]> Pileus Git - ~andy/linux/blob - arch/x86/kvm/mmu.c
4ed3edbe06bd84218beda76ba2deb58efbf2383f
[~andy/linux] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45  * When setting this variable to true it enables Two-Dimensional-Paging
46  * where the hardware walks 2 page tables:
47  * 1. the guest-virtual to guest-physical
48  * 2. while doing 1. it walks guest-physical to host-physical
49  * If the hardware supports that we don't need to do shadow paging.
50  */
51 bool tdp_enabled = false;
52
53 enum {
54         AUDIT_PRE_PAGE_FAULT,
55         AUDIT_POST_PAGE_FAULT,
56         AUDIT_PRE_PTE_WRITE,
57         AUDIT_POST_PTE_WRITE,
58         AUDIT_PRE_SYNC,
59         AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x)                                                       \
85         if (!(x)) {                                                     \
86                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
87                        __FILE__, __LINE__, #x);                         \
88         }
89 #endif
90
91 #define PTE_PREFETCH_NUM                8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112                                                 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123                                                 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126                                                 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133                                             * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136                         | PT64_NX_MASK)
137
138 #define ACC_EXEC_MASK    1
139 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
140 #define ACC_USER_MASK    PT_USER_MASK
141 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
155
156 struct pte_list_desc {
157         u64 *sptes[PTE_LIST_EXT];
158         struct pte_list_desc *more;
159 };
160
161 struct kvm_shadow_walk_iterator {
162         u64 addr;
163         hpa_t shadow_addr;
164         u64 *sptep;
165         int level;
166         unsigned index;
167 };
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
170         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
171              shadow_walk_okay(&(_walker));                      \
172              shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
175         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
176              shadow_walk_okay(&(_walker)) &&                            \
177                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
178              __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183
184 static u64 __read_mostly shadow_nx_mask;
185 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask;
187 static u64 __read_mostly shadow_accessed_mask;
188 static u64 __read_mostly shadow_dirty_mask;
189 static u64 __read_mostly shadow_mmio_mask;
190
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static void mmu_free_roots(struct kvm_vcpu *vcpu);
193
194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195 {
196         shadow_mmio_mask = mmio_mask;
197 }
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201 {
202         access &= ACC_WRITE_MASK | ACC_USER_MASK;
203
204         trace_mark_mmio_spte(sptep, gfn, access);
205         mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
206 }
207
208 static bool is_mmio_spte(u64 spte)
209 {
210         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
211 }
212
213 static gfn_t get_mmio_spte_gfn(u64 spte)
214 {
215         return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
216 }
217
218 static unsigned get_mmio_spte_access(u64 spte)
219 {
220         return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
221 }
222
223 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
224 {
225         if (unlikely(is_noslot_pfn(pfn))) {
226                 mark_mmio_spte(sptep, gfn, access);
227                 return true;
228         }
229
230         return false;
231 }
232
233 static inline u64 rsvd_bits(int s, int e)
234 {
235         return ((1ULL << (e - s + 1)) - 1) << s;
236 }
237
238 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
239                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
240 {
241         shadow_user_mask = user_mask;
242         shadow_accessed_mask = accessed_mask;
243         shadow_dirty_mask = dirty_mask;
244         shadow_nx_mask = nx_mask;
245         shadow_x_mask = x_mask;
246 }
247 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
248
249 static int is_cpuid_PSE36(void)
250 {
251         return 1;
252 }
253
254 static int is_nx(struct kvm_vcpu *vcpu)
255 {
256         return vcpu->arch.efer & EFER_NX;
257 }
258
259 static int is_shadow_present_pte(u64 pte)
260 {
261         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
262 }
263
264 static int is_large_pte(u64 pte)
265 {
266         return pte & PT_PAGE_SIZE_MASK;
267 }
268
269 static int is_dirty_gpte(unsigned long pte)
270 {
271         return pte & PT_DIRTY_MASK;
272 }
273
274 static int is_rmap_spte(u64 pte)
275 {
276         return is_shadow_present_pte(pte);
277 }
278
279 static int is_last_spte(u64 pte, int level)
280 {
281         if (level == PT_PAGE_TABLE_LEVEL)
282                 return 1;
283         if (is_large_pte(pte))
284                 return 1;
285         return 0;
286 }
287
288 static pfn_t spte_to_pfn(u64 pte)
289 {
290         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
291 }
292
293 static gfn_t pse36_gfn_delta(u32 gpte)
294 {
295         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
296
297         return (gpte & PT32_DIR_PSE36_MASK) << shift;
298 }
299
300 #ifdef CONFIG_X86_64
301 static void __set_spte(u64 *sptep, u64 spte)
302 {
303         *sptep = spte;
304 }
305
306 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
307 {
308         *sptep = spte;
309 }
310
311 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
312 {
313         return xchg(sptep, spte);
314 }
315
316 static u64 __get_spte_lockless(u64 *sptep)
317 {
318         return ACCESS_ONCE(*sptep);
319 }
320
321 static bool __check_direct_spte_mmio_pf(u64 spte)
322 {
323         /* It is valid if the spte is zapped. */
324         return spte == 0ull;
325 }
326 #else
327 union split_spte {
328         struct {
329                 u32 spte_low;
330                 u32 spte_high;
331         };
332         u64 spte;
333 };
334
335 static void count_spte_clear(u64 *sptep, u64 spte)
336 {
337         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
338
339         if (is_shadow_present_pte(spte))
340                 return;
341
342         /* Ensure the spte is completely set before we increase the count */
343         smp_wmb();
344         sp->clear_spte_count++;
345 }
346
347 static void __set_spte(u64 *sptep, u64 spte)
348 {
349         union split_spte *ssptep, sspte;
350
351         ssptep = (union split_spte *)sptep;
352         sspte = (union split_spte)spte;
353
354         ssptep->spte_high = sspte.spte_high;
355
356         /*
357          * If we map the spte from nonpresent to present, We should store
358          * the high bits firstly, then set present bit, so cpu can not
359          * fetch this spte while we are setting the spte.
360          */
361         smp_wmb();
362
363         ssptep->spte_low = sspte.spte_low;
364 }
365
366 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
367 {
368         union split_spte *ssptep, sspte;
369
370         ssptep = (union split_spte *)sptep;
371         sspte = (union split_spte)spte;
372
373         ssptep->spte_low = sspte.spte_low;
374
375         /*
376          * If we map the spte from present to nonpresent, we should clear
377          * present bit firstly to avoid vcpu fetch the old high bits.
378          */
379         smp_wmb();
380
381         ssptep->spte_high = sspte.spte_high;
382         count_spte_clear(sptep, spte);
383 }
384
385 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
386 {
387         union split_spte *ssptep, sspte, orig;
388
389         ssptep = (union split_spte *)sptep;
390         sspte = (union split_spte)spte;
391
392         /* xchg acts as a barrier before the setting of the high bits */
393         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
394         orig.spte_high = ssptep->spte_high;
395         ssptep->spte_high = sspte.spte_high;
396         count_spte_clear(sptep, spte);
397
398         return orig.spte;
399 }
400
401 /*
402  * The idea using the light way get the spte on x86_32 guest is from
403  * gup_get_pte(arch/x86/mm/gup.c).
404  * The difference is we can not catch the spte tlb flush if we leave
405  * guest mode, so we emulate it by increase clear_spte_count when spte
406  * is cleared.
407  */
408 static u64 __get_spte_lockless(u64 *sptep)
409 {
410         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
411         union split_spte spte, *orig = (union split_spte *)sptep;
412         int count;
413
414 retry:
415         count = sp->clear_spte_count;
416         smp_rmb();
417
418         spte.spte_low = orig->spte_low;
419         smp_rmb();
420
421         spte.spte_high = orig->spte_high;
422         smp_rmb();
423
424         if (unlikely(spte.spte_low != orig->spte_low ||
425               count != sp->clear_spte_count))
426                 goto retry;
427
428         return spte.spte;
429 }
430
431 static bool __check_direct_spte_mmio_pf(u64 spte)
432 {
433         union split_spte sspte = (union split_spte)spte;
434         u32 high_mmio_mask = shadow_mmio_mask >> 32;
435
436         /* It is valid if the spte is zapped. */
437         if (spte == 0ull)
438                 return true;
439
440         /* It is valid if the spte is being zapped. */
441         if (sspte.spte_low == 0ull &&
442             (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
443                 return true;
444
445         return false;
446 }
447 #endif
448
449 static bool spte_is_locklessly_modifiable(u64 spte)
450 {
451         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
452                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
453 }
454
455 static bool spte_has_volatile_bits(u64 spte)
456 {
457         /*
458          * Always atomicly update spte if it can be updated
459          * out of mmu-lock, it can ensure dirty bit is not lost,
460          * also, it can help us to get a stable is_writable_pte()
461          * to ensure tlb flush is not missed.
462          */
463         if (spte_is_locklessly_modifiable(spte))
464                 return true;
465
466         if (!shadow_accessed_mask)
467                 return false;
468
469         if (!is_shadow_present_pte(spte))
470                 return false;
471
472         if ((spte & shadow_accessed_mask) &&
473               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
474                 return false;
475
476         return true;
477 }
478
479 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
480 {
481         return (old_spte & bit_mask) && !(new_spte & bit_mask);
482 }
483
484 /* Rules for using mmu_spte_set:
485  * Set the sptep from nonpresent to present.
486  * Note: the sptep being assigned *must* be either not present
487  * or in a state where the hardware will not attempt to update
488  * the spte.
489  */
490 static void mmu_spte_set(u64 *sptep, u64 new_spte)
491 {
492         WARN_ON(is_shadow_present_pte(*sptep));
493         __set_spte(sptep, new_spte);
494 }
495
496 /* Rules for using mmu_spte_update:
497  * Update the state bits, it means the mapped pfn is not changged.
498  *
499  * Whenever we overwrite a writable spte with a read-only one we
500  * should flush remote TLBs. Otherwise rmap_write_protect
501  * will find a read-only spte, even though the writable spte
502  * might be cached on a CPU's TLB, the return value indicates this
503  * case.
504  */
505 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
506 {
507         u64 old_spte = *sptep;
508         bool ret = false;
509
510         WARN_ON(!is_rmap_spte(new_spte));
511
512         if (!is_shadow_present_pte(old_spte)) {
513                 mmu_spte_set(sptep, new_spte);
514                 return ret;
515         }
516
517         if (!spte_has_volatile_bits(old_spte))
518                 __update_clear_spte_fast(sptep, new_spte);
519         else
520                 old_spte = __update_clear_spte_slow(sptep, new_spte);
521
522         /*
523          * For the spte updated out of mmu-lock is safe, since
524          * we always atomicly update it, see the comments in
525          * spte_has_volatile_bits().
526          */
527         if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
528                 ret = true;
529
530         if (!shadow_accessed_mask)
531                 return ret;
532
533         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
534                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
535         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
536                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
537
538         return ret;
539 }
540
541 /*
542  * Rules for using mmu_spte_clear_track_bits:
543  * It sets the sptep from present to nonpresent, and track the
544  * state bits, it is used to clear the last level sptep.
545  */
546 static int mmu_spte_clear_track_bits(u64 *sptep)
547 {
548         pfn_t pfn;
549         u64 old_spte = *sptep;
550
551         if (!spte_has_volatile_bits(old_spte))
552                 __update_clear_spte_fast(sptep, 0ull);
553         else
554                 old_spte = __update_clear_spte_slow(sptep, 0ull);
555
556         if (!is_rmap_spte(old_spte))
557                 return 0;
558
559         pfn = spte_to_pfn(old_spte);
560
561         /*
562          * KVM does not hold the refcount of the page used by
563          * kvm mmu, before reclaiming the page, we should
564          * unmap it from mmu first.
565          */
566         WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
567
568         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
569                 kvm_set_pfn_accessed(pfn);
570         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
571                 kvm_set_pfn_dirty(pfn);
572         return 1;
573 }
574
575 /*
576  * Rules for using mmu_spte_clear_no_track:
577  * Directly clear spte without caring the state bits of sptep,
578  * it is used to set the upper level spte.
579  */
580 static void mmu_spte_clear_no_track(u64 *sptep)
581 {
582         __update_clear_spte_fast(sptep, 0ull);
583 }
584
585 static u64 mmu_spte_get_lockless(u64 *sptep)
586 {
587         return __get_spte_lockless(sptep);
588 }
589
590 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
591 {
592         /*
593          * Prevent page table teardown by making any free-er wait during
594          * kvm_flush_remote_tlbs() IPI to all active vcpus.
595          */
596         local_irq_disable();
597         vcpu->mode = READING_SHADOW_PAGE_TABLES;
598         /*
599          * Make sure a following spte read is not reordered ahead of the write
600          * to vcpu->mode.
601          */
602         smp_mb();
603 }
604
605 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
606 {
607         /*
608          * Make sure the write to vcpu->mode is not reordered in front of
609          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
610          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
611          */
612         smp_mb();
613         vcpu->mode = OUTSIDE_GUEST_MODE;
614         local_irq_enable();
615 }
616
617 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
618                                   struct kmem_cache *base_cache, int min)
619 {
620         void *obj;
621
622         if (cache->nobjs >= min)
623                 return 0;
624         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
625                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
626                 if (!obj)
627                         return -ENOMEM;
628                 cache->objects[cache->nobjs++] = obj;
629         }
630         return 0;
631 }
632
633 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
634 {
635         return cache->nobjs;
636 }
637
638 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
639                                   struct kmem_cache *cache)
640 {
641         while (mc->nobjs)
642                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
643 }
644
645 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
646                                        int min)
647 {
648         void *page;
649
650         if (cache->nobjs >= min)
651                 return 0;
652         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
653                 page = (void *)__get_free_page(GFP_KERNEL);
654                 if (!page)
655                         return -ENOMEM;
656                 cache->objects[cache->nobjs++] = page;
657         }
658         return 0;
659 }
660
661 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
662 {
663         while (mc->nobjs)
664                 free_page((unsigned long)mc->objects[--mc->nobjs]);
665 }
666
667 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
668 {
669         int r;
670
671         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
672                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
673         if (r)
674                 goto out;
675         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
676         if (r)
677                 goto out;
678         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
679                                    mmu_page_header_cache, 4);
680 out:
681         return r;
682 }
683
684 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
685 {
686         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
687                                 pte_list_desc_cache);
688         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
689         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
690                                 mmu_page_header_cache);
691 }
692
693 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
694 {
695         void *p;
696
697         BUG_ON(!mc->nobjs);
698         p = mc->objects[--mc->nobjs];
699         return p;
700 }
701
702 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
703 {
704         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
705 }
706
707 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
708 {
709         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
710 }
711
712 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
713 {
714         if (!sp->role.direct)
715                 return sp->gfns[index];
716
717         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
718 }
719
720 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
721 {
722         if (sp->role.direct)
723                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
724         else
725                 sp->gfns[index] = gfn;
726 }
727
728 /*
729  * Return the pointer to the large page information for a given gfn,
730  * handling slots that are not large page aligned.
731  */
732 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
733                                               struct kvm_memory_slot *slot,
734                                               int level)
735 {
736         unsigned long idx;
737
738         idx = gfn_to_index(gfn, slot->base_gfn, level);
739         return &slot->arch.lpage_info[level - 2][idx];
740 }
741
742 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
743 {
744         struct kvm_memory_slot *slot;
745         struct kvm_lpage_info *linfo;
746         int i;
747
748         slot = gfn_to_memslot(kvm, gfn);
749         for (i = PT_DIRECTORY_LEVEL;
750              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
751                 linfo = lpage_info_slot(gfn, slot, i);
752                 linfo->write_count += 1;
753         }
754         kvm->arch.indirect_shadow_pages++;
755 }
756
757 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
758 {
759         struct kvm_memory_slot *slot;
760         struct kvm_lpage_info *linfo;
761         int i;
762
763         slot = gfn_to_memslot(kvm, gfn);
764         for (i = PT_DIRECTORY_LEVEL;
765              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
766                 linfo = lpage_info_slot(gfn, slot, i);
767                 linfo->write_count -= 1;
768                 WARN_ON(linfo->write_count < 0);
769         }
770         kvm->arch.indirect_shadow_pages--;
771 }
772
773 static int has_wrprotected_page(struct kvm *kvm,
774                                 gfn_t gfn,
775                                 int level)
776 {
777         struct kvm_memory_slot *slot;
778         struct kvm_lpage_info *linfo;
779
780         slot = gfn_to_memslot(kvm, gfn);
781         if (slot) {
782                 linfo = lpage_info_slot(gfn, slot, level);
783                 return linfo->write_count;
784         }
785
786         return 1;
787 }
788
789 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
790 {
791         unsigned long page_size;
792         int i, ret = 0;
793
794         page_size = kvm_host_page_size(kvm, gfn);
795
796         for (i = PT_PAGE_TABLE_LEVEL;
797              i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
798                 if (page_size >= KVM_HPAGE_SIZE(i))
799                         ret = i;
800                 else
801                         break;
802         }
803
804         return ret;
805 }
806
807 static struct kvm_memory_slot *
808 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
809                             bool no_dirty_log)
810 {
811         struct kvm_memory_slot *slot;
812
813         slot = gfn_to_memslot(vcpu->kvm, gfn);
814         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
815               (no_dirty_log && slot->dirty_bitmap))
816                 slot = NULL;
817
818         return slot;
819 }
820
821 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
822 {
823         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
824 }
825
826 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
827 {
828         int host_level, level, max_level;
829
830         host_level = host_mapping_level(vcpu->kvm, large_gfn);
831
832         if (host_level == PT_PAGE_TABLE_LEVEL)
833                 return host_level;
834
835         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
836
837         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
838                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
839                         break;
840
841         return level - 1;
842 }
843
844 /*
845  * Pte mapping structures:
846  *
847  * If pte_list bit zero is zero, then pte_list point to the spte.
848  *
849  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
850  * pte_list_desc containing more mappings.
851  *
852  * Returns the number of pte entries before the spte was added or zero if
853  * the spte was not added.
854  *
855  */
856 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
857                         unsigned long *pte_list)
858 {
859         struct pte_list_desc *desc;
860         int i, count = 0;
861
862         if (!*pte_list) {
863                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
864                 *pte_list = (unsigned long)spte;
865         } else if (!(*pte_list & 1)) {
866                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
867                 desc = mmu_alloc_pte_list_desc(vcpu);
868                 desc->sptes[0] = (u64 *)*pte_list;
869                 desc->sptes[1] = spte;
870                 *pte_list = (unsigned long)desc | 1;
871                 ++count;
872         } else {
873                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
874                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
875                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
876                         desc = desc->more;
877                         count += PTE_LIST_EXT;
878                 }
879                 if (desc->sptes[PTE_LIST_EXT-1]) {
880                         desc->more = mmu_alloc_pte_list_desc(vcpu);
881                         desc = desc->more;
882                 }
883                 for (i = 0; desc->sptes[i]; ++i)
884                         ++count;
885                 desc->sptes[i] = spte;
886         }
887         return count;
888 }
889
890 static void
891 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
892                            int i, struct pte_list_desc *prev_desc)
893 {
894         int j;
895
896         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
897                 ;
898         desc->sptes[i] = desc->sptes[j];
899         desc->sptes[j] = NULL;
900         if (j != 0)
901                 return;
902         if (!prev_desc && !desc->more)
903                 *pte_list = (unsigned long)desc->sptes[0];
904         else
905                 if (prev_desc)
906                         prev_desc->more = desc->more;
907                 else
908                         *pte_list = (unsigned long)desc->more | 1;
909         mmu_free_pte_list_desc(desc);
910 }
911
912 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
913 {
914         struct pte_list_desc *desc;
915         struct pte_list_desc *prev_desc;
916         int i;
917
918         if (!*pte_list) {
919                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
920                 BUG();
921         } else if (!(*pte_list & 1)) {
922                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
923                 if ((u64 *)*pte_list != spte) {
924                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
925                         BUG();
926                 }
927                 *pte_list = 0;
928         } else {
929                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
930                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
931                 prev_desc = NULL;
932                 while (desc) {
933                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
934                                 if (desc->sptes[i] == spte) {
935                                         pte_list_desc_remove_entry(pte_list,
936                                                                desc, i,
937                                                                prev_desc);
938                                         return;
939                                 }
940                         prev_desc = desc;
941                         desc = desc->more;
942                 }
943                 pr_err("pte_list_remove: %p many->many\n", spte);
944                 BUG();
945         }
946 }
947
948 typedef void (*pte_list_walk_fn) (u64 *spte);
949 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
950 {
951         struct pte_list_desc *desc;
952         int i;
953
954         if (!*pte_list)
955                 return;
956
957         if (!(*pte_list & 1))
958                 return fn((u64 *)*pte_list);
959
960         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
961         while (desc) {
962                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
963                         fn(desc->sptes[i]);
964                 desc = desc->more;
965         }
966 }
967
968 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
969                                     struct kvm_memory_slot *slot)
970 {
971         unsigned long idx;
972
973         idx = gfn_to_index(gfn, slot->base_gfn, level);
974         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
975 }
976
977 /*
978  * Take gfn and return the reverse mapping to it.
979  */
980 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
981 {
982         struct kvm_memory_slot *slot;
983
984         slot = gfn_to_memslot(kvm, gfn);
985         return __gfn_to_rmap(gfn, level, slot);
986 }
987
988 static bool rmap_can_add(struct kvm_vcpu *vcpu)
989 {
990         struct kvm_mmu_memory_cache *cache;
991
992         cache = &vcpu->arch.mmu_pte_list_desc_cache;
993         return mmu_memory_cache_free_objects(cache);
994 }
995
996 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
997 {
998         struct kvm_mmu_page *sp;
999         unsigned long *rmapp;
1000
1001         sp = page_header(__pa(spte));
1002         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1003         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1004         return pte_list_add(vcpu, spte, rmapp);
1005 }
1006
1007 static void rmap_remove(struct kvm *kvm, u64 *spte)
1008 {
1009         struct kvm_mmu_page *sp;
1010         gfn_t gfn;
1011         unsigned long *rmapp;
1012
1013         sp = page_header(__pa(spte));
1014         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1015         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1016         pte_list_remove(spte, rmapp);
1017 }
1018
1019 /*
1020  * Used by the following functions to iterate through the sptes linked by a
1021  * rmap.  All fields are private and not assumed to be used outside.
1022  */
1023 struct rmap_iterator {
1024         /* private fields */
1025         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1026         int pos;                        /* index of the sptep */
1027 };
1028
1029 /*
1030  * Iteration must be started by this function.  This should also be used after
1031  * removing/dropping sptes from the rmap link because in such cases the
1032  * information in the itererator may not be valid.
1033  *
1034  * Returns sptep if found, NULL otherwise.
1035  */
1036 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1037 {
1038         if (!rmap)
1039                 return NULL;
1040
1041         if (!(rmap & 1)) {
1042                 iter->desc = NULL;
1043                 return (u64 *)rmap;
1044         }
1045
1046         iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1047         iter->pos = 0;
1048         return iter->desc->sptes[iter->pos];
1049 }
1050
1051 /*
1052  * Must be used with a valid iterator: e.g. after rmap_get_first().
1053  *
1054  * Returns sptep if found, NULL otherwise.
1055  */
1056 static u64 *rmap_get_next(struct rmap_iterator *iter)
1057 {
1058         if (iter->desc) {
1059                 if (iter->pos < PTE_LIST_EXT - 1) {
1060                         u64 *sptep;
1061
1062                         ++iter->pos;
1063                         sptep = iter->desc->sptes[iter->pos];
1064                         if (sptep)
1065                                 return sptep;
1066                 }
1067
1068                 iter->desc = iter->desc->more;
1069
1070                 if (iter->desc) {
1071                         iter->pos = 0;
1072                         /* desc->sptes[0] cannot be NULL */
1073                         return iter->desc->sptes[iter->pos];
1074                 }
1075         }
1076
1077         return NULL;
1078 }
1079
1080 static void drop_spte(struct kvm *kvm, u64 *sptep)
1081 {
1082         if (mmu_spte_clear_track_bits(sptep))
1083                 rmap_remove(kvm, sptep);
1084 }
1085
1086
1087 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1088 {
1089         if (is_large_pte(*sptep)) {
1090                 WARN_ON(page_header(__pa(sptep))->role.level ==
1091                         PT_PAGE_TABLE_LEVEL);
1092                 drop_spte(kvm, sptep);
1093                 --kvm->stat.lpages;
1094                 return true;
1095         }
1096
1097         return false;
1098 }
1099
1100 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1101 {
1102         if (__drop_large_spte(vcpu->kvm, sptep))
1103                 kvm_flush_remote_tlbs(vcpu->kvm);
1104 }
1105
1106 /*
1107  * Write-protect on the specified @sptep, @pt_protect indicates whether
1108  * spte writ-protection is caused by protecting shadow page table.
1109  * @flush indicates whether tlb need be flushed.
1110  *
1111  * Note: write protection is difference between drity logging and spte
1112  * protection:
1113  * - for dirty logging, the spte can be set to writable at anytime if
1114  *   its dirty bitmap is properly set.
1115  * - for spte protection, the spte can be writable only after unsync-ing
1116  *   shadow page.
1117  *
1118  * Return true if the spte is dropped.
1119  */
1120 static bool
1121 spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1122 {
1123         u64 spte = *sptep;
1124
1125         if (!is_writable_pte(spte) &&
1126               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1127                 return false;
1128
1129         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1130
1131         if (__drop_large_spte(kvm, sptep)) {
1132                 *flush |= true;
1133                 return true;
1134         }
1135
1136         if (pt_protect)
1137                 spte &= ~SPTE_MMU_WRITEABLE;
1138         spte = spte & ~PT_WRITABLE_MASK;
1139
1140         *flush |= mmu_spte_update(sptep, spte);
1141         return false;
1142 }
1143
1144 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1145                                  bool pt_protect)
1146 {
1147         u64 *sptep;
1148         struct rmap_iterator iter;
1149         bool flush = false;
1150
1151         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1152                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1153                 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1154                         sptep = rmap_get_first(*rmapp, &iter);
1155                         continue;
1156                 }
1157
1158                 sptep = rmap_get_next(&iter);
1159         }
1160
1161         return flush;
1162 }
1163
1164 /**
1165  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1166  * @kvm: kvm instance
1167  * @slot: slot to protect
1168  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1169  * @mask: indicates which pages we should protect
1170  *
1171  * Used when we do not need to care about huge page mappings: e.g. during dirty
1172  * logging we do not have any such mappings.
1173  */
1174 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1175                                      struct kvm_memory_slot *slot,
1176                                      gfn_t gfn_offset, unsigned long mask)
1177 {
1178         unsigned long *rmapp;
1179
1180         while (mask) {
1181                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1182                                       PT_PAGE_TABLE_LEVEL, slot);
1183                 __rmap_write_protect(kvm, rmapp, false);
1184
1185                 /* clear the first set bit */
1186                 mask &= mask - 1;
1187         }
1188 }
1189
1190 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1191 {
1192         struct kvm_memory_slot *slot;
1193         unsigned long *rmapp;
1194         int i;
1195         bool write_protected = false;
1196
1197         slot = gfn_to_memslot(kvm, gfn);
1198
1199         for (i = PT_PAGE_TABLE_LEVEL;
1200              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1201                 rmapp = __gfn_to_rmap(gfn, i, slot);
1202                 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1203         }
1204
1205         return write_protected;
1206 }
1207
1208 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1209                            struct kvm_memory_slot *slot, unsigned long data)
1210 {
1211         u64 *sptep;
1212         struct rmap_iterator iter;
1213         int need_tlb_flush = 0;
1214
1215         while ((sptep = rmap_get_first(*rmapp, &iter))) {
1216                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1217                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1218
1219                 drop_spte(kvm, sptep);
1220                 need_tlb_flush = 1;
1221         }
1222
1223         return need_tlb_flush;
1224 }
1225
1226 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1227                              struct kvm_memory_slot *slot, unsigned long data)
1228 {
1229         u64 *sptep;
1230         struct rmap_iterator iter;
1231         int need_flush = 0;
1232         u64 new_spte;
1233         pte_t *ptep = (pte_t *)data;
1234         pfn_t new_pfn;
1235
1236         WARN_ON(pte_huge(*ptep));
1237         new_pfn = pte_pfn(*ptep);
1238
1239         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1240                 BUG_ON(!is_shadow_present_pte(*sptep));
1241                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1242
1243                 need_flush = 1;
1244
1245                 if (pte_write(*ptep)) {
1246                         drop_spte(kvm, sptep);
1247                         sptep = rmap_get_first(*rmapp, &iter);
1248                 } else {
1249                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1250                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1251
1252                         new_spte &= ~PT_WRITABLE_MASK;
1253                         new_spte &= ~SPTE_HOST_WRITEABLE;
1254                         new_spte &= ~shadow_accessed_mask;
1255
1256                         mmu_spte_clear_track_bits(sptep);
1257                         mmu_spte_set(sptep, new_spte);
1258                         sptep = rmap_get_next(&iter);
1259                 }
1260         }
1261
1262         if (need_flush)
1263                 kvm_flush_remote_tlbs(kvm);
1264
1265         return 0;
1266 }
1267
1268 static int kvm_handle_hva_range(struct kvm *kvm,
1269                                 unsigned long start,
1270                                 unsigned long end,
1271                                 unsigned long data,
1272                                 int (*handler)(struct kvm *kvm,
1273                                                unsigned long *rmapp,
1274                                                struct kvm_memory_slot *slot,
1275                                                unsigned long data))
1276 {
1277         int j;
1278         int ret = 0;
1279         struct kvm_memslots *slots;
1280         struct kvm_memory_slot *memslot;
1281
1282         slots = kvm_memslots(kvm);
1283
1284         kvm_for_each_memslot(memslot, slots) {
1285                 unsigned long hva_start, hva_end;
1286                 gfn_t gfn_start, gfn_end;
1287
1288                 hva_start = max(start, memslot->userspace_addr);
1289                 hva_end = min(end, memslot->userspace_addr +
1290                                         (memslot->npages << PAGE_SHIFT));
1291                 if (hva_start >= hva_end)
1292                         continue;
1293                 /*
1294                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
1295                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1296                  */
1297                 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1298                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1299
1300                 for (j = PT_PAGE_TABLE_LEVEL;
1301                      j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1302                         unsigned long idx, idx_end;
1303                         unsigned long *rmapp;
1304
1305                         /*
1306                          * {idx(page_j) | page_j intersects with
1307                          *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1308                          */
1309                         idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1310                         idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1311
1312                         rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1313
1314                         for (; idx <= idx_end; ++idx)
1315                                 ret |= handler(kvm, rmapp++, memslot, data);
1316                 }
1317         }
1318
1319         return ret;
1320 }
1321
1322 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1323                           unsigned long data,
1324                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1325                                          struct kvm_memory_slot *slot,
1326                                          unsigned long data))
1327 {
1328         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1329 }
1330
1331 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1332 {
1333         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1334 }
1335
1336 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1337 {
1338         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1339 }
1340
1341 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1342 {
1343         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1344 }
1345
1346 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1347                          struct kvm_memory_slot *slot, unsigned long data)
1348 {
1349         u64 *sptep;
1350         struct rmap_iterator uninitialized_var(iter);
1351         int young = 0;
1352
1353         /*
1354          * In case of absence of EPT Access and Dirty Bits supports,
1355          * emulate the accessed bit for EPT, by checking if this page has
1356          * an EPT mapping, and clearing it if it does. On the next access,
1357          * a new EPT mapping will be established.
1358          * This has some overhead, but not as much as the cost of swapping
1359          * out actively used pages or breaking up actively used hugepages.
1360          */
1361         if (!shadow_accessed_mask) {
1362                 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1363                 goto out;
1364         }
1365
1366         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1367              sptep = rmap_get_next(&iter)) {
1368                 BUG_ON(!is_shadow_present_pte(*sptep));
1369
1370                 if (*sptep & shadow_accessed_mask) {
1371                         young = 1;
1372                         clear_bit((ffs(shadow_accessed_mask) - 1),
1373                                  (unsigned long *)sptep);
1374                 }
1375         }
1376 out:
1377         /* @data has hva passed to kvm_age_hva(). */
1378         trace_kvm_age_page(data, slot, young);
1379         return young;
1380 }
1381
1382 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1383                               struct kvm_memory_slot *slot, unsigned long data)
1384 {
1385         u64 *sptep;
1386         struct rmap_iterator iter;
1387         int young = 0;
1388
1389         /*
1390          * If there's no access bit in the secondary pte set by the
1391          * hardware it's up to gup-fast/gup to set the access bit in
1392          * the primary pte or in the page structure.
1393          */
1394         if (!shadow_accessed_mask)
1395                 goto out;
1396
1397         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1398              sptep = rmap_get_next(&iter)) {
1399                 BUG_ON(!is_shadow_present_pte(*sptep));
1400
1401                 if (*sptep & shadow_accessed_mask) {
1402                         young = 1;
1403                         break;
1404                 }
1405         }
1406 out:
1407         return young;
1408 }
1409
1410 #define RMAP_RECYCLE_THRESHOLD 1000
1411
1412 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1413 {
1414         unsigned long *rmapp;
1415         struct kvm_mmu_page *sp;
1416
1417         sp = page_header(__pa(spte));
1418
1419         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1420
1421         kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1422         kvm_flush_remote_tlbs(vcpu->kvm);
1423 }
1424
1425 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1426 {
1427         return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1428 }
1429
1430 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1431 {
1432         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1433 }
1434
1435 #ifdef MMU_DEBUG
1436 static int is_empty_shadow_page(u64 *spt)
1437 {
1438         u64 *pos;
1439         u64 *end;
1440
1441         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1442                 if (is_shadow_present_pte(*pos)) {
1443                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1444                                pos, *pos);
1445                         return 0;
1446                 }
1447         return 1;
1448 }
1449 #endif
1450
1451 /*
1452  * This value is the sum of all of the kvm instances's
1453  * kvm->arch.n_used_mmu_pages values.  We need a global,
1454  * aggregate version in order to make the slab shrinker
1455  * faster
1456  */
1457 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1458 {
1459         kvm->arch.n_used_mmu_pages += nr;
1460         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1461 }
1462
1463 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1464 {
1465         ASSERT(is_empty_shadow_page(sp->spt));
1466         hlist_del(&sp->hash_link);
1467         list_del(&sp->link);
1468         free_page((unsigned long)sp->spt);
1469         if (!sp->role.direct)
1470                 free_page((unsigned long)sp->gfns);
1471         kmem_cache_free(mmu_page_header_cache, sp);
1472 }
1473
1474 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1475 {
1476         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1477 }
1478
1479 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1480                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1481 {
1482         if (!parent_pte)
1483                 return;
1484
1485         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1486 }
1487
1488 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1489                                        u64 *parent_pte)
1490 {
1491         pte_list_remove(parent_pte, &sp->parent_ptes);
1492 }
1493
1494 static void drop_parent_pte(struct kvm_mmu_page *sp,
1495                             u64 *parent_pte)
1496 {
1497         mmu_page_remove_parent_pte(sp, parent_pte);
1498         mmu_spte_clear_no_track(parent_pte);
1499 }
1500
1501 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1502                                                u64 *parent_pte, int direct)
1503 {
1504         struct kvm_mmu_page *sp;
1505         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1506         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1507         if (!direct)
1508                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1509         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1510         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1511         sp->parent_ptes = 0;
1512         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1513         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1514         return sp;
1515 }
1516
1517 static void mark_unsync(u64 *spte);
1518 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1519 {
1520         pte_list_walk(&sp->parent_ptes, mark_unsync);
1521 }
1522
1523 static void mark_unsync(u64 *spte)
1524 {
1525         struct kvm_mmu_page *sp;
1526         unsigned int index;
1527
1528         sp = page_header(__pa(spte));
1529         index = spte - sp->spt;
1530         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1531                 return;
1532         if (sp->unsync_children++)
1533                 return;
1534         kvm_mmu_mark_parents_unsync(sp);
1535 }
1536
1537 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1538                                struct kvm_mmu_page *sp)
1539 {
1540         return 1;
1541 }
1542
1543 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1544 {
1545 }
1546
1547 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1548                                  struct kvm_mmu_page *sp, u64 *spte,
1549                                  const void *pte)
1550 {
1551         WARN_ON(1);
1552 }
1553
1554 #define KVM_PAGE_ARRAY_NR 16
1555
1556 struct kvm_mmu_pages {
1557         struct mmu_page_and_offset {
1558                 struct kvm_mmu_page *sp;
1559                 unsigned int idx;
1560         } page[KVM_PAGE_ARRAY_NR];
1561         unsigned int nr;
1562 };
1563
1564 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1565                          int idx)
1566 {
1567         int i;
1568
1569         if (sp->unsync)
1570                 for (i=0; i < pvec->nr; i++)
1571                         if (pvec->page[i].sp == sp)
1572                                 return 0;
1573
1574         pvec->page[pvec->nr].sp = sp;
1575         pvec->page[pvec->nr].idx = idx;
1576         pvec->nr++;
1577         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1578 }
1579
1580 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1581                            struct kvm_mmu_pages *pvec)
1582 {
1583         int i, ret, nr_unsync_leaf = 0;
1584
1585         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1586                 struct kvm_mmu_page *child;
1587                 u64 ent = sp->spt[i];
1588
1589                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1590                         goto clear_child_bitmap;
1591
1592                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1593
1594                 if (child->unsync_children) {
1595                         if (mmu_pages_add(pvec, child, i))
1596                                 return -ENOSPC;
1597
1598                         ret = __mmu_unsync_walk(child, pvec);
1599                         if (!ret)
1600                                 goto clear_child_bitmap;
1601                         else if (ret > 0)
1602                                 nr_unsync_leaf += ret;
1603                         else
1604                                 return ret;
1605                 } else if (child->unsync) {
1606                         nr_unsync_leaf++;
1607                         if (mmu_pages_add(pvec, child, i))
1608                                 return -ENOSPC;
1609                 } else
1610                          goto clear_child_bitmap;
1611
1612                 continue;
1613
1614 clear_child_bitmap:
1615                 __clear_bit(i, sp->unsync_child_bitmap);
1616                 sp->unsync_children--;
1617                 WARN_ON((int)sp->unsync_children < 0);
1618         }
1619
1620
1621         return nr_unsync_leaf;
1622 }
1623
1624 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1625                            struct kvm_mmu_pages *pvec)
1626 {
1627         if (!sp->unsync_children)
1628                 return 0;
1629
1630         mmu_pages_add(pvec, sp, 0);
1631         return __mmu_unsync_walk(sp, pvec);
1632 }
1633
1634 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1635 {
1636         WARN_ON(!sp->unsync);
1637         trace_kvm_mmu_sync_page(sp);
1638         sp->unsync = 0;
1639         --kvm->stat.mmu_unsync;
1640 }
1641
1642 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1643                                     struct list_head *invalid_list);
1644 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1645                                     struct list_head *invalid_list);
1646
1647 #define for_each_gfn_sp(kvm, sp, gfn, pos)                              \
1648   hlist_for_each_entry(sp, pos,                                         \
1649    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)   \
1650         if ((sp)->gfn != (gfn)) {} else
1651
1652 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos)               \
1653   hlist_for_each_entry(sp, pos,                                         \
1654    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)   \
1655                 if ((sp)->gfn != (gfn) || (sp)->role.direct ||          \
1656                         (sp)->role.invalid) {} else
1657
1658 /* @sp->gfn should be write-protected at the call site */
1659 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1660                            struct list_head *invalid_list, bool clear_unsync)
1661 {
1662         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1663                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1664                 return 1;
1665         }
1666
1667         if (clear_unsync)
1668                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1669
1670         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1671                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1672                 return 1;
1673         }
1674
1675         kvm_mmu_flush_tlb(vcpu);
1676         return 0;
1677 }
1678
1679 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1680                                    struct kvm_mmu_page *sp)
1681 {
1682         LIST_HEAD(invalid_list);
1683         int ret;
1684
1685         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1686         if (ret)
1687                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1688
1689         return ret;
1690 }
1691
1692 #ifdef CONFIG_KVM_MMU_AUDIT
1693 #include "mmu_audit.c"
1694 #else
1695 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1696 static void mmu_audit_disable(void) { }
1697 #endif
1698
1699 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1700                          struct list_head *invalid_list)
1701 {
1702         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1703 }
1704
1705 /* @gfn should be write-protected at the call site */
1706 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1707 {
1708         struct kvm_mmu_page *s;
1709         struct hlist_node *node;
1710         LIST_HEAD(invalid_list);
1711         bool flush = false;
1712
1713         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1714                 if (!s->unsync)
1715                         continue;
1716
1717                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1718                 kvm_unlink_unsync_page(vcpu->kvm, s);
1719                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1720                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1721                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1722                         continue;
1723                 }
1724                 flush = true;
1725         }
1726
1727         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1728         if (flush)
1729                 kvm_mmu_flush_tlb(vcpu);
1730 }
1731
1732 struct mmu_page_path {
1733         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1734         unsigned int idx[PT64_ROOT_LEVEL-1];
1735 };
1736
1737 #define for_each_sp(pvec, sp, parents, i)                       \
1738                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1739                         sp = pvec.page[i].sp;                   \
1740                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1741                         i = mmu_pages_next(&pvec, &parents, i))
1742
1743 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1744                           struct mmu_page_path *parents,
1745                           int i)
1746 {
1747         int n;
1748
1749         for (n = i+1; n < pvec->nr; n++) {
1750                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1751
1752                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1753                         parents->idx[0] = pvec->page[n].idx;
1754                         return n;
1755                 }
1756
1757                 parents->parent[sp->role.level-2] = sp;
1758                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1759         }
1760
1761         return n;
1762 }
1763
1764 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1765 {
1766         struct kvm_mmu_page *sp;
1767         unsigned int level = 0;
1768
1769         do {
1770                 unsigned int idx = parents->idx[level];
1771
1772                 sp = parents->parent[level];
1773                 if (!sp)
1774                         return;
1775
1776                 --sp->unsync_children;
1777                 WARN_ON((int)sp->unsync_children < 0);
1778                 __clear_bit(idx, sp->unsync_child_bitmap);
1779                 level++;
1780         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1781 }
1782
1783 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1784                                struct mmu_page_path *parents,
1785                                struct kvm_mmu_pages *pvec)
1786 {
1787         parents->parent[parent->role.level-1] = NULL;
1788         pvec->nr = 0;
1789 }
1790
1791 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1792                               struct kvm_mmu_page *parent)
1793 {
1794         int i;
1795         struct kvm_mmu_page *sp;
1796         struct mmu_page_path parents;
1797         struct kvm_mmu_pages pages;
1798         LIST_HEAD(invalid_list);
1799
1800         kvm_mmu_pages_init(parent, &parents, &pages);
1801         while (mmu_unsync_walk(parent, &pages)) {
1802                 bool protected = false;
1803
1804                 for_each_sp(pages, sp, parents, i)
1805                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1806
1807                 if (protected)
1808                         kvm_flush_remote_tlbs(vcpu->kvm);
1809
1810                 for_each_sp(pages, sp, parents, i) {
1811                         kvm_sync_page(vcpu, sp, &invalid_list);
1812                         mmu_pages_clear_parents(&parents);
1813                 }
1814                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1815                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1816                 kvm_mmu_pages_init(parent, &parents, &pages);
1817         }
1818 }
1819
1820 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1821 {
1822         int i;
1823
1824         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1825                 sp->spt[i] = 0ull;
1826 }
1827
1828 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1829 {
1830         sp->write_flooding_count = 0;
1831 }
1832
1833 static void clear_sp_write_flooding_count(u64 *spte)
1834 {
1835         struct kvm_mmu_page *sp =  page_header(__pa(spte));
1836
1837         __clear_sp_write_flooding_count(sp);
1838 }
1839
1840 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1841                                              gfn_t gfn,
1842                                              gva_t gaddr,
1843                                              unsigned level,
1844                                              int direct,
1845                                              unsigned access,
1846                                              u64 *parent_pte)
1847 {
1848         union kvm_mmu_page_role role;
1849         unsigned quadrant;
1850         struct kvm_mmu_page *sp;
1851         struct hlist_node *node;
1852         bool need_sync = false;
1853
1854         role = vcpu->arch.mmu.base_role;
1855         role.level = level;
1856         role.direct = direct;
1857         if (role.direct)
1858                 role.cr4_pae = 0;
1859         role.access = access;
1860         if (!vcpu->arch.mmu.direct_map
1861             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1862                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1863                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1864                 role.quadrant = quadrant;
1865         }
1866         for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1867                 if (!need_sync && sp->unsync)
1868                         need_sync = true;
1869
1870                 if (sp->role.word != role.word)
1871                         continue;
1872
1873                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1874                         break;
1875
1876                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1877                 if (sp->unsync_children) {
1878                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1879                         kvm_mmu_mark_parents_unsync(sp);
1880                 } else if (sp->unsync)
1881                         kvm_mmu_mark_parents_unsync(sp);
1882
1883                 __clear_sp_write_flooding_count(sp);
1884                 trace_kvm_mmu_get_page(sp, false);
1885                 return sp;
1886         }
1887         ++vcpu->kvm->stat.mmu_cache_miss;
1888         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1889         if (!sp)
1890                 return sp;
1891         sp->gfn = gfn;
1892         sp->role = role;
1893         hlist_add_head(&sp->hash_link,
1894                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1895         if (!direct) {
1896                 if (rmap_write_protect(vcpu->kvm, gfn))
1897                         kvm_flush_remote_tlbs(vcpu->kvm);
1898                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1899                         kvm_sync_pages(vcpu, gfn);
1900
1901                 account_shadowed(vcpu->kvm, gfn);
1902         }
1903         init_shadow_page_table(sp);
1904         trace_kvm_mmu_get_page(sp, true);
1905         return sp;
1906 }
1907
1908 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1909                              struct kvm_vcpu *vcpu, u64 addr)
1910 {
1911         iterator->addr = addr;
1912         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1913         iterator->level = vcpu->arch.mmu.shadow_root_level;
1914
1915         if (iterator->level == PT64_ROOT_LEVEL &&
1916             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1917             !vcpu->arch.mmu.direct_map)
1918                 --iterator->level;
1919
1920         if (iterator->level == PT32E_ROOT_LEVEL) {
1921                 iterator->shadow_addr
1922                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1923                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1924                 --iterator->level;
1925                 if (!iterator->shadow_addr)
1926                         iterator->level = 0;
1927         }
1928 }
1929
1930 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1931 {
1932         if (iterator->level < PT_PAGE_TABLE_LEVEL)
1933                 return false;
1934
1935         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1936         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1937         return true;
1938 }
1939
1940 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1941                                u64 spte)
1942 {
1943         if (is_last_spte(spte, iterator->level)) {
1944                 iterator->level = 0;
1945                 return;
1946         }
1947
1948         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1949         --iterator->level;
1950 }
1951
1952 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1953 {
1954         return __shadow_walk_next(iterator, *iterator->sptep);
1955 }
1956
1957 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1958 {
1959         u64 spte;
1960
1961         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
1962                shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
1963
1964         mmu_spte_set(sptep, spte);
1965 }
1966
1967 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1968                                    unsigned direct_access)
1969 {
1970         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1971                 struct kvm_mmu_page *child;
1972
1973                 /*
1974                  * For the direct sp, if the guest pte's dirty bit
1975                  * changed form clean to dirty, it will corrupt the
1976                  * sp's access: allow writable in the read-only sp,
1977                  * so we should update the spte at this point to get
1978                  * a new sp with the correct access.
1979                  */
1980                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1981                 if (child->role.access == direct_access)
1982                         return;
1983
1984                 drop_parent_pte(child, sptep);
1985                 kvm_flush_remote_tlbs(vcpu->kvm);
1986         }
1987 }
1988
1989 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1990                              u64 *spte)
1991 {
1992         u64 pte;
1993         struct kvm_mmu_page *child;
1994
1995         pte = *spte;
1996         if (is_shadow_present_pte(pte)) {
1997                 if (is_last_spte(pte, sp->role.level)) {
1998                         drop_spte(kvm, spte);
1999                         if (is_large_pte(pte))
2000                                 --kvm->stat.lpages;
2001                 } else {
2002                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2003                         drop_parent_pte(child, spte);
2004                 }
2005                 return true;
2006         }
2007
2008         if (is_mmio_spte(pte))
2009                 mmu_spte_clear_no_track(spte);
2010
2011         return false;
2012 }
2013
2014 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2015                                          struct kvm_mmu_page *sp)
2016 {
2017         unsigned i;
2018
2019         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2020                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2021 }
2022
2023 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2024 {
2025         mmu_page_remove_parent_pte(sp, parent_pte);
2026 }
2027
2028 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2029 {
2030         u64 *sptep;
2031         struct rmap_iterator iter;
2032
2033         while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2034                 drop_parent_pte(sp, sptep);
2035 }
2036
2037 static int mmu_zap_unsync_children(struct kvm *kvm,
2038                                    struct kvm_mmu_page *parent,
2039                                    struct list_head *invalid_list)
2040 {
2041         int i, zapped = 0;
2042         struct mmu_page_path parents;
2043         struct kvm_mmu_pages pages;
2044
2045         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2046                 return 0;
2047
2048         kvm_mmu_pages_init(parent, &parents, &pages);
2049         while (mmu_unsync_walk(parent, &pages)) {
2050                 struct kvm_mmu_page *sp;
2051
2052                 for_each_sp(pages, sp, parents, i) {
2053                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2054                         mmu_pages_clear_parents(&parents);
2055                         zapped++;
2056                 }
2057                 kvm_mmu_pages_init(parent, &parents, &pages);
2058         }
2059
2060         return zapped;
2061 }
2062
2063 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2064                                     struct list_head *invalid_list)
2065 {
2066         int ret;
2067
2068         trace_kvm_mmu_prepare_zap_page(sp);
2069         ++kvm->stat.mmu_shadow_zapped;
2070         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2071         kvm_mmu_page_unlink_children(kvm, sp);
2072         kvm_mmu_unlink_parents(kvm, sp);
2073         if (!sp->role.invalid && !sp->role.direct)
2074                 unaccount_shadowed(kvm, sp->gfn);
2075         if (sp->unsync)
2076                 kvm_unlink_unsync_page(kvm, sp);
2077         if (!sp->root_count) {
2078                 /* Count self */
2079                 ret++;
2080                 list_move(&sp->link, invalid_list);
2081                 kvm_mod_used_mmu_pages(kvm, -1);
2082         } else {
2083                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2084                 kvm_reload_remote_mmus(kvm);
2085         }
2086
2087         sp->role.invalid = 1;
2088         return ret;
2089 }
2090
2091 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2092                                     struct list_head *invalid_list)
2093 {
2094         struct kvm_mmu_page *sp;
2095
2096         if (list_empty(invalid_list))
2097                 return;
2098
2099         /*
2100          * wmb: make sure everyone sees our modifications to the page tables
2101          * rmb: make sure we see changes to vcpu->mode
2102          */
2103         smp_mb();
2104
2105         /*
2106          * Wait for all vcpus to exit guest mode and/or lockless shadow
2107          * page table walks.
2108          */
2109         kvm_flush_remote_tlbs(kvm);
2110
2111         do {
2112                 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2113                 WARN_ON(!sp->role.invalid || sp->root_count);
2114                 kvm_mmu_free_page(sp);
2115         } while (!list_empty(invalid_list));
2116 }
2117
2118 /*
2119  * Changing the number of mmu pages allocated to the vm
2120  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2121  */
2122 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2123 {
2124         LIST_HEAD(invalid_list);
2125         /*
2126          * If we set the number of mmu pages to be smaller be than the
2127          * number of actived pages , we must to free some mmu pages before we
2128          * change the value
2129          */
2130
2131         spin_lock(&kvm->mmu_lock);
2132
2133         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2134                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
2135                         !list_empty(&kvm->arch.active_mmu_pages)) {
2136                         struct kvm_mmu_page *page;
2137
2138                         page = container_of(kvm->arch.active_mmu_pages.prev,
2139                                             struct kvm_mmu_page, link);
2140                         kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
2141                 }
2142                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2143                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2144         }
2145
2146         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2147
2148         spin_unlock(&kvm->mmu_lock);
2149 }
2150
2151 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2152 {
2153         struct kvm_mmu_page *sp;
2154         struct hlist_node *node;
2155         LIST_HEAD(invalid_list);
2156         int r;
2157
2158         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2159         r = 0;
2160         spin_lock(&kvm->mmu_lock);
2161         for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2162                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2163                          sp->role.word);
2164                 r = 1;
2165                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2166         }
2167         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2168         spin_unlock(&kvm->mmu_lock);
2169
2170         return r;
2171 }
2172 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2173
2174 /*
2175  * The function is based on mtrr_type_lookup() in
2176  * arch/x86/kernel/cpu/mtrr/generic.c
2177  */
2178 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2179                          u64 start, u64 end)
2180 {
2181         int i;
2182         u64 base, mask;
2183         u8 prev_match, curr_match;
2184         int num_var_ranges = KVM_NR_VAR_MTRR;
2185
2186         if (!mtrr_state->enabled)
2187                 return 0xFF;
2188
2189         /* Make end inclusive end, instead of exclusive */
2190         end--;
2191
2192         /* Look in fixed ranges. Just return the type as per start */
2193         if (mtrr_state->have_fixed && (start < 0x100000)) {
2194                 int idx;
2195
2196                 if (start < 0x80000) {
2197                         idx = 0;
2198                         idx += (start >> 16);
2199                         return mtrr_state->fixed_ranges[idx];
2200                 } else if (start < 0xC0000) {
2201                         idx = 1 * 8;
2202                         idx += ((start - 0x80000) >> 14);
2203                         return mtrr_state->fixed_ranges[idx];
2204                 } else if (start < 0x1000000) {
2205                         idx = 3 * 8;
2206                         idx += ((start - 0xC0000) >> 12);
2207                         return mtrr_state->fixed_ranges[idx];
2208                 }
2209         }
2210
2211         /*
2212          * Look in variable ranges
2213          * Look of multiple ranges matching this address and pick type
2214          * as per MTRR precedence
2215          */
2216         if (!(mtrr_state->enabled & 2))
2217                 return mtrr_state->def_type;
2218
2219         prev_match = 0xFF;
2220         for (i = 0; i < num_var_ranges; ++i) {
2221                 unsigned short start_state, end_state;
2222
2223                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2224                         continue;
2225
2226                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2227                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2228                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2229                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2230
2231                 start_state = ((start & mask) == (base & mask));
2232                 end_state = ((end & mask) == (base & mask));
2233                 if (start_state != end_state)
2234                         return 0xFE;
2235
2236                 if ((start & mask) != (base & mask))
2237                         continue;
2238
2239                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2240                 if (prev_match == 0xFF) {
2241                         prev_match = curr_match;
2242                         continue;
2243                 }
2244
2245                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2246                     curr_match == MTRR_TYPE_UNCACHABLE)
2247                         return MTRR_TYPE_UNCACHABLE;
2248
2249                 if ((prev_match == MTRR_TYPE_WRBACK &&
2250                      curr_match == MTRR_TYPE_WRTHROUGH) ||
2251                     (prev_match == MTRR_TYPE_WRTHROUGH &&
2252                      curr_match == MTRR_TYPE_WRBACK)) {
2253                         prev_match = MTRR_TYPE_WRTHROUGH;
2254                         curr_match = MTRR_TYPE_WRTHROUGH;
2255                 }
2256
2257                 if (prev_match != curr_match)
2258                         return MTRR_TYPE_UNCACHABLE;
2259         }
2260
2261         if (prev_match != 0xFF)
2262                 return prev_match;
2263
2264         return mtrr_state->def_type;
2265 }
2266
2267 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2268 {
2269         u8 mtrr;
2270
2271         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2272                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
2273         if (mtrr == 0xfe || mtrr == 0xff)
2274                 mtrr = MTRR_TYPE_WRBACK;
2275         return mtrr;
2276 }
2277 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2278
2279 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2280 {
2281         trace_kvm_mmu_unsync_page(sp);
2282         ++vcpu->kvm->stat.mmu_unsync;
2283         sp->unsync = 1;
2284
2285         kvm_mmu_mark_parents_unsync(sp);
2286 }
2287
2288 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2289 {
2290         struct kvm_mmu_page *s;
2291         struct hlist_node *node;
2292
2293         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2294                 if (s->unsync)
2295                         continue;
2296                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2297                 __kvm_unsync_page(vcpu, s);
2298         }
2299 }
2300
2301 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2302                                   bool can_unsync)
2303 {
2304         struct kvm_mmu_page *s;
2305         struct hlist_node *node;
2306         bool need_unsync = false;
2307
2308         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2309                 if (!can_unsync)
2310                         return 1;
2311
2312                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2313                         return 1;
2314
2315                 if (!s->unsync)
2316                         need_unsync = true;
2317         }
2318         if (need_unsync)
2319                 kvm_unsync_pages(vcpu, gfn);
2320         return 0;
2321 }
2322
2323 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2324                     unsigned pte_access, int level,
2325                     gfn_t gfn, pfn_t pfn, bool speculative,
2326                     bool can_unsync, bool host_writable)
2327 {
2328         u64 spte;
2329         int ret = 0;
2330
2331         if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2332                 return 0;
2333
2334         spte = PT_PRESENT_MASK;
2335         if (!speculative)
2336                 spte |= shadow_accessed_mask;
2337
2338         if (pte_access & ACC_EXEC_MASK)
2339                 spte |= shadow_x_mask;
2340         else
2341                 spte |= shadow_nx_mask;
2342
2343         if (pte_access & ACC_USER_MASK)
2344                 spte |= shadow_user_mask;
2345
2346         if (level > PT_PAGE_TABLE_LEVEL)
2347                 spte |= PT_PAGE_SIZE_MASK;
2348         if (tdp_enabled)
2349                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2350                         kvm_is_mmio_pfn(pfn));
2351
2352         if (host_writable)
2353                 spte |= SPTE_HOST_WRITEABLE;
2354         else
2355                 pte_access &= ~ACC_WRITE_MASK;
2356
2357         spte |= (u64)pfn << PAGE_SHIFT;
2358
2359         if (pte_access & ACC_WRITE_MASK) {
2360
2361                 /*
2362                  * Other vcpu creates new sp in the window between
2363                  * mapping_level() and acquiring mmu-lock. We can
2364                  * allow guest to retry the access, the mapping can
2365                  * be fixed if guest refault.
2366                  */
2367                 if (level > PT_PAGE_TABLE_LEVEL &&
2368                     has_wrprotected_page(vcpu->kvm, gfn, level))
2369                         goto done;
2370
2371                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2372
2373                 /*
2374                  * Optimization: for pte sync, if spte was writable the hash
2375                  * lookup is unnecessary (and expensive). Write protection
2376                  * is responsibility of mmu_get_page / kvm_sync_page.
2377                  * Same reasoning can be applied to dirty page accounting.
2378                  */
2379                 if (!can_unsync && is_writable_pte(*sptep))
2380                         goto set_pte;
2381
2382                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2383                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2384                                  __func__, gfn);
2385                         ret = 1;
2386                         pte_access &= ~ACC_WRITE_MASK;
2387                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2388                 }
2389         }
2390
2391         if (pte_access & ACC_WRITE_MASK)
2392                 mark_page_dirty(vcpu->kvm, gfn);
2393
2394 set_pte:
2395         if (mmu_spte_update(sptep, spte))
2396                 kvm_flush_remote_tlbs(vcpu->kvm);
2397 done:
2398         return ret;
2399 }
2400
2401 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2402                          unsigned pte_access, int write_fault, int *emulate,
2403                          int level, gfn_t gfn, pfn_t pfn, bool speculative,
2404                          bool host_writable)
2405 {
2406         int was_rmapped = 0;
2407         int rmap_count;
2408
2409         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2410                  *sptep, write_fault, gfn);
2411
2412         if (is_rmap_spte(*sptep)) {
2413                 /*
2414                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2415                  * the parent of the now unreachable PTE.
2416                  */
2417                 if (level > PT_PAGE_TABLE_LEVEL &&
2418                     !is_large_pte(*sptep)) {
2419                         struct kvm_mmu_page *child;
2420                         u64 pte = *sptep;
2421
2422                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2423                         drop_parent_pte(child, sptep);
2424                         kvm_flush_remote_tlbs(vcpu->kvm);
2425                 } else if (pfn != spte_to_pfn(*sptep)) {
2426                         pgprintk("hfn old %llx new %llx\n",
2427                                  spte_to_pfn(*sptep), pfn);
2428                         drop_spte(vcpu->kvm, sptep);
2429                         kvm_flush_remote_tlbs(vcpu->kvm);
2430                 } else
2431                         was_rmapped = 1;
2432         }
2433
2434         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2435               true, host_writable)) {
2436                 if (write_fault)
2437                         *emulate = 1;
2438                 kvm_mmu_flush_tlb(vcpu);
2439         }
2440
2441         if (unlikely(is_mmio_spte(*sptep) && emulate))
2442                 *emulate = 1;
2443
2444         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2445         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2446                  is_large_pte(*sptep)? "2MB" : "4kB",
2447                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2448                  *sptep, sptep);
2449         if (!was_rmapped && is_large_pte(*sptep))
2450                 ++vcpu->kvm->stat.lpages;
2451
2452         if (is_shadow_present_pte(*sptep)) {
2453                 if (!was_rmapped) {
2454                         rmap_count = rmap_add(vcpu, sptep, gfn);
2455                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2456                                 rmap_recycle(vcpu, sptep, gfn);
2457                 }
2458         }
2459
2460         kvm_release_pfn_clean(pfn);
2461 }
2462
2463 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2464 {
2465         mmu_free_roots(vcpu);
2466 }
2467
2468 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2469 {
2470         int bit7;
2471
2472         bit7 = (gpte >> 7) & 1;
2473         return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2474 }
2475
2476 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2477                                      bool no_dirty_log)
2478 {
2479         struct kvm_memory_slot *slot;
2480
2481         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2482         if (!slot)
2483                 return KVM_PFN_ERR_FAULT;
2484
2485         return gfn_to_pfn_memslot_atomic(slot, gfn);
2486 }
2487
2488 static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2489                                   struct kvm_mmu_page *sp, u64 *spte,
2490                                   u64 gpte)
2491 {
2492         if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2493                 goto no_present;
2494
2495         if (!is_present_gpte(gpte))
2496                 goto no_present;
2497
2498         if (!(gpte & PT_ACCESSED_MASK))
2499                 goto no_present;
2500
2501         return false;
2502
2503 no_present:
2504         drop_spte(vcpu->kvm, spte);
2505         return true;
2506 }
2507
2508 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2509                                     struct kvm_mmu_page *sp,
2510                                     u64 *start, u64 *end)
2511 {
2512         struct page *pages[PTE_PREFETCH_NUM];
2513         unsigned access = sp->role.access;
2514         int i, ret;
2515         gfn_t gfn;
2516
2517         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2518         if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2519                 return -1;
2520
2521         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2522         if (ret <= 0)
2523                 return -1;
2524
2525         for (i = 0; i < ret; i++, gfn++, start++)
2526                 mmu_set_spte(vcpu, start, access, 0, NULL,
2527                              sp->role.level, gfn, page_to_pfn(pages[i]),
2528                              true, true);
2529
2530         return 0;
2531 }
2532
2533 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2534                                   struct kvm_mmu_page *sp, u64 *sptep)
2535 {
2536         u64 *spte, *start = NULL;
2537         int i;
2538
2539         WARN_ON(!sp->role.direct);
2540
2541         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2542         spte = sp->spt + i;
2543
2544         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2545                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2546                         if (!start)
2547                                 continue;
2548                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2549                                 break;
2550                         start = NULL;
2551                 } else if (!start)
2552                         start = spte;
2553         }
2554 }
2555
2556 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2557 {
2558         struct kvm_mmu_page *sp;
2559
2560         /*
2561          * Since it's no accessed bit on EPT, it's no way to
2562          * distinguish between actually accessed translations
2563          * and prefetched, so disable pte prefetch if EPT is
2564          * enabled.
2565          */
2566         if (!shadow_accessed_mask)
2567                 return;
2568
2569         sp = page_header(__pa(sptep));
2570         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2571                 return;
2572
2573         __direct_pte_prefetch(vcpu, sp, sptep);
2574 }
2575
2576 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2577                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2578                         bool prefault)
2579 {
2580         struct kvm_shadow_walk_iterator iterator;
2581         struct kvm_mmu_page *sp;
2582         int emulate = 0;
2583         gfn_t pseudo_gfn;
2584
2585         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2586                 if (iterator.level == level) {
2587                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2588                                      write, &emulate, level, gfn, pfn,
2589                                      prefault, map_writable);
2590                         direct_pte_prefetch(vcpu, iterator.sptep);
2591                         ++vcpu->stat.pf_fixed;
2592                         break;
2593                 }
2594
2595                 if (!is_shadow_present_pte(*iterator.sptep)) {
2596                         u64 base_addr = iterator.addr;
2597
2598                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2599                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2600                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2601                                               iterator.level - 1,
2602                                               1, ACC_ALL, iterator.sptep);
2603
2604                         link_shadow_page(iterator.sptep, sp);
2605                 }
2606         }
2607         return emulate;
2608 }
2609
2610 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2611 {
2612         siginfo_t info;
2613
2614         info.si_signo   = SIGBUS;
2615         info.si_errno   = 0;
2616         info.si_code    = BUS_MCEERR_AR;
2617         info.si_addr    = (void __user *)address;
2618         info.si_addr_lsb = PAGE_SHIFT;
2619
2620         send_sig_info(SIGBUS, &info, tsk);
2621 }
2622
2623 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2624 {
2625         /*
2626          * Do not cache the mmio info caused by writing the readonly gfn
2627          * into the spte otherwise read access on readonly gfn also can
2628          * caused mmio page fault and treat it as mmio access.
2629          * Return 1 to tell kvm to emulate it.
2630          */
2631         if (pfn == KVM_PFN_ERR_RO_FAULT)
2632                 return 1;
2633
2634         if (pfn == KVM_PFN_ERR_HWPOISON) {
2635                 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2636                 return 0;
2637         }
2638
2639         return -EFAULT;
2640 }
2641
2642 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2643                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2644 {
2645         pfn_t pfn = *pfnp;
2646         gfn_t gfn = *gfnp;
2647         int level = *levelp;
2648
2649         /*
2650          * Check if it's a transparent hugepage. If this would be an
2651          * hugetlbfs page, level wouldn't be set to
2652          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2653          * here.
2654          */
2655         if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2656             level == PT_PAGE_TABLE_LEVEL &&
2657             PageTransCompound(pfn_to_page(pfn)) &&
2658             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2659                 unsigned long mask;
2660                 /*
2661                  * mmu_notifier_retry was successful and we hold the
2662                  * mmu_lock here, so the pmd can't become splitting
2663                  * from under us, and in turn
2664                  * __split_huge_page_refcount() can't run from under
2665                  * us and we can safely transfer the refcount from
2666                  * PG_tail to PG_head as we switch the pfn to tail to
2667                  * head.
2668                  */
2669                 *levelp = level = PT_DIRECTORY_LEVEL;
2670                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2671                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2672                 if (pfn & mask) {
2673                         gfn &= ~mask;
2674                         *gfnp = gfn;
2675                         kvm_release_pfn_clean(pfn);
2676                         pfn &= ~mask;
2677                         kvm_get_pfn(pfn);
2678                         *pfnp = pfn;
2679                 }
2680         }
2681 }
2682
2683 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2684                                 pfn_t pfn, unsigned access, int *ret_val)
2685 {
2686         bool ret = true;
2687
2688         /* The pfn is invalid, report the error! */
2689         if (unlikely(is_error_pfn(pfn))) {
2690                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2691                 goto exit;
2692         }
2693
2694         if (unlikely(is_noslot_pfn(pfn)))
2695                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2696
2697         ret = false;
2698 exit:
2699         return ret;
2700 }
2701
2702 static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2703 {
2704         /*
2705          * #PF can be fast only if the shadow page table is present and it
2706          * is caused by write-protect, that means we just need change the
2707          * W bit of the spte which can be done out of mmu-lock.
2708          */
2709         if (!(error_code & PFERR_PRESENT_MASK) ||
2710               !(error_code & PFERR_WRITE_MASK))
2711                 return false;
2712
2713         return true;
2714 }
2715
2716 static bool
2717 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2718 {
2719         struct kvm_mmu_page *sp = page_header(__pa(sptep));
2720         gfn_t gfn;
2721
2722         WARN_ON(!sp->role.direct);
2723
2724         /*
2725          * The gfn of direct spte is stable since it is calculated
2726          * by sp->gfn.
2727          */
2728         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2729
2730         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2731                 mark_page_dirty(vcpu->kvm, gfn);
2732
2733         return true;
2734 }
2735
2736 /*
2737  * Return value:
2738  * - true: let the vcpu to access on the same address again.
2739  * - false: let the real page fault path to fix it.
2740  */
2741 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2742                             u32 error_code)
2743 {
2744         struct kvm_shadow_walk_iterator iterator;
2745         bool ret = false;
2746         u64 spte = 0ull;
2747
2748         if (!page_fault_can_be_fast(vcpu, error_code))
2749                 return false;
2750
2751         walk_shadow_page_lockless_begin(vcpu);
2752         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2753                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2754                         break;
2755
2756         /*
2757          * If the mapping has been changed, let the vcpu fault on the
2758          * same address again.
2759          */
2760         if (!is_rmap_spte(spte)) {
2761                 ret = true;
2762                 goto exit;
2763         }
2764
2765         if (!is_last_spte(spte, level))
2766                 goto exit;
2767
2768         /*
2769          * Check if it is a spurious fault caused by TLB lazily flushed.
2770          *
2771          * Need not check the access of upper level table entries since
2772          * they are always ACC_ALL.
2773          */
2774          if (is_writable_pte(spte)) {
2775                 ret = true;
2776                 goto exit;
2777         }
2778
2779         /*
2780          * Currently, to simplify the code, only the spte write-protected
2781          * by dirty-log can be fast fixed.
2782          */
2783         if (!spte_is_locklessly_modifiable(spte))
2784                 goto exit;
2785
2786         /*
2787          * Currently, fast page fault only works for direct mapping since
2788          * the gfn is not stable for indirect shadow page.
2789          * See Documentation/virtual/kvm/locking.txt to get more detail.
2790          */
2791         ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2792 exit:
2793         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2794                               spte, ret);
2795         walk_shadow_page_lockless_end(vcpu);
2796
2797         return ret;
2798 }
2799
2800 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2801                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
2802
2803 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2804                          gfn_t gfn, bool prefault)
2805 {
2806         int r;
2807         int level;
2808         int force_pt_level;
2809         pfn_t pfn;
2810         unsigned long mmu_seq;
2811         bool map_writable, write = error_code & PFERR_WRITE_MASK;
2812
2813         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2814         if (likely(!force_pt_level)) {
2815                 level = mapping_level(vcpu, gfn);
2816                 /*
2817                  * This path builds a PAE pagetable - so we can map
2818                  * 2mb pages at maximum. Therefore check if the level
2819                  * is larger than that.
2820                  */
2821                 if (level > PT_DIRECTORY_LEVEL)
2822                         level = PT_DIRECTORY_LEVEL;
2823
2824                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2825         } else
2826                 level = PT_PAGE_TABLE_LEVEL;
2827
2828         if (fast_page_fault(vcpu, v, level, error_code))
2829                 return 0;
2830
2831         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2832         smp_rmb();
2833
2834         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2835                 return 0;
2836
2837         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2838                 return r;
2839
2840         spin_lock(&vcpu->kvm->mmu_lock);
2841         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2842                 goto out_unlock;
2843         kvm_mmu_free_some_pages(vcpu);
2844         if (likely(!force_pt_level))
2845                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2846         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2847                          prefault);
2848         spin_unlock(&vcpu->kvm->mmu_lock);
2849
2850
2851         return r;
2852
2853 out_unlock:
2854         spin_unlock(&vcpu->kvm->mmu_lock);
2855         kvm_release_pfn_clean(pfn);
2856         return 0;
2857 }
2858
2859
2860 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2861 {
2862         int i;
2863         struct kvm_mmu_page *sp;
2864         LIST_HEAD(invalid_list);
2865
2866         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2867                 return;
2868         spin_lock(&vcpu->kvm->mmu_lock);
2869         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2870             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2871              vcpu->arch.mmu.direct_map)) {
2872                 hpa_t root = vcpu->arch.mmu.root_hpa;
2873
2874                 sp = page_header(root);
2875                 --sp->root_count;
2876                 if (!sp->root_count && sp->role.invalid) {
2877                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2878                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2879                 }
2880                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2881                 spin_unlock(&vcpu->kvm->mmu_lock);
2882                 return;
2883         }
2884         for (i = 0; i < 4; ++i) {
2885                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2886
2887                 if (root) {
2888                         root &= PT64_BASE_ADDR_MASK;
2889                         sp = page_header(root);
2890                         --sp->root_count;
2891                         if (!sp->root_count && sp->role.invalid)
2892                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2893                                                          &invalid_list);
2894                 }
2895                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2896         }
2897         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2898         spin_unlock(&vcpu->kvm->mmu_lock);
2899         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2900 }
2901
2902 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2903 {
2904         int ret = 0;
2905
2906         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2907                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2908                 ret = 1;
2909         }
2910
2911         return ret;
2912 }
2913
2914 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2915 {
2916         struct kvm_mmu_page *sp;
2917         unsigned i;
2918
2919         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2920                 spin_lock(&vcpu->kvm->mmu_lock);
2921                 kvm_mmu_free_some_pages(vcpu);
2922                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2923                                       1, ACC_ALL, NULL);
2924                 ++sp->root_count;
2925                 spin_unlock(&vcpu->kvm->mmu_lock);
2926                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2927         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2928                 for (i = 0; i < 4; ++i) {
2929                         hpa_t root = vcpu->arch.mmu.pae_root[i];
2930
2931                         ASSERT(!VALID_PAGE(root));
2932                         spin_lock(&vcpu->kvm->mmu_lock);
2933                         kvm_mmu_free_some_pages(vcpu);
2934                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2935                                               i << 30,
2936                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
2937                                               NULL);
2938                         root = __pa(sp->spt);
2939                         ++sp->root_count;
2940                         spin_unlock(&vcpu->kvm->mmu_lock);
2941                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2942                 }
2943                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2944         } else
2945                 BUG();
2946
2947         return 0;
2948 }
2949
2950 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2951 {
2952         struct kvm_mmu_page *sp;
2953         u64 pdptr, pm_mask;
2954         gfn_t root_gfn;
2955         int i;
2956
2957         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2958
2959         if (mmu_check_root(vcpu, root_gfn))
2960                 return 1;
2961
2962         /*
2963          * Do we shadow a long mode page table? If so we need to
2964          * write-protect the guests page table root.
2965          */
2966         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2967                 hpa_t root = vcpu->arch.mmu.root_hpa;
2968
2969                 ASSERT(!VALID_PAGE(root));
2970
2971                 spin_lock(&vcpu->kvm->mmu_lock);
2972                 kvm_mmu_free_some_pages(vcpu);
2973                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2974                                       0, ACC_ALL, NULL);
2975                 root = __pa(sp->spt);
2976                 ++sp->root_count;
2977                 spin_unlock(&vcpu->kvm->mmu_lock);
2978                 vcpu->arch.mmu.root_hpa = root;
2979                 return 0;
2980         }
2981
2982         /*
2983          * We shadow a 32 bit page table. This may be a legacy 2-level
2984          * or a PAE 3-level page table. In either case we need to be aware that
2985          * the shadow page table may be a PAE or a long mode page table.
2986          */
2987         pm_mask = PT_PRESENT_MASK;
2988         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2989                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2990
2991         for (i = 0; i < 4; ++i) {
2992                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2993
2994                 ASSERT(!VALID_PAGE(root));
2995                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2996                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
2997                         if (!is_present_gpte(pdptr)) {
2998                                 vcpu->arch.mmu.pae_root[i] = 0;
2999                                 continue;
3000                         }
3001                         root_gfn = pdptr >> PAGE_SHIFT;
3002                         if (mmu_check_root(vcpu, root_gfn))
3003                                 return 1;
3004                 }
3005                 spin_lock(&vcpu->kvm->mmu_lock);
3006                 kvm_mmu_free_some_pages(vcpu);
3007                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3008                                       PT32_ROOT_LEVEL, 0,
3009                                       ACC_ALL, NULL);
3010                 root = __pa(sp->spt);
3011                 ++sp->root_count;
3012                 spin_unlock(&vcpu->kvm->mmu_lock);
3013
3014                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3015         }
3016         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3017
3018         /*
3019          * If we shadow a 32 bit page table with a long mode page
3020          * table we enter this path.
3021          */
3022         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3023                 if (vcpu->arch.mmu.lm_root == NULL) {
3024                         /*
3025                          * The additional page necessary for this is only
3026                          * allocated on demand.
3027                          */
3028
3029                         u64 *lm_root;
3030
3031                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3032                         if (lm_root == NULL)
3033                                 return 1;
3034
3035                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3036
3037                         vcpu->arch.mmu.lm_root = lm_root;
3038                 }
3039
3040                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3041         }
3042
3043         return 0;
3044 }
3045
3046 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3047 {
3048         if (vcpu->arch.mmu.direct_map)
3049                 return mmu_alloc_direct_roots(vcpu);
3050         else
3051                 return mmu_alloc_shadow_roots(vcpu);
3052 }
3053
3054 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3055 {
3056         int i;
3057         struct kvm_mmu_page *sp;
3058
3059         if (vcpu->arch.mmu.direct_map)
3060                 return;
3061
3062         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3063                 return;
3064
3065         vcpu_clear_mmio_info(vcpu, ~0ul);
3066         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3067         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3068                 hpa_t root = vcpu->arch.mmu.root_hpa;
3069                 sp = page_header(root);
3070                 mmu_sync_children(vcpu, sp);
3071                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3072                 return;
3073         }
3074         for (i = 0; i < 4; ++i) {
3075                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3076
3077                 if (root && VALID_PAGE(root)) {
3078                         root &= PT64_BASE_ADDR_MASK;
3079                         sp = page_header(root);
3080                         mmu_sync_children(vcpu, sp);
3081                 }
3082         }
3083         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3084 }
3085
3086 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3087 {
3088         spin_lock(&vcpu->kvm->mmu_lock);
3089         mmu_sync_roots(vcpu);
3090         spin_unlock(&vcpu->kvm->mmu_lock);
3091 }
3092
3093 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3094                                   u32 access, struct x86_exception *exception)
3095 {
3096         if (exception)
3097                 exception->error_code = 0;
3098         return vaddr;
3099 }
3100
3101 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3102                                          u32 access,
3103                                          struct x86_exception *exception)
3104 {
3105         if (exception)
3106                 exception->error_code = 0;
3107         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3108 }
3109
3110 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3111 {
3112         if (direct)
3113                 return vcpu_match_mmio_gpa(vcpu, addr);
3114
3115         return vcpu_match_mmio_gva(vcpu, addr);
3116 }
3117
3118
3119 /*
3120  * On direct hosts, the last spte is only allows two states
3121  * for mmio page fault:
3122  *   - It is the mmio spte
3123  *   - It is zapped or it is being zapped.
3124  *
3125  * This function completely checks the spte when the last spte
3126  * is not the mmio spte.
3127  */
3128 static bool check_direct_spte_mmio_pf(u64 spte)
3129 {
3130         return __check_direct_spte_mmio_pf(spte);
3131 }
3132
3133 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3134 {
3135         struct kvm_shadow_walk_iterator iterator;
3136         u64 spte = 0ull;
3137
3138         walk_shadow_page_lockless_begin(vcpu);
3139         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3140                 if (!is_shadow_present_pte(spte))
3141                         break;
3142         walk_shadow_page_lockless_end(vcpu);
3143
3144         return spte;
3145 }
3146
3147 /*
3148  * If it is a real mmio page fault, return 1 and emulat the instruction
3149  * directly, return 0 to let CPU fault again on the address, -1 is
3150  * returned if bug is detected.
3151  */
3152 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3153 {
3154         u64 spte;
3155
3156         if (quickly_check_mmio_pf(vcpu, addr, direct))
3157                 return 1;
3158
3159         spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3160
3161         if (is_mmio_spte(spte)) {
3162                 gfn_t gfn = get_mmio_spte_gfn(spte);
3163                 unsigned access = get_mmio_spte_access(spte);
3164
3165                 if (direct)
3166                         addr = 0;
3167
3168                 trace_handle_mmio_page_fault(addr, gfn, access);
3169                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3170                 return 1;
3171         }
3172
3173         /*
3174          * It's ok if the gva is remapped by other cpus on shadow guest,
3175          * it's a BUG if the gfn is not a mmio page.
3176          */
3177         if (direct && !check_direct_spte_mmio_pf(spte))
3178                 return -1;
3179
3180         /*
3181          * If the page table is zapped by other cpus, let CPU fault again on
3182          * the address.
3183          */
3184         return 0;
3185 }
3186 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3187
3188 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3189                                   u32 error_code, bool direct)
3190 {
3191         int ret;
3192
3193         ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3194         WARN_ON(ret < 0);
3195         return ret;
3196 }
3197
3198 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3199                                 u32 error_code, bool prefault)
3200 {
3201         gfn_t gfn;
3202         int r;
3203
3204         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3205
3206         if (unlikely(error_code & PFERR_RSVD_MASK))
3207                 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3208
3209         r = mmu_topup_memory_caches(vcpu);
3210         if (r)
3211                 return r;
3212
3213         ASSERT(vcpu);
3214         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3215
3216         gfn = gva >> PAGE_SHIFT;
3217
3218         return nonpaging_map(vcpu, gva & PAGE_MASK,
3219                              error_code, gfn, prefault);
3220 }
3221
3222 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3223 {
3224         struct kvm_arch_async_pf arch;
3225
3226         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3227         arch.gfn = gfn;
3228         arch.direct_map = vcpu->arch.mmu.direct_map;
3229         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3230
3231         return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3232 }
3233
3234 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3235 {
3236         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3237                      kvm_event_needs_reinjection(vcpu)))
3238                 return false;
3239
3240         return kvm_x86_ops->interrupt_allowed(vcpu);
3241 }
3242
3243 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3244                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3245 {
3246         bool async;
3247
3248         *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3249
3250         if (!async)
3251                 return false; /* *pfn has correct page already */
3252
3253         if (!prefault && can_do_async_pf(vcpu)) {
3254                 trace_kvm_try_async_get_page(gva, gfn);
3255                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3256                         trace_kvm_async_pf_doublefault(gva, gfn);
3257                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3258                         return true;
3259                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3260                         return true;
3261         }
3262
3263         *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3264
3265         return false;
3266 }
3267
3268 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3269                           bool prefault)
3270 {
3271         pfn_t pfn;
3272         int r;
3273         int level;
3274         int force_pt_level;
3275         gfn_t gfn = gpa >> PAGE_SHIFT;
3276         unsigned long mmu_seq;
3277         int write = error_code & PFERR_WRITE_MASK;
3278         bool map_writable;
3279
3280         ASSERT(vcpu);
3281         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3282
3283         if (unlikely(error_code & PFERR_RSVD_MASK))
3284                 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3285
3286         r = mmu_topup_memory_caches(vcpu);
3287         if (r)
3288                 return r;
3289
3290         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3291         if (likely(!force_pt_level)) {
3292                 level = mapping_level(vcpu, gfn);
3293                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3294         } else
3295                 level = PT_PAGE_TABLE_LEVEL;
3296
3297         if (fast_page_fault(vcpu, gpa, level, error_code))
3298                 return 0;
3299
3300         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3301         smp_rmb();
3302
3303         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3304                 return 0;
3305
3306         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3307                 return r;
3308
3309         spin_lock(&vcpu->kvm->mmu_lock);
3310         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3311                 goto out_unlock;
3312         kvm_mmu_free_some_pages(vcpu);
3313         if (likely(!force_pt_level))
3314                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3315         r = __direct_map(vcpu, gpa, write, map_writable,
3316                          level, gfn, pfn, prefault);
3317         spin_unlock(&vcpu->kvm->mmu_lock);
3318
3319         return r;
3320
3321 out_unlock:
3322         spin_unlock(&vcpu->kvm->mmu_lock);
3323         kvm_release_pfn_clean(pfn);
3324         return 0;
3325 }
3326
3327 static void nonpaging_free(struct kvm_vcpu *vcpu)
3328 {
3329         mmu_free_roots(vcpu);
3330 }
3331
3332 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3333                                   struct kvm_mmu *context)
3334 {
3335         context->new_cr3 = nonpaging_new_cr3;
3336         context->page_fault = nonpaging_page_fault;
3337         context->gva_to_gpa = nonpaging_gva_to_gpa;
3338         context->free = nonpaging_free;
3339         context->sync_page = nonpaging_sync_page;
3340         context->invlpg = nonpaging_invlpg;
3341         context->update_pte = nonpaging_update_pte;
3342         context->root_level = 0;
3343         context->shadow_root_level = PT32E_ROOT_LEVEL;
3344         context->root_hpa = INVALID_PAGE;
3345         context->direct_map = true;
3346         context->nx = false;
3347         return 0;
3348 }
3349
3350 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3351 {
3352         ++vcpu->stat.tlb_flush;
3353         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3354 }
3355
3356 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3357 {
3358         pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3359         mmu_free_roots(vcpu);
3360 }
3361
3362 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3363 {
3364         return kvm_read_cr3(vcpu);
3365 }
3366
3367 static void inject_page_fault(struct kvm_vcpu *vcpu,
3368                               struct x86_exception *fault)
3369 {
3370         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3371 }
3372
3373 static void paging_free(struct kvm_vcpu *vcpu)
3374 {
3375         nonpaging_free(vcpu);
3376 }
3377
3378 static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3379 {
3380         unsigned mask;
3381
3382         BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3383
3384         mask = (unsigned)~ACC_WRITE_MASK;
3385         /* Allow write access to dirty gptes */
3386         mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3387         *access &= mask;
3388 }
3389
3390 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3391                            int *nr_present)
3392 {
3393         if (unlikely(is_mmio_spte(*sptep))) {
3394                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3395                         mmu_spte_clear_no_track(sptep);
3396                         return true;
3397                 }
3398
3399                 (*nr_present)++;
3400                 mark_mmio_spte(sptep, gfn, access);
3401                 return true;
3402         }
3403
3404         return false;
3405 }
3406
3407 static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3408 {
3409         unsigned access;
3410
3411         access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3412         access &= ~(gpte >> PT64_NX_SHIFT);
3413
3414         return access;
3415 }
3416
3417 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3418 {
3419         unsigned index;
3420
3421         index = level - 1;
3422         index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3423         return mmu->last_pte_bitmap & (1 << index);
3424 }
3425
3426 #define PTTYPE 64
3427 #include "paging_tmpl.h"
3428 #undef PTTYPE
3429
3430 #define PTTYPE 32
3431 #include "paging_tmpl.h"
3432 #undef PTTYPE
3433
3434 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3435                                   struct kvm_mmu *context)
3436 {
3437         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3438         u64 exb_bit_rsvd = 0;
3439
3440         if (!context->nx)
3441                 exb_bit_rsvd = rsvd_bits(63, 63);
3442         switch (context->root_level) {
3443         case PT32_ROOT_LEVEL:
3444                 /* no rsvd bits for 2 level 4K page table entries */
3445                 context->rsvd_bits_mask[0][1] = 0;
3446                 context->rsvd_bits_mask[0][0] = 0;
3447                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3448
3449                 if (!is_pse(vcpu)) {
3450                         context->rsvd_bits_mask[1][1] = 0;
3451                         break;
3452                 }
3453
3454                 if (is_cpuid_PSE36())
3455                         /* 36bits PSE 4MB page */
3456                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3457                 else
3458                         /* 32 bits PSE 4MB page */
3459                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3460                 break;
3461         case PT32E_ROOT_LEVEL:
3462                 context->rsvd_bits_mask[0][2] =
3463                         rsvd_bits(maxphyaddr, 63) |
3464                         rsvd_bits(7, 8) | rsvd_bits(1, 2);      /* PDPTE */
3465                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3466                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3467                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3468                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3469                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3470                         rsvd_bits(maxphyaddr, 62) |
3471                         rsvd_bits(13, 20);              /* large page */
3472                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3473                 break;
3474         case PT64_ROOT_LEVEL:
3475                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3476                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3477                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3478                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3479                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3480                         rsvd_bits(maxphyaddr, 51);
3481                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3482                         rsvd_bits(maxphyaddr, 51);
3483                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3484                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3485                         rsvd_bits(maxphyaddr, 51) |
3486                         rsvd_bits(13, 29);
3487                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3488                         rsvd_bits(maxphyaddr, 51) |
3489                         rsvd_bits(13, 20);              /* large page */
3490                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3491                 break;
3492         }
3493 }
3494
3495 static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3496 {
3497         unsigned bit, byte, pfec;
3498         u8 map;
3499         bool fault, x, w, u, wf, uf, ff, smep;
3500
3501         smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3502         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3503                 pfec = byte << 1;
3504                 map = 0;
3505                 wf = pfec & PFERR_WRITE_MASK;
3506                 uf = pfec & PFERR_USER_MASK;
3507                 ff = pfec & PFERR_FETCH_MASK;
3508                 for (bit = 0; bit < 8; ++bit) {
3509                         x = bit & ACC_EXEC_MASK;
3510                         w = bit & ACC_WRITE_MASK;
3511                         u = bit & ACC_USER_MASK;
3512
3513                         /* Not really needed: !nx will cause pte.nx to fault */
3514                         x |= !mmu->nx;
3515                         /* Allow supervisor writes if !cr0.wp */
3516                         w |= !is_write_protection(vcpu) && !uf;
3517                         /* Disallow supervisor fetches of user code if cr4.smep */
3518                         x &= !(smep && u && !uf);
3519
3520                         fault = (ff && !x) || (uf && !u) || (wf && !w);
3521                         map |= fault << bit;
3522                 }
3523                 mmu->permissions[byte] = map;
3524         }
3525 }
3526
3527 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3528 {
3529         u8 map;
3530         unsigned level, root_level = mmu->root_level;
3531         const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3532
3533         if (root_level == PT32E_ROOT_LEVEL)
3534                 --root_level;
3535         /* PT_PAGE_TABLE_LEVEL always terminates */
3536         map = 1 | (1 << ps_set_index);
3537         for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3538                 if (level <= PT_PDPE_LEVEL
3539                     && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3540                         map |= 1 << (ps_set_index | (level - 1));
3541         }
3542         mmu->last_pte_bitmap = map;
3543 }
3544
3545 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3546                                         struct kvm_mmu *context,
3547                                         int level)
3548 {
3549         context->nx = is_nx(vcpu);
3550         context->root_level = level;
3551
3552         reset_rsvds_bits_mask(vcpu, context);
3553         update_permission_bitmask(vcpu, context);
3554         update_last_pte_bitmap(vcpu, context);
3555
3556         ASSERT(is_pae(vcpu));
3557         context->new_cr3 = paging_new_cr3;
3558         context->page_fault = paging64_page_fault;
3559         context->gva_to_gpa = paging64_gva_to_gpa;
3560         context->sync_page = paging64_sync_page;
3561         context->invlpg = paging64_invlpg;
3562         context->update_pte = paging64_update_pte;
3563         context->free = paging_free;
3564         context->shadow_root_level = level;
3565         context->root_hpa = INVALID_PAGE;
3566         context->direct_map = false;
3567         return 0;
3568 }
3569
3570 static int paging64_init_context(struct kvm_vcpu *vcpu,
3571                                  struct kvm_mmu *context)
3572 {
3573         return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3574 }
3575
3576 static int paging32_init_context(struct kvm_vcpu *vcpu,
3577                                  struct kvm_mmu *context)
3578 {
3579         context->nx = false;
3580         context->root_level = PT32_ROOT_LEVEL;
3581
3582         reset_rsvds_bits_mask(vcpu, context);
3583         update_permission_bitmask(vcpu, context);
3584         update_last_pte_bitmap(vcpu, context);
3585
3586         context->new_cr3 = paging_new_cr3;
3587         context->page_fault = paging32_page_fault;
3588         context->gva_to_gpa = paging32_gva_to_gpa;
3589         context->free = paging_free;
3590         context->sync_page = paging32_sync_page;
3591         context->invlpg = paging32_invlpg;
3592         context->update_pte = paging32_update_pte;
3593         context->shadow_root_level = PT32E_ROOT_LEVEL;
3594         context->root_hpa = INVALID_PAGE;
3595         context->direct_map = false;
3596         return 0;
3597 }
3598
3599 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3600                                   struct kvm_mmu *context)
3601 {
3602         return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3603 }
3604
3605 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3606 {
3607         struct kvm_mmu *context = vcpu->arch.walk_mmu;
3608
3609         context->base_role.word = 0;
3610         context->new_cr3 = nonpaging_new_cr3;
3611         context->page_fault = tdp_page_fault;
3612         context->free = nonpaging_free;
3613         context->sync_page = nonpaging_sync_page;
3614         context->invlpg = nonpaging_invlpg;
3615         context->update_pte = nonpaging_update_pte;
3616         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3617         context->root_hpa = INVALID_PAGE;
3618         context->direct_map = true;
3619         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3620         context->get_cr3 = get_cr3;
3621         context->get_pdptr = kvm_pdptr_read;
3622         context->inject_page_fault = kvm_inject_page_fault;
3623
3624         if (!is_paging(vcpu)) {
3625                 context->nx = false;
3626                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3627                 context->root_level = 0;
3628         } else if (is_long_mode(vcpu)) {
3629                 context->nx = is_nx(vcpu);
3630                 context->root_level = PT64_ROOT_LEVEL;
3631                 reset_rsvds_bits_mask(vcpu, context);
3632                 context->gva_to_gpa = paging64_gva_to_gpa;
3633         } else if (is_pae(vcpu)) {
3634                 context->nx = is_nx(vcpu);
3635                 context->root_level = PT32E_ROOT_LEVEL;
3636                 reset_rsvds_bits_mask(vcpu, context);
3637                 context->gva_to_gpa = paging64_gva_to_gpa;
3638         } else {
3639                 context->nx = false;
3640                 context->root_level = PT32_ROOT_LEVEL;
3641                 reset_rsvds_bits_mask(vcpu, context);
3642                 context->gva_to_gpa = paging32_gva_to_gpa;
3643         }
3644
3645         update_permission_bitmask(vcpu, context);
3646         update_last_pte_bitmap(vcpu, context);
3647
3648         return 0;
3649 }
3650
3651 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3652 {
3653         int r;
3654         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3655         ASSERT(vcpu);
3656         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3657
3658         if (!is_paging(vcpu))
3659                 r = nonpaging_init_context(vcpu, context);
3660         else if (is_long_mode(vcpu))
3661                 r = paging64_init_context(vcpu, context);
3662         else if (is_pae(vcpu))
3663                 r = paging32E_init_context(vcpu, context);
3664         else
3665                 r = paging32_init_context(vcpu, context);
3666
3667         vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3668         vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3669         vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3670         vcpu->arch.mmu.base_role.smep_andnot_wp
3671                 = smep && !is_write_protection(vcpu);
3672
3673         return r;
3674 }
3675 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3676
3677 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3678 {
3679         int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3680
3681         vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3682         vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3683         vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3684         vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3685
3686         return r;
3687 }
3688
3689 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3690 {
3691         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3692
3693         g_context->get_cr3           = get_cr3;
3694         g_context->get_pdptr         = kvm_pdptr_read;
3695         g_context->inject_page_fault = kvm_inject_page_fault;
3696
3697         /*
3698          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3699          * translation of l2_gpa to l1_gpa addresses is done using the
3700          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3701          * functions between mmu and nested_mmu are swapped.
3702          */
3703         if (!is_paging(vcpu)) {
3704                 g_context->nx = false;
3705                 g_context->root_level = 0;
3706                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3707         } else if (is_long_mode(vcpu)) {
3708                 g_context->nx = is_nx(vcpu);
3709                 g_context->root_level = PT64_ROOT_LEVEL;
3710                 reset_rsvds_bits_mask(vcpu, g_context);
3711                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3712         } else if (is_pae(vcpu)) {
3713                 g_context->nx = is_nx(vcpu);
3714                 g_context->root_level = PT32E_ROOT_LEVEL;
3715                 reset_rsvds_bits_mask(vcpu, g_context);
3716                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3717         } else {
3718                 g_context->nx = false;
3719                 g_context->root_level = PT32_ROOT_LEVEL;
3720                 reset_rsvds_bits_mask(vcpu, g_context);
3721                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3722         }
3723
3724         update_permission_bitmask(vcpu, g_context);
3725         update_last_pte_bitmap(vcpu, g_context);
3726
3727         return 0;
3728 }
3729
3730 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3731 {
3732         if (mmu_is_nested(vcpu))
3733                 return init_kvm_nested_mmu(vcpu);
3734         else if (tdp_enabled)
3735                 return init_kvm_tdp_mmu(vcpu);
3736         else
3737                 return init_kvm_softmmu(vcpu);
3738 }
3739
3740 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3741 {
3742         ASSERT(vcpu);
3743         if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3744                 /* mmu.free() should set root_hpa = INVALID_PAGE */
3745                 vcpu->arch.mmu.free(vcpu);
3746 }
3747
3748 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3749 {
3750         destroy_kvm_mmu(vcpu);
3751         return init_kvm_mmu(vcpu);
3752 }
3753 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3754
3755 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3756 {
3757         int r;
3758
3759         r = mmu_topup_memory_caches(vcpu);
3760         if (r)
3761                 goto out;
3762         r = mmu_alloc_roots(vcpu);
3763         spin_lock(&vcpu->kvm->mmu_lock);
3764         mmu_sync_roots(vcpu);
3765         spin_unlock(&vcpu->kvm->mmu_lock);
3766         if (r)
3767                 goto out;
3768         /* set_cr3() should ensure TLB has been flushed */
3769         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3770 out:
3771         return r;
3772 }
3773 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3774
3775 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3776 {
3777         mmu_free_roots(vcpu);
3778 }
3779 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3780
3781 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3782                                   struct kvm_mmu_page *sp, u64 *spte,
3783                                   const void *new)
3784 {
3785         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3786                 ++vcpu->kvm->stat.mmu_pde_zapped;
3787                 return;
3788         }
3789
3790         ++vcpu->kvm->stat.mmu_pte_updated;
3791         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3792 }
3793
3794 static bool need_remote_flush(u64 old, u64 new)
3795 {
3796         if (!is_shadow_present_pte(old))
3797                 return false;
3798         if (!is_shadow_present_pte(new))
3799                 return true;
3800         if ((old ^ new) & PT64_BASE_ADDR_MASK)
3801                 return true;
3802         old ^= PT64_NX_MASK;
3803         new ^= PT64_NX_MASK;
3804         return (old & ~new & PT64_PERM_MASK) != 0;
3805 }
3806
3807 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3808                                     bool remote_flush, bool local_flush)
3809 {
3810         if (zap_page)
3811                 return;
3812
3813         if (remote_flush)
3814                 kvm_flush_remote_tlbs(vcpu->kvm);
3815         else if (local_flush)
3816                 kvm_mmu_flush_tlb(vcpu);
3817 }
3818
3819 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3820                                     const u8 *new, int *bytes)
3821 {
3822         u64 gentry;
3823         int r;
3824
3825         /*
3826          * Assume that the pte write on a page table of the same type
3827          * as the current vcpu paging mode since we update the sptes only
3828          * when they have the same mode.
3829          */
3830         if (is_pae(vcpu) && *bytes == 4) {
3831                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3832                 *gpa &= ~(gpa_t)7;
3833                 *bytes = 8;
3834                 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3835                 if (r)
3836                         gentry = 0;
3837                 new = (const u8 *)&gentry;
3838         }
3839
3840         switch (*bytes) {
3841         case 4:
3842                 gentry = *(const u32 *)new;
3843                 break;
3844         case 8:
3845                 gentry = *(const u64 *)new;
3846                 break;
3847         default:
3848                 gentry = 0;
3849                 break;
3850         }
3851
3852         return gentry;
3853 }
3854
3855 /*
3856  * If we're seeing too many writes to a page, it may no longer be a page table,
3857  * or we may be forking, in which case it is better to unmap the page.
3858  */
3859 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3860 {
3861         /*
3862          * Skip write-flooding detected for the sp whose level is 1, because
3863          * it can become unsync, then the guest page is not write-protected.
3864          */
3865         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3866                 return false;
3867
3868         return ++sp->write_flooding_count >= 3;
3869 }
3870
3871 /*
3872  * Misaligned accesses are too much trouble to fix up; also, they usually
3873  * indicate a page is not used as a page table.
3874  */
3875 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3876                                     int bytes)
3877 {
3878         unsigned offset, pte_size, misaligned;
3879
3880         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3881                  gpa, bytes, sp->role.word);
3882
3883         offset = offset_in_page(gpa);
3884         pte_size = sp->role.cr4_pae ? 8 : 4;
3885
3886         /*
3887          * Sometimes, the OS only writes the last one bytes to update status
3888          * bits, for example, in linux, andb instruction is used in clear_bit().
3889          */
3890         if (!(offset & (pte_size - 1)) && bytes == 1)
3891                 return false;
3892
3893         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3894         misaligned |= bytes < 4;
3895
3896         return misaligned;
3897 }
3898
3899 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3900 {
3901         unsigned page_offset, quadrant;
3902         u64 *spte;
3903         int level;
3904
3905         page_offset = offset_in_page(gpa);
3906         level = sp->role.level;
3907         *nspte = 1;
3908         if (!sp->role.cr4_pae) {
3909                 page_offset <<= 1;      /* 32->64 */
3910                 /*
3911                  * A 32-bit pde maps 4MB while the shadow pdes map
3912                  * only 2MB.  So we need to double the offset again
3913                  * and zap two pdes instead of one.
3914                  */
3915                 if (level == PT32_ROOT_LEVEL) {
3916                         page_offset &= ~7; /* kill rounding error */
3917                         page_offset <<= 1;
3918                         *nspte = 2;
3919                 }
3920                 quadrant = page_offset >> PAGE_SHIFT;
3921                 page_offset &= ~PAGE_MASK;
3922                 if (quadrant != sp->role.quadrant)
3923                         return NULL;
3924         }
3925
3926         spte = &sp->spt[page_offset / sizeof(*spte)];
3927         return spte;
3928 }
3929
3930 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3931                        const u8 *new, int bytes)
3932 {
3933         gfn_t gfn = gpa >> PAGE_SHIFT;
3934         union kvm_mmu_page_role mask = { .word = 0 };
3935         struct kvm_mmu_page *sp;
3936         struct hlist_node *node;
3937         LIST_HEAD(invalid_list);
3938         u64 entry, gentry, *spte;
3939         int npte;
3940         bool remote_flush, local_flush, zap_page;
3941
3942         /*
3943          * If we don't have indirect shadow pages, it means no page is
3944          * write-protected, so we can exit simply.
3945          */
3946         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3947                 return;
3948
3949         zap_page = remote_flush = local_flush = false;
3950
3951         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3952
3953         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3954
3955         /*
3956          * No need to care whether allocation memory is successful
3957          * or not since pte prefetch is skiped if it does not have
3958          * enough objects in the cache.
3959          */
3960         mmu_topup_memory_caches(vcpu);
3961
3962         spin_lock(&vcpu->kvm->mmu_lock);
3963         ++vcpu->kvm->stat.mmu_pte_write;
3964         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3965
3966         mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3967         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3968                 if (detect_write_misaligned(sp, gpa, bytes) ||
3969                       detect_write_flooding(sp)) {
3970                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3971                                                      &invalid_list);
3972                         ++vcpu->kvm->stat.mmu_flooded;
3973                         continue;
3974                 }
3975
3976                 spte = get_written_sptes(sp, gpa, &npte);
3977                 if (!spte)
3978                         continue;
3979
3980                 local_flush = true;
3981                 while (npte--) {
3982                         entry = *spte;
3983                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
3984                         if (gentry &&
3985                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3986                               & mask.word) && rmap_can_add(vcpu))
3987                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3988                         if (need_remote_flush(entry, *spte))
3989                                 remote_flush = true;
3990                         ++spte;
3991                 }
3992         }
3993         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3994         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3995         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3996         spin_unlock(&vcpu->kvm->mmu_lock);
3997 }
3998
3999 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4000 {
4001         gpa_t gpa;
4002         int r;
4003
4004         if (vcpu->arch.mmu.direct_map)
4005                 return 0;
4006
4007         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4008
4009         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4010
4011         return r;
4012 }
4013 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4014
4015 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
4016 {
4017         LIST_HEAD(invalid_list);
4018
4019         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
4020                !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4021                 struct kvm_mmu_page *sp;
4022
4023                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4024                                   struct kvm_mmu_page, link);
4025                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4026                 ++vcpu->kvm->stat.mmu_recycled;
4027         }
4028         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4029 }
4030
4031 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4032 {
4033         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4034                 return vcpu_match_mmio_gpa(vcpu, addr);
4035
4036         return vcpu_match_mmio_gva(vcpu, addr);
4037 }
4038
4039 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4040                        void *insn, int insn_len)
4041 {
4042         int r, emulation_type = EMULTYPE_RETRY;
4043         enum emulation_result er;
4044
4045         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4046         if (r < 0)
4047                 goto out;
4048
4049         if (!r) {
4050                 r = 1;
4051                 goto out;
4052         }
4053
4054         if (is_mmio_page_fault(vcpu, cr2))
4055                 emulation_type = 0;
4056
4057         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4058
4059         switch (er) {
4060         case EMULATE_DONE:
4061                 return 1;
4062         case EMULATE_DO_MMIO:
4063                 ++vcpu->stat.mmio_exits;
4064                 /* fall through */
4065         case EMULATE_FAIL:
4066                 return 0;
4067         default:
4068                 BUG();
4069         }
4070 out:
4071         return r;
4072 }
4073 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4074
4075 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4076 {
4077         vcpu->arch.mmu.invlpg(vcpu, gva);
4078         kvm_mmu_flush_tlb(vcpu);
4079         ++vcpu->stat.invlpg;
4080 }
4081 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4082
4083 void kvm_enable_tdp(void)
4084 {
4085         tdp_enabled = true;
4086 }
4087 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4088
4089 void kvm_disable_tdp(void)
4090 {
4091         tdp_enabled = false;
4092 }
4093 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4094
4095 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4096 {
4097         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4098         if (vcpu->arch.mmu.lm_root != NULL)
4099                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4100 }
4101
4102 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4103 {
4104         struct page *page;
4105         int i;
4106
4107         ASSERT(vcpu);
4108
4109         /*
4110          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4111          * Therefore we need to allocate shadow page tables in the first
4112          * 4GB of memory, which happens to fit the DMA32 zone.
4113          */
4114         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4115         if (!page)
4116                 return -ENOMEM;
4117
4118         vcpu->arch.mmu.pae_root = page_address(page);
4119         for (i = 0; i < 4; ++i)
4120                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4121
4122         return 0;
4123 }
4124
4125 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4126 {
4127         ASSERT(vcpu);
4128
4129         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4130         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4131         vcpu->arch.mmu.translate_gpa = translate_gpa;
4132         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4133
4134         return alloc_mmu_pages(vcpu);
4135 }
4136
4137 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4138 {
4139         ASSERT(vcpu);
4140         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4141
4142         return init_kvm_mmu(vcpu);
4143 }
4144
4145 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4146 {
4147         struct kvm_memory_slot *memslot;
4148         gfn_t last_gfn;
4149         int i;
4150
4151         memslot = id_to_memslot(kvm->memslots, slot);
4152         last_gfn = memslot->base_gfn + memslot->npages - 1;
4153
4154         spin_lock(&kvm->mmu_lock);
4155
4156         for (i = PT_PAGE_TABLE_LEVEL;
4157              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4158                 unsigned long *rmapp;
4159                 unsigned long last_index, index;
4160
4161                 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4162                 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4163
4164                 for (index = 0; index <= last_index; ++index, ++rmapp) {
4165                         if (*rmapp)
4166                                 __rmap_write_protect(kvm, rmapp, false);
4167
4168                         if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4169                                 kvm_flush_remote_tlbs(kvm);
4170                                 cond_resched_lock(&kvm->mmu_lock);
4171                         }
4172                 }
4173         }
4174
4175         kvm_flush_remote_tlbs(kvm);
4176         spin_unlock(&kvm->mmu_lock);
4177 }
4178
4179 void kvm_mmu_zap_all(struct kvm *kvm)
4180 {
4181         struct kvm_mmu_page *sp, *node;
4182         LIST_HEAD(invalid_list);
4183
4184         spin_lock(&kvm->mmu_lock);
4185 restart:
4186         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
4187                 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4188                         goto restart;
4189
4190         kvm_mmu_commit_zap_page(kvm, &invalid_list);
4191         spin_unlock(&kvm->mmu_lock);
4192 }
4193
4194 static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
4195                                                 struct list_head *invalid_list)
4196 {
4197         struct kvm_mmu_page *page;
4198
4199         if (list_empty(&kvm->arch.active_mmu_pages))
4200                 return;
4201
4202         page = container_of(kvm->arch.active_mmu_pages.prev,
4203                             struct kvm_mmu_page, link);
4204         kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
4205 }
4206
4207 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4208 {
4209         struct kvm *kvm;
4210         int nr_to_scan = sc->nr_to_scan;
4211
4212         if (nr_to_scan == 0)
4213                 goto out;
4214
4215         raw_spin_lock(&kvm_lock);
4216
4217         list_for_each_entry(kvm, &vm_list, vm_list) {
4218                 int idx;
4219                 LIST_HEAD(invalid_list);
4220
4221                 /*
4222                  * Never scan more than sc->nr_to_scan VM instances.
4223                  * Will not hit this condition practically since we do not try
4224                  * to shrink more than one VM and it is very unlikely to see
4225                  * !n_used_mmu_pages so many times.
4226                  */
4227                 if (!nr_to_scan--)
4228                         break;
4229                 /*
4230                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4231                  * here. We may skip a VM instance errorneosly, but we do not
4232                  * want to shrink a VM that only started to populate its MMU
4233                  * anyway.
4234                  */
4235                 if (!kvm->arch.n_used_mmu_pages)
4236                         continue;
4237
4238                 idx = srcu_read_lock(&kvm->srcu);
4239                 spin_lock(&kvm->mmu_lock);
4240
4241                 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
4242                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4243
4244                 spin_unlock(&kvm->mmu_lock);
4245                 srcu_read_unlock(&kvm->srcu, idx);
4246
4247                 list_move_tail(&kvm->vm_list, &vm_list);
4248                 break;
4249         }
4250
4251         raw_spin_unlock(&kvm_lock);
4252
4253 out:
4254         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4255 }
4256
4257 static struct shrinker mmu_shrinker = {
4258         .shrink = mmu_shrink,
4259         .seeks = DEFAULT_SEEKS * 10,
4260 };
4261
4262 static void mmu_destroy_caches(void)
4263 {
4264         if (pte_list_desc_cache)
4265                 kmem_cache_destroy(pte_list_desc_cache);
4266         if (mmu_page_header_cache)
4267                 kmem_cache_destroy(mmu_page_header_cache);
4268 }
4269
4270 int kvm_mmu_module_init(void)
4271 {
4272         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4273                                             sizeof(struct pte_list_desc),
4274                                             0, 0, NULL);
4275         if (!pte_list_desc_cache)
4276                 goto nomem;
4277
4278         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4279                                                   sizeof(struct kvm_mmu_page),
4280                                                   0, 0, NULL);
4281         if (!mmu_page_header_cache)
4282                 goto nomem;
4283
4284         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4285                 goto nomem;
4286
4287         register_shrinker(&mmu_shrinker);
4288
4289         return 0;
4290
4291 nomem:
4292         mmu_destroy_caches();
4293         return -ENOMEM;
4294 }
4295
4296 /*
4297  * Caculate mmu pages needed for kvm.
4298  */
4299 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4300 {
4301         unsigned int nr_mmu_pages;
4302         unsigned int  nr_pages = 0;
4303         struct kvm_memslots *slots;
4304         struct kvm_memory_slot *memslot;
4305
4306         slots = kvm_memslots(kvm);
4307
4308         kvm_for_each_memslot(memslot, slots)
4309                 nr_pages += memslot->npages;
4310
4311         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4312         nr_mmu_pages = max(nr_mmu_pages,
4313                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4314
4315         return nr_mmu_pages;
4316 }
4317
4318 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4319 {
4320         struct kvm_shadow_walk_iterator iterator;
4321         u64 spte;
4322         int nr_sptes = 0;
4323
4324         walk_shadow_page_lockless_begin(vcpu);
4325         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4326                 sptes[iterator.level-1] = spte;
4327                 nr_sptes++;
4328                 if (!is_shadow_present_pte(spte))
4329                         break;
4330         }
4331         walk_shadow_page_lockless_end(vcpu);
4332
4333         return nr_sptes;
4334 }
4335 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4336
4337 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4338 {
4339         ASSERT(vcpu);
4340
4341         destroy_kvm_mmu(vcpu);
4342         free_mmu_pages(vcpu);
4343         mmu_free_memory_caches(vcpu);
4344 }
4345
4346 void kvm_mmu_module_exit(void)
4347 {
4348         mmu_destroy_caches();
4349         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4350         unregister_shrinker(&mmu_shrinker);
4351         mmu_audit_disable();
4352 }