]> Pileus Git - ~andy/linux/blob - arch/x86/kvm/vmx.c
Merge branch 'nfsd-next' of git://linux-nfs.org/~bfields/linux
[~andy/linux] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include "kvm_cache_regs.h"
35 #include "x86.h"
36
37 #include <asm/io.h>
38 #include <asm/desc.h>
39 #include <asm/vmx.h>
40 #include <asm/virtext.h>
41 #include <asm/mce.h>
42 #include <asm/i387.h>
43 #include <asm/xcr.h>
44 #include <asm/perf_event.h>
45 #include <asm/kexec.h>
46
47 #include "trace.h"
48
49 #define __ex(x) __kvm_handle_fault_on_reboot(x)
50 #define __ex_clear(x, reg) \
51         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
52
53 MODULE_AUTHOR("Qumranet");
54 MODULE_LICENSE("GPL");
55
56 static const struct x86_cpu_id vmx_cpu_id[] = {
57         X86_FEATURE_MATCH(X86_FEATURE_VMX),
58         {}
59 };
60 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
61
62 static bool __read_mostly enable_vpid = 1;
63 module_param_named(vpid, enable_vpid, bool, 0444);
64
65 static bool __read_mostly flexpriority_enabled = 1;
66 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
67
68 static bool __read_mostly enable_ept = 1;
69 module_param_named(ept, enable_ept, bool, S_IRUGO);
70
71 static bool __read_mostly enable_unrestricted_guest = 1;
72 module_param_named(unrestricted_guest,
73                         enable_unrestricted_guest, bool, S_IRUGO);
74
75 static bool __read_mostly enable_ept_ad_bits = 1;
76 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
77
78 static bool __read_mostly emulate_invalid_guest_state = true;
79 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
80
81 static bool __read_mostly vmm_exclusive = 1;
82 module_param(vmm_exclusive, bool, S_IRUGO);
83
84 static bool __read_mostly fasteoi = 1;
85 module_param(fasteoi, bool, S_IRUGO);
86
87 static bool __read_mostly enable_apicv = 1;
88 module_param(enable_apicv, bool, S_IRUGO);
89
90 static bool __read_mostly enable_shadow_vmcs = 1;
91 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
92 /*
93  * If nested=1, nested virtualization is supported, i.e., guests may use
94  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
95  * use VMX instructions.
96  */
97 static bool __read_mostly nested = 0;
98 module_param(nested, bool, S_IRUGO);
99
100 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
101 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
102 #define KVM_VM_CR0_ALWAYS_ON                                            \
103         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
104 #define KVM_CR4_GUEST_OWNED_BITS                                      \
105         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
106          | X86_CR4_OSXMMEXCPT)
107
108 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
109 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
110
111 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
112
113 /*
114  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
115  * ple_gap:    upper bound on the amount of time between two successive
116  *             executions of PAUSE in a loop. Also indicate if ple enabled.
117  *             According to test, this time is usually smaller than 128 cycles.
118  * ple_window: upper bound on the amount of time a guest is allowed to execute
119  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
120  *             less than 2^12 cycles
121  * Time is measured based on a counter that runs at the same rate as the TSC,
122  * refer SDM volume 3b section 21.6.13 & 22.1.3.
123  */
124 #define KVM_VMX_DEFAULT_PLE_GAP    128
125 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
126 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
127 module_param(ple_gap, int, S_IRUGO);
128
129 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
130 module_param(ple_window, int, S_IRUGO);
131
132 extern const ulong vmx_return;
133
134 #define NR_AUTOLOAD_MSRS 8
135 #define VMCS02_POOL_SIZE 1
136
137 struct vmcs {
138         u32 revision_id;
139         u32 abort;
140         char data[0];
141 };
142
143 /*
144  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
145  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
146  * loaded on this CPU (so we can clear them if the CPU goes down).
147  */
148 struct loaded_vmcs {
149         struct vmcs *vmcs;
150         int cpu;
151         int launched;
152         struct list_head loaded_vmcss_on_cpu_link;
153 };
154
155 struct shared_msr_entry {
156         unsigned index;
157         u64 data;
158         u64 mask;
159 };
160
161 /*
162  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
163  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
164  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
165  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
166  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
167  * More than one of these structures may exist, if L1 runs multiple L2 guests.
168  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
169  * underlying hardware which will be used to run L2.
170  * This structure is packed to ensure that its layout is identical across
171  * machines (necessary for live migration).
172  * If there are changes in this struct, VMCS12_REVISION must be changed.
173  */
174 typedef u64 natural_width;
175 struct __packed vmcs12 {
176         /* According to the Intel spec, a VMCS region must start with the
177          * following two fields. Then follow implementation-specific data.
178          */
179         u32 revision_id;
180         u32 abort;
181
182         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
183         u32 padding[7]; /* room for future expansion */
184
185         u64 io_bitmap_a;
186         u64 io_bitmap_b;
187         u64 msr_bitmap;
188         u64 vm_exit_msr_store_addr;
189         u64 vm_exit_msr_load_addr;
190         u64 vm_entry_msr_load_addr;
191         u64 tsc_offset;
192         u64 virtual_apic_page_addr;
193         u64 apic_access_addr;
194         u64 ept_pointer;
195         u64 guest_physical_address;
196         u64 vmcs_link_pointer;
197         u64 guest_ia32_debugctl;
198         u64 guest_ia32_pat;
199         u64 guest_ia32_efer;
200         u64 guest_ia32_perf_global_ctrl;
201         u64 guest_pdptr0;
202         u64 guest_pdptr1;
203         u64 guest_pdptr2;
204         u64 guest_pdptr3;
205         u64 host_ia32_pat;
206         u64 host_ia32_efer;
207         u64 host_ia32_perf_global_ctrl;
208         u64 padding64[8]; /* room for future expansion */
209         /*
210          * To allow migration of L1 (complete with its L2 guests) between
211          * machines of different natural widths (32 or 64 bit), we cannot have
212          * unsigned long fields with no explict size. We use u64 (aliased
213          * natural_width) instead. Luckily, x86 is little-endian.
214          */
215         natural_width cr0_guest_host_mask;
216         natural_width cr4_guest_host_mask;
217         natural_width cr0_read_shadow;
218         natural_width cr4_read_shadow;
219         natural_width cr3_target_value0;
220         natural_width cr3_target_value1;
221         natural_width cr3_target_value2;
222         natural_width cr3_target_value3;
223         natural_width exit_qualification;
224         natural_width guest_linear_address;
225         natural_width guest_cr0;
226         natural_width guest_cr3;
227         natural_width guest_cr4;
228         natural_width guest_es_base;
229         natural_width guest_cs_base;
230         natural_width guest_ss_base;
231         natural_width guest_ds_base;
232         natural_width guest_fs_base;
233         natural_width guest_gs_base;
234         natural_width guest_ldtr_base;
235         natural_width guest_tr_base;
236         natural_width guest_gdtr_base;
237         natural_width guest_idtr_base;
238         natural_width guest_dr7;
239         natural_width guest_rsp;
240         natural_width guest_rip;
241         natural_width guest_rflags;
242         natural_width guest_pending_dbg_exceptions;
243         natural_width guest_sysenter_esp;
244         natural_width guest_sysenter_eip;
245         natural_width host_cr0;
246         natural_width host_cr3;
247         natural_width host_cr4;
248         natural_width host_fs_base;
249         natural_width host_gs_base;
250         natural_width host_tr_base;
251         natural_width host_gdtr_base;
252         natural_width host_idtr_base;
253         natural_width host_ia32_sysenter_esp;
254         natural_width host_ia32_sysenter_eip;
255         natural_width host_rsp;
256         natural_width host_rip;
257         natural_width paddingl[8]; /* room for future expansion */
258         u32 pin_based_vm_exec_control;
259         u32 cpu_based_vm_exec_control;
260         u32 exception_bitmap;
261         u32 page_fault_error_code_mask;
262         u32 page_fault_error_code_match;
263         u32 cr3_target_count;
264         u32 vm_exit_controls;
265         u32 vm_exit_msr_store_count;
266         u32 vm_exit_msr_load_count;
267         u32 vm_entry_controls;
268         u32 vm_entry_msr_load_count;
269         u32 vm_entry_intr_info_field;
270         u32 vm_entry_exception_error_code;
271         u32 vm_entry_instruction_len;
272         u32 tpr_threshold;
273         u32 secondary_vm_exec_control;
274         u32 vm_instruction_error;
275         u32 vm_exit_reason;
276         u32 vm_exit_intr_info;
277         u32 vm_exit_intr_error_code;
278         u32 idt_vectoring_info_field;
279         u32 idt_vectoring_error_code;
280         u32 vm_exit_instruction_len;
281         u32 vmx_instruction_info;
282         u32 guest_es_limit;
283         u32 guest_cs_limit;
284         u32 guest_ss_limit;
285         u32 guest_ds_limit;
286         u32 guest_fs_limit;
287         u32 guest_gs_limit;
288         u32 guest_ldtr_limit;
289         u32 guest_tr_limit;
290         u32 guest_gdtr_limit;
291         u32 guest_idtr_limit;
292         u32 guest_es_ar_bytes;
293         u32 guest_cs_ar_bytes;
294         u32 guest_ss_ar_bytes;
295         u32 guest_ds_ar_bytes;
296         u32 guest_fs_ar_bytes;
297         u32 guest_gs_ar_bytes;
298         u32 guest_ldtr_ar_bytes;
299         u32 guest_tr_ar_bytes;
300         u32 guest_interruptibility_info;
301         u32 guest_activity_state;
302         u32 guest_sysenter_cs;
303         u32 host_ia32_sysenter_cs;
304         u32 vmx_preemption_timer_value;
305         u32 padding32[7]; /* room for future expansion */
306         u16 virtual_processor_id;
307         u16 guest_es_selector;
308         u16 guest_cs_selector;
309         u16 guest_ss_selector;
310         u16 guest_ds_selector;
311         u16 guest_fs_selector;
312         u16 guest_gs_selector;
313         u16 guest_ldtr_selector;
314         u16 guest_tr_selector;
315         u16 host_es_selector;
316         u16 host_cs_selector;
317         u16 host_ss_selector;
318         u16 host_ds_selector;
319         u16 host_fs_selector;
320         u16 host_gs_selector;
321         u16 host_tr_selector;
322 };
323
324 /*
325  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
326  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
327  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
328  */
329 #define VMCS12_REVISION 0x11e57ed0
330
331 /*
332  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
333  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
334  * current implementation, 4K are reserved to avoid future complications.
335  */
336 #define VMCS12_SIZE 0x1000
337
338 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
339 struct vmcs02_list {
340         struct list_head list;
341         gpa_t vmptr;
342         struct loaded_vmcs vmcs02;
343 };
344
345 /*
346  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
347  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
348  */
349 struct nested_vmx {
350         /* Has the level1 guest done vmxon? */
351         bool vmxon;
352
353         /* The guest-physical address of the current VMCS L1 keeps for L2 */
354         gpa_t current_vmptr;
355         /* The host-usable pointer to the above */
356         struct page *current_vmcs12_page;
357         struct vmcs12 *current_vmcs12;
358         struct vmcs *current_shadow_vmcs;
359         /*
360          * Indicates if the shadow vmcs must be updated with the
361          * data hold by vmcs12
362          */
363         bool sync_shadow_vmcs;
364
365         /* vmcs02_list cache of VMCSs recently used to run L2 guests */
366         struct list_head vmcs02_pool;
367         int vmcs02_num;
368         u64 vmcs01_tsc_offset;
369         /* L2 must run next, and mustn't decide to exit to L1. */
370         bool nested_run_pending;
371         /*
372          * Guest pages referred to in vmcs02 with host-physical pointers, so
373          * we must keep them pinned while L2 runs.
374          */
375         struct page *apic_access_page;
376         u64 msr_ia32_feature_control;
377 };
378
379 #define POSTED_INTR_ON  0
380 /* Posted-Interrupt Descriptor */
381 struct pi_desc {
382         u32 pir[8];     /* Posted interrupt requested */
383         u32 control;    /* bit 0 of control is outstanding notification bit */
384         u32 rsvd[7];
385 } __aligned(64);
386
387 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
388 {
389         return test_and_set_bit(POSTED_INTR_ON,
390                         (unsigned long *)&pi_desc->control);
391 }
392
393 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
394 {
395         return test_and_clear_bit(POSTED_INTR_ON,
396                         (unsigned long *)&pi_desc->control);
397 }
398
399 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
400 {
401         return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
402 }
403
404 struct vcpu_vmx {
405         struct kvm_vcpu       vcpu;
406         unsigned long         host_rsp;
407         u8                    fail;
408         u8                    cpl;
409         bool                  nmi_known_unmasked;
410         u32                   exit_intr_info;
411         u32                   idt_vectoring_info;
412         ulong                 rflags;
413         struct shared_msr_entry *guest_msrs;
414         int                   nmsrs;
415         int                   save_nmsrs;
416         unsigned long         host_idt_base;
417 #ifdef CONFIG_X86_64
418         u64                   msr_host_kernel_gs_base;
419         u64                   msr_guest_kernel_gs_base;
420 #endif
421         u32 vm_entry_controls_shadow;
422         u32 vm_exit_controls_shadow;
423         /*
424          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
425          * non-nested (L1) guest, it always points to vmcs01. For a nested
426          * guest (L2), it points to a different VMCS.
427          */
428         struct loaded_vmcs    vmcs01;
429         struct loaded_vmcs   *loaded_vmcs;
430         bool                  __launched; /* temporary, used in vmx_vcpu_run */
431         struct msr_autoload {
432                 unsigned nr;
433                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
434                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
435         } msr_autoload;
436         struct {
437                 int           loaded;
438                 u16           fs_sel, gs_sel, ldt_sel;
439 #ifdef CONFIG_X86_64
440                 u16           ds_sel, es_sel;
441 #endif
442                 int           gs_ldt_reload_needed;
443                 int           fs_reload_needed;
444         } host_state;
445         struct {
446                 int vm86_active;
447                 ulong save_rflags;
448                 struct kvm_segment segs[8];
449         } rmode;
450         struct {
451                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
452                 struct kvm_save_segment {
453                         u16 selector;
454                         unsigned long base;
455                         u32 limit;
456                         u32 ar;
457                 } seg[8];
458         } segment_cache;
459         int vpid;
460         bool emulation_required;
461
462         /* Support for vnmi-less CPUs */
463         int soft_vnmi_blocked;
464         ktime_t entry_time;
465         s64 vnmi_blocked_time;
466         u32 exit_reason;
467
468         bool rdtscp_enabled;
469
470         /* Posted interrupt descriptor */
471         struct pi_desc pi_desc;
472
473         /* Support for a guest hypervisor (nested VMX) */
474         struct nested_vmx nested;
475 };
476
477 enum segment_cache_field {
478         SEG_FIELD_SEL = 0,
479         SEG_FIELD_BASE = 1,
480         SEG_FIELD_LIMIT = 2,
481         SEG_FIELD_AR = 3,
482
483         SEG_FIELD_NR = 4
484 };
485
486 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
487 {
488         return container_of(vcpu, struct vcpu_vmx, vcpu);
489 }
490
491 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
492 #define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
493 #define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
494                                 [number##_HIGH] = VMCS12_OFFSET(name)+4
495
496
497 static const unsigned long shadow_read_only_fields[] = {
498         /*
499          * We do NOT shadow fields that are modified when L0
500          * traps and emulates any vmx instruction (e.g. VMPTRLD,
501          * VMXON...) executed by L1.
502          * For example, VM_INSTRUCTION_ERROR is read
503          * by L1 if a vmx instruction fails (part of the error path).
504          * Note the code assumes this logic. If for some reason
505          * we start shadowing these fields then we need to
506          * force a shadow sync when L0 emulates vmx instructions
507          * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
508          * by nested_vmx_failValid)
509          */
510         VM_EXIT_REASON,
511         VM_EXIT_INTR_INFO,
512         VM_EXIT_INSTRUCTION_LEN,
513         IDT_VECTORING_INFO_FIELD,
514         IDT_VECTORING_ERROR_CODE,
515         VM_EXIT_INTR_ERROR_CODE,
516         EXIT_QUALIFICATION,
517         GUEST_LINEAR_ADDRESS,
518         GUEST_PHYSICAL_ADDRESS
519 };
520 static const int max_shadow_read_only_fields =
521         ARRAY_SIZE(shadow_read_only_fields);
522
523 static const unsigned long shadow_read_write_fields[] = {
524         GUEST_RIP,
525         GUEST_RSP,
526         GUEST_CR0,
527         GUEST_CR3,
528         GUEST_CR4,
529         GUEST_INTERRUPTIBILITY_INFO,
530         GUEST_RFLAGS,
531         GUEST_CS_SELECTOR,
532         GUEST_CS_AR_BYTES,
533         GUEST_CS_LIMIT,
534         GUEST_CS_BASE,
535         GUEST_ES_BASE,
536         CR0_GUEST_HOST_MASK,
537         CR0_READ_SHADOW,
538         CR4_READ_SHADOW,
539         TSC_OFFSET,
540         EXCEPTION_BITMAP,
541         CPU_BASED_VM_EXEC_CONTROL,
542         VM_ENTRY_EXCEPTION_ERROR_CODE,
543         VM_ENTRY_INTR_INFO_FIELD,
544         VM_ENTRY_INSTRUCTION_LEN,
545         VM_ENTRY_EXCEPTION_ERROR_CODE,
546         HOST_FS_BASE,
547         HOST_GS_BASE,
548         HOST_FS_SELECTOR,
549         HOST_GS_SELECTOR
550 };
551 static const int max_shadow_read_write_fields =
552         ARRAY_SIZE(shadow_read_write_fields);
553
554 static const unsigned short vmcs_field_to_offset_table[] = {
555         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
556         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
557         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
558         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
559         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
560         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
561         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
562         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
563         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
564         FIELD(HOST_ES_SELECTOR, host_es_selector),
565         FIELD(HOST_CS_SELECTOR, host_cs_selector),
566         FIELD(HOST_SS_SELECTOR, host_ss_selector),
567         FIELD(HOST_DS_SELECTOR, host_ds_selector),
568         FIELD(HOST_FS_SELECTOR, host_fs_selector),
569         FIELD(HOST_GS_SELECTOR, host_gs_selector),
570         FIELD(HOST_TR_SELECTOR, host_tr_selector),
571         FIELD64(IO_BITMAP_A, io_bitmap_a),
572         FIELD64(IO_BITMAP_B, io_bitmap_b),
573         FIELD64(MSR_BITMAP, msr_bitmap),
574         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
575         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
576         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
577         FIELD64(TSC_OFFSET, tsc_offset),
578         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
579         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
580         FIELD64(EPT_POINTER, ept_pointer),
581         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
582         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
583         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
584         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
585         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
586         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
587         FIELD64(GUEST_PDPTR0, guest_pdptr0),
588         FIELD64(GUEST_PDPTR1, guest_pdptr1),
589         FIELD64(GUEST_PDPTR2, guest_pdptr2),
590         FIELD64(GUEST_PDPTR3, guest_pdptr3),
591         FIELD64(HOST_IA32_PAT, host_ia32_pat),
592         FIELD64(HOST_IA32_EFER, host_ia32_efer),
593         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
594         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
595         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
596         FIELD(EXCEPTION_BITMAP, exception_bitmap),
597         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
598         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
599         FIELD(CR3_TARGET_COUNT, cr3_target_count),
600         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
601         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
602         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
603         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
604         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
605         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
606         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
607         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
608         FIELD(TPR_THRESHOLD, tpr_threshold),
609         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
610         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
611         FIELD(VM_EXIT_REASON, vm_exit_reason),
612         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
613         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
614         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
615         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
616         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
617         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
618         FIELD(GUEST_ES_LIMIT, guest_es_limit),
619         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
620         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
621         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
622         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
623         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
624         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
625         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
626         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
627         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
628         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
629         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
630         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
631         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
632         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
633         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
634         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
635         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
636         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
637         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
638         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
639         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
640         FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
641         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
642         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
643         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
644         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
645         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
646         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
647         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
648         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
649         FIELD(EXIT_QUALIFICATION, exit_qualification),
650         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
651         FIELD(GUEST_CR0, guest_cr0),
652         FIELD(GUEST_CR3, guest_cr3),
653         FIELD(GUEST_CR4, guest_cr4),
654         FIELD(GUEST_ES_BASE, guest_es_base),
655         FIELD(GUEST_CS_BASE, guest_cs_base),
656         FIELD(GUEST_SS_BASE, guest_ss_base),
657         FIELD(GUEST_DS_BASE, guest_ds_base),
658         FIELD(GUEST_FS_BASE, guest_fs_base),
659         FIELD(GUEST_GS_BASE, guest_gs_base),
660         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
661         FIELD(GUEST_TR_BASE, guest_tr_base),
662         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
663         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
664         FIELD(GUEST_DR7, guest_dr7),
665         FIELD(GUEST_RSP, guest_rsp),
666         FIELD(GUEST_RIP, guest_rip),
667         FIELD(GUEST_RFLAGS, guest_rflags),
668         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
669         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
670         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
671         FIELD(HOST_CR0, host_cr0),
672         FIELD(HOST_CR3, host_cr3),
673         FIELD(HOST_CR4, host_cr4),
674         FIELD(HOST_FS_BASE, host_fs_base),
675         FIELD(HOST_GS_BASE, host_gs_base),
676         FIELD(HOST_TR_BASE, host_tr_base),
677         FIELD(HOST_GDTR_BASE, host_gdtr_base),
678         FIELD(HOST_IDTR_BASE, host_idtr_base),
679         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
680         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
681         FIELD(HOST_RSP, host_rsp),
682         FIELD(HOST_RIP, host_rip),
683 };
684 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
685
686 static inline short vmcs_field_to_offset(unsigned long field)
687 {
688         if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
689                 return -1;
690         return vmcs_field_to_offset_table[field];
691 }
692
693 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
694 {
695         return to_vmx(vcpu)->nested.current_vmcs12;
696 }
697
698 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
699 {
700         struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
701         if (is_error_page(page))
702                 return NULL;
703
704         return page;
705 }
706
707 static void nested_release_page(struct page *page)
708 {
709         kvm_release_page_dirty(page);
710 }
711
712 static void nested_release_page_clean(struct page *page)
713 {
714         kvm_release_page_clean(page);
715 }
716
717 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
718 static u64 construct_eptp(unsigned long root_hpa);
719 static void kvm_cpu_vmxon(u64 addr);
720 static void kvm_cpu_vmxoff(void);
721 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
722 static void vmx_set_segment(struct kvm_vcpu *vcpu,
723                             struct kvm_segment *var, int seg);
724 static void vmx_get_segment(struct kvm_vcpu *vcpu,
725                             struct kvm_segment *var, int seg);
726 static bool guest_state_valid(struct kvm_vcpu *vcpu);
727 static u32 vmx_segment_access_rights(struct kvm_segment *var);
728 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
729 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
730 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
731
732 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
733 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
734 /*
735  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
736  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
737  */
738 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
739 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
740
741 static unsigned long *vmx_io_bitmap_a;
742 static unsigned long *vmx_io_bitmap_b;
743 static unsigned long *vmx_msr_bitmap_legacy;
744 static unsigned long *vmx_msr_bitmap_longmode;
745 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
746 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
747 static unsigned long *vmx_vmread_bitmap;
748 static unsigned long *vmx_vmwrite_bitmap;
749
750 static bool cpu_has_load_ia32_efer;
751 static bool cpu_has_load_perf_global_ctrl;
752
753 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
754 static DEFINE_SPINLOCK(vmx_vpid_lock);
755
756 static struct vmcs_config {
757         int size;
758         int order;
759         u32 revision_id;
760         u32 pin_based_exec_ctrl;
761         u32 cpu_based_exec_ctrl;
762         u32 cpu_based_2nd_exec_ctrl;
763         u32 vmexit_ctrl;
764         u32 vmentry_ctrl;
765 } vmcs_config;
766
767 static struct vmx_capability {
768         u32 ept;
769         u32 vpid;
770 } vmx_capability;
771
772 #define VMX_SEGMENT_FIELD(seg)                                  \
773         [VCPU_SREG_##seg] = {                                   \
774                 .selector = GUEST_##seg##_SELECTOR,             \
775                 .base = GUEST_##seg##_BASE,                     \
776                 .limit = GUEST_##seg##_LIMIT,                   \
777                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
778         }
779
780 static const struct kvm_vmx_segment_field {
781         unsigned selector;
782         unsigned base;
783         unsigned limit;
784         unsigned ar_bytes;
785 } kvm_vmx_segment_fields[] = {
786         VMX_SEGMENT_FIELD(CS),
787         VMX_SEGMENT_FIELD(DS),
788         VMX_SEGMENT_FIELD(ES),
789         VMX_SEGMENT_FIELD(FS),
790         VMX_SEGMENT_FIELD(GS),
791         VMX_SEGMENT_FIELD(SS),
792         VMX_SEGMENT_FIELD(TR),
793         VMX_SEGMENT_FIELD(LDTR),
794 };
795
796 static u64 host_efer;
797
798 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
799
800 /*
801  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
802  * away by decrementing the array size.
803  */
804 static const u32 vmx_msr_index[] = {
805 #ifdef CONFIG_X86_64
806         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
807 #endif
808         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
809 };
810 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
811
812 static inline bool is_page_fault(u32 intr_info)
813 {
814         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
815                              INTR_INFO_VALID_MASK)) ==
816                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
817 }
818
819 static inline bool is_no_device(u32 intr_info)
820 {
821         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
822                              INTR_INFO_VALID_MASK)) ==
823                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
824 }
825
826 static inline bool is_invalid_opcode(u32 intr_info)
827 {
828         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
829                              INTR_INFO_VALID_MASK)) ==
830                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
831 }
832
833 static inline bool is_external_interrupt(u32 intr_info)
834 {
835         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
836                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
837 }
838
839 static inline bool is_machine_check(u32 intr_info)
840 {
841         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
842                              INTR_INFO_VALID_MASK)) ==
843                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
844 }
845
846 static inline bool cpu_has_vmx_msr_bitmap(void)
847 {
848         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
849 }
850
851 static inline bool cpu_has_vmx_tpr_shadow(void)
852 {
853         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
854 }
855
856 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
857 {
858         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
859 }
860
861 static inline bool cpu_has_secondary_exec_ctrls(void)
862 {
863         return vmcs_config.cpu_based_exec_ctrl &
864                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
865 }
866
867 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
868 {
869         return vmcs_config.cpu_based_2nd_exec_ctrl &
870                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
871 }
872
873 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
874 {
875         return vmcs_config.cpu_based_2nd_exec_ctrl &
876                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
877 }
878
879 static inline bool cpu_has_vmx_apic_register_virt(void)
880 {
881         return vmcs_config.cpu_based_2nd_exec_ctrl &
882                 SECONDARY_EXEC_APIC_REGISTER_VIRT;
883 }
884
885 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
886 {
887         return vmcs_config.cpu_based_2nd_exec_ctrl &
888                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
889 }
890
891 static inline bool cpu_has_vmx_posted_intr(void)
892 {
893         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
894 }
895
896 static inline bool cpu_has_vmx_apicv(void)
897 {
898         return cpu_has_vmx_apic_register_virt() &&
899                 cpu_has_vmx_virtual_intr_delivery() &&
900                 cpu_has_vmx_posted_intr();
901 }
902
903 static inline bool cpu_has_vmx_flexpriority(void)
904 {
905         return cpu_has_vmx_tpr_shadow() &&
906                 cpu_has_vmx_virtualize_apic_accesses();
907 }
908
909 static inline bool cpu_has_vmx_ept_execute_only(void)
910 {
911         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
912 }
913
914 static inline bool cpu_has_vmx_eptp_uncacheable(void)
915 {
916         return vmx_capability.ept & VMX_EPTP_UC_BIT;
917 }
918
919 static inline bool cpu_has_vmx_eptp_writeback(void)
920 {
921         return vmx_capability.ept & VMX_EPTP_WB_BIT;
922 }
923
924 static inline bool cpu_has_vmx_ept_2m_page(void)
925 {
926         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
927 }
928
929 static inline bool cpu_has_vmx_ept_1g_page(void)
930 {
931         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
932 }
933
934 static inline bool cpu_has_vmx_ept_4levels(void)
935 {
936         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
937 }
938
939 static inline bool cpu_has_vmx_ept_ad_bits(void)
940 {
941         return vmx_capability.ept & VMX_EPT_AD_BIT;
942 }
943
944 static inline bool cpu_has_vmx_invept_context(void)
945 {
946         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
947 }
948
949 static inline bool cpu_has_vmx_invept_global(void)
950 {
951         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
952 }
953
954 static inline bool cpu_has_vmx_invvpid_single(void)
955 {
956         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
957 }
958
959 static inline bool cpu_has_vmx_invvpid_global(void)
960 {
961         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
962 }
963
964 static inline bool cpu_has_vmx_ept(void)
965 {
966         return vmcs_config.cpu_based_2nd_exec_ctrl &
967                 SECONDARY_EXEC_ENABLE_EPT;
968 }
969
970 static inline bool cpu_has_vmx_unrestricted_guest(void)
971 {
972         return vmcs_config.cpu_based_2nd_exec_ctrl &
973                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
974 }
975
976 static inline bool cpu_has_vmx_ple(void)
977 {
978         return vmcs_config.cpu_based_2nd_exec_ctrl &
979                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
980 }
981
982 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
983 {
984         return flexpriority_enabled && irqchip_in_kernel(kvm);
985 }
986
987 static inline bool cpu_has_vmx_vpid(void)
988 {
989         return vmcs_config.cpu_based_2nd_exec_ctrl &
990                 SECONDARY_EXEC_ENABLE_VPID;
991 }
992
993 static inline bool cpu_has_vmx_rdtscp(void)
994 {
995         return vmcs_config.cpu_based_2nd_exec_ctrl &
996                 SECONDARY_EXEC_RDTSCP;
997 }
998
999 static inline bool cpu_has_vmx_invpcid(void)
1000 {
1001         return vmcs_config.cpu_based_2nd_exec_ctrl &
1002                 SECONDARY_EXEC_ENABLE_INVPCID;
1003 }
1004
1005 static inline bool cpu_has_virtual_nmis(void)
1006 {
1007         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1008 }
1009
1010 static inline bool cpu_has_vmx_wbinvd_exit(void)
1011 {
1012         return vmcs_config.cpu_based_2nd_exec_ctrl &
1013                 SECONDARY_EXEC_WBINVD_EXITING;
1014 }
1015
1016 static inline bool cpu_has_vmx_shadow_vmcs(void)
1017 {
1018         u64 vmx_msr;
1019         rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1020         /* check if the cpu supports writing r/o exit information fields */
1021         if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1022                 return false;
1023
1024         return vmcs_config.cpu_based_2nd_exec_ctrl &
1025                 SECONDARY_EXEC_SHADOW_VMCS;
1026 }
1027
1028 static inline bool report_flexpriority(void)
1029 {
1030         return flexpriority_enabled;
1031 }
1032
1033 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1034 {
1035         return vmcs12->cpu_based_vm_exec_control & bit;
1036 }
1037
1038 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1039 {
1040         return (vmcs12->cpu_based_vm_exec_control &
1041                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1042                 (vmcs12->secondary_vm_exec_control & bit);
1043 }
1044
1045 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1046 {
1047         return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1048 }
1049
1050 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1051 {
1052         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1053 }
1054
1055 static inline bool is_exception(u32 intr_info)
1056 {
1057         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1058                 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1059 }
1060
1061 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1062                               u32 exit_intr_info,
1063                               unsigned long exit_qualification);
1064 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1065                         struct vmcs12 *vmcs12,
1066                         u32 reason, unsigned long qualification);
1067
1068 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1069 {
1070         int i;
1071
1072         for (i = 0; i < vmx->nmsrs; ++i)
1073                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1074                         return i;
1075         return -1;
1076 }
1077
1078 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1079 {
1080     struct {
1081         u64 vpid : 16;
1082         u64 rsvd : 48;
1083         u64 gva;
1084     } operand = { vpid, 0, gva };
1085
1086     asm volatile (__ex(ASM_VMX_INVVPID)
1087                   /* CF==1 or ZF==1 --> rc = -1 */
1088                   "; ja 1f ; ud2 ; 1:"
1089                   : : "a"(&operand), "c"(ext) : "cc", "memory");
1090 }
1091
1092 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1093 {
1094         struct {
1095                 u64 eptp, gpa;
1096         } operand = {eptp, gpa};
1097
1098         asm volatile (__ex(ASM_VMX_INVEPT)
1099                         /* CF==1 or ZF==1 --> rc = -1 */
1100                         "; ja 1f ; ud2 ; 1:\n"
1101                         : : "a" (&operand), "c" (ext) : "cc", "memory");
1102 }
1103
1104 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1105 {
1106         int i;
1107
1108         i = __find_msr_index(vmx, msr);
1109         if (i >= 0)
1110                 return &vmx->guest_msrs[i];
1111         return NULL;
1112 }
1113
1114 static void vmcs_clear(struct vmcs *vmcs)
1115 {
1116         u64 phys_addr = __pa(vmcs);
1117         u8 error;
1118
1119         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1120                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1121                       : "cc", "memory");
1122         if (error)
1123                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1124                        vmcs, phys_addr);
1125 }
1126
1127 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1128 {
1129         vmcs_clear(loaded_vmcs->vmcs);
1130         loaded_vmcs->cpu = -1;
1131         loaded_vmcs->launched = 0;
1132 }
1133
1134 static void vmcs_load(struct vmcs *vmcs)
1135 {
1136         u64 phys_addr = __pa(vmcs);
1137         u8 error;
1138
1139         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1140                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1141                         : "cc", "memory");
1142         if (error)
1143                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1144                        vmcs, phys_addr);
1145 }
1146
1147 #ifdef CONFIG_KEXEC
1148 /*
1149  * This bitmap is used to indicate whether the vmclear
1150  * operation is enabled on all cpus. All disabled by
1151  * default.
1152  */
1153 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1154
1155 static inline void crash_enable_local_vmclear(int cpu)
1156 {
1157         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1158 }
1159
1160 static inline void crash_disable_local_vmclear(int cpu)
1161 {
1162         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1163 }
1164
1165 static inline int crash_local_vmclear_enabled(int cpu)
1166 {
1167         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1168 }
1169
1170 static void crash_vmclear_local_loaded_vmcss(void)
1171 {
1172         int cpu = raw_smp_processor_id();
1173         struct loaded_vmcs *v;
1174
1175         if (!crash_local_vmclear_enabled(cpu))
1176                 return;
1177
1178         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1179                             loaded_vmcss_on_cpu_link)
1180                 vmcs_clear(v->vmcs);
1181 }
1182 #else
1183 static inline void crash_enable_local_vmclear(int cpu) { }
1184 static inline void crash_disable_local_vmclear(int cpu) { }
1185 #endif /* CONFIG_KEXEC */
1186
1187 static void __loaded_vmcs_clear(void *arg)
1188 {
1189         struct loaded_vmcs *loaded_vmcs = arg;
1190         int cpu = raw_smp_processor_id();
1191
1192         if (loaded_vmcs->cpu != cpu)
1193                 return; /* vcpu migration can race with cpu offline */
1194         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1195                 per_cpu(current_vmcs, cpu) = NULL;
1196         crash_disable_local_vmclear(cpu);
1197         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1198
1199         /*
1200          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1201          * is before setting loaded_vmcs->vcpu to -1 which is done in
1202          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1203          * then adds the vmcs into percpu list before it is deleted.
1204          */
1205         smp_wmb();
1206
1207         loaded_vmcs_init(loaded_vmcs);
1208         crash_enable_local_vmclear(cpu);
1209 }
1210
1211 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1212 {
1213         int cpu = loaded_vmcs->cpu;
1214
1215         if (cpu != -1)
1216                 smp_call_function_single(cpu,
1217                          __loaded_vmcs_clear, loaded_vmcs, 1);
1218 }
1219
1220 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1221 {
1222         if (vmx->vpid == 0)
1223                 return;
1224
1225         if (cpu_has_vmx_invvpid_single())
1226                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1227 }
1228
1229 static inline void vpid_sync_vcpu_global(void)
1230 {
1231         if (cpu_has_vmx_invvpid_global())
1232                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1233 }
1234
1235 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1236 {
1237         if (cpu_has_vmx_invvpid_single())
1238                 vpid_sync_vcpu_single(vmx);
1239         else
1240                 vpid_sync_vcpu_global();
1241 }
1242
1243 static inline void ept_sync_global(void)
1244 {
1245         if (cpu_has_vmx_invept_global())
1246                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1247 }
1248
1249 static inline void ept_sync_context(u64 eptp)
1250 {
1251         if (enable_ept) {
1252                 if (cpu_has_vmx_invept_context())
1253                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1254                 else
1255                         ept_sync_global();
1256         }
1257 }
1258
1259 static __always_inline unsigned long vmcs_readl(unsigned long field)
1260 {
1261         unsigned long value;
1262
1263         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1264                       : "=a"(value) : "d"(field) : "cc");
1265         return value;
1266 }
1267
1268 static __always_inline u16 vmcs_read16(unsigned long field)
1269 {
1270         return vmcs_readl(field);
1271 }
1272
1273 static __always_inline u32 vmcs_read32(unsigned long field)
1274 {
1275         return vmcs_readl(field);
1276 }
1277
1278 static __always_inline u64 vmcs_read64(unsigned long field)
1279 {
1280 #ifdef CONFIG_X86_64
1281         return vmcs_readl(field);
1282 #else
1283         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1284 #endif
1285 }
1286
1287 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1288 {
1289         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1290                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1291         dump_stack();
1292 }
1293
1294 static void vmcs_writel(unsigned long field, unsigned long value)
1295 {
1296         u8 error;
1297
1298         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1299                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1300         if (unlikely(error))
1301                 vmwrite_error(field, value);
1302 }
1303
1304 static void vmcs_write16(unsigned long field, u16 value)
1305 {
1306         vmcs_writel(field, value);
1307 }
1308
1309 static void vmcs_write32(unsigned long field, u32 value)
1310 {
1311         vmcs_writel(field, value);
1312 }
1313
1314 static void vmcs_write64(unsigned long field, u64 value)
1315 {
1316         vmcs_writel(field, value);
1317 #ifndef CONFIG_X86_64
1318         asm volatile ("");
1319         vmcs_writel(field+1, value >> 32);
1320 #endif
1321 }
1322
1323 static void vmcs_clear_bits(unsigned long field, u32 mask)
1324 {
1325         vmcs_writel(field, vmcs_readl(field) & ~mask);
1326 }
1327
1328 static void vmcs_set_bits(unsigned long field, u32 mask)
1329 {
1330         vmcs_writel(field, vmcs_readl(field) | mask);
1331 }
1332
1333 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1334 {
1335         vmcs_write32(VM_ENTRY_CONTROLS, val);
1336         vmx->vm_entry_controls_shadow = val;
1337 }
1338
1339 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1340 {
1341         if (vmx->vm_entry_controls_shadow != val)
1342                 vm_entry_controls_init(vmx, val);
1343 }
1344
1345 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1346 {
1347         return vmx->vm_entry_controls_shadow;
1348 }
1349
1350
1351 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1352 {
1353         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1354 }
1355
1356 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1357 {
1358         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1359 }
1360
1361 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1362 {
1363         vmcs_write32(VM_EXIT_CONTROLS, val);
1364         vmx->vm_exit_controls_shadow = val;
1365 }
1366
1367 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1368 {
1369         if (vmx->vm_exit_controls_shadow != val)
1370                 vm_exit_controls_init(vmx, val);
1371 }
1372
1373 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1374 {
1375         return vmx->vm_exit_controls_shadow;
1376 }
1377
1378
1379 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1380 {
1381         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1382 }
1383
1384 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1385 {
1386         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1387 }
1388
1389 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1390 {
1391         vmx->segment_cache.bitmask = 0;
1392 }
1393
1394 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1395                                        unsigned field)
1396 {
1397         bool ret;
1398         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1399
1400         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1401                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1402                 vmx->segment_cache.bitmask = 0;
1403         }
1404         ret = vmx->segment_cache.bitmask & mask;
1405         vmx->segment_cache.bitmask |= mask;
1406         return ret;
1407 }
1408
1409 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1410 {
1411         u16 *p = &vmx->segment_cache.seg[seg].selector;
1412
1413         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1414                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1415         return *p;
1416 }
1417
1418 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1419 {
1420         ulong *p = &vmx->segment_cache.seg[seg].base;
1421
1422         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1423                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1424         return *p;
1425 }
1426
1427 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1428 {
1429         u32 *p = &vmx->segment_cache.seg[seg].limit;
1430
1431         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1432                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1433         return *p;
1434 }
1435
1436 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1437 {
1438         u32 *p = &vmx->segment_cache.seg[seg].ar;
1439
1440         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1441                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1442         return *p;
1443 }
1444
1445 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1446 {
1447         u32 eb;
1448
1449         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1450              (1u << NM_VECTOR) | (1u << DB_VECTOR);
1451         if ((vcpu->guest_debug &
1452              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1453             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1454                 eb |= 1u << BP_VECTOR;
1455         if (to_vmx(vcpu)->rmode.vm86_active)
1456                 eb = ~0;
1457         if (enable_ept)
1458                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1459         if (vcpu->fpu_active)
1460                 eb &= ~(1u << NM_VECTOR);
1461
1462         /* When we are running a nested L2 guest and L1 specified for it a
1463          * certain exception bitmap, we must trap the same exceptions and pass
1464          * them to L1. When running L2, we will only handle the exceptions
1465          * specified above if L1 did not want them.
1466          */
1467         if (is_guest_mode(vcpu))
1468                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1469
1470         vmcs_write32(EXCEPTION_BITMAP, eb);
1471 }
1472
1473 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1474                 unsigned long entry, unsigned long exit)
1475 {
1476         vm_entry_controls_clearbit(vmx, entry);
1477         vm_exit_controls_clearbit(vmx, exit);
1478 }
1479
1480 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1481 {
1482         unsigned i;
1483         struct msr_autoload *m = &vmx->msr_autoload;
1484
1485         switch (msr) {
1486         case MSR_EFER:
1487                 if (cpu_has_load_ia32_efer) {
1488                         clear_atomic_switch_msr_special(vmx,
1489                                         VM_ENTRY_LOAD_IA32_EFER,
1490                                         VM_EXIT_LOAD_IA32_EFER);
1491                         return;
1492                 }
1493                 break;
1494         case MSR_CORE_PERF_GLOBAL_CTRL:
1495                 if (cpu_has_load_perf_global_ctrl) {
1496                         clear_atomic_switch_msr_special(vmx,
1497                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1498                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1499                         return;
1500                 }
1501                 break;
1502         }
1503
1504         for (i = 0; i < m->nr; ++i)
1505                 if (m->guest[i].index == msr)
1506                         break;
1507
1508         if (i == m->nr)
1509                 return;
1510         --m->nr;
1511         m->guest[i] = m->guest[m->nr];
1512         m->host[i] = m->host[m->nr];
1513         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1514         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1515 }
1516
1517 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1518                 unsigned long entry, unsigned long exit,
1519                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1520                 u64 guest_val, u64 host_val)
1521 {
1522         vmcs_write64(guest_val_vmcs, guest_val);
1523         vmcs_write64(host_val_vmcs, host_val);
1524         vm_entry_controls_setbit(vmx, entry);
1525         vm_exit_controls_setbit(vmx, exit);
1526 }
1527
1528 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1529                                   u64 guest_val, u64 host_val)
1530 {
1531         unsigned i;
1532         struct msr_autoload *m = &vmx->msr_autoload;
1533
1534         switch (msr) {
1535         case MSR_EFER:
1536                 if (cpu_has_load_ia32_efer) {
1537                         add_atomic_switch_msr_special(vmx,
1538                                         VM_ENTRY_LOAD_IA32_EFER,
1539                                         VM_EXIT_LOAD_IA32_EFER,
1540                                         GUEST_IA32_EFER,
1541                                         HOST_IA32_EFER,
1542                                         guest_val, host_val);
1543                         return;
1544                 }
1545                 break;
1546         case MSR_CORE_PERF_GLOBAL_CTRL:
1547                 if (cpu_has_load_perf_global_ctrl) {
1548                         add_atomic_switch_msr_special(vmx,
1549                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1550                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1551                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1552                                         HOST_IA32_PERF_GLOBAL_CTRL,
1553                                         guest_val, host_val);
1554                         return;
1555                 }
1556                 break;
1557         }
1558
1559         for (i = 0; i < m->nr; ++i)
1560                 if (m->guest[i].index == msr)
1561                         break;
1562
1563         if (i == NR_AUTOLOAD_MSRS) {
1564                 printk_once(KERN_WARNING "Not enough msr switch entries. "
1565                                 "Can't add msr %x\n", msr);
1566                 return;
1567         } else if (i == m->nr) {
1568                 ++m->nr;
1569                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1570                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1571         }
1572
1573         m->guest[i].index = msr;
1574         m->guest[i].value = guest_val;
1575         m->host[i].index = msr;
1576         m->host[i].value = host_val;
1577 }
1578
1579 static void reload_tss(void)
1580 {
1581         /*
1582          * VT restores TR but not its size.  Useless.
1583          */
1584         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1585         struct desc_struct *descs;
1586
1587         descs = (void *)gdt->address;
1588         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1589         load_TR_desc();
1590 }
1591
1592 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1593 {
1594         u64 guest_efer;
1595         u64 ignore_bits;
1596
1597         guest_efer = vmx->vcpu.arch.efer;
1598
1599         /*
1600          * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1601          * outside long mode
1602          */
1603         ignore_bits = EFER_NX | EFER_SCE;
1604 #ifdef CONFIG_X86_64
1605         ignore_bits |= EFER_LMA | EFER_LME;
1606         /* SCE is meaningful only in long mode on Intel */
1607         if (guest_efer & EFER_LMA)
1608                 ignore_bits &= ~(u64)EFER_SCE;
1609 #endif
1610         guest_efer &= ~ignore_bits;
1611         guest_efer |= host_efer & ignore_bits;
1612         vmx->guest_msrs[efer_offset].data = guest_efer;
1613         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1614
1615         clear_atomic_switch_msr(vmx, MSR_EFER);
1616         /* On ept, can't emulate nx, and must switch nx atomically */
1617         if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1618                 guest_efer = vmx->vcpu.arch.efer;
1619                 if (!(guest_efer & EFER_LMA))
1620                         guest_efer &= ~EFER_LME;
1621                 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1622                 return false;
1623         }
1624
1625         return true;
1626 }
1627
1628 static unsigned long segment_base(u16 selector)
1629 {
1630         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1631         struct desc_struct *d;
1632         unsigned long table_base;
1633         unsigned long v;
1634
1635         if (!(selector & ~3))
1636                 return 0;
1637
1638         table_base = gdt->address;
1639
1640         if (selector & 4) {           /* from ldt */
1641                 u16 ldt_selector = kvm_read_ldt();
1642
1643                 if (!(ldt_selector & ~3))
1644                         return 0;
1645
1646                 table_base = segment_base(ldt_selector);
1647         }
1648         d = (struct desc_struct *)(table_base + (selector & ~7));
1649         v = get_desc_base(d);
1650 #ifdef CONFIG_X86_64
1651        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1652                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1653 #endif
1654         return v;
1655 }
1656
1657 static inline unsigned long kvm_read_tr_base(void)
1658 {
1659         u16 tr;
1660         asm("str %0" : "=g"(tr));
1661         return segment_base(tr);
1662 }
1663
1664 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1665 {
1666         struct vcpu_vmx *vmx = to_vmx(vcpu);
1667         int i;
1668
1669         if (vmx->host_state.loaded)
1670                 return;
1671
1672         vmx->host_state.loaded = 1;
1673         /*
1674          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1675          * allow segment selectors with cpl > 0 or ti == 1.
1676          */
1677         vmx->host_state.ldt_sel = kvm_read_ldt();
1678         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1679         savesegment(fs, vmx->host_state.fs_sel);
1680         if (!(vmx->host_state.fs_sel & 7)) {
1681                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1682                 vmx->host_state.fs_reload_needed = 0;
1683         } else {
1684                 vmcs_write16(HOST_FS_SELECTOR, 0);
1685                 vmx->host_state.fs_reload_needed = 1;
1686         }
1687         savesegment(gs, vmx->host_state.gs_sel);
1688         if (!(vmx->host_state.gs_sel & 7))
1689                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1690         else {
1691                 vmcs_write16(HOST_GS_SELECTOR, 0);
1692                 vmx->host_state.gs_ldt_reload_needed = 1;
1693         }
1694
1695 #ifdef CONFIG_X86_64
1696         savesegment(ds, vmx->host_state.ds_sel);
1697         savesegment(es, vmx->host_state.es_sel);
1698 #endif
1699
1700 #ifdef CONFIG_X86_64
1701         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1702         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1703 #else
1704         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1705         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1706 #endif
1707
1708 #ifdef CONFIG_X86_64
1709         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1710         if (is_long_mode(&vmx->vcpu))
1711                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1712 #endif
1713         for (i = 0; i < vmx->save_nmsrs; ++i)
1714                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1715                                    vmx->guest_msrs[i].data,
1716                                    vmx->guest_msrs[i].mask);
1717 }
1718
1719 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1720 {
1721         if (!vmx->host_state.loaded)
1722                 return;
1723
1724         ++vmx->vcpu.stat.host_state_reload;
1725         vmx->host_state.loaded = 0;
1726 #ifdef CONFIG_X86_64
1727         if (is_long_mode(&vmx->vcpu))
1728                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1729 #endif
1730         if (vmx->host_state.gs_ldt_reload_needed) {
1731                 kvm_load_ldt(vmx->host_state.ldt_sel);
1732 #ifdef CONFIG_X86_64
1733                 load_gs_index(vmx->host_state.gs_sel);
1734 #else
1735                 loadsegment(gs, vmx->host_state.gs_sel);
1736 #endif
1737         }
1738         if (vmx->host_state.fs_reload_needed)
1739                 loadsegment(fs, vmx->host_state.fs_sel);
1740 #ifdef CONFIG_X86_64
1741         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1742                 loadsegment(ds, vmx->host_state.ds_sel);
1743                 loadsegment(es, vmx->host_state.es_sel);
1744         }
1745 #endif
1746         reload_tss();
1747 #ifdef CONFIG_X86_64
1748         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1749 #endif
1750         /*
1751          * If the FPU is not active (through the host task or
1752          * the guest vcpu), then restore the cr0.TS bit.
1753          */
1754         if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1755                 stts();
1756         load_gdt(&__get_cpu_var(host_gdt));
1757 }
1758
1759 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1760 {
1761         preempt_disable();
1762         __vmx_load_host_state(vmx);
1763         preempt_enable();
1764 }
1765
1766 /*
1767  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1768  * vcpu mutex is already taken.
1769  */
1770 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1771 {
1772         struct vcpu_vmx *vmx = to_vmx(vcpu);
1773         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1774
1775         if (!vmm_exclusive)
1776                 kvm_cpu_vmxon(phys_addr);
1777         else if (vmx->loaded_vmcs->cpu != cpu)
1778                 loaded_vmcs_clear(vmx->loaded_vmcs);
1779
1780         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1781                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1782                 vmcs_load(vmx->loaded_vmcs->vmcs);
1783         }
1784
1785         if (vmx->loaded_vmcs->cpu != cpu) {
1786                 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1787                 unsigned long sysenter_esp;
1788
1789                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1790                 local_irq_disable();
1791                 crash_disable_local_vmclear(cpu);
1792
1793                 /*
1794                  * Read loaded_vmcs->cpu should be before fetching
1795                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
1796                  * See the comments in __loaded_vmcs_clear().
1797                  */
1798                 smp_rmb();
1799
1800                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1801                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1802                 crash_enable_local_vmclear(cpu);
1803                 local_irq_enable();
1804
1805                 /*
1806                  * Linux uses per-cpu TSS and GDT, so set these when switching
1807                  * processors.
1808                  */
1809                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1810                 vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
1811
1812                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1813                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1814                 vmx->loaded_vmcs->cpu = cpu;
1815         }
1816 }
1817
1818 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1819 {
1820         __vmx_load_host_state(to_vmx(vcpu));
1821         if (!vmm_exclusive) {
1822                 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1823                 vcpu->cpu = -1;
1824                 kvm_cpu_vmxoff();
1825         }
1826 }
1827
1828 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1829 {
1830         ulong cr0;
1831
1832         if (vcpu->fpu_active)
1833                 return;
1834         vcpu->fpu_active = 1;
1835         cr0 = vmcs_readl(GUEST_CR0);
1836         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1837         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1838         vmcs_writel(GUEST_CR0, cr0);
1839         update_exception_bitmap(vcpu);
1840         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1841         if (is_guest_mode(vcpu))
1842                 vcpu->arch.cr0_guest_owned_bits &=
1843                         ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1844         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1845 }
1846
1847 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1848
1849 /*
1850  * Return the cr0 value that a nested guest would read. This is a combination
1851  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1852  * its hypervisor (cr0_read_shadow).
1853  */
1854 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1855 {
1856         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1857                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1858 }
1859 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1860 {
1861         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1862                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1863 }
1864
1865 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1866 {
1867         /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1868          * set this *before* calling this function.
1869          */
1870         vmx_decache_cr0_guest_bits(vcpu);
1871         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1872         update_exception_bitmap(vcpu);
1873         vcpu->arch.cr0_guest_owned_bits = 0;
1874         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1875         if (is_guest_mode(vcpu)) {
1876                 /*
1877                  * L1's specified read shadow might not contain the TS bit,
1878                  * so now that we turned on shadowing of this bit, we need to
1879                  * set this bit of the shadow. Like in nested_vmx_run we need
1880                  * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1881                  * up-to-date here because we just decached cr0.TS (and we'll
1882                  * only update vmcs12->guest_cr0 on nested exit).
1883                  */
1884                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1885                 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1886                         (vcpu->arch.cr0 & X86_CR0_TS);
1887                 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1888         } else
1889                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1890 }
1891
1892 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1893 {
1894         unsigned long rflags, save_rflags;
1895
1896         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1897                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1898                 rflags = vmcs_readl(GUEST_RFLAGS);
1899                 if (to_vmx(vcpu)->rmode.vm86_active) {
1900                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1901                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1902                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1903                 }
1904                 to_vmx(vcpu)->rflags = rflags;
1905         }
1906         return to_vmx(vcpu)->rflags;
1907 }
1908
1909 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1910 {
1911         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1912         to_vmx(vcpu)->rflags = rflags;
1913         if (to_vmx(vcpu)->rmode.vm86_active) {
1914                 to_vmx(vcpu)->rmode.save_rflags = rflags;
1915                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1916         }
1917         vmcs_writel(GUEST_RFLAGS, rflags);
1918 }
1919
1920 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1921 {
1922         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1923         int ret = 0;
1924
1925         if (interruptibility & GUEST_INTR_STATE_STI)
1926                 ret |= KVM_X86_SHADOW_INT_STI;
1927         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1928                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1929
1930         return ret & mask;
1931 }
1932
1933 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1934 {
1935         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1936         u32 interruptibility = interruptibility_old;
1937
1938         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1939
1940         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1941                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1942         else if (mask & KVM_X86_SHADOW_INT_STI)
1943                 interruptibility |= GUEST_INTR_STATE_STI;
1944
1945         if ((interruptibility != interruptibility_old))
1946                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1947 }
1948
1949 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1950 {
1951         unsigned long rip;
1952
1953         rip = kvm_rip_read(vcpu);
1954         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1955         kvm_rip_write(vcpu, rip);
1956
1957         /* skipping an emulated instruction also counts */
1958         vmx_set_interrupt_shadow(vcpu, 0);
1959 }
1960
1961 /*
1962  * KVM wants to inject page-faults which it got to the guest. This function
1963  * checks whether in a nested guest, we need to inject them to L1 or L2.
1964  */
1965 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
1966 {
1967         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1968
1969         if (!(vmcs12->exception_bitmap & (1u << nr)))
1970                 return 0;
1971
1972         nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
1973                           vmcs_read32(VM_EXIT_INTR_INFO),
1974                           vmcs_readl(EXIT_QUALIFICATION));
1975         return 1;
1976 }
1977
1978 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1979                                 bool has_error_code, u32 error_code,
1980                                 bool reinject)
1981 {
1982         struct vcpu_vmx *vmx = to_vmx(vcpu);
1983         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1984
1985         if (!reinject && is_guest_mode(vcpu) &&
1986             nested_vmx_check_exception(vcpu, nr))
1987                 return;
1988
1989         if (has_error_code) {
1990                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1991                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1992         }
1993
1994         if (vmx->rmode.vm86_active) {
1995                 int inc_eip = 0;
1996                 if (kvm_exception_is_soft(nr))
1997                         inc_eip = vcpu->arch.event_exit_inst_len;
1998                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1999                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2000                 return;
2001         }
2002
2003         if (kvm_exception_is_soft(nr)) {
2004                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2005                              vmx->vcpu.arch.event_exit_inst_len);
2006                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2007         } else
2008                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2009
2010         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2011 }
2012
2013 static bool vmx_rdtscp_supported(void)
2014 {
2015         return cpu_has_vmx_rdtscp();
2016 }
2017
2018 static bool vmx_invpcid_supported(void)
2019 {
2020         return cpu_has_vmx_invpcid() && enable_ept;
2021 }
2022
2023 /*
2024  * Swap MSR entry in host/guest MSR entry array.
2025  */
2026 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2027 {
2028         struct shared_msr_entry tmp;
2029
2030         tmp = vmx->guest_msrs[to];
2031         vmx->guest_msrs[to] = vmx->guest_msrs[from];
2032         vmx->guest_msrs[from] = tmp;
2033 }
2034
2035 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2036 {
2037         unsigned long *msr_bitmap;
2038
2039         if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
2040                 if (is_long_mode(vcpu))
2041                         msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2042                 else
2043                         msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2044         } else {
2045                 if (is_long_mode(vcpu))
2046                         msr_bitmap = vmx_msr_bitmap_longmode;
2047                 else
2048                         msr_bitmap = vmx_msr_bitmap_legacy;
2049         }
2050
2051         vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2052 }
2053
2054 /*
2055  * Set up the vmcs to automatically save and restore system
2056  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
2057  * mode, as fiddling with msrs is very expensive.
2058  */
2059 static void setup_msrs(struct vcpu_vmx *vmx)
2060 {
2061         int save_nmsrs, index;
2062
2063         save_nmsrs = 0;
2064 #ifdef CONFIG_X86_64
2065         if (is_long_mode(&vmx->vcpu)) {
2066                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2067                 if (index >= 0)
2068                         move_msr_up(vmx, index, save_nmsrs++);
2069                 index = __find_msr_index(vmx, MSR_LSTAR);
2070                 if (index >= 0)
2071                         move_msr_up(vmx, index, save_nmsrs++);
2072                 index = __find_msr_index(vmx, MSR_CSTAR);
2073                 if (index >= 0)
2074                         move_msr_up(vmx, index, save_nmsrs++);
2075                 index = __find_msr_index(vmx, MSR_TSC_AUX);
2076                 if (index >= 0 && vmx->rdtscp_enabled)
2077                         move_msr_up(vmx, index, save_nmsrs++);
2078                 /*
2079                  * MSR_STAR is only needed on long mode guests, and only
2080                  * if efer.sce is enabled.
2081                  */
2082                 index = __find_msr_index(vmx, MSR_STAR);
2083                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2084                         move_msr_up(vmx, index, save_nmsrs++);
2085         }
2086 #endif
2087         index = __find_msr_index(vmx, MSR_EFER);
2088         if (index >= 0 && update_transition_efer(vmx, index))
2089                 move_msr_up(vmx, index, save_nmsrs++);
2090
2091         vmx->save_nmsrs = save_nmsrs;
2092
2093         if (cpu_has_vmx_msr_bitmap())
2094                 vmx_set_msr_bitmap(&vmx->vcpu);
2095 }
2096
2097 /*
2098  * reads and returns guest's timestamp counter "register"
2099  * guest_tsc = host_tsc + tsc_offset    -- 21.3
2100  */
2101 static u64 guest_read_tsc(void)
2102 {
2103         u64 host_tsc, tsc_offset;
2104
2105         rdtscll(host_tsc);
2106         tsc_offset = vmcs_read64(TSC_OFFSET);
2107         return host_tsc + tsc_offset;
2108 }
2109
2110 /*
2111  * Like guest_read_tsc, but always returns L1's notion of the timestamp
2112  * counter, even if a nested guest (L2) is currently running.
2113  */
2114 u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2115 {
2116         u64 tsc_offset;
2117
2118         tsc_offset = is_guest_mode(vcpu) ?
2119                 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2120                 vmcs_read64(TSC_OFFSET);
2121         return host_tsc + tsc_offset;
2122 }
2123
2124 /*
2125  * Engage any workarounds for mis-matched TSC rates.  Currently limited to
2126  * software catchup for faster rates on slower CPUs.
2127  */
2128 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2129 {
2130         if (!scale)
2131                 return;
2132
2133         if (user_tsc_khz > tsc_khz) {
2134                 vcpu->arch.tsc_catchup = 1;
2135                 vcpu->arch.tsc_always_catchup = 1;
2136         } else
2137                 WARN(1, "user requested TSC rate below hardware speed\n");
2138 }
2139
2140 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2141 {
2142         return vmcs_read64(TSC_OFFSET);
2143 }
2144
2145 /*
2146  * writes 'offset' into guest's timestamp counter offset register
2147  */
2148 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2149 {
2150         if (is_guest_mode(vcpu)) {
2151                 /*
2152                  * We're here if L1 chose not to trap WRMSR to TSC. According
2153                  * to the spec, this should set L1's TSC; The offset that L1
2154                  * set for L2 remains unchanged, and still needs to be added
2155                  * to the newly set TSC to get L2's TSC.
2156                  */
2157                 struct vmcs12 *vmcs12;
2158                 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2159                 /* recalculate vmcs02.TSC_OFFSET: */
2160                 vmcs12 = get_vmcs12(vcpu);
2161                 vmcs_write64(TSC_OFFSET, offset +
2162                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2163                          vmcs12->tsc_offset : 0));
2164         } else {
2165                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2166                                            vmcs_read64(TSC_OFFSET), offset);
2167                 vmcs_write64(TSC_OFFSET, offset);
2168         }
2169 }
2170
2171 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2172 {
2173         u64 offset = vmcs_read64(TSC_OFFSET);
2174
2175         vmcs_write64(TSC_OFFSET, offset + adjustment);
2176         if (is_guest_mode(vcpu)) {
2177                 /* Even when running L2, the adjustment needs to apply to L1 */
2178                 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2179         } else
2180                 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2181                                            offset + adjustment);
2182 }
2183
2184 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2185 {
2186         return target_tsc - native_read_tsc();
2187 }
2188
2189 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2190 {
2191         struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2192         return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2193 }
2194
2195 /*
2196  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2197  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2198  * all guests if the "nested" module option is off, and can also be disabled
2199  * for a single guest by disabling its VMX cpuid bit.
2200  */
2201 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2202 {
2203         return nested && guest_cpuid_has_vmx(vcpu);
2204 }
2205
2206 /*
2207  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2208  * returned for the various VMX controls MSRs when nested VMX is enabled.
2209  * The same values should also be used to verify that vmcs12 control fields are
2210  * valid during nested entry from L1 to L2.
2211  * Each of these control msrs has a low and high 32-bit half: A low bit is on
2212  * if the corresponding bit in the (32-bit) control field *must* be on, and a
2213  * bit in the high half is on if the corresponding bit in the control field
2214  * may be on. See also vmx_control_verify().
2215  * TODO: allow these variables to be modified (downgraded) by module options
2216  * or other means.
2217  */
2218 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
2219 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2220 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2221 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2222 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
2223 static u32 nested_vmx_misc_low, nested_vmx_misc_high;
2224 static u32 nested_vmx_ept_caps;
2225 static __init void nested_vmx_setup_ctls_msrs(void)
2226 {
2227         /*
2228          * Note that as a general rule, the high half of the MSRs (bits in
2229          * the control fields which may be 1) should be initialized by the
2230          * intersection of the underlying hardware's MSR (i.e., features which
2231          * can be supported) and the list of features we want to expose -
2232          * because they are known to be properly supported in our code.
2233          * Also, usually, the low half of the MSRs (bits which must be 1) can
2234          * be set to 0, meaning that L1 may turn off any of these bits. The
2235          * reason is that if one of these bits is necessary, it will appear
2236          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2237          * fields of vmcs01 and vmcs02, will turn these bits off - and
2238          * nested_vmx_exit_handled() will not pass related exits to L1.
2239          * These rules have exceptions below.
2240          */
2241
2242         /* pin-based controls */
2243         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2244               nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
2245         /*
2246          * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
2247          * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
2248          */
2249         nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2250         nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
2251                 PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS |
2252                 PIN_BASED_VMX_PREEMPTION_TIMER;
2253         nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2254
2255         /*
2256          * Exit controls
2257          * If bit 55 of VMX_BASIC is off, bits 0-8 and 10, 11, 13, 14, 16 and
2258          * 17 must be 1.
2259          */
2260         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2261                 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high);
2262         nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2263         /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
2264         nested_vmx_exit_ctls_high &=
2265 #ifdef CONFIG_X86_64
2266                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2267 #endif
2268                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
2269                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER;
2270         if (!(nested_vmx_pinbased_ctls_high & PIN_BASED_VMX_PREEMPTION_TIMER) ||
2271             !(nested_vmx_exit_ctls_high & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)) {
2272                 nested_vmx_exit_ctls_high &= ~VM_EXIT_SAVE_VMX_PREEMPTION_TIMER;
2273                 nested_vmx_pinbased_ctls_high &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2274         }
2275         nested_vmx_exit_ctls_high |= (VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2276                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER);
2277
2278         /* entry controls */
2279         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2280                 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
2281         /* If bit 55 of VMX_BASIC is off, bits 0-8 and 12 must be 1. */
2282         nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2283         nested_vmx_entry_ctls_high &=
2284 #ifdef CONFIG_X86_64
2285                 VM_ENTRY_IA32E_MODE |
2286 #endif
2287                 VM_ENTRY_LOAD_IA32_PAT;
2288         nested_vmx_entry_ctls_high |= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR |
2289                                        VM_ENTRY_LOAD_IA32_EFER);
2290
2291         /* cpu-based controls */
2292         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2293                 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2294         nested_vmx_procbased_ctls_low = 0;
2295         nested_vmx_procbased_ctls_high &=
2296                 CPU_BASED_VIRTUAL_INTR_PENDING |
2297                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2298                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2299                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2300                 CPU_BASED_CR3_STORE_EXITING |
2301 #ifdef CONFIG_X86_64
2302                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2303 #endif
2304                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2305                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2306                 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2307                 CPU_BASED_PAUSE_EXITING |
2308                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2309         /*
2310          * We can allow some features even when not supported by the
2311          * hardware. For example, L1 can specify an MSR bitmap - and we
2312          * can use it to avoid exits to L1 - even when L0 runs L2
2313          * without MSR bitmaps.
2314          */
2315         nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
2316
2317         /* secondary cpu-based controls */
2318         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2319                 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2320         nested_vmx_secondary_ctls_low = 0;
2321         nested_vmx_secondary_ctls_high &=
2322                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2323                 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2324                 SECONDARY_EXEC_WBINVD_EXITING;
2325
2326         if (enable_ept) {
2327                 /* nested EPT: emulate EPT also to L1 */
2328                 nested_vmx_secondary_ctls_high |= SECONDARY_EXEC_ENABLE_EPT;
2329                 nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2330                          VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2331                          VMX_EPT_INVEPT_BIT;
2332                 nested_vmx_ept_caps &= vmx_capability.ept;
2333                 /*
2334                  * Since invept is completely emulated we support both global
2335                  * and context invalidation independent of what host cpu
2336                  * supports
2337                  */
2338                 nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2339                         VMX_EPT_EXTENT_CONTEXT_BIT;
2340         } else
2341                 nested_vmx_ept_caps = 0;
2342
2343         /* miscellaneous data */
2344         rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
2345         nested_vmx_misc_low &= VMX_MISC_PREEMPTION_TIMER_RATE_MASK |
2346                 VMX_MISC_SAVE_EFER_LMA;
2347         nested_vmx_misc_low |= VMX_MISC_ACTIVITY_HLT;
2348         nested_vmx_misc_high = 0;
2349 }
2350
2351 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2352 {
2353         /*
2354          * Bits 0 in high must be 0, and bits 1 in low must be 1.
2355          */
2356         return ((control & high) | low) == control;
2357 }
2358
2359 static inline u64 vmx_control_msr(u32 low, u32 high)
2360 {
2361         return low | ((u64)high << 32);
2362 }
2363
2364 /* Returns 0 on success, non-0 otherwise. */
2365 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2366 {
2367         switch (msr_index) {
2368         case MSR_IA32_VMX_BASIC:
2369                 /*
2370                  * This MSR reports some information about VMX support. We
2371                  * should return information about the VMX we emulate for the
2372                  * guest, and the VMCS structure we give it - not about the
2373                  * VMX support of the underlying hardware.
2374                  */
2375                 *pdata = VMCS12_REVISION |
2376                            ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2377                            (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2378                 break;
2379         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2380         case MSR_IA32_VMX_PINBASED_CTLS:
2381                 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2382                                         nested_vmx_pinbased_ctls_high);
2383                 break;
2384         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2385         case MSR_IA32_VMX_PROCBASED_CTLS:
2386                 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2387                                         nested_vmx_procbased_ctls_high);
2388                 break;
2389         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2390         case MSR_IA32_VMX_EXIT_CTLS:
2391                 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2392                                         nested_vmx_exit_ctls_high);
2393                 break;
2394         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2395         case MSR_IA32_VMX_ENTRY_CTLS:
2396                 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2397                                         nested_vmx_entry_ctls_high);
2398                 break;
2399         case MSR_IA32_VMX_MISC:
2400                 *pdata = vmx_control_msr(nested_vmx_misc_low,
2401                                          nested_vmx_misc_high);
2402                 break;
2403         /*
2404          * These MSRs specify bits which the guest must keep fixed (on or off)
2405          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2406          * We picked the standard core2 setting.
2407          */
2408 #define VMXON_CR0_ALWAYSON      (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2409 #define VMXON_CR4_ALWAYSON      X86_CR4_VMXE
2410         case MSR_IA32_VMX_CR0_FIXED0:
2411                 *pdata = VMXON_CR0_ALWAYSON;
2412                 break;
2413         case MSR_IA32_VMX_CR0_FIXED1:
2414                 *pdata = -1ULL;
2415                 break;
2416         case MSR_IA32_VMX_CR4_FIXED0:
2417                 *pdata = VMXON_CR4_ALWAYSON;
2418                 break;
2419         case MSR_IA32_VMX_CR4_FIXED1:
2420                 *pdata = -1ULL;
2421                 break;
2422         case MSR_IA32_VMX_VMCS_ENUM:
2423                 *pdata = 0x1f;
2424                 break;
2425         case MSR_IA32_VMX_PROCBASED_CTLS2:
2426                 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2427                                         nested_vmx_secondary_ctls_high);
2428                 break;
2429         case MSR_IA32_VMX_EPT_VPID_CAP:
2430                 /* Currently, no nested vpid support */
2431                 *pdata = nested_vmx_ept_caps;
2432                 break;
2433         default:
2434                 return 1;
2435         }
2436
2437         return 0;
2438 }
2439
2440 /*
2441  * Reads an msr value (of 'msr_index') into 'pdata'.
2442  * Returns 0 on success, non-0 otherwise.
2443  * Assumes vcpu_load() was already called.
2444  */
2445 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2446 {
2447         u64 data;
2448         struct shared_msr_entry *msr;
2449
2450         if (!pdata) {
2451                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2452                 return -EINVAL;
2453         }
2454
2455         switch (msr_index) {
2456 #ifdef CONFIG_X86_64
2457         case MSR_FS_BASE:
2458                 data = vmcs_readl(GUEST_FS_BASE);
2459                 break;
2460         case MSR_GS_BASE:
2461                 data = vmcs_readl(GUEST_GS_BASE);
2462                 break;
2463         case MSR_KERNEL_GS_BASE:
2464                 vmx_load_host_state(to_vmx(vcpu));
2465                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2466                 break;
2467 #endif
2468         case MSR_EFER:
2469                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2470         case MSR_IA32_TSC:
2471                 data = guest_read_tsc();
2472                 break;
2473         case MSR_IA32_SYSENTER_CS:
2474                 data = vmcs_read32(GUEST_SYSENTER_CS);
2475                 break;
2476         case MSR_IA32_SYSENTER_EIP:
2477                 data = vmcs_readl(GUEST_SYSENTER_EIP);
2478                 break;
2479         case MSR_IA32_SYSENTER_ESP:
2480                 data = vmcs_readl(GUEST_SYSENTER_ESP);
2481                 break;
2482         case MSR_IA32_FEATURE_CONTROL:
2483                 if (!nested_vmx_allowed(vcpu))
2484                         return 1;
2485                 data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2486                 break;
2487         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2488                 if (!nested_vmx_allowed(vcpu))
2489                         return 1;
2490                 return vmx_get_vmx_msr(vcpu, msr_index, pdata);
2491         case MSR_TSC_AUX:
2492                 if (!to_vmx(vcpu)->rdtscp_enabled)
2493                         return 1;
2494                 /* Otherwise falls through */
2495         default:
2496                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2497                 if (msr) {
2498                         data = msr->data;
2499                         break;
2500                 }
2501                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2502         }
2503
2504         *pdata = data;
2505         return 0;
2506 }
2507
2508 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2509
2510 /*
2511  * Writes msr value into into the appropriate "register".
2512  * Returns 0 on success, non-0 otherwise.
2513  * Assumes vcpu_load() was already called.
2514  */
2515 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2516 {
2517         struct vcpu_vmx *vmx = to_vmx(vcpu);
2518         struct shared_msr_entry *msr;
2519         int ret = 0;
2520         u32 msr_index = msr_info->index;
2521         u64 data = msr_info->data;
2522
2523         switch (msr_index) {
2524         case MSR_EFER:
2525                 ret = kvm_set_msr_common(vcpu, msr_info);
2526                 break;
2527 #ifdef CONFIG_X86_64
2528         case MSR_FS_BASE:
2529                 vmx_segment_cache_clear(vmx);
2530                 vmcs_writel(GUEST_FS_BASE, data);
2531                 break;
2532         case MSR_GS_BASE:
2533                 vmx_segment_cache_clear(vmx);
2534                 vmcs_writel(GUEST_GS_BASE, data);
2535                 break;
2536         case MSR_KERNEL_GS_BASE:
2537                 vmx_load_host_state(vmx);
2538                 vmx->msr_guest_kernel_gs_base = data;
2539                 break;
2540 #endif
2541         case MSR_IA32_SYSENTER_CS:
2542                 vmcs_write32(GUEST_SYSENTER_CS, data);
2543                 break;
2544         case MSR_IA32_SYSENTER_EIP:
2545                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2546                 break;
2547         case MSR_IA32_SYSENTER_ESP:
2548                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2549                 break;
2550         case MSR_IA32_TSC:
2551                 kvm_write_tsc(vcpu, msr_info);
2552                 break;
2553         case MSR_IA32_CR_PAT:
2554                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2555                         vmcs_write64(GUEST_IA32_PAT, data);
2556                         vcpu->arch.pat = data;
2557                         break;
2558                 }
2559                 ret = kvm_set_msr_common(vcpu, msr_info);
2560                 break;
2561         case MSR_IA32_TSC_ADJUST:
2562                 ret = kvm_set_msr_common(vcpu, msr_info);
2563                 break;
2564         case MSR_IA32_FEATURE_CONTROL:
2565                 if (!nested_vmx_allowed(vcpu) ||
2566                     (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2567                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2568                         return 1;
2569                 vmx->nested.msr_ia32_feature_control = data;
2570                 if (msr_info->host_initiated && data == 0)
2571                         vmx_leave_nested(vcpu);
2572                 break;
2573         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2574                 return 1; /* they are read-only */
2575         case MSR_TSC_AUX:
2576                 if (!vmx->rdtscp_enabled)
2577                         return 1;
2578                 /* Check reserved bit, higher 32 bits should be zero */
2579                 if ((data >> 32) != 0)
2580                         return 1;
2581                 /* Otherwise falls through */
2582         default:
2583                 msr = find_msr_entry(vmx, msr_index);
2584                 if (msr) {
2585                         msr->data = data;
2586                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2587                                 preempt_disable();
2588                                 kvm_set_shared_msr(msr->index, msr->data,
2589                                                    msr->mask);
2590                                 preempt_enable();
2591                         }
2592                         break;
2593                 }
2594                 ret = kvm_set_msr_common(vcpu, msr_info);
2595         }
2596
2597         return ret;
2598 }
2599
2600 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2601 {
2602         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2603         switch (reg) {
2604         case VCPU_REGS_RSP:
2605                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2606                 break;
2607         case VCPU_REGS_RIP:
2608                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2609                 break;
2610         case VCPU_EXREG_PDPTR:
2611                 if (enable_ept)
2612                         ept_save_pdptrs(vcpu);
2613                 break;
2614         default:
2615                 break;
2616         }
2617 }
2618
2619 static __init int cpu_has_kvm_support(void)
2620 {
2621         return cpu_has_vmx();
2622 }
2623
2624 static __init int vmx_disabled_by_bios(void)
2625 {
2626         u64 msr;
2627
2628         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2629         if (msr & FEATURE_CONTROL_LOCKED) {
2630                 /* launched w/ TXT and VMX disabled */
2631                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2632                         && tboot_enabled())
2633                         return 1;
2634                 /* launched w/o TXT and VMX only enabled w/ TXT */
2635                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2636                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2637                         && !tboot_enabled()) {
2638                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2639                                 "activate TXT before enabling KVM\n");
2640                         return 1;
2641                 }
2642                 /* launched w/o TXT and VMX disabled */
2643                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2644                         && !tboot_enabled())
2645                         return 1;
2646         }
2647
2648         return 0;
2649 }
2650
2651 static void kvm_cpu_vmxon(u64 addr)
2652 {
2653         asm volatile (ASM_VMX_VMXON_RAX
2654                         : : "a"(&addr), "m"(addr)
2655                         : "memory", "cc");
2656 }
2657
2658 static int hardware_enable(void *garbage)
2659 {
2660         int cpu = raw_smp_processor_id();
2661         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2662         u64 old, test_bits;
2663
2664         if (read_cr4() & X86_CR4_VMXE)
2665                 return -EBUSY;
2666
2667         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2668
2669         /*
2670          * Now we can enable the vmclear operation in kdump
2671          * since the loaded_vmcss_on_cpu list on this cpu
2672          * has been initialized.
2673          *
2674          * Though the cpu is not in VMX operation now, there
2675          * is no problem to enable the vmclear operation
2676          * for the loaded_vmcss_on_cpu list is empty!
2677          */
2678         crash_enable_local_vmclear(cpu);
2679
2680         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2681
2682         test_bits = FEATURE_CONTROL_LOCKED;
2683         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2684         if (tboot_enabled())
2685                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2686
2687         if ((old & test_bits) != test_bits) {
2688                 /* enable and lock */
2689                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2690         }
2691         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2692
2693         if (vmm_exclusive) {
2694                 kvm_cpu_vmxon(phys_addr);
2695                 ept_sync_global();
2696         }
2697
2698         native_store_gdt(&__get_cpu_var(host_gdt));
2699
2700         return 0;
2701 }
2702
2703 static void vmclear_local_loaded_vmcss(void)
2704 {
2705         int cpu = raw_smp_processor_id();
2706         struct loaded_vmcs *v, *n;
2707
2708         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2709                                  loaded_vmcss_on_cpu_link)
2710                 __loaded_vmcs_clear(v);
2711 }
2712
2713
2714 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2715  * tricks.
2716  */
2717 static void kvm_cpu_vmxoff(void)
2718 {
2719         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2720 }
2721
2722 static void hardware_disable(void *garbage)
2723 {
2724         if (vmm_exclusive) {
2725                 vmclear_local_loaded_vmcss();
2726                 kvm_cpu_vmxoff();
2727         }
2728         write_cr4(read_cr4() & ~X86_CR4_VMXE);
2729 }
2730
2731 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2732                                       u32 msr, u32 *result)
2733 {
2734         u32 vmx_msr_low, vmx_msr_high;
2735         u32 ctl = ctl_min | ctl_opt;
2736
2737         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2738
2739         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2740         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2741
2742         /* Ensure minimum (required) set of control bits are supported. */
2743         if (ctl_min & ~ctl)
2744                 return -EIO;
2745
2746         *result = ctl;
2747         return 0;
2748 }
2749
2750 static __init bool allow_1_setting(u32 msr, u32 ctl)
2751 {
2752         u32 vmx_msr_low, vmx_msr_high;
2753
2754         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2755         return vmx_msr_high & ctl;
2756 }
2757
2758 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2759 {
2760         u32 vmx_msr_low, vmx_msr_high;
2761         u32 min, opt, min2, opt2;
2762         u32 _pin_based_exec_control = 0;
2763         u32 _cpu_based_exec_control = 0;
2764         u32 _cpu_based_2nd_exec_control = 0;
2765         u32 _vmexit_control = 0;
2766         u32 _vmentry_control = 0;
2767
2768         min = CPU_BASED_HLT_EXITING |
2769 #ifdef CONFIG_X86_64
2770               CPU_BASED_CR8_LOAD_EXITING |
2771               CPU_BASED_CR8_STORE_EXITING |
2772 #endif
2773               CPU_BASED_CR3_LOAD_EXITING |
2774               CPU_BASED_CR3_STORE_EXITING |
2775               CPU_BASED_USE_IO_BITMAPS |
2776               CPU_BASED_MOV_DR_EXITING |
2777               CPU_BASED_USE_TSC_OFFSETING |
2778               CPU_BASED_MWAIT_EXITING |
2779               CPU_BASED_MONITOR_EXITING |
2780               CPU_BASED_INVLPG_EXITING |
2781               CPU_BASED_RDPMC_EXITING;
2782
2783         opt = CPU_BASED_TPR_SHADOW |
2784               CPU_BASED_USE_MSR_BITMAPS |
2785               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2786         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2787                                 &_cpu_based_exec_control) < 0)
2788                 return -EIO;
2789 #ifdef CONFIG_X86_64
2790         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2791                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2792                                            ~CPU_BASED_CR8_STORE_EXITING;
2793 #endif
2794         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2795                 min2 = 0;
2796                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2797                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2798                         SECONDARY_EXEC_WBINVD_EXITING |
2799                         SECONDARY_EXEC_ENABLE_VPID |
2800                         SECONDARY_EXEC_ENABLE_EPT |
2801                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2802                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2803                         SECONDARY_EXEC_RDTSCP |
2804                         SECONDARY_EXEC_ENABLE_INVPCID |
2805                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2806                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2807                         SECONDARY_EXEC_SHADOW_VMCS;
2808                 if (adjust_vmx_controls(min2, opt2,
2809                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2810                                         &_cpu_based_2nd_exec_control) < 0)
2811                         return -EIO;
2812         }
2813 #ifndef CONFIG_X86_64
2814         if (!(_cpu_based_2nd_exec_control &
2815                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2816                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2817 #endif
2818
2819         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2820                 _cpu_based_2nd_exec_control &= ~(
2821                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2822                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2823                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2824
2825         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2826                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2827                    enabled */
2828                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2829                                              CPU_BASED_CR3_STORE_EXITING |
2830                                              CPU_BASED_INVLPG_EXITING);
2831                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2832                       vmx_capability.ept, vmx_capability.vpid);
2833         }
2834
2835         min = 0;
2836 #ifdef CONFIG_X86_64
2837         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2838 #endif
2839         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
2840                 VM_EXIT_ACK_INTR_ON_EXIT;
2841         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2842                                 &_vmexit_control) < 0)
2843                 return -EIO;
2844
2845         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2846         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
2847         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2848                                 &_pin_based_exec_control) < 0)
2849                 return -EIO;
2850
2851         if (!(_cpu_based_2nd_exec_control &
2852                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
2853                 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
2854                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2855
2856         min = 0;
2857         opt = VM_ENTRY_LOAD_IA32_PAT;
2858         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2859                                 &_vmentry_control) < 0)
2860                 return -EIO;
2861
2862         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2863
2864         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2865         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2866                 return -EIO;
2867
2868 #ifdef CONFIG_X86_64
2869         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2870         if (vmx_msr_high & (1u<<16))
2871                 return -EIO;
2872 #endif
2873
2874         /* Require Write-Back (WB) memory type for VMCS accesses. */
2875         if (((vmx_msr_high >> 18) & 15) != 6)
2876                 return -EIO;
2877
2878         vmcs_conf->size = vmx_msr_high & 0x1fff;
2879         vmcs_conf->order = get_order(vmcs_config.size);
2880         vmcs_conf->revision_id = vmx_msr_low;
2881
2882         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2883         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2884         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2885         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2886         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2887
2888         cpu_has_load_ia32_efer =
2889                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2890                                 VM_ENTRY_LOAD_IA32_EFER)
2891                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2892                                    VM_EXIT_LOAD_IA32_EFER);
2893
2894         cpu_has_load_perf_global_ctrl =
2895                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2896                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2897                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2898                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2899
2900         /*
2901          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2902          * but due to arrata below it can't be used. Workaround is to use
2903          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2904          *
2905          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2906          *
2907          * AAK155             (model 26)
2908          * AAP115             (model 30)
2909          * AAT100             (model 37)
2910          * BC86,AAY89,BD102   (model 44)
2911          * BA97               (model 46)
2912          *
2913          */
2914         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2915                 switch (boot_cpu_data.x86_model) {
2916                 case 26:
2917                 case 30:
2918                 case 37:
2919                 case 44:
2920                 case 46:
2921                         cpu_has_load_perf_global_ctrl = false;
2922                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2923                                         "does not work properly. Using workaround\n");
2924                         break;
2925                 default:
2926                         break;
2927                 }
2928         }
2929
2930         return 0;
2931 }
2932
2933 static struct vmcs *alloc_vmcs_cpu(int cpu)
2934 {
2935         int node = cpu_to_node(cpu);
2936         struct page *pages;
2937         struct vmcs *vmcs;
2938
2939         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2940         if (!pages)
2941                 return NULL;
2942         vmcs = page_address(pages);
2943         memset(vmcs, 0, vmcs_config.size);
2944         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2945         return vmcs;
2946 }
2947
2948 static struct vmcs *alloc_vmcs(void)
2949 {
2950         return alloc_vmcs_cpu(raw_smp_processor_id());
2951 }
2952
2953 static void free_vmcs(struct vmcs *vmcs)
2954 {
2955         free_pages((unsigned long)vmcs, vmcs_config.order);
2956 }
2957
2958 /*
2959  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2960  */
2961 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2962 {
2963         if (!loaded_vmcs->vmcs)
2964                 return;
2965         loaded_vmcs_clear(loaded_vmcs);
2966         free_vmcs(loaded_vmcs->vmcs);
2967         loaded_vmcs->vmcs = NULL;
2968 }
2969
2970 static void free_kvm_area(void)
2971 {
2972         int cpu;
2973
2974         for_each_possible_cpu(cpu) {
2975                 free_vmcs(per_cpu(vmxarea, cpu));
2976                 per_cpu(vmxarea, cpu) = NULL;
2977         }
2978 }
2979
2980 static __init int alloc_kvm_area(void)
2981 {
2982         int cpu;
2983
2984         for_each_possible_cpu(cpu) {
2985                 struct vmcs *vmcs;
2986
2987                 vmcs = alloc_vmcs_cpu(cpu);
2988                 if (!vmcs) {
2989                         free_kvm_area();
2990                         return -ENOMEM;
2991                 }
2992
2993                 per_cpu(vmxarea, cpu) = vmcs;
2994         }
2995         return 0;
2996 }
2997
2998 static __init int hardware_setup(void)
2999 {
3000         if (setup_vmcs_config(&vmcs_config) < 0)
3001                 return -EIO;
3002
3003         if (boot_cpu_has(X86_FEATURE_NX))
3004                 kvm_enable_efer_bits(EFER_NX);
3005
3006         if (!cpu_has_vmx_vpid())
3007                 enable_vpid = 0;
3008         if (!cpu_has_vmx_shadow_vmcs())
3009                 enable_shadow_vmcs = 0;
3010
3011         if (!cpu_has_vmx_ept() ||
3012             !cpu_has_vmx_ept_4levels()) {
3013                 enable_ept = 0;
3014                 enable_unrestricted_guest = 0;
3015                 enable_ept_ad_bits = 0;
3016         }
3017
3018         if (!cpu_has_vmx_ept_ad_bits())
3019                 enable_ept_ad_bits = 0;
3020
3021         if (!cpu_has_vmx_unrestricted_guest())
3022                 enable_unrestricted_guest = 0;
3023
3024         if (!cpu_has_vmx_flexpriority())
3025                 flexpriority_enabled = 0;
3026
3027         if (!cpu_has_vmx_tpr_shadow())
3028                 kvm_x86_ops->update_cr8_intercept = NULL;
3029
3030         if (enable_ept && !cpu_has_vmx_ept_2m_page())
3031                 kvm_disable_largepages();
3032
3033         if (!cpu_has_vmx_ple())
3034                 ple_gap = 0;
3035
3036         if (!cpu_has_vmx_apicv())
3037                 enable_apicv = 0;
3038
3039         if (enable_apicv)
3040                 kvm_x86_ops->update_cr8_intercept = NULL;
3041         else {
3042                 kvm_x86_ops->hwapic_irr_update = NULL;
3043                 kvm_x86_ops->deliver_posted_interrupt = NULL;
3044                 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
3045         }
3046
3047         if (nested)
3048                 nested_vmx_setup_ctls_msrs();
3049
3050         return alloc_kvm_area();
3051 }
3052
3053 static __exit void hardware_unsetup(void)
3054 {
3055         free_kvm_area();
3056 }
3057
3058 static bool emulation_required(struct kvm_vcpu *vcpu)
3059 {
3060         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3061 }
3062
3063 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3064                 struct kvm_segment *save)
3065 {
3066         if (!emulate_invalid_guest_state) {
3067                 /*
3068                  * CS and SS RPL should be equal during guest entry according
3069                  * to VMX spec, but in reality it is not always so. Since vcpu
3070                  * is in the middle of the transition from real mode to
3071                  * protected mode it is safe to assume that RPL 0 is a good
3072                  * default value.
3073                  */
3074                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3075                         save->selector &= ~SELECTOR_RPL_MASK;
3076                 save->dpl = save->selector & SELECTOR_RPL_MASK;
3077                 save->s = 1;
3078         }
3079         vmx_set_segment(vcpu, save, seg);
3080 }
3081
3082 static void enter_pmode(struct kvm_vcpu *vcpu)
3083 {
3084         unsigned long flags;
3085         struct vcpu_vmx *vmx = to_vmx(vcpu);
3086
3087         /*
3088          * Update real mode segment cache. It may be not up-to-date if sement
3089          * register was written while vcpu was in a guest mode.
3090          */
3091         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3092         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3093         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3094         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3095         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3096         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3097
3098         vmx->rmode.vm86_active = 0;
3099
3100         vmx_segment_cache_clear(vmx);
3101
3102         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3103
3104         flags = vmcs_readl(GUEST_RFLAGS);
3105         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3106         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3107         vmcs_writel(GUEST_RFLAGS, flags);
3108
3109         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3110                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3111
3112         update_exception_bitmap(vcpu);
3113
3114         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3115         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3116         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3117         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3118         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3119         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3120
3121         /* CPL is always 0 when CPU enters protected mode */
3122         __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3123         vmx->cpl = 0;
3124 }
3125
3126 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3127 {
3128         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3129         struct kvm_segment var = *save;
3130
3131         var.dpl = 0x3;
3132         if (seg == VCPU_SREG_CS)
3133                 var.type = 0x3;
3134
3135         if (!emulate_invalid_guest_state) {
3136                 var.selector = var.base >> 4;
3137                 var.base = var.base & 0xffff0;
3138                 var.limit = 0xffff;
3139                 var.g = 0;
3140                 var.db = 0;
3141                 var.present = 1;
3142                 var.s = 1;
3143                 var.l = 0;
3144                 var.unusable = 0;
3145                 var.type = 0x3;
3146                 var.avl = 0;
3147                 if (save->base & 0xf)
3148                         printk_once(KERN_WARNING "kvm: segment base is not "
3149                                         "paragraph aligned when entering "
3150                                         "protected mode (seg=%d)", seg);
3151         }
3152
3153         vmcs_write16(sf->selector, var.selector);
3154         vmcs_write32(sf->base, var.base);
3155         vmcs_write32(sf->limit, var.limit);
3156         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3157 }
3158
3159 static void enter_rmode(struct kvm_vcpu *vcpu)
3160 {
3161         unsigned long flags;
3162         struct vcpu_vmx *vmx = to_vmx(vcpu);
3163
3164         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3165         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3166         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3167         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3168         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3169         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3170         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3171
3172         vmx->rmode.vm86_active = 1;
3173
3174         /*
3175          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3176          * vcpu. Warn the user that an update is overdue.
3177          */
3178         if (!vcpu->kvm->arch.tss_addr)
3179                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3180                              "called before entering vcpu\n");
3181
3182         vmx_segment_cache_clear(vmx);
3183
3184         vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3185         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3186         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3187
3188         flags = vmcs_readl(GUEST_RFLAGS);
3189         vmx->rmode.save_rflags = flags;
3190
3191         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3192
3193         vmcs_writel(GUEST_RFLAGS, flags);
3194         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3195         update_exception_bitmap(vcpu);
3196
3197         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3198         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3199         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3200         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3201         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3202         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3203
3204         kvm_mmu_reset_context(vcpu);
3205 }
3206
3207 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3208 {
3209         struct vcpu_vmx *vmx = to_vmx(vcpu);
3210         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3211
3212         if (!msr)
3213                 return;
3214
3215         /*
3216          * Force kernel_gs_base reloading before EFER changes, as control
3217          * of this msr depends on is_long_mode().
3218          */
3219         vmx_load_host_state(to_vmx(vcpu));
3220         vcpu->arch.efer = efer;
3221         if (efer & EFER_LMA) {
3222                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3223                 msr->data = efer;
3224         } else {
3225                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3226
3227                 msr->data = efer & ~EFER_LME;
3228         }
3229         setup_msrs(vmx);
3230 }
3231
3232 #ifdef CONFIG_X86_64
3233
3234 static void enter_lmode(struct kvm_vcpu *vcpu)
3235 {
3236         u32 guest_tr_ar;
3237
3238         vmx_segment_cache_clear(to_vmx(vcpu));
3239
3240         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3241         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
3242                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3243                                      __func__);
3244                 vmcs_write32(GUEST_TR_AR_BYTES,
3245                              (guest_tr_ar & ~AR_TYPE_MASK)
3246                              | AR_TYPE_BUSY_64_TSS);
3247         }
3248         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3249 }
3250
3251 static void exit_lmode(struct kvm_vcpu *vcpu)
3252 {
3253         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3254         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3255 }
3256
3257 #endif
3258
3259 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3260 {
3261         vpid_sync_context(to_vmx(vcpu));
3262         if (enable_ept) {
3263                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3264                         return;
3265                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3266         }
3267 }
3268
3269 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3270 {
3271         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3272
3273         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3274         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3275 }
3276
3277 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3278 {
3279         if (enable_ept && is_paging(vcpu))
3280                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3281         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3282 }
3283
3284 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3285 {
3286         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3287
3288         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3289         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3290 }
3291
3292 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3293 {
3294         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3295
3296         if (!test_bit(VCPU_EXREG_PDPTR,
3297                       (unsigned long *)&vcpu->arch.regs_dirty))
3298                 return;
3299
3300         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3301                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3302                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3303                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3304                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3305         }
3306 }
3307
3308 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3309 {
3310         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3311
3312         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3313                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3314                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3315                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3316                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3317         }
3318
3319         __set_bit(VCPU_EXREG_PDPTR,
3320                   (unsigned long *)&vcpu->arch.regs_avail);
3321         __set_bit(VCPU_EXREG_PDPTR,
3322                   (unsigned long *)&vcpu->arch.regs_dirty);
3323 }
3324
3325 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3326
3327 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3328                                         unsigned long cr0,
3329                                         struct kvm_vcpu *vcpu)
3330 {
3331         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3332                 vmx_decache_cr3(vcpu);
3333         if (!(cr0 & X86_CR0_PG)) {
3334                 /* From paging/starting to nonpaging */
3335                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3336                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3337                              (CPU_BASED_CR3_LOAD_EXITING |
3338                               CPU_BASED_CR3_STORE_EXITING));
3339                 vcpu->arch.cr0 = cr0;
3340                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3341         } else if (!is_paging(vcpu)) {
3342                 /* From nonpaging to paging */
3343                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3344                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3345                              ~(CPU_BASED_CR3_LOAD_EXITING |
3346                                CPU_BASED_CR3_STORE_EXITING));
3347                 vcpu->arch.cr0 = cr0;
3348                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3349         }
3350
3351         if (!(cr0 & X86_CR0_WP))
3352                 *hw_cr0 &= ~X86_CR0_WP;
3353 }
3354
3355 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3356 {
3357         struct vcpu_vmx *vmx = to_vmx(vcpu);
3358         unsigned long hw_cr0;
3359
3360         hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3361         if (enable_unrestricted_guest)
3362                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3363         else {
3364                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3365
3366                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3367                         enter_pmode(vcpu);
3368
3369                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3370                         enter_rmode(vcpu);
3371         }
3372
3373 #ifdef CONFIG_X86_64
3374         if (vcpu->arch.efer & EFER_LME) {
3375                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3376                         enter_lmode(vcpu);
3377                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3378                         exit_lmode(vcpu);
3379         }
3380 #endif
3381
3382         if (enable_ept)
3383                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3384
3385         if (!vcpu->fpu_active)
3386                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3387
3388         vmcs_writel(CR0_READ_SHADOW, cr0);
3389         vmcs_writel(GUEST_CR0, hw_cr0);
3390         vcpu->arch.cr0 = cr0;
3391
3392         /* depends on vcpu->arch.cr0 to be set to a new value */
3393         vmx->emulation_required = emulation_required(vcpu);
3394 }
3395
3396 static u64 construct_eptp(unsigned long root_hpa)
3397 {
3398         u64 eptp;
3399
3400         /* TODO write the value reading from MSR */
3401         eptp = VMX_EPT_DEFAULT_MT |
3402                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3403         if (enable_ept_ad_bits)
3404                 eptp |= VMX_EPT_AD_ENABLE_BIT;
3405         eptp |= (root_hpa & PAGE_MASK);
3406
3407         return eptp;
3408 }
3409
3410 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3411 {
3412         unsigned long guest_cr3;
3413         u64 eptp;
3414
3415         guest_cr3 = cr3;
3416         if (enable_ept) {
3417                 eptp = construct_eptp(cr3);
3418                 vmcs_write64(EPT_POINTER, eptp);
3419                 if (is_paging(vcpu) || is_guest_mode(vcpu))
3420                         guest_cr3 = kvm_read_cr3(vcpu);
3421                 else
3422                         guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3423                 ept_load_pdptrs(vcpu);
3424         }
3425
3426         vmx_flush_tlb(vcpu);
3427         vmcs_writel(GUEST_CR3, guest_cr3);
3428 }
3429
3430 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3431 {
3432         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3433                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3434
3435         if (cr4 & X86_CR4_VMXE) {
3436                 /*
3437                  * To use VMXON (and later other VMX instructions), a guest
3438                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3439                  * So basically the check on whether to allow nested VMX
3440                  * is here.
3441                  */
3442                 if (!nested_vmx_allowed(vcpu))
3443                         return 1;
3444         }
3445         if (to_vmx(vcpu)->nested.vmxon &&
3446             ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3447                 return 1;
3448
3449         vcpu->arch.cr4 = cr4;
3450         if (enable_ept) {
3451                 if (!is_paging(vcpu)) {
3452                         hw_cr4 &= ~X86_CR4_PAE;
3453                         hw_cr4 |= X86_CR4_PSE;
3454                         /*
3455                          * SMEP is disabled if CPU is in non-paging mode in
3456                          * hardware. However KVM always uses paging mode to
3457                          * emulate guest non-paging mode with TDP.
3458                          * To emulate this behavior, SMEP needs to be manually
3459                          * disabled when guest switches to non-paging mode.
3460                          */
3461                         hw_cr4 &= ~X86_CR4_SMEP;
3462                 } else if (!(cr4 & X86_CR4_PAE)) {
3463                         hw_cr4 &= ~X86_CR4_PAE;
3464                 }
3465         }
3466
3467         vmcs_writel(CR4_READ_SHADOW, cr4);
3468         vmcs_writel(GUEST_CR4, hw_cr4);
3469         return 0;
3470 }
3471
3472 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3473                             struct kvm_segment *var, int seg)
3474 {
3475         struct vcpu_vmx *vmx = to_vmx(vcpu);
3476         u32 ar;
3477
3478         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3479                 *var = vmx->rmode.segs[seg];
3480                 if (seg == VCPU_SREG_TR
3481                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3482                         return;
3483                 var->base = vmx_read_guest_seg_base(vmx, seg);
3484                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3485                 return;
3486         }
3487         var->base = vmx_read_guest_seg_base(vmx, seg);
3488         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3489         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3490         ar = vmx_read_guest_seg_ar(vmx, seg);
3491         var->unusable = (ar >> 16) & 1;
3492         var->type = ar & 15;
3493         var->s = (ar >> 4) & 1;
3494         var->dpl = (ar >> 5) & 3;
3495         /*
3496          * Some userspaces do not preserve unusable property. Since usable
3497          * segment has to be present according to VMX spec we can use present
3498          * property to amend userspace bug by making unusable segment always
3499          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3500          * segment as unusable.
3501          */
3502         var->present = !var->unusable;
3503         var->avl = (ar >> 12) & 1;
3504         var->l = (ar >> 13) & 1;
3505         var->db = (ar >> 14) & 1;
3506         var->g = (ar >> 15) & 1;
3507 }
3508
3509 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3510 {
3511         struct kvm_segment s;
3512
3513         if (to_vmx(vcpu)->rmode.vm86_active) {
3514                 vmx_get_segment(vcpu, &s, seg);
3515                 return s.base;
3516         }
3517         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3518 }
3519
3520 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3521 {
3522         struct vcpu_vmx *vmx = to_vmx(vcpu);
3523
3524         if (!is_protmode(vcpu))
3525                 return 0;
3526
3527         if (!is_long_mode(vcpu)
3528             && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
3529                 return 3;
3530
3531         if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3532                 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3533                 vmx->cpl = vmx_read_guest_seg_selector(vmx, VCPU_SREG_CS) & 3;
3534         }
3535
3536         return vmx->cpl;
3537 }
3538
3539
3540 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3541 {
3542         u32 ar;
3543
3544         if (var->unusable || !var->present)
3545                 ar = 1 << 16;
3546         else {
3547                 ar = var->type & 15;
3548                 ar |= (var->s & 1) << 4;
3549                 ar |= (var->dpl & 3) << 5;
3550                 ar |= (var->present & 1) << 7;
3551                 ar |= (var->avl & 1) << 12;
3552                 ar |= (var->l & 1) << 13;
3553                 ar |= (var->db & 1) << 14;
3554                 ar |= (var->g & 1) << 15;
3555         }
3556
3557         return ar;
3558 }
3559
3560 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3561                             struct kvm_segment *var, int seg)
3562 {
3563         struct vcpu_vmx *vmx = to_vmx(vcpu);
3564         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3565
3566         vmx_segment_cache_clear(vmx);
3567         if (seg == VCPU_SREG_CS)
3568                 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3569
3570         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3571                 vmx->rmode.segs[seg] = *var;
3572                 if (seg == VCPU_SREG_TR)
3573                         vmcs_write16(sf->selector, var->selector);
3574                 else if (var->s)
3575                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3576                 goto out;
3577         }
3578
3579         vmcs_writel(sf->base, var->base);
3580         vmcs_write32(sf->limit, var->limit);
3581         vmcs_write16(sf->selector, var->selector);
3582
3583         /*
3584          *   Fix the "Accessed" bit in AR field of segment registers for older
3585          * qemu binaries.
3586          *   IA32 arch specifies that at the time of processor reset the
3587          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3588          * is setting it to 0 in the userland code. This causes invalid guest
3589          * state vmexit when "unrestricted guest" mode is turned on.
3590          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3591          * tree. Newer qemu binaries with that qemu fix would not need this
3592          * kvm hack.
3593          */
3594         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3595                 var->type |= 0x1; /* Accessed */
3596
3597         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3598
3599 out:
3600         vmx->emulation_required |= emulation_required(vcpu);
3601 }
3602
3603 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3604 {
3605         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3606
3607         *db = (ar >> 14) & 1;
3608         *l = (ar >> 13) & 1;
3609 }
3610
3611 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3612 {
3613         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3614         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3615 }
3616
3617 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3618 {
3619         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3620         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3621 }
3622
3623 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3624 {
3625         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3626         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3627 }
3628
3629 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3630 {
3631         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3632         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3633 }
3634
3635 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3636 {
3637         struct kvm_segment var;
3638         u32 ar;
3639
3640         vmx_get_segment(vcpu, &var, seg);
3641         var.dpl = 0x3;
3642         if (seg == VCPU_SREG_CS)
3643                 var.type = 0x3;
3644         ar = vmx_segment_access_rights(&var);
3645
3646         if (var.base != (var.selector << 4))
3647                 return false;
3648         if (var.limit != 0xffff)
3649                 return false;
3650         if (ar != 0xf3)
3651                 return false;
3652
3653         return true;
3654 }
3655
3656 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3657 {
3658         struct kvm_segment cs;
3659         unsigned int cs_rpl;
3660
3661         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3662         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3663
3664         if (cs.unusable)
3665                 return false;
3666         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3667                 return false;
3668         if (!cs.s)
3669                 return false;
3670         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3671                 if (cs.dpl > cs_rpl)
3672                         return false;
3673         } else {
3674                 if (cs.dpl != cs_rpl)
3675                         return false;
3676         }
3677         if (!cs.present)
3678                 return false;
3679
3680         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3681         return true;
3682 }
3683
3684 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3685 {
3686         struct kvm_segment ss;
3687         unsigned int ss_rpl;
3688
3689         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3690         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3691
3692         if (ss.unusable)
3693                 return true;
3694         if (ss.type != 3 && ss.type != 7)
3695                 return false;
3696         if (!ss.s)
3697                 return false;
3698         if (ss.dpl != ss_rpl) /* DPL != RPL */
3699                 return false;
3700         if (!ss.present)
3701                 return false;
3702
3703         return true;
3704 }
3705
3706 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3707 {
3708         struct kvm_segment var;
3709         unsigned int rpl;
3710
3711         vmx_get_segment(vcpu, &var, seg);
3712         rpl = var.selector & SELECTOR_RPL_MASK;
3713
3714         if (var.unusable)
3715                 return true;
3716         if (!var.s)
3717                 return false;
3718         if (!var.present)
3719                 return false;
3720         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3721                 if (var.dpl < rpl) /* DPL < RPL */
3722                         return false;
3723         }
3724
3725         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3726          * rights flags
3727          */
3728         return true;
3729 }
3730
3731 static bool tr_valid(struct kvm_vcpu *vcpu)
3732 {
3733         struct kvm_segment tr;
3734
3735         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3736
3737         if (tr.unusable)
3738                 return false;
3739         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
3740                 return false;
3741         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3742                 return false;
3743         if (!tr.present)
3744                 return false;
3745
3746         return true;
3747 }
3748
3749 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3750 {
3751         struct kvm_segment ldtr;
3752
3753         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3754
3755         if (ldtr.unusable)
3756                 return true;
3757         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
3758                 return false;
3759         if (ldtr.type != 2)
3760                 return false;
3761         if (!ldtr.present)
3762                 return false;
3763
3764         return true;
3765 }
3766
3767 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3768 {
3769         struct kvm_segment cs, ss;
3770
3771         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3772         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3773
3774         return ((cs.selector & SELECTOR_RPL_MASK) ==
3775                  (ss.selector & SELECTOR_RPL_MASK));
3776 }
3777
3778 /*
3779  * Check if guest state is valid. Returns true if valid, false if
3780  * not.
3781  * We assume that registers are always usable
3782  */
3783 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3784 {
3785         if (enable_unrestricted_guest)
3786                 return true;
3787
3788         /* real mode guest state checks */
3789         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3790                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3791                         return false;
3792                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3793                         return false;
3794                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3795                         return false;
3796                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3797                         return false;
3798                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3799                         return false;
3800                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3801                         return false;
3802         } else {
3803         /* protected mode guest state checks */
3804                 if (!cs_ss_rpl_check(vcpu))
3805                         return false;
3806                 if (!code_segment_valid(vcpu))
3807                         return false;
3808                 if (!stack_segment_valid(vcpu))
3809                         return false;
3810                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3811                         return false;
3812                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3813                         return false;
3814                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3815                         return false;
3816                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3817                         return false;
3818                 if (!tr_valid(vcpu))
3819                         return false;
3820                 if (!ldtr_valid(vcpu))
3821                         return false;
3822         }
3823         /* TODO:
3824          * - Add checks on RIP
3825          * - Add checks on RFLAGS
3826          */
3827
3828         return true;
3829 }
3830
3831 static int init_rmode_tss(struct kvm *kvm)
3832 {
3833         gfn_t fn;
3834         u16 data = 0;
3835         int r, idx, ret = 0;
3836
3837         idx = srcu_read_lock(&kvm->srcu);
3838         fn = kvm->arch.tss_addr >> PAGE_SHIFT;
3839         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3840         if (r < 0)
3841                 goto out;
3842         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3843         r = kvm_write_guest_page(kvm, fn++, &data,
3844                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3845         if (r < 0)
3846                 goto out;
3847         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3848         if (r < 0)
3849                 goto out;
3850         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3851         if (r < 0)
3852                 goto out;
3853         data = ~0;
3854         r = kvm_write_guest_page(kvm, fn, &data,
3855                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3856                                  sizeof(u8));
3857         if (r < 0)
3858                 goto out;
3859
3860         ret = 1;
3861 out:
3862         srcu_read_unlock(&kvm->srcu, idx);
3863         return ret;
3864 }
3865
3866 static int init_rmode_identity_map(struct kvm *kvm)
3867 {
3868         int i, idx, r, ret;
3869         pfn_t identity_map_pfn;
3870         u32 tmp;
3871
3872         if (!enable_ept)
3873                 return 1;
3874         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3875                 printk(KERN_ERR "EPT: identity-mapping pagetable "
3876                         "haven't been allocated!\n");
3877                 return 0;
3878         }
3879         if (likely(kvm->arch.ept_identity_pagetable_done))
3880                 return 1;
3881         ret = 0;
3882         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3883         idx = srcu_read_lock(&kvm->srcu);
3884         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3885         if (r < 0)
3886                 goto out;
3887         /* Set up identity-mapping pagetable for EPT in real mode */
3888         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3889                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3890                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3891                 r = kvm_write_guest_page(kvm, identity_map_pfn,
3892                                 &tmp, i * sizeof(tmp), sizeof(tmp));
3893                 if (r < 0)
3894                         goto out;
3895         }
3896         kvm->arch.ept_identity_pagetable_done = true;
3897         ret = 1;
3898 out:
3899         srcu_read_unlock(&kvm->srcu, idx);
3900         return ret;
3901 }
3902
3903 static void seg_setup(int seg)
3904 {
3905         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3906         unsigned int ar;
3907
3908         vmcs_write16(sf->selector, 0);
3909         vmcs_writel(sf->base, 0);
3910         vmcs_write32(sf->limit, 0xffff);
3911         ar = 0x93;
3912         if (seg == VCPU_SREG_CS)
3913                 ar |= 0x08; /* code segment */
3914
3915         vmcs_write32(sf->ar_bytes, ar);
3916 }
3917
3918 static int alloc_apic_access_page(struct kvm *kvm)
3919 {
3920         struct page *page;
3921         struct kvm_userspace_memory_region kvm_userspace_mem;
3922         int r = 0;
3923
3924         mutex_lock(&kvm->slots_lock);
3925         if (kvm->arch.apic_access_page)
3926                 goto out;
3927         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3928         kvm_userspace_mem.flags = 0;
3929         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3930         kvm_userspace_mem.memory_size = PAGE_SIZE;
3931         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
3932         if (r)
3933                 goto out;
3934
3935         page = gfn_to_page(kvm, 0xfee00);
3936         if (is_error_page(page)) {
3937                 r = -EFAULT;
3938                 goto out;
3939         }
3940
3941         kvm->arch.apic_access_page = page;
3942 out:
3943         mutex_unlock(&kvm->slots_lock);
3944         return r;
3945 }
3946
3947 static int alloc_identity_pagetable(struct kvm *kvm)
3948 {
3949         struct page *page;
3950         struct kvm_userspace_memory_region kvm_userspace_mem;
3951         int r = 0;
3952
3953         mutex_lock(&kvm->slots_lock);
3954         if (kvm->arch.ept_identity_pagetable)
3955                 goto out;
3956         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3957         kvm_userspace_mem.flags = 0;
3958         kvm_userspace_mem.guest_phys_addr =
3959                 kvm->arch.ept_identity_map_addr;
3960         kvm_userspace_mem.memory_size = PAGE_SIZE;
3961         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
3962         if (r)
3963                 goto out;
3964
3965         page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3966         if (is_error_page(page)) {
3967                 r = -EFAULT;
3968                 goto out;
3969         }
3970
3971         kvm->arch.ept_identity_pagetable = page;
3972 out:
3973         mutex_unlock(&kvm->slots_lock);
3974         return r;
3975 }
3976
3977 static void allocate_vpid(struct vcpu_vmx *vmx)
3978 {
3979         int vpid;
3980
3981         vmx->vpid = 0;
3982         if (!enable_vpid)
3983                 return;
3984         spin_lock(&vmx_vpid_lock);
3985         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3986         if (vpid < VMX_NR_VPIDS) {
3987                 vmx->vpid = vpid;
3988                 __set_bit(vpid, vmx_vpid_bitmap);
3989         }
3990         spin_unlock(&vmx_vpid_lock);
3991 }
3992
3993 static void free_vpid(struct vcpu_vmx *vmx)
3994 {
3995         if (!enable_vpid)
3996                 return;
3997         spin_lock(&vmx_vpid_lock);
3998         if (vmx->vpid != 0)
3999                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
4000         spin_unlock(&vmx_vpid_lock);
4001 }
4002
4003 #define MSR_TYPE_R      1
4004 #define MSR_TYPE_W      2
4005 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4006                                                 u32 msr, int type)
4007 {
4008         int f = sizeof(unsigned long);
4009
4010         if (!cpu_has_vmx_msr_bitmap())
4011                 return;
4012
4013         /*
4014          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4015          * have the write-low and read-high bitmap offsets the wrong way round.
4016          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4017          */
4018         if (msr <= 0x1fff) {
4019                 if (type & MSR_TYPE_R)
4020                         /* read-low */
4021                         __clear_bit(msr, msr_bitmap + 0x000 / f);
4022
4023                 if (type & MSR_TYPE_W)
4024                         /* write-low */
4025                         __clear_bit(msr, msr_bitmap + 0x800 / f);
4026
4027         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4028                 msr &= 0x1fff;
4029                 if (type & MSR_TYPE_R)
4030                         /* read-high */
4031                         __clear_bit(msr, msr_bitmap + 0x400 / f);
4032
4033                 if (type & MSR_TYPE_W)
4034                         /* write-high */
4035                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
4036
4037         }
4038 }
4039
4040 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4041                                                 u32 msr, int type)
4042 {
4043         int f = sizeof(unsigned long);
4044
4045         if (!cpu_has_vmx_msr_bitmap())
4046                 return;
4047
4048         /*
4049          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4050          * have the write-low and read-high bitmap offsets the wrong way round.
4051          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4052          */
4053         if (msr <= 0x1fff) {
4054                 if (type & MSR_TYPE_R)
4055                         /* read-low */
4056                         __set_bit(msr, msr_bitmap + 0x000 / f);
4057
4058                 if (type & MSR_TYPE_W)
4059                         /* write-low */
4060                         __set_bit(msr, msr_bitmap + 0x800 / f);
4061
4062         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4063                 msr &= 0x1fff;
4064                 if (type & MSR_TYPE_R)
4065                         /* read-high */
4066                         __set_bit(msr, msr_bitmap + 0x400 / f);
4067
4068                 if (type & MSR_TYPE_W)
4069                         /* write-high */
4070                         __set_bit(msr, msr_bitmap + 0xc00 / f);
4071
4072         }
4073 }
4074
4075 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4076 {
4077         if (!longmode_only)
4078                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4079                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4080         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4081                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4082 }
4083
4084 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4085 {
4086         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4087                         msr, MSR_TYPE_R);
4088         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4089                         msr, MSR_TYPE_R);
4090 }
4091
4092 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4093 {
4094         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4095                         msr, MSR_TYPE_R);
4096         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4097                         msr, MSR_TYPE_R);
4098 }
4099
4100 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4101 {
4102         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4103                         msr, MSR_TYPE_W);
4104         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4105                         msr, MSR_TYPE_W);
4106 }
4107
4108 static int vmx_vm_has_apicv(struct kvm *kvm)
4109 {
4110         return enable_apicv && irqchip_in_kernel(kvm);
4111 }
4112
4113 /*
4114  * Send interrupt to vcpu via posted interrupt way.
4115  * 1. If target vcpu is running(non-root mode), send posted interrupt
4116  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4117  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4118  * interrupt from PIR in next vmentry.
4119  */
4120 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4121 {
4122         struct vcpu_vmx *vmx = to_vmx(vcpu);
4123         int r;
4124
4125         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4126                 return;
4127
4128         r = pi_test_and_set_on(&vmx->pi_desc);
4129         kvm_make_request(KVM_REQ_EVENT, vcpu);
4130 #ifdef CONFIG_SMP
4131         if (!r && (vcpu->mode == IN_GUEST_MODE))
4132                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4133                                 POSTED_INTR_VECTOR);
4134         else
4135 #endif
4136                 kvm_vcpu_kick(vcpu);
4137 }
4138
4139 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4140 {
4141         struct vcpu_vmx *vmx = to_vmx(vcpu);
4142
4143         if (!pi_test_and_clear_on(&vmx->pi_desc))
4144                 return;
4145
4146         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4147 }
4148
4149 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4150 {
4151         return;
4152 }
4153
4154 /*
4155  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4156  * will not change in the lifetime of the guest.
4157  * Note that host-state that does change is set elsewhere. E.g., host-state
4158  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4159  */
4160 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4161 {
4162         u32 low32, high32;
4163         unsigned long tmpl;
4164         struct desc_ptr dt;
4165
4166         vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
4167         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
4168         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
4169
4170         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4171 #ifdef CONFIG_X86_64
4172         /*
4173          * Load null selectors, so we can avoid reloading them in
4174          * __vmx_load_host_state(), in case userspace uses the null selectors
4175          * too (the expected case).
4176          */
4177         vmcs_write16(HOST_DS_SELECTOR, 0);
4178         vmcs_write16(HOST_ES_SELECTOR, 0);
4179 #else
4180         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4181         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4182 #endif
4183         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4184         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4185
4186         native_store_idt(&dt);
4187         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
4188         vmx->host_idt_base = dt.address;
4189
4190         vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4191
4192         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4193         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4194         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4195         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4196
4197         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4198                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4199                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4200         }
4201 }
4202
4203 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4204 {
4205         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4206         if (enable_ept)
4207                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4208         if (is_guest_mode(&vmx->vcpu))
4209                 vmx->vcpu.arch.cr4_guest_owned_bits &=
4210                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4211         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4212 }
4213
4214 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4215 {
4216         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4217
4218         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4219                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4220         return pin_based_exec_ctrl;
4221 }
4222
4223 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4224 {
4225         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4226         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4227                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4228 #ifdef CONFIG_X86_64
4229                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4230                                 CPU_BASED_CR8_LOAD_EXITING;
4231 #endif
4232         }
4233         if (!enable_ept)
4234                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4235                                 CPU_BASED_CR3_LOAD_EXITING  |
4236                                 CPU_BASED_INVLPG_EXITING;
4237         return exec_control;
4238 }
4239
4240 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4241 {
4242         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4243         if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4244                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4245         if (vmx->vpid == 0)
4246                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4247         if (!enable_ept) {
4248                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4249                 enable_unrestricted_guest = 0;
4250                 /* Enable INVPCID for non-ept guests may cause performance regression. */
4251                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4252         }
4253         if (!enable_unrestricted_guest)
4254                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4255         if (!ple_gap)
4256                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4257         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4258                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4259                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4260         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4261         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4262            (handle_vmptrld).
4263            We can NOT enable shadow_vmcs here because we don't have yet
4264            a current VMCS12
4265         */
4266         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4267         return exec_control;
4268 }
4269
4270 static void ept_set_mmio_spte_mask(void)
4271 {
4272         /*
4273          * EPT Misconfigurations can be generated if the value of bits 2:0
4274          * of an EPT paging-structure entry is 110b (write/execute).
4275          * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4276          * spte.
4277          */
4278         kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4279 }
4280
4281 /*
4282  * Sets up the vmcs for emulated real mode.
4283  */
4284 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4285 {
4286 #ifdef CONFIG_X86_64
4287         unsigned long a;
4288 #endif
4289         int i;
4290
4291         /* I/O */
4292         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4293         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4294
4295         if (enable_shadow_vmcs) {
4296                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4297                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4298         }
4299         if (cpu_has_vmx_msr_bitmap())
4300                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4301
4302         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4303
4304         /* Control */
4305         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4306
4307         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4308
4309         if (cpu_has_secondary_exec_ctrls()) {
4310                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4311                                 vmx_secondary_exec_control(vmx));
4312         }
4313
4314         if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4315                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4316                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4317                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4318                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4319
4320                 vmcs_write16(GUEST_INTR_STATUS, 0);
4321
4322                 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4323                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4324         }
4325
4326         if (ple_gap) {
4327                 vmcs_write32(PLE_GAP, ple_gap);
4328                 vmcs_write32(PLE_WINDOW, ple_window);
4329         }
4330
4331         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4332         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4333         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4334
4335         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4336         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4337         vmx_set_constant_host_state(vmx);
4338 #ifdef CONFIG_X86_64
4339         rdmsrl(MSR_FS_BASE, a);
4340         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4341         rdmsrl(MSR_GS_BASE, a);
4342         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4343 #else
4344         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4345         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4346 #endif
4347
4348         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4349         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4350         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4351         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4352         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4353
4354         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4355                 u32 msr_low, msr_high;
4356                 u64 host_pat;
4357                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4358                 host_pat = msr_low | ((u64) msr_high << 32);
4359                 /* Write the default value follow host pat */
4360                 vmcs_write64(GUEST_IA32_PAT, host_pat);
4361                 /* Keep arch.pat sync with GUEST_IA32_PAT */
4362                 vmx->vcpu.arch.pat = host_pat;
4363         }
4364
4365         for (i = 0; i < NR_VMX_MSR; ++i) {
4366                 u32 index = vmx_msr_index[i];
4367                 u32 data_low, data_high;
4368                 int j = vmx->nmsrs;
4369
4370                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4371                         continue;
4372                 if (wrmsr_safe(index, data_low, data_high) < 0)
4373                         continue;
4374                 vmx->guest_msrs[j].index = i;
4375                 vmx->guest_msrs[j].data = 0;
4376                 vmx->guest_msrs[j].mask = -1ull;
4377                 ++vmx->nmsrs;
4378         }
4379
4380
4381         vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4382
4383         /* 22.2.1, 20.8.1 */
4384         vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4385
4386         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4387         set_cr4_guest_host_mask(vmx);
4388
4389         return 0;
4390 }
4391
4392 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4393 {
4394         struct vcpu_vmx *vmx = to_vmx(vcpu);
4395         struct msr_data apic_base_msr;
4396
4397         vmx->rmode.vm86_active = 0;
4398
4399         vmx->soft_vnmi_blocked = 0;
4400
4401         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4402         kvm_set_cr8(&vmx->vcpu, 0);
4403         apic_base_msr.data = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
4404         if (kvm_vcpu_is_bsp(&vmx->vcpu))
4405                 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4406         apic_base_msr.host_initiated = true;
4407         kvm_set_apic_base(&vmx->vcpu, &apic_base_msr);
4408
4409         vmx_segment_cache_clear(vmx);
4410
4411         seg_setup(VCPU_SREG_CS);
4412         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4413         vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4414
4415         seg_setup(VCPU_SREG_DS);
4416         seg_setup(VCPU_SREG_ES);
4417         seg_setup(VCPU_SREG_FS);
4418         seg_setup(VCPU_SREG_GS);
4419         seg_setup(VCPU_SREG_SS);
4420
4421         vmcs_write16(GUEST_TR_SELECTOR, 0);
4422         vmcs_writel(GUEST_TR_BASE, 0);
4423         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4424         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4425
4426         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4427         vmcs_writel(GUEST_LDTR_BASE, 0);
4428         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4429         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4430
4431         vmcs_write32(GUEST_SYSENTER_CS, 0);
4432         vmcs_writel(GUEST_SYSENTER_ESP, 0);
4433         vmcs_writel(GUEST_SYSENTER_EIP, 0);
4434
4435         vmcs_writel(GUEST_RFLAGS, 0x02);
4436         kvm_rip_write(vcpu, 0xfff0);
4437
4438         vmcs_writel(GUEST_GDTR_BASE, 0);
4439         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4440
4441         vmcs_writel(GUEST_IDTR_BASE, 0);
4442         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4443
4444         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4445         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4446         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4447
4448         /* Special registers */
4449         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4450
4451         setup_msrs(vmx);
4452
4453         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4454
4455         if (cpu_has_vmx_tpr_shadow()) {
4456                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4457                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4458                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4459                                      __pa(vmx->vcpu.arch.apic->regs));
4460                 vmcs_write32(TPR_THRESHOLD, 0);
4461         }
4462
4463         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4464                 vmcs_write64(APIC_ACCESS_ADDR,
4465                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
4466
4467         if (vmx_vm_has_apicv(vcpu->kvm))
4468                 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4469
4470         if (vmx->vpid != 0)
4471                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4472
4473         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4474         vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4475         vmx_set_cr4(&vmx->vcpu, 0);
4476         vmx_set_efer(&vmx->vcpu, 0);
4477         vmx_fpu_activate(&vmx->vcpu);
4478         update_exception_bitmap(&vmx->vcpu);
4479
4480         vpid_sync_context(vmx);
4481 }
4482
4483 /*
4484  * In nested virtualization, check if L1 asked to exit on external interrupts.
4485  * For most existing hypervisors, this will always return true.
4486  */
4487 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4488 {
4489         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4490                 PIN_BASED_EXT_INTR_MASK;
4491 }
4492
4493 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4494 {
4495         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4496                 PIN_BASED_NMI_EXITING;
4497 }
4498
4499 static int enable_irq_window(struct kvm_vcpu *vcpu)
4500 {
4501         u32 cpu_based_vm_exec_control;
4502
4503         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4504                 /*
4505                  * We get here if vmx_interrupt_allowed() said we can't
4506                  * inject to L1 now because L2 must run. The caller will have
4507                  * to make L2 exit right after entry, so we can inject to L1
4508                  * more promptly.
4509                  */
4510                 return -EBUSY;
4511
4512         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4513         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4514         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4515         return 0;
4516 }
4517
4518 static int enable_nmi_window(struct kvm_vcpu *vcpu)
4519 {
4520         u32 cpu_based_vm_exec_control;
4521
4522         if (!cpu_has_virtual_nmis())
4523                 return enable_irq_window(vcpu);
4524
4525         if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI)
4526                 return enable_irq_window(vcpu);
4527
4528         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4529         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4530         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4531         return 0;
4532 }
4533
4534 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4535 {
4536         struct vcpu_vmx *vmx = to_vmx(vcpu);
4537         uint32_t intr;
4538         int irq = vcpu->arch.interrupt.nr;
4539
4540         trace_kvm_inj_virq(irq);
4541
4542         ++vcpu->stat.irq_injections;
4543         if (vmx->rmode.vm86_active) {
4544                 int inc_eip = 0;
4545                 if (vcpu->arch.interrupt.soft)
4546                         inc_eip = vcpu->arch.event_exit_inst_len;
4547                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4548                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4549                 return;
4550         }
4551         intr = irq | INTR_INFO_VALID_MASK;
4552         if (vcpu->arch.interrupt.soft) {
4553                 intr |= INTR_TYPE_SOFT_INTR;
4554                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4555                              vmx->vcpu.arch.event_exit_inst_len);
4556         } else
4557                 intr |= INTR_TYPE_EXT_INTR;
4558         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4559 }
4560
4561 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4562 {
4563         struct vcpu_vmx *vmx = to_vmx(vcpu);
4564
4565         if (is_guest_mode(vcpu))
4566                 return;
4567
4568         if (!cpu_has_virtual_nmis()) {
4569                 /*
4570                  * Tracking the NMI-blocked state in software is built upon
4571                  * finding the next open IRQ window. This, in turn, depends on
4572                  * well-behaving guests: They have to keep IRQs disabled at
4573                  * least as long as the NMI handler runs. Otherwise we may
4574                  * cause NMI nesting, maybe breaking the guest. But as this is
4575                  * highly unlikely, we can live with the residual risk.
4576                  */
4577                 vmx->soft_vnmi_blocked = 1;
4578                 vmx->vnmi_blocked_time = 0;
4579         }
4580
4581         ++vcpu->stat.nmi_injections;
4582         vmx->nmi_known_unmasked = false;
4583         if (vmx->rmode.vm86_active) {
4584                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4585                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4586                 return;
4587         }
4588         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4589                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4590 }
4591
4592 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4593 {
4594         if (!cpu_has_virtual_nmis())
4595                 return to_vmx(vcpu)->soft_vnmi_blocked;
4596         if (to_vmx(vcpu)->nmi_known_unmasked)
4597                 return false;
4598         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4599 }
4600
4601 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4602 {
4603         struct vcpu_vmx *vmx = to_vmx(vcpu);
4604
4605         if (!cpu_has_virtual_nmis()) {
4606                 if (vmx->soft_vnmi_blocked != masked) {
4607                         vmx->soft_vnmi_blocked = masked;
4608                         vmx->vnmi_blocked_time = 0;
4609                 }
4610         } else {
4611                 vmx->nmi_known_unmasked = !masked;
4612                 if (masked)
4613                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4614                                       GUEST_INTR_STATE_NMI);
4615                 else
4616                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4617                                         GUEST_INTR_STATE_NMI);
4618         }
4619 }
4620
4621 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4622 {
4623         if (is_guest_mode(vcpu)) {
4624                 if (to_vmx(vcpu)->nested.nested_run_pending)
4625                         return 0;
4626                 if (nested_exit_on_nmi(vcpu)) {
4627                         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
4628                                           NMI_VECTOR | INTR_TYPE_NMI_INTR |
4629                                           INTR_INFO_VALID_MASK, 0);
4630                         /*
4631                          * The NMI-triggered VM exit counts as injection:
4632                          * clear this one and block further NMIs.
4633                          */
4634                         vcpu->arch.nmi_pending = 0;
4635                         vmx_set_nmi_mask(vcpu, true);
4636                         return 0;
4637                 }
4638         }
4639
4640         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4641                 return 0;
4642
4643         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4644                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4645                    | GUEST_INTR_STATE_NMI));
4646 }
4647
4648 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4649 {
4650         if (is_guest_mode(vcpu)) {
4651                 if (to_vmx(vcpu)->nested.nested_run_pending)
4652                         return 0;
4653                 if (nested_exit_on_intr(vcpu)) {
4654                         nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT,
4655                                           0, 0);
4656                         /*
4657                          * fall through to normal code, but now in L1, not L2
4658                          */
4659                 }
4660         }
4661
4662         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4663                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4664                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4665 }
4666
4667 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4668 {
4669         int ret;
4670         struct kvm_userspace_memory_region tss_mem = {
4671                 .slot = TSS_PRIVATE_MEMSLOT,
4672                 .guest_phys_addr = addr,
4673                 .memory_size = PAGE_SIZE * 3,
4674                 .flags = 0,
4675         };
4676
4677         ret = kvm_set_memory_region(kvm, &tss_mem);
4678         if (ret)
4679                 return ret;
4680         kvm->arch.tss_addr = addr;
4681         if (!init_rmode_tss(kvm))
4682                 return  -ENOMEM;
4683
4684         return 0;
4685 }
4686
4687 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4688 {
4689         switch (vec) {
4690         case BP_VECTOR:
4691                 /*
4692                  * Update instruction length as we may reinject the exception
4693                  * from user space while in guest debugging mode.
4694                  */
4695                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4696                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4697                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4698                         return false;
4699                 /* fall through */
4700         case DB_VECTOR:
4701                 if (vcpu->guest_debug &
4702                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4703                         return false;
4704                 /* fall through */
4705         case DE_VECTOR:
4706         case OF_VECTOR:
4707         case BR_VECTOR:
4708         case UD_VECTOR:
4709         case DF_VECTOR:
4710         case SS_VECTOR:
4711         case GP_VECTOR:
4712         case MF_VECTOR:
4713                 return true;
4714         break;
4715         }
4716         return false;
4717 }
4718
4719 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4720                                   int vec, u32 err_code)
4721 {
4722         /*
4723          * Instruction with address size override prefix opcode 0x67
4724          * Cause the #SS fault with 0 error code in VM86 mode.
4725          */
4726         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4727                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4728                         if (vcpu->arch.halt_request) {
4729                                 vcpu->arch.halt_request = 0;
4730                                 return kvm_emulate_halt(vcpu);
4731                         }
4732                         return 1;
4733                 }
4734                 return 0;
4735         }
4736
4737         /*
4738          * Forward all other exceptions that are valid in real mode.
4739          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4740          *        the required debugging infrastructure rework.
4741          */
4742         kvm_queue_exception(vcpu, vec);
4743         return 1;
4744 }
4745
4746 /*
4747  * Trigger machine check on the host. We assume all the MSRs are already set up
4748  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4749  * We pass a fake environment to the machine check handler because we want
4750  * the guest to be always treated like user space, no matter what context
4751  * it used internally.
4752  */
4753 static void kvm_machine_check(void)
4754 {
4755 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4756         struct pt_regs regs = {
4757                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4758                 .flags = X86_EFLAGS_IF,
4759         };
4760
4761         do_machine_check(&regs, 0);
4762 #endif
4763 }
4764
4765 static int handle_machine_check(struct kvm_vcpu *vcpu)
4766 {
4767         /* already handled by vcpu_run */
4768         return 1;
4769 }
4770
4771 static int handle_exception(struct kvm_vcpu *vcpu)
4772 {
4773         struct vcpu_vmx *vmx = to_vmx(vcpu);
4774         struct kvm_run *kvm_run = vcpu->run;
4775         u32 intr_info, ex_no, error_code;
4776         unsigned long cr2, rip, dr6;
4777         u32 vect_info;
4778         enum emulation_result er;
4779
4780         vect_info = vmx->idt_vectoring_info;
4781         intr_info = vmx->exit_intr_info;
4782
4783         if (is_machine_check(intr_info))
4784                 return handle_machine_check(vcpu);
4785
4786         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4787                 return 1;  /* already handled by vmx_vcpu_run() */
4788
4789         if (is_no_device(intr_info)) {
4790                 vmx_fpu_activate(vcpu);
4791                 return 1;
4792         }
4793
4794         if (is_invalid_opcode(intr_info)) {
4795                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4796                 if (er != EMULATE_DONE)
4797                         kvm_queue_exception(vcpu, UD_VECTOR);
4798                 return 1;
4799         }
4800
4801         error_code = 0;
4802         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4803                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4804
4805         /*
4806          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4807          * MMIO, it is better to report an internal error.
4808          * See the comments in vmx_handle_exit.
4809          */
4810         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4811             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4812                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4813                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4814                 vcpu->run->internal.ndata = 2;
4815                 vcpu->run->internal.data[0] = vect_info;
4816                 vcpu->run->internal.data[1] = intr_info;
4817                 return 0;
4818         }
4819
4820         if (is_page_fault(intr_info)) {
4821                 /* EPT won't cause page fault directly */
4822                 BUG_ON(enable_ept);
4823                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4824                 trace_kvm_page_fault(cr2, error_code);
4825
4826                 if (kvm_event_needs_reinjection(vcpu))
4827                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
4828                 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4829         }
4830
4831         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4832
4833         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4834                 return handle_rmode_exception(vcpu, ex_no, error_code);
4835
4836         switch (ex_no) {
4837         case DB_VECTOR:
4838                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4839                 if (!(vcpu->guest_debug &
4840                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4841                         vcpu->arch.dr6 &= ~15;
4842                         vcpu->arch.dr6 |= dr6;
4843                         kvm_queue_exception(vcpu, DB_VECTOR);
4844                         return 1;
4845                 }
4846                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4847                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4848                 /* fall through */
4849         case BP_VECTOR:
4850                 /*
4851                  * Update instruction length as we may reinject #BP from
4852                  * user space while in guest debugging mode. Reading it for
4853                  * #DB as well causes no harm, it is not used in that case.
4854                  */
4855                 vmx->vcpu.arch.event_exit_inst_len =
4856                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4857                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4858                 rip = kvm_rip_read(vcpu);
4859                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4860                 kvm_run->debug.arch.exception = ex_no;
4861                 break;
4862         default:
4863                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4864                 kvm_run->ex.exception = ex_no;
4865                 kvm_run->ex.error_code = error_code;
4866                 break;
4867         }
4868         return 0;
4869 }
4870
4871 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4872 {
4873         ++vcpu->stat.irq_exits;
4874         return 1;
4875 }
4876
4877 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4878 {
4879         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4880         return 0;
4881 }
4882
4883 static int handle_io(struct kvm_vcpu *vcpu)
4884 {
4885         unsigned long exit_qualification;
4886         int size, in, string;
4887         unsigned port;
4888
4889         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4890         string = (exit_qualification & 16) != 0;
4891         in = (exit_qualification & 8) != 0;
4892
4893         ++vcpu->stat.io_exits;
4894
4895         if (string || in)
4896                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4897
4898         port = exit_qualification >> 16;
4899         size = (exit_qualification & 7) + 1;
4900         skip_emulated_instruction(vcpu);
4901
4902         return kvm_fast_pio_out(vcpu, size, port);
4903 }
4904
4905 static void
4906 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4907 {
4908         /*
4909          * Patch in the VMCALL instruction:
4910          */
4911         hypercall[0] = 0x0f;
4912         hypercall[1] = 0x01;
4913         hypercall[2] = 0xc1;
4914 }
4915
4916 static bool nested_cr0_valid(struct vmcs12 *vmcs12, unsigned long val)
4917 {
4918         unsigned long always_on = VMXON_CR0_ALWAYSON;
4919
4920         if (nested_vmx_secondary_ctls_high &
4921                 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4922             nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4923                 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
4924         return (val & always_on) == always_on;
4925 }
4926
4927 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4928 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4929 {
4930         if (is_guest_mode(vcpu)) {
4931                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4932                 unsigned long orig_val = val;
4933
4934                 /*
4935                  * We get here when L2 changed cr0 in a way that did not change
4936                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4937                  * but did change L0 shadowed bits. So we first calculate the
4938                  * effective cr0 value that L1 would like to write into the
4939                  * hardware. It consists of the L2-owned bits from the new
4940                  * value combined with the L1-owned bits from L1's guest_cr0.
4941                  */
4942                 val = (val & ~vmcs12->cr0_guest_host_mask) |
4943                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4944
4945                 if (!nested_cr0_valid(vmcs12, val))
4946                         return 1;
4947
4948                 if (kvm_set_cr0(vcpu, val))
4949                         return 1;
4950                 vmcs_writel(CR0_READ_SHADOW, orig_val);
4951                 return 0;
4952         } else {
4953                 if (to_vmx(vcpu)->nested.vmxon &&
4954                     ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4955                         return 1;
4956                 return kvm_set_cr0(vcpu, val);
4957         }
4958 }
4959
4960 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4961 {
4962         if (is_guest_mode(vcpu)) {
4963                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4964                 unsigned long orig_val = val;
4965
4966                 /* analogously to handle_set_cr0 */
4967                 val = (val & ~vmcs12->cr4_guest_host_mask) |
4968                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4969                 if (kvm_set_cr4(vcpu, val))
4970                         return 1;
4971                 vmcs_writel(CR4_READ_SHADOW, orig_val);
4972                 return 0;
4973         } else
4974                 return kvm_set_cr4(vcpu, val);
4975 }
4976
4977 /* called to set cr0 as approriate for clts instruction exit. */
4978 static void handle_clts(struct kvm_vcpu *vcpu)
4979 {
4980         if (is_guest_mode(vcpu)) {
4981                 /*
4982                  * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4983                  * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4984                  * just pretend it's off (also in arch.cr0 for fpu_activate).
4985                  */
4986                 vmcs_writel(CR0_READ_SHADOW,
4987                         vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4988                 vcpu->arch.cr0 &= ~X86_CR0_TS;
4989         } else
4990                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4991 }
4992
4993 static int handle_cr(struct kvm_vcpu *vcpu)
4994 {
4995         unsigned long exit_qualification, val;
4996         int cr;
4997         int reg;
4998         int err;
4999
5000         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5001         cr = exit_qualification & 15;
5002         reg = (exit_qualification >> 8) & 15;
5003         switch ((exit_qualification >> 4) & 3) {
5004         case 0: /* mov to cr */
5005                 val = kvm_register_read(vcpu, reg);
5006                 trace_kvm_cr_write(cr, val);
5007                 switch (cr) {
5008                 case 0:
5009                         err = handle_set_cr0(vcpu, val);
5010                         kvm_complete_insn_gp(vcpu, err);
5011                         return 1;
5012                 case 3:
5013                         err = kvm_set_cr3(vcpu, val);
5014                         kvm_complete_insn_gp(vcpu, err);
5015                         return 1;
5016                 case 4:
5017                         err = handle_set_cr4(vcpu, val);
5018                         kvm_complete_insn_gp(vcpu, err);
5019                         return 1;
5020                 case 8: {
5021                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5022                                 u8 cr8 = kvm_register_read(vcpu, reg);
5023                                 err = kvm_set_cr8(vcpu, cr8);
5024                                 kvm_complete_insn_gp(vcpu, err);
5025                                 if (irqchip_in_kernel(vcpu->kvm))
5026                                         return 1;
5027                                 if (cr8_prev <= cr8)
5028                                         return 1;
5029                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5030                                 return 0;
5031                         }
5032                 }
5033                 break;
5034         case 2: /* clts */
5035                 handle_clts(vcpu);
5036                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5037                 skip_emulated_instruction(vcpu);
5038                 vmx_fpu_activate(vcpu);
5039                 return 1;
5040         case 1: /*mov from cr*/
5041                 switch (cr) {
5042                 case 3:
5043                         val = kvm_read_cr3(vcpu);
5044                         kvm_register_write(vcpu, reg, val);
5045                         trace_kvm_cr_read(cr, val);
5046                         skip_emulated_instruction(vcpu);
5047                         return 1;
5048                 case 8:
5049                         val = kvm_get_cr8(vcpu);
5050                         kvm_register_write(vcpu, reg, val);
5051                         trace_kvm_cr_read(cr, val);
5052                         skip_emulated_instruction(vcpu);
5053                         return 1;
5054                 }
5055                 break;
5056         case 3: /* lmsw */
5057                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5058                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5059                 kvm_lmsw(vcpu, val);
5060
5061                 skip_emulated_instruction(vcpu);
5062                 return 1;
5063         default:
5064                 break;
5065         }
5066         vcpu->run->exit_reason = 0;
5067         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5068                (int)(exit_qualification >> 4) & 3, cr);
5069         return 0;
5070 }
5071
5072 static int handle_dr(struct kvm_vcpu *vcpu)
5073 {
5074         unsigned long exit_qualification;
5075         int dr, reg;
5076
5077         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5078         if (!kvm_require_cpl(vcpu, 0))
5079                 return 1;
5080         dr = vmcs_readl(GUEST_DR7);
5081         if (dr & DR7_GD) {
5082                 /*
5083                  * As the vm-exit takes precedence over the debug trap, we
5084                  * need to emulate the latter, either for the host or the
5085                  * guest debugging itself.
5086                  */
5087                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5088                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5089                         vcpu->run->debug.arch.dr7 = dr;
5090                         vcpu->run->debug.arch.pc =
5091                                 vmcs_readl(GUEST_CS_BASE) +
5092                                 vmcs_readl(GUEST_RIP);
5093                         vcpu->run->debug.arch.exception = DB_VECTOR;
5094                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5095                         return 0;
5096                 } else {
5097                         vcpu->arch.dr7 &= ~DR7_GD;
5098                         vcpu->arch.dr6 |= DR6_BD;
5099                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
5100                         kvm_queue_exception(vcpu, DB_VECTOR);
5101                         return 1;
5102                 }
5103         }
5104
5105         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5106         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5107         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5108         if (exit_qualification & TYPE_MOV_FROM_DR) {
5109                 unsigned long val;
5110
5111                 if (kvm_get_dr(vcpu, dr, &val))
5112                         return 1;
5113                 kvm_register_write(vcpu, reg, val);
5114         } else
5115                 if (kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]))
5116                         return 1;
5117
5118         skip_emulated_instruction(vcpu);
5119         return 1;
5120 }
5121
5122 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5123 {
5124         return vcpu->arch.dr6;
5125 }
5126
5127 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5128 {
5129 }
5130
5131 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5132 {
5133         vmcs_writel(GUEST_DR7, val);
5134 }
5135
5136 static int handle_cpuid(struct kvm_vcpu *vcpu)
5137 {
5138         kvm_emulate_cpuid(vcpu);
5139         return 1;
5140 }
5141
5142 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5143 {
5144         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5145         u64 data;
5146
5147         if (vmx_get_msr(vcpu, ecx, &data)) {
5148                 trace_kvm_msr_read_ex(ecx);
5149                 kvm_inject_gp(vcpu, 0);
5150                 return 1;
5151         }
5152
5153         trace_kvm_msr_read(ecx, data);
5154
5155         /* FIXME: handling of bits 32:63 of rax, rdx */
5156         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5157         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
5158         skip_emulated_instruction(vcpu);
5159         return 1;
5160 }
5161
5162 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5163 {
5164         struct msr_data msr;
5165         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5166         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5167                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5168
5169         msr.data = data;
5170         msr.index = ecx;
5171         msr.host_initiated = false;
5172         if (vmx_set_msr(vcpu, &msr) != 0) {
5173                 trace_kvm_msr_write_ex(ecx, data);
5174                 kvm_inject_gp(vcpu, 0);
5175                 return 1;
5176         }
5177
5178         trace_kvm_msr_write(ecx, data);
5179         skip_emulated_instruction(vcpu);
5180         return 1;
5181 }
5182
5183 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5184 {
5185         kvm_make_request(KVM_REQ_EVENT, vcpu);
5186         return 1;
5187 }
5188
5189 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5190 {
5191         u32 cpu_based_vm_exec_control;
5192
5193         /* clear pending irq */
5194         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5195         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5196         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5197
5198         kvm_make_request(KVM_REQ_EVENT, vcpu);
5199
5200         ++vcpu->stat.irq_window_exits;
5201
5202         /*
5203          * If the user space waits to inject interrupts, exit as soon as
5204          * possible
5205          */
5206         if (!irqchip_in_kernel(vcpu->kvm) &&
5207             vcpu->run->request_interrupt_window &&
5208             !kvm_cpu_has_interrupt(vcpu)) {
5209                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5210                 return 0;
5211         }
5212         return 1;
5213 }
5214
5215 static int handle_halt(struct kvm_vcpu *vcpu)
5216 {
5217         skip_emulated_instruction(vcpu);
5218         return kvm_emulate_halt(vcpu);
5219 }
5220
5221 static int handle_vmcall(struct kvm_vcpu *vcpu)
5222 {
5223         skip_emulated_instruction(vcpu);
5224         kvm_emulate_hypercall(vcpu);
5225         return 1;
5226 }
5227
5228 static int handle_invd(struct kvm_vcpu *vcpu)
5229 {
5230         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5231 }
5232
5233 static int handle_invlpg(struct kvm_vcpu *vcpu)
5234 {
5235         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5236
5237         kvm_mmu_invlpg(vcpu, exit_qualification);
5238         skip_emulated_instruction(vcpu);
5239         return 1;
5240 }
5241
5242 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5243 {
5244         int err;
5245
5246         err = kvm_rdpmc(vcpu);
5247         kvm_complete_insn_gp(vcpu, err);
5248
5249         return 1;
5250 }
5251
5252 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5253 {
5254         skip_emulated_instruction(vcpu);
5255         kvm_emulate_wbinvd(vcpu);
5256         return 1;
5257 }
5258
5259 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5260 {
5261         u64 new_bv = kvm_read_edx_eax(vcpu);
5262         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5263
5264         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5265                 skip_emulated_instruction(vcpu);
5266         return 1;
5267 }
5268
5269 static int handle_apic_access(struct kvm_vcpu *vcpu)
5270 {
5271         if (likely(fasteoi)) {
5272                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5273                 int access_type, offset;
5274
5275                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5276                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5277                 /*
5278                  * Sane guest uses MOV to write EOI, with written value
5279                  * not cared. So make a short-circuit here by avoiding
5280                  * heavy instruction emulation.
5281                  */
5282                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5283                     (offset == APIC_EOI)) {
5284                         kvm_lapic_set_eoi(vcpu);
5285                         skip_emulated_instruction(vcpu);
5286                         return 1;
5287                 }
5288         }
5289         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5290 }
5291
5292 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5293 {
5294         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5295         int vector = exit_qualification & 0xff;
5296
5297         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5298         kvm_apic_set_eoi_accelerated(vcpu, vector);
5299         return 1;
5300 }
5301
5302 static int handle_apic_write(struct kvm_vcpu *vcpu)
5303 {
5304         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5305         u32 offset = exit_qualification & 0xfff;
5306
5307         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5308         kvm_apic_write_nodecode(vcpu, offset);
5309         return 1;
5310 }
5311
5312 static int handle_task_switch(struct kvm_vcpu *vcpu)
5313 {
5314         struct vcpu_vmx *vmx = to_vmx(vcpu);
5315         unsigned long exit_qualification;
5316         bool has_error_code = false;
5317         u32 error_code = 0;
5318         u16 tss_selector;
5319         int reason, type, idt_v, idt_index;
5320
5321         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5322         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5323         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5324
5325         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5326
5327         reason = (u32)exit_qualification >> 30;
5328         if (reason == TASK_SWITCH_GATE && idt_v) {
5329                 switch (type) {
5330                 case INTR_TYPE_NMI_INTR:
5331                         vcpu->arch.nmi_injected = false;
5332                         vmx_set_nmi_mask(vcpu, true);
5333                         break;
5334                 case INTR_TYPE_EXT_INTR:
5335                 case INTR_TYPE_SOFT_INTR:
5336                         kvm_clear_interrupt_queue(vcpu);
5337                         break;
5338                 case INTR_TYPE_HARD_EXCEPTION:
5339                         if (vmx->idt_vectoring_info &
5340                             VECTORING_INFO_DELIVER_CODE_MASK) {
5341                                 has_error_code = true;
5342                                 error_code =
5343                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5344                         }
5345                         /* fall through */
5346                 case INTR_TYPE_SOFT_EXCEPTION:
5347                         kvm_clear_exception_queue(vcpu);
5348                         break;
5349                 default:
5350                         break;
5351                 }
5352         }
5353         tss_selector = exit_qualification;
5354
5355         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5356                        type != INTR_TYPE_EXT_INTR &&
5357                        type != INTR_TYPE_NMI_INTR))
5358                 skip_emulated_instruction(vcpu);
5359
5360         if (kvm_task_switch(vcpu, tss_selector,
5361                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5362                             has_error_code, error_code) == EMULATE_FAIL) {
5363                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5364                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5365                 vcpu->run->internal.ndata = 0;
5366                 return 0;
5367         }
5368
5369         /* clear all local breakpoint enable flags */
5370         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
5371
5372         /*
5373          * TODO: What about debug traps on tss switch?
5374          *       Are we supposed to inject them and update dr6?
5375          */
5376
5377         return 1;
5378 }
5379
5380 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5381 {
5382         unsigned long exit_qualification;
5383         gpa_t gpa;
5384         u32 error_code;
5385         int gla_validity;
5386
5387         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5388
5389         gla_validity = (exit_qualification >> 7) & 0x3;
5390         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5391                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5392                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5393                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5394                         vmcs_readl(GUEST_LINEAR_ADDRESS));
5395                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5396                         (long unsigned int)exit_qualification);
5397                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5398                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5399                 return 0;
5400         }
5401
5402         /*
5403          * EPT violation happened while executing iret from NMI,
5404          * "blocked by NMI" bit has to be set before next VM entry.
5405          * There are errata that may cause this bit to not be set:
5406          * AAK134, BY25.
5407          */
5408         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5409                         cpu_has_virtual_nmis() &&
5410                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5411                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5412
5413         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5414         trace_kvm_page_fault(gpa, exit_qualification);
5415
5416         /* It is a write fault? */
5417         error_code = exit_qualification & (1U << 1);
5418         /* It is a fetch fault? */
5419         error_code |= (exit_qualification & (1U << 2)) << 2;
5420         /* ept page table is present? */
5421         error_code |= (exit_qualification >> 3) & 0x1;
5422
5423         vcpu->arch.exit_qualification = exit_qualification;
5424
5425         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5426 }
5427
5428 static u64 ept_rsvd_mask(u64 spte, int level)
5429 {
5430         int i;
5431         u64 mask = 0;
5432
5433         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5434                 mask |= (1ULL << i);
5435
5436         if (level > 2)
5437                 /* bits 7:3 reserved */
5438                 mask |= 0xf8;
5439         else if (level == 2) {
5440                 if (spte & (1ULL << 7))
5441                         /* 2MB ref, bits 20:12 reserved */
5442                         mask |= 0x1ff000;
5443                 else
5444                         /* bits 6:3 reserved */
5445                         mask |= 0x78;
5446         }
5447
5448         return mask;
5449 }
5450
5451 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5452                                        int level)
5453 {
5454         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5455
5456         /* 010b (write-only) */
5457         WARN_ON((spte & 0x7) == 0x2);
5458
5459         /* 110b (write/execute) */
5460         WARN_ON((spte & 0x7) == 0x6);
5461
5462         /* 100b (execute-only) and value not supported by logical processor */
5463         if (!cpu_has_vmx_ept_execute_only())
5464                 WARN_ON((spte & 0x7) == 0x4);
5465
5466         /* not 000b */
5467         if ((spte & 0x7)) {
5468                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5469
5470                 if (rsvd_bits != 0) {
5471                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5472                                          __func__, rsvd_bits);
5473                         WARN_ON(1);
5474                 }
5475
5476                 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
5477                         u64 ept_mem_type = (spte & 0x38) >> 3;
5478
5479                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
5480                             ept_mem_type == 7) {
5481                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5482                                                 __func__, ept_mem_type);
5483                                 WARN_ON(1);
5484                         }
5485                 }
5486         }
5487 }
5488
5489 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5490 {
5491         u64 sptes[4];
5492         int nr_sptes, i, ret;
5493         gpa_t gpa;
5494
5495         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5496
5497         ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5498         if (likely(ret == RET_MMIO_PF_EMULATE))
5499                 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5500                                               EMULATE_DONE;
5501
5502         if (unlikely(ret == RET_MMIO_PF_INVALID))
5503                 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5504
5505         if (unlikely(ret == RET_MMIO_PF_RETRY))
5506                 return 1;
5507
5508         /* It is the real ept misconfig */
5509         printk(KERN_ERR "EPT: Misconfiguration.\n");
5510         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5511
5512         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5513
5514         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5515                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5516
5517         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5518         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5519
5520         return 0;
5521 }
5522
5523 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5524 {
5525         u32 cpu_based_vm_exec_control;
5526
5527         /* clear pending NMI */
5528         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5529         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5530         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5531         ++vcpu->stat.nmi_window_exits;
5532         kvm_make_request(KVM_REQ_EVENT, vcpu);
5533
5534         return 1;
5535 }
5536
5537 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5538 {
5539         struct vcpu_vmx *vmx = to_vmx(vcpu);
5540         enum emulation_result err = EMULATE_DONE;
5541         int ret = 1;
5542         u32 cpu_exec_ctrl;
5543         bool intr_window_requested;
5544         unsigned count = 130;
5545
5546         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5547         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5548
5549         while (!guest_state_valid(vcpu) && count-- != 0) {
5550                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5551                         return handle_interrupt_window(&vmx->vcpu);
5552
5553                 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5554                         return 1;
5555
5556                 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5557
5558                 if (err == EMULATE_USER_EXIT) {
5559                         ++vcpu->stat.mmio_exits;
5560                         ret = 0;
5561                         goto out;
5562                 }
5563
5564                 if (err != EMULATE_DONE) {
5565                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5566                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5567                         vcpu->run->internal.ndata = 0;
5568                         return 0;
5569                 }
5570
5571                 if (vcpu->arch.halt_request) {
5572                         vcpu->arch.halt_request = 0;
5573                         ret = kvm_emulate_halt(vcpu);
5574                         goto out;
5575                 }
5576
5577                 if (signal_pending(current))
5578                         goto out;
5579                 if (need_resched())
5580                         schedule();
5581         }
5582
5583         vmx->emulation_required = emulation_required(vcpu);
5584 out:
5585         return ret;
5586 }
5587
5588 /*
5589  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5590  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5591  */
5592 static int handle_pause(struct kvm_vcpu *vcpu)
5593 {
5594         skip_emulated_instruction(vcpu);
5595         kvm_vcpu_on_spin(vcpu);
5596
5597         return 1;
5598 }
5599
5600 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5601 {
5602         kvm_queue_exception(vcpu, UD_VECTOR);
5603         return 1;
5604 }
5605
5606 /*
5607  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5608  * We could reuse a single VMCS for all the L2 guests, but we also want the
5609  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5610  * allows keeping them loaded on the processor, and in the future will allow
5611  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5612  * every entry if they never change.
5613  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5614  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5615  *
5616  * The following functions allocate and free a vmcs02 in this pool.
5617  */
5618
5619 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5620 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5621 {
5622         struct vmcs02_list *item;
5623         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5624                 if (item->vmptr == vmx->nested.current_vmptr) {
5625                         list_move(&item->list, &vmx->nested.vmcs02_pool);
5626                         return &item->vmcs02;
5627                 }
5628
5629         if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5630                 /* Recycle the least recently used VMCS. */
5631                 item = list_entry(vmx->nested.vmcs02_pool.prev,
5632                         struct vmcs02_list, list);
5633                 item->vmptr = vmx->nested.current_vmptr;
5634                 list_move(&item->list, &vmx->nested.vmcs02_pool);
5635                 return &item->vmcs02;
5636         }
5637
5638         /* Create a new VMCS */
5639         item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5640         if (!item)
5641                 return NULL;
5642         item->vmcs02.vmcs = alloc_vmcs();
5643         if (!item->vmcs02.vmcs) {
5644                 kfree(item);
5645                 return NULL;
5646         }
5647         loaded_vmcs_init(&item->vmcs02);
5648         item->vmptr = vmx->nested.current_vmptr;
5649         list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5650         vmx->nested.vmcs02_num++;
5651         return &item->vmcs02;
5652 }
5653
5654 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5655 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5656 {
5657         struct vmcs02_list *item;
5658         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5659                 if (item->vmptr == vmptr) {
5660                         free_loaded_vmcs(&item->vmcs02);
5661                         list_del(&item->list);
5662                         kfree(item);
5663                         vmx->nested.vmcs02_num--;
5664                         return;
5665                 }
5666 }
5667
5668 /*
5669  * Free all VMCSs saved for this vcpu, except the one pointed by
5670  * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
5671  * currently used, if running L2), and vmcs01 when running L2.
5672  */
5673 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5674 {
5675         struct vmcs02_list *item, *n;
5676         list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5677                 if (vmx->loaded_vmcs != &item->vmcs02)
5678                         free_loaded_vmcs(&item->vmcs02);
5679                 list_del(&item->list);
5680                 kfree(item);
5681         }
5682         vmx->nested.vmcs02_num = 0;
5683
5684         if (vmx->loaded_vmcs != &vmx->vmcs01)
5685                 free_loaded_vmcs(&vmx->vmcs01);
5686 }
5687
5688 /*
5689  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5690  * set the success or error code of an emulated VMX instruction, as specified
5691  * by Vol 2B, VMX Instruction Reference, "Conventions".
5692  */
5693 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5694 {
5695         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5696                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5697                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5698 }
5699
5700 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5701 {
5702         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5703                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5704                             X86_EFLAGS_SF | X86_EFLAGS_OF))
5705                         | X86_EFLAGS_CF);
5706 }
5707
5708 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5709                                         u32 vm_instruction_error)
5710 {
5711         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5712                 /*
5713                  * failValid writes the error number to the current VMCS, which
5714                  * can't be done there isn't a current VMCS.
5715                  */
5716                 nested_vmx_failInvalid(vcpu);
5717                 return;
5718         }
5719         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5720                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5721                             X86_EFLAGS_SF | X86_EFLAGS_OF))
5722                         | X86_EFLAGS_ZF);
5723         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5724         /*
5725          * We don't need to force a shadow sync because
5726          * VM_INSTRUCTION_ERROR is not shadowed
5727          */
5728 }
5729
5730 /*
5731  * Emulate the VMXON instruction.
5732  * Currently, we just remember that VMX is active, and do not save or even
5733  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5734  * do not currently need to store anything in that guest-allocated memory
5735  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5736  * argument is different from the VMXON pointer (which the spec says they do).
5737  */
5738 static int handle_vmon(struct kvm_vcpu *vcpu)
5739 {
5740         struct kvm_segment cs;
5741         struct vcpu_vmx *vmx = to_vmx(vcpu);
5742         struct vmcs *shadow_vmcs;
5743         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
5744                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
5745
5746         /* The Intel VMX Instruction Reference lists a bunch of bits that
5747          * are prerequisite to running VMXON, most notably cr4.VMXE must be
5748          * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5749          * Otherwise, we should fail with #UD. We test these now:
5750          */
5751         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5752             !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5753             (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5754                 kvm_queue_exception(vcpu, UD_VECTOR);
5755                 return 1;
5756         }
5757
5758         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5759         if (is_long_mode(vcpu) && !cs.l) {
5760                 kvm_queue_exception(vcpu, UD_VECTOR);
5761                 return 1;
5762         }
5763
5764         if (vmx_get_cpl(vcpu)) {
5765                 kvm_inject_gp(vcpu, 0);
5766                 return 1;
5767         }
5768         if (vmx->nested.vmxon) {
5769                 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5770                 skip_emulated_instruction(vcpu);
5771                 return 1;
5772         }
5773
5774         if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5775                         != VMXON_NEEDED_FEATURES) {
5776                 kvm_inject_gp(vcpu, 0);
5777                 return 1;
5778         }
5779
5780         if (enable_shadow_vmcs) {
5781                 shadow_vmcs = alloc_vmcs();
5782                 if (!shadow_vmcs)
5783                         return -ENOMEM;
5784                 /* mark vmcs as shadow */
5785                 shadow_vmcs->revision_id |= (1u << 31);
5786                 /* init shadow vmcs */
5787                 vmcs_clear(shadow_vmcs);
5788                 vmx->nested.current_shadow_vmcs = shadow_vmcs;
5789         }
5790
5791         INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5792         vmx->nested.vmcs02_num = 0;
5793
5794         vmx->nested.vmxon = true;
5795
5796         skip_emulated_instruction(vcpu);
5797         nested_vmx_succeed(vcpu);
5798         return 1;
5799 }
5800
5801 /*
5802  * Intel's VMX Instruction Reference specifies a common set of prerequisites
5803  * for running VMX instructions (except VMXON, whose prerequisites are
5804  * slightly different). It also specifies what exception to inject otherwise.
5805  */
5806 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5807 {
5808         struct kvm_segment cs;
5809         struct vcpu_vmx *vmx = to_vmx(vcpu);
5810
5811         if (!vmx->nested.vmxon) {
5812                 kvm_queue_exception(vcpu, UD_VECTOR);
5813                 return 0;
5814         }
5815
5816         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5817         if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5818             (is_long_mode(vcpu) && !cs.l)) {
5819                 kvm_queue_exception(vcpu, UD_VECTOR);
5820                 return 0;
5821         }
5822
5823         if (vmx_get_cpl(vcpu)) {
5824                 kvm_inject_gp(vcpu, 0);
5825                 return 0;
5826         }
5827
5828         return 1;
5829 }
5830
5831 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
5832 {
5833         u32 exec_control;
5834         if (enable_shadow_vmcs) {
5835                 if (vmx->nested.current_vmcs12 != NULL) {
5836                         /* copy to memory all shadowed fields in case
5837                            they were modified */
5838                         copy_shadow_to_vmcs12(vmx);
5839                         vmx->nested.sync_shadow_vmcs = false;
5840                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5841                         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5842                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
5843                         vmcs_write64(VMCS_LINK_POINTER, -1ull);
5844                 }
5845         }
5846         kunmap(vmx->nested.current_vmcs12_page);
5847         nested_release_page(vmx->nested.current_vmcs12_page);
5848 }
5849
5850 /*
5851  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5852  * just stops using VMX.
5853  */
5854 static void free_nested(struct vcpu_vmx *vmx)
5855 {
5856         if (!vmx->nested.vmxon)
5857                 return;
5858         vmx->nested.vmxon = false;
5859         if (vmx->nested.current_vmptr != -1ull) {
5860                 nested_release_vmcs12(vmx);
5861                 vmx->nested.current_vmptr = -1ull;
5862                 vmx->nested.current_vmcs12 = NULL;
5863         }
5864         if (enable_shadow_vmcs)
5865                 free_vmcs(vmx->nested.current_shadow_vmcs);
5866         /* Unpin physical memory we referred to in current vmcs02 */
5867         if (vmx->nested.apic_access_page) {
5868                 nested_release_page(vmx->nested.apic_access_page);
5869                 vmx->nested.apic_access_page = 0;
5870         }
5871
5872         nested_free_all_saved_vmcss(vmx);
5873 }
5874
5875 /* Emulate the VMXOFF instruction */
5876 static int handle_vmoff(struct kvm_vcpu *vcpu)
5877 {
5878         if (!nested_vmx_check_permission(vcpu))
5879                 return 1;
5880         free_nested(to_vmx(vcpu));
5881         skip_emulated_instruction(vcpu);
5882         nested_vmx_succeed(vcpu);
5883         return 1;
5884 }
5885
5886 /*
5887  * Decode the memory-address operand of a vmx instruction, as recorded on an
5888  * exit caused by such an instruction (run by a guest hypervisor).
5889  * On success, returns 0. When the operand is invalid, returns 1 and throws
5890  * #UD or #GP.
5891  */
5892 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5893                                  unsigned long exit_qualification,
5894                                  u32 vmx_instruction_info, gva_t *ret)
5895 {
5896         /*
5897          * According to Vol. 3B, "Information for VM Exits Due to Instruction
5898          * Execution", on an exit, vmx_instruction_info holds most of the
5899          * addressing components of the operand. Only the displacement part
5900          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5901          * For how an actual address is calculated from all these components,
5902          * refer to Vol. 1, "Operand Addressing".
5903          */
5904         int  scaling = vmx_instruction_info & 3;
5905         int  addr_size = (vmx_instruction_info >> 7) & 7;
5906         bool is_reg = vmx_instruction_info & (1u << 10);
5907         int  seg_reg = (vmx_instruction_info >> 15) & 7;
5908         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
5909         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5910         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
5911         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
5912
5913         if (is_reg) {
5914                 kvm_queue_exception(vcpu, UD_VECTOR);
5915                 return 1;
5916         }
5917
5918         /* Addr = segment_base + offset */
5919         /* offset = base + [index * scale] + displacement */
5920         *ret = vmx_get_segment_base(vcpu, seg_reg);
5921         if (base_is_valid)
5922                 *ret += kvm_register_read(vcpu, base_reg);
5923         if (index_is_valid)
5924                 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5925         *ret += exit_qualification; /* holds the displacement */
5926
5927         if (addr_size == 1) /* 32 bit */
5928                 *ret &= 0xffffffff;
5929
5930         /*
5931          * TODO: throw #GP (and return 1) in various cases that the VM*
5932          * instructions require it - e.g., offset beyond segment limit,
5933          * unusable or unreadable/unwritable segment, non-canonical 64-bit
5934          * address, and so on. Currently these are not checked.
5935          */
5936         return 0;
5937 }
5938
5939 /* Emulate the VMCLEAR instruction */
5940 static int handle_vmclear(struct kvm_vcpu *vcpu)
5941 {
5942         struct vcpu_vmx *vmx = to_vmx(vcpu);
5943         gva_t gva;
5944         gpa_t vmptr;
5945         struct vmcs12 *vmcs12;
5946         struct page *page;
5947         struct x86_exception e;
5948
5949         if (!nested_vmx_check_permission(vcpu))
5950                 return 1;
5951
5952         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5953                         vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5954                 return 1;
5955
5956         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5957                                 sizeof(vmptr), &e)) {
5958                 kvm_inject_page_fault(vcpu, &e);
5959                 return 1;
5960         }
5961
5962         if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5963                 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5964                 skip_emulated_instruction(vcpu);
5965                 return 1;
5966         }
5967
5968         if (vmptr == vmx->nested.current_vmptr) {
5969                 nested_release_vmcs12(vmx);
5970                 vmx->nested.current_vmptr = -1ull;
5971                 vmx->nested.current_vmcs12 = NULL;
5972         }
5973
5974         page = nested_get_page(vcpu, vmptr);
5975         if (page == NULL) {
5976                 /*
5977                  * For accurate processor emulation, VMCLEAR beyond available
5978                  * physical memory should do nothing at all. However, it is
5979                  * possible that a nested vmx bug, not a guest hypervisor bug,
5980                  * resulted in this case, so let's shut down before doing any
5981                  * more damage:
5982                  */
5983                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5984                 return 1;
5985         }
5986         vmcs12 = kmap(page);
5987         vmcs12->launch_state = 0;
5988         kunmap(page);
5989         nested_release_page(page);
5990
5991         nested_free_vmcs02(vmx, vmptr);
5992
5993         skip_emulated_instruction(vcpu);
5994         nested_vmx_succeed(vcpu);
5995         return 1;
5996 }
5997
5998 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5999
6000 /* Emulate the VMLAUNCH instruction */
6001 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6002 {
6003         return nested_vmx_run(vcpu, true);
6004 }
6005
6006 /* Emulate the VMRESUME instruction */
6007 static int handle_vmresume(struct kvm_vcpu *vcpu)
6008 {
6009
6010         return nested_vmx_run(vcpu, false);
6011 }
6012
6013 enum vmcs_field_type {
6014         VMCS_FIELD_TYPE_U16 = 0,
6015         VMCS_FIELD_TYPE_U64 = 1,
6016         VMCS_FIELD_TYPE_U32 = 2,
6017         VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6018 };
6019
6020 static inline int vmcs_field_type(unsigned long field)
6021 {
6022         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
6023                 return VMCS_FIELD_TYPE_U32;
6024         return (field >> 13) & 0x3 ;
6025 }
6026
6027 static inline int vmcs_field_readonly(unsigned long field)
6028 {
6029         return (((field >> 10) & 0x3) == 1);
6030 }
6031
6032 /*
6033  * Read a vmcs12 field. Since these can have varying lengths and we return
6034  * one type, we chose the biggest type (u64) and zero-extend the return value
6035  * to that size. Note that the caller, handle_vmread, might need to use only
6036  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6037  * 64-bit fields are to be returned).
6038  */
6039 static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
6040                                         unsigned long field, u64 *ret)
6041 {
6042         short offset = vmcs_field_to_offset(field);
6043         char *p;
6044
6045         if (offset < 0)
6046                 return 0;
6047
6048         p = ((char *)(get_vmcs12(vcpu))) + offset;
6049
6050         switch (vmcs_field_type(field)) {
6051         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6052                 *ret = *((natural_width *)p);
6053                 return 1;
6054         case VMCS_FIELD_TYPE_U16:
6055                 *ret = *((u16 *)p);
6056                 return 1;
6057         case VMCS_FIELD_TYPE_U32:
6058                 *ret = *((u32 *)p);
6059                 return 1;
6060         case VMCS_FIELD_TYPE_U64:
6061                 *ret = *((u64 *)p);
6062                 return 1;
6063         default:
6064                 return 0; /* can never happen. */
6065         }
6066 }
6067
6068
6069 static inline bool vmcs12_write_any(struct kvm_vcpu *vcpu,
6070                                     unsigned long field, u64 field_value){
6071         short offset = vmcs_field_to_offset(field);
6072         char *p = ((char *) get_vmcs12(vcpu)) + offset;
6073         if (offset < 0)
6074                 return false;
6075
6076         switch (vmcs_field_type(field)) {
6077         case VMCS_FIELD_TYPE_U16:
6078                 *(u16 *)p = field_value;
6079                 return true;
6080         case VMCS_FIELD_TYPE_U32:
6081                 *(u32 *)p = field_value;
6082                 return true;
6083         case VMCS_FIELD_TYPE_U64:
6084                 *(u64 *)p = field_value;
6085                 return true;
6086         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6087                 *(natural_width *)p = field_value;
6088                 return true;
6089         default:
6090                 return false; /* can never happen. */
6091         }
6092
6093 }
6094
6095 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6096 {
6097         int i;
6098         unsigned long field;
6099         u64 field_value;
6100         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6101         const unsigned long *fields = shadow_read_write_fields;
6102         const int num_fields = max_shadow_read_write_fields;
6103
6104         vmcs_load(shadow_vmcs);
6105
6106         for (i = 0; i < num_fields; i++) {
6107                 field = fields[i];
6108                 switch (vmcs_field_type(field)) {
6109                 case VMCS_FIELD_TYPE_U16:
6110                         field_value = vmcs_read16(field);
6111                         break;
6112                 case VMCS_FIELD_TYPE_U32:
6113                         field_value = vmcs_read32(field);
6114                         break;
6115                 case VMCS_FIELD_TYPE_U64:
6116                         field_value = vmcs_read64(field);
6117                         break;
6118                 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6119                         field_value = vmcs_readl(field);
6120                         break;
6121                 }
6122                 vmcs12_write_any(&vmx->vcpu, field, field_value);
6123         }
6124
6125         vmcs_clear(shadow_vmcs);
6126         vmcs_load(vmx->loaded_vmcs->vmcs);
6127 }
6128
6129 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6130 {
6131         const unsigned long *fields[] = {
6132                 shadow_read_write_fields,
6133                 shadow_read_only_fields
6134         };
6135         const int max_fields[] = {
6136                 max_shadow_read_write_fields,
6137                 max_shadow_read_only_fields
6138         };
6139         int i, q;
6140         unsigned long field;
6141         u64 field_value = 0;
6142         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6143
6144         vmcs_load(shadow_vmcs);
6145
6146         for (q = 0; q < ARRAY_SIZE(fields); q++) {
6147                 for (i = 0; i < max_fields[q]; i++) {
6148                         field = fields[q][i];
6149                         vmcs12_read_any(&vmx->vcpu, field, &field_value);
6150
6151                         switch (vmcs_field_type(field)) {
6152                         case VMCS_FIELD_TYPE_U16:
6153                                 vmcs_write16(field, (u16)field_value);
6154                                 break;
6155                         case VMCS_FIELD_TYPE_U32:
6156                                 vmcs_write32(field, (u32)field_value);
6157                                 break;
6158                         case VMCS_FIELD_TYPE_U64:
6159                                 vmcs_write64(field, (u64)field_value);
6160                                 break;
6161                         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6162                                 vmcs_writel(field, (long)field_value);
6163                                 break;
6164                         }
6165                 }
6166         }
6167
6168         vmcs_clear(shadow_vmcs);
6169         vmcs_load(vmx->loaded_vmcs->vmcs);
6170 }
6171
6172 /*
6173  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6174  * used before) all generate the same failure when it is missing.
6175  */
6176 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6177 {
6178         struct vcpu_vmx *vmx = to_vmx(vcpu);
6179         if (vmx->nested.current_vmptr == -1ull) {
6180                 nested_vmx_failInvalid(vcpu);
6181                 skip_emulated_instruction(vcpu);
6182                 return 0;
6183         }
6184         return 1;
6185 }
6186
6187 static int handle_vmread(struct kvm_vcpu *vcpu)
6188 {
6189         unsigned long field;
6190         u64 field_value;
6191         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6192         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6193         gva_t gva = 0;
6194
6195         if (!nested_vmx_check_permission(vcpu) ||
6196             !nested_vmx_check_vmcs12(vcpu))
6197                 return 1;
6198
6199         /* Decode instruction info and find the field to read */
6200         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6201         /* Read the field, zero-extended to a u64 field_value */
6202         if (!vmcs12_read_any(vcpu, field, &field_value)) {
6203                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6204                 skip_emulated_instruction(vcpu);
6205                 return 1;
6206         }
6207         /*
6208          * Now copy part of this value to register or memory, as requested.
6209          * Note that the number of bits actually copied is 32 or 64 depending
6210          * on the guest's mode (32 or 64 bit), not on the given field's length.
6211          */
6212         if (vmx_instruction_info & (1u << 10)) {
6213                 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6214                         field_value);
6215         } else {
6216                 if (get_vmx_mem_address(vcpu, exit_qualification,
6217                                 vmx_instruction_info, &gva))
6218                         return 1;
6219                 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6220                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6221                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6222         }
6223
6224         nested_vmx_succeed(vcpu);
6225         skip_emulated_instruction(vcpu);
6226         return 1;
6227 }
6228
6229
6230 static int handle_vmwrite(struct kvm_vcpu *vcpu)
6231 {
6232         unsigned long field;
6233         gva_t gva;
6234         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6235         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6236         /* The value to write might be 32 or 64 bits, depending on L1's long
6237          * mode, and eventually we need to write that into a field of several
6238          * possible lengths. The code below first zero-extends the value to 64
6239          * bit (field_value), and then copies only the approriate number of
6240          * bits into the vmcs12 field.
6241          */
6242         u64 field_value = 0;
6243         struct x86_exception e;
6244
6245         if (!nested_vmx_check_permission(vcpu) ||
6246             !nested_vmx_check_vmcs12(vcpu))
6247                 return 1;
6248
6249         if (vmx_instruction_info & (1u << 10))
6250                 field_value = kvm_register_read(vcpu,
6251                         (((vmx_instruction_info) >> 3) & 0xf));
6252         else {
6253                 if (get_vmx_mem_address(vcpu, exit_qualification,
6254                                 vmx_instruction_info, &gva))
6255                         return 1;
6256                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
6257                            &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
6258                         kvm_inject_page_fault(vcpu, &e);
6259                         return 1;
6260                 }
6261         }
6262
6263
6264         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6265         if (vmcs_field_readonly(field)) {
6266                 nested_vmx_failValid(vcpu,
6267                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6268                 skip_emulated_instruction(vcpu);
6269                 return 1;
6270         }
6271
6272         if (!vmcs12_write_any(vcpu, field, field_value)) {
6273                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6274                 skip_emulated_instruction(vcpu);
6275                 return 1;
6276         }
6277
6278         nested_vmx_succeed(vcpu);
6279         skip_emulated_instruction(vcpu);
6280         return 1;
6281 }
6282
6283 /* Emulate the VMPTRLD instruction */
6284 static int handle_vmptrld(struct kvm_vcpu *vcpu)
6285 {
6286         struct vcpu_vmx *vmx = to_vmx(vcpu);
6287         gva_t gva;
6288         gpa_t vmptr;
6289         struct x86_exception e;
6290         u32 exec_control;
6291
6292         if (!nested_vmx_check_permission(vcpu))
6293                 return 1;
6294
6295         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6296                         vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6297                 return 1;
6298
6299         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6300                                 sizeof(vmptr), &e)) {
6301                 kvm_inject_page_fault(vcpu, &e);
6302                 return 1;
6303         }
6304
6305         if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
6306                 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
6307                 skip_emulated_instruction(vcpu);
6308                 return 1;
6309         }
6310
6311         if (vmx->nested.current_vmptr != vmptr) {
6312                 struct vmcs12 *new_vmcs12;
6313                 struct page *page;
6314                 page = nested_get_page(vcpu, vmptr);
6315                 if (page == NULL) {
6316                         nested_vmx_failInvalid(vcpu);
6317                         skip_emulated_instruction(vcpu);
6318                         return 1;
6319                 }
6320                 new_vmcs12 = kmap(page);
6321                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
6322                         kunmap(page);
6323                         nested_release_page_clean(page);
6324                         nested_vmx_failValid(vcpu,
6325                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6326                         skip_emulated_instruction(vcpu);
6327                         return 1;
6328                 }
6329                 if (vmx->nested.current_vmptr != -1ull)
6330                         nested_release_vmcs12(vmx);
6331
6332                 vmx->nested.current_vmptr = vmptr;
6333                 vmx->nested.current_vmcs12 = new_vmcs12;
6334                 vmx->nested.current_vmcs12_page = page;
6335                 if (enable_shadow_vmcs) {
6336                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6337                         exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
6338                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6339                         vmcs_write64(VMCS_LINK_POINTER,
6340                                      __pa(vmx->nested.current_shadow_vmcs));
6341                         vmx->nested.sync_shadow_vmcs = true;
6342                 }
6343         }
6344
6345         nested_vmx_succeed(vcpu);
6346         skip_emulated_instruction(vcpu);
6347         return 1;
6348 }
6349
6350 /* Emulate the VMPTRST instruction */
6351 static int handle_vmptrst(struct kvm_vcpu *vcpu)
6352 {
6353         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6354         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6355         gva_t vmcs_gva;
6356         struct x86_exception e;
6357
6358         if (!nested_vmx_check_permission(vcpu))
6359                 return 1;
6360
6361         if (get_vmx_mem_address(vcpu, exit_qualification,
6362                         vmx_instruction_info, &vmcs_gva))
6363                 return 1;
6364         /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6365         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
6366                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
6367                                  sizeof(u64), &e)) {
6368                 kvm_inject_page_fault(vcpu, &e);
6369                 return 1;
6370         }
6371         nested_vmx_succeed(vcpu);
6372         skip_emulated_instruction(vcpu);
6373         return 1;
6374 }
6375
6376 /* Emulate the INVEPT instruction */
6377 static int handle_invept(struct kvm_vcpu *vcpu)
6378 {
6379         u32 vmx_instruction_info, types;
6380         unsigned long type;
6381         gva_t gva;
6382         struct x86_exception e;
6383         struct {
6384                 u64 eptp, gpa;
6385         } operand;
6386         u64 eptp_mask = ((1ull << 51) - 1) & PAGE_MASK;
6387
6388         if (!(nested_vmx_secondary_ctls_high & SECONDARY_EXEC_ENABLE_EPT) ||
6389             !(nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
6390                 kvm_queue_exception(vcpu, UD_VECTOR);
6391                 return 1;
6392         }
6393
6394         if (!nested_vmx_check_permission(vcpu))
6395                 return 1;
6396
6397         if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
6398                 kvm_queue_exception(vcpu, UD_VECTOR);
6399                 return 1;
6400         }
6401
6402         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6403         type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
6404
6405         types = (nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
6406
6407         if (!(types & (1UL << type))) {
6408                 nested_vmx_failValid(vcpu,
6409                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6410                 return 1;
6411         }
6412
6413         /* According to the Intel VMX instruction reference, the memory
6414          * operand is read even if it isn't needed (e.g., for type==global)
6415          */
6416         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6417                         vmx_instruction_info, &gva))
6418                 return 1;
6419         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
6420                                 sizeof(operand), &e)) {
6421                 kvm_inject_page_fault(vcpu, &e);
6422                 return 1;
6423         }
6424
6425         switch (type) {
6426         case VMX_EPT_EXTENT_CONTEXT:
6427                 if ((operand.eptp & eptp_mask) !=
6428                                 (nested_ept_get_cr3(vcpu) & eptp_mask))
6429                         break;
6430         case VMX_EPT_EXTENT_GLOBAL:
6431                 kvm_mmu_sync_roots(vcpu);
6432                 kvm_mmu_flush_tlb(vcpu);
6433                 nested_vmx_succeed(vcpu);
6434                 break;
6435         default:
6436                 BUG_ON(1);
6437                 break;
6438         }
6439
6440         skip_emulated_instruction(vcpu);
6441         return 1;
6442 }
6443
6444 /*
6445  * The exit handlers return 1 if the exit was handled fully and guest execution
6446  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6447  * to be done to userspace and return 0.
6448  */
6449 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6450         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
6451         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6452         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6453         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
6454         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6455         [EXIT_REASON_CR_ACCESS]               = handle_cr,
6456         [EXIT_REASON_DR_ACCESS]               = handle_dr,
6457         [EXIT_REASON_CPUID]                   = handle_cpuid,
6458         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
6459         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
6460         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
6461         [EXIT_REASON_HLT]                     = handle_halt,
6462         [EXIT_REASON_INVD]                    = handle_invd,
6463         [EXIT_REASON_INVLPG]                  = handle_invlpg,
6464         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
6465         [EXIT_REASON_VMCALL]                  = handle_vmcall,
6466         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
6467         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
6468         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
6469         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
6470         [EXIT_REASON_VMREAD]                  = handle_vmread,
6471         [EXIT_REASON_VMRESUME]                = handle_vmresume,
6472         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
6473         [EXIT_REASON_VMOFF]                   = handle_vmoff,
6474         [EXIT_REASON_VMON]                    = handle_vmon,
6475         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6476         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6477         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6478         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6479         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
6480         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
6481         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6482         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6483         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
6484         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6485         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6486         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_invalid_op,
6487         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op,
6488         [EXIT_REASON_INVEPT]                  = handle_invept,
6489 };
6490
6491 static const int kvm_vmx_max_exit_handlers =
6492         ARRAY_SIZE(kvm_vmx_exit_handlers);
6493
6494 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6495                                        struct vmcs12 *vmcs12)
6496 {
6497         unsigned long exit_qualification;
6498         gpa_t bitmap, last_bitmap;
6499         unsigned int port;
6500         int size;
6501         u8 b;
6502
6503         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6504                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6505
6506         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6507
6508         port = exit_qualification >> 16;
6509         size = (exit_qualification & 7) + 1;
6510
6511         last_bitmap = (gpa_t)-1;
6512         b = -1;
6513
6514         while (size > 0) {
6515                 if (port < 0x8000)
6516                         bitmap = vmcs12->io_bitmap_a;
6517                 else if (port < 0x10000)
6518                         bitmap = vmcs12->io_bitmap_b;
6519                 else
6520                         return 1;
6521                 bitmap += (port & 0x7fff) / 8;
6522
6523                 if (last_bitmap != bitmap)
6524                         if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
6525                                 return 1;
6526                 if (b & (1 << (port & 7)))
6527                         return 1;
6528
6529                 port++;
6530                 size--;
6531                 last_bitmap = bitmap;
6532         }
6533
6534         return 0;
6535 }
6536
6537 /*
6538  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
6539  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6540  * disinterest in the current event (read or write a specific MSR) by using an
6541  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6542  */
6543 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6544         struct vmcs12 *vmcs12, u32 exit_reason)
6545 {
6546         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
6547         gpa_t bitmap;
6548
6549         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6550                 return 1;
6551
6552         /*
6553          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6554          * for the four combinations of read/write and low/high MSR numbers.
6555          * First we need to figure out which of the four to use:
6556          */
6557         bitmap = vmcs12->msr_bitmap;
6558         if (exit_reason == EXIT_REASON_MSR_WRITE)
6559                 bitmap += 2048;
6560         if (msr_index >= 0xc0000000) {
6561                 msr_index -= 0xc0000000;
6562                 bitmap += 1024;
6563         }
6564
6565         /* Then read the msr_index'th bit from this bitmap: */
6566         if (msr_index < 1024*8) {
6567                 unsigned char b;
6568                 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
6569                         return 1;
6570                 return 1 & (b >> (msr_index & 7));
6571         } else
6572                 return 1; /* let L1 handle the wrong parameter */
6573 }
6574
6575 /*
6576  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6577  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6578  * intercept (via guest_host_mask etc.) the current event.
6579  */
6580 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6581         struct vmcs12 *vmcs12)
6582 {
6583         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6584         int cr = exit_qualification & 15;
6585         int reg = (exit_qualification >> 8) & 15;
6586         unsigned long val = kvm_register_read(vcpu, reg);
6587
6588         switch ((exit_qualification >> 4) & 3) {
6589         case 0: /* mov to cr */
6590                 switch (cr) {
6591                 case 0:
6592                         if (vmcs12->cr0_guest_host_mask &
6593                             (val ^ vmcs12->cr0_read_shadow))
6594                                 return 1;
6595                         break;
6596                 case 3:
6597                         if ((vmcs12->cr3_target_count >= 1 &&
6598                                         vmcs12->cr3_target_value0 == val) ||
6599                                 (vmcs12->cr3_target_count >= 2 &&
6600                                         vmcs12->cr3_target_value1 == val) ||
6601                                 (vmcs12->cr3_target_count >= 3 &&
6602                                         vmcs12->cr3_target_value2 == val) ||
6603                                 (vmcs12->cr3_target_count >= 4 &&
6604                                         vmcs12->cr3_target_value3 == val))
6605                                 return 0;
6606                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6607                                 return 1;
6608                         break;
6609                 case 4:
6610                         if (vmcs12->cr4_guest_host_mask &
6611                             (vmcs12->cr4_read_shadow ^ val))
6612                                 return 1;
6613                         break;
6614                 case 8:
6615                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6616                                 return 1;
6617                         break;
6618                 }
6619                 break;
6620         case 2: /* clts */
6621                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6622                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
6623                         return 1;
6624                 break;
6625         case 1: /* mov from cr */
6626                 switch (cr) {
6627                 case 3:
6628                         if (vmcs12->cpu_based_vm_exec_control &
6629                             CPU_BASED_CR3_STORE_EXITING)
6630                                 return 1;
6631                         break;
6632                 case 8:
6633                         if (vmcs12->cpu_based_vm_exec_control &
6634                             CPU_BASED_CR8_STORE_EXITING)
6635                                 return 1;
6636                         break;
6637                 }
6638                 break;
6639         case 3: /* lmsw */
6640                 /*
6641                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6642                  * cr0. Other attempted changes are ignored, with no exit.
6643                  */
6644                 if (vmcs12->cr0_guest_host_mask & 0xe &
6645                     (val ^ vmcs12->cr0_read_shadow))
6646                         return 1;
6647                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6648                     !(vmcs12->cr0_read_shadow & 0x1) &&
6649                     (val & 0x1))
6650                         return 1;
6651                 break;
6652         }
6653         return 0;
6654 }
6655
6656 /*
6657  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
6658  * should handle it ourselves in L0 (and then continue L2). Only call this
6659  * when in is_guest_mode (L2).
6660  */
6661 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
6662 {
6663         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6664         struct vcpu_vmx *vmx = to_vmx(vcpu);
6665         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6666         u32 exit_reason = vmx->exit_reason;
6667
6668         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
6669                                 vmcs_readl(EXIT_QUALIFICATION),
6670                                 vmx->idt_vectoring_info,
6671                                 intr_info,
6672                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6673                                 KVM_ISA_VMX);
6674
6675         if (vmx->nested.nested_run_pending)
6676                 return 0;
6677
6678         if (unlikely(vmx->fail)) {
6679                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
6680                                     vmcs_read32(VM_INSTRUCTION_ERROR));
6681                 return 1;
6682         }
6683
6684         switch (exit_reason) {
6685         case EXIT_REASON_EXCEPTION_NMI:
6686                 if (!is_exception(intr_info))
6687                         return 0;
6688                 else if (is_page_fault(intr_info))
6689                         return enable_ept;
6690                 else if (is_no_device(intr_info) &&
6691                          !(vmcs12->guest_cr0 & X86_CR0_TS))
6692                         return 0;
6693                 return vmcs12->exception_bitmap &
6694                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6695         case EXIT_REASON_EXTERNAL_INTERRUPT:
6696                 return 0;
6697         case EXIT_REASON_TRIPLE_FAULT:
6698                 return 1;
6699         case EXIT_REASON_PENDING_INTERRUPT:
6700                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
6701         case EXIT_REASON_NMI_WINDOW:
6702                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
6703         case EXIT_REASON_TASK_SWITCH:
6704                 return 1;
6705         case EXIT_REASON_CPUID:
6706                 return 1;
6707         case EXIT_REASON_HLT:
6708                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6709         case EXIT_REASON_INVD:
6710                 return 1;
6711         case EXIT_REASON_INVLPG:
6712                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6713         case EXIT_REASON_RDPMC:
6714                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6715         case EXIT_REASON_RDTSC:
6716                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6717         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6718         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6719         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
6720         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
6721         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6722         case EXIT_REASON_INVEPT:
6723                 /*
6724                  * VMX instructions trap unconditionally. This allows L1 to
6725                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
6726                  */
6727                 return 1;
6728         case EXIT_REASON_CR_ACCESS:
6729                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6730         case EXIT_REASON_DR_ACCESS:
6731                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6732         case EXIT_REASON_IO_INSTRUCTION:
6733                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
6734         case EXIT_REASON_MSR_READ:
6735         case EXIT_REASON_MSR_WRITE:
6736                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6737         case EXIT_REASON_INVALID_STATE:
6738                 return 1;
6739         case EXIT_REASON_MWAIT_INSTRUCTION:
6740                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6741         case EXIT_REASON_MONITOR_INSTRUCTION:
6742                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6743         case EXIT_REASON_PAUSE_INSTRUCTION:
6744                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6745                         nested_cpu_has2(vmcs12,
6746                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6747         case EXIT_REASON_MCE_DURING_VMENTRY:
6748                 return 0;
6749         case EXIT_REASON_TPR_BELOW_THRESHOLD:
6750                 return 1;
6751         case EXIT_REASON_APIC_ACCESS:
6752                 return nested_cpu_has2(vmcs12,
6753                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
6754         case EXIT_REASON_EPT_VIOLATION:
6755                 /*
6756                  * L0 always deals with the EPT violation. If nested EPT is
6757                  * used, and the nested mmu code discovers that the address is
6758                  * missing in the guest EPT table (EPT12), the EPT violation
6759                  * will be injected with nested_ept_inject_page_fault()
6760                  */
6761                 return 0;
6762         case EXIT_REASON_EPT_MISCONFIG:
6763                 /*
6764                  * L2 never uses directly L1's EPT, but rather L0's own EPT
6765                  * table (shadow on EPT) or a merged EPT table that L0 built
6766                  * (EPT on EPT). So any problems with the structure of the
6767                  * table is L0's fault.
6768                  */
6769                 return 0;
6770         case EXIT_REASON_PREEMPTION_TIMER:
6771                 return vmcs12->pin_based_vm_exec_control &
6772                         PIN_BASED_VMX_PREEMPTION_TIMER;
6773         case EXIT_REASON_WBINVD:
6774                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6775         case EXIT_REASON_XSETBV:
6776                 return 1;
6777         default:
6778                 return 1;
6779         }
6780 }
6781
6782 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
6783 {
6784         *info1 = vmcs_readl(EXIT_QUALIFICATION);
6785         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
6786 }
6787
6788 static void nested_adjust_preemption_timer(struct kvm_vcpu *vcpu)
6789 {
6790         u64 delta_tsc_l1;
6791         u32 preempt_val_l1, preempt_val_l2, preempt_scale;
6792
6793         if (!(get_vmcs12(vcpu)->pin_based_vm_exec_control &
6794                         PIN_BASED_VMX_PREEMPTION_TIMER))
6795                 return;
6796         preempt_scale = native_read_msr(MSR_IA32_VMX_MISC) &
6797                         MSR_IA32_VMX_MISC_PREEMPTION_TIMER_SCALE;
6798         preempt_val_l2 = vmcs_read32(VMX_PREEMPTION_TIMER_VALUE);
6799         delta_tsc_l1 = vmx_read_l1_tsc(vcpu, native_read_tsc())
6800                 - vcpu->arch.last_guest_tsc;
6801         preempt_val_l1 = delta_tsc_l1 >> preempt_scale;
6802         if (preempt_val_l2 <= preempt_val_l1)
6803                 preempt_val_l2 = 0;
6804         else
6805                 preempt_val_l2 -= preempt_val_l1;
6806         vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, preempt_val_l2);
6807 }
6808
6809 /*
6810  * The guest has exited.  See if we can fix it or if we need userspace
6811  * assistance.
6812  */
6813 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6814 {
6815         struct vcpu_vmx *vmx = to_vmx(vcpu);
6816         u32 exit_reason = vmx->exit_reason;
6817         u32 vectoring_info = vmx->idt_vectoring_info;
6818
6819         /* If guest state is invalid, start emulating */
6820         if (vmx->emulation_required)
6821                 return handle_invalid_guest_state(vcpu);
6822
6823         if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
6824                 nested_vmx_vmexit(vcpu, exit_reason,
6825                                   vmcs_read32(VM_EXIT_INTR_INFO),
6826                                   vmcs_readl(EXIT_QUALIFICATION));
6827                 return 1;
6828         }
6829
6830         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
6831                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6832                 vcpu->run->fail_entry.hardware_entry_failure_reason
6833                         = exit_reason;
6834                 return 0;
6835         }
6836
6837         if (unlikely(vmx->fail)) {
6838                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6839                 vcpu->run->fail_entry.hardware_entry_failure_reason
6840                         = vmcs_read32(VM_INSTRUCTION_ERROR);
6841                 return 0;
6842         }
6843
6844         /*
6845          * Note:
6846          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6847          * delivery event since it indicates guest is accessing MMIO.
6848          * The vm-exit can be triggered again after return to guest that
6849          * will cause infinite loop.
6850          */
6851         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6852                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
6853                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
6854                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
6855                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6856                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6857                 vcpu->run->internal.ndata = 2;
6858                 vcpu->run->internal.data[0] = vectoring_info;
6859                 vcpu->run->internal.data[1] = exit_reason;
6860                 return 0;
6861         }
6862
6863         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
6864             !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
6865                                         get_vmcs12(vcpu))))) {
6866                 if (vmx_interrupt_allowed(vcpu)) {
6867                         vmx->soft_vnmi_blocked = 0;
6868                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
6869                            vcpu->arch.nmi_pending) {
6870                         /*
6871                          * This CPU don't support us in finding the end of an
6872                          * NMI-blocked window if the guest runs with IRQs
6873                          * disabled. So we pull the trigger after 1 s of
6874                          * futile waiting, but inform the user about this.
6875                          */
6876                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6877                                "state on VCPU %d after 1 s timeout\n",
6878                                __func__, vcpu->vcpu_id);
6879                         vmx->soft_vnmi_blocked = 0;
6880                 }
6881         }
6882
6883         if (exit_reason < kvm_vmx_max_exit_handlers
6884             && kvm_vmx_exit_handlers[exit_reason])
6885                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6886         else {
6887                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6888                 vcpu->run->hw.hardware_exit_reason = exit_reason;
6889         }
6890         return 0;
6891 }
6892
6893 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6894 {
6895         if (irr == -1 || tpr < irr) {
6896                 vmcs_write32(TPR_THRESHOLD, 0);
6897                 return;
6898         }
6899
6900         vmcs_write32(TPR_THRESHOLD, irr);
6901 }
6902
6903 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
6904 {
6905         u32 sec_exec_control;
6906
6907         /*
6908          * There is not point to enable virtualize x2apic without enable
6909          * apicv
6910          */
6911         if (!cpu_has_vmx_virtualize_x2apic_mode() ||
6912                                 !vmx_vm_has_apicv(vcpu->kvm))
6913                 return;
6914
6915         if (!vm_need_tpr_shadow(vcpu->kvm))
6916                 return;
6917
6918         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6919
6920         if (set) {
6921                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6922                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6923         } else {
6924                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6925                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6926         }
6927         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
6928
6929         vmx_set_msr_bitmap(vcpu);
6930 }
6931
6932 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
6933 {
6934         u16 status;
6935         u8 old;
6936
6937         if (!vmx_vm_has_apicv(kvm))
6938                 return;
6939
6940         if (isr == -1)
6941                 isr = 0;
6942
6943         status = vmcs_read16(GUEST_INTR_STATUS);
6944         old = status >> 8;
6945         if (isr != old) {
6946                 status &= 0xff;
6947                 status |= isr << 8;
6948                 vmcs_write16(GUEST_INTR_STATUS, status);
6949         }
6950 }
6951
6952 static void vmx_set_rvi(int vector)
6953 {
6954         u16 status;
6955         u8 old;
6956
6957         status = vmcs_read16(GUEST_INTR_STATUS);
6958         old = (u8)status & 0xff;
6959         if ((u8)vector != old) {
6960                 status &= ~0xff;
6961                 status |= (u8)vector;
6962                 vmcs_write16(GUEST_INTR_STATUS, status);
6963         }
6964 }
6965
6966 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6967 {
6968         if (max_irr == -1)
6969                 return;
6970
6971         vmx_set_rvi(max_irr);
6972 }
6973
6974 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6975 {
6976         if (!vmx_vm_has_apicv(vcpu->kvm))
6977                 return;
6978
6979         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6980         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6981         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6982         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6983 }
6984
6985 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
6986 {
6987         u32 exit_intr_info;
6988
6989         if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
6990               || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
6991                 return;
6992
6993         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6994         exit_intr_info = vmx->exit_intr_info;
6995
6996         /* Handle machine checks before interrupts are enabled */
6997         if (is_machine_check(exit_intr_info))
6998                 kvm_machine_check();
6999
7000         /* We need to handle NMIs before interrupts are enabled */
7001         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
7002             (exit_intr_info & INTR_INFO_VALID_MASK)) {
7003                 kvm_before_handle_nmi(&vmx->vcpu);
7004                 asm("int $2");
7005                 kvm_after_handle_nmi(&vmx->vcpu);
7006         }
7007 }
7008
7009 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
7010 {
7011         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7012
7013         /*
7014          * If external interrupt exists, IF bit is set in rflags/eflags on the
7015          * interrupt stack frame, and interrupt will be enabled on a return
7016          * from interrupt handler.
7017          */
7018         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
7019                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
7020                 unsigned int vector;
7021                 unsigned long entry;
7022                 gate_desc *desc;
7023                 struct vcpu_vmx *vmx = to_vmx(vcpu);
7024 #ifdef CONFIG_X86_64
7025                 unsigned long tmp;
7026 #endif
7027
7028                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
7029                 desc = (gate_desc *)vmx->host_idt_base + vector;
7030                 entry = gate_offset(*desc);
7031                 asm volatile(
7032 #ifdef CONFIG_X86_64
7033                         "mov %%" _ASM_SP ", %[sp]\n\t"
7034                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
7035                         "push $%c[ss]\n\t"
7036                         "push %[sp]\n\t"
7037 #endif
7038                         "pushf\n\t"
7039                         "orl $0x200, (%%" _ASM_SP ")\n\t"
7040                         __ASM_SIZE(push) " $%c[cs]\n\t"
7041                         "call *%[entry]\n\t"
7042                         :
7043 #ifdef CONFIG_X86_64
7044                         [sp]"=&r"(tmp)
7045 #endif
7046                         :
7047                         [entry]"r"(entry),
7048                         [ss]"i"(__KERNEL_DS),
7049                         [cs]"i"(__KERNEL_CS)
7050                         );
7051         } else
7052                 local_irq_enable();
7053 }
7054
7055 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7056 {
7057         u32 exit_intr_info;
7058         bool unblock_nmi;
7059         u8 vector;
7060         bool idtv_info_valid;
7061
7062         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7063
7064         if (cpu_has_virtual_nmis()) {
7065                 if (vmx->nmi_known_unmasked)
7066                         return;
7067                 /*
7068                  * Can't use vmx->exit_intr_info since we're not sure what
7069                  * the exit reason is.
7070                  */
7071                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7072                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7073                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7074                 /*
7075                  * SDM 3: 27.7.1.2 (September 2008)
7076                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
7077                  * a guest IRET fault.
7078                  * SDM 3: 23.2.2 (September 2008)
7079                  * Bit 12 is undefined in any of the following cases:
7080                  *  If the VM exit sets the valid bit in the IDT-vectoring
7081                  *   information field.
7082                  *  If the VM exit is due to a double fault.
7083                  */
7084                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7085                     vector != DF_VECTOR && !idtv_info_valid)
7086                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7087                                       GUEST_INTR_STATE_NMI);
7088                 else
7089                         vmx->nmi_known_unmasked =
7090                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7091                                   & GUEST_INTR_STATE_NMI);
7092         } else if (unlikely(vmx->soft_vnmi_blocked))
7093                 vmx->vnmi_blocked_time +=
7094                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
7095 }
7096
7097 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7098                                       u32 idt_vectoring_info,
7099                                       int instr_len_field,
7100                                       int error_code_field)
7101 {
7102         u8 vector;
7103         int type;
7104         bool idtv_info_valid;
7105
7106         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7107
7108         vcpu->arch.nmi_injected = false;
7109         kvm_clear_exception_queue(vcpu);
7110         kvm_clear_interrupt_queue(vcpu);
7111
7112         if (!idtv_info_valid)
7113                 return;
7114
7115         kvm_make_request(KVM_REQ_EVENT, vcpu);
7116
7117         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7118         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7119
7120         switch (type) {
7121         case INTR_TYPE_NMI_INTR:
7122                 vcpu->arch.nmi_injected = true;
7123                 /*
7124                  * SDM 3: 27.7.1.2 (September 2008)
7125                  * Clear bit "block by NMI" before VM entry if a NMI
7126                  * delivery faulted.
7127                  */
7128                 vmx_set_nmi_mask(vcpu, false);
7129                 break;
7130         case INTR_TYPE_SOFT_EXCEPTION:
7131                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7132                 /* fall through */
7133         case INTR_TYPE_HARD_EXCEPTION:
7134                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7135                         u32 err = vmcs_read32(error_code_field);
7136                         kvm_requeue_exception_e(vcpu, vector, err);
7137                 } else
7138                         kvm_requeue_exception(vcpu, vector);
7139                 break;
7140         case INTR_TYPE_SOFT_INTR:
7141                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7142                 /* fall through */
7143         case INTR_TYPE_EXT_INTR:
7144                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7145                 break;
7146         default:
7147                 break;
7148         }
7149 }
7150
7151 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7152 {
7153         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7154                                   VM_EXIT_INSTRUCTION_LEN,
7155                                   IDT_VECTORING_ERROR_CODE);
7156 }
7157
7158 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7159 {
7160         __vmx_complete_interrupts(vcpu,
7161                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7162                                   VM_ENTRY_INSTRUCTION_LEN,
7163                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
7164
7165         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7166 }
7167
7168 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7169 {
7170         int i, nr_msrs;
7171         struct perf_guest_switch_msr *msrs;
7172
7173         msrs = perf_guest_get_msrs(&nr_msrs);
7174
7175         if (!msrs)
7176                 return;
7177
7178         for (i = 0; i < nr_msrs; i++)
7179                 if (msrs[i].host == msrs[i].guest)
7180                         clear_atomic_switch_msr(vmx, msrs[i].msr);
7181                 else
7182                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7183                                         msrs[i].host);
7184 }
7185
7186 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
7187 {
7188         struct vcpu_vmx *vmx = to_vmx(vcpu);
7189         unsigned long debugctlmsr;
7190
7191         /* Record the guest's net vcpu time for enforced NMI injections. */
7192         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
7193                 vmx->entry_time = ktime_get();
7194
7195         /* Don't enter VMX if guest state is invalid, let the exit handler
7196            start emulation until we arrive back to a valid state */
7197         if (vmx->emulation_required)
7198                 return;
7199
7200         if (vmx->nested.sync_shadow_vmcs) {
7201                 copy_vmcs12_to_shadow(vmx);
7202                 vmx->nested.sync_shadow_vmcs = false;
7203         }
7204
7205         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
7206                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7207         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
7208                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7209
7210         /* When single-stepping over STI and MOV SS, we must clear the
7211          * corresponding interruptibility bits in the guest state. Otherwise
7212          * vmentry fails as it then expects bit 14 (BS) in pending debug
7213          * exceptions being set, but that's not correct for the guest debugging
7214          * case. */
7215         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7216                 vmx_set_interrupt_shadow(vcpu, 0);
7217
7218         atomic_switch_perf_msrs(vmx);
7219         debugctlmsr = get_debugctlmsr();
7220
7221         if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending)
7222                 nested_adjust_preemption_timer(vcpu);
7223         vmx->__launched = vmx->loaded_vmcs->launched;
7224         asm(
7225                 /* Store host registers */
7226                 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
7227                 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
7228                 "push %%" _ASM_CX " \n\t"
7229                 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7230                 "je 1f \n\t"
7231                 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7232                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
7233                 "1: \n\t"
7234                 /* Reload cr2 if changed */
7235                 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
7236                 "mov %%cr2, %%" _ASM_DX " \n\t"
7237                 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
7238                 "je 2f \n\t"
7239                 "mov %%" _ASM_AX", %%cr2 \n\t"
7240                 "2: \n\t"
7241                 /* Check if vmlaunch of vmresume is needed */
7242                 "cmpl $0, %c[launched](%0) \n\t"
7243                 /* Load guest registers.  Don't clobber flags. */
7244                 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
7245                 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
7246                 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
7247                 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
7248                 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
7249                 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
7250 #ifdef CONFIG_X86_64
7251                 "mov %c[r8](%0),  %%r8  \n\t"
7252                 "mov %c[r9](%0),  %%r9  \n\t"
7253                 "mov %c[r10](%0), %%r10 \n\t"
7254                 "mov %c[r11](%0), %%r11 \n\t"
7255                 "mov %c[r12](%0), %%r12 \n\t"
7256                 "mov %c[r13](%0), %%r13 \n\t"
7257                 "mov %c[r14](%0), %%r14 \n\t"
7258                 "mov %c[r15](%0), %%r15 \n\t"
7259 #endif
7260                 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
7261
7262                 /* Enter guest mode */
7263                 "jne 1f \n\t"
7264                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
7265                 "jmp 2f \n\t"
7266                 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
7267                 "2: "
7268                 /* Save guest registers, load host registers, keep flags */
7269                 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
7270                 "pop %0 \n\t"
7271                 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
7272                 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
7273                 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
7274                 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
7275                 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
7276                 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
7277                 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
7278 #ifdef CONFIG_X86_64
7279                 "mov %%r8,  %c[r8](%0) \n\t"
7280                 "mov %%r9,  %c[r9](%0) \n\t"
7281                 "mov %%r10, %c[r10](%0) \n\t"
7282                 "mov %%r11, %c[r11](%0) \n\t"
7283                 "mov %%r12, %c[r12](%0) \n\t"
7284                 "mov %%r13, %c[r13](%0) \n\t"
7285                 "mov %%r14, %c[r14](%0) \n\t"
7286                 "mov %%r15, %c[r15](%0) \n\t"
7287 #endif
7288                 "mov %%cr2, %%" _ASM_AX "   \n\t"
7289                 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
7290
7291                 "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
7292                 "setbe %c[fail](%0) \n\t"
7293                 ".pushsection .rodata \n\t"
7294                 ".global vmx_return \n\t"
7295                 "vmx_return: " _ASM_PTR " 2b \n\t"
7296                 ".popsection"
7297               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
7298                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
7299                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
7300                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
7301                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
7302                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
7303                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
7304                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
7305                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
7306                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
7307                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
7308 #ifdef CONFIG_X86_64
7309                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
7310                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
7311                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
7312                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
7313                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
7314                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
7315                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
7316                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
7317 #endif
7318                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
7319                 [wordsize]"i"(sizeof(ulong))
7320               : "cc", "memory"
7321 #ifdef CONFIG_X86_64
7322                 , "rax", "rbx", "rdi", "rsi"
7323                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
7324 #else
7325                 , "eax", "ebx", "edi", "esi"
7326 #endif
7327               );
7328
7329         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7330         if (debugctlmsr)
7331                 update_debugctlmsr(debugctlmsr);
7332
7333 #ifndef CONFIG_X86_64
7334         /*
7335          * The sysexit path does not restore ds/es, so we must set them to
7336          * a reasonable value ourselves.
7337          *
7338          * We can't defer this to vmx_load_host_state() since that function
7339          * may be executed in interrupt context, which saves and restore segments
7340          * around it, nullifying its effect.
7341          */
7342         loadsegment(ds, __USER_DS);
7343         loadsegment(es, __USER_DS);
7344 #endif
7345
7346         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
7347                                   | (1 << VCPU_EXREG_RFLAGS)
7348                                   | (1 << VCPU_EXREG_CPL)
7349                                   | (1 << VCPU_EXREG_PDPTR)
7350                                   | (1 << VCPU_EXREG_SEGMENTS)
7351                                   | (1 << VCPU_EXREG_CR3));
7352         vcpu->arch.regs_dirty = 0;
7353
7354         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7355
7356         vmx->loaded_vmcs->launched = 1;
7357
7358         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
7359         trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
7360
7361         /*
7362          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
7363          * we did not inject a still-pending event to L1 now because of
7364          * nested_run_pending, we need to re-enable this bit.
7365          */
7366         if (vmx->nested.nested_run_pending)
7367                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7368
7369         vmx->nested.nested_run_pending = 0;
7370
7371         vmx_complete_atomic_exit(vmx);
7372         vmx_recover_nmi_blocking(vmx);
7373         vmx_complete_interrupts(vmx);
7374 }
7375
7376 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
7377 {
7378         struct vcpu_vmx *vmx = to_vmx(vcpu);
7379
7380         free_vpid(vmx);
7381         free_loaded_vmcs(vmx->loaded_vmcs);
7382         free_nested(vmx);
7383         kfree(vmx->guest_msrs);
7384         kvm_vcpu_uninit(vcpu);
7385         kmem_cache_free(kvm_vcpu_cache, vmx);
7386 }
7387
7388 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
7389 {
7390         int err;
7391         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
7392         int cpu;
7393
7394         if (!vmx)
7395                 return ERR_PTR(-ENOMEM);
7396
7397         allocate_vpid(vmx);
7398
7399         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
7400         if (err)
7401                 goto free_vcpu;
7402
7403         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
7404         err = -ENOMEM;
7405         if (!vmx->guest_msrs) {
7406                 goto uninit_vcpu;
7407         }
7408
7409         vmx->loaded_vmcs = &vmx->vmcs01;
7410         vmx->loaded_vmcs->vmcs = alloc_vmcs();
7411         if (!vmx->loaded_vmcs->vmcs)
7412                 goto free_msrs;
7413         if (!vmm_exclusive)
7414                 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
7415         loaded_vmcs_init(vmx->loaded_vmcs);
7416         if (!vmm_exclusive)
7417                 kvm_cpu_vmxoff();
7418
7419         cpu = get_cpu();
7420         vmx_vcpu_load(&vmx->vcpu, cpu);
7421         vmx->vcpu.cpu = cpu;
7422         err = vmx_vcpu_setup(vmx);
7423         vmx_vcpu_put(&vmx->vcpu);
7424         put_cpu();
7425         if (err)
7426                 goto free_vmcs;
7427         if (vm_need_virtualize_apic_accesses(kvm)) {
7428                 err = alloc_apic_access_page(kvm);
7429                 if (err)
7430                         goto free_vmcs;
7431         }
7432
7433         if (enable_ept) {
7434                 if (!kvm->arch.ept_identity_map_addr)
7435                         kvm->arch.ept_identity_map_addr =
7436                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
7437                 err = -ENOMEM;
7438                 if (alloc_identity_pagetable(kvm) != 0)
7439                         goto free_vmcs;
7440                 if (!init_rmode_identity_map(kvm))
7441                         goto free_vmcs;
7442         }
7443
7444         vmx->nested.current_vmptr = -1ull;
7445         vmx->nested.current_vmcs12 = NULL;
7446
7447         return &vmx->vcpu;
7448
7449 free_vmcs:
7450         free_loaded_vmcs(vmx->loaded_vmcs);
7451 free_msrs:
7452         kfree(vmx->guest_msrs);
7453 uninit_vcpu:
7454         kvm_vcpu_uninit(&vmx->vcpu);
7455 free_vcpu:
7456         free_vpid(vmx);
7457         kmem_cache_free(kvm_vcpu_cache, vmx);
7458         return ERR_PTR(err);
7459 }
7460
7461 static void __init vmx_check_processor_compat(void *rtn)
7462 {
7463         struct vmcs_config vmcs_conf;
7464
7465         *(int *)rtn = 0;
7466         if (setup_vmcs_config(&vmcs_conf) < 0)
7467                 *(int *)rtn = -EIO;
7468         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7469                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7470                                 smp_processor_id());
7471                 *(int *)rtn = -EIO;
7472         }
7473 }
7474
7475 static int get_ept_level(void)
7476 {
7477         return VMX_EPT_DEFAULT_GAW + 1;
7478 }
7479
7480 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7481 {
7482         u64 ret;
7483
7484         /* For VT-d and EPT combination
7485          * 1. MMIO: always map as UC
7486          * 2. EPT with VT-d:
7487          *   a. VT-d without snooping control feature: can't guarantee the
7488          *      result, try to trust guest.
7489          *   b. VT-d with snooping control feature: snooping control feature of
7490          *      VT-d engine can guarantee the cache correctness. Just set it
7491          *      to WB to keep consistent with host. So the same as item 3.
7492          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
7493          *    consistent with host MTRR
7494          */
7495         if (is_mmio)
7496                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7497         else if (kvm_arch_has_noncoherent_dma(vcpu->kvm))
7498                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
7499                       VMX_EPT_MT_EPTE_SHIFT;
7500         else
7501                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
7502                         | VMX_EPT_IPAT_BIT;
7503
7504         return ret;
7505 }
7506
7507 static int vmx_get_lpage_level(void)
7508 {
7509         if (enable_ept && !cpu_has_vmx_ept_1g_page())
7510                 return PT_DIRECTORY_LEVEL;
7511         else
7512                 /* For shadow and EPT supported 1GB page */
7513                 return PT_PDPE_LEVEL;
7514 }
7515
7516 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7517 {
7518         struct kvm_cpuid_entry2 *best;
7519         struct vcpu_vmx *vmx = to_vmx(vcpu);
7520         u32 exec_control;
7521
7522         vmx->rdtscp_enabled = false;
7523         if (vmx_rdtscp_supported()) {
7524                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7525                 if (exec_control & SECONDARY_EXEC_RDTSCP) {
7526                         best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
7527                         if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
7528                                 vmx->rdtscp_enabled = true;
7529                         else {
7530                                 exec_control &= ~SECONDARY_EXEC_RDTSCP;
7531                                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7532                                                 exec_control);
7533                         }
7534                 }
7535         }
7536
7537         /* Exposing INVPCID only when PCID is exposed */
7538         best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7539         if (vmx_invpcid_supported() &&
7540             best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
7541             guest_cpuid_has_pcid(vcpu)) {
7542                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7543                 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
7544                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7545                              exec_control);
7546         } else {
7547                 if (cpu_has_secondary_exec_ctrls()) {
7548                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7549                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
7550                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7551                                      exec_control);
7552                 }
7553                 if (best)
7554                         best->ebx &= ~bit(X86_FEATURE_INVPCID);
7555         }
7556 }
7557
7558 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7559 {
7560         if (func == 1 && nested)
7561                 entry->ecx |= bit(X86_FEATURE_VMX);
7562 }
7563
7564 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
7565                 struct x86_exception *fault)
7566 {
7567         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7568         u32 exit_reason;
7569
7570         if (fault->error_code & PFERR_RSVD_MASK)
7571                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
7572         else
7573                 exit_reason = EXIT_REASON_EPT_VIOLATION;
7574         nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
7575         vmcs12->guest_physical_address = fault->address;
7576 }
7577
7578 /* Callbacks for nested_ept_init_mmu_context: */
7579
7580 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
7581 {
7582         /* return the page table to be shadowed - in our case, EPT12 */
7583         return get_vmcs12(vcpu)->ept_pointer;
7584 }
7585
7586 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
7587 {
7588         kvm_init_shadow_ept_mmu(vcpu, &vcpu->arch.mmu,
7589                         nested_vmx_ept_caps & VMX_EPT_EXECUTE_ONLY_BIT);
7590
7591         vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
7592         vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
7593         vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
7594
7595         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
7596 }
7597
7598 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
7599 {
7600         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
7601 }
7602
7603 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
7604                 struct x86_exception *fault)
7605 {
7606         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7607
7608         WARN_ON(!is_guest_mode(vcpu));
7609
7610         /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
7611         if (vmcs12->exception_bitmap & (1u << PF_VECTOR))
7612                 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
7613                                   vmcs_read32(VM_EXIT_INTR_INFO),
7614                                   vmcs_readl(EXIT_QUALIFICATION));
7615         else
7616                 kvm_inject_page_fault(vcpu, fault);
7617 }
7618
7619 /*
7620  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
7621  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
7622  * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
7623  * guest in a way that will both be appropriate to L1's requests, and our
7624  * needs. In addition to modifying the active vmcs (which is vmcs02), this
7625  * function also has additional necessary side-effects, like setting various
7626  * vcpu->arch fields.
7627  */
7628 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7629 {
7630         struct vcpu_vmx *vmx = to_vmx(vcpu);
7631         u32 exec_control;
7632         u32 exit_control;
7633
7634         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
7635         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
7636         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
7637         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
7638         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
7639         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
7640         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
7641         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
7642         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
7643         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
7644         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
7645         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
7646         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
7647         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
7648         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
7649         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
7650         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
7651         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
7652         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
7653         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
7654         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
7655         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
7656         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
7657         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
7658         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
7659         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
7660         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
7661         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
7662         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
7663         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
7664         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
7665         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
7666         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
7667         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
7668         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
7669         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
7670
7671         vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
7672         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
7673                 vmcs12->vm_entry_intr_info_field);
7674         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
7675                 vmcs12->vm_entry_exception_error_code);
7676         vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
7677                 vmcs12->vm_entry_instruction_len);
7678         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
7679                 vmcs12->guest_interruptibility_info);
7680         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
7681         kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
7682         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
7683         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
7684                 vmcs12->guest_pending_dbg_exceptions);
7685         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
7686         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
7687
7688         vmcs_write64(VMCS_LINK_POINTER, -1ull);
7689
7690         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
7691                 (vmcs_config.pin_based_exec_ctrl |
7692                  vmcs12->pin_based_vm_exec_control));
7693
7694         if (vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER)
7695                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE,
7696                              vmcs12->vmx_preemption_timer_value);
7697
7698         /*
7699          * Whether page-faults are trapped is determined by a combination of
7700          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
7701          * If enable_ept, L0 doesn't care about page faults and we should
7702          * set all of these to L1's desires. However, if !enable_ept, L0 does
7703          * care about (at least some) page faults, and because it is not easy
7704          * (if at all possible?) to merge L0 and L1's desires, we simply ask
7705          * to exit on each and every L2 page fault. This is done by setting
7706          * MASK=MATCH=0 and (see below) EB.PF=1.
7707          * Note that below we don't need special code to set EB.PF beyond the
7708          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
7709          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
7710          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
7711          *
7712          * A problem with this approach (when !enable_ept) is that L1 may be
7713          * injected with more page faults than it asked for. This could have
7714          * caused problems, but in practice existing hypervisors don't care.
7715          * To fix this, we will need to emulate the PFEC checking (on the L1
7716          * page tables), using walk_addr(), when injecting PFs to L1.
7717          */
7718         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
7719                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
7720         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
7721                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
7722
7723         if (cpu_has_secondary_exec_ctrls()) {
7724                 u32 exec_control = vmx_secondary_exec_control(vmx);
7725                 if (!vmx->rdtscp_enabled)
7726                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
7727                 /* Take the following fields only from vmcs12 */
7728                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7729                 if (nested_cpu_has(vmcs12,
7730                                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
7731                         exec_control |= vmcs12->secondary_vm_exec_control;
7732
7733                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
7734                         /*
7735                          * Translate L1 physical address to host physical
7736                          * address for vmcs02. Keep the page pinned, so this
7737                          * physical address remains valid. We keep a reference
7738                          * to it so we can release it later.
7739                          */
7740                         if (vmx->nested.apic_access_page) /* shouldn't happen */
7741                                 nested_release_page(vmx->nested.apic_access_page);
7742                         vmx->nested.apic_access_page =
7743                                 nested_get_page(vcpu, vmcs12->apic_access_addr);
7744                         /*
7745                          * If translation failed, no matter: This feature asks
7746                          * to exit when accessing the given address, and if it
7747                          * can never be accessed, this feature won't do
7748                          * anything anyway.
7749                          */
7750                         if (!vmx->nested.apic_access_page)
7751                                 exec_control &=
7752                                   ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7753                         else
7754                                 vmcs_write64(APIC_ACCESS_ADDR,
7755                                   page_to_phys(vmx->nested.apic_access_page));
7756                 } else if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm)) {
7757                         exec_control |=
7758                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7759                         vmcs_write64(APIC_ACCESS_ADDR,
7760                                 page_to_phys(vcpu->kvm->arch.apic_access_page));
7761                 }
7762
7763                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7764         }
7765
7766
7767         /*
7768          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
7769          * Some constant fields are set here by vmx_set_constant_host_state().
7770          * Other fields are different per CPU, and will be set later when
7771          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
7772          */
7773         vmx_set_constant_host_state(vmx);
7774
7775         /*
7776          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
7777          * entry, but only if the current (host) sp changed from the value
7778          * we wrote last (vmx->host_rsp). This cache is no longer relevant
7779          * if we switch vmcs, and rather than hold a separate cache per vmcs,
7780          * here we just force the write to happen on entry.
7781          */
7782         vmx->host_rsp = 0;
7783
7784         exec_control = vmx_exec_control(vmx); /* L0's desires */
7785         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
7786         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
7787         exec_control &= ~CPU_BASED_TPR_SHADOW;
7788         exec_control |= vmcs12->cpu_based_vm_exec_control;
7789         /*
7790          * Merging of IO and MSR bitmaps not currently supported.
7791          * Rather, exit every time.
7792          */
7793         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
7794         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
7795         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
7796
7797         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
7798
7799         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
7800          * bitwise-or of what L1 wants to trap for L2, and what we want to
7801          * trap. Note that CR0.TS also needs updating - we do this later.
7802          */
7803         update_exception_bitmap(vcpu);
7804         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
7805         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7806
7807         /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
7808          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
7809          * bits are further modified by vmx_set_efer() below.
7810          */
7811         exit_control = vmcs_config.vmexit_ctrl;
7812         if (vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER)
7813                 exit_control |= VM_EXIT_SAVE_VMX_PREEMPTION_TIMER;
7814         vm_exit_controls_init(vmx, exit_control);
7815
7816         /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
7817          * emulated by vmx_set_efer(), below.
7818          */
7819         vm_entry_controls_init(vmx, 
7820                 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
7821                         ~VM_ENTRY_IA32E_MODE) |
7822                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
7823
7824         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
7825                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
7826                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
7827         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
7828                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
7829
7830
7831         set_cr4_guest_host_mask(vmx);
7832
7833         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
7834                 vmcs_write64(TSC_OFFSET,
7835                         vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
7836         else
7837                 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7838
7839         if (enable_vpid) {
7840                 /*
7841                  * Trivially support vpid by letting L2s share their parent
7842                  * L1's vpid. TODO: move to a more elaborate solution, giving
7843                  * each L2 its own vpid and exposing the vpid feature to L1.
7844                  */
7845                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
7846                 vmx_flush_tlb(vcpu);
7847         }
7848
7849         if (nested_cpu_has_ept(vmcs12)) {
7850                 kvm_mmu_unload(vcpu);
7851                 nested_ept_init_mmu_context(vcpu);
7852         }
7853
7854         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
7855                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
7856         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
7857                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7858         else
7859                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7860         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
7861         vmx_set_efer(vcpu, vcpu->arch.efer);
7862
7863         /*
7864          * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
7865          * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
7866          * The CR0_READ_SHADOW is what L2 should have expected to read given
7867          * the specifications by L1; It's not enough to take
7868          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
7869          * have more bits than L1 expected.
7870          */
7871         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
7872         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
7873
7874         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
7875         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
7876
7877         /* shadow page tables on either EPT or shadow page tables */
7878         kvm_set_cr3(vcpu, vmcs12->guest_cr3);
7879         kvm_mmu_reset_context(vcpu);
7880
7881         if (!enable_ept)
7882                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
7883
7884         /*
7885          * L1 may access the L2's PDPTR, so save them to construct vmcs12
7886          */
7887         if (enable_ept) {
7888                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
7889                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
7890                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
7891                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
7892         }
7893
7894         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
7895         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
7896 }
7897
7898 /*
7899  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
7900  * for running an L2 nested guest.
7901  */
7902 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
7903 {
7904         struct vmcs12 *vmcs12;
7905         struct vcpu_vmx *vmx = to_vmx(vcpu);
7906         int cpu;
7907         struct loaded_vmcs *vmcs02;
7908         bool ia32e;
7909
7910         if (!nested_vmx_check_permission(vcpu) ||
7911             !nested_vmx_check_vmcs12(vcpu))
7912                 return 1;
7913
7914         skip_emulated_instruction(vcpu);
7915         vmcs12 = get_vmcs12(vcpu);
7916
7917         if (enable_shadow_vmcs)
7918                 copy_shadow_to_vmcs12(vmx);
7919
7920         /*
7921          * The nested entry process starts with enforcing various prerequisites
7922          * on vmcs12 as required by the Intel SDM, and act appropriately when
7923          * they fail: As the SDM explains, some conditions should cause the
7924          * instruction to fail, while others will cause the instruction to seem
7925          * to succeed, but return an EXIT_REASON_INVALID_STATE.
7926          * To speed up the normal (success) code path, we should avoid checking
7927          * for misconfigurations which will anyway be caught by the processor
7928          * when using the merged vmcs02.
7929          */
7930         if (vmcs12->launch_state == launch) {
7931                 nested_vmx_failValid(vcpu,
7932                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
7933                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
7934                 return 1;
7935         }
7936
7937         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
7938             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
7939                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7940                 return 1;
7941         }
7942
7943         if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
7944                         !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
7945                 /*TODO: Also verify bits beyond physical address width are 0*/
7946                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7947                 return 1;
7948         }
7949
7950         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
7951                         !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
7952                 /*TODO: Also verify bits beyond physical address width are 0*/
7953                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7954                 return 1;
7955         }
7956
7957         if (vmcs12->vm_entry_msr_load_count > 0 ||
7958             vmcs12->vm_exit_msr_load_count > 0 ||
7959             vmcs12->vm_exit_msr_store_count > 0) {
7960                 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
7961                                     __func__);
7962                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7963                 return 1;
7964         }
7965
7966         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
7967               nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
7968             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
7969               nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
7970             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
7971               nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
7972             !vmx_control_verify(vmcs12->vm_exit_controls,
7973               nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
7974             !vmx_control_verify(vmcs12->vm_entry_controls,
7975               nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
7976         {
7977                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7978                 return 1;
7979         }
7980
7981         if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
7982             ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7983                 nested_vmx_failValid(vcpu,
7984                         VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7985                 return 1;
7986         }
7987
7988         if (!nested_cr0_valid(vmcs12, vmcs12->guest_cr0) ||
7989             ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7990                 nested_vmx_entry_failure(vcpu, vmcs12,
7991                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
7992                 return 1;
7993         }
7994         if (vmcs12->vmcs_link_pointer != -1ull) {
7995                 nested_vmx_entry_failure(vcpu, vmcs12,
7996                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
7997                 return 1;
7998         }
7999
8000         /*
8001          * If the load IA32_EFER VM-entry control is 1, the following checks
8002          * are performed on the field for the IA32_EFER MSR:
8003          * - Bits reserved in the IA32_EFER MSR must be 0.
8004          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
8005          *   the IA-32e mode guest VM-exit control. It must also be identical
8006          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
8007          *   CR0.PG) is 1.
8008          */
8009         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
8010                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
8011                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
8012                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
8013                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
8014                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
8015                         nested_vmx_entry_failure(vcpu, vmcs12,
8016                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8017                         return 1;
8018                 }
8019         }
8020
8021         /*
8022          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
8023          * IA32_EFER MSR must be 0 in the field for that register. In addition,
8024          * the values of the LMA and LME bits in the field must each be that of
8025          * the host address-space size VM-exit control.
8026          */
8027         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
8028                 ia32e = (vmcs12->vm_exit_controls &
8029                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
8030                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
8031                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
8032                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
8033                         nested_vmx_entry_failure(vcpu, vmcs12,
8034                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8035                         return 1;
8036                 }
8037         }
8038
8039         /*
8040          * We're finally done with prerequisite checking, and can start with
8041          * the nested entry.
8042          */
8043
8044         vmcs02 = nested_get_current_vmcs02(vmx);
8045         if (!vmcs02)
8046                 return -ENOMEM;
8047
8048         enter_guest_mode(vcpu);
8049
8050         vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
8051
8052         cpu = get_cpu();
8053         vmx->loaded_vmcs = vmcs02;
8054         vmx_vcpu_put(vcpu);
8055         vmx_vcpu_load(vcpu, cpu);
8056         vcpu->cpu = cpu;
8057         put_cpu();
8058
8059         vmx_segment_cache_clear(vmx);
8060
8061         vmcs12->launch_state = 1;
8062
8063         prepare_vmcs02(vcpu, vmcs12);
8064
8065         if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
8066                 return kvm_emulate_halt(vcpu);
8067
8068         vmx->nested.nested_run_pending = 1;
8069
8070         /*
8071          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
8072          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
8073          * returned as far as L1 is concerned. It will only return (and set
8074          * the success flag) when L2 exits (see nested_vmx_vmexit()).
8075          */
8076         return 1;
8077 }
8078
8079 /*
8080  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
8081  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
8082  * This function returns the new value we should put in vmcs12.guest_cr0.
8083  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
8084  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
8085  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
8086  *     didn't trap the bit, because if L1 did, so would L0).
8087  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
8088  *     been modified by L2, and L1 knows it. So just leave the old value of
8089  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
8090  *     isn't relevant, because if L0 traps this bit it can set it to anything.
8091  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
8092  *     changed these bits, and therefore they need to be updated, but L0
8093  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
8094  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
8095  */
8096 static inline unsigned long
8097 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8098 {
8099         return
8100         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
8101         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
8102         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
8103                         vcpu->arch.cr0_guest_owned_bits));
8104 }
8105
8106 static inline unsigned long
8107 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8108 {
8109         return
8110         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
8111         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
8112         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
8113                         vcpu->arch.cr4_guest_owned_bits));
8114 }
8115
8116 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
8117                                        struct vmcs12 *vmcs12)
8118 {
8119         u32 idt_vectoring;
8120         unsigned int nr;
8121
8122         if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
8123                 nr = vcpu->arch.exception.nr;
8124                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8125
8126                 if (kvm_exception_is_soft(nr)) {
8127                         vmcs12->vm_exit_instruction_len =
8128                                 vcpu->arch.event_exit_inst_len;
8129                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
8130                 } else
8131                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
8132
8133                 if (vcpu->arch.exception.has_error_code) {
8134                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
8135                         vmcs12->idt_vectoring_error_code =
8136                                 vcpu->arch.exception.error_code;
8137                 }
8138
8139                 vmcs12->idt_vectoring_info_field = idt_vectoring;
8140         } else if (vcpu->arch.nmi_injected) {
8141                 vmcs12->idt_vectoring_info_field =
8142                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
8143         } else if (vcpu->arch.interrupt.pending) {
8144                 nr = vcpu->arch.interrupt.nr;
8145                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8146
8147                 if (vcpu->arch.interrupt.soft) {
8148                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
8149                         vmcs12->vm_entry_instruction_len =
8150                                 vcpu->arch.event_exit_inst_len;
8151                 } else
8152                         idt_vectoring |= INTR_TYPE_EXT_INTR;
8153
8154                 vmcs12->idt_vectoring_info_field = idt_vectoring;
8155         }
8156 }
8157
8158 /*
8159  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
8160  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
8161  * and this function updates it to reflect the changes to the guest state while
8162  * L2 was running (and perhaps made some exits which were handled directly by L0
8163  * without going back to L1), and to reflect the exit reason.
8164  * Note that we do not have to copy here all VMCS fields, just those that
8165  * could have changed by the L2 guest or the exit - i.e., the guest-state and
8166  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
8167  * which already writes to vmcs12 directly.
8168  */
8169 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
8170                            u32 exit_reason, u32 exit_intr_info,
8171                            unsigned long exit_qualification)
8172 {
8173         /* update guest state fields: */
8174         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
8175         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
8176
8177         kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
8178         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8179         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
8180         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
8181
8182         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
8183         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
8184         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
8185         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
8186         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
8187         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
8188         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
8189         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
8190         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
8191         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
8192         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
8193         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
8194         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
8195         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
8196         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
8197         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
8198         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
8199         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
8200         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
8201         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
8202         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
8203         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
8204         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
8205         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
8206         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
8207         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
8208         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
8209         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
8210         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
8211         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
8212         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
8213         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
8214         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
8215         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
8216         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
8217         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
8218
8219         vmcs12->guest_interruptibility_info =
8220                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
8221         vmcs12->guest_pending_dbg_exceptions =
8222                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
8223         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
8224                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
8225         else
8226                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
8227
8228         if ((vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER) &&
8229             (vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER))
8230                 vmcs12->vmx_preemption_timer_value =
8231                         vmcs_read32(VMX_PREEMPTION_TIMER_VALUE);
8232
8233         /*
8234          * In some cases (usually, nested EPT), L2 is allowed to change its
8235          * own CR3 without exiting. If it has changed it, we must keep it.
8236          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
8237          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
8238          *
8239          * Additionally, restore L2's PDPTR to vmcs12.
8240          */
8241         if (enable_ept) {
8242                 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
8243                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
8244                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
8245                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
8246                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
8247         }
8248
8249         vmcs12->vm_entry_controls =
8250                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
8251                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
8252
8253         /* TODO: These cannot have changed unless we have MSR bitmaps and
8254          * the relevant bit asks not to trap the change */
8255         vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8256         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
8257                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
8258         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
8259                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
8260         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
8261         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
8262         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
8263
8264         /* update exit information fields: */
8265
8266         vmcs12->vm_exit_reason = exit_reason;
8267         vmcs12->exit_qualification = exit_qualification;
8268
8269         vmcs12->vm_exit_intr_info = exit_intr_info;
8270         if ((vmcs12->vm_exit_intr_info &
8271              (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8272             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
8273                 vmcs12->vm_exit_intr_error_code =
8274                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8275         vmcs12->idt_vectoring_info_field = 0;
8276         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
8277         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8278
8279         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
8280                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
8281                  * instead of reading the real value. */
8282                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
8283
8284                 /*
8285                  * Transfer the event that L0 or L1 may wanted to inject into
8286                  * L2 to IDT_VECTORING_INFO_FIELD.
8287                  */
8288                 vmcs12_save_pending_event(vcpu, vmcs12);
8289         }
8290
8291         /*
8292          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
8293          * preserved above and would only end up incorrectly in L1.
8294          */
8295         vcpu->arch.nmi_injected = false;
8296         kvm_clear_exception_queue(vcpu);
8297         kvm_clear_interrupt_queue(vcpu);
8298 }
8299
8300 /*
8301  * A part of what we need to when the nested L2 guest exits and we want to
8302  * run its L1 parent, is to reset L1's guest state to the host state specified
8303  * in vmcs12.
8304  * This function is to be called not only on normal nested exit, but also on
8305  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
8306  * Failures During or After Loading Guest State").
8307  * This function should be called when the active VMCS is L1's (vmcs01).
8308  */
8309 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
8310                                    struct vmcs12 *vmcs12)
8311 {
8312         struct kvm_segment seg;
8313
8314         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
8315                 vcpu->arch.efer = vmcs12->host_ia32_efer;
8316         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8317                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8318         else
8319                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8320         vmx_set_efer(vcpu, vcpu->arch.efer);
8321
8322         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
8323         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
8324         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
8325         /*
8326          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
8327          * actually changed, because it depends on the current state of
8328          * fpu_active (which may have changed).
8329          * Note that vmx_set_cr0 refers to efer set above.
8330          */
8331         vmx_set_cr0(vcpu, vmcs12->host_cr0);
8332         /*
8333          * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
8334          * to apply the same changes to L1's vmcs. We just set cr0 correctly,
8335          * but we also need to update cr0_guest_host_mask and exception_bitmap.
8336          */
8337         update_exception_bitmap(vcpu);
8338         vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
8339         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8340
8341         /*
8342          * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
8343          * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
8344          */
8345         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
8346         kvm_set_cr4(vcpu, vmcs12->host_cr4);
8347
8348         nested_ept_uninit_mmu_context(vcpu);
8349
8350         kvm_set_cr3(vcpu, vmcs12->host_cr3);
8351         kvm_mmu_reset_context(vcpu);
8352
8353         if (!enable_ept)
8354                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
8355
8356         if (enable_vpid) {
8357                 /*
8358                  * Trivially support vpid by letting L2s share their parent
8359                  * L1's vpid. TODO: move to a more elaborate solution, giving
8360                  * each L2 its own vpid and exposing the vpid feature to L1.
8361                  */
8362                 vmx_flush_tlb(vcpu);
8363         }
8364
8365
8366         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
8367         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
8368         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
8369         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
8370         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
8371
8372         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
8373                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
8374                 vcpu->arch.pat = vmcs12->host_ia32_pat;
8375         }
8376         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8377                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
8378                         vmcs12->host_ia32_perf_global_ctrl);
8379
8380         /* Set L1 segment info according to Intel SDM
8381             27.5.2 Loading Host Segment and Descriptor-Table Registers */
8382         seg = (struct kvm_segment) {
8383                 .base = 0,
8384                 .limit = 0xFFFFFFFF,
8385                 .selector = vmcs12->host_cs_selector,
8386                 .type = 11,
8387                 .present = 1,
8388                 .s = 1,
8389                 .g = 1
8390         };
8391         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8392                 seg.l = 1;
8393         else
8394                 seg.db = 1;
8395         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
8396         seg = (struct kvm_segment) {
8397                 .base = 0,
8398                 .limit = 0xFFFFFFFF,
8399                 .type = 3,
8400                 .present = 1,
8401                 .s = 1,
8402                 .db = 1,
8403                 .g = 1
8404         };
8405         seg.selector = vmcs12->host_ds_selector;
8406         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
8407         seg.selector = vmcs12->host_es_selector;
8408         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
8409         seg.selector = vmcs12->host_ss_selector;
8410         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
8411         seg.selector = vmcs12->host_fs_selector;
8412         seg.base = vmcs12->host_fs_base;
8413         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
8414         seg.selector = vmcs12->host_gs_selector;
8415         seg.base = vmcs12->host_gs_base;
8416         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
8417         seg = (struct kvm_segment) {
8418                 .base = vmcs12->host_tr_base,
8419                 .limit = 0x67,
8420                 .selector = vmcs12->host_tr_selector,
8421                 .type = 11,
8422                 .present = 1
8423         };
8424         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
8425
8426         kvm_set_dr(vcpu, 7, 0x400);
8427         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
8428 }
8429
8430 /*
8431  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
8432  * and modify vmcs12 to make it see what it would expect to see there if
8433  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
8434  */
8435 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
8436                               u32 exit_intr_info,
8437                               unsigned long exit_qualification)
8438 {
8439         struct vcpu_vmx *vmx = to_vmx(vcpu);
8440         int cpu;
8441         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8442
8443         /* trying to cancel vmlaunch/vmresume is a bug */
8444         WARN_ON_ONCE(vmx->nested.nested_run_pending);
8445
8446         leave_guest_mode(vcpu);
8447         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
8448                        exit_qualification);
8449
8450         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
8451                                        vmcs12->exit_qualification,
8452                                        vmcs12->idt_vectoring_info_field,
8453                                        vmcs12->vm_exit_intr_info,
8454                                        vmcs12->vm_exit_intr_error_code,
8455                                        KVM_ISA_VMX);
8456
8457         cpu = get_cpu();
8458         vmx->loaded_vmcs = &vmx->vmcs01;
8459         vmx_vcpu_put(vcpu);
8460         vmx_vcpu_load(vcpu, cpu);
8461         vcpu->cpu = cpu;
8462         put_cpu();
8463
8464         vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
8465         vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
8466         vmx_segment_cache_clear(vmx);
8467
8468         /* if no vmcs02 cache requested, remove the one we used */
8469         if (VMCS02_POOL_SIZE == 0)
8470                 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
8471
8472         load_vmcs12_host_state(vcpu, vmcs12);
8473
8474         /* Update TSC_OFFSET if TSC was changed while L2 ran */
8475         vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8476
8477         /* This is needed for same reason as it was needed in prepare_vmcs02 */
8478         vmx->host_rsp = 0;
8479
8480         /* Unpin physical memory we referred to in vmcs02 */
8481         if (vmx->nested.apic_access_page) {
8482                 nested_release_page(vmx->nested.apic_access_page);
8483                 vmx->nested.apic_access_page = 0;
8484         }
8485
8486         /*
8487          * Exiting from L2 to L1, we're now back to L1 which thinks it just
8488          * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
8489          * success or failure flag accordingly.
8490          */
8491         if (unlikely(vmx->fail)) {
8492                 vmx->fail = 0;
8493                 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
8494         } else
8495                 nested_vmx_succeed(vcpu);
8496         if (enable_shadow_vmcs)
8497                 vmx->nested.sync_shadow_vmcs = true;
8498 }
8499
8500 /*
8501  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
8502  */
8503 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
8504 {
8505         if (is_guest_mode(vcpu))
8506                 nested_vmx_vmexit(vcpu, -1, 0, 0);
8507         free_nested(to_vmx(vcpu));
8508 }
8509
8510 /*
8511  * L1's failure to enter L2 is a subset of a normal exit, as explained in
8512  * 23.7 "VM-entry failures during or after loading guest state" (this also
8513  * lists the acceptable exit-reason and exit-qualification parameters).
8514  * It should only be called before L2 actually succeeded to run, and when
8515  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
8516  */
8517 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
8518                         struct vmcs12 *vmcs12,
8519                         u32 reason, unsigned long qualification)
8520 {
8521         load_vmcs12_host_state(vcpu, vmcs12);
8522         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
8523         vmcs12->exit_qualification = qualification;
8524         nested_vmx_succeed(vcpu);
8525         if (enable_shadow_vmcs)
8526                 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
8527 }
8528
8529 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
8530                                struct x86_instruction_info *info,
8531                                enum x86_intercept_stage stage)
8532 {
8533         return X86EMUL_CONTINUE;
8534 }
8535
8536 static struct kvm_x86_ops vmx_x86_ops = {
8537         .cpu_has_kvm_support = cpu_has_kvm_support,
8538         .disabled_by_bios = vmx_disabled_by_bios,
8539         .hardware_setup = hardware_setup,
8540         .hardware_unsetup = hardware_unsetup,
8541         .check_processor_compatibility = vmx_check_processor_compat,
8542         .hardware_enable = hardware_enable,
8543         .hardware_disable = hardware_disable,
8544         .cpu_has_accelerated_tpr = report_flexpriority,
8545
8546         .vcpu_create = vmx_create_vcpu,
8547         .vcpu_free = vmx_free_vcpu,
8548         .vcpu_reset = vmx_vcpu_reset,
8549
8550         .prepare_guest_switch = vmx_save_host_state,
8551         .vcpu_load = vmx_vcpu_load,
8552         .vcpu_put = vmx_vcpu_put,
8553
8554         .update_db_bp_intercept = update_exception_bitmap,
8555         .get_msr = vmx_get_msr,
8556         .set_msr = vmx_set_msr,
8557         .get_segment_base = vmx_get_segment_base,
8558         .get_segment = vmx_get_segment,
8559         .set_segment = vmx_set_segment,
8560         .get_cpl = vmx_get_cpl,
8561         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8562         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
8563         .decache_cr3 = vmx_decache_cr3,
8564         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
8565         .set_cr0 = vmx_set_cr0,
8566         .set_cr3 = vmx_set_cr3,
8567         .set_cr4 = vmx_set_cr4,
8568         .set_efer = vmx_set_efer,
8569         .get_idt = vmx_get_idt,
8570         .set_idt = vmx_set_idt,
8571         .get_gdt = vmx_get_gdt,
8572         .set_gdt = vmx_set_gdt,
8573         .get_dr6 = vmx_get_dr6,
8574         .set_dr6 = vmx_set_dr6,
8575         .set_dr7 = vmx_set_dr7,
8576         .cache_reg = vmx_cache_reg,
8577         .get_rflags = vmx_get_rflags,
8578         .set_rflags = vmx_set_rflags,
8579         .fpu_activate = vmx_fpu_activate,
8580         .fpu_deactivate = vmx_fpu_deactivate,
8581
8582         .tlb_flush = vmx_flush_tlb,
8583
8584         .run = vmx_vcpu_run,
8585         .handle_exit = vmx_handle_exit,
8586         .skip_emulated_instruction = skip_emulated_instruction,
8587         .set_interrupt_shadow = vmx_set_interrupt_shadow,
8588         .get_interrupt_shadow = vmx_get_interrupt_shadow,
8589         .patch_hypercall = vmx_patch_hypercall,
8590         .set_irq = vmx_inject_irq,
8591         .set_nmi = vmx_inject_nmi,
8592         .queue_exception = vmx_queue_exception,
8593         .cancel_injection = vmx_cancel_injection,
8594         .interrupt_allowed = vmx_interrupt_allowed,
8595         .nmi_allowed = vmx_nmi_allowed,
8596         .get_nmi_mask = vmx_get_nmi_mask,
8597         .set_nmi_mask = vmx_set_nmi_mask,
8598         .enable_nmi_window = enable_nmi_window,
8599         .enable_irq_window = enable_irq_window,
8600         .update_cr8_intercept = update_cr8_intercept,
8601         .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
8602         .vm_has_apicv = vmx_vm_has_apicv,
8603         .load_eoi_exitmap = vmx_load_eoi_exitmap,
8604         .hwapic_irr_update = vmx_hwapic_irr_update,
8605         .hwapic_isr_update = vmx_hwapic_isr_update,
8606         .sync_pir_to_irr = vmx_sync_pir_to_irr,
8607         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
8608
8609         .set_tss_addr = vmx_set_tss_addr,
8610         .get_tdp_level = get_ept_level,
8611         .get_mt_mask = vmx_get_mt_mask,
8612
8613         .get_exit_info = vmx_get_exit_info,
8614
8615         .get_lpage_level = vmx_get_lpage_level,
8616
8617         .cpuid_update = vmx_cpuid_update,
8618
8619         .rdtscp_supported = vmx_rdtscp_supported,
8620         .invpcid_supported = vmx_invpcid_supported,
8621
8622         .set_supported_cpuid = vmx_set_supported_cpuid,
8623
8624         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8625
8626         .set_tsc_khz = vmx_set_tsc_khz,
8627         .read_tsc_offset = vmx_read_tsc_offset,
8628         .write_tsc_offset = vmx_write_tsc_offset,
8629         .adjust_tsc_offset = vmx_adjust_tsc_offset,
8630         .compute_tsc_offset = vmx_compute_tsc_offset,
8631         .read_l1_tsc = vmx_read_l1_tsc,
8632
8633         .set_tdp_cr3 = vmx_set_cr3,
8634
8635         .check_intercept = vmx_check_intercept,
8636         .handle_external_intr = vmx_handle_external_intr,
8637 };
8638
8639 static int __init vmx_init(void)
8640 {
8641         int r, i, msr;
8642
8643         rdmsrl_safe(MSR_EFER, &host_efer);
8644
8645         for (i = 0; i < NR_VMX_MSR; ++i)
8646                 kvm_define_shared_msr(i, vmx_msr_index[i]);
8647
8648         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
8649         if (!vmx_io_bitmap_a)
8650                 return -ENOMEM;
8651
8652         r = -ENOMEM;
8653
8654         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
8655         if (!vmx_io_bitmap_b)
8656                 goto out;
8657
8658         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
8659         if (!vmx_msr_bitmap_legacy)
8660                 goto out1;
8661
8662         vmx_msr_bitmap_legacy_x2apic =
8663                                 (unsigned long *)__get_free_page(GFP_KERNEL);
8664         if (!vmx_msr_bitmap_legacy_x2apic)
8665                 goto out2;
8666
8667         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
8668         if (!vmx_msr_bitmap_longmode)
8669                 goto out3;
8670
8671         vmx_msr_bitmap_longmode_x2apic =
8672                                 (unsigned long *)__get_free_page(GFP_KERNEL);
8673         if (!vmx_msr_bitmap_longmode_x2apic)
8674                 goto out4;
8675         vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8676         if (!vmx_vmread_bitmap)
8677                 goto out5;
8678
8679         vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8680         if (!vmx_vmwrite_bitmap)
8681                 goto out6;
8682
8683         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
8684         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
8685         /* shadowed read/write fields */
8686         for (i = 0; i < max_shadow_read_write_fields; i++) {
8687                 clear_bit(shadow_read_write_fields[i], vmx_vmwrite_bitmap);
8688                 clear_bit(shadow_read_write_fields[i], vmx_vmread_bitmap);
8689         }
8690         /* shadowed read only fields */
8691         for (i = 0; i < max_shadow_read_only_fields; i++)
8692                 clear_bit(shadow_read_only_fields[i], vmx_vmread_bitmap);
8693
8694         /*
8695          * Allow direct access to the PC debug port (it is often used for I/O
8696          * delays, but the vmexits simply slow things down).
8697          */
8698         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
8699         clear_bit(0x80, vmx_io_bitmap_a);
8700
8701         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
8702
8703         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
8704         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
8705
8706         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8707
8708         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
8709                      __alignof__(struct vcpu_vmx), THIS_MODULE);
8710         if (r)
8711                 goto out7;
8712
8713 #ifdef CONFIG_KEXEC
8714         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8715                            crash_vmclear_local_loaded_vmcss);
8716 #endif
8717
8718         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
8719         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
8720         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
8721         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
8722         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
8723         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
8724         memcpy(vmx_msr_bitmap_legacy_x2apic,
8725                         vmx_msr_bitmap_legacy, PAGE_SIZE);
8726         memcpy(vmx_msr_bitmap_longmode_x2apic,
8727                         vmx_msr_bitmap_longmode, PAGE_SIZE);
8728
8729         if (enable_apicv) {
8730                 for (msr = 0x800; msr <= 0x8ff; msr++)
8731                         vmx_disable_intercept_msr_read_x2apic(msr);
8732
8733                 /* According SDM, in x2apic mode, the whole id reg is used.
8734                  * But in KVM, it only use the highest eight bits. Need to
8735                  * intercept it */
8736                 vmx_enable_intercept_msr_read_x2apic(0x802);
8737                 /* TMCCT */
8738                 vmx_enable_intercept_msr_read_x2apic(0x839);
8739                 /* TPR */
8740                 vmx_disable_intercept_msr_write_x2apic(0x808);
8741                 /* EOI */
8742                 vmx_disable_intercept_msr_write_x2apic(0x80b);
8743                 /* SELF-IPI */
8744                 vmx_disable_intercept_msr_write_x2apic(0x83f);
8745         }
8746
8747         if (enable_ept) {
8748                 kvm_mmu_set_mask_ptes(0ull,
8749                         (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
8750                         (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
8751                         0ull, VMX_EPT_EXECUTABLE_MASK);
8752                 ept_set_mmio_spte_mask();
8753                 kvm_enable_tdp();
8754         } else
8755                 kvm_disable_tdp();
8756
8757         return 0;
8758
8759 out7:
8760         free_page((unsigned long)vmx_vmwrite_bitmap);
8761 out6:
8762         free_page((unsigned long)vmx_vmread_bitmap);
8763 out5:
8764         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
8765 out4:
8766         free_page((unsigned long)vmx_msr_bitmap_longmode);
8767 out3:
8768         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
8769 out2:
8770         free_page((unsigned long)vmx_msr_bitmap_legacy);
8771 out1:
8772         free_page((unsigned long)vmx_io_bitmap_b);
8773 out:
8774         free_page((unsigned long)vmx_io_bitmap_a);
8775         return r;
8776 }
8777
8778 static void __exit vmx_exit(void)
8779 {
8780         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
8781         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
8782         free_page((unsigned long)vmx_msr_bitmap_legacy);
8783         free_page((unsigned long)vmx_msr_bitmap_longmode);
8784         free_page((unsigned long)vmx_io_bitmap_b);
8785         free_page((unsigned long)vmx_io_bitmap_a);
8786         free_page((unsigned long)vmx_vmwrite_bitmap);
8787         free_page((unsigned long)vmx_vmread_bitmap);
8788
8789 #ifdef CONFIG_KEXEC
8790         rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
8791         synchronize_rcu();
8792 #endif
8793
8794         kvm_exit();
8795 }
8796
8797 module_init(vmx_init)
8798 module_exit(vmx_exit)