmit_bios(nvmeq);
1534  unlock:
1535                                 spin_unlock_irq(&nvmeq->q_lock);
1536                         }
1537                 }
1538                 spin_unlock(&dev_list_lock);
1539                 schedule_timeout(round_jiffies_relative(HZ));
1540         }
1541         return 0;
1542 }
1543
1544 static DEFINE_IDA(nvme_index_ida);
1545
1546 static int nvme_get_ns_idx(void)
1547 {
1548         int index, error;
1549
1550         do {
1551                 if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1552                         return -1;
1553
1554                 spin_lock(&dev_list_lock);
1555                 error = ida_get_new(&nvme_index_ida, &index);
1556                 spin_unlock(&dev_list_lock);
1557         } while (error == -EAGAIN);
1558
1559         if (error)
1560                 index = -1;
1561         return index;
1562 }
1563
1564 static void nvme_put_ns_idx(int index)
1565 {
1566         spin_lock(&dev_list_lock);
1567         ida_remove(&nvme_index_ida, index);
1568         spin_unlock(&dev_list_lock);
1569 }
1570
1571 static void nvme_config_discard(struct nvme_ns *ns)
1572 {
1573         u32 logical_block_size = queue_logical_block_size(ns->queue);
1574         ns->queue->limits.discard_zeroes_data = 0;
1575         ns->queue->limits.discard_alignment = logical_block_size;
1576         ns->queue->limits.discard_granularity = logical_block_size;
1577         ns->queue->limits.max_discard_sectors = 0xffffffff;
1578         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1579 }
1580
1581 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid,
1582                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1583 {
1584         struct nvme_ns *ns;
1585         struct gendisk *disk;
1586         int lbaf;
1587
1588         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1589                 return NULL;
1590
1591         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1592         if (!ns)
1593                 return NULL;
1594         ns->queue = blk_alloc_queue(GFP_KERNEL);
1595         if (!ns->queue)
1596                 goto out_free_ns;
1597         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1598         queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1599         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1600         blk_queue_make_request(ns->queue, nvme_make_request);
1601         ns->dev = dev;
1602         ns->queue->queuedata = ns;
1603
1604         disk = alloc_disk(NVME_MINORS);
1605         if (!disk)
1606                 goto out_free_queue;
1607         ns->ns_id = nsid;
1608         ns->disk = disk;
1609         lbaf = id->flbas & 0xf;
1610         ns->lba_shift = id->lbaf[lbaf].ds;
1611         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1612         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1613         if (dev->max_hw_sectors)
1614                 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
1615
1616         disk->major = nvme_major;
1617         disk->minors = NVME_MINORS;
1618         disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
1619         disk->fops = &nvme_fops;
1620         disk->private_data = ns;
1621         disk->queue = ns->queue;
1622         disk->driverfs_dev = &dev->pci_dev->dev;
1623         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1624         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1625
1626         if (dev->oncs & NVME_CTRL_ONCS_DSM)
1627                 nvme_config_discard(ns);
1628
1629         return ns;
1630
1631  out_free_queue:
1632         blk_cleanup_queue(ns->queue);
1633  out_free_ns:
1634         kfree(ns);
1635         return NULL;
1636 }
1637
1638 static void nvme_ns_free(struct nvme_ns *ns)
1639 {
1640         int index = ns->disk->first_minor / NVME_MINORS;
1641         put_disk(ns->disk);
1642         nvme_put_ns_idx(index);
1643         blk_cleanup_queue(ns->queue);
1644         kfree(ns);
1645 }
1646
1647 static int set_queue_count(struct nvme_dev *dev, int count)
1648 {
1649         int status;
1650         u32 result;
1651         u32 q_count = (count - 1) | ((count - 1) << 16);
1652
1653         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1654                                                                 &result);
1655         if (status)
1656                 return status < 0 ? -EIO : -EBUSY;
1657         return min(result & 0xffff, result >> 16) + 1;
1658 }
1659
1660 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1661 {
1662         return 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1663 }
1664
1665 static int nvme_setup_io_queues(struct nvme_dev *dev)
1666 {
1667         struct pci_dev *pdev = dev->pci_dev;
1668         int result, cpu, i, vecs, nr_io_queues, size, q_depth;
1669
1670         nr_io_queues = num_online_cpus();
1671         result = set_queue_count(dev, nr_io_queues);
1672         if (result < 0)
1673                 return result;
1674         if (result < nr_io_queues)
1675                 nr_io_queues = result;
1676
1677         size = db_bar_size(dev, nr_io_queues);
1678         if (size > 8192) {
1679                 iounmap(dev->bar);
1680                 do {
1681                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1682                         if (dev->bar)
1683                                 break;
1684                         if (!--nr_io_queues)
1685                                 return -ENOMEM;
1686                         size = db_bar_size(dev, nr_io_queues);
1687                 } while (1);
1688                 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1689                 dev->queues[0]->q_db = dev->dbs;
1690         }
1691
1692         /* Deregister the admin queue's interrupt */
1693         free_irq(dev->entry[0].vector, dev->queues[0]);
1694
1695         vecs = nr_io_queues;
1696         for (i = 0; i < vecs; i++)
1697                 dev->entry[i].entry = i;
1698         for (;;) {
1699                 result = pci_enable_msix(pdev, dev->entry, vecs);
1700                 if (result <= 0)
1701                         break;
1702                 vecs = result;
1703         }
1704
1705         if (result < 0) {
1706                 vecs = nr_io_queues;
1707                 if (vecs > 32)
1708                         vecs = 32;
1709                 for (;;) {
1710                         result = pci_enable_msi_block(pdev, vecs);
1711                         if (result == 0) {
1712                                 for (i = 0; i < vecs; i++)
1713                                         dev->entry[i].vector = i + pdev->irq;
1714                                 break;
1715                         } else if (result < 0) {
1716                                 vecs = 1;
1717                                 break;
1718                         }
1719                         vecs = result;
1720                 }
1721         }
1722
1723         /*
1724          * Should investigate if there's a performance win from allocating
1725          * more queues than interrupt vectors; it might allow the submission
1726          * path to scale better, even if the receive path is limited by the
1727          * number of interrupts.
1728          */
1729         nr_io_queues = vecs;
1730
1731         result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1732         if (result) {
1733                 dev->queues[0]->q_suspended = 1;
1734                 goto free_queues;
1735         }
1736
1737         /* Free previously allocated queues that are no longer usable */
1738         spin_lock(&dev_list_lock);
1739         for (i = dev->queue_count - 1; i > nr_io_queues; i--) {
1740                 struct nvme_queue *nvmeq = dev->queues[i];
1741
1742                 spin_lock(&nvmeq->q_lock);
1743                 nvme_cancel_ios(nvmeq, false);
1744                 spin_unlock(&nvmeq->q_lock);
1745
1746                 nvme_free_queue(nvmeq);
1747                 dev->queue_count--;
1748                 dev->queues[i] = NULL;
1749         }
1750         spin_unlock(&dev_list_lock);
1751
1752         cpu = cpumask_first(cpu_online_mask);
1753         for (i = 0; i < nr_io_queues; i++) {
1754                 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1755                 cpu = cpumask_next(cpu, cpu_online_mask);
1756         }
1757
1758         q_depth = min_t(int, NVME_CAP_MQES(readq(&dev->bar->cap)) + 1,
1759                                                                 NVME_Q_DEPTH);
1760         for (i = dev->queue_count - 1; i < nr_io_queues; i++) {
1761                 dev->queues[i + 1] = nvme_alloc_queue(dev, i + 1, q_depth, i);
1762                 if (!dev->queues[i + 1]) {
1763                         result = -ENOMEM;
1764                         goto free_queues;
1765                 }
1766         }
1767
1768         for (; i < num_possible_cpus(); i++) {
1769                 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1770                 dev->queues[i + 1] = dev->queues[target + 1];
1771         }
1772
1773         for (i = 1; i < dev->queue_count; i++) {
1774                 result = nvme_create_queue(dev->queues[i], i);
1775                 if (result) {
1776                         for (--i; i > 0; i--)
1777                                 nvme_disable_queue(dev, i);
1778                         goto free_queues;
1779                 }
1780         }
1781
1782         return 0;
1783
1784  free_queues:
1785         nvme_free_queues(dev);
1786         return result;
1787 }
1788
1789 /*
1790  * Return: error value if an error occurred setting up the queues or calling
1791  * Identify Device.  0 if these succeeded, even if adding some of the
1792  * namespaces failed.  At the moment, these failures are silent.  TBD which
1793  * failures should be reported.
1794  */
1795 static int nvme_dev_add(struct nvme_dev *dev)
1796 {
1797         int res;
1798         unsigned nn, i;
1799         struct nvme_ns *ns;
1800         struct nvme_id_ctrl *ctrl;
1801         struct nvme_id_ns *id_ns;
1802         void *mem;
1803         dma_addr_t dma_addr;
1804         int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
1805
1806         mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1807                                                                 GFP_KERNEL);
1808         if (!mem)
1809                 return -ENOMEM;
1810
1811         res = nvme_identify(dev, 0, 1, dma_addr);
1812         if (res) {
1813                 res = -EIO;
1814                 goto out;
1815         }
1816
1817         ctrl = mem;
1818         nn = le32_to_cpup(&ctrl->nn);
1819         dev->oncs = le16_to_cpup(&ctrl->oncs);
1820         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1821         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1822         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1823         if (ctrl->mdts)
1824                 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
1825         if ((dev->pci_dev->vendor == PCI_VENDOR_ID_INTEL) &&
1826                         (dev->pci_dev->device == 0x0953) && ctrl->vs[3])
1827                 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
1828
1829         id_ns = mem;
1830         for (i = 1; i <= nn; i++) {
1831                 res = nvme_identify(dev, i, 0, dma_addr);
1832                 if (res)
1833                         continue;
1834
1835                 if (id_ns->ncap == 0)
1836                         continue;
1837
1838                 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
1839                                                         dma_addr + 4096, NULL);
1840                 if (res)
1841                         memset(mem + 4096, 0, 4096);
1842
1843                 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
1844                 if (ns)
1845                         list_add_tail(&ns->list, &dev->namespaces);
1846         }
1847         list_for_each_entry(ns, &dev->namespaces, list)
1848                 add_disk(ns->disk);
1849         res = 0;
1850
1851  out:
1852         dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
1853         return res;
1854 }
1855
1856 static int nvme_dev_map(struct nvme_dev *dev)
1857 {
1858         int bars, result = -ENOMEM;
1859         struct pci_dev *pdev = dev->pci_dev;
1860
1861         if (pci_enable_device_mem(pdev))
1862                 return result;
1863
1864         dev->entry[0].vector = pdev->irq;
1865         pci_set_master(pdev);
1866         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1867         if (pci_request_selected_regions(pdev, bars, "nvme"))
1868                 goto disable_pci;
1869
1870         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
1871             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
1872                 goto disable;
1873
1874         pci_set_drvdata(pdev, dev);
1875         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1876         if (!dev->bar)
1877                 goto disable;
1878
1879         dev->db_stride = NVME_CAP_STRIDE(readq(&dev->bar->cap));
1880         dev->dbs = ((void __iomem *)dev->bar) + 4096;
1881
1882         return 0;
1883
1884  disable:
1885         pci_release_regions(pdev);
1886  disable_pci:
1887         pci_disable_device(pdev);
1888         return result;
1889 }
1890
1891 static void nvme_dev_unmap(struct nvme_dev *dev)
1892 {
1893         if (dev->pci_dev->msi_enabled)
1894                 pci_disable_msi(dev->pci_dev);
1895         else if (dev->pci_dev->msix_enabled)
1896                 pci_disable_msix(dev->pci_dev);
1897
1898         if (dev->bar) {
1899                 iounmap(dev->bar);
1900                 dev->bar = NULL;
1901         }
1902
1903         pci_release_regions(dev->pci_dev);
1904         if (pci_is_enabled(dev->pci_dev))
1905                 pci_disable_device(dev->pci_dev);
1906 }
1907
1908 static void nvme_dev_shutdown(struct nvme_dev *dev)
1909 {
1910         int i;
1911
1912         for (i = dev->queue_count - 1; i >= 0; i--)
1913                 nvme_disable_queue(dev, i);
1914
1915         spin_lock(&dev_list_lock);
1916         list_del_init(&dev->node);
1917         spin_unlock(&dev_list_lock);
1918
1919         if (dev->bar)
1920                 nvme_shutdown_ctrl(dev);
1921         nvme_dev_unmap(dev);
1922 }
1923
1924 static void nvme_dev_remove(struct nvme_dev *dev)
1925 {
1926         struct nvme_ns *ns, *next;
1927
1928         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1929                 list_del(&ns->list);
1930                 del_gendisk(ns->disk);
1931                 nvme_ns_free(ns);
1932         }
1933 }
1934
1935 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1936 {
1937         struct device *dmadev = &dev->pci_dev->dev;
1938         dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1939                                                 PAGE_SIZE, PAGE_SIZE, 0);
1940         if (!dev->prp_page_pool)
1941                 return -ENOMEM;
1942
1943         /* Optimisation for I/Os between 4k and 128k */
1944         dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1945                                                 256, 256, 0);
1946         if (!dev->prp_small_pool) {
1947                 dma_pool_destroy(dev->prp_page_pool);
1948                 return -ENOMEM;
1949         }
1950         return 0;
1951 }
1952
1953 static void nvme_release_prp_pools(struct nvme_dev *dev)
1954 {
1955         dma_pool_destroy(dev->prp_page_pool);
1956         dma_pool_destroy(dev->prp_small_pool);
1957 }
1958
1959 static DEFINE_IDA(nvme_instance_ida);
1960
1961 static int nvme_set_instance(struct nvme_dev *dev)
1962 {
1963         int instance, error;
1964
1965         do {
1966                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1967                         return -ENODEV;
1968
1969                 spin_lock(&dev_list_lock);
1970                 error = ida_get_new(&nvme_instance_ida, &instance);
1971                 spin_unlock(&dev_list_lock);
1972         } while (error == -EAGAIN);
1973
1974         if (error)
1975                 return -ENODEV;
1976
1977         dev->instance = instance;
1978         return 0;
1979 }
1980
1981 static void nvme_release_instance(struct nvme_dev *dev)
1982 {
1983         spin_lock(&dev_list_lock);
1984         ida_remove(&nvme_instance_ida, dev->instance);
1985         spin_unlock(&dev_list_lock);
1986 }
1987
1988 static void nvme_free_dev(struct kref *kref)
1989 {
1990         struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
1991         nvme_dev_remove(dev);
1992         nvme_dev_shutdown(dev);
1993         nvme_free_queues(dev);
1994         nvme_release_instance(dev);
1995         nvme_release_prp_pools(dev);
1996         kfree(dev->queues);
1997         kfree(dev->entry);
1998         kfree(dev);
1999 }
2000
2001 static int nvme_dev_open(struct inode *inode, struct file *f)
2002 {
2003         struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
2004                                                                 miscdev);
2005         kref_get(&dev->kref);
2006         f->private_data = dev;
2007         return 0;
2008 }
2009
2010 static int nvme_dev_release(struct inode *inode, struct file *f)
2011 {
2012         struct nvme_dev *dev = f->private_data;
2013         kref_put(&dev->kref, nvme_free_dev);
2014         return 0;
2015 }
2016
2017 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2018 {
2019         struct nvme_dev *dev = f->private_data;
2020         switch (cmd) {
2021         case NVME_IOCTL_ADMIN_CMD:
2022                 return nvme_user_admin_cmd(dev, (void __user *)arg);
2023         default:
2024                 return -ENOTTY;
2025         }
2026 }
2027
2028 static const struct file_operations nvme_dev_fops = {
2029         .owner          = THIS_MODULE,
2030         .open           = nvme_dev_open,
2031         .release        = nvme_dev_release,
2032         .unlocked_ioctl = nvme_dev_ioctl,
2033         .compat_ioctl   = nvme_dev_ioctl,
2034 };
2035
2036 static int nvme_dev_start(struct nvme_dev *dev)
2037 {
2038         int result;
2039
2040         result = nvme_dev_map(dev);
2041         if (result)
2042                 return result;
2043
2044         result = nvme_configure_admin_queue(dev);
2045         if (result)
2046                 goto unmap;
2047
2048         spin_lock(&dev_list_lock);
2049         list_add(&dev->node, &dev_list);
2050         spin_unlock(&dev_list_lock);
2051
2052         result = nvme_setup_io_queues(dev);
2053         if (result && result != -EBUSY)
2054                 goto disable;
2055
2056         return result;
2057
2058  disable:
2059         spin_lock(&dev_list_lock);
2060         list_del_init(&dev->node);
2061         spin_unlock(&dev_list_lock);
2062  unmap:
2063         nvme_dev_unmap(dev);
2064         return result;
2065 }
2066
2067 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2068 {
2069         int result = -ENOMEM;
2070         struct nvme_dev *dev;
2071
2072         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2073         if (!dev)
2074                 return -ENOMEM;
2075         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
2076                                                                 GFP_KERNEL);
2077         if (!dev->entry)
2078                 goto free;
2079         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
2080                                                                 GFP_KERNEL);
2081         if (!dev->queues)
2082                 goto free;
2083
2084         INIT_LIST_HEAD(&dev->namespaces);
2085         dev->pci_dev = pdev;
2086
2087         result = nvme_set_instance(dev);
2088         if (result)
2089                 goto free;
2090
2091         result = nvme_setup_prp_pools(dev);
2092         if (result)
2093                 goto release;
2094
2095         result = nvme_dev_start(dev);
2096         if (result) {
2097                 if (result == -EBUSY)
2098                         goto create_cdev;
2099                 goto release_pools;
2100         }
2101
2102         result = nvme_dev_add(dev);
2103         if (result)
2104                 goto shutdown;
2105
2106  create_cdev:
2107         scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
2108         dev->miscdev.minor = MISC_DYNAMIC_MINOR;
2109         dev->miscdev.parent = &pdev->dev;
2110         dev->miscdev.name = dev->name;
2111         dev->miscdev.fops = &nvme_dev_fops;
2112         result = misc_register(&dev->miscdev);
2113         if (result)
2114                 goto remove;
2115
2116         kref_init(&dev->kref);
2117         return 0;
2118
2119  remove:
2120         nvme_dev_remove(dev);
2121  shutdown:
2122         nvme_dev_shutdown(dev);
2123  release_pools:
2124         nvme_free_queues(dev);
2125         nvme_release_prp_pools(dev);
2126  release:
2127         nvme_release_instance(dev);
2128  free:
2129         kfree(dev->queues);
2130         kfree(dev->entry);
2131         kfree(dev);
2132         return result;
2133 }
2134
2135 static void nvme_remove(struct pci_dev *pdev)
2136 {
2137         struct nvme_dev *dev = pci_get_drvdata(pdev);
2138         misc_deregister(&dev->miscdev);
2139         kref_put(&dev->kref, nvme_free_dev);
2140 }
2141
2142 /* These functions are yet to be implemented */
2143 #define nvme_error_detected NULL
2144 #define nvme_dump_registers NULL
2145 #define nvme_link_reset NULL
2146 #define nvme_slot_reset NULL
2147 #define nvme_error_resume NULL
2148
2149 static int nvme_suspend(struct device *dev)
2150 {
2151         struct pci_dev *pdev = to_pci_dev(dev);
2152         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2153
2154         nvme_dev_shutdown(ndev);
2155         return 0;
2156 }
2157
2158 static int nvme_resume(struct device *dev)
2159 {
2160         struct pci_dev *pdev = to_pci_dev(dev);
2161         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2162         int ret;
2163
2164         ret = nvme_dev_start(ndev);
2165         /* XXX: should remove gendisks if resume fails */
2166         if (ret)
2167                 nvme_free_queues(ndev);
2168         return ret;
2169 }
2170
2171 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2172
2173 static const struct pci_error_handlers nvme_err_handler = {
2174         .error_detected = nvme_error_detected,
2175         .mmio_enabled   = nvme_dump_registers,
2176         .link_reset     = nvme_link_reset,
2177         .slot_reset     = nvme_slot_reset,
2178         .resume         = nvme_error_resume,
2179 };
2180
2181 /* Move to pci_ids.h later */
2182 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
2183
2184 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
2185         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2186         { 0, }
2187 };
2188 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2189
2190 static struct pci_driver nvme_driver = {
2191         .name           = "nvme",
2192         .id_table       = nvme_id_table,
2193         .probe          = nvme_probe,
2194         .remove         = nvme_remove,
2195         .driver         = {
2196                 .pm     = &nvme_dev_pm_ops,
2197         },
2198         .err_handler    = &nvme_err_handler,
2199 };
2200
2201 static int __init nvme_init(void)
2202 {
2203         int result;
2204
2205         nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2206         if (IS_ERR(nvme_thread))
2207                 return PTR_ERR(nvme_thread);
2208
2209         result = register_blkdev(nvme_major, "nvme");
2210         if (result < 0)
2211                 goto kill_kthread;
2212         else if (result > 0)
2213                 nvme_major = result;
2214
2215         result = pci_register_driver(&nvme_driver);
2216         if (result)
2217                 goto unregister_blkdev;
2218         return 0;
2219
2220  unregister_blkdev:
2221         unregister_blkdev(nvme_major, "nvme");
2222  kill_kthread:
2223         kthread_stop(nvme_thread);
2224         return result;
2225 }
2226
2227 static void __exit nvme_exit(void)
2228 {
2229         pci_unregister_driver(&nvme_driver);
2230         unregister_blkdev(nvme_major, "nvme");
2231         kthread_stop(nvme_thread);
2232 }
2233
2234 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2235 MODULE_LICENSE("GPL");
2236 MODULE_VERSION("0.8");
2237 module_init(nvme_init);
2238 module_exit(nvme_exit);