]> Pileus Git - ~andy/linux/blob - arch/x86/kvm/x86.c
Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[~andy/linux] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96
97 unsigned int min_timer_period_us = 500;
98 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
99
100 bool kvm_has_tsc_control;
101 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
102 u32  kvm_max_guest_tsc_khz;
103 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
104
105 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
106 static u32 tsc_tolerance_ppm = 250;
107 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
108
109 #define KVM_NR_SHARED_MSRS 16
110
111 struct kvm_shared_msrs_global {
112         int nr;
113         u32 msrs[KVM_NR_SHARED_MSRS];
114 };
115
116 struct kvm_shared_msrs {
117         struct user_return_notifier urn;
118         bool registered;
119         struct kvm_shared_msr_values {
120                 u64 host;
121                 u64 curr;
122         } values[KVM_NR_SHARED_MSRS];
123 };
124
125 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
126 static struct kvm_shared_msrs __percpu *shared_msrs;
127
128 struct kvm_stats_debugfs_item debugfs_entries[] = {
129         { "pf_fixed", VCPU_STAT(pf_fixed) },
130         { "pf_guest", VCPU_STAT(pf_guest) },
131         { "tlb_flush", VCPU_STAT(tlb_flush) },
132         { "invlpg", VCPU_STAT(invlpg) },
133         { "exits", VCPU_STAT(exits) },
134         { "io_exits", VCPU_STAT(io_exits) },
135         { "mmio_exits", VCPU_STAT(mmio_exits) },
136         { "signal_exits", VCPU_STAT(signal_exits) },
137         { "irq_window", VCPU_STAT(irq_window_exits) },
138         { "nmi_window", VCPU_STAT(nmi_window_exits) },
139         { "halt_exits", VCPU_STAT(halt_exits) },
140         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
141         { "hypercalls", VCPU_STAT(hypercalls) },
142         { "request_irq", VCPU_STAT(request_irq_exits) },
143         { "irq_exits", VCPU_STAT(irq_exits) },
144         { "host_state_reload", VCPU_STAT(host_state_reload) },
145         { "efer_reload", VCPU_STAT(efer_reload) },
146         { "fpu_reload", VCPU_STAT(fpu_reload) },
147         { "insn_emulation", VCPU_STAT(insn_emulation) },
148         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
149         { "irq_injections", VCPU_STAT(irq_injections) },
150         { "nmi_injections", VCPU_STAT(nmi_injections) },
151         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
152         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
153         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
154         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
155         { "mmu_flooded", VM_STAT(mmu_flooded) },
156         { "mmu_recycled", VM_STAT(mmu_recycled) },
157         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
158         { "mmu_unsync", VM_STAT(mmu_unsync) },
159         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
160         { "largepages", VM_STAT(lpages) },
161         { NULL }
162 };
163
164 u64 __read_mostly host_xcr0;
165
166 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
167
168 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
169 {
170         int i;
171         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
172                 vcpu->arch.apf.gfns[i] = ~0;
173 }
174
175 static void kvm_on_user_return(struct user_return_notifier *urn)
176 {
177         unsigned slot;
178         struct kvm_shared_msrs *locals
179                 = container_of(urn, struct kvm_shared_msrs, urn);
180         struct kvm_shared_msr_values *values;
181
182         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
183                 values = &locals->values[slot];
184                 if (values->host != values->curr) {
185                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
186                         values->curr = values->host;
187                 }
188         }
189         locals->registered = false;
190         user_return_notifier_unregister(urn);
191 }
192
193 static void shared_msr_update(unsigned slot, u32 msr)
194 {
195         u64 value;
196         unsigned int cpu = smp_processor_id();
197         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
198
199         /* only read, and nobody should modify it at this time,
200          * so don't need lock */
201         if (slot >= shared_msrs_global.nr) {
202                 printk(KERN_ERR "kvm: invalid MSR slot!");
203                 return;
204         }
205         rdmsrl_safe(msr, &value);
206         smsr->values[slot].host = value;
207         smsr->values[slot].curr = value;
208 }
209
210 void kvm_define_shared_msr(unsigned slot, u32 msr)
211 {
212         if (slot >= shared_msrs_global.nr)
213                 shared_msrs_global.nr = slot + 1;
214         shared_msrs_global.msrs[slot] = msr;
215         /* we need ensured the shared_msr_global have been updated */
216         smp_wmb();
217 }
218 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
219
220 static void kvm_shared_msr_cpu_online(void)
221 {
222         unsigned i;
223
224         for (i = 0; i < shared_msrs_global.nr; ++i)
225                 shared_msr_update(i, shared_msrs_global.msrs[i]);
226 }
227
228 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
229 {
230         unsigned int cpu = smp_processor_id();
231         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
232
233         if (((value ^ smsr->values[slot].curr) & mask) == 0)
234                 return;
235         smsr->values[slot].curr = value;
236         wrmsrl(shared_msrs_global.msrs[slot], value);
237         if (!smsr->registered) {
238                 smsr->urn.on_user_return = kvm_on_user_return;
239                 user_return_notifier_register(&smsr->urn);
240                 smsr->registered = true;
241         }
242 }
243 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
244
245 static void drop_user_return_notifiers(void *ignore)
246 {
247         unsigned int cpu = smp_processor_id();
248         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
249
250         if (smsr->registered)
251                 kvm_on_user_return(&smsr->urn);
252 }
253
254 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
255 {
256         return vcpu->arch.apic_base;
257 }
258 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
259
260 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
261 {
262         u64 old_state = vcpu->arch.apic_base &
263                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
264         u64 new_state = msr_info->data &
265                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
266         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
267                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
268
269         if (!msr_info->host_initiated &&
270             ((msr_info->data & reserved_bits) != 0 ||
271              new_state == X2APIC_ENABLE ||
272              (new_state == MSR_IA32_APICBASE_ENABLE &&
273               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
274              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
275               old_state == 0)))
276                 return 1;
277
278         kvm_lapic_set_base(vcpu, msr_info->data);
279         return 0;
280 }
281 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
282
283 asmlinkage void kvm_spurious_fault(void)
284 {
285         /* Fault while not rebooting.  We want the trace. */
286         BUG();
287 }
288 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
289
290 #define EXCPT_BENIGN            0
291 #define EXCPT_CONTRIBUTORY      1
292 #define EXCPT_PF                2
293
294 static int exception_class(int vector)
295 {
296         switch (vector) {
297         case PF_VECTOR:
298                 return EXCPT_PF;
299         case DE_VECTOR:
300         case TS_VECTOR:
301         case NP_VECTOR:
302         case SS_VECTOR:
303         case GP_VECTOR:
304                 return EXCPT_CONTRIBUTORY;
305         default:
306                 break;
307         }
308         return EXCPT_BENIGN;
309 }
310
311 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
312                 unsigned nr, bool has_error, u32 error_code,
313                 bool reinject)
314 {
315         u32 prev_nr;
316         int class1, class2;
317
318         kvm_make_request(KVM_REQ_EVENT, vcpu);
319
320         if (!vcpu->arch.exception.pending) {
321         queue:
322                 vcpu->arch.exception.pending = true;
323                 vcpu->arch.exception.has_error_code = has_error;
324                 vcpu->arch.exception.nr = nr;
325                 vcpu->arch.exception.error_code = error_code;
326                 vcpu->arch.exception.reinject = reinject;
327                 return;
328         }
329
330         /* to check exception */
331         prev_nr = vcpu->arch.exception.nr;
332         if (prev_nr == DF_VECTOR) {
333                 /* triple fault -> shutdown */
334                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
335                 return;
336         }
337         class1 = exception_class(prev_nr);
338         class2 = exception_class(nr);
339         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
340                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
341                 /* generate double fault per SDM Table 5-5 */
342                 vcpu->arch.exception.pending = true;
343                 vcpu->arch.exception.has_error_code = true;
344                 vcpu->arch.exception.nr = DF_VECTOR;
345                 vcpu->arch.exception.error_code = 0;
346         } else
347                 /* replace previous exception with a new one in a hope
348                    that instruction re-execution will regenerate lost
349                    exception */
350                 goto queue;
351 }
352
353 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
354 {
355         kvm_multiple_exception(vcpu, nr, false, 0, false);
356 }
357 EXPORT_SYMBOL_GPL(kvm_queue_exception);
358
359 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
360 {
361         kvm_multiple_exception(vcpu, nr, false, 0, true);
362 }
363 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
364
365 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
366 {
367         if (err)
368                 kvm_inject_gp(vcpu, 0);
369         else
370                 kvm_x86_ops->skip_emulated_instruction(vcpu);
371 }
372 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
373
374 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
375 {
376         ++vcpu->stat.pf_guest;
377         vcpu->arch.cr2 = fault->address;
378         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
379 }
380 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
381
382 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
383 {
384         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
385                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
386         else
387                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
388 }
389
390 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
391 {
392         atomic_inc(&vcpu->arch.nmi_queued);
393         kvm_make_request(KVM_REQ_NMI, vcpu);
394 }
395 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
396
397 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
398 {
399         kvm_multiple_exception(vcpu, nr, true, error_code, false);
400 }
401 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
402
403 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
404 {
405         kvm_multiple_exception(vcpu, nr, true, error_code, true);
406 }
407 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
408
409 /*
410  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
411  * a #GP and return false.
412  */
413 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
414 {
415         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
416                 return true;
417         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
418         return false;
419 }
420 EXPORT_SYMBOL_GPL(kvm_require_cpl);
421
422 /*
423  * This function will be used to read from the physical memory of the currently
424  * running guest. The difference to kvm_read_guest_page is that this function
425  * can read from guest physical or from the guest's guest physical memory.
426  */
427 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
428                             gfn_t ngfn, void *data, int offset, int len,
429                             u32 access)
430 {
431         gfn_t real_gfn;
432         gpa_t ngpa;
433
434         ngpa     = gfn_to_gpa(ngfn);
435         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
436         if (real_gfn == UNMAPPED_GVA)
437                 return -EFAULT;
438
439         real_gfn = gpa_to_gfn(real_gfn);
440
441         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
442 }
443 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
444
445 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
446                                void *data, int offset, int len, u32 access)
447 {
448         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
449                                        data, offset, len, access);
450 }
451
452 /*
453  * Load the pae pdptrs.  Return true is they are all valid.
454  */
455 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
456 {
457         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
458         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
459         int i;
460         int ret;
461         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
462
463         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
464                                       offset * sizeof(u64), sizeof(pdpte),
465                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
466         if (ret < 0) {
467                 ret = 0;
468                 goto out;
469         }
470         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
471                 if (is_present_gpte(pdpte[i]) &&
472                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
473                         ret = 0;
474                         goto out;
475                 }
476         }
477         ret = 1;
478
479         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
480         __set_bit(VCPU_EXREG_PDPTR,
481                   (unsigned long *)&vcpu->arch.regs_avail);
482         __set_bit(VCPU_EXREG_PDPTR,
483                   (unsigned long *)&vcpu->arch.regs_dirty);
484 out:
485
486         return ret;
487 }
488 EXPORT_SYMBOL_GPL(load_pdptrs);
489
490 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
491 {
492         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
493         bool changed = true;
494         int offset;
495         gfn_t gfn;
496         int r;
497
498         if (is_long_mode(vcpu) || !is_pae(vcpu))
499                 return false;
500
501         if (!test_bit(VCPU_EXREG_PDPTR,
502                       (unsigned long *)&vcpu->arch.regs_avail))
503                 return true;
504
505         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
506         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
507         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
508                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
509         if (r < 0)
510                 goto out;
511         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
512 out:
513
514         return changed;
515 }
516
517 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
518 {
519         unsigned long old_cr0 = kvm_read_cr0(vcpu);
520         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
521                                     X86_CR0_CD | X86_CR0_NW;
522
523         cr0 |= X86_CR0_ET;
524
525 #ifdef CONFIG_X86_64
526         if (cr0 & 0xffffffff00000000UL)
527                 return 1;
528 #endif
529
530         cr0 &= ~CR0_RESERVED_BITS;
531
532         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
533                 return 1;
534
535         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
536                 return 1;
537
538         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
539 #ifdef CONFIG_X86_64
540                 if ((vcpu->arch.efer & EFER_LME)) {
541                         int cs_db, cs_l;
542
543                         if (!is_pae(vcpu))
544                                 return 1;
545                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
546                         if (cs_l)
547                                 return 1;
548                 } else
549 #endif
550                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
551                                                  kvm_read_cr3(vcpu)))
552                         return 1;
553         }
554
555         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
556                 return 1;
557
558         kvm_x86_ops->set_cr0(vcpu, cr0);
559
560         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
561                 kvm_clear_async_pf_completion_queue(vcpu);
562                 kvm_async_pf_hash_reset(vcpu);
563         }
564
565         if ((cr0 ^ old_cr0) & update_bits)
566                 kvm_mmu_reset_context(vcpu);
567         return 0;
568 }
569 EXPORT_SYMBOL_GPL(kvm_set_cr0);
570
571 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
572 {
573         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
574 }
575 EXPORT_SYMBOL_GPL(kvm_lmsw);
576
577 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
578 {
579         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
580                         !vcpu->guest_xcr0_loaded) {
581                 /* kvm_set_xcr() also depends on this */
582                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
583                 vcpu->guest_xcr0_loaded = 1;
584         }
585 }
586
587 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
588 {
589         if (vcpu->guest_xcr0_loaded) {
590                 if (vcpu->arch.xcr0 != host_xcr0)
591                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
592                 vcpu->guest_xcr0_loaded = 0;
593         }
594 }
595
596 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
597 {
598         u64 xcr0;
599         u64 valid_bits;
600
601         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
602         if (index != XCR_XFEATURE_ENABLED_MASK)
603                 return 1;
604         xcr0 = xcr;
605         if (!(xcr0 & XSTATE_FP))
606                 return 1;
607         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
608                 return 1;
609
610         /*
611          * Do not allow the guest to set bits that we do not support
612          * saving.  However, xcr0 bit 0 is always set, even if the
613          * emulated CPU does not support XSAVE (see fx_init).
614          */
615         valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
616         if (xcr0 & ~valid_bits)
617                 return 1;
618
619         kvm_put_guest_xcr0(vcpu);
620         vcpu->arch.xcr0 = xcr0;
621         return 0;
622 }
623
624 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
625 {
626         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
627             __kvm_set_xcr(vcpu, index, xcr)) {
628                 kvm_inject_gp(vcpu, 0);
629                 return 1;
630         }
631         return 0;
632 }
633 EXPORT_SYMBOL_GPL(kvm_set_xcr);
634
635 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
636 {
637         unsigned long old_cr4 = kvm_read_cr4(vcpu);
638         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
639                                    X86_CR4_PAE | X86_CR4_SMEP;
640         if (cr4 & CR4_RESERVED_BITS)
641                 return 1;
642
643         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
644                 return 1;
645
646         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
647                 return 1;
648
649         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
650                 return 1;
651
652         if (is_long_mode(vcpu)) {
653                 if (!(cr4 & X86_CR4_PAE))
654                         return 1;
655         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
656                    && ((cr4 ^ old_cr4) & pdptr_bits)
657                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
658                                    kvm_read_cr3(vcpu)))
659                 return 1;
660
661         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
662                 if (!guest_cpuid_has_pcid(vcpu))
663                         return 1;
664
665                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
666                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
667                         return 1;
668         }
669
670         if (kvm_x86_ops->set_cr4(vcpu, cr4))
671                 return 1;
672
673         if (((cr4 ^ old_cr4) & pdptr_bits) ||
674             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
675                 kvm_mmu_reset_context(vcpu);
676
677         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
678                 kvm_update_cpuid(vcpu);
679
680         return 0;
681 }
682 EXPORT_SYMBOL_GPL(kvm_set_cr4);
683
684 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
685 {
686         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
687                 kvm_mmu_sync_roots(vcpu);
688                 kvm_mmu_flush_tlb(vcpu);
689                 return 0;
690         }
691
692         if (is_long_mode(vcpu)) {
693                 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
694                         if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
695                                 return 1;
696                 } else
697                         if (cr3 & CR3_L_MODE_RESERVED_BITS)
698                                 return 1;
699         } else {
700                 if (is_pae(vcpu)) {
701                         if (cr3 & CR3_PAE_RESERVED_BITS)
702                                 return 1;
703                         if (is_paging(vcpu) &&
704                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
705                                 return 1;
706                 }
707                 /*
708                  * We don't check reserved bits in nonpae mode, because
709                  * this isn't enforced, and VMware depends on this.
710                  */
711         }
712
713         vcpu->arch.cr3 = cr3;
714         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
715         kvm_mmu_new_cr3(vcpu);
716         return 0;
717 }
718 EXPORT_SYMBOL_GPL(kvm_set_cr3);
719
720 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
721 {
722         if (cr8 & CR8_RESERVED_BITS)
723                 return 1;
724         if (irqchip_in_kernel(vcpu->kvm))
725                 kvm_lapic_set_tpr(vcpu, cr8);
726         else
727                 vcpu->arch.cr8 = cr8;
728         return 0;
729 }
730 EXPORT_SYMBOL_GPL(kvm_set_cr8);
731
732 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
733 {
734         if (irqchip_in_kernel(vcpu->kvm))
735                 return kvm_lapic_get_cr8(vcpu);
736         else
737                 return vcpu->arch.cr8;
738 }
739 EXPORT_SYMBOL_GPL(kvm_get_cr8);
740
741 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
742 {
743         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
744                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
745 }
746
747 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
748 {
749         unsigned long dr7;
750
751         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
752                 dr7 = vcpu->arch.guest_debug_dr7;
753         else
754                 dr7 = vcpu->arch.dr7;
755         kvm_x86_ops->set_dr7(vcpu, dr7);
756         vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
757 }
758
759 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
760 {
761         switch (dr) {
762         case 0 ... 3:
763                 vcpu->arch.db[dr] = val;
764                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
765                         vcpu->arch.eff_db[dr] = val;
766                 break;
767         case 4:
768                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
769                         return 1; /* #UD */
770                 /* fall through */
771         case 6:
772                 if (val & 0xffffffff00000000ULL)
773                         return -1; /* #GP */
774                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
775                 kvm_update_dr6(vcpu);
776                 break;
777         case 5:
778                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
779                         return 1; /* #UD */
780                 /* fall through */
781         default: /* 7 */
782                 if (val & 0xffffffff00000000ULL)
783                         return -1; /* #GP */
784                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
785                 kvm_update_dr7(vcpu);
786                 break;
787         }
788
789         return 0;
790 }
791
792 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
793 {
794         int res;
795
796         res = __kvm_set_dr(vcpu, dr, val);
797         if (res > 0)
798                 kvm_queue_exception(vcpu, UD_VECTOR);
799         else if (res < 0)
800                 kvm_inject_gp(vcpu, 0);
801
802         return res;
803 }
804 EXPORT_SYMBOL_GPL(kvm_set_dr);
805
806 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
807 {
808         switch (dr) {
809         case 0 ... 3:
810                 *val = vcpu->arch.db[dr];
811                 break;
812         case 4:
813                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
814                         return 1;
815                 /* fall through */
816         case 6:
817                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
818                         *val = vcpu->arch.dr6;
819                 else
820                         *val = kvm_x86_ops->get_dr6(vcpu);
821                 break;
822         case 5:
823                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
824                         return 1;
825                 /* fall through */
826         default: /* 7 */
827                 *val = vcpu->arch.dr7;
828                 break;
829         }
830
831         return 0;
832 }
833
834 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
835 {
836         if (_kvm_get_dr(vcpu, dr, val)) {
837                 kvm_queue_exception(vcpu, UD_VECTOR);
838                 return 1;
839         }
840         return 0;
841 }
842 EXPORT_SYMBOL_GPL(kvm_get_dr);
843
844 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
845 {
846         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
847         u64 data;
848         int err;
849
850         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
851         if (err)
852                 return err;
853         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
854         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
855         return err;
856 }
857 EXPORT_SYMBOL_GPL(kvm_rdpmc);
858
859 /*
860  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
861  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
862  *
863  * This list is modified at module load time to reflect the
864  * capabilities of the host cpu. This capabilities test skips MSRs that are
865  * kvm-specific. Those are put in the beginning of the list.
866  */
867
868 #define KVM_SAVE_MSRS_BEGIN     12
869 static u32 msrs_to_save[] = {
870         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
871         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
872         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
873         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
874         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
875         MSR_KVM_PV_EOI_EN,
876         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
877         MSR_STAR,
878 #ifdef CONFIG_X86_64
879         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
880 #endif
881         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
882         MSR_IA32_FEATURE_CONTROL
883 };
884
885 static unsigned num_msrs_to_save;
886
887 static const u32 emulated_msrs[] = {
888         MSR_IA32_TSC_ADJUST,
889         MSR_IA32_TSCDEADLINE,
890         MSR_IA32_MISC_ENABLE,
891         MSR_IA32_MCG_STATUS,
892         MSR_IA32_MCG_CTL,
893 };
894
895 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
896 {
897         if (efer & efer_reserved_bits)
898                 return false;
899
900         if (efer & EFER_FFXSR) {
901                 struct kvm_cpuid_entry2 *feat;
902
903                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
904                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
905                         return false;
906         }
907
908         if (efer & EFER_SVME) {
909                 struct kvm_cpuid_entry2 *feat;
910
911                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
912                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
913                         return false;
914         }
915
916         return true;
917 }
918 EXPORT_SYMBOL_GPL(kvm_valid_efer);
919
920 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
921 {
922         u64 old_efer = vcpu->arch.efer;
923
924         if (!kvm_valid_efer(vcpu, efer))
925                 return 1;
926
927         if (is_paging(vcpu)
928             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
929                 return 1;
930
931         efer &= ~EFER_LMA;
932         efer |= vcpu->arch.efer & EFER_LMA;
933
934         kvm_x86_ops->set_efer(vcpu, efer);
935
936         /* Update reserved bits */
937         if ((efer ^ old_efer) & EFER_NX)
938                 kvm_mmu_reset_context(vcpu);
939
940         return 0;
941 }
942
943 void kvm_enable_efer_bits(u64 mask)
944 {
945        efer_reserved_bits &= ~mask;
946 }
947 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
948
949
950 /*
951  * Writes msr value into into the appropriate "register".
952  * Returns 0 on success, non-0 otherwise.
953  * Assumes vcpu_load() was already called.
954  */
955 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
956 {
957         return kvm_x86_ops->set_msr(vcpu, msr);
958 }
959
960 /*
961  * Adapt set_msr() to msr_io()'s calling convention
962  */
963 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
964 {
965         struct msr_data msr;
966
967         msr.data = *data;
968         msr.index = index;
969         msr.host_initiated = true;
970         return kvm_set_msr(vcpu, &msr);
971 }
972
973 #ifdef CONFIG_X86_64
974 struct pvclock_gtod_data {
975         seqcount_t      seq;
976
977         struct { /* extract of a clocksource struct */
978                 int vclock_mode;
979                 cycle_t cycle_last;
980                 cycle_t mask;
981                 u32     mult;
982                 u32     shift;
983         } clock;
984
985         /* open coded 'struct timespec' */
986         u64             monotonic_time_snsec;
987         time_t          monotonic_time_sec;
988 };
989
990 static struct pvclock_gtod_data pvclock_gtod_data;
991
992 static void update_pvclock_gtod(struct timekeeper *tk)
993 {
994         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
995
996         write_seqcount_begin(&vdata->seq);
997
998         /* copy pvclock gtod data */
999         vdata->clock.vclock_mode        = tk->clock->archdata.vclock_mode;
1000         vdata->clock.cycle_last         = tk->clock->cycle_last;
1001         vdata->clock.mask               = tk->clock->mask;
1002         vdata->clock.mult               = tk->mult;
1003         vdata->clock.shift              = tk->shift;
1004
1005         vdata->monotonic_time_sec       = tk->xtime_sec
1006                                         + tk->wall_to_monotonic.tv_sec;
1007         vdata->monotonic_time_snsec     = tk->xtime_nsec
1008                                         + (tk->wall_to_monotonic.tv_nsec
1009                                                 << tk->shift);
1010         while (vdata->monotonic_time_snsec >=
1011                                         (((u64)NSEC_PER_SEC) << tk->shift)) {
1012                 vdata->monotonic_time_snsec -=
1013                                         ((u64)NSEC_PER_SEC) << tk->shift;
1014                 vdata->monotonic_time_sec++;
1015         }
1016
1017         write_seqcount_end(&vdata->seq);
1018 }
1019 #endif
1020
1021
1022 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1023 {
1024         int version;
1025         int r;
1026         struct pvclock_wall_clock wc;
1027         struct timespec boot;
1028
1029         if (!wall_clock)
1030                 return;
1031
1032         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1033         if (r)
1034                 return;
1035
1036         if (version & 1)
1037                 ++version;  /* first time write, random junk */
1038
1039         ++version;
1040
1041         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1042
1043         /*
1044          * The guest calculates current wall clock time by adding
1045          * system time (updated by kvm_guest_time_update below) to the
1046          * wall clock specified here.  guest system time equals host
1047          * system time for us, thus we must fill in host boot time here.
1048          */
1049         getboottime(&boot);
1050
1051         if (kvm->arch.kvmclock_offset) {
1052                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1053                 boot = timespec_sub(boot, ts);
1054         }
1055         wc.sec = boot.tv_sec;
1056         wc.nsec = boot.tv_nsec;
1057         wc.version = version;
1058
1059         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1060
1061         version++;
1062         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1063 }
1064
1065 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1066 {
1067         uint32_t quotient, remainder;
1068
1069         /* Don't try to replace with do_div(), this one calculates
1070          * "(dividend << 32) / divisor" */
1071         __asm__ ( "divl %4"
1072                   : "=a" (quotient), "=d" (remainder)
1073                   : "0" (0), "1" (dividend), "r" (divisor) );
1074         return quotient;
1075 }
1076
1077 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1078                                s8 *pshift, u32 *pmultiplier)
1079 {
1080         uint64_t scaled64;
1081         int32_t  shift = 0;
1082         uint64_t tps64;
1083         uint32_t tps32;
1084
1085         tps64 = base_khz * 1000LL;
1086         scaled64 = scaled_khz * 1000LL;
1087         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1088                 tps64 >>= 1;
1089                 shift--;
1090         }
1091
1092         tps32 = (uint32_t)tps64;
1093         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1094                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1095                         scaled64 >>= 1;
1096                 else
1097                         tps32 <<= 1;
1098                 shift++;
1099         }
1100
1101         *pshift = shift;
1102         *pmultiplier = div_frac(scaled64, tps32);
1103
1104         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1105                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1106 }
1107
1108 static inline u64 get_kernel_ns(void)
1109 {
1110         struct timespec ts;
1111
1112         WARN_ON(preemptible());
1113         ktime_get_ts(&ts);
1114         monotonic_to_bootbased(&ts);
1115         return timespec_to_ns(&ts);
1116 }
1117
1118 #ifdef CONFIG_X86_64
1119 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1120 #endif
1121
1122 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1123 unsigned long max_tsc_khz;
1124
1125 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1126 {
1127         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1128                                    vcpu->arch.virtual_tsc_shift);
1129 }
1130
1131 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1132 {
1133         u64 v = (u64)khz * (1000000 + ppm);
1134         do_div(v, 1000000);
1135         return v;
1136 }
1137
1138 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1139 {
1140         u32 thresh_lo, thresh_hi;
1141         int use_scaling = 0;
1142
1143         /* tsc_khz can be zero if TSC calibration fails */
1144         if (this_tsc_khz == 0)
1145                 return;
1146
1147         /* Compute a scale to convert nanoseconds in TSC cycles */
1148         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1149                            &vcpu->arch.virtual_tsc_shift,
1150                            &vcpu->arch.virtual_tsc_mult);
1151         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1152
1153         /*
1154          * Compute the variation in TSC rate which is acceptable
1155          * within the range of tolerance and decide if the
1156          * rate being applied is within that bounds of the hardware
1157          * rate.  If so, no scaling or compensation need be done.
1158          */
1159         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1160         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1161         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1162                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1163                 use_scaling = 1;
1164         }
1165         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1166 }
1167
1168 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1169 {
1170         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1171                                       vcpu->arch.virtual_tsc_mult,
1172                                       vcpu->arch.virtual_tsc_shift);
1173         tsc += vcpu->arch.this_tsc_write;
1174         return tsc;
1175 }
1176
1177 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1178 {
1179 #ifdef CONFIG_X86_64
1180         bool vcpus_matched;
1181         bool do_request = false;
1182         struct kvm_arch *ka = &vcpu->kvm->arch;
1183         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1184
1185         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1186                          atomic_read(&vcpu->kvm->online_vcpus));
1187
1188         if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1189                 if (!ka->use_master_clock)
1190                         do_request = 1;
1191
1192         if (!vcpus_matched && ka->use_master_clock)
1193                         do_request = 1;
1194
1195         if (do_request)
1196                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1197
1198         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1199                             atomic_read(&vcpu->kvm->online_vcpus),
1200                             ka->use_master_clock, gtod->clock.vclock_mode);
1201 #endif
1202 }
1203
1204 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1205 {
1206         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1207         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1208 }
1209
1210 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1211 {
1212         struct kvm *kvm = vcpu->kvm;
1213         u64 offset, ns, elapsed;
1214         unsigned long flags;
1215         s64 usdiff;
1216         bool matched;
1217         u64 data = msr->data;
1218
1219         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1220         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1221         ns = get_kernel_ns();
1222         elapsed = ns - kvm->arch.last_tsc_nsec;
1223
1224         if (vcpu->arch.virtual_tsc_khz) {
1225                 int faulted = 0;
1226
1227                 /* n.b - signed multiplication and division required */
1228                 usdiff = data - kvm->arch.last_tsc_write;
1229 #ifdef CONFIG_X86_64
1230                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1231 #else
1232                 /* do_div() only does unsigned */
1233                 asm("1: idivl %[divisor]\n"
1234                     "2: xor %%edx, %%edx\n"
1235                     "   movl $0, %[faulted]\n"
1236                     "3:\n"
1237                     ".section .fixup,\"ax\"\n"
1238                     "4: movl $1, %[faulted]\n"
1239                     "   jmp  3b\n"
1240                     ".previous\n"
1241
1242                 _ASM_EXTABLE(1b, 4b)
1243
1244                 : "=A"(usdiff), [faulted] "=r" (faulted)
1245                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1246
1247 #endif
1248                 do_div(elapsed, 1000);
1249                 usdiff -= elapsed;
1250                 if (usdiff < 0)
1251                         usdiff = -usdiff;
1252
1253                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1254                 if (faulted)
1255                         usdiff = USEC_PER_SEC;
1256         } else
1257                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1258
1259         /*
1260          * Special case: TSC write with a small delta (1 second) of virtual
1261          * cycle time against real time is interpreted as an attempt to
1262          * synchronize the CPU.
1263          *
1264          * For a reliable TSC, we can match TSC offsets, and for an unstable
1265          * TSC, we add elapsed time in this computation.  We could let the
1266          * compensation code attempt to catch up if we fall behind, but
1267          * it's better to try to match offsets from the beginning.
1268          */
1269         if (usdiff < USEC_PER_SEC &&
1270             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1271                 if (!check_tsc_unstable()) {
1272                         offset = kvm->arch.cur_tsc_offset;
1273                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1274                 } else {
1275                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1276                         data += delta;
1277                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1278                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1279                 }
1280                 matched = true;
1281         } else {
1282                 /*
1283                  * We split periods of matched TSC writes into generations.
1284                  * For each generation, we track the original measured
1285                  * nanosecond time, offset, and write, so if TSCs are in
1286                  * sync, we can match exact offset, and if not, we can match
1287                  * exact software computation in compute_guest_tsc()
1288                  *
1289                  * These values are tracked in kvm->arch.cur_xxx variables.
1290                  */
1291                 kvm->arch.cur_tsc_generation++;
1292                 kvm->arch.cur_tsc_nsec = ns;
1293                 kvm->arch.cur_tsc_write = data;
1294                 kvm->arch.cur_tsc_offset = offset;
1295                 matched = false;
1296                 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1297                          kvm->arch.cur_tsc_generation, data);
1298         }
1299
1300         /*
1301          * We also track th most recent recorded KHZ, write and time to
1302          * allow the matching interval to be extended at each write.
1303          */
1304         kvm->arch.last_tsc_nsec = ns;
1305         kvm->arch.last_tsc_write = data;
1306         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1307
1308         vcpu->arch.last_guest_tsc = data;
1309
1310         /* Keep track of which generation this VCPU has synchronized to */
1311         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1312         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1313         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1314
1315         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1316                 update_ia32_tsc_adjust_msr(vcpu, offset);
1317         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1318         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1319
1320         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1321         if (matched)
1322                 kvm->arch.nr_vcpus_matched_tsc++;
1323         else
1324                 kvm->arch.nr_vcpus_matched_tsc = 0;
1325
1326         kvm_track_tsc_matching(vcpu);
1327         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1328 }
1329
1330 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1331
1332 #ifdef CONFIG_X86_64
1333
1334 static cycle_t read_tsc(void)
1335 {
1336         cycle_t ret;
1337         u64 last;
1338
1339         /*
1340          * Empirically, a fence (of type that depends on the CPU)
1341          * before rdtsc is enough to ensure that rdtsc is ordered
1342          * with respect to loads.  The various CPU manuals are unclear
1343          * as to whether rdtsc can be reordered with later loads,
1344          * but no one has ever seen it happen.
1345          */
1346         rdtsc_barrier();
1347         ret = (cycle_t)vget_cycles();
1348
1349         last = pvclock_gtod_data.clock.cycle_last;
1350
1351         if (likely(ret >= last))
1352                 return ret;
1353
1354         /*
1355          * GCC likes to generate cmov here, but this branch is extremely
1356          * predictable (it's just a funciton of time and the likely is
1357          * very likely) and there's a data dependence, so force GCC
1358          * to generate a branch instead.  I don't barrier() because
1359          * we don't actually need a barrier, and if this function
1360          * ever gets inlined it will generate worse code.
1361          */
1362         asm volatile ("");
1363         return last;
1364 }
1365
1366 static inline u64 vgettsc(cycle_t *cycle_now)
1367 {
1368         long v;
1369         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1370
1371         *cycle_now = read_tsc();
1372
1373         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1374         return v * gtod->clock.mult;
1375 }
1376
1377 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1378 {
1379         unsigned long seq;
1380         u64 ns;
1381         int mode;
1382         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1383
1384         ts->tv_nsec = 0;
1385         do {
1386                 seq = read_seqcount_begin(&gtod->seq);
1387                 mode = gtod->clock.vclock_mode;
1388                 ts->tv_sec = gtod->monotonic_time_sec;
1389                 ns = gtod->monotonic_time_snsec;
1390                 ns += vgettsc(cycle_now);
1391                 ns >>= gtod->clock.shift;
1392         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1393         timespec_add_ns(ts, ns);
1394
1395         return mode;
1396 }
1397
1398 /* returns true if host is using tsc clocksource */
1399 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1400 {
1401         struct timespec ts;
1402
1403         /* checked again under seqlock below */
1404         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1405                 return false;
1406
1407         if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1408                 return false;
1409
1410         monotonic_to_bootbased(&ts);
1411         *kernel_ns = timespec_to_ns(&ts);
1412
1413         return true;
1414 }
1415 #endif
1416
1417 /*
1418  *
1419  * Assuming a stable TSC across physical CPUS, and a stable TSC
1420  * across virtual CPUs, the following condition is possible.
1421  * Each numbered line represents an event visible to both
1422  * CPUs at the next numbered event.
1423  *
1424  * "timespecX" represents host monotonic time. "tscX" represents
1425  * RDTSC value.
1426  *
1427  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1428  *
1429  * 1.  read timespec0,tsc0
1430  * 2.                                   | timespec1 = timespec0 + N
1431  *                                      | tsc1 = tsc0 + M
1432  * 3. transition to guest               | transition to guest
1433  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1434  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1435  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1436  *
1437  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1438  *
1439  *      - ret0 < ret1
1440  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1441  *              ...
1442  *      - 0 < N - M => M < N
1443  *
1444  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1445  * always the case (the difference between two distinct xtime instances
1446  * might be smaller then the difference between corresponding TSC reads,
1447  * when updating guest vcpus pvclock areas).
1448  *
1449  * To avoid that problem, do not allow visibility of distinct
1450  * system_timestamp/tsc_timestamp values simultaneously: use a master
1451  * copy of host monotonic time values. Update that master copy
1452  * in lockstep.
1453  *
1454  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1455  *
1456  */
1457
1458 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1459 {
1460 #ifdef CONFIG_X86_64
1461         struct kvm_arch *ka = &kvm->arch;
1462         int vclock_mode;
1463         bool host_tsc_clocksource, vcpus_matched;
1464
1465         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1466                         atomic_read(&kvm->online_vcpus));
1467
1468         /*
1469          * If the host uses TSC clock, then passthrough TSC as stable
1470          * to the guest.
1471          */
1472         host_tsc_clocksource = kvm_get_time_and_clockread(
1473                                         &ka->master_kernel_ns,
1474                                         &ka->master_cycle_now);
1475
1476         ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1477
1478         if (ka->use_master_clock)
1479                 atomic_set(&kvm_guest_has_master_clock, 1);
1480
1481         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1482         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1483                                         vcpus_matched);
1484 #endif
1485 }
1486
1487 static void kvm_gen_update_masterclock(struct kvm *kvm)
1488 {
1489 #ifdef CONFIG_X86_64
1490         int i;
1491         struct kvm_vcpu *vcpu;
1492         struct kvm_arch *ka = &kvm->arch;
1493
1494         spin_lock(&ka->pvclock_gtod_sync_lock);
1495         kvm_make_mclock_inprogress_request(kvm);
1496         /* no guest entries from this point */
1497         pvclock_update_vm_gtod_copy(kvm);
1498
1499         kvm_for_each_vcpu(i, vcpu, kvm)
1500                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1501
1502         /* guest entries allowed */
1503         kvm_for_each_vcpu(i, vcpu, kvm)
1504                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1505
1506         spin_unlock(&ka->pvclock_gtod_sync_lock);
1507 #endif
1508 }
1509
1510 static int kvm_guest_time_update(struct kvm_vcpu *v)
1511 {
1512         unsigned long flags, this_tsc_khz;
1513         struct kvm_vcpu_arch *vcpu = &v->arch;
1514         struct kvm_arch *ka = &v->kvm->arch;
1515         s64 kernel_ns;
1516         u64 tsc_timestamp, host_tsc;
1517         struct pvclock_vcpu_time_info guest_hv_clock;
1518         u8 pvclock_flags;
1519         bool use_master_clock;
1520
1521         kernel_ns = 0;
1522         host_tsc = 0;
1523
1524         /*
1525          * If the host uses TSC clock, then passthrough TSC as stable
1526          * to the guest.
1527          */
1528         spin_lock(&ka->pvclock_gtod_sync_lock);
1529         use_master_clock = ka->use_master_clock;
1530         if (use_master_clock) {
1531                 host_tsc = ka->master_cycle_now;
1532                 kernel_ns = ka->master_kernel_ns;
1533         }
1534         spin_unlock(&ka->pvclock_gtod_sync_lock);
1535
1536         /* Keep irq disabled to prevent changes to the clock */
1537         local_irq_save(flags);
1538         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1539         if (unlikely(this_tsc_khz == 0)) {
1540                 local_irq_restore(flags);
1541                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1542                 return 1;
1543         }
1544         if (!use_master_clock) {
1545                 host_tsc = native_read_tsc();
1546                 kernel_ns = get_kernel_ns();
1547         }
1548
1549         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1550
1551         /*
1552          * We may have to catch up the TSC to match elapsed wall clock
1553          * time for two reasons, even if kvmclock is used.
1554          *   1) CPU could have been running below the maximum TSC rate
1555          *   2) Broken TSC compensation resets the base at each VCPU
1556          *      entry to avoid unknown leaps of TSC even when running
1557          *      again on the same CPU.  This may cause apparent elapsed
1558          *      time to disappear, and the guest to stand still or run
1559          *      very slowly.
1560          */
1561         if (vcpu->tsc_catchup) {
1562                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1563                 if (tsc > tsc_timestamp) {
1564                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1565                         tsc_timestamp = tsc;
1566                 }
1567         }
1568
1569         local_irq_restore(flags);
1570
1571         if (!vcpu->pv_time_enabled)
1572                 return 0;
1573
1574         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1575                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1576                                    &vcpu->hv_clock.tsc_shift,
1577                                    &vcpu->hv_clock.tsc_to_system_mul);
1578                 vcpu->hw_tsc_khz = this_tsc_khz;
1579         }
1580
1581         /* With all the info we got, fill in the values */
1582         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1583         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1584         vcpu->last_kernel_ns = kernel_ns;
1585         vcpu->last_guest_tsc = tsc_timestamp;
1586
1587         /*
1588          * The interface expects us to write an even number signaling that the
1589          * update is finished. Since the guest won't see the intermediate
1590          * state, we just increase by 2 at the end.
1591          */
1592         vcpu->hv_clock.version += 2;
1593
1594         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1595                 &guest_hv_clock, sizeof(guest_hv_clock))))
1596                 return 0;
1597
1598         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1599         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1600
1601         if (vcpu->pvclock_set_guest_stopped_request) {
1602                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1603                 vcpu->pvclock_set_guest_stopped_request = false;
1604         }
1605
1606         /* If the host uses TSC clocksource, then it is stable */
1607         if (use_master_clock)
1608                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1609
1610         vcpu->hv_clock.flags = pvclock_flags;
1611
1612         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1613                                 &vcpu->hv_clock,
1614                                 sizeof(vcpu->hv_clock));
1615         return 0;
1616 }
1617
1618 /*
1619  * kvmclock updates which are isolated to a given vcpu, such as
1620  * vcpu->cpu migration, should not allow system_timestamp from
1621  * the rest of the vcpus to remain static. Otherwise ntp frequency
1622  * correction applies to one vcpu's system_timestamp but not
1623  * the others.
1624  *
1625  * So in those cases, request a kvmclock update for all vcpus.
1626  * The worst case for a remote vcpu to update its kvmclock
1627  * is then bounded by maximum nohz sleep latency.
1628  */
1629
1630 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1631 {
1632         int i;
1633         struct kvm *kvm = v->kvm;
1634         struct kvm_vcpu *vcpu;
1635
1636         kvm_for_each_vcpu(i, vcpu, kvm) {
1637                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1638                 kvm_vcpu_kick(vcpu);
1639         }
1640 }
1641
1642 static bool msr_mtrr_valid(unsigned msr)
1643 {
1644         switch (msr) {
1645         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1646         case MSR_MTRRfix64K_00000:
1647         case MSR_MTRRfix16K_80000:
1648         case MSR_MTRRfix16K_A0000:
1649         case MSR_MTRRfix4K_C0000:
1650         case MSR_MTRRfix4K_C8000:
1651         case MSR_MTRRfix4K_D0000:
1652         case MSR_MTRRfix4K_D8000:
1653         case MSR_MTRRfix4K_E0000:
1654         case MSR_MTRRfix4K_E8000:
1655         case MSR_MTRRfix4K_F0000:
1656         case MSR_MTRRfix4K_F8000:
1657         case MSR_MTRRdefType:
1658         case MSR_IA32_CR_PAT:
1659                 return true;
1660         case 0x2f8:
1661                 return true;
1662         }
1663         return false;
1664 }
1665
1666 static bool valid_pat_type(unsigned t)
1667 {
1668         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1669 }
1670
1671 static bool valid_mtrr_type(unsigned t)
1672 {
1673         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1674 }
1675
1676 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1677 {
1678         int i;
1679
1680         if (!msr_mtrr_valid(msr))
1681                 return false;
1682
1683         if (msr == MSR_IA32_CR_PAT) {
1684                 for (i = 0; i < 8; i++)
1685                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1686                                 return false;
1687                 return true;
1688         } else if (msr == MSR_MTRRdefType) {
1689                 if (data & ~0xcff)
1690                         return false;
1691                 return valid_mtrr_type(data & 0xff);
1692         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1693                 for (i = 0; i < 8 ; i++)
1694                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1695                                 return false;
1696                 return true;
1697         }
1698
1699         /* variable MTRRs */
1700         return valid_mtrr_type(data & 0xff);
1701 }
1702
1703 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1704 {
1705         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1706
1707         if (!mtrr_valid(vcpu, msr, data))
1708                 return 1;
1709
1710         if (msr == MSR_MTRRdefType) {
1711                 vcpu->arch.mtrr_state.def_type = data;
1712                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1713         } else if (msr == MSR_MTRRfix64K_00000)
1714                 p[0] = data;
1715         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1716                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1717         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1718                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1719         else if (msr == MSR_IA32_CR_PAT)
1720                 vcpu->arch.pat = data;
1721         else {  /* Variable MTRRs */
1722                 int idx, is_mtrr_mask;
1723                 u64 *pt;
1724
1725                 idx = (msr - 0x200) / 2;
1726                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1727                 if (!is_mtrr_mask)
1728                         pt =
1729                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1730                 else
1731                         pt =
1732                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1733                 *pt = data;
1734         }
1735
1736         kvm_mmu_reset_context(vcpu);
1737         return 0;
1738 }
1739
1740 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1741 {
1742         u64 mcg_cap = vcpu->arch.mcg_cap;
1743         unsigned bank_num = mcg_cap & 0xff;
1744
1745         switch (msr) {
1746         case MSR_IA32_MCG_STATUS:
1747                 vcpu->arch.mcg_status = data;
1748                 break;
1749         case MSR_IA32_MCG_CTL:
1750                 if (!(mcg_cap & MCG_CTL_P))
1751                         return 1;
1752                 if (data != 0 && data != ~(u64)0)
1753                         return -1;
1754                 vcpu->arch.mcg_ctl = data;
1755                 break;
1756         default:
1757                 if (msr >= MSR_IA32_MC0_CTL &&
1758                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1759                         u32 offset = msr - MSR_IA32_MC0_CTL;
1760                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1761                          * some Linux kernels though clear bit 10 in bank 4 to
1762                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1763                          * this to avoid an uncatched #GP in the guest
1764                          */
1765                         if ((offset & 0x3) == 0 &&
1766                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1767                                 return -1;
1768                         vcpu->arch.mce_banks[offset] = data;
1769                         break;
1770                 }
1771                 return 1;
1772         }
1773         return 0;
1774 }
1775
1776 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1777 {
1778         struct kvm *kvm = vcpu->kvm;
1779         int lm = is_long_mode(vcpu);
1780         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1781                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1782         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1783                 : kvm->arch.xen_hvm_config.blob_size_32;
1784         u32 page_num = data & ~PAGE_MASK;
1785         u64 page_addr = data & PAGE_MASK;
1786         u8 *page;
1787         int r;
1788
1789         r = -E2BIG;
1790         if (page_num >= blob_size)
1791                 goto out;
1792         r = -ENOMEM;
1793         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1794         if (IS_ERR(page)) {
1795                 r = PTR_ERR(page);
1796                 goto out;
1797         }
1798         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1799                 goto out_free;
1800         r = 0;
1801 out_free:
1802         kfree(page);
1803 out:
1804         return r;
1805 }
1806
1807 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1808 {
1809         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1810 }
1811
1812 static bool kvm_hv_msr_partition_wide(u32 msr)
1813 {
1814         bool r = false;
1815         switch (msr) {
1816         case HV_X64_MSR_GUEST_OS_ID:
1817         case HV_X64_MSR_HYPERCALL:
1818         case HV_X64_MSR_REFERENCE_TSC:
1819         case HV_X64_MSR_TIME_REF_COUNT:
1820                 r = true;
1821                 break;
1822         }
1823
1824         return r;
1825 }
1826
1827 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1828 {
1829         struct kvm *kvm = vcpu->kvm;
1830
1831         switch (msr) {
1832         case HV_X64_MSR_GUEST_OS_ID:
1833                 kvm->arch.hv_guest_os_id = data;
1834                 /* setting guest os id to zero disables hypercall page */
1835                 if (!kvm->arch.hv_guest_os_id)
1836                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1837                 break;
1838         case HV_X64_MSR_HYPERCALL: {
1839                 u64 gfn;
1840                 unsigned long addr;
1841                 u8 instructions[4];
1842
1843                 /* if guest os id is not set hypercall should remain disabled */
1844                 if (!kvm->arch.hv_guest_os_id)
1845                         break;
1846                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1847                         kvm->arch.hv_hypercall = data;
1848                         break;
1849                 }
1850                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1851                 addr = gfn_to_hva(kvm, gfn);
1852                 if (kvm_is_error_hva(addr))
1853                         return 1;
1854                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1855                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1856                 if (__copy_to_user((void __user *)addr, instructions, 4))
1857                         return 1;
1858                 kvm->arch.hv_hypercall = data;
1859                 mark_page_dirty(kvm, gfn);
1860                 break;
1861         }
1862         case HV_X64_MSR_REFERENCE_TSC: {
1863                 u64 gfn;
1864                 HV_REFERENCE_TSC_PAGE tsc_ref;
1865                 memset(&tsc_ref, 0, sizeof(tsc_ref));
1866                 kvm->arch.hv_tsc_page = data;
1867                 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1868                         break;
1869                 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1870                 if (kvm_write_guest(kvm, data,
1871                         &tsc_ref, sizeof(tsc_ref)))
1872                         return 1;
1873                 mark_page_dirty(kvm, gfn);
1874                 break;
1875         }
1876         default:
1877                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1878                             "data 0x%llx\n", msr, data);
1879                 return 1;
1880         }
1881         return 0;
1882 }
1883
1884 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1885 {
1886         switch (msr) {
1887         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1888                 u64 gfn;
1889                 unsigned long addr;
1890
1891                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1892                         vcpu->arch.hv_vapic = data;
1893                         break;
1894                 }
1895                 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
1896                 addr = gfn_to_hva(vcpu->kvm, gfn);
1897                 if (kvm_is_error_hva(addr))
1898                         return 1;
1899                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1900                         return 1;
1901                 vcpu->arch.hv_vapic = data;
1902                 mark_page_dirty(vcpu->kvm, gfn);
1903                 break;
1904         }
1905         case HV_X64_MSR_EOI:
1906                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1907         case HV_X64_MSR_ICR:
1908                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1909         case HV_X64_MSR_TPR:
1910                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1911         default:
1912                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1913                             "data 0x%llx\n", msr, data);
1914                 return 1;
1915         }
1916
1917         return 0;
1918 }
1919
1920 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1921 {
1922         gpa_t gpa = data & ~0x3f;
1923
1924         /* Bits 2:5 are reserved, Should be zero */
1925         if (data & 0x3c)
1926                 return 1;
1927
1928         vcpu->arch.apf.msr_val = data;
1929
1930         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1931                 kvm_clear_async_pf_completion_queue(vcpu);
1932                 kvm_async_pf_hash_reset(vcpu);
1933                 return 0;
1934         }
1935
1936         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1937                                         sizeof(u32)))
1938                 return 1;
1939
1940         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1941         kvm_async_pf_wakeup_all(vcpu);
1942         return 0;
1943 }
1944
1945 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1946 {
1947         vcpu->arch.pv_time_enabled = false;
1948 }
1949
1950 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1951 {
1952         u64 delta;
1953
1954         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1955                 return;
1956
1957         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1958         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1959         vcpu->arch.st.accum_steal = delta;
1960 }
1961
1962 static void record_steal_time(struct kvm_vcpu *vcpu)
1963 {
1964         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1965                 return;
1966
1967         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1968                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1969                 return;
1970
1971         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1972         vcpu->arch.st.steal.version += 2;
1973         vcpu->arch.st.accum_steal = 0;
1974
1975         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1976                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1977 }
1978
1979 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1980 {
1981         bool pr = false;
1982         u32 msr = msr_info->index;
1983         u64 data = msr_info->data;
1984
1985         switch (msr) {
1986         case MSR_AMD64_NB_CFG:
1987         case MSR_IA32_UCODE_REV:
1988         case MSR_IA32_UCODE_WRITE:
1989         case MSR_VM_HSAVE_PA:
1990         case MSR_AMD64_PATCH_LOADER:
1991         case MSR_AMD64_BU_CFG2:
1992                 break;
1993
1994         case MSR_EFER:
1995                 return set_efer(vcpu, data);
1996         case MSR_K7_HWCR:
1997                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1998                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1999                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2000                 if (data != 0) {
2001                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2002                                     data);
2003                         return 1;
2004                 }
2005                 break;
2006         case MSR_FAM10H_MMIO_CONF_BASE:
2007                 if (data != 0) {
2008                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2009                                     "0x%llx\n", data);
2010                         return 1;
2011                 }
2012                 break;
2013         case MSR_IA32_DEBUGCTLMSR:
2014                 if (!data) {
2015                         /* We support the non-activated case already */
2016                         break;
2017                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2018                         /* Values other than LBR and BTF are vendor-specific,
2019                            thus reserved and should throw a #GP */
2020                         return 1;
2021                 }
2022                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2023                             __func__, data);
2024                 break;
2025         case 0x200 ... 0x2ff:
2026                 return set_msr_mtrr(vcpu, msr, data);
2027         case MSR_IA32_APICBASE:
2028                 return kvm_set_apic_base(vcpu, msr_info);
2029         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2030                 return kvm_x2apic_msr_write(vcpu, msr, data);
2031         case MSR_IA32_TSCDEADLINE:
2032                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2033                 break;
2034         case MSR_IA32_TSC_ADJUST:
2035                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2036                         if (!msr_info->host_initiated) {
2037                                 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2038                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2039                         }
2040                         vcpu->arch.ia32_tsc_adjust_msr = data;
2041                 }
2042                 break;
2043         case MSR_IA32_MISC_ENABLE:
2044                 vcpu->arch.ia32_misc_enable_msr = data;
2045                 break;
2046         case MSR_KVM_WALL_CLOCK_NEW:
2047         case MSR_KVM_WALL_CLOCK:
2048                 vcpu->kvm->arch.wall_clock = data;
2049                 kvm_write_wall_clock(vcpu->kvm, data);
2050                 break;
2051         case MSR_KVM_SYSTEM_TIME_NEW:
2052         case MSR_KVM_SYSTEM_TIME: {
2053                 u64 gpa_offset;
2054                 kvmclock_reset(vcpu);
2055
2056                 vcpu->arch.time = data;
2057                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2058
2059                 /* we verify if the enable bit is set... */
2060                 if (!(data & 1))
2061                         break;
2062
2063                 gpa_offset = data & ~(PAGE_MASK | 1);
2064
2065                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2066                      &vcpu->arch.pv_time, data & ~1ULL,
2067                      sizeof(struct pvclock_vcpu_time_info)))
2068                         vcpu->arch.pv_time_enabled = false;
2069                 else
2070                         vcpu->arch.pv_time_enabled = true;
2071
2072                 break;
2073         }
2074         case MSR_KVM_ASYNC_PF_EN:
2075                 if (kvm_pv_enable_async_pf(vcpu, data))
2076                         return 1;
2077                 break;
2078         case MSR_KVM_STEAL_TIME:
2079
2080                 if (unlikely(!sched_info_on()))
2081                         return 1;
2082
2083                 if (data & KVM_STEAL_RESERVED_MASK)
2084                         return 1;
2085
2086                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2087                                                 data & KVM_STEAL_VALID_BITS,
2088                                                 sizeof(struct kvm_steal_time)))
2089                         return 1;
2090
2091                 vcpu->arch.st.msr_val = data;
2092
2093                 if (!(data & KVM_MSR_ENABLED))
2094                         break;
2095
2096                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2097
2098                 preempt_disable();
2099                 accumulate_steal_time(vcpu);
2100                 preempt_enable();
2101
2102                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2103
2104                 break;
2105         case MSR_KVM_PV_EOI_EN:
2106                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2107                         return 1;
2108                 break;
2109
2110         case MSR_IA32_MCG_CTL:
2111         case MSR_IA32_MCG_STATUS:
2112         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2113                 return set_msr_mce(vcpu, msr, data);
2114
2115         /* Performance counters are not protected by a CPUID bit,
2116          * so we should check all of them in the generic path for the sake of
2117          * cross vendor migration.
2118          * Writing a zero into the event select MSRs disables them,
2119          * which we perfectly emulate ;-). Any other value should be at least
2120          * reported, some guests depend on them.
2121          */
2122         case MSR_K7_EVNTSEL0:
2123         case MSR_K7_EVNTSEL1:
2124         case MSR_K7_EVNTSEL2:
2125         case MSR_K7_EVNTSEL3:
2126                 if (data != 0)
2127                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2128                                     "0x%x data 0x%llx\n", msr, data);
2129                 break;
2130         /* at least RHEL 4 unconditionally writes to the perfctr registers,
2131          * so we ignore writes to make it happy.
2132          */
2133         case MSR_K7_PERFCTR0:
2134         case MSR_K7_PERFCTR1:
2135         case MSR_K7_PERFCTR2:
2136         case MSR_K7_PERFCTR3:
2137                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2138                             "0x%x data 0x%llx\n", msr, data);
2139                 break;
2140         case MSR_P6_PERFCTR0:
2141         case MSR_P6_PERFCTR1:
2142                 pr = true;
2143         case MSR_P6_EVNTSEL0:
2144         case MSR_P6_EVNTSEL1:
2145                 if (kvm_pmu_msr(vcpu, msr))
2146                         return kvm_pmu_set_msr(vcpu, msr_info);
2147
2148                 if (pr || data != 0)
2149                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2150                                     "0x%x data 0x%llx\n", msr, data);
2151                 break;
2152         case MSR_K7_CLK_CTL:
2153                 /*
2154                  * Ignore all writes to this no longer documented MSR.
2155                  * Writes are only relevant for old K7 processors,
2156                  * all pre-dating SVM, but a recommended workaround from
2157                  * AMD for these chips. It is possible to specify the
2158                  * affected processor models on the command line, hence
2159                  * the need to ignore the workaround.
2160                  */
2161                 break;
2162         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2163                 if (kvm_hv_msr_partition_wide(msr)) {
2164                         int r;
2165                         mutex_lock(&vcpu->kvm->lock);
2166                         r = set_msr_hyperv_pw(vcpu, msr, data);
2167                         mutex_unlock(&vcpu->kvm->lock);
2168                         return r;
2169                 } else
2170                         return set_msr_hyperv(vcpu, msr, data);
2171                 break;
2172         case MSR_IA32_BBL_CR_CTL3:
2173                 /* Drop writes to this legacy MSR -- see rdmsr
2174                  * counterpart for further detail.
2175                  */
2176                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2177                 break;
2178         case MSR_AMD64_OSVW_ID_LENGTH:
2179                 if (!guest_cpuid_has_osvw(vcpu))
2180                         return 1;
2181                 vcpu->arch.osvw.length = data;
2182                 break;
2183         case MSR_AMD64_OSVW_STATUS:
2184                 if (!guest_cpuid_has_osvw(vcpu))
2185                         return 1;
2186                 vcpu->arch.osvw.status = data;
2187                 break;
2188         default:
2189                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2190                         return xen_hvm_config(vcpu, data);
2191                 if (kvm_pmu_msr(vcpu, msr))
2192                         return kvm_pmu_set_msr(vcpu, msr_info);
2193                 if (!ignore_msrs) {
2194                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2195                                     msr, data);
2196                         return 1;
2197                 } else {
2198                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2199                                     msr, data);
2200                         break;
2201                 }
2202         }
2203         return 0;
2204 }
2205 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2206
2207
2208 /*
2209  * Reads an msr value (of 'msr_index') into 'pdata'.
2210  * Returns 0 on success, non-0 otherwise.
2211  * Assumes vcpu_load() was already called.
2212  */
2213 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2214 {
2215         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2216 }
2217
2218 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2219 {
2220         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2221
2222         if (!msr_mtrr_valid(msr))
2223                 return 1;
2224
2225         if (msr == MSR_MTRRdefType)
2226                 *pdata = vcpu->arch.mtrr_state.def_type +
2227                          (vcpu->arch.mtrr_state.enabled << 10);
2228         else if (msr == MSR_MTRRfix64K_00000)
2229                 *pdata = p[0];
2230         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2231                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2232         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2233                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2234         else if (msr == MSR_IA32_CR_PAT)
2235                 *pdata = vcpu->arch.pat;
2236         else {  /* Variable MTRRs */
2237                 int idx, is_mtrr_mask;
2238                 u64 *pt;
2239
2240                 idx = (msr - 0x200) / 2;
2241                 is_mtrr_mask = msr - 0x200 - 2 * idx;
2242                 if (!is_mtrr_mask)
2243                         pt =
2244                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2245                 else
2246                         pt =
2247                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2248                 *pdata = *pt;
2249         }
2250
2251         return 0;
2252 }
2253
2254 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2255 {
2256         u64 data;
2257         u64 mcg_cap = vcpu->arch.mcg_cap;
2258         unsigned bank_num = mcg_cap & 0xff;
2259
2260         switch (msr) {
2261         case MSR_IA32_P5_MC_ADDR:
2262         case MSR_IA32_P5_MC_TYPE:
2263                 data = 0;
2264                 break;
2265         case MSR_IA32_MCG_CAP:
2266                 data = vcpu->arch.mcg_cap;
2267                 break;
2268         case MSR_IA32_MCG_CTL:
2269                 if (!(mcg_cap & MCG_CTL_P))
2270                         return 1;
2271                 data = vcpu->arch.mcg_ctl;
2272                 break;
2273         case MSR_IA32_MCG_STATUS:
2274                 data = vcpu->arch.mcg_status;
2275                 break;
2276         default:
2277                 if (msr >= MSR_IA32_MC0_CTL &&
2278                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2279                         u32 offset = msr - MSR_IA32_MC0_CTL;
2280                         data = vcpu->arch.mce_banks[offset];
2281                         break;
2282                 }
2283                 return 1;
2284         }
2285         *pdata = data;
2286         return 0;
2287 }
2288
2289 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2290 {
2291         u64 data = 0;
2292         struct kvm *kvm = vcpu->kvm;
2293
2294         switch (msr) {
2295         case HV_X64_MSR_GUEST_OS_ID:
2296                 data = kvm->arch.hv_guest_os_id;
2297                 break;
2298         case HV_X64_MSR_HYPERCALL:
2299                 data = kvm->arch.hv_hypercall;
2300                 break;
2301         case HV_X64_MSR_TIME_REF_COUNT: {
2302                 data =
2303                      div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2304                 break;
2305         }
2306         case HV_X64_MSR_REFERENCE_TSC:
2307                 data = kvm->arch.hv_tsc_page;
2308                 break;
2309         default:
2310                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2311                 return 1;
2312         }
2313
2314         *pdata = data;
2315         return 0;
2316 }
2317
2318 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2319 {
2320         u64 data = 0;
2321
2322         switch (msr) {
2323         case HV_X64_MSR_VP_INDEX: {
2324                 int r;
2325                 struct kvm_vcpu *v;
2326                 kvm_for_each_vcpu(r, v, vcpu->kvm)
2327                         if (v == vcpu)
2328                                 data = r;
2329                 break;
2330         }
2331         case HV_X64_MSR_EOI:
2332                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2333         case HV_X64_MSR_ICR:
2334                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2335         case HV_X64_MSR_TPR:
2336                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2337         case HV_X64_MSR_APIC_ASSIST_PAGE:
2338                 data = vcpu->arch.hv_vapic;
2339                 break;
2340         default:
2341                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2342                 return 1;
2343         }
2344         *pdata = data;
2345         return 0;
2346 }
2347
2348 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2349 {
2350         u64 data;
2351
2352         switch (msr) {
2353         case MSR_IA32_PLATFORM_ID:
2354         case MSR_IA32_EBL_CR_POWERON:
2355         case MSR_IA32_DEBUGCTLMSR:
2356         case MSR_IA32_LASTBRANCHFROMIP:
2357         case MSR_IA32_LASTBRANCHTOIP:
2358         case MSR_IA32_LASTINTFROMIP:
2359         case MSR_IA32_LASTINTTOIP:
2360         case MSR_K8_SYSCFG:
2361         case MSR_K7_HWCR:
2362         case MSR_VM_HSAVE_PA:
2363         case MSR_K7_EVNTSEL0:
2364         case MSR_K7_PERFCTR0:
2365         case MSR_K8_INT_PENDING_MSG:
2366         case MSR_AMD64_NB_CFG:
2367         case MSR_FAM10H_MMIO_CONF_BASE:
2368         case MSR_AMD64_BU_CFG2:
2369                 data = 0;
2370                 break;
2371         case MSR_P6_PERFCTR0:
2372         case MSR_P6_PERFCTR1:
2373         case MSR_P6_EVNTSEL0:
2374         case MSR_P6_EVNTSEL1:
2375                 if (kvm_pmu_msr(vcpu, msr))
2376                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2377                 data = 0;
2378                 break;
2379         case MSR_IA32_UCODE_REV:
2380                 data = 0x100000000ULL;
2381                 break;
2382         case MSR_MTRRcap:
2383                 data = 0x500 | KVM_NR_VAR_MTRR;
2384                 break;
2385         case 0x200 ... 0x2ff:
2386                 return get_msr_mtrr(vcpu, msr, pdata);
2387         case 0xcd: /* fsb frequency */
2388                 data = 3;
2389                 break;
2390                 /*
2391                  * MSR_EBC_FREQUENCY_ID
2392                  * Conservative value valid for even the basic CPU models.
2393                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2394                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2395                  * and 266MHz for model 3, or 4. Set Core Clock
2396                  * Frequency to System Bus Frequency Ratio to 1 (bits
2397                  * 31:24) even though these are only valid for CPU
2398                  * models > 2, however guests may end up dividing or
2399                  * multiplying by zero otherwise.
2400                  */
2401         case MSR_EBC_FREQUENCY_ID:
2402                 data = 1 << 24;
2403                 break;
2404         case MSR_IA32_APICBASE:
2405                 data = kvm_get_apic_base(vcpu);
2406                 break;
2407         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2408                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2409                 break;
2410         case MSR_IA32_TSCDEADLINE:
2411                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2412                 break;
2413         case MSR_IA32_TSC_ADJUST:
2414                 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2415                 break;
2416         case MSR_IA32_MISC_ENABLE:
2417                 data = vcpu->arch.ia32_misc_enable_msr;
2418                 break;
2419         case MSR_IA32_PERF_STATUS:
2420                 /* TSC increment by tick */
2421                 data = 1000ULL;
2422                 /* CPU multiplier */
2423                 data |= (((uint64_t)4ULL) << 40);
2424                 break;
2425         case MSR_EFER:
2426                 data = vcpu->arch.efer;
2427                 break;
2428         case MSR_KVM_WALL_CLOCK:
2429         case MSR_KVM_WALL_CLOCK_NEW:
2430                 data = vcpu->kvm->arch.wall_clock;
2431                 break;
2432         case MSR_KVM_SYSTEM_TIME:
2433         case MSR_KVM_SYSTEM_TIME_NEW:
2434                 data = vcpu->arch.time;
2435                 break;
2436         case MSR_KVM_ASYNC_PF_EN:
2437                 data = vcpu->arch.apf.msr_val;
2438                 break;
2439         case MSR_KVM_STEAL_TIME:
2440                 data = vcpu->arch.st.msr_val;
2441                 break;
2442         case MSR_KVM_PV_EOI_EN:
2443                 data = vcpu->arch.pv_eoi.msr_val;
2444                 break;
2445         case MSR_IA32_P5_MC_ADDR:
2446         case MSR_IA32_P5_MC_TYPE:
2447         case MSR_IA32_MCG_CAP:
2448         case MSR_IA32_MCG_CTL:
2449         case MSR_IA32_MCG_STATUS:
2450         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2451                 return get_msr_mce(vcpu, msr, pdata);
2452         case MSR_K7_CLK_CTL:
2453                 /*
2454                  * Provide expected ramp-up count for K7. All other
2455                  * are set to zero, indicating minimum divisors for
2456                  * every field.
2457                  *
2458                  * This prevents guest kernels on AMD host with CPU
2459                  * type 6, model 8 and higher from exploding due to
2460                  * the rdmsr failing.
2461                  */
2462                 data = 0x20000000;
2463                 break;
2464         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2465                 if (kvm_hv_msr_partition_wide(msr)) {
2466                         int r;
2467                         mutex_lock(&vcpu->kvm->lock);
2468                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2469                         mutex_unlock(&vcpu->kvm->lock);
2470                         return r;
2471                 } else
2472                         return get_msr_hyperv(vcpu, msr, pdata);
2473                 break;
2474         case MSR_IA32_BBL_CR_CTL3:
2475                 /* This legacy MSR exists but isn't fully documented in current
2476                  * silicon.  It is however accessed by winxp in very narrow
2477                  * scenarios where it sets bit #19, itself documented as
2478                  * a "reserved" bit.  Best effort attempt to source coherent
2479                  * read data here should the balance of the register be
2480                  * interpreted by the guest:
2481                  *
2482                  * L2 cache control register 3: 64GB range, 256KB size,
2483                  * enabled, latency 0x1, configured
2484                  */
2485                 data = 0xbe702111;
2486                 break;
2487         case MSR_AMD64_OSVW_ID_LENGTH:
2488                 if (!guest_cpuid_has_osvw(vcpu))
2489                         return 1;
2490                 data = vcpu->arch.osvw.length;
2491                 break;
2492         case MSR_AMD64_OSVW_STATUS:
2493                 if (!guest_cpuid_has_osvw(vcpu))
2494                         return 1;
2495                 data = vcpu->arch.osvw.status;
2496                 break;
2497         default:
2498                 if (kvm_pmu_msr(vcpu, msr))
2499                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2500                 if (!ignore_msrs) {
2501                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2502                         return 1;
2503                 } else {
2504                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2505                         data = 0;
2506                 }
2507                 break;
2508         }
2509         *pdata = data;
2510         return 0;
2511 }
2512 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2513
2514 /*
2515  * Read or write a bunch of msrs. All parameters are kernel addresses.
2516  *
2517  * @return number of msrs set successfully.
2518  */
2519 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2520                     struct kvm_msr_entry *entries,
2521                     int (*do_msr)(struct kvm_vcpu *vcpu,
2522                                   unsigned index, u64 *data))
2523 {
2524         int i, idx;
2525
2526         idx = srcu_read_lock(&vcpu->kvm->srcu);
2527         for (i = 0; i < msrs->nmsrs; ++i)
2528                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2529                         break;
2530         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2531
2532         return i;
2533 }
2534
2535 /*
2536  * Read or write a bunch of msrs. Parameters are user addresses.
2537  *
2538  * @return number of msrs set successfully.
2539  */
2540 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2541                   int (*do_msr)(struct kvm_vcpu *vcpu,
2542                                 unsigned index, u64 *data),
2543                   int writeback)
2544 {
2545         struct kvm_msrs msrs;
2546         struct kvm_msr_entry *entries;
2547         int r, n;
2548         unsigned size;
2549
2550         r = -EFAULT;
2551         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2552                 goto out;
2553
2554         r = -E2BIG;
2555         if (msrs.nmsrs >= MAX_IO_MSRS)
2556                 goto out;
2557
2558         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2559         entries = memdup_user(user_msrs->entries, size);
2560         if (IS_ERR(entries)) {
2561                 r = PTR_ERR(entries);
2562                 goto out;
2563         }
2564
2565         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2566         if (r < 0)
2567                 goto out_free;
2568
2569         r = -EFAULT;
2570         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2571                 goto out_free;
2572
2573         r = n;
2574
2575 out_free:
2576         kfree(entries);
2577 out:
2578         return r;
2579 }
2580
2581 int kvm_dev_ioctl_check_extension(long ext)
2582 {
2583         int r;
2584
2585         switch (ext) {
2586         case KVM_CAP_IRQCHIP:
2587         case KVM_CAP_HLT:
2588         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2589         case KVM_CAP_SET_TSS_ADDR:
2590         case KVM_CAP_EXT_CPUID:
2591         case KVM_CAP_EXT_EMUL_CPUID:
2592         case KVM_CAP_CLOCKSOURCE:
2593         case KVM_CAP_PIT:
2594         case KVM_CAP_NOP_IO_DELAY:
2595         case KVM_CAP_MP_STATE:
2596         case KVM_CAP_SYNC_MMU:
2597         case KVM_CAP_USER_NMI:
2598         case KVM_CAP_REINJECT_CONTROL:
2599         case KVM_CAP_IRQ_INJECT_STATUS:
2600         case KVM_CAP_IRQFD:
2601         case KVM_CAP_IOEVENTFD:
2602         case KVM_CAP_PIT2:
2603         case KVM_CAP_PIT_STATE2:
2604         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2605         case KVM_CAP_XEN_HVM:
2606         case KVM_CAP_ADJUST_CLOCK:
2607         case KVM_CAP_VCPU_EVENTS:
2608         case KVM_CAP_HYPERV:
2609         case KVM_CAP_HYPERV_VAPIC:
2610         case KVM_CAP_HYPERV_SPIN:
2611         case KVM_CAP_PCI_SEGMENT:
2612         case KVM_CAP_DEBUGREGS:
2613         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2614         case KVM_CAP_XSAVE:
2615         case KVM_CAP_ASYNC_PF:
2616         case KVM_CAP_GET_TSC_KHZ:
2617         case KVM_CAP_KVMCLOCK_CTRL:
2618         case KVM_CAP_READONLY_MEM:
2619         case KVM_CAP_HYPERV_TIME:
2620 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2621         case KVM_CAP_ASSIGN_DEV_IRQ:
2622         case KVM_CAP_PCI_2_3:
2623 #endif
2624                 r = 1;
2625                 break;
2626         case KVM_CAP_COALESCED_MMIO:
2627                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2628                 break;
2629         case KVM_CAP_VAPIC:
2630                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2631                 break;
2632         case KVM_CAP_NR_VCPUS:
2633                 r = KVM_SOFT_MAX_VCPUS;
2634                 break;
2635         case KVM_CAP_MAX_VCPUS:
2636                 r = KVM_MAX_VCPUS;
2637                 break;
2638         case KVM_CAP_NR_MEMSLOTS:
2639                 r = KVM_USER_MEM_SLOTS;
2640                 break;
2641         case KVM_CAP_PV_MMU:    /* obsolete */
2642                 r = 0;
2643                 break;
2644 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2645         case KVM_CAP_IOMMU:
2646                 r = iommu_present(&pci_bus_type);
2647                 break;
2648 #endif
2649         case KVM_CAP_MCE:
2650                 r = KVM_MAX_MCE_BANKS;
2651                 break;
2652         case KVM_CAP_XCRS:
2653                 r = cpu_has_xsave;
2654                 break;
2655         case KVM_CAP_TSC_CONTROL:
2656                 r = kvm_has_tsc_control;
2657                 break;
2658         case KVM_CAP_TSC_DEADLINE_TIMER:
2659                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2660                 break;
2661         default:
2662                 r = 0;
2663                 break;
2664         }
2665         return r;
2666
2667 }
2668
2669 long kvm_arch_dev_ioctl(struct file *filp,
2670                         unsigned int ioctl, unsigned long arg)
2671 {
2672         void __user *argp = (void __user *)arg;
2673         long r;
2674
2675         switch (ioctl) {
2676         case KVM_GET_MSR_INDEX_LIST: {
2677                 struct kvm_msr_list __user *user_msr_list = argp;
2678                 struct kvm_msr_list msr_list;
2679                 unsigned n;
2680
2681                 r = -EFAULT;
2682                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2683                         goto out;
2684                 n = msr_list.nmsrs;
2685                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2686                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2687                         goto out;
2688                 r = -E2BIG;
2689                 if (n < msr_list.nmsrs)
2690                         goto out;
2691                 r = -EFAULT;
2692                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2693                                  num_msrs_to_save * sizeof(u32)))
2694                         goto out;
2695                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2696                                  &emulated_msrs,
2697                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2698                         goto out;
2699                 r = 0;
2700                 break;
2701         }
2702         case KVM_GET_SUPPORTED_CPUID:
2703         case KVM_GET_EMULATED_CPUID: {
2704                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2705                 struct kvm_cpuid2 cpuid;
2706
2707                 r = -EFAULT;
2708                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2709                         goto out;
2710
2711                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2712                                             ioctl);
2713                 if (r)
2714                         goto out;
2715
2716                 r = -EFAULT;
2717                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2718                         goto out;
2719                 r = 0;
2720                 break;
2721         }
2722         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2723                 u64 mce_cap;
2724
2725                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2726                 r = -EFAULT;
2727                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2728                         goto out;
2729                 r = 0;
2730                 break;
2731         }
2732         default:
2733                 r = -EINVAL;
2734         }
2735 out:
2736         return r;
2737 }
2738
2739 static void wbinvd_ipi(void *garbage)
2740 {
2741         wbinvd();
2742 }
2743
2744 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2745 {
2746         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2747 }
2748
2749 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2750 {
2751         /* Address WBINVD may be executed by guest */
2752         if (need_emulate_wbinvd(vcpu)) {
2753                 if (kvm_x86_ops->has_wbinvd_exit())
2754                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2755                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2756                         smp_call_function_single(vcpu->cpu,
2757                                         wbinvd_ipi, NULL, 1);
2758         }
2759
2760         kvm_x86_ops->vcpu_load(vcpu, cpu);
2761
2762         /* Apply any externally detected TSC adjustments (due to suspend) */
2763         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2764                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2765                 vcpu->arch.tsc_offset_adjustment = 0;
2766                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2767         }
2768
2769         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2770                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2771                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2772                 if (tsc_delta < 0)
2773                         mark_tsc_unstable("KVM discovered backwards TSC");
2774                 if (check_tsc_unstable()) {
2775                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2776                                                 vcpu->arch.last_guest_tsc);
2777                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2778                         vcpu->arch.tsc_catchup = 1;
2779                 }
2780                 /*
2781                  * On a host with synchronized TSC, there is no need to update
2782                  * kvmclock on vcpu->cpu migration
2783                  */
2784                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2785                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2786                 if (vcpu->cpu != cpu)
2787                         kvm_migrate_timers(vcpu);
2788                 vcpu->cpu = cpu;
2789         }
2790
2791         accumulate_steal_time(vcpu);
2792         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2793 }
2794
2795 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2796 {
2797         kvm_x86_ops->vcpu_put(vcpu);
2798         kvm_put_guest_fpu(vcpu);
2799         vcpu->arch.last_host_tsc = native_read_tsc();
2800 }
2801
2802 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2803                                     struct kvm_lapic_state *s)
2804 {
2805         kvm_x86_ops->sync_pir_to_irr(vcpu);
2806         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2807
2808         return 0;
2809 }
2810
2811 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2812                                     struct kvm_lapic_state *s)
2813 {
2814         kvm_apic_post_state_restore(vcpu, s);
2815         update_cr8_intercept(vcpu);
2816
2817         return 0;
2818 }
2819
2820 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2821                                     struct kvm_interrupt *irq)
2822 {
2823         if (irq->irq >= KVM_NR_INTERRUPTS)
2824                 return -EINVAL;
2825         if (irqchip_in_kernel(vcpu->kvm))
2826                 return -ENXIO;
2827
2828         kvm_queue_interrupt(vcpu, irq->irq, false);
2829         kvm_make_request(KVM_REQ_EVENT, vcpu);
2830
2831         return 0;
2832 }
2833
2834 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2835 {
2836         kvm_inject_nmi(vcpu);
2837
2838         return 0;
2839 }
2840
2841 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2842                                            struct kvm_tpr_access_ctl *tac)
2843 {
2844         if (tac->flags)
2845                 return -EINVAL;
2846         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2847         return 0;
2848 }
2849
2850 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2851                                         u64 mcg_cap)
2852 {
2853         int r;
2854         unsigned bank_num = mcg_cap & 0xff, bank;
2855
2856         r = -EINVAL;
2857         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2858                 goto out;
2859         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2860                 goto out;
2861         r = 0;
2862         vcpu->arch.mcg_cap = mcg_cap;
2863         /* Init IA32_MCG_CTL to all 1s */
2864         if (mcg_cap & MCG_CTL_P)
2865                 vcpu->arch.mcg_ctl = ~(u64)0;
2866         /* Init IA32_MCi_CTL to all 1s */
2867         for (bank = 0; bank < bank_num; bank++)
2868                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2869 out:
2870         return r;
2871 }
2872
2873 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2874                                       struct kvm_x86_mce *mce)
2875 {
2876         u64 mcg_cap = vcpu->arch.mcg_cap;
2877         unsigned bank_num = mcg_cap & 0xff;
2878         u64 *banks = vcpu->arch.mce_banks;
2879
2880         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2881                 return -EINVAL;
2882         /*
2883          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2884          * reporting is disabled
2885          */
2886         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2887             vcpu->arch.mcg_ctl != ~(u64)0)
2888                 return 0;
2889         banks += 4 * mce->bank;
2890         /*
2891          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2892          * reporting is disabled for the bank
2893          */
2894         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2895                 return 0;
2896         if (mce->status & MCI_STATUS_UC) {
2897                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2898                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2899                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2900                         return 0;
2901                 }
2902                 if (banks[1] & MCI_STATUS_VAL)
2903                         mce->status |= MCI_STATUS_OVER;
2904                 banks[2] = mce->addr;
2905                 banks[3] = mce->misc;
2906                 vcpu->arch.mcg_status = mce->mcg_status;
2907                 banks[1] = mce->status;
2908                 kvm_queue_exception(vcpu, MC_VECTOR);
2909         } else if (!(banks[1] & MCI_STATUS_VAL)
2910                    || !(banks[1] & MCI_STATUS_UC)) {
2911                 if (banks[1] & MCI_STATUS_VAL)
2912                         mce->status |= MCI_STATUS_OVER;
2913                 banks[2] = mce->addr;
2914                 banks[3] = mce->misc;
2915                 banks[1] = mce->status;
2916         } else
2917                 banks[1] |= MCI_STATUS_OVER;
2918         return 0;
2919 }
2920
2921 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2922                                                struct kvm_vcpu_events *events)
2923 {
2924         process_nmi(vcpu);
2925         events->exception.injected =
2926                 vcpu->arch.exception.pending &&
2927                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2928         events->exception.nr = vcpu->arch.exception.nr;
2929         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2930         events->exception.pad = 0;
2931         events->exception.error_code = vcpu->arch.exception.error_code;
2932
2933         events->interrupt.injected =
2934                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2935         events->interrupt.nr = vcpu->arch.interrupt.nr;
2936         events->interrupt.soft = 0;
2937         events->interrupt.shadow =
2938                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2939                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2940
2941         events->nmi.injected = vcpu->arch.nmi_injected;
2942         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2943         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2944         events->nmi.pad = 0;
2945
2946         events->sipi_vector = 0; /* never valid when reporting to user space */
2947
2948         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2949                          | KVM_VCPUEVENT_VALID_SHADOW);
2950         memset(&events->reserved, 0, sizeof(events->reserved));
2951 }
2952
2953 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2954                                               struct kvm_vcpu_events *events)
2955 {
2956         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2957                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2958                               | KVM_VCPUEVENT_VALID_SHADOW))
2959                 return -EINVAL;
2960
2961         process_nmi(vcpu);
2962         vcpu->arch.exception.pending = events->exception.injected;
2963         vcpu->arch.exception.nr = events->exception.nr;
2964         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2965         vcpu->arch.exception.error_code = events->exception.error_code;
2966
2967         vcpu->arch.interrupt.pending = events->interrupt.injected;
2968         vcpu->arch.interrupt.nr = events->interrupt.nr;
2969         vcpu->arch.interrupt.soft = events->interrupt.soft;
2970         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2971                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2972                                                   events->interrupt.shadow);
2973
2974         vcpu->arch.nmi_injected = events->nmi.injected;
2975         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2976                 vcpu->arch.nmi_pending = events->nmi.pending;
2977         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2978
2979         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2980             kvm_vcpu_has_lapic(vcpu))
2981                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2982
2983         kvm_make_request(KVM_REQ_EVENT, vcpu);
2984
2985         return 0;
2986 }
2987
2988 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2989                                              struct kvm_debugregs *dbgregs)
2990 {
2991         unsigned long val;
2992
2993         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2994         _kvm_get_dr(vcpu, 6, &val);
2995         dbgregs->dr6 = val;
2996         dbgregs->dr7 = vcpu->arch.dr7;
2997         dbgregs->flags = 0;
2998         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2999 }
3000
3001 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3002                                             struct kvm_debugregs *dbgregs)
3003 {
3004         if (dbgregs->flags)
3005                 return -EINVAL;
3006
3007         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3008         vcpu->arch.dr6 = dbgregs->dr6;
3009         kvm_update_dr6(vcpu);
3010         vcpu->arch.dr7 = dbgregs->dr7;
3011         kvm_update_dr7(vcpu);
3012
3013         return 0;
3014 }
3015
3016 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3017                                          struct kvm_xsave *guest_xsave)
3018 {
3019         if (cpu_has_xsave) {
3020                 memcpy(guest_xsave->region,
3021                         &vcpu->arch.guest_fpu.state->xsave,
3022                         vcpu->arch.guest_xstate_size);
3023                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] &=
3024                         vcpu->arch.guest_supported_xcr0 | XSTATE_FPSSE;
3025         } else {
3026                 memcpy(guest_xsave->region,
3027                         &vcpu->arch.guest_fpu.state->fxsave,
3028                         sizeof(struct i387_fxsave_struct));
3029                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3030                         XSTATE_FPSSE;
3031         }
3032 }
3033
3034 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3035                                         struct kvm_xsave *guest_xsave)
3036 {
3037         u64 xstate_bv =
3038                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3039
3040         if (cpu_has_xsave) {
3041                 /*
3042                  * Here we allow setting states that are not present in
3043                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3044                  * with old userspace.
3045                  */
3046                 if (xstate_bv & ~KVM_SUPPORTED_XCR0)
3047                         return -EINVAL;
3048                 if (xstate_bv & ~host_xcr0)
3049                         return -EINVAL;
3050                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
3051                         guest_xsave->region, vcpu->arch.guest_xstate_size);
3052         } else {
3053                 if (xstate_bv & ~XSTATE_FPSSE)
3054                         return -EINVAL;
3055                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3056                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
3057         }
3058         return 0;
3059 }
3060
3061 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3062                                         struct kvm_xcrs *guest_xcrs)
3063 {
3064         if (!cpu_has_xsave) {
3065                 guest_xcrs->nr_xcrs = 0;
3066                 return;
3067         }
3068
3069         guest_xcrs->nr_xcrs = 1;
3070         guest_xcrs->flags = 0;
3071         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3072         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3073 }
3074
3075 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3076                                        struct kvm_xcrs *guest_xcrs)
3077 {
3078         int i, r = 0;
3079
3080         if (!cpu_has_xsave)
3081                 return -EINVAL;
3082
3083         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3084                 return -EINVAL;
3085
3086         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3087                 /* Only support XCR0 currently */
3088                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3089                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3090                                 guest_xcrs->xcrs[i].value);
3091                         break;
3092                 }
3093         if (r)
3094                 r = -EINVAL;
3095         return r;
3096 }
3097
3098 /*
3099  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3100  * stopped by the hypervisor.  This function will be called from the host only.
3101  * EINVAL is returned when the host attempts to set the flag for a guest that
3102  * does not support pv clocks.
3103  */
3104 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3105 {
3106         if (!vcpu->arch.pv_time_enabled)
3107                 return -EINVAL;
3108         vcpu->arch.pvclock_set_guest_stopped_request = true;
3109         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3110         return 0;
3111 }
3112
3113 long kvm_arch_vcpu_ioctl(struct file *filp,
3114                          unsigned int ioctl, unsigned long arg)
3115 {
3116         struct kvm_vcpu *vcpu = filp->private_data;
3117         void __user *argp = (void __user *)arg;
3118         int r;
3119         union {
3120                 struct kvm_lapic_state *lapic;
3121                 struct kvm_xsave *xsave;
3122                 struct kvm_xcrs *xcrs;
3123                 void *buffer;
3124         } u;
3125
3126         u.buffer = NULL;
3127         switch (ioctl) {
3128         case KVM_GET_LAPIC: {
3129                 r = -EINVAL;
3130                 if (!vcpu->arch.apic)
3131                         goto out;
3132                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3133
3134                 r = -ENOMEM;
3135                 if (!u.lapic)
3136                         goto out;
3137                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3138                 if (r)
3139                         goto out;
3140                 r = -EFAULT;
3141                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3142                         goto out;
3143                 r = 0;
3144                 break;
3145         }
3146         case KVM_SET_LAPIC: {
3147                 r = -EINVAL;
3148                 if (!vcpu->arch.apic)
3149                         goto out;
3150                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3151                 if (IS_ERR(u.lapic))
3152                         return PTR_ERR(u.lapic);
3153
3154                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3155                 break;
3156         }
3157         case KVM_INTERRUPT: {
3158                 struct kvm_interrupt irq;
3159
3160                 r = -EFAULT;
3161                 if (copy_from_user(&irq, argp, sizeof irq))
3162                         goto out;
3163                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3164                 break;
3165         }
3166         case KVM_NMI: {
3167                 r = kvm_vcpu_ioctl_nmi(vcpu);
3168                 break;
3169         }
3170         case KVM_SET_CPUID: {
3171                 struct kvm_cpuid __user *cpuid_arg = argp;
3172                 struct kvm_cpuid cpuid;
3173
3174                 r = -EFAULT;
3175                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3176                         goto out;
3177                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3178                 break;
3179         }
3180         case KVM_SET_CPUID2: {
3181                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3182                 struct kvm_cpuid2 cpuid;
3183
3184                 r = -EFAULT;
3185                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3186                         goto out;
3187                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3188                                               cpuid_arg->entries);
3189                 break;
3190         }
3191         case KVM_GET_CPUID2: {
3192                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3193                 struct kvm_cpuid2 cpuid;
3194
3195                 r = -EFAULT;
3196                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3197                         goto out;
3198                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3199                                               cpuid_arg->entries);
3200                 if (r)
3201                         goto out;
3202                 r = -EFAULT;
3203                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3204                         goto out;
3205                 r = 0;
3206                 break;
3207         }
3208         case KVM_GET_MSRS:
3209                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3210                 break;
3211         case KVM_SET_MSRS:
3212                 r = msr_io(vcpu, argp, do_set_msr, 0);
3213                 break;
3214         case KVM_TPR_ACCESS_REPORTING: {
3215                 struct kvm_tpr_access_ctl tac;
3216
3217                 r = -EFAULT;
3218                 if (copy_from_user(&tac, argp, sizeof tac))
3219                         goto out;
3220                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3221                 if (r)
3222                         goto out;
3223                 r = -EFAULT;
3224                 if (copy_to_user(argp, &tac, sizeof tac))
3225                         goto out;
3226                 r = 0;
3227                 break;
3228         };
3229         case KVM_SET_VAPIC_ADDR: {
3230                 struct kvm_vapic_addr va;
3231
3232                 r = -EINVAL;
3233                 if (!irqchip_in_kernel(vcpu->kvm))
3234                         goto out;
3235                 r = -EFAULT;
3236                 if (copy_from_user(&va, argp, sizeof va))
3237                         goto out;
3238                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3239                 break;
3240         }
3241         case KVM_X86_SETUP_MCE: {
3242                 u64 mcg_cap;
3243
3244                 r = -EFAULT;
3245                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3246                         goto out;
3247                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3248                 break;
3249         }
3250         case KVM_X86_SET_MCE: {
3251                 struct kvm_x86_mce mce;
3252
3253                 r = -EFAULT;
3254                 if (copy_from_user(&mce, argp, sizeof mce))
3255                         goto out;
3256                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3257                 break;
3258         }
3259         case KVM_GET_VCPU_EVENTS: {
3260                 struct kvm_vcpu_events events;
3261
3262                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3263
3264                 r = -EFAULT;
3265                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3266                         break;
3267                 r = 0;
3268                 break;
3269         }
3270         case KVM_SET_VCPU_EVENTS: {
3271                 struct kvm_vcpu_events events;
3272
3273                 r = -EFAULT;
3274                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3275                         break;
3276
3277                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3278                 break;
3279         }
3280         case KVM_GET_DEBUGREGS: {
3281                 struct kvm_debugregs dbgregs;
3282
3283                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3284
3285                 r = -EFAULT;
3286                 if (copy_to_user(argp, &dbgregs,
3287                                  sizeof(struct kvm_debugregs)))
3288                         break;
3289                 r = 0;
3290                 break;
3291         }
3292         case KVM_SET_DEBUGREGS: {
3293                 struct kvm_debugregs dbgregs;
3294
3295                 r = -EFAULT;
3296                 if (copy_from_user(&dbgregs, argp,
3297                                    sizeof(struct kvm_debugregs)))
3298                         break;
3299
3300                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3301                 break;
3302         }
3303         case KVM_GET_XSAVE: {
3304                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3305                 r = -ENOMEM;
3306                 if (!u.xsave)
3307                         break;
3308
3309                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3310
3311                 r = -EFAULT;
3312                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3313                         break;
3314                 r = 0;
3315                 break;
3316         }
3317         case KVM_SET_XSAVE: {
3318                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3319                 if (IS_ERR(u.xsave))
3320                         return PTR_ERR(u.xsave);
3321
3322                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3323                 break;
3324         }
3325         case KVM_GET_XCRS: {
3326                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3327                 r = -ENOMEM;
3328                 if (!u.xcrs)
3329                         break;
3330
3331                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3332
3333                 r = -EFAULT;
3334                 if (copy_to_user(argp, u.xcrs,
3335                                  sizeof(struct kvm_xcrs)))
3336                         break;
3337                 r = 0;
3338                 break;
3339         }
3340         case KVM_SET_XCRS: {
3341                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3342                 if (IS_ERR(u.xcrs))
3343                         return PTR_ERR(u.xcrs);
3344
3345                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3346                 break;
3347         }
3348         case KVM_SET_TSC_KHZ: {
3349                 u32 user_tsc_khz;
3350
3351                 r = -EINVAL;
3352                 user_tsc_khz = (u32)arg;
3353
3354                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3355                         goto out;
3356
3357                 if (user_tsc_khz == 0)
3358                         user_tsc_khz = tsc_khz;
3359
3360                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3361
3362                 r = 0;
3363                 goto out;
3364         }
3365         case KVM_GET_TSC_KHZ: {
3366                 r = vcpu->arch.virtual_tsc_khz;
3367                 goto out;
3368         }
3369         case KVM_KVMCLOCK_CTRL: {
3370                 r = kvm_set_guest_paused(vcpu);
3371                 goto out;
3372         }
3373         default:
3374                 r = -EINVAL;
3375         }
3376 out:
3377         kfree(u.buffer);
3378         return r;
3379 }
3380
3381 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3382 {
3383         return VM_FAULT_SIGBUS;
3384 }
3385
3386 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3387 {
3388         int ret;
3389
3390         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3391                 return -EINVAL;
3392         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3393         return ret;
3394 }
3395
3396 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3397                                               u64 ident_addr)
3398 {
3399         kvm->arch.ept_identity_map_addr = ident_addr;
3400         return 0;
3401 }
3402
3403 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3404                                           u32 kvm_nr_mmu_pages)
3405 {
3406         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3407                 return -EINVAL;
3408
3409         mutex_lock(&kvm->slots_lock);
3410
3411         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3412         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3413
3414         mutex_unlock(&kvm->slots_lock);
3415         return 0;
3416 }
3417
3418 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3419 {
3420         return kvm->arch.n_max_mmu_pages;
3421 }
3422
3423 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3424 {
3425         int r;
3426
3427         r = 0;
3428         switch (chip->chip_id) {
3429         case KVM_IRQCHIP_PIC_MASTER:
3430                 memcpy(&chip->chip.pic,
3431                         &pic_irqchip(kvm)->pics[0],
3432                         sizeof(struct kvm_pic_state));
3433                 break;
3434         case KVM_IRQCHIP_PIC_SLAVE:
3435                 memcpy(&chip->chip.pic,
3436                         &pic_irqchip(kvm)->pics[1],
3437                         sizeof(struct kvm_pic_state));
3438                 break;
3439         case KVM_IRQCHIP_IOAPIC:
3440                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3441                 break;
3442         default:
3443                 r = -EINVAL;
3444                 break;
3445         }
3446         return r;
3447 }
3448
3449 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3450 {
3451         int r;
3452
3453         r = 0;
3454         switch (chip->chip_id) {
3455         case KVM_IRQCHIP_PIC_MASTER:
3456                 spin_lock(&pic_irqchip(kvm)->lock);
3457                 memcpy(&pic_irqchip(kvm)->pics[0],
3458                         &chip->chip.pic,
3459                         sizeof(struct kvm_pic_state));
3460                 spin_unlock(&pic_irqchip(kvm)->lock);
3461                 break;
3462         case KVM_IRQCHIP_PIC_SLAVE:
3463                 spin_lock(&pic_irqchip(kvm)->lock);
3464                 memcpy(&pic_irqchip(kvm)->pics[1],
3465                         &chip->chip.pic,
3466                         sizeof(struct kvm_pic_state));
3467                 spin_unlock(&pic_irqchip(kvm)->lock);
3468                 break;
3469         case KVM_IRQCHIP_IOAPIC:
3470                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3471                 break;
3472         default:
3473                 r = -EINVAL;
3474                 break;
3475         }
3476         kvm_pic_update_irq(pic_irqchip(kvm));
3477         return r;
3478 }
3479
3480 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3481 {
3482         int r = 0;
3483
3484         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3485         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3486         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3487         return r;
3488 }
3489
3490 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3491 {
3492         int r = 0;
3493
3494         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3495         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3496         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3497         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3498         return r;
3499 }
3500
3501 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3502 {
3503         int r = 0;
3504
3505         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3506         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3507                 sizeof(ps->channels));
3508         ps->flags = kvm->arch.vpit->pit_state.flags;
3509         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3510         memset(&ps->reserved, 0, sizeof(ps->reserved));
3511         return r;
3512 }
3513
3514 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3515 {
3516         int r = 0, start = 0;
3517         u32 prev_legacy, cur_legacy;
3518         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3519         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3520         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3521         if (!prev_legacy && cur_legacy)
3522                 start = 1;
3523         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3524                sizeof(kvm->arch.vpit->pit_state.channels));
3525         kvm->arch.vpit->pit_state.flags = ps->flags;
3526         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3527         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3528         return r;
3529 }
3530
3531 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3532                                  struct kvm_reinject_control *control)
3533 {
3534         if (!kvm->arch.vpit)
3535                 return -ENXIO;
3536         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3537         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3538         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3539         return 0;
3540 }
3541
3542 /**
3543  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3544  * @kvm: kvm instance
3545  * @log: slot id and address to which we copy the log
3546  *
3547  * We need to keep it in mind that VCPU threads can write to the bitmap
3548  * concurrently.  So, to avoid losing data, we keep the following order for
3549  * each bit:
3550  *
3551  *   1. Take a snapshot of the bit and clear it if needed.
3552  *   2. Write protect the corresponding page.
3553  *   3. Flush TLB's if needed.
3554  *   4. Copy the snapshot to the userspace.
3555  *
3556  * Between 2 and 3, the guest may write to the page using the remaining TLB
3557  * entry.  This is not a problem because the page will be reported dirty at
3558  * step 4 using the snapshot taken before and step 3 ensures that successive
3559  * writes will be logged for the next call.
3560  */
3561 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3562 {
3563         int r;
3564         struct kvm_memory_slot *memslot;
3565         unsigned long n, i;
3566         unsigned long *dirty_bitmap;
3567         unsigned long *dirty_bitmap_buffer;
3568         bool is_dirty = false;
3569
3570         mutex_lock(&kvm->slots_lock);
3571
3572         r = -EINVAL;
3573         if (log->slot >= KVM_USER_MEM_SLOTS)
3574                 goto out;
3575
3576         memslot = id_to_memslot(kvm->memslots, log->slot);
3577
3578         dirty_bitmap = memslot->dirty_bitmap;
3579         r = -ENOENT;
3580         if (!dirty_bitmap)
3581                 goto out;
3582
3583         n = kvm_dirty_bitmap_bytes(memslot);
3584
3585         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3586         memset(dirty_bitmap_buffer, 0, n);
3587
3588         spin_lock(&kvm->mmu_lock);
3589
3590         for (i = 0; i < n / sizeof(long); i++) {
3591                 unsigned long mask;
3592                 gfn_t offset;
3593
3594                 if (!dirty_bitmap[i])
3595                         continue;
3596
3597                 is_dirty = true;
3598
3599                 mask = xchg(&dirty_bitmap[i], 0);
3600                 dirty_bitmap_buffer[i] = mask;
3601
3602                 offset = i * BITS_PER_LONG;
3603                 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3604         }
3605         if (is_dirty)
3606                 kvm_flush_remote_tlbs(kvm);
3607
3608         spin_unlock(&kvm->mmu_lock);
3609
3610         r = -EFAULT;
3611         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3612                 goto out;
3613
3614         r = 0;
3615 out:
3616         mutex_unlock(&kvm->slots_lock);
3617         return r;
3618 }
3619
3620 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3621                         bool line_status)
3622 {
3623         if (!irqchip_in_kernel(kvm))
3624                 return -ENXIO;
3625
3626         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3627                                         irq_event->irq, irq_event->level,
3628                                         line_status);
3629         return 0;
3630 }
3631
3632 long kvm_arch_vm_ioctl(struct file *filp,
3633                        unsigned int ioctl, unsigned long arg)
3634 {
3635         struct kvm *kvm = filp->private_data;
3636         void __user *argp = (void __user *)arg;
3637         int r = -ENOTTY;
3638         /*
3639          * This union makes it completely explicit to gcc-3.x
3640          * that these two variables' stack usage should be
3641          * combined, not added together.
3642          */
3643         union {
3644                 struct kvm_pit_state ps;
3645                 struct kvm_pit_state2 ps2;
3646                 struct kvm_pit_config pit_config;
3647         } u;
3648
3649         switch (ioctl) {
3650         case KVM_SET_TSS_ADDR:
3651                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3652                 break;
3653         case KVM_SET_IDENTITY_MAP_ADDR: {
3654                 u64 ident_addr;
3655
3656                 r = -EFAULT;
3657                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3658                         goto out;
3659                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3660                 break;
3661         }
3662         case KVM_SET_NR_MMU_PAGES:
3663                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3664                 break;
3665         case KVM_GET_NR_MMU_PAGES:
3666                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3667                 break;
3668         case KVM_CREATE_IRQCHIP: {
3669                 struct kvm_pic *vpic;
3670
3671                 mutex_lock(&kvm->lock);
3672                 r = -EEXIST;
3673                 if (kvm->arch.vpic)
3674                         goto create_irqchip_unlock;
3675                 r = -EINVAL;
3676                 if (atomic_read(&kvm->online_vcpus))
3677                         goto create_irqchip_unlock;
3678                 r = -ENOMEM;
3679                 vpic = kvm_create_pic(kvm);
3680                 if (vpic) {
3681                         r = kvm_ioapic_init(kvm);
3682                         if (r) {
3683                                 mutex_lock(&kvm->slots_lock);
3684                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3685                                                           &vpic->dev_master);
3686                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3687                                                           &vpic->dev_slave);
3688                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3689                                                           &vpic->dev_eclr);
3690                                 mutex_unlock(&kvm->slots_lock);
3691                                 kfree(vpic);
3692                                 goto create_irqchip_unlock;
3693                         }
3694                 } else
3695                         goto create_irqchip_unlock;
3696                 smp_wmb();
3697                 kvm->arch.vpic = vpic;
3698                 smp_wmb();
3699                 r = kvm_setup_default_irq_routing(kvm);
3700                 if (r) {
3701                         mutex_lock(&kvm->slots_lock);
3702                         mutex_lock(&kvm->irq_lock);
3703                         kvm_ioapic_destroy(kvm);
3704                         kvm_destroy_pic(kvm);
3705                         mutex_unlock(&kvm->irq_lock);
3706                         mutex_unlock(&kvm->slots_lock);
3707                 }
3708         create_irqchip_unlock:
3709                 mutex_unlock(&kvm->lock);
3710                 break;
3711         }
3712         case KVM_CREATE_PIT:
3713                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3714                 goto create_pit;
3715         case KVM_CREATE_PIT2:
3716                 r = -EFAULT;
3717                 if (copy_from_user(&u.pit_config, argp,
3718                                    sizeof(struct kvm_pit_config)))
3719                         goto out;
3720         create_pit:
3721                 mutex_lock(&kvm->slots_lock);
3722                 r = -EEXIST;
3723                 if (kvm->arch.vpit)
3724                         goto create_pit_unlock;
3725                 r = -ENOMEM;
3726                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3727                 if (kvm->arch.vpit)
3728                         r = 0;
3729         create_pit_unlock:
3730                 mutex_unlock(&kvm->slots_lock);
3731                 break;
3732         case KVM_GET_IRQCHIP: {
3733                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3734                 struct kvm_irqchip *chip;
3735
3736                 chip = memdup_user(argp, sizeof(*chip));
3737                 if (IS_ERR(chip)) {
3738                         r = PTR_ERR(chip);
3739                         goto out;
3740                 }
3741
3742                 r = -ENXIO;
3743                 if (!irqchip_in_kernel(kvm))
3744                         goto get_irqchip_out;
3745                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3746                 if (r)
3747                         goto get_irqchip_out;
3748                 r = -EFAULT;
3749                 if (copy_to_user(argp, chip, sizeof *chip))
3750                         goto get_irqchip_out;
3751                 r = 0;
3752         get_irqchip_out:
3753                 kfree(chip);
3754                 break;
3755         }
3756         case KVM_SET_IRQCHIP: {
3757                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3758                 struct kvm_irqchip *chip;
3759
3760                 chip = memdup_user(argp, sizeof(*chip));
3761                 if (IS_ERR(chip)) {
3762                         r = PTR_ERR(chip);
3763                         goto out;
3764                 }
3765
3766                 r = -ENXIO;
3767                 if (!irqchip_in_kernel(kvm))
3768                         goto set_irqchip_out;
3769                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3770                 if (r)
3771                         goto set_irqchip_out;
3772                 r = 0;
3773         set_irqchip_out:
3774                 kfree(chip);
3775                 break;
3776         }
3777         case KVM_GET_PIT: {
3778                 r = -EFAULT;
3779                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3780                         goto out;
3781                 r = -ENXIO;
3782                 if (!kvm->arch.vpit)
3783                         goto out;
3784                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3785                 if (r)
3786                         goto out;
3787                 r = -EFAULT;
3788                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3789                         goto out;
3790                 r = 0;
3791                 break;
3792         }
3793         case KVM_SET_PIT: {
3794                 r = -EFAULT;
3795                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3796                         goto out;
3797                 r = -ENXIO;
3798                 if (!kvm->arch.vpit)
3799                         goto out;
3800                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3801                 break;
3802         }
3803         case KVM_GET_PIT2: {
3804                 r = -ENXIO;
3805                 if (!kvm->arch.vpit)
3806                         goto out;
3807                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3808                 if (r)
3809                         goto out;
3810                 r = -EFAULT;
3811                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3812                         goto out;
3813                 r = 0;
3814                 break;
3815         }
3816         case KVM_SET_PIT2: {
3817                 r = -EFAULT;
3818                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3819                         goto out;
3820                 r = -ENXIO;
3821                 if (!kvm->arch.vpit)
3822                         goto out;
3823                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3824                 break;
3825         }
3826         case KVM_REINJECT_CONTROL: {
3827                 struct kvm_reinject_control control;
3828                 r =  -EFAULT;
3829                 if (copy_from_user(&control, argp, sizeof(control)))
3830                         goto out;
3831                 r = kvm_vm_ioctl_reinject(kvm, &control);
3832                 break;
3833         }
3834         case KVM_XEN_HVM_CONFIG: {
3835                 r = -EFAULT;
3836                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3837                                    sizeof(struct kvm_xen_hvm_config)))
3838                         goto out;
3839                 r = -EINVAL;
3840                 if (kvm->arch.xen_hvm_config.flags)
3841                         goto out;
3842                 r = 0;
3843                 break;
3844         }
3845         case KVM_SET_CLOCK: {
3846                 struct kvm_clock_data user_ns;
3847                 u64 now_ns;
3848                 s64 delta;
3849
3850                 r = -EFAULT;
3851                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3852                         goto out;
3853
3854                 r = -EINVAL;
3855                 if (user_ns.flags)
3856                         goto out;
3857
3858                 r = 0;
3859                 local_irq_disable();
3860                 now_ns = get_kernel_ns();
3861                 delta = user_ns.clock - now_ns;
3862                 local_irq_enable();
3863                 kvm->arch.kvmclock_offset = delta;
3864                 kvm_gen_update_masterclock(kvm);
3865                 break;
3866         }
3867         case KVM_GET_CLOCK: {
3868                 struct kvm_clock_data user_ns;
3869                 u64 now_ns;
3870
3871                 local_irq_disable();
3872                 now_ns = get_kernel_ns();
3873                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3874                 local_irq_enable();
3875                 user_ns.flags = 0;
3876                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3877
3878                 r = -EFAULT;
3879                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3880                         goto out;
3881                 r = 0;
3882                 break;
3883         }
3884
3885         default:
3886                 ;
3887         }
3888 out:
3889         return r;
3890 }
3891
3892 static void kvm_init_msr_list(void)
3893 {
3894         u32 dummy[2];
3895         unsigned i, j;
3896
3897         /* skip the first msrs in the list. KVM-specific */
3898         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3899                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3900                         continue;
3901                 if (j < i)
3902                         msrs_to_save[j] = msrs_to_save[i];
3903                 j++;
3904         }
3905         num_msrs_to_save = j;
3906 }
3907
3908 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3909                            const void *v)
3910 {
3911         int handled = 0;
3912         int n;
3913
3914         do {
3915                 n = min(len, 8);
3916                 if (!(vcpu->arch.apic &&
3917                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3918                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3919                         break;
3920                 handled += n;
3921                 addr += n;
3922                 len -= n;
3923                 v += n;
3924         } while (len);
3925
3926         return handled;
3927 }
3928
3929 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3930 {
3931         int handled = 0;
3932         int n;
3933
3934         do {
3935                 n = min(len, 8);
3936                 if (!(vcpu->arch.apic &&
3937                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3938                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3939                         break;
3940                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3941                 handled += n;
3942                 addr += n;
3943                 len -= n;
3944                 v += n;
3945         } while (len);
3946
3947         return handled;
3948 }
3949
3950 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3951                         struct kvm_segment *var, int seg)
3952 {
3953         kvm_x86_ops->set_segment(vcpu, var, seg);
3954 }
3955
3956 void kvm_get_segment(struct kvm_vcpu *vcpu,
3957                      struct kvm_segment *var, int seg)
3958 {
3959         kvm_x86_ops->get_segment(vcpu, var, seg);
3960 }
3961
3962 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3963 {
3964         gpa_t t_gpa;
3965         struct x86_exception exception;
3966
3967         BUG_ON(!mmu_is_nested(vcpu));
3968
3969         /* NPT walks are always user-walks */
3970         access |= PFERR_USER_MASK;
3971         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3972
3973         return t_gpa;
3974 }
3975
3976 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3977                               struct x86_exception *exception)
3978 {
3979         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3980         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3981 }
3982
3983  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3984                                 struct x86_exception *exception)
3985 {
3986         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3987         access |= PFERR_FETCH_MASK;
3988         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3989 }
3990
3991 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3992                                struct x86_exception *exception)
3993 {
3994         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3995         access |= PFERR_WRITE_MASK;
3996         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3997 }
3998
3999 /* uses this to access any guest's mapped memory without checking CPL */
4000 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4001                                 struct x86_exception *exception)
4002 {
4003         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4004 }
4005
4006 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4007                                       struct kvm_vcpu *vcpu, u32 access,
4008                                       struct x86_exception *exception)
4009 {
4010         void *data = val;
4011         int r = X86EMUL_CONTINUE;
4012
4013         while (bytes) {
4014                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4015                                                             exception);
4016                 unsigned offset = addr & (PAGE_SIZE-1);
4017                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4018                 int ret;
4019
4020                 if (gpa == UNMAPPED_GVA)
4021                         return X86EMUL_PROPAGATE_FAULT;
4022                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
4023                 if (ret < 0) {
4024                         r = X86EMUL_IO_NEEDED;
4025                         goto out;
4026                 }
4027
4028                 bytes -= toread;
4029                 data += toread;
4030                 addr += toread;
4031         }
4032 out:
4033         return r;
4034 }
4035
4036 /* used for instruction fetching */
4037 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4038                                 gva_t addr, void *val, unsigned int bytes,
4039                                 struct x86_exception *exception)
4040 {
4041         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4042         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4043
4044         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
4045                                           access | PFERR_FETCH_MASK,
4046                                           exception);
4047 }
4048
4049 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4050                                gva_t addr, void *val, unsigned int bytes,
4051                                struct x86_exception *exception)
4052 {
4053         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4054         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4055
4056         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4057                                           exception);
4058 }
4059 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4060
4061 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4062                                       gva_t addr, void *val, unsigned int bytes,
4063                                       struct x86_exception *exception)
4064 {
4065         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4066         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4067 }
4068
4069 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4070                                        gva_t addr, void *val,
4071                                        unsigned int bytes,
4072                                        struct x86_exception *exception)
4073 {
4074         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4075         void *data = val;
4076         int r = X86EMUL_CONTINUE;
4077
4078         while (bytes) {
4079                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4080                                                              PFERR_WRITE_MASK,
4081                                                              exception);
4082                 unsigned offset = addr & (PAGE_SIZE-1);
4083                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4084                 int ret;
4085
4086                 if (gpa == UNMAPPED_GVA)
4087                         return X86EMUL_PROPAGATE_FAULT;
4088                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4089                 if (ret < 0) {
4090                         r = X86EMUL_IO_NEEDED;
4091                         goto out;
4092                 }
4093
4094                 bytes -= towrite;
4095                 data += towrite;
4096                 addr += towrite;
4097         }
4098 out:
4099         return r;
4100 }
4101 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4102
4103 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4104                                 gpa_t *gpa, struct x86_exception *exception,
4105                                 bool write)
4106 {
4107         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4108                 | (write ? PFERR_WRITE_MASK : 0);
4109
4110         if (vcpu_match_mmio_gva(vcpu, gva)
4111             && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
4112                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4113                                         (gva & (PAGE_SIZE - 1));
4114                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4115                 return 1;
4116         }
4117
4118         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4119
4120         if (*gpa == UNMAPPED_GVA)
4121                 return -1;
4122
4123         /* For APIC access vmexit */
4124         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4125                 return 1;
4126
4127         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4128                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4129                 return 1;
4130         }
4131
4132         return 0;
4133 }
4134
4135 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4136                         const void *val, int bytes)
4137 {
4138         int ret;
4139
4140         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4141         if (ret < 0)
4142                 return 0;
4143         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4144         return 1;
4145 }
4146
4147 struct read_write_emulator_ops {
4148         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4149                                   int bytes);
4150         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4151                                   void *val, int bytes);
4152         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4153                                int bytes, void *val);
4154         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4155                                     void *val, int bytes);
4156         bool write;
4157 };
4158
4159 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4160 {
4161         if (vcpu->mmio_read_completed) {
4162                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4163                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4164                 vcpu->mmio_read_completed = 0;
4165                 return 1;
4166         }
4167
4168         return 0;
4169 }
4170
4171 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4172                         void *val, int bytes)
4173 {
4174         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4175 }
4176
4177 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4178                          void *val, int bytes)
4179 {
4180         return emulator_write_phys(vcpu, gpa, val, bytes);
4181 }
4182
4183 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4184 {
4185         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4186         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4187 }
4188
4189 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4190                           void *val, int bytes)
4191 {
4192         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4193         return X86EMUL_IO_NEEDED;
4194 }
4195
4196 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4197                            void *val, int bytes)
4198 {
4199         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4200
4201         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4202         return X86EMUL_CONTINUE;
4203 }
4204
4205 static const struct read_write_emulator_ops read_emultor = {
4206         .read_write_prepare = read_prepare,
4207         .read_write_emulate = read_emulate,
4208         .read_write_mmio = vcpu_mmio_read,
4209         .read_write_exit_mmio = read_exit_mmio,
4210 };
4211
4212 static const struct read_write_emulator_ops write_emultor = {
4213         .read_write_emulate = write_emulate,
4214         .read_write_mmio = write_mmio,
4215         .read_write_exit_mmio = write_exit_mmio,
4216         .write = true,
4217 };
4218
4219 static int emulator_read_write_onepage(unsigned long addr, void *val,
4220                                        unsigned int bytes,
4221                                        struct x86_exception *exception,
4222                                        struct kvm_vcpu *vcpu,
4223                                        const struct read_write_emulator_ops *ops)
4224 {
4225         gpa_t gpa;
4226         int handled, ret;
4227         bool write = ops->write;
4228         struct kvm_mmio_fragment *frag;
4229
4230         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4231
4232         if (ret < 0)
4233                 return X86EMUL_PROPAGATE_FAULT;
4234
4235         /* For APIC access vmexit */
4236         if (ret)
4237                 goto mmio;
4238
4239         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4240                 return X86EMUL_CONTINUE;
4241
4242 mmio:
4243         /*
4244          * Is this MMIO handled locally?
4245          */
4246         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4247         if (handled == bytes)
4248                 return X86EMUL_CONTINUE;
4249
4250         gpa += handled;
4251         bytes -= handled;
4252         val += handled;
4253
4254         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4255         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4256         frag->gpa = gpa;
4257         frag->data = val;
4258         frag->len = bytes;
4259         return X86EMUL_CONTINUE;
4260 }
4261
4262 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4263                         void *val, unsigned int bytes,
4264                         struct x86_exception *exception,
4265                         const struct read_write_emulator_ops *ops)
4266 {
4267         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4268         gpa_t gpa;
4269         int rc;
4270
4271         if (ops->read_write_prepare &&
4272                   ops->read_write_prepare(vcpu, val, bytes))
4273                 return X86EMUL_CONTINUE;
4274
4275         vcpu->mmio_nr_fragments = 0;
4276
4277         /* Crossing a page boundary? */
4278         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4279                 int now;
4280
4281                 now = -addr & ~PAGE_MASK;
4282                 rc = emulator_read_write_onepage(addr, val, now, exception,
4283                                                  vcpu, ops);
4284
4285                 if (rc != X86EMUL_CONTINUE)
4286                         return rc;
4287                 addr += now;
4288                 val += now;
4289                 bytes -= now;
4290         }
4291
4292         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4293                                          vcpu, ops);
4294         if (rc != X86EMUL_CONTINUE)
4295                 return rc;
4296
4297         if (!vcpu->mmio_nr_fragments)
4298                 return rc;
4299
4300         gpa = vcpu->mmio_fragments[0].gpa;
4301
4302         vcpu->mmio_needed = 1;
4303         vcpu->mmio_cur_fragment = 0;
4304
4305         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4306         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4307         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4308         vcpu->run->mmio.phys_addr = gpa;
4309
4310         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4311 }
4312
4313 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4314                                   unsigned long addr,
4315                                   void *val,
4316                                   unsigned int bytes,
4317                                   struct x86_exception *exception)
4318 {
4319         return emulator_read_write(ctxt, addr, val, bytes,
4320                                    exception, &read_emultor);
4321 }
4322
4323 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4324                             unsigned long addr,
4325                             const void *val,
4326                             unsigned int bytes,
4327                             struct x86_exception *exception)
4328 {
4329         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4330                                    exception, &write_emultor);
4331 }
4332
4333 #define CMPXCHG_TYPE(t, ptr, old, new) \
4334         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4335
4336 #ifdef CONFIG_X86_64
4337 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4338 #else
4339 #  define CMPXCHG64(ptr, old, new) \
4340         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4341 #endif
4342
4343 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4344                                      unsigned long addr,
4345                                      const void *old,
4346                                      const void *new,
4347                                      unsigned int bytes,
4348                                      struct x86_exception *exception)
4349 {
4350         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4351         gpa_t gpa;
4352         struct page *page;
4353         char *kaddr;
4354         bool exchanged;
4355
4356         /* guests cmpxchg8b have to be emulated atomically */
4357         if (bytes > 8 || (bytes & (bytes - 1)))
4358                 goto emul_write;
4359
4360         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4361
4362         if (gpa == UNMAPPED_GVA ||
4363             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4364                 goto emul_write;
4365
4366         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4367                 goto emul_write;
4368
4369         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4370         if (is_error_page(page))
4371                 goto emul_write;
4372
4373         kaddr = kmap_atomic(page);
4374         kaddr += offset_in_page(gpa);
4375         switch (bytes) {
4376         case 1:
4377                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4378                 break;
4379         case 2:
4380                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4381                 break;
4382         case 4:
4383                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4384                 break;
4385         case 8:
4386                 exchanged = CMPXCHG64(kaddr, old, new);
4387                 break;
4388         default:
4389                 BUG();
4390         }
4391         kunmap_atomic(kaddr);
4392         kvm_release_page_dirty(page);
4393
4394         if (!exchanged)
4395                 return X86EMUL_CMPXCHG_FAILED;
4396
4397         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4398
4399         return X86EMUL_CONTINUE;
4400
4401 emul_write:
4402         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4403
4404         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4405 }
4406
4407 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4408 {
4409         /* TODO: String I/O for in kernel device */
4410         int r;
4411
4412         if (vcpu->arch.pio.in)
4413                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4414                                     vcpu->arch.pio.size, pd);
4415         else
4416                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4417                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4418                                      pd);
4419         return r;
4420 }
4421
4422 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4423                                unsigned short port, void *val,
4424                                unsigned int count, bool in)
4425 {
4426         trace_kvm_pio(!in, port, size, count);
4427
4428         vcpu->arch.pio.port = port;
4429         vcpu->arch.pio.in = in;
4430         vcpu->arch.pio.count  = count;
4431         vcpu->arch.pio.size = size;
4432
4433         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4434                 vcpu->arch.pio.count = 0;
4435                 return 1;
4436         }
4437
4438         vcpu->run->exit_reason = KVM_EXIT_IO;
4439         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4440         vcpu->run->io.size = size;
4441         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4442         vcpu->run->io.count = count;
4443         vcpu->run->io.port = port;
4444
4445         return 0;
4446 }
4447
4448 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4449                                     int size, unsigned short port, void *val,
4450                                     unsigned int count)
4451 {
4452         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4453         int ret;
4454
4455         if (vcpu->arch.pio.count)
4456                 goto data_avail;
4457
4458         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4459         if (ret) {
4460 data_avail:
4461                 memcpy(val, vcpu->arch.pio_data, size * count);
4462                 vcpu->arch.pio.count = 0;
4463                 return 1;
4464         }
4465
4466         return 0;
4467 }
4468
4469 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4470                                      int size, unsigned short port,
4471                                      const void *val, unsigned int count)
4472 {
4473         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4474
4475         memcpy(vcpu->arch.pio_data, val, size * count);
4476         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4477 }
4478
4479 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4480 {
4481         return kvm_x86_ops->get_segment_base(vcpu, seg);
4482 }
4483
4484 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4485 {
4486         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4487 }
4488
4489 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4490 {
4491         if (!need_emulate_wbinvd(vcpu))
4492                 return X86EMUL_CONTINUE;
4493
4494         if (kvm_x86_ops->has_wbinvd_exit()) {
4495                 int cpu = get_cpu();
4496
4497                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4498                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4499                                 wbinvd_ipi, NULL, 1);
4500                 put_cpu();
4501                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4502         } else
4503                 wbinvd();
4504         return X86EMUL_CONTINUE;
4505 }
4506 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4507
4508 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4509 {
4510         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4511 }
4512
4513 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4514 {
4515         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4516 }
4517
4518 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4519 {
4520
4521         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4522 }
4523
4524 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4525 {
4526         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4527 }
4528
4529 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4530 {
4531         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4532         unsigned long value;
4533
4534         switch (cr) {
4535         case 0:
4536                 value = kvm_read_cr0(vcpu);
4537                 break;
4538         case 2:
4539                 value = vcpu->arch.cr2;
4540                 break;
4541         case 3:
4542                 value = kvm_read_cr3(vcpu);
4543                 break;
4544         case 4:
4545                 value = kvm_read_cr4(vcpu);
4546                 break;
4547         case 8:
4548                 value = kvm_get_cr8(vcpu);
4549                 break;
4550         default:
4551                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4552                 return 0;
4553         }
4554
4555         return value;
4556 }
4557
4558 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4559 {
4560         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4561         int res = 0;
4562
4563         switch (cr) {
4564         case 0:
4565                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4566                 break;
4567         case 2:
4568                 vcpu->arch.cr2 = val;
4569                 break;
4570         case 3:
4571                 res = kvm_set_cr3(vcpu, val);
4572                 break;
4573         case 4:
4574                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4575                 break;
4576         case 8:
4577                 res = kvm_set_cr8(vcpu, val);
4578                 break;
4579         default:
4580                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4581                 res = -1;
4582         }
4583
4584         return res;
4585 }
4586
4587 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4588 {
4589         kvm_set_rflags(emul_to_vcpu(ctxt), val);
4590 }
4591
4592 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4593 {
4594         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4595 }
4596
4597 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4598 {
4599         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4600 }
4601
4602 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4603 {
4604         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4605 }
4606
4607 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4608 {
4609         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4610 }
4611
4612 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4613 {
4614         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4615 }
4616
4617 static unsigned long emulator_get_cached_segment_base(
4618         struct x86_emulate_ctxt *ctxt, int seg)
4619 {
4620         return get_segment_base(emul_to_vcpu(ctxt), seg);
4621 }
4622
4623 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4624                                  struct desc_struct *desc, u32 *base3,
4625                                  int seg)
4626 {
4627         struct kvm_segment var;
4628
4629         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4630         *selector = var.selector;
4631
4632         if (var.unusable) {
4633                 memset(desc, 0, sizeof(*desc));
4634                 return false;
4635         }
4636
4637         if (var.g)
4638                 var.limit >>= 12;
4639         set_desc_limit(desc, var.limit);
4640         set_desc_base(desc, (unsigned long)var.base);
4641 #ifdef CONFIG_X86_64
4642         if (base3)
4643                 *base3 = var.base >> 32;
4644 #endif
4645         desc->type = var.type;
4646         desc->s = var.s;
4647         desc->dpl = var.dpl;
4648         desc->p = var.present;
4649         desc->avl = var.avl;
4650         desc->l = var.l;
4651         desc->d = var.db;
4652         desc->g = var.g;
4653
4654         return true;
4655 }
4656
4657 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4658                                  struct desc_struct *desc, u32 base3,
4659                                  int seg)
4660 {
4661         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4662         struct kvm_segment var;
4663
4664         var.selector = selector;
4665         var.base = get_desc_base(desc);
4666 #ifdef CONFIG_X86_64
4667         var.base |= ((u64)base3) << 32;
4668 #endif
4669         var.limit = get_desc_limit(desc);
4670         if (desc->g)
4671                 var.limit = (var.limit << 12) | 0xfff;
4672         var.type = desc->type;
4673         var.present = desc->p;
4674         var.dpl = desc->dpl;
4675         var.db = desc->d;
4676         var.s = desc->s;
4677         var.l = desc->l;
4678         var.g = desc->g;
4679         var.avl = desc->avl;
4680         var.present = desc->p;
4681         var.unusable = !var.present;
4682         var.padding = 0;
4683
4684         kvm_set_segment(vcpu, &var, seg);
4685         return;
4686 }
4687
4688 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4689                             u32 msr_index, u64 *pdata)
4690 {
4691         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4692 }
4693
4694 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4695                             u32 msr_index, u64 data)
4696 {
4697         struct msr_data msr;
4698
4699         msr.data = data;
4700         msr.index = msr_index;
4701         msr.host_initiated = false;
4702         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4703 }
4704
4705 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4706                              u32 pmc, u64 *pdata)
4707 {
4708         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4709 }
4710
4711 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4712 {
4713         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4714 }
4715
4716 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4717 {
4718         preempt_disable();
4719         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4720         /*
4721          * CR0.TS may reference the host fpu state, not the guest fpu state,
4722          * so it may be clear at this point.
4723          */
4724         clts();
4725 }
4726
4727 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4728 {
4729         preempt_enable();
4730 }
4731
4732 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4733                               struct x86_instruction_info *info,
4734                               enum x86_intercept_stage stage)
4735 {
4736         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4737 }
4738
4739 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4740                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4741 {
4742         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4743 }
4744
4745 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4746 {
4747         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4748 }
4749
4750 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4751 {
4752         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4753 }
4754
4755 static const struct x86_emulate_ops emulate_ops = {
4756         .read_gpr            = emulator_read_gpr,
4757         .write_gpr           = emulator_write_gpr,
4758         .read_std            = kvm_read_guest_virt_system,
4759         .write_std           = kvm_write_guest_virt_system,
4760         .fetch               = kvm_fetch_guest_virt,
4761         .read_emulated       = emulator_read_emulated,
4762         .write_emulated      = emulator_write_emulated,
4763         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4764         .invlpg              = emulator_invlpg,
4765         .pio_in_emulated     = emulator_pio_in_emulated,
4766         .pio_out_emulated    = emulator_pio_out_emulated,
4767         .get_segment         = emulator_get_segment,
4768         .set_segment         = emulator_set_segment,
4769         .get_cached_segment_base = emulator_get_cached_segment_base,
4770         .get_gdt             = emulator_get_gdt,
4771         .get_idt             = emulator_get_idt,
4772         .set_gdt             = emulator_set_gdt,
4773         .set_idt             = emulator_set_idt,
4774         .get_cr              = emulator_get_cr,
4775         .set_cr              = emulator_set_cr,
4776         .set_rflags          = emulator_set_rflags,
4777         .cpl                 = emulator_get_cpl,
4778         .get_dr              = emulator_get_dr,
4779         .set_dr              = emulator_set_dr,
4780         .set_msr             = emulator_set_msr,
4781         .get_msr             = emulator_get_msr,
4782         .read_pmc            = emulator_read_pmc,
4783         .halt                = emulator_halt,
4784         .wbinvd              = emulator_wbinvd,
4785         .fix_hypercall       = emulator_fix_hypercall,
4786         .get_fpu             = emulator_get_fpu,
4787         .put_fpu             = emulator_put_fpu,
4788         .intercept           = emulator_intercept,
4789         .get_cpuid           = emulator_get_cpuid,
4790 };
4791
4792 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4793 {
4794         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4795         /*
4796          * an sti; sti; sequence only disable interrupts for the first
4797          * instruction. So, if the last instruction, be it emulated or
4798          * not, left the system with the INT_STI flag enabled, it
4799          * means that the last instruction is an sti. We should not
4800          * leave the flag on in this case. The same goes for mov ss
4801          */
4802         if (!(int_shadow & mask))
4803                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4804 }
4805
4806 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4807 {
4808         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4809         if (ctxt->exception.vector == PF_VECTOR)
4810                 kvm_propagate_fault(vcpu, &ctxt->exception);
4811         else if (ctxt->exception.error_code_valid)
4812                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4813                                       ctxt->exception.error_code);
4814         else
4815                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4816 }
4817
4818 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4819 {
4820         memset(&ctxt->opcode_len, 0,
4821                (void *)&ctxt->_regs - (void *)&ctxt->opcode_len);
4822
4823         ctxt->fetch.start = 0;
4824         ctxt->fetch.end = 0;
4825         ctxt->io_read.pos = 0;
4826         ctxt->io_read.end = 0;
4827         ctxt->mem_read.pos = 0;
4828         ctxt->mem_read.end = 0;
4829 }
4830
4831 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4832 {
4833         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4834         int cs_db, cs_l;
4835
4836         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4837
4838         ctxt->eflags = kvm_get_rflags(vcpu);
4839         ctxt->eip = kvm_rip_read(vcpu);
4840         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4841                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4842                      cs_l                               ? X86EMUL_MODE_PROT64 :
4843                      cs_db                              ? X86EMUL_MODE_PROT32 :
4844                                                           X86EMUL_MODE_PROT16;
4845         ctxt->guest_mode = is_guest_mode(vcpu);
4846
4847         init_decode_cache(ctxt);
4848         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4849 }
4850
4851 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4852 {
4853         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4854         int ret;
4855
4856         init_emulate_ctxt(vcpu);
4857
4858         ctxt->op_bytes = 2;
4859         ctxt->ad_bytes = 2;
4860         ctxt->_eip = ctxt->eip + inc_eip;
4861         ret = emulate_int_real(ctxt, irq);
4862
4863         if (ret != X86EMUL_CONTINUE)
4864                 return EMULATE_FAIL;
4865
4866         ctxt->eip = ctxt->_eip;
4867         kvm_rip_write(vcpu, ctxt->eip);
4868         kvm_set_rflags(vcpu, ctxt->eflags);
4869
4870         if (irq == NMI_VECTOR)
4871                 vcpu->arch.nmi_pending = 0;
4872         else
4873                 vcpu->arch.interrupt.pending = false;
4874
4875         return EMULATE_DONE;
4876 }
4877 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4878
4879 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4880 {
4881         int r = EMULATE_DONE;
4882
4883         ++vcpu->stat.insn_emulation_fail;
4884         trace_kvm_emulate_insn_failed(vcpu);
4885         if (!is_guest_mode(vcpu)) {
4886                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4887                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4888                 vcpu->run->internal.ndata = 0;
4889                 r = EMULATE_FAIL;
4890         }
4891         kvm_queue_exception(vcpu, UD_VECTOR);
4892
4893         return r;
4894 }
4895
4896 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4897                                   bool write_fault_to_shadow_pgtable,
4898                                   int emulation_type)
4899 {
4900         gpa_t gpa = cr2;
4901         pfn_t pfn;
4902
4903         if (emulation_type & EMULTYPE_NO_REEXECUTE)
4904                 return false;
4905
4906         if (!vcpu->arch.mmu.direct_map) {
4907                 /*
4908                  * Write permission should be allowed since only
4909                  * write access need to be emulated.
4910                  */
4911                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4912
4913                 /*
4914                  * If the mapping is invalid in guest, let cpu retry
4915                  * it to generate fault.
4916                  */
4917                 if (gpa == UNMAPPED_GVA)
4918                         return true;
4919         }
4920
4921         /*
4922          * Do not retry the unhandleable instruction if it faults on the
4923          * readonly host memory, otherwise it will goto a infinite loop:
4924          * retry instruction -> write #PF -> emulation fail -> retry
4925          * instruction -> ...
4926          */
4927         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4928
4929         /*
4930          * If the instruction failed on the error pfn, it can not be fixed,
4931          * report the error to userspace.
4932          */
4933         if (is_error_noslot_pfn(pfn))
4934                 return false;
4935
4936         kvm_release_pfn_clean(pfn);
4937
4938         /* The instructions are well-emulated on direct mmu. */
4939         if (vcpu->arch.mmu.direct_map) {
4940                 unsigned int indirect_shadow_pages;
4941
4942                 spin_lock(&vcpu->kvm->mmu_lock);
4943                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4944                 spin_unlock(&vcpu->kvm->mmu_lock);
4945
4946                 if (indirect_shadow_pages)
4947                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4948
4949                 return true;
4950         }
4951
4952         /*
4953          * if emulation was due to access to shadowed page table
4954          * and it failed try to unshadow page and re-enter the
4955          * guest to let CPU execute the instruction.
4956          */
4957         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4958
4959         /*
4960          * If the access faults on its page table, it can not
4961          * be fixed by unprotecting shadow page and it should
4962          * be reported to userspace.
4963          */
4964         return !write_fault_to_shadow_pgtable;
4965 }
4966
4967 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4968                               unsigned long cr2,  int emulation_type)
4969 {
4970         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4971         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4972
4973         last_retry_eip = vcpu->arch.last_retry_eip;
4974         last_retry_addr = vcpu->arch.last_retry_addr;
4975
4976         /*
4977          * If the emulation is caused by #PF and it is non-page_table
4978          * writing instruction, it means the VM-EXIT is caused by shadow
4979          * page protected, we can zap the shadow page and retry this
4980          * instruction directly.
4981          *
4982          * Note: if the guest uses a non-page-table modifying instruction
4983          * on the PDE that points to the instruction, then we will unmap
4984          * the instruction and go to an infinite loop. So, we cache the
4985          * last retried eip and the last fault address, if we meet the eip
4986          * and the address again, we can break out of the potential infinite
4987          * loop.
4988          */
4989         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4990
4991         if (!(emulation_type & EMULTYPE_RETRY))
4992                 return false;
4993
4994         if (x86_page_table_writing_insn(ctxt))
4995                 return false;
4996
4997         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4998                 return false;
4999
5000         vcpu->arch.last_retry_eip = ctxt->eip;
5001         vcpu->arch.last_retry_addr = cr2;
5002
5003         if (!vcpu->arch.mmu.direct_map)
5004                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5005
5006         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5007
5008         return true;
5009 }
5010
5011 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5012 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5013
5014 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5015                                 unsigned long *db)
5016 {
5017         u32 dr6 = 0;
5018         int i;
5019         u32 enable, rwlen;
5020
5021         enable = dr7;
5022         rwlen = dr7 >> 16;
5023         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5024                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5025                         dr6 |= (1 << i);
5026         return dr6;
5027 }
5028
5029 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, int *r)
5030 {
5031         struct kvm_run *kvm_run = vcpu->run;
5032
5033         /*
5034          * Use the "raw" value to see if TF was passed to the processor.
5035          * Note that the new value of the flags has not been saved yet.
5036          *
5037          * This is correct even for TF set by the guest, because "the
5038          * processor will not generate this exception after the instruction
5039          * that sets the TF flag".
5040          */
5041         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5042
5043         if (unlikely(rflags & X86_EFLAGS_TF)) {
5044                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5045                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1;
5046                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5047                         kvm_run->debug.arch.exception = DB_VECTOR;
5048                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5049                         *r = EMULATE_USER_EXIT;
5050                 } else {
5051                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5052                         /*
5053                          * "Certain debug exceptions may clear bit 0-3.  The
5054                          * remaining contents of the DR6 register are never
5055                          * cleared by the processor".
5056                          */
5057                         vcpu->arch.dr6 &= ~15;
5058                         vcpu->arch.dr6 |= DR6_BS;
5059                         kvm_queue_exception(vcpu, DB_VECTOR);
5060                 }
5061         }
5062 }
5063
5064 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5065 {
5066         struct kvm_run *kvm_run = vcpu->run;
5067         unsigned long eip = vcpu->arch.emulate_ctxt.eip;
5068         u32 dr6 = 0;
5069
5070         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5071             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5072                 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5073                                            vcpu->arch.guest_debug_dr7,
5074                                            vcpu->arch.eff_db);
5075
5076                 if (dr6 != 0) {
5077                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5078                         kvm_run->debug.arch.pc = kvm_rip_read(vcpu) +
5079                                 get_segment_base(vcpu, VCPU_SREG_CS);
5080
5081                         kvm_run->debug.arch.exception = DB_VECTOR;
5082                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5083                         *r = EMULATE_USER_EXIT;
5084                         return true;
5085                 }
5086         }
5087
5088         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK)) {
5089                 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5090                                            vcpu->arch.dr7,
5091                                            vcpu->arch.db);
5092
5093                 if (dr6 != 0) {
5094                         vcpu->arch.dr6 &= ~15;
5095                         vcpu->arch.dr6 |= dr6;
5096                         kvm_queue_exception(vcpu, DB_VECTOR);
5097                         *r = EMULATE_DONE;
5098                         return true;
5099                 }
5100         }
5101
5102         return false;
5103 }
5104
5105 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5106                             unsigned long cr2,
5107                             int emulation_type,
5108                             void *insn,
5109                             int insn_len)
5110 {
5111         int r;
5112         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5113         bool writeback = true;
5114         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5115
5116         /*
5117          * Clear write_fault_to_shadow_pgtable here to ensure it is
5118          * never reused.
5119          */
5120         vcpu->arch.write_fault_to_shadow_pgtable = false;
5121         kvm_clear_exception_queue(vcpu);
5122
5123         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5124                 init_emulate_ctxt(vcpu);
5125
5126                 /*
5127                  * We will reenter on the same instruction since
5128                  * we do not set complete_userspace_io.  This does not
5129                  * handle watchpoints yet, those would be handled in
5130                  * the emulate_ops.
5131                  */
5132                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5133                         return r;
5134
5135                 ctxt->interruptibility = 0;
5136                 ctxt->have_exception = false;
5137                 ctxt->perm_ok = false;
5138
5139                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5140
5141                 r = x86_decode_insn(ctxt, insn, insn_len);
5142
5143                 trace_kvm_emulate_insn_start(vcpu);
5144                 ++vcpu->stat.insn_emulation;
5145                 if (r != EMULATION_OK)  {
5146                         if (emulation_type & EMULTYPE_TRAP_UD)
5147                                 return EMULATE_FAIL;
5148                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5149                                                 emulation_type))
5150                                 return EMULATE_DONE;
5151                         if (emulation_type & EMULTYPE_SKIP)
5152                                 return EMULATE_FAIL;
5153                         return handle_emulation_failure(vcpu);
5154                 }
5155         }
5156
5157         if (emulation_type & EMULTYPE_SKIP) {
5158                 kvm_rip_write(vcpu, ctxt->_eip);
5159                 return EMULATE_DONE;
5160         }
5161
5162         if (retry_instruction(ctxt, cr2, emulation_type))
5163                 return EMULATE_DONE;
5164
5165         /* this is needed for vmware backdoor interface to work since it
5166            changes registers values  during IO operation */
5167         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5168                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5169                 emulator_invalidate_register_cache(ctxt);
5170         }
5171
5172 restart:
5173         r = x86_emulate_insn(ctxt);
5174
5175         if (r == EMULATION_INTERCEPTED)
5176                 return EMULATE_DONE;
5177
5178         if (r == EMULATION_FAILED) {
5179                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5180                                         emulation_type))
5181                         return EMULATE_DONE;
5182
5183                 return handle_emulation_failure(vcpu);
5184         }
5185
5186         if (ctxt->have_exception) {
5187                 inject_emulated_exception(vcpu);
5188                 r = EMULATE_DONE;
5189         } else if (vcpu->arch.pio.count) {
5190                 if (!vcpu->arch.pio.in) {
5191                         /* FIXME: return into emulator if single-stepping.  */
5192                         vcpu->arch.pio.count = 0;
5193                 } else {
5194                         writeback = false;
5195                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5196                 }
5197                 r = EMULATE_USER_EXIT;
5198         } else if (vcpu->mmio_needed) {
5199                 if (!vcpu->mmio_is_write)
5200                         writeback = false;
5201                 r = EMULATE_USER_EXIT;
5202                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5203         } else if (r == EMULATION_RESTART)
5204                 goto restart;
5205         else
5206                 r = EMULATE_DONE;
5207
5208         if (writeback) {
5209                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5210                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5211                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5212                 kvm_rip_write(vcpu, ctxt->eip);
5213                 if (r == EMULATE_DONE)
5214                         kvm_vcpu_check_singlestep(vcpu, &r);
5215                 kvm_set_rflags(vcpu, ctxt->eflags);
5216         } else
5217                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5218
5219         return r;
5220 }
5221 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5222
5223 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5224 {
5225         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5226         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5227                                             size, port, &val, 1);
5228         /* do not return to emulator after return from userspace */
5229         vcpu->arch.pio.count = 0;
5230         return ret;
5231 }
5232 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5233
5234 static void tsc_bad(void *info)
5235 {
5236         __this_cpu_write(cpu_tsc_khz, 0);
5237 }
5238
5239 static void tsc_khz_changed(void *data)
5240 {
5241         struct cpufreq_freqs *freq = data;
5242         unsigned long khz = 0;
5243
5244         if (data)
5245                 khz = freq->new;
5246         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5247                 khz = cpufreq_quick_get(raw_smp_processor_id());
5248         if (!khz)
5249                 khz = tsc_khz;
5250         __this_cpu_write(cpu_tsc_khz, khz);
5251 }
5252
5253 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5254                                      void *data)
5255 {
5256         struct cpufreq_freqs *freq = data;
5257         struct kvm *kvm;
5258         struct kvm_vcpu *vcpu;
5259         int i, send_ipi = 0;
5260
5261         /*
5262          * We allow guests to temporarily run on slowing clocks,
5263          * provided we notify them after, or to run on accelerating
5264          * clocks, provided we notify them before.  Thus time never
5265          * goes backwards.
5266          *
5267          * However, we have a problem.  We can't atomically update
5268          * the frequency of a given CPU from this function; it is
5269          * merely a notifier, which can be called from any CPU.
5270          * Changing the TSC frequency at arbitrary points in time
5271          * requires a recomputation of local variables related to
5272          * the TSC for each VCPU.  We must flag these local variables
5273          * to be updated and be sure the update takes place with the
5274          * new frequency before any guests proceed.
5275          *
5276          * Unfortunately, the combination of hotplug CPU and frequency
5277          * change creates an intractable locking scenario; the order
5278          * of when these callouts happen is undefined with respect to
5279          * CPU hotplug, and they can race with each other.  As such,
5280          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5281          * undefined; you can actually have a CPU frequency change take
5282          * place in between the computation of X and the setting of the
5283          * variable.  To protect against this problem, all updates of
5284          * the per_cpu tsc_khz variable are done in an interrupt
5285          * protected IPI, and all callers wishing to update the value
5286          * must wait for a synchronous IPI to complete (which is trivial
5287          * if the caller is on the CPU already).  This establishes the
5288          * necessary total order on variable updates.
5289          *
5290          * Note that because a guest time update may take place
5291          * anytime after the setting of the VCPU's request bit, the
5292          * correct TSC value must be set before the request.  However,
5293          * to ensure the update actually makes it to any guest which
5294          * starts running in hardware virtualization between the set
5295          * and the acquisition of the spinlock, we must also ping the
5296          * CPU after setting the request bit.
5297          *
5298          */
5299
5300         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5301                 return 0;
5302         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5303                 return 0;
5304
5305         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5306
5307         spin_lock(&kvm_lock);
5308         list_for_each_entry(kvm, &vm_list, vm_list) {
5309                 kvm_for_each_vcpu(i, vcpu, kvm) {
5310                         if (vcpu->cpu != freq->cpu)
5311                                 continue;
5312                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5313                         if (vcpu->cpu != smp_processor_id())
5314                                 send_ipi = 1;
5315                 }
5316         }
5317         spin_unlock(&kvm_lock);
5318
5319         if (freq->old < freq->new && send_ipi) {
5320                 /*
5321                  * We upscale the frequency.  Must make the guest
5322                  * doesn't see old kvmclock values while running with
5323                  * the new frequency, otherwise we risk the guest sees
5324                  * time go backwards.
5325                  *
5326                  * In case we update the frequency for another cpu
5327                  * (which might be in guest context) send an interrupt
5328                  * to kick the cpu out of guest context.  Next time
5329                  * guest context is entered kvmclock will be updated,
5330                  * so the guest will not see stale values.
5331                  */
5332                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5333         }
5334         return 0;
5335 }
5336
5337 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5338         .notifier_call  = kvmclock_cpufreq_notifier
5339 };
5340
5341 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5342                                         unsigned long action, void *hcpu)
5343 {
5344         unsigned int cpu = (unsigned long)hcpu;
5345
5346         switch (action) {
5347                 case CPU_ONLINE:
5348                 case CPU_DOWN_FAILED:
5349                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5350                         break;
5351                 case CPU_DOWN_PREPARE:
5352                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5353                         break;
5354         }
5355         return NOTIFY_OK;
5356 }
5357
5358 static struct notifier_block kvmclock_cpu_notifier_block = {
5359         .notifier_call  = kvmclock_cpu_notifier,
5360         .priority = -INT_MAX
5361 };
5362
5363 static void kvm_timer_init(void)
5364 {
5365         int cpu;
5366
5367         max_tsc_khz = tsc_khz;
5368         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5369         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5370 #ifdef CONFIG_CPU_FREQ
5371                 struct cpufreq_policy policy;
5372                 memset(&policy, 0, sizeof(policy));
5373                 cpu = get_cpu();
5374                 cpufreq_get_policy(&policy, cpu);
5375                 if (policy.cpuinfo.max_freq)
5376                         max_tsc_khz = policy.cpuinfo.max_freq;
5377                 put_cpu();
5378 #endif
5379                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5380                                           CPUFREQ_TRANSITION_NOTIFIER);
5381         }
5382         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5383         for_each_online_cpu(cpu)
5384                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5385 }
5386
5387 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5388
5389 int kvm_is_in_guest(void)
5390 {
5391         return __this_cpu_read(current_vcpu) != NULL;
5392 }
5393
5394 static int kvm_is_user_mode(void)
5395 {
5396         int user_mode = 3;
5397
5398         if (__this_cpu_read(current_vcpu))
5399                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5400
5401         return user_mode != 0;
5402 }
5403
5404 static unsigned long kvm_get_guest_ip(void)
5405 {
5406         unsigned long ip = 0;
5407
5408         if (__this_cpu_read(current_vcpu))
5409                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5410
5411         return ip;
5412 }
5413
5414 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5415         .is_in_guest            = kvm_is_in_guest,
5416         .is_user_mode           = kvm_is_user_mode,
5417         .get_guest_ip           = kvm_get_guest_ip,
5418 };
5419
5420 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5421 {
5422         __this_cpu_write(current_vcpu, vcpu);
5423 }
5424 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5425
5426 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5427 {
5428         __this_cpu_write(current_vcpu, NULL);
5429 }
5430 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5431
5432 static void kvm_set_mmio_spte_mask(void)
5433 {
5434         u64 mask;
5435         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5436
5437         /*
5438          * Set the reserved bits and the present bit of an paging-structure
5439          * entry to generate page fault with PFER.RSV = 1.
5440          */
5441          /* Mask the reserved physical address bits. */
5442         mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr;
5443
5444         /* Bit 62 is always reserved for 32bit host. */
5445         mask |= 0x3ull << 62;
5446
5447         /* Set the present bit. */
5448         mask |= 1ull;
5449
5450 #ifdef CONFIG_X86_64
5451         /*
5452          * If reserved bit is not supported, clear the present bit to disable
5453          * mmio page fault.
5454          */
5455         if (maxphyaddr == 52)
5456                 mask &= ~1ull;
5457 #endif
5458
5459         kvm_mmu_set_mmio_spte_mask(mask);
5460 }
5461
5462 #ifdef CONFIG_X86_64
5463 static void pvclock_gtod_update_fn(struct work_struct *work)
5464 {
5465         struct kvm *kvm;
5466
5467         struct kvm_vcpu *vcpu;
5468         int i;
5469
5470         spin_lock(&kvm_lock);
5471         list_for_each_entry(kvm, &vm_list, vm_list)
5472                 kvm_for_each_vcpu(i, vcpu, kvm)
5473                         set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5474         atomic_set(&kvm_guest_has_master_clock, 0);
5475         spin_unlock(&kvm_lock);
5476 }
5477
5478 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5479
5480 /*
5481  * Notification about pvclock gtod data update.
5482  */
5483 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5484                                void *priv)
5485 {
5486         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5487         struct timekeeper *tk = priv;
5488
5489         update_pvclock_gtod(tk);
5490
5491         /* disable master clock if host does not trust, or does not
5492          * use, TSC clocksource
5493          */
5494         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5495             atomic_read(&kvm_guest_has_master_clock) != 0)
5496                 queue_work(system_long_wq, &pvclock_gtod_work);
5497
5498         return 0;
5499 }
5500
5501 static struct notifier_block pvclock_gtod_notifier = {
5502         .notifier_call = pvclock_gtod_notify,
5503 };
5504 #endif
5505
5506 int kvm_arch_init(void *opaque)
5507 {
5508         int r;
5509         struct kvm_x86_ops *ops = opaque;
5510
5511         if (kvm_x86_ops) {
5512                 printk(KERN_ERR "kvm: already loaded the other module\n");
5513                 r = -EEXIST;
5514                 goto out;
5515         }
5516
5517         if (!ops->cpu_has_kvm_support()) {
5518                 printk(KERN_ERR "kvm: no hardware support\n");
5519                 r = -EOPNOTSUPP;
5520                 goto out;
5521         }
5522         if (ops->disabled_by_bios()) {
5523                 printk(KERN_ERR "kvm: disabled by bios\n");
5524                 r = -EOPNOTSUPP;
5525                 goto out;
5526         }
5527
5528         r = -ENOMEM;
5529         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5530         if (!shared_msrs) {
5531                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5532                 goto out;
5533         }
5534
5535         r = kvm_mmu_module_init();
5536         if (r)
5537                 goto out_free_percpu;
5538
5539         kvm_set_mmio_spte_mask();
5540         kvm_init_msr_list();
5541
5542         kvm_x86_ops = ops;
5543         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5544                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5545
5546         kvm_timer_init();
5547
5548         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5549
5550         if (cpu_has_xsave)
5551                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5552
5553         kvm_lapic_init();
5554 #ifdef CONFIG_X86_64
5555         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5556 #endif
5557
5558         return 0;
5559
5560 out_free_percpu:
5561         free_percpu(shared_msrs);
5562 out:
5563         return r;
5564 }
5565
5566 void kvm_arch_exit(void)
5567 {
5568         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5569
5570         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5571                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5572                                             CPUFREQ_TRANSITION_NOTIFIER);
5573         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5574 #ifdef CONFIG_X86_64
5575         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5576 #endif
5577         kvm_x86_ops = NULL;
5578         kvm_mmu_module_exit();
5579         free_percpu(shared_msrs);
5580 }
5581
5582 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5583 {
5584         ++vcpu->stat.halt_exits;
5585         if (irqchip_in_kernel(vcpu->kvm)) {
5586                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5587                 return 1;
5588         } else {
5589                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5590                 return 0;
5591         }
5592 }
5593 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5594
5595 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5596 {
5597         u64 param, ingpa, outgpa, ret;
5598         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5599         bool fast, longmode;
5600         int cs_db, cs_l;
5601
5602         /*
5603          * hypercall generates UD from non zero cpl and real mode
5604          * per HYPER-V spec
5605          */
5606         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5607                 kvm_queue_exception(vcpu, UD_VECTOR);
5608                 return 0;
5609         }
5610
5611         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5612         longmode = is_long_mode(vcpu) && cs_l == 1;
5613
5614         if (!longmode) {
5615                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5616                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5617                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5618                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5619                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5620                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5621         }
5622 #ifdef CONFIG_X86_64
5623         else {
5624                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5625                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5626                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5627         }
5628 #endif
5629
5630         code = param & 0xffff;
5631         fast = (param >> 16) & 0x1;
5632         rep_cnt = (param >> 32) & 0xfff;
5633         rep_idx = (param >> 48) & 0xfff;
5634
5635         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5636
5637         switch (code) {
5638         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5639                 kvm_vcpu_on_spin(vcpu);
5640                 break;
5641         default:
5642                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5643                 break;
5644         }
5645
5646         ret = res | (((u64)rep_done & 0xfff) << 32);
5647         if (longmode) {
5648                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5649         } else {
5650                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5651                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5652         }
5653
5654         return 1;
5655 }
5656
5657 /*
5658  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5659  *
5660  * @apicid - apicid of vcpu to be kicked.
5661  */
5662 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5663 {
5664         struct kvm_lapic_irq lapic_irq;
5665
5666         lapic_irq.shorthand = 0;
5667         lapic_irq.dest_mode = 0;
5668         lapic_irq.dest_id = apicid;
5669
5670         lapic_irq.delivery_mode = APIC_DM_REMRD;
5671         kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
5672 }
5673
5674 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5675 {
5676         unsigned long nr, a0, a1, a2, a3, ret;
5677         int r = 1;
5678
5679         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5680                 return kvm_hv_hypercall(vcpu);
5681
5682         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5683         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5684         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5685         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5686         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5687
5688         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5689
5690         if (!is_long_mode(vcpu)) {
5691                 nr &= 0xFFFFFFFF;
5692                 a0 &= 0xFFFFFFFF;
5693                 a1 &= 0xFFFFFFFF;
5694                 a2 &= 0xFFFFFFFF;
5695                 a3 &= 0xFFFFFFFF;
5696         }
5697
5698         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5699                 ret = -KVM_EPERM;
5700                 goto out;
5701         }
5702
5703         switch (nr) {
5704         case KVM_HC_VAPIC_POLL_IRQ:
5705                 ret = 0;
5706                 break;
5707         case KVM_HC_KICK_CPU:
5708                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5709                 ret = 0;
5710                 break;
5711         default:
5712                 ret = -KVM_ENOSYS;
5713                 break;
5714         }
5715 out:
5716         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5717         ++vcpu->stat.hypercalls;
5718         return r;
5719 }
5720 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5721
5722 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5723 {
5724         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5725         char instruction[3];
5726         unsigned long rip = kvm_rip_read(vcpu);
5727
5728         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5729
5730         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5731 }
5732
5733 /*
5734  * Check if userspace requested an interrupt window, and that the
5735  * interrupt window is open.
5736  *
5737  * No need to exit to userspace if we already have an interrupt queued.
5738  */
5739 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5740 {
5741         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5742                 vcpu->run->request_interrupt_window &&
5743                 kvm_arch_interrupt_allowed(vcpu));
5744 }
5745
5746 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5747 {
5748         struct kvm_run *kvm_run = vcpu->run;
5749
5750         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5751         kvm_run->cr8 = kvm_get_cr8(vcpu);
5752         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5753         if (irqchip_in_kernel(vcpu->kvm))
5754                 kvm_run->ready_for_interrupt_injection = 1;
5755         else
5756                 kvm_run->ready_for_interrupt_injection =
5757                         kvm_arch_interrupt_allowed(vcpu) &&
5758                         !kvm_cpu_has_interrupt(vcpu) &&
5759                         !kvm_event_needs_reinjection(vcpu);
5760 }
5761
5762 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5763 {
5764         int max_irr, tpr;
5765
5766         if (!kvm_x86_ops->update_cr8_intercept)
5767                 return;
5768
5769         if (!vcpu->arch.apic)
5770                 return;
5771
5772         if (!vcpu->arch.apic->vapic_addr)
5773                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5774         else
5775                 max_irr = -1;
5776
5777         if (max_irr != -1)
5778                 max_irr >>= 4;
5779
5780         tpr = kvm_lapic_get_cr8(vcpu);
5781
5782         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5783 }
5784
5785 static void inject_pending_event(struct kvm_vcpu *vcpu)
5786 {
5787         /* try to reinject previous events if any */
5788         if (vcpu->arch.exception.pending) {
5789                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5790                                         vcpu->arch.exception.has_error_code,
5791                                         vcpu->arch.exception.error_code);
5792                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5793                                           vcpu->arch.exception.has_error_code,
5794                                           vcpu->arch.exception.error_code,
5795                                           vcpu->arch.exception.reinject);
5796                 return;
5797         }
5798
5799         if (vcpu->arch.nmi_injected) {
5800                 kvm_x86_ops->set_nmi(vcpu);
5801                 return;
5802         }
5803
5804         if (vcpu->arch.interrupt.pending) {
5805                 kvm_x86_ops->set_irq(vcpu);
5806                 return;
5807         }
5808
5809         /* try to inject new event if pending */
5810         if (vcpu->arch.nmi_pending) {
5811                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5812                         --vcpu->arch.nmi_pending;
5813                         vcpu->arch.nmi_injected = true;
5814                         kvm_x86_ops->set_nmi(vcpu);
5815                 }
5816         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5817                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5818                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5819                                             false);
5820                         kvm_x86_ops->set_irq(vcpu);
5821                 }
5822         }
5823 }
5824
5825 static void process_nmi(struct kvm_vcpu *vcpu)
5826 {
5827         unsigned limit = 2;
5828
5829         /*
5830          * x86 is limited to one NMI running, and one NMI pending after it.
5831          * If an NMI is already in progress, limit further NMIs to just one.
5832          * Otherwise, allow two (and we'll inject the first one immediately).
5833          */
5834         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5835                 limit = 1;
5836
5837         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5838         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5839         kvm_make_request(KVM_REQ_EVENT, vcpu);
5840 }
5841
5842 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
5843 {
5844         u64 eoi_exit_bitmap[4];
5845         u32 tmr[8];
5846
5847         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
5848                 return;
5849
5850         memset(eoi_exit_bitmap, 0, 32);
5851         memset(tmr, 0, 32);
5852
5853         kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
5854         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5855         kvm_apic_update_tmr(vcpu, tmr);
5856 }
5857
5858 /*
5859  * Returns 1 to let __vcpu_run() continue the guest execution loop without
5860  * exiting to the userspace.  Otherwise, the value will be returned to the
5861  * userspace.
5862  */
5863 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5864 {
5865         int r;
5866         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5867                 vcpu->run->request_interrupt_window;
5868         bool req_immediate_exit = false;
5869
5870         if (vcpu->requests) {
5871                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5872                         kvm_mmu_unload(vcpu);
5873                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5874                         __kvm_migrate_timers(vcpu);
5875                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5876                         kvm_gen_update_masterclock(vcpu->kvm);
5877                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
5878                         kvm_gen_kvmclock_update(vcpu);
5879                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5880                         r = kvm_guest_time_update(vcpu);
5881                         if (unlikely(r))
5882                                 goto out;
5883                 }
5884                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5885                         kvm_mmu_sync_roots(vcpu);
5886                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5887                         kvm_x86_ops->tlb_flush(vcpu);
5888                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5889                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5890                         r = 0;
5891                         goto out;
5892                 }
5893                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5894                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5895                         r = 0;
5896                         goto out;
5897                 }
5898                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5899                         vcpu->fpu_active = 0;
5900                         kvm_x86_ops->fpu_deactivate(vcpu);
5901                 }
5902                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5903                         /* Page is swapped out. Do synthetic halt */
5904                         vcpu->arch.apf.halted = true;
5905                         r = 1;
5906                         goto out;
5907                 }
5908                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5909                         record_steal_time(vcpu);
5910                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5911                         process_nmi(vcpu);
5912                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5913                         kvm_handle_pmu_event(vcpu);
5914                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5915                         kvm_deliver_pmi(vcpu);
5916                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
5917                         vcpu_scan_ioapic(vcpu);
5918         }
5919
5920         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5921                 kvm_apic_accept_events(vcpu);
5922                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
5923                         r = 1;
5924                         goto out;
5925                 }
5926
5927                 inject_pending_event(vcpu);
5928
5929                 /* enable NMI/IRQ window open exits if needed */
5930                 if (vcpu->arch.nmi_pending)
5931                         req_immediate_exit =
5932                                 kvm_x86_ops->enable_nmi_window(vcpu) != 0;
5933                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
5934                         req_immediate_exit =
5935                                 kvm_x86_ops->enable_irq_window(vcpu) != 0;
5936
5937                 if (kvm_lapic_enabled(vcpu)) {
5938                         /*
5939                          * Update architecture specific hints for APIC
5940                          * virtual interrupt delivery.
5941                          */
5942                         if (kvm_x86_ops->hwapic_irr_update)
5943                                 kvm_x86_ops->hwapic_irr_update(vcpu,
5944                                         kvm_lapic_find_highest_irr(vcpu));
5945                         update_cr8_intercept(vcpu);
5946                         kvm_lapic_sync_to_vapic(vcpu);
5947                 }
5948         }
5949
5950         r = kvm_mmu_reload(vcpu);
5951         if (unlikely(r)) {
5952                 goto cancel_injection;
5953         }
5954
5955         preempt_disable();
5956
5957         kvm_x86_ops->prepare_guest_switch(vcpu);
5958         if (vcpu->fpu_active)
5959                 kvm_load_guest_fpu(vcpu);
5960         kvm_load_guest_xcr0(vcpu);
5961
5962         vcpu->mode = IN_GUEST_MODE;
5963
5964         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5965
5966         /* We should set ->mode before check ->requests,
5967          * see the comment in make_all_cpus_request.
5968          */
5969         smp_mb__after_srcu_read_unlock();
5970
5971         local_irq_disable();
5972
5973         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5974             || need_resched() || signal_pending(current)) {
5975                 vcpu->mode = OUTSIDE_GUEST_MODE;
5976                 smp_wmb();
5977                 local_irq_enable();
5978                 preempt_enable();
5979                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5980                 r = 1;
5981                 goto cancel_injection;
5982         }
5983
5984         if (req_immediate_exit)
5985                 smp_send_reschedule(vcpu->cpu);
5986
5987         kvm_guest_enter();
5988
5989         if (unlikely(vcpu->arch.switch_db_regs)) {
5990                 set_debugreg(0, 7);
5991                 set_debugreg(vcpu->arch.eff_db[0], 0);
5992                 set_debugreg(vcpu->arch.eff_db[1], 1);
5993                 set_debugreg(vcpu->arch.eff_db[2], 2);
5994                 set_debugreg(vcpu->arch.eff_db[3], 3);
5995         }
5996
5997         trace_kvm_entry(vcpu->vcpu_id);
5998         kvm_x86_ops->run(vcpu);
5999
6000         /*
6001          * If the guest has used debug registers, at least dr7
6002          * will be disabled while returning to the host.
6003          * If we don't have active breakpoints in the host, we don't
6004          * care about the messed up debug address registers. But if
6005          * we have some of them active, restore the old state.
6006          */
6007         if (hw_breakpoint_active())
6008                 hw_breakpoint_restore();
6009
6010         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6011                                                            native_read_tsc());
6012
6013         vcpu->mode = OUTSIDE_GUEST_MODE;
6014         smp_wmb();
6015
6016         /* Interrupt is enabled by handle_external_intr() */
6017         kvm_x86_ops->handle_external_intr(vcpu);
6018
6019         ++vcpu->stat.exits;
6020
6021         /*
6022          * We must have an instruction between local_irq_enable() and
6023          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6024          * the interrupt shadow.  The stat.exits increment will do nicely.
6025          * But we need to prevent reordering, hence this barrier():
6026          */
6027         barrier();
6028
6029         kvm_guest_exit();
6030
6031         preempt_enable();
6032
6033         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6034
6035         /*
6036          * Profile KVM exit RIPs:
6037          */
6038         if (unlikely(prof_on == KVM_PROFILING)) {
6039                 unsigned long rip = kvm_rip_read(vcpu);
6040                 profile_hit(KVM_PROFILING, (void *)rip);
6041         }
6042
6043         if (unlikely(vcpu->arch.tsc_always_catchup))
6044                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6045
6046         if (vcpu->arch.apic_attention)
6047                 kvm_lapic_sync_from_vapic(vcpu);
6048
6049         r = kvm_x86_ops->handle_exit(vcpu);
6050         return r;
6051
6052 cancel_injection:
6053         kvm_x86_ops->cancel_injection(vcpu);
6054         if (unlikely(vcpu->arch.apic_attention))
6055                 kvm_lapic_sync_from_vapic(vcpu);
6056 out:
6057         return r;
6058 }
6059
6060
6061 static int __vcpu_run(struct kvm_vcpu *vcpu)
6062 {
6063         int r;
6064         struct kvm *kvm = vcpu->kvm;
6065
6066         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6067
6068         r = 1;
6069         while (r > 0) {
6070                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6071                     !vcpu->arch.apf.halted)
6072                         r = vcpu_enter_guest(vcpu);
6073                 else {
6074                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6075                         kvm_vcpu_block(vcpu);
6076                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6077                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
6078                                 kvm_apic_accept_events(vcpu);
6079                                 switch(vcpu->arch.mp_state) {
6080                                 case KVM_MP_STATE_HALTED:
6081                                         vcpu->arch.pv.pv_unhalted = false;
6082                                         vcpu->arch.mp_state =
6083                                                 KVM_MP_STATE_RUNNABLE;
6084                                 case KVM_MP_STATE_RUNNABLE:
6085                                         vcpu->arch.apf.halted = false;
6086                                         break;
6087                                 case KVM_MP_STATE_INIT_RECEIVED:
6088                                         break;
6089                                 default:
6090                                         r = -EINTR;
6091                                         break;
6092                                 }
6093                         }
6094                 }
6095
6096                 if (r <= 0)
6097                         break;
6098
6099                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6100                 if (kvm_cpu_has_pending_timer(vcpu))
6101                         kvm_inject_pending_timer_irqs(vcpu);
6102
6103                 if (dm_request_for_irq_injection(vcpu)) {
6104                         r = -EINTR;
6105                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6106                         ++vcpu->stat.request_irq_exits;
6107                 }
6108
6109                 kvm_check_async_pf_completion(vcpu);
6110
6111                 if (signal_pending(current)) {
6112                         r = -EINTR;
6113                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6114                         ++vcpu->stat.signal_exits;
6115                 }
6116                 if (need_resched()) {
6117                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6118                         cond_resched();
6119                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6120                 }
6121         }
6122
6123         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6124
6125         return r;
6126 }
6127
6128 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6129 {
6130         int r;
6131         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6132         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6133         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6134         if (r != EMULATE_DONE)
6135                 return 0;
6136         return 1;
6137 }
6138
6139 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6140 {
6141         BUG_ON(!vcpu->arch.pio.count);
6142
6143         return complete_emulated_io(vcpu);
6144 }
6145
6146 /*
6147  * Implements the following, as a state machine:
6148  *
6149  * read:
6150  *   for each fragment
6151  *     for each mmio piece in the fragment
6152  *       write gpa, len
6153  *       exit
6154  *       copy data
6155  *   execute insn
6156  *
6157  * write:
6158  *   for each fragment
6159  *     for each mmio piece in the fragment
6160  *       write gpa, len
6161  *       copy data
6162  *       exit
6163  */
6164 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6165 {
6166         struct kvm_run *run = vcpu->run;
6167         struct kvm_mmio_fragment *frag;
6168         unsigned len;
6169
6170         BUG_ON(!vcpu->mmio_needed);
6171
6172         /* Complete previous fragment */
6173         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6174         len = min(8u, frag->len);
6175         if (!vcpu->mmio_is_write)
6176                 memcpy(frag->data, run->mmio.data, len);
6177
6178         if (frag->len <= 8) {
6179                 /* Switch to the next fragment. */
6180                 frag++;
6181                 vcpu->mmio_cur_fragment++;
6182         } else {
6183                 /* Go forward to the next mmio piece. */
6184                 frag->data += len;
6185                 frag->gpa += len;
6186                 frag->len -= len;
6187         }
6188
6189         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6190                 vcpu->mmio_needed = 0;
6191
6192                 /* FIXME: return into emulator if single-stepping.  */
6193                 if (vcpu->mmio_is_write)
6194                         return 1;
6195                 vcpu->mmio_read_completed = 1;
6196                 return complete_emulated_io(vcpu);
6197         }
6198
6199         run->exit_reason = KVM_EXIT_MMIO;
6200         run->mmio.phys_addr = frag->gpa;
6201         if (vcpu->mmio_is_write)
6202                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6203         run->mmio.len = min(8u, frag->len);
6204         run->mmio.is_write = vcpu->mmio_is_write;
6205         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6206         return 0;
6207 }
6208
6209
6210 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6211 {
6212         int r;
6213         sigset_t sigsaved;
6214
6215         if (!tsk_used_math(current) && init_fpu(current))
6216                 return -ENOMEM;
6217
6218         if (vcpu->sigset_active)
6219                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6220
6221         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6222                 kvm_vcpu_block(vcpu);
6223                 kvm_apic_accept_events(vcpu);
6224                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6225                 r = -EAGAIN;
6226                 goto out;
6227         }
6228
6229         /* re-sync apic's tpr */
6230         if (!irqchip_in_kernel(vcpu->kvm)) {
6231                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6232                         r = -EINVAL;
6233                         goto out;
6234                 }
6235         }
6236
6237         if (unlikely(vcpu->arch.complete_userspace_io)) {
6238                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6239                 vcpu->arch.complete_userspace_io = NULL;
6240                 r = cui(vcpu);
6241                 if (r <= 0)
6242                         goto out;
6243         } else
6244                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6245
6246         r = __vcpu_run(vcpu);
6247
6248 out:
6249         post_kvm_run_save(vcpu);
6250         if (vcpu->sigset_active)
6251                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6252
6253         return r;
6254 }
6255
6256 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6257 {
6258         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6259                 /*
6260                  * We are here if userspace calls get_regs() in the middle of
6261                  * instruction emulation. Registers state needs to be copied
6262                  * back from emulation context to vcpu. Userspace shouldn't do
6263                  * that usually, but some bad designed PV devices (vmware
6264                  * backdoor interface) need this to work
6265                  */
6266                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6267                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6268         }
6269         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6270         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6271         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6272         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6273         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6274         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6275         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6276         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6277 #ifdef CONFIG_X86_64
6278         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6279         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6280         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6281         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6282         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6283         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6284         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6285         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6286 #endif
6287
6288         regs->rip = kvm_rip_read(vcpu);
6289         regs->rflags = kvm_get_rflags(vcpu);
6290
6291         return 0;
6292 }
6293
6294 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6295 {
6296         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6297         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6298
6299         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6300         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6301         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6302         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6303         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6304         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6305         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6306         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6307 #ifdef CONFIG_X86_64
6308         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6309         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6310         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6311         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6312         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6313         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6314         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6315         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6316 #endif
6317
6318         kvm_rip_write(vcpu, regs->rip);
6319         kvm_set_rflags(vcpu, regs->rflags);
6320
6321         vcpu->arch.exception.pending = false;
6322
6323         kvm_make_request(KVM_REQ_EVENT, vcpu);
6324
6325         return 0;
6326 }
6327
6328 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6329 {
6330         struct kvm_segment cs;
6331
6332         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6333         *db = cs.db;
6334         *l = cs.l;
6335 }
6336 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6337
6338 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6339                                   struct kvm_sregs *sregs)
6340 {
6341         struct desc_ptr dt;
6342
6343         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6344         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6345         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6346         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6347         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6348         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6349
6350         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6351         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6352
6353         kvm_x86_ops->get_idt(vcpu, &dt);
6354         sregs->idt.limit = dt.size;
6355         sregs->idt.base = dt.address;
6356         kvm_x86_ops->get_gdt(vcpu, &dt);
6357         sregs->gdt.limit = dt.size;
6358         sregs->gdt.base = dt.address;
6359
6360         sregs->cr0 = kvm_read_cr0(vcpu);
6361         sregs->cr2 = vcpu->arch.cr2;
6362         sregs->cr3 = kvm_read_cr3(vcpu);
6363         sregs->cr4 = kvm_read_cr4(vcpu);
6364         sregs->cr8 = kvm_get_cr8(vcpu);
6365         sregs->efer = vcpu->arch.efer;
6366         sregs->apic_base = kvm_get_apic_base(vcpu);
6367
6368         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6369
6370         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6371                 set_bit(vcpu->arch.interrupt.nr,
6372                         (unsigned long *)sregs->interrupt_bitmap);
6373
6374         return 0;
6375 }
6376
6377 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6378                                     struct kvm_mp_state *mp_state)
6379 {
6380         kvm_apic_accept_events(vcpu);
6381         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6382                                         vcpu->arch.pv.pv_unhalted)
6383                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6384         else
6385                 mp_state->mp_state = vcpu->arch.mp_state;
6386
6387         return 0;
6388 }
6389
6390 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6391                                     struct kvm_mp_state *mp_state)
6392 {
6393         if (!kvm_vcpu_has_lapic(vcpu) &&
6394             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6395                 return -EINVAL;
6396
6397         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6398                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6399                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6400         } else
6401                 vcpu->arch.mp_state = mp_state->mp_state;
6402         kvm_make_request(KVM_REQ_EVENT, vcpu);
6403         return 0;
6404 }
6405
6406 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6407                     int reason, bool has_error_code, u32 error_code)
6408 {
6409         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6410         int ret;
6411
6412         init_emulate_ctxt(vcpu);
6413
6414         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6415                                    has_error_code, error_code);
6416
6417         if (ret)
6418                 return EMULATE_FAIL;
6419
6420         kvm_rip_write(vcpu, ctxt->eip);
6421         kvm_set_rflags(vcpu, ctxt->eflags);
6422         kvm_make_request(KVM_REQ_EVENT, vcpu);
6423         return EMULATE_DONE;
6424 }
6425 EXPORT_SYMBOL_GPL(kvm_task_switch);
6426
6427 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6428                                   struct kvm_sregs *sregs)
6429 {
6430         struct msr_data apic_base_msr;
6431         int mmu_reset_needed = 0;
6432         int pending_vec, max_bits, idx;
6433         struct desc_ptr dt;
6434
6435         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6436                 return -EINVAL;
6437
6438         dt.size = sregs->idt.limit;
6439         dt.address = sregs->idt.base;
6440         kvm_x86_ops->set_idt(vcpu, &dt);
6441         dt.size = sregs->gdt.limit;
6442         dt.address = sregs->gdt.base;
6443         kvm_x86_ops->set_gdt(vcpu, &dt);
6444
6445         vcpu->arch.cr2 = sregs->cr2;
6446         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6447         vcpu->arch.cr3 = sregs->cr3;
6448         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6449
6450         kvm_set_cr8(vcpu, sregs->cr8);
6451
6452         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6453         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6454         apic_base_msr.data = sregs->apic_base;
6455         apic_base_msr.host_initiated = true;
6456         kvm_set_apic_base(vcpu, &apic_base_msr);
6457
6458         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6459         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6460         vcpu->arch.cr0 = sregs->cr0;
6461
6462         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6463         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6464         if (sregs->cr4 & X86_CR4_OSXSAVE)
6465                 kvm_update_cpuid(vcpu);
6466
6467         idx = srcu_read_lock(&vcpu->kvm->srcu);
6468         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6469                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6470                 mmu_reset_needed = 1;
6471         }
6472         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6473
6474         if (mmu_reset_needed)
6475                 kvm_mmu_reset_context(vcpu);
6476
6477         max_bits = KVM_NR_INTERRUPTS;
6478         pending_vec = find_first_bit(
6479                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6480         if (pending_vec < max_bits) {
6481                 kvm_queue_interrupt(vcpu, pending_vec, false);
6482                 pr_debug("Set back pending irq %d\n", pending_vec);
6483         }
6484
6485         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6486         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6487         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6488         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6489         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6490         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6491
6492         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6493         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6494
6495         update_cr8_intercept(vcpu);
6496
6497         /* Older userspace won't unhalt the vcpu on reset. */
6498         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6499             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6500             !is_protmode(vcpu))
6501                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6502
6503         kvm_make_request(KVM_REQ_EVENT, vcpu);
6504
6505         return 0;
6506 }
6507
6508 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6509                                         struct kvm_guest_debug *dbg)
6510 {
6511         unsigned long rflags;
6512         int i, r;
6513
6514         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6515                 r = -EBUSY;
6516                 if (vcpu->arch.exception.pending)
6517                         goto out;
6518                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6519                         kvm_queue_exception(vcpu, DB_VECTOR);
6520                 else
6521                         kvm_queue_exception(vcpu, BP_VECTOR);
6522         }
6523
6524         /*
6525          * Read rflags as long as potentially injected trace flags are still
6526          * filtered out.
6527          */
6528         rflags = kvm_get_rflags(vcpu);
6529
6530         vcpu->guest_debug = dbg->control;
6531         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6532                 vcpu->guest_debug = 0;
6533
6534         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6535                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6536                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6537                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6538         } else {
6539                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6540                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6541         }
6542         kvm_update_dr7(vcpu);
6543
6544         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6545                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6546                         get_segment_base(vcpu, VCPU_SREG_CS);
6547
6548         /*
6549          * Trigger an rflags update that will inject or remove the trace
6550          * flags.
6551          */
6552         kvm_set_rflags(vcpu, rflags);
6553
6554         kvm_x86_ops->update_db_bp_intercept(vcpu);
6555
6556         r = 0;
6557
6558 out:
6559
6560         return r;
6561 }
6562
6563 /*
6564  * Translate a guest virtual address to a guest physical address.
6565  */
6566 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6567                                     struct kvm_translation *tr)
6568 {
6569         unsigned long vaddr = tr->linear_address;
6570         gpa_t gpa;
6571         int idx;
6572
6573         idx = srcu_read_lock(&vcpu->kvm->srcu);
6574         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6575         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6576         tr->physical_address = gpa;
6577         tr->valid = gpa != UNMAPPED_GVA;
6578         tr->writeable = 1;
6579         tr->usermode = 0;
6580
6581         return 0;
6582 }
6583
6584 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6585 {
6586         struct i387_fxsave_struct *fxsave =
6587                         &vcpu->arch.guest_fpu.state->fxsave;
6588
6589         memcpy(fpu->fpr, fxsave->st_space, 128);
6590         fpu->fcw = fxsave->cwd;
6591         fpu->fsw = fxsave->swd;
6592         fpu->ftwx = fxsave->twd;
6593         fpu->last_opcode = fxsave->fop;
6594         fpu->last_ip = fxsave->rip;
6595         fpu->last_dp = fxsave->rdp;
6596         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6597
6598         return 0;
6599 }
6600
6601 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6602 {
6603         struct i387_fxsave_struct *fxsave =
6604                         &vcpu->arch.guest_fpu.state->fxsave;
6605
6606         memcpy(fxsave->st_space, fpu->fpr, 128);
6607         fxsave->cwd = fpu->fcw;
6608         fxsave->swd = fpu->fsw;
6609         fxsave->twd = fpu->ftwx;
6610         fxsave->fop = fpu->last_opcode;
6611         fxsave->rip = fpu->last_ip;
6612         fxsave->rdp = fpu->last_dp;
6613         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6614
6615         return 0;
6616 }
6617
6618 int fx_init(struct kvm_vcpu *vcpu)
6619 {
6620         int err;
6621
6622         err = fpu_alloc(&vcpu->arch.guest_fpu);
6623         if (err)
6624                 return err;
6625
6626         fpu_finit(&vcpu->arch.guest_fpu);
6627
6628         /*
6629          * Ensure guest xcr0 is valid for loading
6630          */
6631         vcpu->arch.xcr0 = XSTATE_FP;
6632
6633         vcpu->arch.cr0 |= X86_CR0_ET;
6634
6635         return 0;
6636 }
6637 EXPORT_SYMBOL_GPL(fx_init);
6638
6639 static void fx_free(struct kvm_vcpu *vcpu)
6640 {
6641         fpu_free(&vcpu->arch.guest_fpu);
6642 }
6643
6644 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6645 {
6646         if (vcpu->guest_fpu_loaded)
6647                 return;
6648
6649         /*
6650          * Restore all possible states in the guest,
6651          * and assume host would use all available bits.
6652          * Guest xcr0 would be loaded later.
6653          */
6654         kvm_put_guest_xcr0(vcpu);
6655         vcpu->guest_fpu_loaded = 1;
6656         __kernel_fpu_begin();
6657         fpu_restore_checking(&vcpu->arch.guest_fpu);
6658         trace_kvm_fpu(1);
6659 }
6660
6661 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6662 {
6663         kvm_put_guest_xcr0(vcpu);
6664
6665         if (!vcpu->guest_fpu_loaded)
6666                 return;
6667
6668         vcpu->guest_fpu_loaded = 0;
6669         fpu_save_init(&vcpu->arch.guest_fpu);
6670         __kernel_fpu_end();
6671         ++vcpu->stat.fpu_reload;
6672         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6673         trace_kvm_fpu(0);
6674 }
6675
6676 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6677 {
6678         kvmclock_reset(vcpu);
6679
6680         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6681         fx_free(vcpu);
6682         kvm_x86_ops->vcpu_free(vcpu);
6683 }
6684
6685 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6686                                                 unsigned int id)
6687 {
6688         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6689                 printk_once(KERN_WARNING
6690                 "kvm: SMP vm created on host with unstable TSC; "
6691                 "guest TSC will not be reliable\n");
6692         return kvm_x86_ops->vcpu_create(kvm, id);
6693 }
6694
6695 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6696 {
6697         int r;
6698
6699         vcpu->arch.mtrr_state.have_fixed = 1;
6700         r = vcpu_load(vcpu);
6701         if (r)
6702                 return r;
6703         kvm_vcpu_reset(vcpu);
6704         kvm_mmu_setup(vcpu);
6705         vcpu_put(vcpu);
6706
6707         return r;
6708 }
6709
6710 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6711 {
6712         int r;
6713         struct msr_data msr;
6714
6715         r = vcpu_load(vcpu);
6716         if (r)
6717                 return r;
6718         msr.data = 0x0;
6719         msr.index = MSR_IA32_TSC;
6720         msr.host_initiated = true;
6721         kvm_write_tsc(vcpu, &msr);
6722         vcpu_put(vcpu);
6723
6724         return r;
6725 }
6726
6727 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6728 {
6729         int r;
6730         vcpu->arch.apf.msr_val = 0;
6731
6732         r = vcpu_load(vcpu);
6733         BUG_ON(r);
6734         kvm_mmu_unload(vcpu);
6735         vcpu_put(vcpu);
6736
6737         fx_free(vcpu);
6738         kvm_x86_ops->vcpu_free(vcpu);
6739 }
6740
6741 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6742 {
6743         atomic_set(&vcpu->arch.nmi_queued, 0);
6744         vcpu->arch.nmi_pending = 0;
6745         vcpu->arch.nmi_injected = false;
6746
6747         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6748         vcpu->arch.dr6 = DR6_FIXED_1;
6749         kvm_update_dr6(vcpu);
6750         vcpu->arch.dr7 = DR7_FIXED_1;
6751         kvm_update_dr7(vcpu);
6752
6753         kvm_make_request(KVM_REQ_EVENT, vcpu);
6754         vcpu->arch.apf.msr_val = 0;
6755         vcpu->arch.st.msr_val = 0;
6756
6757         kvmclock_reset(vcpu);
6758
6759         kvm_clear_async_pf_completion_queue(vcpu);
6760         kvm_async_pf_hash_reset(vcpu);
6761         vcpu->arch.apf.halted = false;
6762
6763         kvm_pmu_reset(vcpu);
6764
6765         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6766         vcpu->arch.regs_avail = ~0;
6767         vcpu->arch.regs_dirty = ~0;
6768
6769         kvm_x86_ops->vcpu_reset(vcpu);
6770 }
6771
6772 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
6773 {
6774         struct kvm_segment cs;
6775
6776         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6777         cs.selector = vector << 8;
6778         cs.base = vector << 12;
6779         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6780         kvm_rip_write(vcpu, 0);
6781 }
6782
6783 int kvm_arch_hardware_enable(void *garbage)
6784 {
6785         struct kvm *kvm;
6786         struct kvm_vcpu *vcpu;
6787         int i;
6788         int ret;
6789         u64 local_tsc;
6790         u64 max_tsc = 0;
6791         bool stable, backwards_tsc = false;
6792
6793         kvm_shared_msr_cpu_online();
6794         ret = kvm_x86_ops->hardware_enable(garbage);
6795         if (ret != 0)
6796                 return ret;
6797
6798         local_tsc = native_read_tsc();
6799         stable = !check_tsc_unstable();
6800         list_for_each_entry(kvm, &vm_list, vm_list) {
6801                 kvm_for_each_vcpu(i, vcpu, kvm) {
6802                         if (!stable && vcpu->cpu == smp_processor_id())
6803                                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6804                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6805                                 backwards_tsc = true;
6806                                 if (vcpu->arch.last_host_tsc > max_tsc)
6807                                         max_tsc = vcpu->arch.last_host_tsc;
6808                         }
6809                 }
6810         }
6811
6812         /*
6813          * Sometimes, even reliable TSCs go backwards.  This happens on
6814          * platforms that reset TSC during suspend or hibernate actions, but
6815          * maintain synchronization.  We must compensate.  Fortunately, we can
6816          * detect that condition here, which happens early in CPU bringup,
6817          * before any KVM threads can be running.  Unfortunately, we can't
6818          * bring the TSCs fully up to date with real time, as we aren't yet far
6819          * enough into CPU bringup that we know how much real time has actually
6820          * elapsed; our helper function, get_kernel_ns() will be using boot
6821          * variables that haven't been updated yet.
6822          *
6823          * So we simply find the maximum observed TSC above, then record the
6824          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6825          * the adjustment will be applied.  Note that we accumulate
6826          * adjustments, in case multiple suspend cycles happen before some VCPU
6827          * gets a chance to run again.  In the event that no KVM threads get a
6828          * chance to run, we will miss the entire elapsed period, as we'll have
6829          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6830          * loose cycle time.  This isn't too big a deal, since the loss will be
6831          * uniform across all VCPUs (not to mention the scenario is extremely
6832          * unlikely). It is possible that a second hibernate recovery happens
6833          * much faster than a first, causing the observed TSC here to be
6834          * smaller; this would require additional padding adjustment, which is
6835          * why we set last_host_tsc to the local tsc observed here.
6836          *
6837          * N.B. - this code below runs only on platforms with reliable TSC,
6838          * as that is the only way backwards_tsc is set above.  Also note
6839          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6840          * have the same delta_cyc adjustment applied if backwards_tsc
6841          * is detected.  Note further, this adjustment is only done once,
6842          * as we reset last_host_tsc on all VCPUs to stop this from being
6843          * called multiple times (one for each physical CPU bringup).
6844          *
6845          * Platforms with unreliable TSCs don't have to deal with this, they
6846          * will be compensated by the logic in vcpu_load, which sets the TSC to
6847          * catchup mode.  This will catchup all VCPUs to real time, but cannot
6848          * guarantee that they stay in perfect synchronization.
6849          */
6850         if (backwards_tsc) {
6851                 u64 delta_cyc = max_tsc - local_tsc;
6852                 list_for_each_entry(kvm, &vm_list, vm_list) {
6853                         kvm_for_each_vcpu(i, vcpu, kvm) {
6854                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6855                                 vcpu->arch.last_host_tsc = local_tsc;
6856                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6857                                         &vcpu->requests);
6858                         }
6859
6860                         /*
6861                          * We have to disable TSC offset matching.. if you were
6862                          * booting a VM while issuing an S4 host suspend....
6863                          * you may have some problem.  Solving this issue is
6864                          * left as an exercise to the reader.
6865                          */
6866                         kvm->arch.last_tsc_nsec = 0;
6867                         kvm->arch.last_tsc_write = 0;
6868                 }
6869
6870         }
6871         return 0;
6872 }
6873
6874 void kvm_arch_hardware_disable(void *garbage)
6875 {
6876         kvm_x86_ops->hardware_disable(garbage);
6877         drop_user_return_notifiers(garbage);
6878 }
6879
6880 int kvm_arch_hardware_setup(void)
6881 {
6882         return kvm_x86_ops->hardware_setup();
6883 }
6884
6885 void kvm_arch_hardware_unsetup(void)
6886 {
6887         kvm_x86_ops->hardware_unsetup();
6888 }
6889
6890 void kvm_arch_check_processor_compat(void *rtn)
6891 {
6892         kvm_x86_ops->check_processor_compatibility(rtn);
6893 }
6894
6895 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6896 {
6897         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6898 }
6899
6900 struct static_key kvm_no_apic_vcpu __read_mostly;
6901
6902 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6903 {
6904         struct page *page;
6905         struct kvm *kvm;
6906         int r;
6907
6908         BUG_ON(vcpu->kvm == NULL);
6909         kvm = vcpu->kvm;
6910
6911         vcpu->arch.pv.pv_unhalted = false;
6912         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6913         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6914                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6915         else
6916                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6917
6918         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6919         if (!page) {
6920                 r = -ENOMEM;
6921                 goto fail;
6922         }
6923         vcpu->arch.pio_data = page_address(page);
6924
6925         kvm_set_tsc_khz(vcpu, max_tsc_khz);
6926
6927         r = kvm_mmu_create(vcpu);
6928         if (r < 0)
6929                 goto fail_free_pio_data;
6930
6931         if (irqchip_in_kernel(kvm)) {
6932                 r = kvm_create_lapic(vcpu);
6933                 if (r < 0)
6934                         goto fail_mmu_destroy;
6935         } else
6936                 static_key_slow_inc(&kvm_no_apic_vcpu);
6937
6938         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6939                                        GFP_KERNEL);
6940         if (!vcpu->arch.mce_banks) {
6941                 r = -ENOMEM;
6942                 goto fail_free_lapic;
6943         }
6944         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6945
6946         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
6947                 r = -ENOMEM;
6948                 goto fail_free_mce_banks;
6949         }
6950
6951         r = fx_init(vcpu);
6952         if (r)
6953                 goto fail_free_wbinvd_dirty_mask;
6954
6955         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6956         vcpu->arch.pv_time_enabled = false;
6957
6958         vcpu->arch.guest_supported_xcr0 = 0;
6959         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
6960
6961         kvm_async_pf_hash_reset(vcpu);
6962         kvm_pmu_init(vcpu);
6963
6964         return 0;
6965 fail_free_wbinvd_dirty_mask:
6966         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6967 fail_free_mce_banks:
6968         kfree(vcpu->arch.mce_banks);
6969 fail_free_lapic:
6970         kvm_free_lapic(vcpu);
6971 fail_mmu_destroy:
6972         kvm_mmu_destroy(vcpu);
6973 fail_free_pio_data:
6974         free_page((unsigned long)vcpu->arch.pio_data);
6975 fail:
6976         return r;
6977 }
6978
6979 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6980 {
6981         int idx;
6982
6983         kvm_pmu_destroy(vcpu);
6984         kfree(vcpu->arch.mce_banks);
6985         kvm_free_lapic(vcpu);
6986         idx = srcu_read_lock(&vcpu->kvm->srcu);
6987         kvm_mmu_destroy(vcpu);
6988         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6989         free_page((unsigned long)vcpu->arch.pio_data);
6990         if (!irqchip_in_kernel(vcpu->kvm))
6991                 static_key_slow_dec(&kvm_no_apic_vcpu);
6992 }
6993
6994 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6995 {
6996         if (type)
6997                 return -EINVAL;
6998
6999         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7000         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7001         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7002         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7003
7004         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7005         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7006         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7007         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7008                 &kvm->arch.irq_sources_bitmap);
7009
7010         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7011         mutex_init(&kvm->arch.apic_map_lock);
7012         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7013
7014         pvclock_update_vm_gtod_copy(kvm);
7015
7016         return 0;
7017 }
7018
7019 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7020 {
7021         int r;
7022         r = vcpu_load(vcpu);
7023         BUG_ON(r);
7024         kvm_mmu_unload(vcpu);
7025         vcpu_put(vcpu);
7026 }
7027
7028 static void kvm_free_vcpus(struct kvm *kvm)
7029 {
7030         unsigned int i;
7031         struct kvm_vcpu *vcpu;
7032
7033         /*
7034          * Unpin any mmu pages first.
7035          */
7036         kvm_for_each_vcpu(i, vcpu, kvm) {
7037                 kvm_clear_async_pf_completion_queue(vcpu);
7038                 kvm_unload_vcpu_mmu(vcpu);
7039         }
7040         kvm_for_each_vcpu(i, vcpu, kvm)
7041                 kvm_arch_vcpu_free(vcpu);
7042
7043         mutex_lock(&kvm->lock);
7044         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7045                 kvm->vcpus[i] = NULL;
7046
7047         atomic_set(&kvm->online_vcpus, 0);
7048         mutex_unlock(&kvm->lock);
7049 }
7050
7051 void kvm_arch_sync_events(struct kvm *kvm)
7052 {
7053         kvm_free_all_assigned_devices(kvm);
7054         kvm_free_pit(kvm);
7055 }
7056
7057 void kvm_arch_destroy_vm(struct kvm *kvm)
7058 {
7059         if (current->mm == kvm->mm) {
7060                 /*
7061                  * Free memory regions allocated on behalf of userspace,
7062                  * unless the the memory map has changed due to process exit
7063                  * or fd copying.
7064                  */
7065                 struct kvm_userspace_memory_region mem;
7066                 memset(&mem, 0, sizeof(mem));
7067                 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7068                 kvm_set_memory_region(kvm, &mem);
7069
7070                 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7071                 kvm_set_memory_region(kvm, &mem);
7072
7073                 mem.slot = TSS_PRIVATE_MEMSLOT;
7074                 kvm_set_memory_region(kvm, &mem);
7075         }
7076         kvm_iommu_unmap_guest(kvm);
7077         kfree(kvm->arch.vpic);
7078         kfree(kvm->arch.vioapic);
7079         kvm_free_vcpus(kvm);
7080         if (kvm->arch.apic_access_page)
7081                 put_page(kvm->arch.apic_access_page);
7082         if (kvm->arch.ept_identity_pagetable)
7083                 put_page(kvm->arch.ept_identity_pagetable);
7084         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7085 }
7086
7087 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7088                            struct kvm_memory_slot *dont)
7089 {
7090         int i;
7091
7092         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7093                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7094                         kvm_kvfree(free->arch.rmap[i]);
7095                         free->arch.rmap[i] = NULL;
7096                 }
7097                 if (i == 0)
7098                         continue;
7099
7100                 if (!dont || free->arch.lpage_info[i - 1] !=
7101                              dont->arch.lpage_info[i - 1]) {
7102                         kvm_kvfree(free->arch.lpage_info[i - 1]);
7103                         free->arch.lpage_info[i - 1] = NULL;
7104                 }
7105         }
7106 }
7107
7108 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7109                             unsigned long npages)
7110 {
7111         int i;
7112
7113         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7114                 unsigned long ugfn;
7115                 int lpages;
7116                 int level = i + 1;
7117
7118                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7119                                       slot->base_gfn, level) + 1;
7120
7121                 slot->arch.rmap[i] =
7122                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7123                 if (!slot->arch.rmap[i])
7124                         goto out_free;
7125                 if (i == 0)
7126                         continue;
7127
7128                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7129                                         sizeof(*slot->arch.lpage_info[i - 1]));
7130                 if (!slot->arch.lpage_info[i - 1])
7131                         goto out_free;
7132
7133                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7134                         slot->arch.lpage_info[i - 1][0].write_count = 1;
7135                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7136                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7137                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7138                 /*
7139                  * If the gfn and userspace address are not aligned wrt each
7140                  * other, or if explicitly asked to, disable large page
7141                  * support for this slot
7142                  */
7143                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7144                     !kvm_largepages_enabled()) {
7145                         unsigned long j;
7146
7147                         for (j = 0; j < lpages; ++j)
7148                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
7149                 }
7150         }
7151
7152         return 0;
7153
7154 out_free:
7155         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7156                 kvm_kvfree(slot->arch.rmap[i]);
7157                 slot->arch.rmap[i] = NULL;
7158                 if (i == 0)
7159                         continue;
7160
7161                 kvm_kvfree(slot->arch.lpage_info[i - 1]);
7162                 slot->arch.lpage_info[i - 1] = NULL;
7163         }
7164         return -ENOMEM;
7165 }
7166
7167 void kvm_arch_memslots_updated(struct kvm *kvm)
7168 {
7169         /*
7170          * memslots->generation has been incremented.
7171          * mmio generation may have reached its maximum value.
7172          */
7173         kvm_mmu_invalidate_mmio_sptes(kvm);
7174 }
7175
7176 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7177                                 struct kvm_memory_slot *memslot,
7178                                 struct kvm_userspace_memory_region *mem,
7179                                 enum kvm_mr_change change)
7180 {
7181         /*
7182          * Only private memory slots need to be mapped here since
7183          * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7184          */
7185         if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7186                 unsigned long userspace_addr;
7187
7188                 /*
7189                  * MAP_SHARED to prevent internal slot pages from being moved
7190                  * by fork()/COW.
7191                  */
7192                 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7193                                          PROT_READ | PROT_WRITE,
7194                                          MAP_SHARED | MAP_ANONYMOUS, 0);
7195
7196                 if (IS_ERR((void *)userspace_addr))
7197                         return PTR_ERR((void *)userspace_addr);
7198
7199                 memslot->userspace_addr = userspace_addr;
7200         }
7201
7202         return 0;
7203 }
7204
7205 void kvm_arch_commit_memory_region(struct kvm *kvm,
7206                                 struct kvm_userspace_memory_region *mem,
7207                                 const struct kvm_memory_slot *old,
7208                                 enum kvm_mr_change change)
7209 {
7210
7211         int nr_mmu_pages = 0;
7212
7213         if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7214                 int ret;
7215
7216                 ret = vm_munmap(old->userspace_addr,
7217                                 old->npages * PAGE_SIZE);
7218                 if (ret < 0)
7219                         printk(KERN_WARNING
7220                                "kvm_vm_ioctl_set_memory_region: "
7221                                "failed to munmap memory\n");
7222         }
7223
7224         if (!kvm->arch.n_requested_mmu_pages)
7225                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7226
7227         if (nr_mmu_pages)
7228                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7229         /*
7230          * Write protect all pages for dirty logging.
7231          * Existing largepage mappings are destroyed here and new ones will
7232          * not be created until the end of the logging.
7233          */
7234         if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7235                 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7236 }
7237
7238 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7239 {
7240         kvm_mmu_invalidate_zap_all_pages(kvm);
7241 }
7242
7243 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7244                                    struct kvm_memory_slot *slot)
7245 {
7246         kvm_mmu_invalidate_zap_all_pages(kvm);
7247 }
7248
7249 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7250 {
7251         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7252                 !vcpu->arch.apf.halted)
7253                 || !list_empty_careful(&vcpu->async_pf.done)
7254                 || kvm_apic_has_events(vcpu)
7255                 || vcpu->arch.pv.pv_unhalted
7256                 || atomic_read(&vcpu->arch.nmi_queued) ||
7257                 (kvm_arch_interrupt_allowed(vcpu) &&
7258                  kvm_cpu_has_interrupt(vcpu));
7259 }
7260
7261 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7262 {
7263         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7264 }
7265
7266 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7267 {
7268         return kvm_x86_ops->interrupt_allowed(vcpu);
7269 }
7270
7271 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7272 {
7273         unsigned long current_rip = kvm_rip_read(vcpu) +
7274                 get_segment_base(vcpu, VCPU_SREG_CS);
7275
7276         return current_rip == linear_rip;
7277 }
7278 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7279
7280 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7281 {
7282         unsigned long rflags;
7283
7284         rflags = kvm_x86_ops->get_rflags(vcpu);
7285         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7286                 rflags &= ~X86_EFLAGS_TF;
7287         return rflags;
7288 }
7289 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7290
7291 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7292 {
7293         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7294             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7295                 rflags |= X86_EFLAGS_TF;
7296         kvm_x86_ops->set_rflags(vcpu, rflags);
7297         kvm_make_request(KVM_REQ_EVENT, vcpu);
7298 }
7299 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7300
7301 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7302 {
7303         int r;
7304
7305         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7306               work->wakeup_all)
7307                 return;
7308
7309         r = kvm_mmu_reload(vcpu);
7310         if (unlikely(r))
7311                 return;
7312
7313         if (!vcpu->arch.mmu.direct_map &&
7314               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7315                 return;
7316
7317         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7318 }
7319
7320 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7321 {
7322         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7323 }
7324
7325 static inline u32 kvm_async_pf_next_probe(u32 key)
7326 {
7327         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7328 }
7329
7330 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7331 {
7332         u32 key = kvm_async_pf_hash_fn(gfn);
7333
7334         while (vcpu->arch.apf.gfns[key] != ~0)
7335                 key = kvm_async_pf_next_probe(key);
7336
7337         vcpu->arch.apf.gfns[key] = gfn;
7338 }
7339
7340 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7341 {
7342         int i;
7343         u32 key = kvm_async_pf_hash_fn(gfn);
7344
7345         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7346                      (vcpu->arch.apf.gfns[key] != gfn &&
7347                       vcpu->arch.apf.gfns[key] != ~0); i++)
7348                 key = kvm_async_pf_next_probe(key);
7349
7350         return key;
7351 }
7352
7353 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7354 {
7355         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7356 }
7357
7358 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7359 {
7360         u32 i, j, k;
7361
7362         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7363         while (true) {
7364                 vcpu->arch.apf.gfns[i] = ~0;
7365                 do {
7366                         j = kvm_async_pf_next_probe(j);
7367                         if (vcpu->arch.apf.gfns[j] == ~0)
7368                                 return;
7369                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7370                         /*
7371                          * k lies cyclically in ]i,j]
7372                          * |    i.k.j |
7373                          * |....j i.k.| or  |.k..j i...|
7374                          */
7375                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7376                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7377                 i = j;
7378         }
7379 }
7380
7381 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7382 {
7383
7384         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7385                                       sizeof(val));
7386 }
7387
7388 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7389                                      struct kvm_async_pf *work)
7390 {
7391         struct x86_exception fault;
7392
7393         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7394         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7395
7396         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7397             (vcpu->arch.apf.send_user_only &&
7398              kvm_x86_ops->get_cpl(vcpu) == 0))
7399                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7400         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7401                 fault.vector = PF_VECTOR;
7402                 fault.error_code_valid = true;
7403                 fault.error_code = 0;
7404                 fault.nested_page_fault = false;
7405                 fault.address = work->arch.token;
7406                 kvm_inject_page_fault(vcpu, &fault);
7407         }
7408 }
7409
7410 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7411                                  struct kvm_async_pf *work)
7412 {
7413         struct x86_exception fault;
7414
7415         trace_kvm_async_pf_ready(work->arch.token, work->gva);
7416         if (work->wakeup_all)
7417                 work->arch.token = ~0; /* broadcast wakeup */
7418         else
7419                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7420
7421         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7422             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7423                 fault.vector = PF_VECTOR;
7424                 fault.error_code_valid = true;
7425                 fault.error_code = 0;
7426                 fault.nested_page_fault = false;
7427                 fault.address = work->arch.token;
7428                 kvm_inject_page_fault(vcpu, &fault);
7429         }
7430         vcpu->arch.apf.halted = false;
7431         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7432 }
7433
7434 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7435 {
7436         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7437                 return true;
7438         else
7439                 return !kvm_event_needs_reinjection(vcpu) &&
7440                         kvm_x86_ops->interrupt_allowed(vcpu);
7441 }
7442
7443 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7444 {
7445         atomic_inc(&kvm->arch.noncoherent_dma_count);
7446 }
7447 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7448
7449 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7450 {
7451         atomic_dec(&kvm->arch.noncoherent_dma_count);
7452 }
7453 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7454
7455 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7456 {
7457         return atomic_read(&kvm->arch.noncoherent_dma_count);
7458 }
7459 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7460
7461 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7462 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7463 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7464 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7465 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7466 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7467 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7468 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7469 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7470 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7471 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7472 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7473 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);