]> Pileus Git - ~andy/linux/blob - arch/x86/kernel/cpu/perf_event_intel.c
Merge branch 'nfsd-next' of git://linux-nfs.org/~bfields/linux
[~andy/linux] / arch / x86 / kernel / cpu / perf_event_intel.c
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15
16 #include <asm/cpufeature.h>
17 #include <asm/hardirq.h>
18 #include <asm/apic.h>
19
20 #include "perf_event.h"
21
22 /*
23  * Intel PerfMon, used on Core and later.
24  */
25 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
26 {
27         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
28         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
29         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
30         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
31         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
32         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
33         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
34         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
35 };
36
37 static struct event_constraint intel_core_event_constraints[] __read_mostly =
38 {
39         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
40         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
41         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
42         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
43         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
44         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
45         EVENT_CONSTRAINT_END
46 };
47
48 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
49 {
50         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
51         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
52         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
53         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
54         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
55         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
56         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
57         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
58         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
59         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
60         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
61         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
62         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
63         EVENT_CONSTRAINT_END
64 };
65
66 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
67 {
68         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
69         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
70         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
71         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
72         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
73         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
74         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
75         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
76         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
77         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
78         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
79         EVENT_CONSTRAINT_END
80 };
81
82 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
83 {
84         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
85         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
86         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
87         EVENT_EXTRA_END
88 };
89
90 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
91 {
92         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
93         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
94         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
95         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
96         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
97         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
98         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
99         EVENT_CONSTRAINT_END
100 };
101
102 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
103 {
104         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
105         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
106         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
107         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
108         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
109         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
110         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
111         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
112         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
113         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
114         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
115         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
116         EVENT_CONSTRAINT_END
117 };
118
119 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
120 {
121         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
122         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
123         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
124         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
125         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
126         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
127         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
128         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
129         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
130         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
131         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
132         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
133         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
134         /*
135          * Errata BV98 -- MEM_*_RETIRED events can leak between counters of SMT
136          * siblings; disable these events because they can corrupt unrelated
137          * counters.
138          */
139         INTEL_EVENT_CONSTRAINT(0xd0, 0x0), /* MEM_UOPS_RETIRED.* */
140         INTEL_EVENT_CONSTRAINT(0xd1, 0x0), /* MEM_LOAD_UOPS_RETIRED.* */
141         INTEL_EVENT_CONSTRAINT(0xd2, 0x0), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
142         INTEL_EVENT_CONSTRAINT(0xd3, 0x0), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
143         EVENT_CONSTRAINT_END
144 };
145
146 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
147 {
148         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
149         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
150         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
151         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
152         EVENT_EXTRA_END
153 };
154
155 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
156 {
157         EVENT_CONSTRAINT_END
158 };
159
160 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
161 {
162         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
163         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
164         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
165         EVENT_CONSTRAINT_END
166 };
167
168 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
169 {
170         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
171         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
172         FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF */
173         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
174         EVENT_CONSTRAINT_END
175 };
176
177 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
178         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
179         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
180         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
181         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
182         EVENT_EXTRA_END
183 };
184
185 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
186         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
187         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
188         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
189         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
190         EVENT_EXTRA_END
191 };
192
193 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
194 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
195 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
196
197 struct attribute *nhm_events_attrs[] = {
198         EVENT_PTR(mem_ld_nhm),
199         NULL,
200 };
201
202 struct attribute *snb_events_attrs[] = {
203         EVENT_PTR(mem_ld_snb),
204         EVENT_PTR(mem_st_snb),
205         NULL,
206 };
207
208 static struct event_constraint intel_hsw_event_constraints[] = {
209         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
210         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
211         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
212         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.* */
213         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
214         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
215         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
216         INTEL_EVENT_CONSTRAINT(0x08a3, 0x4),
217         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
218         INTEL_EVENT_CONSTRAINT(0x0ca3, 0x4),
219         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
220         INTEL_EVENT_CONSTRAINT(0x04a3, 0xf),
221         EVENT_CONSTRAINT_END
222 };
223
224 static u64 intel_pmu_event_map(int hw_event)
225 {
226         return intel_perfmon_event_map[hw_event];
227 }
228
229 #define SNB_DMND_DATA_RD        (1ULL << 0)
230 #define SNB_DMND_RFO            (1ULL << 1)
231 #define SNB_DMND_IFETCH         (1ULL << 2)
232 #define SNB_DMND_WB             (1ULL << 3)
233 #define SNB_PF_DATA_RD          (1ULL << 4)
234 #define SNB_PF_RFO              (1ULL << 5)
235 #define SNB_PF_IFETCH           (1ULL << 6)
236 #define SNB_LLC_DATA_RD         (1ULL << 7)
237 #define SNB_LLC_RFO             (1ULL << 8)
238 #define SNB_LLC_IFETCH          (1ULL << 9)
239 #define SNB_BUS_LOCKS           (1ULL << 10)
240 #define SNB_STRM_ST             (1ULL << 11)
241 #define SNB_OTHER               (1ULL << 15)
242 #define SNB_RESP_ANY            (1ULL << 16)
243 #define SNB_NO_SUPP             (1ULL << 17)
244 #define SNB_LLC_HITM            (1ULL << 18)
245 #define SNB_LLC_HITE            (1ULL << 19)
246 #define SNB_LLC_HITS            (1ULL << 20)
247 #define SNB_LLC_HITF            (1ULL << 21)
248 #define SNB_LOCAL               (1ULL << 22)
249 #define SNB_REMOTE              (0xffULL << 23)
250 #define SNB_SNP_NONE            (1ULL << 31)
251 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
252 #define SNB_SNP_MISS            (1ULL << 33)
253 #define SNB_NO_FWD              (1ULL << 34)
254 #define SNB_SNP_FWD             (1ULL << 35)
255 #define SNB_HITM                (1ULL << 36)
256 #define SNB_NON_DRAM            (1ULL << 37)
257
258 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
259 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
260 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
261
262 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
263                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
264                                  SNB_HITM)
265
266 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
267 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
268
269 #define SNB_L3_ACCESS           SNB_RESP_ANY
270 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
271
272 static __initconst const u64 snb_hw_cache_extra_regs
273                                 [PERF_COUNT_HW_CACHE_MAX]
274                                 [PERF_COUNT_HW_CACHE_OP_MAX]
275                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
276 {
277  [ C(LL  ) ] = {
278         [ C(OP_READ) ] = {
279                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
280                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
281         },
282         [ C(OP_WRITE) ] = {
283                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
284                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
285         },
286         [ C(OP_PREFETCH) ] = {
287                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
288                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
289         },
290  },
291  [ C(NODE) ] = {
292         [ C(OP_READ) ] = {
293                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
294                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
295         },
296         [ C(OP_WRITE) ] = {
297                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
298                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
299         },
300         [ C(OP_PREFETCH) ] = {
301                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
302                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
303         },
304  },
305 };
306
307 static __initconst const u64 snb_hw_cache_event_ids
308                                 [PERF_COUNT_HW_CACHE_MAX]
309                                 [PERF_COUNT_HW_CACHE_OP_MAX]
310                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
311 {
312  [ C(L1D) ] = {
313         [ C(OP_READ) ] = {
314                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
315                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
316         },
317         [ C(OP_WRITE) ] = {
318                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
319                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
320         },
321         [ C(OP_PREFETCH) ] = {
322                 [ C(RESULT_ACCESS) ] = 0x0,
323                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
324         },
325  },
326  [ C(L1I ) ] = {
327         [ C(OP_READ) ] = {
328                 [ C(RESULT_ACCESS) ] = 0x0,
329                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
330         },
331         [ C(OP_WRITE) ] = {
332                 [ C(RESULT_ACCESS) ] = -1,
333                 [ C(RESULT_MISS)   ] = -1,
334         },
335         [ C(OP_PREFETCH) ] = {
336                 [ C(RESULT_ACCESS) ] = 0x0,
337                 [ C(RESULT_MISS)   ] = 0x0,
338         },
339  },
340  [ C(LL  ) ] = {
341         [ C(OP_READ) ] = {
342                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
343                 [ C(RESULT_ACCESS) ] = 0x01b7,
344                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
345                 [ C(RESULT_MISS)   ] = 0x01b7,
346         },
347         [ C(OP_WRITE) ] = {
348                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
349                 [ C(RESULT_ACCESS) ] = 0x01b7,
350                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
351                 [ C(RESULT_MISS)   ] = 0x01b7,
352         },
353         [ C(OP_PREFETCH) ] = {
354                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
355                 [ C(RESULT_ACCESS) ] = 0x01b7,
356                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
357                 [ C(RESULT_MISS)   ] = 0x01b7,
358         },
359  },
360  [ C(DTLB) ] = {
361         [ C(OP_READ) ] = {
362                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
363                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
364         },
365         [ C(OP_WRITE) ] = {
366                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
367                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
368         },
369         [ C(OP_PREFETCH) ] = {
370                 [ C(RESULT_ACCESS) ] = 0x0,
371                 [ C(RESULT_MISS)   ] = 0x0,
372         },
373  },
374  [ C(ITLB) ] = {
375         [ C(OP_READ) ] = {
376                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
377                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
378         },
379         [ C(OP_WRITE) ] = {
380                 [ C(RESULT_ACCESS) ] = -1,
381                 [ C(RESULT_MISS)   ] = -1,
382         },
383         [ C(OP_PREFETCH) ] = {
384                 [ C(RESULT_ACCESS) ] = -1,
385                 [ C(RESULT_MISS)   ] = -1,
386         },
387  },
388  [ C(BPU ) ] = {
389         [ C(OP_READ) ] = {
390                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
391                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
392         },
393         [ C(OP_WRITE) ] = {
394                 [ C(RESULT_ACCESS) ] = -1,
395                 [ C(RESULT_MISS)   ] = -1,
396         },
397         [ C(OP_PREFETCH) ] = {
398                 [ C(RESULT_ACCESS) ] = -1,
399                 [ C(RESULT_MISS)   ] = -1,
400         },
401  },
402  [ C(NODE) ] = {
403         [ C(OP_READ) ] = {
404                 [ C(RESULT_ACCESS) ] = 0x01b7,
405                 [ C(RESULT_MISS)   ] = 0x01b7,
406         },
407         [ C(OP_WRITE) ] = {
408                 [ C(RESULT_ACCESS) ] = 0x01b7,
409                 [ C(RESULT_MISS)   ] = 0x01b7,
410         },
411         [ C(OP_PREFETCH) ] = {
412                 [ C(RESULT_ACCESS) ] = 0x01b7,
413                 [ C(RESULT_MISS)   ] = 0x01b7,
414         },
415  },
416
417 };
418
419 static __initconst const u64 westmere_hw_cache_event_ids
420                                 [PERF_COUNT_HW_CACHE_MAX]
421                                 [PERF_COUNT_HW_CACHE_OP_MAX]
422                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
423 {
424  [ C(L1D) ] = {
425         [ C(OP_READ) ] = {
426                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
427                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
428         },
429         [ C(OP_WRITE) ] = {
430                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
431                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
432         },
433         [ C(OP_PREFETCH) ] = {
434                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
435                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
436         },
437  },
438  [ C(L1I ) ] = {
439         [ C(OP_READ) ] = {
440                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
441                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
442         },
443         [ C(OP_WRITE) ] = {
444                 [ C(RESULT_ACCESS) ] = -1,
445                 [ C(RESULT_MISS)   ] = -1,
446         },
447         [ C(OP_PREFETCH) ] = {
448                 [ C(RESULT_ACCESS) ] = 0x0,
449                 [ C(RESULT_MISS)   ] = 0x0,
450         },
451  },
452  [ C(LL  ) ] = {
453         [ C(OP_READ) ] = {
454                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
455                 [ C(RESULT_ACCESS) ] = 0x01b7,
456                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
457                 [ C(RESULT_MISS)   ] = 0x01b7,
458         },
459         /*
460          * Use RFO, not WRITEBACK, because a write miss would typically occur
461          * on RFO.
462          */
463         [ C(OP_WRITE) ] = {
464                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
465                 [ C(RESULT_ACCESS) ] = 0x01b7,
466                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
467                 [ C(RESULT_MISS)   ] = 0x01b7,
468         },
469         [ C(OP_PREFETCH) ] = {
470                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
471                 [ C(RESULT_ACCESS) ] = 0x01b7,
472                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
473                 [ C(RESULT_MISS)   ] = 0x01b7,
474         },
475  },
476  [ C(DTLB) ] = {
477         [ C(OP_READ) ] = {
478                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
479                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
480         },
481         [ C(OP_WRITE) ] = {
482                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
483                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
484         },
485         [ C(OP_PREFETCH) ] = {
486                 [ C(RESULT_ACCESS) ] = 0x0,
487                 [ C(RESULT_MISS)   ] = 0x0,
488         },
489  },
490  [ C(ITLB) ] = {
491         [ C(OP_READ) ] = {
492                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
493                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
494         },
495         [ C(OP_WRITE) ] = {
496                 [ C(RESULT_ACCESS) ] = -1,
497                 [ C(RESULT_MISS)   ] = -1,
498         },
499         [ C(OP_PREFETCH) ] = {
500                 [ C(RESULT_ACCESS) ] = -1,
501                 [ C(RESULT_MISS)   ] = -1,
502         },
503  },
504  [ C(BPU ) ] = {
505         [ C(OP_READ) ] = {
506                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
507                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
508         },
509         [ C(OP_WRITE) ] = {
510                 [ C(RESULT_ACCESS) ] = -1,
511                 [ C(RESULT_MISS)   ] = -1,
512         },
513         [ C(OP_PREFETCH) ] = {
514                 [ C(RESULT_ACCESS) ] = -1,
515                 [ C(RESULT_MISS)   ] = -1,
516         },
517  },
518  [ C(NODE) ] = {
519         [ C(OP_READ) ] = {
520                 [ C(RESULT_ACCESS) ] = 0x01b7,
521                 [ C(RESULT_MISS)   ] = 0x01b7,
522         },
523         [ C(OP_WRITE) ] = {
524                 [ C(RESULT_ACCESS) ] = 0x01b7,
525                 [ C(RESULT_MISS)   ] = 0x01b7,
526         },
527         [ C(OP_PREFETCH) ] = {
528                 [ C(RESULT_ACCESS) ] = 0x01b7,
529                 [ C(RESULT_MISS)   ] = 0x01b7,
530         },
531  },
532 };
533
534 /*
535  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
536  * See IA32 SDM Vol 3B 30.6.1.3
537  */
538
539 #define NHM_DMND_DATA_RD        (1 << 0)
540 #define NHM_DMND_RFO            (1 << 1)
541 #define NHM_DMND_IFETCH         (1 << 2)
542 #define NHM_DMND_WB             (1 << 3)
543 #define NHM_PF_DATA_RD          (1 << 4)
544 #define NHM_PF_DATA_RFO         (1 << 5)
545 #define NHM_PF_IFETCH           (1 << 6)
546 #define NHM_OFFCORE_OTHER       (1 << 7)
547 #define NHM_UNCORE_HIT          (1 << 8)
548 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
549 #define NHM_OTHER_CORE_HITM     (1 << 10)
550                                 /* reserved */
551 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
552 #define NHM_REMOTE_DRAM         (1 << 13)
553 #define NHM_LOCAL_DRAM          (1 << 14)
554 #define NHM_NON_DRAM            (1 << 15)
555
556 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
557 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
558
559 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
560 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
561 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
562
563 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
564 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
565 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
566
567 static __initconst const u64 nehalem_hw_cache_extra_regs
568                                 [PERF_COUNT_HW_CACHE_MAX]
569                                 [PERF_COUNT_HW_CACHE_OP_MAX]
570                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
571 {
572  [ C(LL  ) ] = {
573         [ C(OP_READ) ] = {
574                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
575                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
576         },
577         [ C(OP_WRITE) ] = {
578                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
579                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
580         },
581         [ C(OP_PREFETCH) ] = {
582                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
583                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
584         },
585  },
586  [ C(NODE) ] = {
587         [ C(OP_READ) ] = {
588                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
589                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
590         },
591         [ C(OP_WRITE) ] = {
592                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
593                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
594         },
595         [ C(OP_PREFETCH) ] = {
596                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
597                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
598         },
599  },
600 };
601
602 static __initconst const u64 nehalem_hw_cache_event_ids
603                                 [PERF_COUNT_HW_CACHE_MAX]
604                                 [PERF_COUNT_HW_CACHE_OP_MAX]
605                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
606 {
607  [ C(L1D) ] = {
608         [ C(OP_READ) ] = {
609                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
610                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
611         },
612         [ C(OP_WRITE) ] = {
613                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
614                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
615         },
616         [ C(OP_PREFETCH) ] = {
617                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
618                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
619         },
620  },
621  [ C(L1I ) ] = {
622         [ C(OP_READ) ] = {
623                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
624                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
625         },
626         [ C(OP_WRITE) ] = {
627                 [ C(RESULT_ACCESS) ] = -1,
628                 [ C(RESULT_MISS)   ] = -1,
629         },
630         [ C(OP_PREFETCH) ] = {
631                 [ C(RESULT_ACCESS) ] = 0x0,
632                 [ C(RESULT_MISS)   ] = 0x0,
633         },
634  },
635  [ C(LL  ) ] = {
636         [ C(OP_READ) ] = {
637                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
638                 [ C(RESULT_ACCESS) ] = 0x01b7,
639                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
640                 [ C(RESULT_MISS)   ] = 0x01b7,
641         },
642         /*
643          * Use RFO, not WRITEBACK, because a write miss would typically occur
644          * on RFO.
645          */
646         [ C(OP_WRITE) ] = {
647                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
648                 [ C(RESULT_ACCESS) ] = 0x01b7,
649                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
650                 [ C(RESULT_MISS)   ] = 0x01b7,
651         },
652         [ C(OP_PREFETCH) ] = {
653                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
654                 [ C(RESULT_ACCESS) ] = 0x01b7,
655                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
656                 [ C(RESULT_MISS)   ] = 0x01b7,
657         },
658  },
659  [ C(DTLB) ] = {
660         [ C(OP_READ) ] = {
661                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
662                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
663         },
664         [ C(OP_WRITE) ] = {
665                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
666                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
667         },
668         [ C(OP_PREFETCH) ] = {
669                 [ C(RESULT_ACCESS) ] = 0x0,
670                 [ C(RESULT_MISS)   ] = 0x0,
671         },
672  },
673  [ C(ITLB) ] = {
674         [ C(OP_READ) ] = {
675                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
676                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
677         },
678         [ C(OP_WRITE) ] = {
679                 [ C(RESULT_ACCESS) ] = -1,
680                 [ C(RESULT_MISS)   ] = -1,
681         },
682         [ C(OP_PREFETCH) ] = {
683                 [ C(RESULT_ACCESS) ] = -1,
684                 [ C(RESULT_MISS)   ] = -1,
685         },
686  },
687  [ C(BPU ) ] = {
688         [ C(OP_READ) ] = {
689                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
690                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
691         },
692         [ C(OP_WRITE) ] = {
693                 [ C(RESULT_ACCESS) ] = -1,
694                 [ C(RESULT_MISS)   ] = -1,
695         },
696         [ C(OP_PREFETCH) ] = {
697                 [ C(RESULT_ACCESS) ] = -1,
698                 [ C(RESULT_MISS)   ] = -1,
699         },
700  },
701  [ C(NODE) ] = {
702         [ C(OP_READ) ] = {
703                 [ C(RESULT_ACCESS) ] = 0x01b7,
704                 [ C(RESULT_MISS)   ] = 0x01b7,
705         },
706         [ C(OP_WRITE) ] = {
707                 [ C(RESULT_ACCESS) ] = 0x01b7,
708                 [ C(RESULT_MISS)   ] = 0x01b7,
709         },
710         [ C(OP_PREFETCH) ] = {
711                 [ C(RESULT_ACCESS) ] = 0x01b7,
712                 [ C(RESULT_MISS)   ] = 0x01b7,
713         },
714  },
715 };
716
717 static __initconst const u64 core2_hw_cache_event_ids
718                                 [PERF_COUNT_HW_CACHE_MAX]
719                                 [PERF_COUNT_HW_CACHE_OP_MAX]
720                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
721 {
722  [ C(L1D) ] = {
723         [ C(OP_READ) ] = {
724                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
725                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
726         },
727         [ C(OP_WRITE) ] = {
728                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
729                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
730         },
731         [ C(OP_PREFETCH) ] = {
732                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
733                 [ C(RESULT_MISS)   ] = 0,
734         },
735  },
736  [ C(L1I ) ] = {
737         [ C(OP_READ) ] = {
738                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
739                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
740         },
741         [ C(OP_WRITE) ] = {
742                 [ C(RESULT_ACCESS) ] = -1,
743                 [ C(RESULT_MISS)   ] = -1,
744         },
745         [ C(OP_PREFETCH) ] = {
746                 [ C(RESULT_ACCESS) ] = 0,
747                 [ C(RESULT_MISS)   ] = 0,
748         },
749  },
750  [ C(LL  ) ] = {
751         [ C(OP_READ) ] = {
752                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
753                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
754         },
755         [ C(OP_WRITE) ] = {
756                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
757                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
758         },
759         [ C(OP_PREFETCH) ] = {
760                 [ C(RESULT_ACCESS) ] = 0,
761                 [ C(RESULT_MISS)   ] = 0,
762         },
763  },
764  [ C(DTLB) ] = {
765         [ C(OP_READ) ] = {
766                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
767                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
768         },
769         [ C(OP_WRITE) ] = {
770                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
771                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
772         },
773         [ C(OP_PREFETCH) ] = {
774                 [ C(RESULT_ACCESS) ] = 0,
775                 [ C(RESULT_MISS)   ] = 0,
776         },
777  },
778  [ C(ITLB) ] = {
779         [ C(OP_READ) ] = {
780                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
781                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
782         },
783         [ C(OP_WRITE) ] = {
784                 [ C(RESULT_ACCESS) ] = -1,
785                 [ C(RESULT_MISS)   ] = -1,
786         },
787         [ C(OP_PREFETCH) ] = {
788                 [ C(RESULT_ACCESS) ] = -1,
789                 [ C(RESULT_MISS)   ] = -1,
790         },
791  },
792  [ C(BPU ) ] = {
793         [ C(OP_READ) ] = {
794                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
795                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
796         },
797         [ C(OP_WRITE) ] = {
798                 [ C(RESULT_ACCESS) ] = -1,
799                 [ C(RESULT_MISS)   ] = -1,
800         },
801         [ C(OP_PREFETCH) ] = {
802                 [ C(RESULT_ACCESS) ] = -1,
803                 [ C(RESULT_MISS)   ] = -1,
804         },
805  },
806 };
807
808 static __initconst const u64 atom_hw_cache_event_ids
809                                 [PERF_COUNT_HW_CACHE_MAX]
810                                 [PERF_COUNT_HW_CACHE_OP_MAX]
811                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
812 {
813  [ C(L1D) ] = {
814         [ C(OP_READ) ] = {
815                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
816                 [ C(RESULT_MISS)   ] = 0,
817         },
818         [ C(OP_WRITE) ] = {
819                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
820                 [ C(RESULT_MISS)   ] = 0,
821         },
822         [ C(OP_PREFETCH) ] = {
823                 [ C(RESULT_ACCESS) ] = 0x0,
824                 [ C(RESULT_MISS)   ] = 0,
825         },
826  },
827  [ C(L1I ) ] = {
828         [ C(OP_READ) ] = {
829                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
830                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
831         },
832         [ C(OP_WRITE) ] = {
833                 [ C(RESULT_ACCESS) ] = -1,
834                 [ C(RESULT_MISS)   ] = -1,
835         },
836         [ C(OP_PREFETCH) ] = {
837                 [ C(RESULT_ACCESS) ] = 0,
838                 [ C(RESULT_MISS)   ] = 0,
839         },
840  },
841  [ C(LL  ) ] = {
842         [ C(OP_READ) ] = {
843                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
844                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
845         },
846         [ C(OP_WRITE) ] = {
847                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
848                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
849         },
850         [ C(OP_PREFETCH) ] = {
851                 [ C(RESULT_ACCESS) ] = 0,
852                 [ C(RESULT_MISS)   ] = 0,
853         },
854  },
855  [ C(DTLB) ] = {
856         [ C(OP_READ) ] = {
857                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
858                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
859         },
860         [ C(OP_WRITE) ] = {
861                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
862                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
863         },
864         [ C(OP_PREFETCH) ] = {
865                 [ C(RESULT_ACCESS) ] = 0,
866                 [ C(RESULT_MISS)   ] = 0,
867         },
868  },
869  [ C(ITLB) ] = {
870         [ C(OP_READ) ] = {
871                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
872                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
873         },
874         [ C(OP_WRITE) ] = {
875                 [ C(RESULT_ACCESS) ] = -1,
876                 [ C(RESULT_MISS)   ] = -1,
877         },
878         [ C(OP_PREFETCH) ] = {
879                 [ C(RESULT_ACCESS) ] = -1,
880                 [ C(RESULT_MISS)   ] = -1,
881         },
882  },
883  [ C(BPU ) ] = {
884         [ C(OP_READ) ] = {
885                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
886                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
887         },
888         [ C(OP_WRITE) ] = {
889                 [ C(RESULT_ACCESS) ] = -1,
890                 [ C(RESULT_MISS)   ] = -1,
891         },
892         [ C(OP_PREFETCH) ] = {
893                 [ C(RESULT_ACCESS) ] = -1,
894                 [ C(RESULT_MISS)   ] = -1,
895         },
896  },
897 };
898
899 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
900 {
901         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
902         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
903         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x768005ffffull, RSP_1),
904         EVENT_EXTRA_END
905 };
906
907 #define SLM_DMND_READ           SNB_DMND_DATA_RD
908 #define SLM_DMND_WRITE          SNB_DMND_RFO
909 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
910
911 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
912 #define SLM_LLC_ACCESS          SNB_RESP_ANY
913 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
914
915 static __initconst const u64 slm_hw_cache_extra_regs
916                                 [PERF_COUNT_HW_CACHE_MAX]
917                                 [PERF_COUNT_HW_CACHE_OP_MAX]
918                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
919 {
920  [ C(LL  ) ] = {
921         [ C(OP_READ) ] = {
922                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
923                 [ C(RESULT_MISS)   ] = SLM_DMND_READ|SLM_LLC_MISS,
924         },
925         [ C(OP_WRITE) ] = {
926                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
927                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
928         },
929         [ C(OP_PREFETCH) ] = {
930                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
931                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
932         },
933  },
934 };
935
936 static __initconst const u64 slm_hw_cache_event_ids
937                                 [PERF_COUNT_HW_CACHE_MAX]
938                                 [PERF_COUNT_HW_CACHE_OP_MAX]
939                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
940 {
941  [ C(L1D) ] = {
942         [ C(OP_READ) ] = {
943                 [ C(RESULT_ACCESS) ] = 0,
944                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
945         },
946         [ C(OP_WRITE) ] = {
947                 [ C(RESULT_ACCESS) ] = 0,
948                 [ C(RESULT_MISS)   ] = 0,
949         },
950         [ C(OP_PREFETCH) ] = {
951                 [ C(RESULT_ACCESS) ] = 0,
952                 [ C(RESULT_MISS)   ] = 0,
953         },
954  },
955  [ C(L1I ) ] = {
956         [ C(OP_READ) ] = {
957                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
958                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
959         },
960         [ C(OP_WRITE) ] = {
961                 [ C(RESULT_ACCESS) ] = -1,
962                 [ C(RESULT_MISS)   ] = -1,
963         },
964         [ C(OP_PREFETCH) ] = {
965                 [ C(RESULT_ACCESS) ] = 0,
966                 [ C(RESULT_MISS)   ] = 0,
967         },
968  },
969  [ C(LL  ) ] = {
970         [ C(OP_READ) ] = {
971                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
972                 [ C(RESULT_ACCESS) ] = 0x01b7,
973                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
974                 [ C(RESULT_MISS)   ] = 0x01b7,
975         },
976         [ C(OP_WRITE) ] = {
977                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
978                 [ C(RESULT_ACCESS) ] = 0x01b7,
979                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
980                 [ C(RESULT_MISS)   ] = 0x01b7,
981         },
982         [ C(OP_PREFETCH) ] = {
983                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
984                 [ C(RESULT_ACCESS) ] = 0x01b7,
985                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
986                 [ C(RESULT_MISS)   ] = 0x01b7,
987         },
988  },
989  [ C(DTLB) ] = {
990         [ C(OP_READ) ] = {
991                 [ C(RESULT_ACCESS) ] = 0,
992                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
993         },
994         [ C(OP_WRITE) ] = {
995                 [ C(RESULT_ACCESS) ] = 0,
996                 [ C(RESULT_MISS)   ] = 0,
997         },
998         [ C(OP_PREFETCH) ] = {
999                 [ C(RESULT_ACCESS) ] = 0,
1000                 [ C(RESULT_MISS)   ] = 0,
1001         },
1002  },
1003  [ C(ITLB) ] = {
1004         [ C(OP_READ) ] = {
1005                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1006                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES */
1007         },
1008         [ C(OP_WRITE) ] = {
1009                 [ C(RESULT_ACCESS) ] = -1,
1010                 [ C(RESULT_MISS)   ] = -1,
1011         },
1012         [ C(OP_PREFETCH) ] = {
1013                 [ C(RESULT_ACCESS) ] = -1,
1014                 [ C(RESULT_MISS)   ] = -1,
1015         },
1016  },
1017  [ C(BPU ) ] = {
1018         [ C(OP_READ) ] = {
1019                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1020                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1021         },
1022         [ C(OP_WRITE) ] = {
1023                 [ C(RESULT_ACCESS) ] = -1,
1024                 [ C(RESULT_MISS)   ] = -1,
1025         },
1026         [ C(OP_PREFETCH) ] = {
1027                 [ C(RESULT_ACCESS) ] = -1,
1028                 [ C(RESULT_MISS)   ] = -1,
1029         },
1030  },
1031 };
1032
1033 static inline bool intel_pmu_needs_lbr_smpl(struct perf_event *event)
1034 {
1035         /* user explicitly requested branch sampling */
1036         if (has_branch_stack(event))
1037                 return true;
1038
1039         /* implicit branch sampling to correct PEBS skid */
1040         if (x86_pmu.intel_cap.pebs_trap && event->attr.precise_ip > 1 &&
1041             x86_pmu.intel_cap.pebs_format < 2)
1042                 return true;
1043
1044         return false;
1045 }
1046
1047 static void intel_pmu_disable_all(void)
1048 {
1049         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1050
1051         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1052
1053         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1054                 intel_pmu_disable_bts();
1055
1056         intel_pmu_pebs_disable_all();
1057         intel_pmu_lbr_disable_all();
1058 }
1059
1060 static void intel_pmu_enable_all(int added)
1061 {
1062         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1063
1064         intel_pmu_pebs_enable_all();
1065         intel_pmu_lbr_enable_all();
1066         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1067                         x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1068
1069         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1070                 struct perf_event *event =
1071                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1072
1073                 if (WARN_ON_ONCE(!event))
1074                         return;
1075
1076                 intel_pmu_enable_bts(event->hw.config);
1077         }
1078 }
1079
1080 /*
1081  * Workaround for:
1082  *   Intel Errata AAK100 (model 26)
1083  *   Intel Errata AAP53  (model 30)
1084  *   Intel Errata BD53   (model 44)
1085  *
1086  * The official story:
1087  *   These chips need to be 'reset' when adding counters by programming the
1088  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1089  *   in sequence on the same PMC or on different PMCs.
1090  *
1091  * In practise it appears some of these events do in fact count, and
1092  * we need to programm all 4 events.
1093  */
1094 static void intel_pmu_nhm_workaround(void)
1095 {
1096         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1097         static const unsigned long nhm_magic[4] = {
1098                 0x4300B5,
1099                 0x4300D2,
1100                 0x4300B1,
1101                 0x4300B1
1102         };
1103         struct perf_event *event;
1104         int i;
1105
1106         /*
1107          * The Errata requires below steps:
1108          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1109          * 2) Configure 4 PERFEVTSELx with the magic events and clear
1110          *    the corresponding PMCx;
1111          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1112          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1113          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1114          */
1115
1116         /*
1117          * The real steps we choose are a little different from above.
1118          * A) To reduce MSR operations, we don't run step 1) as they
1119          *    are already cleared before this function is called;
1120          * B) Call x86_perf_event_update to save PMCx before configuring
1121          *    PERFEVTSELx with magic number;
1122          * C) With step 5), we do clear only when the PERFEVTSELx is
1123          *    not used currently.
1124          * D) Call x86_perf_event_set_period to restore PMCx;
1125          */
1126
1127         /* We always operate 4 pairs of PERF Counters */
1128         for (i = 0; i < 4; i++) {
1129                 event = cpuc->events[i];
1130                 if (event)
1131                         x86_perf_event_update(event);
1132         }
1133
1134         for (i = 0; i < 4; i++) {
1135                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1136                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1137         }
1138
1139         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1140         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1141
1142         for (i = 0; i < 4; i++) {
1143                 event = cpuc->events[i];
1144
1145                 if (event) {
1146                         x86_perf_event_set_period(event);
1147                         __x86_pmu_enable_event(&event->hw,
1148                                         ARCH_PERFMON_EVENTSEL_ENABLE);
1149                 } else
1150                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1151         }
1152 }
1153
1154 static void intel_pmu_nhm_enable_all(int added)
1155 {
1156         if (added)
1157                 intel_pmu_nhm_workaround();
1158         intel_pmu_enable_all(added);
1159 }
1160
1161 static inline u64 intel_pmu_get_status(void)
1162 {
1163         u64 status;
1164
1165         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1166
1167         return status;
1168 }
1169
1170 static inline void intel_pmu_ack_status(u64 ack)
1171 {
1172         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1173 }
1174
1175 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1176 {
1177         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1178         u64 ctrl_val, mask;
1179
1180         mask = 0xfULL << (idx * 4);
1181
1182         rdmsrl(hwc->config_base, ctrl_val);
1183         ctrl_val &= ~mask;
1184         wrmsrl(hwc->config_base, ctrl_val);
1185 }
1186
1187 static inline bool event_is_checkpointed(struct perf_event *event)
1188 {
1189         return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1190 }
1191
1192 static void intel_pmu_disable_event(struct perf_event *event)
1193 {
1194         struct hw_perf_event *hwc = &event->hw;
1195         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1196
1197         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1198                 intel_pmu_disable_bts();
1199                 intel_pmu_drain_bts_buffer();
1200                 return;
1201         }
1202
1203         cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1204         cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1205         cpuc->intel_cp_status &= ~(1ull << hwc->idx);
1206
1207         /*
1208          * must disable before any actual event
1209          * because any event may be combined with LBR
1210          */
1211         if (intel_pmu_needs_lbr_smpl(event))
1212                 intel_pmu_lbr_disable(event);
1213
1214         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1215                 intel_pmu_disable_fixed(hwc);
1216                 return;
1217         }
1218
1219         x86_pmu_disable_event(event);
1220
1221         if (unlikely(event->attr.precise_ip))
1222                 intel_pmu_pebs_disable(event);
1223 }
1224
1225 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1226 {
1227         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1228         u64 ctrl_val, bits, mask;
1229
1230         /*
1231          * Enable IRQ generation (0x8),
1232          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1233          * if requested:
1234          */
1235         bits = 0x8ULL;
1236         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1237                 bits |= 0x2;
1238         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1239                 bits |= 0x1;
1240
1241         /*
1242          * ANY bit is supported in v3 and up
1243          */
1244         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1245                 bits |= 0x4;
1246
1247         bits <<= (idx * 4);
1248         mask = 0xfULL << (idx * 4);
1249
1250         rdmsrl(hwc->config_base, ctrl_val);
1251         ctrl_val &= ~mask;
1252         ctrl_val |= bits;
1253         wrmsrl(hwc->config_base, ctrl_val);
1254 }
1255
1256 static void intel_pmu_enable_event(struct perf_event *event)
1257 {
1258         struct hw_perf_event *hwc = &event->hw;
1259         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1260
1261         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1262                 if (!__this_cpu_read(cpu_hw_events.enabled))
1263                         return;
1264
1265                 intel_pmu_enable_bts(hwc->config);
1266                 return;
1267         }
1268         /*
1269          * must enabled before any actual event
1270          * because any event may be combined with LBR
1271          */
1272         if (intel_pmu_needs_lbr_smpl(event))
1273                 intel_pmu_lbr_enable(event);
1274
1275         if (event->attr.exclude_host)
1276                 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1277         if (event->attr.exclude_guest)
1278                 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1279
1280         if (unlikely(event_is_checkpointed(event)))
1281                 cpuc->intel_cp_status |= (1ull << hwc->idx);
1282
1283         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1284                 intel_pmu_enable_fixed(hwc);
1285                 return;
1286         }
1287
1288         if (unlikely(event->attr.precise_ip))
1289                 intel_pmu_pebs_enable(event);
1290
1291         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1292 }
1293
1294 /*
1295  * Save and restart an expired event. Called by NMI contexts,
1296  * so it has to be careful about preempting normal event ops:
1297  */
1298 int intel_pmu_save_and_restart(struct perf_event *event)
1299 {
1300         x86_perf_event_update(event);
1301         /*
1302          * For a checkpointed counter always reset back to 0.  This
1303          * avoids a situation where the counter overflows, aborts the
1304          * transaction and is then set back to shortly before the
1305          * overflow, and overflows and aborts again.
1306          */
1307         if (unlikely(event_is_checkpointed(event))) {
1308                 /* No race with NMIs because the counter should not be armed */
1309                 wrmsrl(event->hw.event_base, 0);
1310                 local64_set(&event->hw.prev_count, 0);
1311         }
1312         return x86_perf_event_set_period(event);
1313 }
1314
1315 static void intel_pmu_reset(void)
1316 {
1317         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1318         unsigned long flags;
1319         int idx;
1320
1321         if (!x86_pmu.num_counters)
1322                 return;
1323
1324         local_irq_save(flags);
1325
1326         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1327
1328         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1329                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1330                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
1331         }
1332         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1333                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1334
1335         if (ds)
1336                 ds->bts_index = ds->bts_buffer_base;
1337
1338         local_irq_restore(flags);
1339 }
1340
1341 /*
1342  * This handler is triggered by the local APIC, so the APIC IRQ handling
1343  * rules apply:
1344  */
1345 static int intel_pmu_handle_irq(struct pt_regs *regs)
1346 {
1347         struct perf_sample_data data;
1348         struct cpu_hw_events *cpuc;
1349         int bit, loops;
1350         u64 status;
1351         int handled;
1352
1353         cpuc = &__get_cpu_var(cpu_hw_events);
1354
1355         /*
1356          * No known reason to not always do late ACK,
1357          * but just in case do it opt-in.
1358          */
1359         if (!x86_pmu.late_ack)
1360                 apic_write(APIC_LVTPC, APIC_DM_NMI);
1361         intel_pmu_disable_all();
1362         handled = intel_pmu_drain_bts_buffer();
1363         status = intel_pmu_get_status();
1364         if (!status)
1365                 goto done;
1366
1367         loops = 0;
1368 again:
1369         intel_pmu_ack_status(status);
1370         if (++loops > 100) {
1371                 static bool warned = false;
1372                 if (!warned) {
1373                         WARN(1, "perfevents: irq loop stuck!\n");
1374                         perf_event_print_debug();
1375                         warned = true;
1376                 }
1377                 intel_pmu_reset();
1378                 goto done;
1379         }
1380
1381         inc_irq_stat(apic_perf_irqs);
1382
1383         intel_pmu_lbr_read();
1384
1385         /*
1386          * PEBS overflow sets bit 62 in the global status register
1387          */
1388         if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1389                 handled++;
1390                 x86_pmu.drain_pebs(regs);
1391         }
1392
1393         /*
1394          * Checkpointed counters can lead to 'spurious' PMIs because the
1395          * rollback caused by the PMI will have cleared the overflow status
1396          * bit. Therefore always force probe these counters.
1397          */
1398         status |= cpuc->intel_cp_status;
1399
1400         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1401                 struct perf_event *event = cpuc->events[bit];
1402
1403                 handled++;
1404
1405                 if (!test_bit(bit, cpuc->active_mask))
1406                         continue;
1407
1408                 if (!intel_pmu_save_and_restart(event))
1409                         continue;
1410
1411                 perf_sample_data_init(&data, 0, event->hw.last_period);
1412
1413                 if (has_branch_stack(event))
1414                         data.br_stack = &cpuc->lbr_stack;
1415
1416                 if (perf_event_overflow(event, &data, regs))
1417                         x86_pmu_stop(event, 0);
1418         }
1419
1420         /*
1421          * Repeat if there is more work to be done:
1422          */
1423         status = intel_pmu_get_status();
1424         if (status)
1425                 goto again;
1426
1427 done:
1428         intel_pmu_enable_all(0);
1429         /*
1430          * Only unmask the NMI after the overflow counters
1431          * have been reset. This avoids spurious NMIs on
1432          * Haswell CPUs.
1433          */
1434         if (x86_pmu.late_ack)
1435                 apic_write(APIC_LVTPC, APIC_DM_NMI);
1436         return handled;
1437 }
1438
1439 static struct event_constraint *
1440 intel_bts_constraints(struct perf_event *event)
1441 {
1442         struct hw_perf_event *hwc = &event->hw;
1443         unsigned int hw_event, bts_event;
1444
1445         if (event->attr.freq)
1446                 return NULL;
1447
1448         hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1449         bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1450
1451         if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1452                 return &bts_constraint;
1453
1454         return NULL;
1455 }
1456
1457 static int intel_alt_er(int idx)
1458 {
1459         if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
1460                 return idx;
1461
1462         if (idx == EXTRA_REG_RSP_0)
1463                 return EXTRA_REG_RSP_1;
1464
1465         if (idx == EXTRA_REG_RSP_1)
1466                 return EXTRA_REG_RSP_0;
1467
1468         return idx;
1469 }
1470
1471 static void intel_fixup_er(struct perf_event *event, int idx)
1472 {
1473         event->hw.extra_reg.idx = idx;
1474
1475         if (idx == EXTRA_REG_RSP_0) {
1476                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1477                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
1478                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1479         } else if (idx == EXTRA_REG_RSP_1) {
1480                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1481                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
1482                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1483         }
1484 }
1485
1486 /*
1487  * manage allocation of shared extra msr for certain events
1488  *
1489  * sharing can be:
1490  * per-cpu: to be shared between the various events on a single PMU
1491  * per-core: per-cpu + shared by HT threads
1492  */
1493 static struct event_constraint *
1494 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1495                                    struct perf_event *event,
1496                                    struct hw_perf_event_extra *reg)
1497 {
1498         struct event_constraint *c = &emptyconstraint;
1499         struct er_account *era;
1500         unsigned long flags;
1501         int idx = reg->idx;
1502
1503         /*
1504          * reg->alloc can be set due to existing state, so for fake cpuc we
1505          * need to ignore this, otherwise we might fail to allocate proper fake
1506          * state for this extra reg constraint. Also see the comment below.
1507          */
1508         if (reg->alloc && !cpuc->is_fake)
1509                 return NULL; /* call x86_get_event_constraint() */
1510
1511 again:
1512         era = &cpuc->shared_regs->regs[idx];
1513         /*
1514          * we use spin_lock_irqsave() to avoid lockdep issues when
1515          * passing a fake cpuc
1516          */
1517         raw_spin_lock_irqsave(&era->lock, flags);
1518
1519         if (!atomic_read(&era->ref) || era->config == reg->config) {
1520
1521                 /*
1522                  * If its a fake cpuc -- as per validate_{group,event}() we
1523                  * shouldn't touch event state and we can avoid doing so
1524                  * since both will only call get_event_constraints() once
1525                  * on each event, this avoids the need for reg->alloc.
1526                  *
1527                  * Not doing the ER fixup will only result in era->reg being
1528                  * wrong, but since we won't actually try and program hardware
1529                  * this isn't a problem either.
1530                  */
1531                 if (!cpuc->is_fake) {
1532                         if (idx != reg->idx)
1533                                 intel_fixup_er(event, idx);
1534
1535                         /*
1536                          * x86_schedule_events() can call get_event_constraints()
1537                          * multiple times on events in the case of incremental
1538                          * scheduling(). reg->alloc ensures we only do the ER
1539                          * allocation once.
1540                          */
1541                         reg->alloc = 1;
1542                 }
1543
1544                 /* lock in msr value */
1545                 era->config = reg->config;
1546                 era->reg = reg->reg;
1547
1548                 /* one more user */
1549                 atomic_inc(&era->ref);
1550
1551                 /*
1552                  * need to call x86_get_event_constraint()
1553                  * to check if associated event has constraints
1554                  */
1555                 c = NULL;
1556         } else {
1557                 idx = intel_alt_er(idx);
1558                 if (idx != reg->idx) {
1559                         raw_spin_unlock_irqrestore(&era->lock, flags);
1560                         goto again;
1561                 }
1562         }
1563         raw_spin_unlock_irqrestore(&era->lock, flags);
1564
1565         return c;
1566 }
1567
1568 static void
1569 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
1570                                    struct hw_perf_event_extra *reg)
1571 {
1572         struct er_account *era;
1573
1574         /*
1575          * Only put constraint if extra reg was actually allocated. Also takes
1576          * care of event which do not use an extra shared reg.
1577          *
1578          * Also, if this is a fake cpuc we shouldn't touch any event state
1579          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
1580          * either since it'll be thrown out.
1581          */
1582         if (!reg->alloc || cpuc->is_fake)
1583                 return;
1584
1585         era = &cpuc->shared_regs->regs[reg->idx];
1586
1587         /* one fewer user */
1588         atomic_dec(&era->ref);
1589
1590         /* allocate again next time */
1591         reg->alloc = 0;
1592 }
1593
1594 static struct event_constraint *
1595 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
1596                               struct perf_event *event)
1597 {
1598         struct event_constraint *c = NULL, *d;
1599         struct hw_perf_event_extra *xreg, *breg;
1600
1601         xreg = &event->hw.extra_reg;
1602         if (xreg->idx != EXTRA_REG_NONE) {
1603                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
1604                 if (c == &emptyconstraint)
1605                         return c;
1606         }
1607         breg = &event->hw.branch_reg;
1608         if (breg->idx != EXTRA_REG_NONE) {
1609                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
1610                 if (d == &emptyconstraint) {
1611                         __intel_shared_reg_put_constraints(cpuc, xreg);
1612                         c = d;
1613                 }
1614         }
1615         return c;
1616 }
1617
1618 struct event_constraint *
1619 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1620 {
1621         struct event_constraint *c;
1622
1623         if (x86_pmu.event_constraints) {
1624                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1625                         if ((event->hw.config & c->cmask) == c->code) {
1626                                 event->hw.flags |= c->flags;
1627                                 return c;
1628                         }
1629                 }
1630         }
1631
1632         return &unconstrained;
1633 }
1634
1635 static struct event_constraint *
1636 intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1637 {
1638         struct event_constraint *c;
1639
1640         c = intel_bts_constraints(event);
1641         if (c)
1642                 return c;
1643
1644         c = intel_pebs_constraints(event);
1645         if (c)
1646                 return c;
1647
1648         c = intel_shared_regs_constraints(cpuc, event);
1649         if (c)
1650                 return c;
1651
1652         return x86_get_event_constraints(cpuc, event);
1653 }
1654
1655 static void
1656 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
1657                                         struct perf_event *event)
1658 {
1659         struct hw_perf_event_extra *reg;
1660
1661         reg = &event->hw.extra_reg;
1662         if (reg->idx != EXTRA_REG_NONE)
1663                 __intel_shared_reg_put_constraints(cpuc, reg);
1664
1665         reg = &event->hw.branch_reg;
1666         if (reg->idx != EXTRA_REG_NONE)
1667                 __intel_shared_reg_put_constraints(cpuc, reg);
1668 }
1669
1670 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
1671                                         struct perf_event *event)
1672 {
1673         intel_put_shared_regs_event_constraints(cpuc, event);
1674 }
1675
1676 static void intel_pebs_aliases_core2(struct perf_event *event)
1677 {
1678         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1679                 /*
1680                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1681                  * (0x003c) so that we can use it with PEBS.
1682                  *
1683                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1684                  * PEBS capable. However we can use INST_RETIRED.ANY_P
1685                  * (0x00c0), which is a PEBS capable event, to get the same
1686                  * count.
1687                  *
1688                  * INST_RETIRED.ANY_P counts the number of cycles that retires
1689                  * CNTMASK instructions. By setting CNTMASK to a value (16)
1690                  * larger than the maximum number of instructions that can be
1691                  * retired per cycle (4) and then inverting the condition, we
1692                  * count all cycles that retire 16 or less instructions, which
1693                  * is every cycle.
1694                  *
1695                  * Thereby we gain a PEBS capable cycle counter.
1696                  */
1697                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
1698
1699                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1700                 event->hw.config = alt_config;
1701         }
1702 }
1703
1704 static void intel_pebs_aliases_snb(struct perf_event *event)
1705 {
1706         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1707                 /*
1708                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1709                  * (0x003c) so that we can use it with PEBS.
1710                  *
1711                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1712                  * PEBS capable. However we can use UOPS_RETIRED.ALL
1713                  * (0x01c2), which is a PEBS capable event, to get the same
1714                  * count.
1715                  *
1716                  * UOPS_RETIRED.ALL counts the number of cycles that retires
1717                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
1718                  * larger than the maximum number of micro-ops that can be
1719                  * retired per cycle (4) and then inverting the condition, we
1720                  * count all cycles that retire 16 or less micro-ops, which
1721                  * is every cycle.
1722                  *
1723                  * Thereby we gain a PEBS capable cycle counter.
1724                  */
1725                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
1726
1727                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1728                 event->hw.config = alt_config;
1729         }
1730 }
1731
1732 static int intel_pmu_hw_config(struct perf_event *event)
1733 {
1734         int ret = x86_pmu_hw_config(event);
1735
1736         if (ret)
1737                 return ret;
1738
1739         if (event->attr.precise_ip && x86_pmu.pebs_aliases)
1740                 x86_pmu.pebs_aliases(event);
1741
1742         if (intel_pmu_needs_lbr_smpl(event)) {
1743                 ret = intel_pmu_setup_lbr_filter(event);
1744                 if (ret)
1745                         return ret;
1746         }
1747
1748         if (event->attr.type != PERF_TYPE_RAW)
1749                 return 0;
1750
1751         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
1752                 return 0;
1753
1754         if (x86_pmu.version < 3)
1755                 return -EINVAL;
1756
1757         if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1758                 return -EACCES;
1759
1760         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
1761
1762         return 0;
1763 }
1764
1765 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
1766 {
1767         if (x86_pmu.guest_get_msrs)
1768                 return x86_pmu.guest_get_msrs(nr);
1769         *nr = 0;
1770         return NULL;
1771 }
1772 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
1773
1774 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
1775 {
1776         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1777         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1778
1779         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
1780         arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
1781         arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
1782         /*
1783          * If PMU counter has PEBS enabled it is not enough to disable counter
1784          * on a guest entry since PEBS memory write can overshoot guest entry
1785          * and corrupt guest memory. Disabling PEBS solves the problem.
1786          */
1787         arr[1].msr = MSR_IA32_PEBS_ENABLE;
1788         arr[1].host = cpuc->pebs_enabled;
1789         arr[1].guest = 0;
1790
1791         *nr = 2;
1792         return arr;
1793 }
1794
1795 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
1796 {
1797         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1798         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1799         int idx;
1800
1801         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
1802                 struct perf_event *event = cpuc->events[idx];
1803
1804                 arr[idx].msr = x86_pmu_config_addr(idx);
1805                 arr[idx].host = arr[idx].guest = 0;
1806
1807                 if (!test_bit(idx, cpuc->active_mask))
1808                         continue;
1809
1810                 arr[idx].host = arr[idx].guest =
1811                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
1812
1813                 if (event->attr.exclude_host)
1814                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1815                 else if (event->attr.exclude_guest)
1816                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1817         }
1818
1819         *nr = x86_pmu.num_counters;
1820         return arr;
1821 }
1822
1823 static void core_pmu_enable_event(struct perf_event *event)
1824 {
1825         if (!event->attr.exclude_host)
1826                 x86_pmu_enable_event(event);
1827 }
1828
1829 static void core_pmu_enable_all(int added)
1830 {
1831         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1832         int idx;
1833
1834         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1835                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
1836
1837                 if (!test_bit(idx, cpuc->active_mask) ||
1838                                 cpuc->events[idx]->attr.exclude_host)
1839                         continue;
1840
1841                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1842         }
1843 }
1844
1845 static int hsw_hw_config(struct perf_event *event)
1846 {
1847         int ret = intel_pmu_hw_config(event);
1848
1849         if (ret)
1850                 return ret;
1851         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
1852                 return 0;
1853         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
1854
1855         /*
1856          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
1857          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
1858          * this combination.
1859          */
1860         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
1861              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
1862               event->attr.precise_ip > 0))
1863                 return -EOPNOTSUPP;
1864
1865         if (event_is_checkpointed(event)) {
1866                 /*
1867                  * Sampling of checkpointed events can cause situations where
1868                  * the CPU constantly aborts because of a overflow, which is
1869                  * then checkpointed back and ignored. Forbid checkpointing
1870                  * for sampling.
1871                  *
1872                  * But still allow a long sampling period, so that perf stat
1873                  * from KVM works.
1874                  */
1875                 if (event->attr.sample_period > 0 &&
1876                     event->attr.sample_period < 0x7fffffff)
1877                         return -EOPNOTSUPP;
1878         }
1879         return 0;
1880 }
1881
1882 static struct event_constraint counter2_constraint =
1883                         EVENT_CONSTRAINT(0, 0x4, 0);
1884
1885 static struct event_constraint *
1886 hsw_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1887 {
1888         struct event_constraint *c = intel_get_event_constraints(cpuc, event);
1889
1890         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
1891         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
1892                 if (c->idxmsk64 & (1U << 2))
1893                         return &counter2_constraint;
1894                 return &emptyconstraint;
1895         }
1896
1897         return c;
1898 }
1899
1900 PMU_FORMAT_ATTR(event,  "config:0-7"    );
1901 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
1902 PMU_FORMAT_ATTR(edge,   "config:18"     );
1903 PMU_FORMAT_ATTR(pc,     "config:19"     );
1904 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
1905 PMU_FORMAT_ATTR(inv,    "config:23"     );
1906 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
1907 PMU_FORMAT_ATTR(in_tx,  "config:32");
1908 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
1909
1910 static struct attribute *intel_arch_formats_attr[] = {
1911         &format_attr_event.attr,
1912         &format_attr_umask.attr,
1913         &format_attr_edge.attr,
1914         &format_attr_pc.attr,
1915         &format_attr_inv.attr,
1916         &format_attr_cmask.attr,
1917         NULL,
1918 };
1919
1920 ssize_t intel_event_sysfs_show(char *page, u64 config)
1921 {
1922         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
1923
1924         return x86_event_sysfs_show(page, config, event);
1925 }
1926
1927 static __initconst const struct x86_pmu core_pmu = {
1928         .name                   = "core",
1929         .handle_irq             = x86_pmu_handle_irq,
1930         .disable_all            = x86_pmu_disable_all,
1931         .enable_all             = core_pmu_enable_all,
1932         .enable                 = core_pmu_enable_event,
1933         .disable                = x86_pmu_disable_event,
1934         .hw_config              = x86_pmu_hw_config,
1935         .schedule_events        = x86_schedule_events,
1936         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
1937         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
1938         .event_map              = intel_pmu_event_map,
1939         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
1940         .apic                   = 1,
1941         /*
1942          * Intel PMCs cannot be accessed sanely above 32 bit width,
1943          * so we install an artificial 1<<31 period regardless of
1944          * the generic event period:
1945          */
1946         .max_period             = (1ULL << 31) - 1,
1947         .get_event_constraints  = intel_get_event_constraints,
1948         .put_event_constraints  = intel_put_event_constraints,
1949         .event_constraints      = intel_core_event_constraints,
1950         .guest_get_msrs         = core_guest_get_msrs,
1951         .format_attrs           = intel_arch_formats_attr,
1952         .events_sysfs_show      = intel_event_sysfs_show,
1953 };
1954
1955 struct intel_shared_regs *allocate_shared_regs(int cpu)
1956 {
1957         struct intel_shared_regs *regs;
1958         int i;
1959
1960         regs = kzalloc_node(sizeof(struct intel_shared_regs),
1961                             GFP_KERNEL, cpu_to_node(cpu));
1962         if (regs) {
1963                 /*
1964                  * initialize the locks to keep lockdep happy
1965                  */
1966                 for (i = 0; i < EXTRA_REG_MAX; i++)
1967                         raw_spin_lock_init(&regs->regs[i].lock);
1968
1969                 regs->core_id = -1;
1970         }
1971         return regs;
1972 }
1973
1974 static int intel_pmu_cpu_prepare(int cpu)
1975 {
1976         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1977
1978         if (!(x86_pmu.extra_regs || x86_pmu.lbr_sel_map))
1979                 return NOTIFY_OK;
1980
1981         cpuc->shared_regs = allocate_shared_regs(cpu);
1982         if (!cpuc->shared_regs)
1983                 return NOTIFY_BAD;
1984
1985         return NOTIFY_OK;
1986 }
1987
1988 static void intel_pmu_cpu_starting(int cpu)
1989 {
1990         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1991         int core_id = topology_core_id(cpu);
1992         int i;
1993
1994         init_debug_store_on_cpu(cpu);
1995         /*
1996          * Deal with CPUs that don't clear their LBRs on power-up.
1997          */
1998         intel_pmu_lbr_reset();
1999
2000         cpuc->lbr_sel = NULL;
2001
2002         if (!cpuc->shared_regs)
2003                 return;
2004
2005         if (!(x86_pmu.er_flags & ERF_NO_HT_SHARING)) {
2006                 for_each_cpu(i, topology_thread_cpumask(cpu)) {
2007                         struct intel_shared_regs *pc;
2008
2009                         pc = per_cpu(cpu_hw_events, i).shared_regs;
2010                         if (pc && pc->core_id == core_id) {
2011                                 cpuc->kfree_on_online = cpuc->shared_regs;
2012                                 cpuc->shared_regs = pc;
2013                                 break;
2014                         }
2015                 }
2016                 cpuc->shared_regs->core_id = core_id;
2017                 cpuc->shared_regs->refcnt++;
2018         }
2019
2020         if (x86_pmu.lbr_sel_map)
2021                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
2022 }
2023
2024 static void intel_pmu_cpu_dying(int cpu)
2025 {
2026         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2027         struct intel_shared_regs *pc;
2028
2029         pc = cpuc->shared_regs;
2030         if (pc) {
2031                 if (pc->core_id == -1 || --pc->refcnt == 0)
2032                         kfree(pc);
2033                 cpuc->shared_regs = NULL;
2034         }
2035
2036         fini_debug_store_on_cpu(cpu);
2037 }
2038
2039 static void intel_pmu_flush_branch_stack(void)
2040 {
2041         /*
2042          * Intel LBR does not tag entries with the
2043          * PID of the current task, then we need to
2044          * flush it on ctxsw
2045          * For now, we simply reset it
2046          */
2047         if (x86_pmu.lbr_nr)
2048                 intel_pmu_lbr_reset();
2049 }
2050
2051 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
2052
2053 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
2054
2055 static struct attribute *intel_arch3_formats_attr[] = {
2056         &format_attr_event.attr,
2057         &format_attr_umask.attr,
2058         &format_attr_edge.attr,
2059         &format_attr_pc.attr,
2060         &format_attr_any.attr,
2061         &format_attr_inv.attr,
2062         &format_attr_cmask.attr,
2063         &format_attr_in_tx.attr,
2064         &format_attr_in_tx_cp.attr,
2065
2066         &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
2067         &format_attr_ldlat.attr, /* PEBS load latency */
2068         NULL,
2069 };
2070
2071 static __initconst const struct x86_pmu intel_pmu = {
2072         .name                   = "Intel",
2073         .handle_irq             = intel_pmu_handle_irq,
2074         .disable_all            = intel_pmu_disable_all,
2075         .enable_all             = intel_pmu_enable_all,
2076         .enable                 = intel_pmu_enable_event,
2077         .disable                = intel_pmu_disable_event,
2078         .hw_config              = intel_pmu_hw_config,
2079         .schedule_events        = x86_schedule_events,
2080         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
2081         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
2082         .event_map              = intel_pmu_event_map,
2083         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
2084         .apic                   = 1,
2085         /*
2086          * Intel PMCs cannot be accessed sanely above 32 bit width,
2087          * so we install an artificial 1<<31 period regardless of
2088          * the generic event period:
2089          */
2090         .max_period             = (1ULL << 31) - 1,
2091         .get_event_constraints  = intel_get_event_constraints,
2092         .put_event_constraints  = intel_put_event_constraints,
2093         .pebs_aliases           = intel_pebs_aliases_core2,
2094
2095         .format_attrs           = intel_arch3_formats_attr,
2096         .events_sysfs_show      = intel_event_sysfs_show,
2097
2098         .cpu_prepare            = intel_pmu_cpu_prepare,
2099         .cpu_starting           = intel_pmu_cpu_starting,
2100         .cpu_dying              = intel_pmu_cpu_dying,
2101         .guest_get_msrs         = intel_guest_get_msrs,
2102         .flush_branch_stack     = intel_pmu_flush_branch_stack,
2103 };
2104
2105 static __init void intel_clovertown_quirk(void)
2106 {
2107         /*
2108          * PEBS is unreliable due to:
2109          *
2110          *   AJ67  - PEBS may experience CPL leaks
2111          *   AJ68  - PEBS PMI may be delayed by one event
2112          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
2113          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
2114          *
2115          * AJ67 could be worked around by restricting the OS/USR flags.
2116          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
2117          *
2118          * AJ106 could possibly be worked around by not allowing LBR
2119          *       usage from PEBS, including the fixup.
2120          * AJ68  could possibly be worked around by always programming
2121          *       a pebs_event_reset[0] value and coping with the lost events.
2122          *
2123          * But taken together it might just make sense to not enable PEBS on
2124          * these chips.
2125          */
2126         pr_warn("PEBS disabled due to CPU errata\n");
2127         x86_pmu.pebs = 0;
2128         x86_pmu.pebs_constraints = NULL;
2129 }
2130
2131 static int intel_snb_pebs_broken(int cpu)
2132 {
2133         u32 rev = UINT_MAX; /* default to broken for unknown models */
2134
2135         switch (cpu_data(cpu).x86_model) {
2136         case 42: /* SNB */
2137                 rev = 0x28;
2138                 break;
2139
2140         case 45: /* SNB-EP */
2141                 switch (cpu_data(cpu).x86_mask) {
2142                 case 6: rev = 0x618; break;
2143                 case 7: rev = 0x70c; break;
2144                 }
2145         }
2146
2147         return (cpu_data(cpu).microcode < rev);
2148 }
2149
2150 static void intel_snb_check_microcode(void)
2151 {
2152         int pebs_broken = 0;
2153         int cpu;
2154
2155         get_online_cpus();
2156         for_each_online_cpu(cpu) {
2157                 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
2158                         break;
2159         }
2160         put_online_cpus();
2161
2162         if (pebs_broken == x86_pmu.pebs_broken)
2163                 return;
2164
2165         /*
2166          * Serialized by the microcode lock..
2167          */
2168         if (x86_pmu.pebs_broken) {
2169                 pr_info("PEBS enabled due to microcode update\n");
2170                 x86_pmu.pebs_broken = 0;
2171         } else {
2172                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
2173                 x86_pmu.pebs_broken = 1;
2174         }
2175 }
2176
2177 static __init void intel_sandybridge_quirk(void)
2178 {
2179         x86_pmu.check_microcode = intel_snb_check_microcode;
2180         intel_snb_check_microcode();
2181 }
2182
2183 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
2184         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
2185         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
2186         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
2187         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
2188         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
2189         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
2190         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
2191 };
2192
2193 static __init void intel_arch_events_quirk(void)
2194 {
2195         int bit;
2196
2197         /* disable event that reported as not presend by cpuid */
2198         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
2199                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
2200                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
2201                         intel_arch_events_map[bit].name);
2202         }
2203 }
2204
2205 static __init void intel_nehalem_quirk(void)
2206 {
2207         union cpuid10_ebx ebx;
2208
2209         ebx.full = x86_pmu.events_maskl;
2210         if (ebx.split.no_branch_misses_retired) {
2211                 /*
2212                  * Erratum AAJ80 detected, we work it around by using
2213                  * the BR_MISP_EXEC.ANY event. This will over-count
2214                  * branch-misses, but it's still much better than the
2215                  * architectural event which is often completely bogus:
2216                  */
2217                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
2218                 ebx.split.no_branch_misses_retired = 0;
2219                 x86_pmu.events_maskl = ebx.full;
2220                 pr_info("CPU erratum AAJ80 worked around\n");
2221         }
2222 }
2223
2224 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
2225 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
2226
2227 /* Haswell special events */
2228 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
2229 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
2230 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
2231 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
2232 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
2233 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
2234 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
2235 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
2236 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
2237 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
2238 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
2239 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
2240
2241 static struct attribute *hsw_events_attrs[] = {
2242         EVENT_PTR(tx_start),
2243         EVENT_PTR(tx_commit),
2244         EVENT_PTR(tx_abort),
2245         EVENT_PTR(tx_capacity),
2246         EVENT_PTR(tx_conflict),
2247         EVENT_PTR(el_start),
2248         EVENT_PTR(el_commit),
2249         EVENT_PTR(el_abort),
2250         EVENT_PTR(el_capacity),
2251         EVENT_PTR(el_conflict),
2252         EVENT_PTR(cycles_t),
2253         EVENT_PTR(cycles_ct),
2254         EVENT_PTR(mem_ld_hsw),
2255         EVENT_PTR(mem_st_hsw),
2256         NULL
2257 };
2258
2259 __init int intel_pmu_init(void)
2260 {
2261         union cpuid10_edx edx;
2262         union cpuid10_eax eax;
2263         union cpuid10_ebx ebx;
2264         struct event_constraint *c;
2265         unsigned int unused;
2266         int version;
2267
2268         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
2269                 switch (boot_cpu_data.x86) {
2270                 case 0x6:
2271                         return p6_pmu_init();
2272                 case 0xb:
2273                         return knc_pmu_init();
2274                 case 0xf:
2275                         return p4_pmu_init();
2276                 }
2277                 return -ENODEV;
2278         }
2279
2280         /*
2281          * Check whether the Architectural PerfMon supports
2282          * Branch Misses Retired hw_event or not.
2283          */
2284         cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
2285         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
2286                 return -ENODEV;
2287
2288         version = eax.split.version_id;
2289         if (version < 2)
2290                 x86_pmu = core_pmu;
2291         else
2292                 x86_pmu = intel_pmu;
2293
2294         x86_pmu.version                 = version;
2295         x86_pmu.num_counters            = eax.split.num_counters;
2296         x86_pmu.cntval_bits             = eax.split.bit_width;
2297         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
2298
2299         x86_pmu.events_maskl            = ebx.full;
2300         x86_pmu.events_mask_len         = eax.split.mask_length;
2301
2302         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
2303
2304         /*
2305          * Quirk: v2 perfmon does not report fixed-purpose events, so
2306          * assume at least 3 events:
2307          */
2308         if (version > 1)
2309                 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
2310
2311         if (boot_cpu_has(X86_FEATURE_PDCM)) {
2312                 u64 capabilities;
2313
2314                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
2315                 x86_pmu.intel_cap.capabilities = capabilities;
2316         }
2317
2318         intel_ds_init();
2319
2320         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
2321
2322         /*
2323          * Install the hw-cache-events table:
2324          */
2325         switch (boot_cpu_data.x86_model) {
2326         case 14: /* 65 nm core solo/duo, "Yonah" */
2327                 pr_cont("Core events, ");
2328                 break;
2329
2330         case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
2331                 x86_add_quirk(intel_clovertown_quirk);
2332         case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
2333         case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
2334         case 29: /* six-core 45 nm xeon "Dunnington" */
2335                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
2336                        sizeof(hw_cache_event_ids));
2337
2338                 intel_pmu_lbr_init_core();
2339
2340                 x86_pmu.event_constraints = intel_core2_event_constraints;
2341                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
2342                 pr_cont("Core2 events, ");
2343                 break;
2344
2345         case 26: /* 45 nm nehalem, "Bloomfield" */
2346         case 30: /* 45 nm nehalem, "Lynnfield" */
2347         case 46: /* 45 nm nehalem-ex, "Beckton" */
2348                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
2349                        sizeof(hw_cache_event_ids));
2350                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
2351                        sizeof(hw_cache_extra_regs));
2352
2353                 intel_pmu_lbr_init_nhm();
2354
2355                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
2356                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
2357                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
2358                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
2359
2360                 x86_pmu.cpu_events = nhm_events_attrs;
2361
2362                 /* UOPS_ISSUED.STALLED_CYCLES */
2363                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2364                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2365                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2366                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2367                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2368
2369                 x86_add_quirk(intel_nehalem_quirk);
2370
2371                 pr_cont("Nehalem events, ");
2372                 break;
2373
2374         case 28: /* Atom */
2375         case 38: /* Lincroft */
2376         case 39: /* Penwell */
2377         case 53: /* Cloverview */
2378         case 54: /* Cedarview */
2379                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
2380                        sizeof(hw_cache_event_ids));
2381
2382                 intel_pmu_lbr_init_atom();
2383
2384                 x86_pmu.event_constraints = intel_gen_event_constraints;
2385                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
2386                 pr_cont("Atom events, ");
2387                 break;
2388
2389         case 55: /* Atom 22nm "Silvermont" */
2390         case 77: /* Avoton "Silvermont" */
2391                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
2392                         sizeof(hw_cache_event_ids));
2393                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
2394                        sizeof(hw_cache_extra_regs));
2395
2396                 intel_pmu_lbr_init_atom();
2397
2398                 x86_pmu.event_constraints = intel_slm_event_constraints;
2399                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
2400                 x86_pmu.extra_regs = intel_slm_extra_regs;
2401                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2402                 pr_cont("Silvermont events, ");
2403                 break;
2404
2405         case 37: /* 32 nm nehalem, "Clarkdale" */
2406         case 44: /* 32 nm nehalem, "Gulftown" */
2407         case 47: /* 32 nm Xeon E7 */
2408                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
2409                        sizeof(hw_cache_event_ids));
2410                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
2411                        sizeof(hw_cache_extra_regs));
2412
2413                 intel_pmu_lbr_init_nhm();
2414
2415                 x86_pmu.event_constraints = intel_westmere_event_constraints;
2416                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
2417                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
2418                 x86_pmu.extra_regs = intel_westmere_extra_regs;
2419                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2420
2421                 x86_pmu.cpu_events = nhm_events_attrs;
2422
2423                 /* UOPS_ISSUED.STALLED_CYCLES */
2424                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2425                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2426                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2427                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2428                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2429
2430                 pr_cont("Westmere events, ");
2431                 break;
2432
2433         case 42: /* SandyBridge */
2434         case 45: /* SandyBridge, "Romely-EP" */
2435                 x86_add_quirk(intel_sandybridge_quirk);
2436                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
2437                        sizeof(hw_cache_event_ids));
2438                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
2439                        sizeof(hw_cache_extra_regs));
2440
2441                 intel_pmu_lbr_init_snb();
2442
2443                 x86_pmu.event_constraints = intel_snb_event_constraints;
2444                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
2445                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2446                 if (boot_cpu_data.x86_model == 45)
2447                         x86_pmu.extra_regs = intel_snbep_extra_regs;
2448                 else
2449                         x86_pmu.extra_regs = intel_snb_extra_regs;
2450                 /* all extra regs are per-cpu when HT is on */
2451                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2452                 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2453
2454                 x86_pmu.cpu_events = snb_events_attrs;
2455
2456                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
2457                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2458                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2459                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
2460                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2461                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
2462
2463                 pr_cont("SandyBridge events, ");
2464                 break;
2465         case 58: /* IvyBridge */
2466         case 62: /* IvyBridge EP */
2467                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
2468                        sizeof(hw_cache_event_ids));
2469                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
2470                        sizeof(hw_cache_extra_regs));
2471
2472                 intel_pmu_lbr_init_snb();
2473
2474                 x86_pmu.event_constraints = intel_ivb_event_constraints;
2475                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
2476                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2477                 if (boot_cpu_data.x86_model == 62)
2478                         x86_pmu.extra_regs = intel_snbep_extra_regs;
2479                 else
2480                         x86_pmu.extra_regs = intel_snb_extra_regs;
2481                 /* all extra regs are per-cpu when HT is on */
2482                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2483                 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2484
2485                 x86_pmu.cpu_events = snb_events_attrs;
2486
2487                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
2488                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2489                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2490
2491                 pr_cont("IvyBridge events, ");
2492                 break;
2493
2494
2495         case 60: /* Haswell Client */
2496         case 70:
2497         case 71:
2498         case 63:
2499         case 69:
2500                 x86_pmu.late_ack = true;
2501                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, sizeof(hw_cache_event_ids));
2502                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
2503
2504                 intel_pmu_lbr_init_snb();
2505
2506                 x86_pmu.event_constraints = intel_hsw_event_constraints;
2507                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
2508                 x86_pmu.extra_regs = intel_snb_extra_regs;
2509                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2510                 /* all extra regs are per-cpu when HT is on */
2511                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2512                 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2513
2514                 x86_pmu.hw_config = hsw_hw_config;
2515                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
2516                 x86_pmu.cpu_events = hsw_events_attrs;
2517                 x86_pmu.lbr_double_abort = true;
2518                 pr_cont("Haswell events, ");
2519                 break;
2520
2521         default:
2522                 switch (x86_pmu.version) {
2523                 case 1:
2524                         x86_pmu.event_constraints = intel_v1_event_constraints;
2525                         pr_cont("generic architected perfmon v1, ");
2526                         break;
2527                 default:
2528                         /*
2529                          * default constraints for v2 and up
2530                          */
2531                         x86_pmu.event_constraints = intel_gen_event_constraints;
2532                         pr_cont("generic architected perfmon, ");
2533                         break;
2534                 }
2535         }
2536
2537         if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
2538                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
2539                      x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
2540                 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
2541         }
2542         x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2543
2544         if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
2545                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
2546                      x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
2547                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
2548         }
2549
2550         x86_pmu.intel_ctrl |=
2551                 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
2552
2553         if (x86_pmu.event_constraints) {
2554                 /*
2555                  * event on fixed counter2 (REF_CYCLES) only works on this
2556                  * counter, so do not extend mask to generic counters
2557                  */
2558                 for_each_event_constraint(c, x86_pmu.event_constraints) {
2559                         if (c->cmask != FIXED_EVENT_FLAGS
2560                             || c->idxmsk64 == INTEL_PMC_MSK_FIXED_REF_CYCLES) {
2561                                 continue;
2562                         }
2563
2564                         c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
2565                         c->weight += x86_pmu.num_counters;
2566                 }
2567         }
2568
2569         /* Support full width counters using alternative MSR range */
2570         if (x86_pmu.intel_cap.full_width_write) {
2571                 x86_pmu.max_period = x86_pmu.cntval_mask;
2572                 x86_pmu.perfctr = MSR_IA32_PMC0;
2573                 pr_cont("full-width counters, ");
2574         }
2575
2576         return 0;
2577 }