]> Pileus Git - ~andy/linux/blob - arch/x86/kernel/cpu/perf_event.c
Merge branch 'nfsd-next' of git://linux-nfs.org/~bfields/linux
[~andy/linux] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34 #include <asm/timer.h>
35 #include <asm/desc.h>
36 #include <asm/ldt.h>
37
38 #include "perf_event.h"
39
40 struct x86_pmu x86_pmu __read_mostly;
41
42 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
43         .enabled = 1,
44 };
45
46 u64 __read_mostly hw_cache_event_ids
47                                 [PERF_COUNT_HW_CACHE_MAX]
48                                 [PERF_COUNT_HW_CACHE_OP_MAX]
49                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
50 u64 __read_mostly hw_cache_extra_regs
51                                 [PERF_COUNT_HW_CACHE_MAX]
52                                 [PERF_COUNT_HW_CACHE_OP_MAX]
53                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
54
55 /*
56  * Propagate event elapsed time into the generic event.
57  * Can only be executed on the CPU where the event is active.
58  * Returns the delta events processed.
59  */
60 u64 x86_perf_event_update(struct perf_event *event)
61 {
62         struct hw_perf_event *hwc = &event->hw;
63         int shift = 64 - x86_pmu.cntval_bits;
64         u64 prev_raw_count, new_raw_count;
65         int idx = hwc->idx;
66         s64 delta;
67
68         if (idx == INTEL_PMC_IDX_FIXED_BTS)
69                 return 0;
70
71         /*
72          * Careful: an NMI might modify the previous event value.
73          *
74          * Our tactic to handle this is to first atomically read and
75          * exchange a new raw count - then add that new-prev delta
76          * count to the generic event atomically:
77          */
78 again:
79         prev_raw_count = local64_read(&hwc->prev_count);
80         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
81
82         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
83                                         new_raw_count) != prev_raw_count)
84                 goto again;
85
86         /*
87          * Now we have the new raw value and have updated the prev
88          * timestamp already. We can now calculate the elapsed delta
89          * (event-)time and add that to the generic event.
90          *
91          * Careful, not all hw sign-extends above the physical width
92          * of the count.
93          */
94         delta = (new_raw_count << shift) - (prev_raw_count << shift);
95         delta >>= shift;
96
97         local64_add(delta, &event->count);
98         local64_sub(delta, &hwc->period_left);
99
100         return new_raw_count;
101 }
102
103 /*
104  * Find and validate any extra registers to set up.
105  */
106 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
107 {
108         struct hw_perf_event_extra *reg;
109         struct extra_reg *er;
110
111         reg = &event->hw.extra_reg;
112
113         if (!x86_pmu.extra_regs)
114                 return 0;
115
116         for (er = x86_pmu.extra_regs; er->msr; er++) {
117                 if (er->event != (config & er->config_mask))
118                         continue;
119                 if (event->attr.config1 & ~er->valid_mask)
120                         return -EINVAL;
121
122                 reg->idx = er->idx;
123                 reg->config = event->attr.config1;
124                 reg->reg = er->msr;
125                 break;
126         }
127         return 0;
128 }
129
130 static atomic_t active_events;
131 static DEFINE_MUTEX(pmc_reserve_mutex);
132
133 #ifdef CONFIG_X86_LOCAL_APIC
134
135 static bool reserve_pmc_hardware(void)
136 {
137         int i;
138
139         for (i = 0; i < x86_pmu.num_counters; i++) {
140                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
141                         goto perfctr_fail;
142         }
143
144         for (i = 0; i < x86_pmu.num_counters; i++) {
145                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
146                         goto eventsel_fail;
147         }
148
149         return true;
150
151 eventsel_fail:
152         for (i--; i >= 0; i--)
153                 release_evntsel_nmi(x86_pmu_config_addr(i));
154
155         i = x86_pmu.num_counters;
156
157 perfctr_fail:
158         for (i--; i >= 0; i--)
159                 release_perfctr_nmi(x86_pmu_event_addr(i));
160
161         return false;
162 }
163
164 static void release_pmc_hardware(void)
165 {
166         int i;
167
168         for (i = 0; i < x86_pmu.num_counters; i++) {
169                 release_perfctr_nmi(x86_pmu_event_addr(i));
170                 release_evntsel_nmi(x86_pmu_config_addr(i));
171         }
172 }
173
174 #else
175
176 static bool reserve_pmc_hardware(void) { return true; }
177 static void release_pmc_hardware(void) {}
178
179 #endif
180
181 static bool check_hw_exists(void)
182 {
183         u64 val, val_fail, val_new= ~0;
184         int i, reg, reg_fail, ret = 0;
185         int bios_fail = 0;
186
187         /*
188          * Check to see if the BIOS enabled any of the counters, if so
189          * complain and bail.
190          */
191         for (i = 0; i < x86_pmu.num_counters; i++) {
192                 reg = x86_pmu_config_addr(i);
193                 ret = rdmsrl_safe(reg, &val);
194                 if (ret)
195                         goto msr_fail;
196                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
197                         bios_fail = 1;
198                         val_fail = val;
199                         reg_fail = reg;
200                 }
201         }
202
203         if (x86_pmu.num_counters_fixed) {
204                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
205                 ret = rdmsrl_safe(reg, &val);
206                 if (ret)
207                         goto msr_fail;
208                 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
209                         if (val & (0x03 << i*4)) {
210                                 bios_fail = 1;
211                                 val_fail = val;
212                                 reg_fail = reg;
213                         }
214                 }
215         }
216
217         /*
218          * Read the current value, change it and read it back to see if it
219          * matches, this is needed to detect certain hardware emulators
220          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
221          */
222         reg = x86_pmu_event_addr(0);
223         if (rdmsrl_safe(reg, &val))
224                 goto msr_fail;
225         val ^= 0xffffUL;
226         ret = wrmsrl_safe(reg, val);
227         ret |= rdmsrl_safe(reg, &val_new);
228         if (ret || val != val_new)
229                 goto msr_fail;
230
231         /*
232          * We still allow the PMU driver to operate:
233          */
234         if (bios_fail) {
235                 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
236                 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail, val_fail);
237         }
238
239         return true;
240
241 msr_fail:
242         printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
243         printk(KERN_ERR "Failed to access perfctr msr (MSR %x is %Lx)\n", reg, val_new);
244
245         return false;
246 }
247
248 static void hw_perf_event_destroy(struct perf_event *event)
249 {
250         if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
251                 release_pmc_hardware();
252                 release_ds_buffers();
253                 mutex_unlock(&pmc_reserve_mutex);
254         }
255 }
256
257 static inline int x86_pmu_initialized(void)
258 {
259         return x86_pmu.handle_irq != NULL;
260 }
261
262 static inline int
263 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
264 {
265         struct perf_event_attr *attr = &event->attr;
266         unsigned int cache_type, cache_op, cache_result;
267         u64 config, val;
268
269         config = attr->config;
270
271         cache_type = (config >>  0) & 0xff;
272         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
273                 return -EINVAL;
274
275         cache_op = (config >>  8) & 0xff;
276         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
277                 return -EINVAL;
278
279         cache_result = (config >> 16) & 0xff;
280         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
281                 return -EINVAL;
282
283         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
284
285         if (val == 0)
286                 return -ENOENT;
287
288         if (val == -1)
289                 return -EINVAL;
290
291         hwc->config |= val;
292         attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
293         return x86_pmu_extra_regs(val, event);
294 }
295
296 int x86_setup_perfctr(struct perf_event *event)
297 {
298         struct perf_event_attr *attr = &event->attr;
299         struct hw_perf_event *hwc = &event->hw;
300         u64 config;
301
302         if (!is_sampling_event(event)) {
303                 hwc->sample_period = x86_pmu.max_period;
304                 hwc->last_period = hwc->sample_period;
305                 local64_set(&hwc->period_left, hwc->sample_period);
306         } else {
307                 /*
308                  * If we have a PMU initialized but no APIC
309                  * interrupts, we cannot sample hardware
310                  * events (user-space has to fall back and
311                  * sample via a hrtimer based software event):
312                  */
313                 if (!x86_pmu.apic)
314                         return -EOPNOTSUPP;
315         }
316
317         if (attr->type == PERF_TYPE_RAW)
318                 return x86_pmu_extra_regs(event->attr.config, event);
319
320         if (attr->type == PERF_TYPE_HW_CACHE)
321                 return set_ext_hw_attr(hwc, event);
322
323         if (attr->config >= x86_pmu.max_events)
324                 return -EINVAL;
325
326         /*
327          * The generic map:
328          */
329         config = x86_pmu.event_map(attr->config);
330
331         if (config == 0)
332                 return -ENOENT;
333
334         if (config == -1LL)
335                 return -EINVAL;
336
337         /*
338          * Branch tracing:
339          */
340         if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
341             !attr->freq && hwc->sample_period == 1) {
342                 /* BTS is not supported by this architecture. */
343                 if (!x86_pmu.bts_active)
344                         return -EOPNOTSUPP;
345
346                 /* BTS is currently only allowed for user-mode. */
347                 if (!attr->exclude_kernel)
348                         return -EOPNOTSUPP;
349         }
350
351         hwc->config |= config;
352
353         return 0;
354 }
355
356 /*
357  * check that branch_sample_type is compatible with
358  * settings needed for precise_ip > 1 which implies
359  * using the LBR to capture ALL taken branches at the
360  * priv levels of the measurement
361  */
362 static inline int precise_br_compat(struct perf_event *event)
363 {
364         u64 m = event->attr.branch_sample_type;
365         u64 b = 0;
366
367         /* must capture all branches */
368         if (!(m & PERF_SAMPLE_BRANCH_ANY))
369                 return 0;
370
371         m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
372
373         if (!event->attr.exclude_user)
374                 b |= PERF_SAMPLE_BRANCH_USER;
375
376         if (!event->attr.exclude_kernel)
377                 b |= PERF_SAMPLE_BRANCH_KERNEL;
378
379         /*
380          * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
381          */
382
383         return m == b;
384 }
385
386 int x86_pmu_hw_config(struct perf_event *event)
387 {
388         if (event->attr.precise_ip) {
389                 int precise = 0;
390
391                 /* Support for constant skid */
392                 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
393                         precise++;
394
395                         /* Support for IP fixup */
396                         if (x86_pmu.lbr_nr)
397                                 precise++;
398                 }
399
400                 if (event->attr.precise_ip > precise)
401                         return -EOPNOTSUPP;
402                 /*
403                  * check that PEBS LBR correction does not conflict with
404                  * whatever the user is asking with attr->branch_sample_type
405                  */
406                 if (event->attr.precise_ip > 1 &&
407                     x86_pmu.intel_cap.pebs_format < 2) {
408                         u64 *br_type = &event->attr.branch_sample_type;
409
410                         if (has_branch_stack(event)) {
411                                 if (!precise_br_compat(event))
412                                         return -EOPNOTSUPP;
413
414                                 /* branch_sample_type is compatible */
415
416                         } else {
417                                 /*
418                                  * user did not specify  branch_sample_type
419                                  *
420                                  * For PEBS fixups, we capture all
421                                  * the branches at the priv level of the
422                                  * event.
423                                  */
424                                 *br_type = PERF_SAMPLE_BRANCH_ANY;
425
426                                 if (!event->attr.exclude_user)
427                                         *br_type |= PERF_SAMPLE_BRANCH_USER;
428
429                                 if (!event->attr.exclude_kernel)
430                                         *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
431                         }
432                 }
433         }
434
435         /*
436          * Generate PMC IRQs:
437          * (keep 'enabled' bit clear for now)
438          */
439         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
440
441         /*
442          * Count user and OS events unless requested not to
443          */
444         if (!event->attr.exclude_user)
445                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
446         if (!event->attr.exclude_kernel)
447                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
448
449         if (event->attr.type == PERF_TYPE_RAW)
450                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
451
452         return x86_setup_perfctr(event);
453 }
454
455 /*
456  * Setup the hardware configuration for a given attr_type
457  */
458 static int __x86_pmu_event_init(struct perf_event *event)
459 {
460         int err;
461
462         if (!x86_pmu_initialized())
463                 return -ENODEV;
464
465         err = 0;
466         if (!atomic_inc_not_zero(&active_events)) {
467                 mutex_lock(&pmc_reserve_mutex);
468                 if (atomic_read(&active_events) == 0) {
469                         if (!reserve_pmc_hardware())
470                                 err = -EBUSY;
471                         else
472                                 reserve_ds_buffers();
473                 }
474                 if (!err)
475                         atomic_inc(&active_events);
476                 mutex_unlock(&pmc_reserve_mutex);
477         }
478         if (err)
479                 return err;
480
481         event->destroy = hw_perf_event_destroy;
482
483         event->hw.idx = -1;
484         event->hw.last_cpu = -1;
485         event->hw.last_tag = ~0ULL;
486
487         /* mark unused */
488         event->hw.extra_reg.idx = EXTRA_REG_NONE;
489         event->hw.branch_reg.idx = EXTRA_REG_NONE;
490
491         return x86_pmu.hw_config(event);
492 }
493
494 void x86_pmu_disable_all(void)
495 {
496         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
497         int idx;
498
499         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
500                 u64 val;
501
502                 if (!test_bit(idx, cpuc->active_mask))
503                         continue;
504                 rdmsrl(x86_pmu_config_addr(idx), val);
505                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
506                         continue;
507                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
508                 wrmsrl(x86_pmu_config_addr(idx), val);
509         }
510 }
511
512 static void x86_pmu_disable(struct pmu *pmu)
513 {
514         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
515
516         if (!x86_pmu_initialized())
517                 return;
518
519         if (!cpuc->enabled)
520                 return;
521
522         cpuc->n_added = 0;
523         cpuc->enabled = 0;
524         barrier();
525
526         x86_pmu.disable_all();
527 }
528
529 void x86_pmu_enable_all(int added)
530 {
531         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
532         int idx;
533
534         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
535                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
536
537                 if (!test_bit(idx, cpuc->active_mask))
538                         continue;
539
540                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
541         }
542 }
543
544 static struct pmu pmu;
545
546 static inline int is_x86_event(struct perf_event *event)
547 {
548         return event->pmu == &pmu;
549 }
550
551 /*
552  * Event scheduler state:
553  *
554  * Assign events iterating over all events and counters, beginning
555  * with events with least weights first. Keep the current iterator
556  * state in struct sched_state.
557  */
558 struct sched_state {
559         int     weight;
560         int     event;          /* event index */
561         int     counter;        /* counter index */
562         int     unassigned;     /* number of events to be assigned left */
563         unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
564 };
565
566 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
567 #define SCHED_STATES_MAX        2
568
569 struct perf_sched {
570         int                     max_weight;
571         int                     max_events;
572         struct perf_event       **events;
573         struct sched_state      state;
574         int                     saved_states;
575         struct sched_state      saved[SCHED_STATES_MAX];
576 };
577
578 /*
579  * Initialize interator that runs through all events and counters.
580  */
581 static void perf_sched_init(struct perf_sched *sched, struct perf_event **events,
582                             int num, int wmin, int wmax)
583 {
584         int idx;
585
586         memset(sched, 0, sizeof(*sched));
587         sched->max_events       = num;
588         sched->max_weight       = wmax;
589         sched->events           = events;
590
591         for (idx = 0; idx < num; idx++) {
592                 if (events[idx]->hw.constraint->weight == wmin)
593                         break;
594         }
595
596         sched->state.event      = idx;          /* start with min weight */
597         sched->state.weight     = wmin;
598         sched->state.unassigned = num;
599 }
600
601 static void perf_sched_save_state(struct perf_sched *sched)
602 {
603         if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
604                 return;
605
606         sched->saved[sched->saved_states] = sched->state;
607         sched->saved_states++;
608 }
609
610 static bool perf_sched_restore_state(struct perf_sched *sched)
611 {
612         if (!sched->saved_states)
613                 return false;
614
615         sched->saved_states--;
616         sched->state = sched->saved[sched->saved_states];
617
618         /* continue with next counter: */
619         clear_bit(sched->state.counter++, sched->state.used);
620
621         return true;
622 }
623
624 /*
625  * Select a counter for the current event to schedule. Return true on
626  * success.
627  */
628 static bool __perf_sched_find_counter(struct perf_sched *sched)
629 {
630         struct event_constraint *c;
631         int idx;
632
633         if (!sched->state.unassigned)
634                 return false;
635
636         if (sched->state.event >= sched->max_events)
637                 return false;
638
639         c = sched->events[sched->state.event]->hw.constraint;
640         /* Prefer fixed purpose counters */
641         if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
642                 idx = INTEL_PMC_IDX_FIXED;
643                 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
644                         if (!__test_and_set_bit(idx, sched->state.used))
645                                 goto done;
646                 }
647         }
648         /* Grab the first unused counter starting with idx */
649         idx = sched->state.counter;
650         for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
651                 if (!__test_and_set_bit(idx, sched->state.used))
652                         goto done;
653         }
654
655         return false;
656
657 done:
658         sched->state.counter = idx;
659
660         if (c->overlap)
661                 perf_sched_save_state(sched);
662
663         return true;
664 }
665
666 static bool perf_sched_find_counter(struct perf_sched *sched)
667 {
668         while (!__perf_sched_find_counter(sched)) {
669                 if (!perf_sched_restore_state(sched))
670                         return false;
671         }
672
673         return true;
674 }
675
676 /*
677  * Go through all unassigned events and find the next one to schedule.
678  * Take events with the least weight first. Return true on success.
679  */
680 static bool perf_sched_next_event(struct perf_sched *sched)
681 {
682         struct event_constraint *c;
683
684         if (!sched->state.unassigned || !--sched->state.unassigned)
685                 return false;
686
687         do {
688                 /* next event */
689                 sched->state.event++;
690                 if (sched->state.event >= sched->max_events) {
691                         /* next weight */
692                         sched->state.event = 0;
693                         sched->state.weight++;
694                         if (sched->state.weight > sched->max_weight)
695                                 return false;
696                 }
697                 c = sched->events[sched->state.event]->hw.constraint;
698         } while (c->weight != sched->state.weight);
699
700         sched->state.counter = 0;       /* start with first counter */
701
702         return true;
703 }
704
705 /*
706  * Assign a counter for each event.
707  */
708 int perf_assign_events(struct perf_event **events, int n,
709                         int wmin, int wmax, int *assign)
710 {
711         struct perf_sched sched;
712
713         perf_sched_init(&sched, events, n, wmin, wmax);
714
715         do {
716                 if (!perf_sched_find_counter(&sched))
717                         break;  /* failed */
718                 if (assign)
719                         assign[sched.state.event] = sched.state.counter;
720         } while (perf_sched_next_event(&sched));
721
722         return sched.state.unassigned;
723 }
724
725 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
726 {
727         struct event_constraint *c;
728         unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
729         struct perf_event *e;
730         int i, wmin, wmax, num = 0;
731         struct hw_perf_event *hwc;
732
733         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
734
735         for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
736                 hwc = &cpuc->event_list[i]->hw;
737                 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
738                 hwc->constraint = c;
739
740                 wmin = min(wmin, c->weight);
741                 wmax = max(wmax, c->weight);
742         }
743
744         /*
745          * fastpath, try to reuse previous register
746          */
747         for (i = 0; i < n; i++) {
748                 hwc = &cpuc->event_list[i]->hw;
749                 c = hwc->constraint;
750
751                 /* never assigned */
752                 if (hwc->idx == -1)
753                         break;
754
755                 /* constraint still honored */
756                 if (!test_bit(hwc->idx, c->idxmsk))
757                         break;
758
759                 /* not already used */
760                 if (test_bit(hwc->idx, used_mask))
761                         break;
762
763                 __set_bit(hwc->idx, used_mask);
764                 if (assign)
765                         assign[i] = hwc->idx;
766         }
767
768         /* slow path */
769         if (i != n)
770                 num = perf_assign_events(cpuc->event_list, n, wmin,
771                                          wmax, assign);
772
773         /*
774          * Mark the event as committed, so we do not put_constraint()
775          * in case new events are added and fail scheduling.
776          */
777         if (!num && assign) {
778                 for (i = 0; i < n; i++) {
779                         e = cpuc->event_list[i];
780                         e->hw.flags |= PERF_X86_EVENT_COMMITTED;
781                 }
782         }
783         /*
784          * scheduling failed or is just a simulation,
785          * free resources if necessary
786          */
787         if (!assign || num) {
788                 for (i = 0; i < n; i++) {
789                         e = cpuc->event_list[i];
790                         /*
791                          * do not put_constraint() on comitted events,
792                          * because they are good to go
793                          */
794                         if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
795                                 continue;
796
797                         if (x86_pmu.put_event_constraints)
798                                 x86_pmu.put_event_constraints(cpuc, e);
799                 }
800         }
801         return num ? -EINVAL : 0;
802 }
803
804 /*
805  * dogrp: true if must collect siblings events (group)
806  * returns total number of events and error code
807  */
808 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
809 {
810         struct perf_event *event;
811         int n, max_count;
812
813         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
814
815         /* current number of events already accepted */
816         n = cpuc->n_events;
817
818         if (is_x86_event(leader)) {
819                 if (n >= max_count)
820                         return -EINVAL;
821                 cpuc->event_list[n] = leader;
822                 n++;
823         }
824         if (!dogrp)
825                 return n;
826
827         list_for_each_entry(event, &leader->sibling_list, group_entry) {
828                 if (!is_x86_event(event) ||
829                     event->state <= PERF_EVENT_STATE_OFF)
830                         continue;
831
832                 if (n >= max_count)
833                         return -EINVAL;
834
835                 cpuc->event_list[n] = event;
836                 n++;
837         }
838         return n;
839 }
840
841 static inline void x86_assign_hw_event(struct perf_event *event,
842                                 struct cpu_hw_events *cpuc, int i)
843 {
844         struct hw_perf_event *hwc = &event->hw;
845
846         hwc->idx = cpuc->assign[i];
847         hwc->last_cpu = smp_processor_id();
848         hwc->last_tag = ++cpuc->tags[i];
849
850         if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
851                 hwc->config_base = 0;
852                 hwc->event_base = 0;
853         } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
854                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
855                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
856                 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
857         } else {
858                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
859                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
860                 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
861         }
862 }
863
864 static inline int match_prev_assignment(struct hw_perf_event *hwc,
865                                         struct cpu_hw_events *cpuc,
866                                         int i)
867 {
868         return hwc->idx == cpuc->assign[i] &&
869                 hwc->last_cpu == smp_processor_id() &&
870                 hwc->last_tag == cpuc->tags[i];
871 }
872
873 static void x86_pmu_start(struct perf_event *event, int flags);
874
875 static void x86_pmu_enable(struct pmu *pmu)
876 {
877         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
878         struct perf_event *event;
879         struct hw_perf_event *hwc;
880         int i, added = cpuc->n_added;
881
882         if (!x86_pmu_initialized())
883                 return;
884
885         if (cpuc->enabled)
886                 return;
887
888         if (cpuc->n_added) {
889                 int n_running = cpuc->n_events - cpuc->n_added;
890                 /*
891                  * apply assignment obtained either from
892                  * hw_perf_group_sched_in() or x86_pmu_enable()
893                  *
894                  * step1: save events moving to new counters
895                  * step2: reprogram moved events into new counters
896                  */
897                 for (i = 0; i < n_running; i++) {
898                         event = cpuc->event_list[i];
899                         hwc = &event->hw;
900
901                         /*
902                          * we can avoid reprogramming counter if:
903                          * - assigned same counter as last time
904                          * - running on same CPU as last time
905                          * - no other event has used the counter since
906                          */
907                         if (hwc->idx == -1 ||
908                             match_prev_assignment(hwc, cpuc, i))
909                                 continue;
910
911                         /*
912                          * Ensure we don't accidentally enable a stopped
913                          * counter simply because we rescheduled.
914                          */
915                         if (hwc->state & PERF_HES_STOPPED)
916                                 hwc->state |= PERF_HES_ARCH;
917
918                         x86_pmu_stop(event, PERF_EF_UPDATE);
919                 }
920
921                 for (i = 0; i < cpuc->n_events; i++) {
922                         event = cpuc->event_list[i];
923                         hwc = &event->hw;
924
925                         if (!match_prev_assignment(hwc, cpuc, i))
926                                 x86_assign_hw_event(event, cpuc, i);
927                         else if (i < n_running)
928                                 continue;
929
930                         if (hwc->state & PERF_HES_ARCH)
931                                 continue;
932
933                         x86_pmu_start(event, PERF_EF_RELOAD);
934                 }
935                 cpuc->n_added = 0;
936                 perf_events_lapic_init();
937         }
938
939         cpuc->enabled = 1;
940         barrier();
941
942         x86_pmu.enable_all(added);
943 }
944
945 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
946
947 /*
948  * Set the next IRQ period, based on the hwc->period_left value.
949  * To be called with the event disabled in hw:
950  */
951 int x86_perf_event_set_period(struct perf_event *event)
952 {
953         struct hw_perf_event *hwc = &event->hw;
954         s64 left = local64_read(&hwc->period_left);
955         s64 period = hwc->sample_period;
956         int ret = 0, idx = hwc->idx;
957
958         if (idx == INTEL_PMC_IDX_FIXED_BTS)
959                 return 0;
960
961         /*
962          * If we are way outside a reasonable range then just skip forward:
963          */
964         if (unlikely(left <= -period)) {
965                 left = period;
966                 local64_set(&hwc->period_left, left);
967                 hwc->last_period = period;
968                 ret = 1;
969         }
970
971         if (unlikely(left <= 0)) {
972                 left += period;
973                 local64_set(&hwc->period_left, left);
974                 hwc->last_period = period;
975                 ret = 1;
976         }
977         /*
978          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
979          */
980         if (unlikely(left < 2))
981                 left = 2;
982
983         if (left > x86_pmu.max_period)
984                 left = x86_pmu.max_period;
985
986         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
987
988         /*
989          * The hw event starts counting from this event offset,
990          * mark it to be able to extra future deltas:
991          */
992         local64_set(&hwc->prev_count, (u64)-left);
993
994         wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
995
996         /*
997          * Due to erratum on certan cpu we need
998          * a second write to be sure the register
999          * is updated properly
1000          */
1001         if (x86_pmu.perfctr_second_write) {
1002                 wrmsrl(hwc->event_base,
1003                         (u64)(-left) & x86_pmu.cntval_mask);
1004         }
1005
1006         perf_event_update_userpage(event);
1007
1008         return ret;
1009 }
1010
1011 void x86_pmu_enable_event(struct perf_event *event)
1012 {
1013         if (__this_cpu_read(cpu_hw_events.enabled))
1014                 __x86_pmu_enable_event(&event->hw,
1015                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1016 }
1017
1018 /*
1019  * Add a single event to the PMU.
1020  *
1021  * The event is added to the group of enabled events
1022  * but only if it can be scehduled with existing events.
1023  */
1024 static int x86_pmu_add(struct perf_event *event, int flags)
1025 {
1026         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1027         struct hw_perf_event *hwc;
1028         int assign[X86_PMC_IDX_MAX];
1029         int n, n0, ret;
1030
1031         hwc = &event->hw;
1032
1033         perf_pmu_disable(event->pmu);
1034         n0 = cpuc->n_events;
1035         ret = n = collect_events(cpuc, event, false);
1036         if (ret < 0)
1037                 goto out;
1038
1039         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1040         if (!(flags & PERF_EF_START))
1041                 hwc->state |= PERF_HES_ARCH;
1042
1043         /*
1044          * If group events scheduling transaction was started,
1045          * skip the schedulability test here, it will be performed
1046          * at commit time (->commit_txn) as a whole
1047          */
1048         if (cpuc->group_flag & PERF_EVENT_TXN)
1049                 goto done_collect;
1050
1051         ret = x86_pmu.schedule_events(cpuc, n, assign);
1052         if (ret)
1053                 goto out;
1054         /*
1055          * copy new assignment, now we know it is possible
1056          * will be used by hw_perf_enable()
1057          */
1058         memcpy(cpuc->assign, assign, n*sizeof(int));
1059
1060 done_collect:
1061         cpuc->n_events = n;
1062         cpuc->n_added += n - n0;
1063         cpuc->n_txn += n - n0;
1064
1065         ret = 0;
1066 out:
1067         perf_pmu_enable(event->pmu);
1068         return ret;
1069 }
1070
1071 static void x86_pmu_start(struct perf_event *event, int flags)
1072 {
1073         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1074         int idx = event->hw.idx;
1075
1076         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1077                 return;
1078
1079         if (WARN_ON_ONCE(idx == -1))
1080                 return;
1081
1082         if (flags & PERF_EF_RELOAD) {
1083                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1084                 x86_perf_event_set_period(event);
1085         }
1086
1087         event->hw.state = 0;
1088
1089         cpuc->events[idx] = event;
1090         __set_bit(idx, cpuc->active_mask);
1091         __set_bit(idx, cpuc->running);
1092         x86_pmu.enable(event);
1093         perf_event_update_userpage(event);
1094 }
1095
1096 void perf_event_print_debug(void)
1097 {
1098         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1099         u64 pebs;
1100         struct cpu_hw_events *cpuc;
1101         unsigned long flags;
1102         int cpu, idx;
1103
1104         if (!x86_pmu.num_counters)
1105                 return;
1106
1107         local_irq_save(flags);
1108
1109         cpu = smp_processor_id();
1110         cpuc = &per_cpu(cpu_hw_events, cpu);
1111
1112         if (x86_pmu.version >= 2) {
1113                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1114                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1115                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1116                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1117                 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1118
1119                 pr_info("\n");
1120                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1121                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1122                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1123                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1124                 pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1125         }
1126         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1127
1128         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1129                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1130                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1131
1132                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1133
1134                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1135                         cpu, idx, pmc_ctrl);
1136                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1137                         cpu, idx, pmc_count);
1138                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1139                         cpu, idx, prev_left);
1140         }
1141         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1142                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1143
1144                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1145                         cpu, idx, pmc_count);
1146         }
1147         local_irq_restore(flags);
1148 }
1149
1150 void x86_pmu_stop(struct perf_event *event, int flags)
1151 {
1152         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1153         struct hw_perf_event *hwc = &event->hw;
1154
1155         if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1156                 x86_pmu.disable(event);
1157                 cpuc->events[hwc->idx] = NULL;
1158                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1159                 hwc->state |= PERF_HES_STOPPED;
1160         }
1161
1162         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1163                 /*
1164                  * Drain the remaining delta count out of a event
1165                  * that we are disabling:
1166                  */
1167                 x86_perf_event_update(event);
1168                 hwc->state |= PERF_HES_UPTODATE;
1169         }
1170 }
1171
1172 static void x86_pmu_del(struct perf_event *event, int flags)
1173 {
1174         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1175         int i;
1176
1177         /*
1178          * event is descheduled
1179          */
1180         event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1181
1182         /*
1183          * If we're called during a txn, we don't need to do anything.
1184          * The events never got scheduled and ->cancel_txn will truncate
1185          * the event_list.
1186          */
1187         if (cpuc->group_flag & PERF_EVENT_TXN)
1188                 return;
1189
1190         x86_pmu_stop(event, PERF_EF_UPDATE);
1191
1192         for (i = 0; i < cpuc->n_events; i++) {
1193                 if (event == cpuc->event_list[i]) {
1194
1195                         if (i >= cpuc->n_events - cpuc->n_added)
1196                                 --cpuc->n_added;
1197
1198                         if (x86_pmu.put_event_constraints)
1199                                 x86_pmu.put_event_constraints(cpuc, event);
1200
1201                         while (++i < cpuc->n_events)
1202                                 cpuc->event_list[i-1] = cpuc->event_list[i];
1203
1204                         --cpuc->n_events;
1205                         break;
1206                 }
1207         }
1208         perf_event_update_userpage(event);
1209 }
1210
1211 int x86_pmu_handle_irq(struct pt_regs *regs)
1212 {
1213         struct perf_sample_data data;
1214         struct cpu_hw_events *cpuc;
1215         struct perf_event *event;
1216         int idx, handled = 0;
1217         u64 val;
1218
1219         cpuc = &__get_cpu_var(cpu_hw_events);
1220
1221         /*
1222          * Some chipsets need to unmask the LVTPC in a particular spot
1223          * inside the nmi handler.  As a result, the unmasking was pushed
1224          * into all the nmi handlers.
1225          *
1226          * This generic handler doesn't seem to have any issues where the
1227          * unmasking occurs so it was left at the top.
1228          */
1229         apic_write(APIC_LVTPC, APIC_DM_NMI);
1230
1231         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1232                 if (!test_bit(idx, cpuc->active_mask)) {
1233                         /*
1234                          * Though we deactivated the counter some cpus
1235                          * might still deliver spurious interrupts still
1236                          * in flight. Catch them:
1237                          */
1238                         if (__test_and_clear_bit(idx, cpuc->running))
1239                                 handled++;
1240                         continue;
1241                 }
1242
1243                 event = cpuc->events[idx];
1244
1245                 val = x86_perf_event_update(event);
1246                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1247                         continue;
1248
1249                 /*
1250                  * event overflow
1251                  */
1252                 handled++;
1253                 perf_sample_data_init(&data, 0, event->hw.last_period);
1254
1255                 if (!x86_perf_event_set_period(event))
1256                         continue;
1257
1258                 if (perf_event_overflow(event, &data, regs))
1259                         x86_pmu_stop(event, 0);
1260         }
1261
1262         if (handled)
1263                 inc_irq_stat(apic_perf_irqs);
1264
1265         return handled;
1266 }
1267
1268 void perf_events_lapic_init(void)
1269 {
1270         if (!x86_pmu.apic || !x86_pmu_initialized())
1271                 return;
1272
1273         /*
1274          * Always use NMI for PMU
1275          */
1276         apic_write(APIC_LVTPC, APIC_DM_NMI);
1277 }
1278
1279 static int __kprobes
1280 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1281 {
1282         u64 start_clock;
1283         u64 finish_clock;
1284         int ret;
1285
1286         if (!atomic_read(&active_events))
1287                 return NMI_DONE;
1288
1289         start_clock = sched_clock();
1290         ret = x86_pmu.handle_irq(regs);
1291         finish_clock = sched_clock();
1292
1293         perf_sample_event_took(finish_clock - start_clock);
1294
1295         return ret;
1296 }
1297
1298 struct event_constraint emptyconstraint;
1299 struct event_constraint unconstrained;
1300
1301 static int
1302 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1303 {
1304         unsigned int cpu = (long)hcpu;
1305         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1306         int ret = NOTIFY_OK;
1307
1308         switch (action & ~CPU_TASKS_FROZEN) {
1309         case CPU_UP_PREPARE:
1310                 cpuc->kfree_on_online = NULL;
1311                 if (x86_pmu.cpu_prepare)
1312                         ret = x86_pmu.cpu_prepare(cpu);
1313                 break;
1314
1315         case CPU_STARTING:
1316                 if (x86_pmu.attr_rdpmc)
1317                         set_in_cr4(X86_CR4_PCE);
1318                 if (x86_pmu.cpu_starting)
1319                         x86_pmu.cpu_starting(cpu);
1320                 break;
1321
1322         case CPU_ONLINE:
1323                 kfree(cpuc->kfree_on_online);
1324                 break;
1325
1326         case CPU_DYING:
1327                 if (x86_pmu.cpu_dying)
1328                         x86_pmu.cpu_dying(cpu);
1329                 break;
1330
1331         case CPU_UP_CANCELED:
1332         case CPU_DEAD:
1333                 if (x86_pmu.cpu_dead)
1334                         x86_pmu.cpu_dead(cpu);
1335                 break;
1336
1337         default:
1338                 break;
1339         }
1340
1341         return ret;
1342 }
1343
1344 static void __init pmu_check_apic(void)
1345 {
1346         if (cpu_has_apic)
1347                 return;
1348
1349         x86_pmu.apic = 0;
1350         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1351         pr_info("no hardware sampling interrupt available.\n");
1352 }
1353
1354 static struct attribute_group x86_pmu_format_group = {
1355         .name = "format",
1356         .attrs = NULL,
1357 };
1358
1359 /*
1360  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1361  * out of events_attr attributes.
1362  */
1363 static void __init filter_events(struct attribute **attrs)
1364 {
1365         struct device_attribute *d;
1366         struct perf_pmu_events_attr *pmu_attr;
1367         int i, j;
1368
1369         for (i = 0; attrs[i]; i++) {
1370                 d = (struct device_attribute *)attrs[i];
1371                 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1372                 /* str trumps id */
1373                 if (pmu_attr->event_str)
1374                         continue;
1375                 if (x86_pmu.event_map(i))
1376                         continue;
1377
1378                 for (j = i; attrs[j]; j++)
1379                         attrs[j] = attrs[j + 1];
1380
1381                 /* Check the shifted attr. */
1382                 i--;
1383         }
1384 }
1385
1386 /* Merge two pointer arrays */
1387 static __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1388 {
1389         struct attribute **new;
1390         int j, i;
1391
1392         for (j = 0; a[j]; j++)
1393                 ;
1394         for (i = 0; b[i]; i++)
1395                 j++;
1396         j++;
1397
1398         new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1399         if (!new)
1400                 return NULL;
1401
1402         j = 0;
1403         for (i = 0; a[i]; i++)
1404                 new[j++] = a[i];
1405         for (i = 0; b[i]; i++)
1406                 new[j++] = b[i];
1407         new[j] = NULL;
1408
1409         return new;
1410 }
1411
1412 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
1413                           char *page)
1414 {
1415         struct perf_pmu_events_attr *pmu_attr = \
1416                 container_of(attr, struct perf_pmu_events_attr, attr);
1417         u64 config = x86_pmu.event_map(pmu_attr->id);
1418
1419         /* string trumps id */
1420         if (pmu_attr->event_str)
1421                 return sprintf(page, "%s", pmu_attr->event_str);
1422
1423         return x86_pmu.events_sysfs_show(page, config);
1424 }
1425
1426 EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1427 EVENT_ATTR(instructions,                INSTRUCTIONS            );
1428 EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1429 EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1430 EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1431 EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1432 EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1433 EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1434 EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1435 EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1436
1437 static struct attribute *empty_attrs;
1438
1439 static struct attribute *events_attr[] = {
1440         EVENT_PTR(CPU_CYCLES),
1441         EVENT_PTR(INSTRUCTIONS),
1442         EVENT_PTR(CACHE_REFERENCES),
1443         EVENT_PTR(CACHE_MISSES),
1444         EVENT_PTR(BRANCH_INSTRUCTIONS),
1445         EVENT_PTR(BRANCH_MISSES),
1446         EVENT_PTR(BUS_CYCLES),
1447         EVENT_PTR(STALLED_CYCLES_FRONTEND),
1448         EVENT_PTR(STALLED_CYCLES_BACKEND),
1449         EVENT_PTR(REF_CPU_CYCLES),
1450         NULL,
1451 };
1452
1453 static struct attribute_group x86_pmu_events_group = {
1454         .name = "events",
1455         .attrs = events_attr,
1456 };
1457
1458 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1459 {
1460         u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1461         u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1462         bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1463         bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1464         bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1465         bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1466         ssize_t ret;
1467
1468         /*
1469         * We have whole page size to spend and just little data
1470         * to write, so we can safely use sprintf.
1471         */
1472         ret = sprintf(page, "event=0x%02llx", event);
1473
1474         if (umask)
1475                 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1476
1477         if (edge)
1478                 ret += sprintf(page + ret, ",edge");
1479
1480         if (pc)
1481                 ret += sprintf(page + ret, ",pc");
1482
1483         if (any)
1484                 ret += sprintf(page + ret, ",any");
1485
1486         if (inv)
1487                 ret += sprintf(page + ret, ",inv");
1488
1489         if (cmask)
1490                 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1491
1492         ret += sprintf(page + ret, "\n");
1493
1494         return ret;
1495 }
1496
1497 static int __init init_hw_perf_events(void)
1498 {
1499         struct x86_pmu_quirk *quirk;
1500         int err;
1501
1502         pr_info("Performance Events: ");
1503
1504         switch (boot_cpu_data.x86_vendor) {
1505         case X86_VENDOR_INTEL:
1506                 err = intel_pmu_init();
1507                 break;
1508         case X86_VENDOR_AMD:
1509                 err = amd_pmu_init();
1510                 break;
1511         default:
1512                 err = -ENOTSUPP;
1513         }
1514         if (err != 0) {
1515                 pr_cont("no PMU driver, software events only.\n");
1516                 return 0;
1517         }
1518
1519         pmu_check_apic();
1520
1521         /* sanity check that the hardware exists or is emulated */
1522         if (!check_hw_exists())
1523                 return 0;
1524
1525         pr_cont("%s PMU driver.\n", x86_pmu.name);
1526
1527         x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1528
1529         for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1530                 quirk->func();
1531
1532         if (!x86_pmu.intel_ctrl)
1533                 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1534
1535         perf_events_lapic_init();
1536         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1537
1538         unconstrained = (struct event_constraint)
1539                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1540                                    0, x86_pmu.num_counters, 0, 0);
1541
1542         x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1543
1544         if (x86_pmu.event_attrs)
1545                 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1546
1547         if (!x86_pmu.events_sysfs_show)
1548                 x86_pmu_events_group.attrs = &empty_attrs;
1549         else
1550                 filter_events(x86_pmu_events_group.attrs);
1551
1552         if (x86_pmu.cpu_events) {
1553                 struct attribute **tmp;
1554
1555                 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1556                 if (!WARN_ON(!tmp))
1557                         x86_pmu_events_group.attrs = tmp;
1558         }
1559
1560         pr_info("... version:                %d\n",     x86_pmu.version);
1561         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1562         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1563         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1564         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1565         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1566         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1567
1568         perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1569         perf_cpu_notifier(x86_pmu_notifier);
1570
1571         return 0;
1572 }
1573 early_initcall(init_hw_perf_events);
1574
1575 static inline void x86_pmu_read(struct perf_event *event)
1576 {
1577         x86_perf_event_update(event);
1578 }
1579
1580 /*
1581  * Start group events scheduling transaction
1582  * Set the flag to make pmu::enable() not perform the
1583  * schedulability test, it will be performed at commit time
1584  */
1585 static void x86_pmu_start_txn(struct pmu *pmu)
1586 {
1587         perf_pmu_disable(pmu);
1588         __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1589         __this_cpu_write(cpu_hw_events.n_txn, 0);
1590 }
1591
1592 /*
1593  * Stop group events scheduling transaction
1594  * Clear the flag and pmu::enable() will perform the
1595  * schedulability test.
1596  */
1597 static void x86_pmu_cancel_txn(struct pmu *pmu)
1598 {
1599         __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1600         /*
1601          * Truncate the collected events.
1602          */
1603         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1604         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1605         perf_pmu_enable(pmu);
1606 }
1607
1608 /*
1609  * Commit group events scheduling transaction
1610  * Perform the group schedulability test as a whole
1611  * Return 0 if success
1612  */
1613 static int x86_pmu_commit_txn(struct pmu *pmu)
1614 {
1615         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1616         int assign[X86_PMC_IDX_MAX];
1617         int n, ret;
1618
1619         n = cpuc->n_events;
1620
1621         if (!x86_pmu_initialized())
1622                 return -EAGAIN;
1623
1624         ret = x86_pmu.schedule_events(cpuc, n, assign);
1625         if (ret)
1626                 return ret;
1627
1628         /*
1629          * copy new assignment, now we know it is possible
1630          * will be used by hw_perf_enable()
1631          */
1632         memcpy(cpuc->assign, assign, n*sizeof(int));
1633
1634         cpuc->group_flag &= ~PERF_EVENT_TXN;
1635         perf_pmu_enable(pmu);
1636         return 0;
1637 }
1638 /*
1639  * a fake_cpuc is used to validate event groups. Due to
1640  * the extra reg logic, we need to also allocate a fake
1641  * per_core and per_cpu structure. Otherwise, group events
1642  * using extra reg may conflict without the kernel being
1643  * able to catch this when the last event gets added to
1644  * the group.
1645  */
1646 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1647 {
1648         kfree(cpuc->shared_regs);
1649         kfree(cpuc);
1650 }
1651
1652 static struct cpu_hw_events *allocate_fake_cpuc(void)
1653 {
1654         struct cpu_hw_events *cpuc;
1655         int cpu = raw_smp_processor_id();
1656
1657         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1658         if (!cpuc)
1659                 return ERR_PTR(-ENOMEM);
1660
1661         /* only needed, if we have extra_regs */
1662         if (x86_pmu.extra_regs) {
1663                 cpuc->shared_regs = allocate_shared_regs(cpu);
1664                 if (!cpuc->shared_regs)
1665                         goto error;
1666         }
1667         cpuc->is_fake = 1;
1668         return cpuc;
1669 error:
1670         free_fake_cpuc(cpuc);
1671         return ERR_PTR(-ENOMEM);
1672 }
1673
1674 /*
1675  * validate that we can schedule this event
1676  */
1677 static int validate_event(struct perf_event *event)
1678 {
1679         struct cpu_hw_events *fake_cpuc;
1680         struct event_constraint *c;
1681         int ret = 0;
1682
1683         fake_cpuc = allocate_fake_cpuc();
1684         if (IS_ERR(fake_cpuc))
1685                 return PTR_ERR(fake_cpuc);
1686
1687         c = x86_pmu.get_event_constraints(fake_cpuc, event);
1688
1689         if (!c || !c->weight)
1690                 ret = -EINVAL;
1691
1692         if (x86_pmu.put_event_constraints)
1693                 x86_pmu.put_event_constraints(fake_cpuc, event);
1694
1695         free_fake_cpuc(fake_cpuc);
1696
1697         return ret;
1698 }
1699
1700 /*
1701  * validate a single event group
1702  *
1703  * validation include:
1704  *      - check events are compatible which each other
1705  *      - events do not compete for the same counter
1706  *      - number of events <= number of counters
1707  *
1708  * validation ensures the group can be loaded onto the
1709  * PMU if it was the only group available.
1710  */
1711 static int validate_group(struct perf_event *event)
1712 {
1713         struct perf_event *leader = event->group_leader;
1714         struct cpu_hw_events *fake_cpuc;
1715         int ret = -EINVAL, n;
1716
1717         fake_cpuc = allocate_fake_cpuc();
1718         if (IS_ERR(fake_cpuc))
1719                 return PTR_ERR(fake_cpuc);
1720         /*
1721          * the event is not yet connected with its
1722          * siblings therefore we must first collect
1723          * existing siblings, then add the new event
1724          * before we can simulate the scheduling
1725          */
1726         n = collect_events(fake_cpuc, leader, true);
1727         if (n < 0)
1728                 goto out;
1729
1730         fake_cpuc->n_events = n;
1731         n = collect_events(fake_cpuc, event, false);
1732         if (n < 0)
1733                 goto out;
1734
1735         fake_cpuc->n_events = n;
1736
1737         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1738
1739 out:
1740         free_fake_cpuc(fake_cpuc);
1741         return ret;
1742 }
1743
1744 static int x86_pmu_event_init(struct perf_event *event)
1745 {
1746         struct pmu *tmp;
1747         int err;
1748
1749         switch (event->attr.type) {
1750         case PERF_TYPE_RAW:
1751         case PERF_TYPE_HARDWARE:
1752         case PERF_TYPE_HW_CACHE:
1753                 break;
1754
1755         default:
1756                 return -ENOENT;
1757         }
1758
1759         err = __x86_pmu_event_init(event);
1760         if (!err) {
1761                 /*
1762                  * we temporarily connect event to its pmu
1763                  * such that validate_group() can classify
1764                  * it as an x86 event using is_x86_event()
1765                  */
1766                 tmp = event->pmu;
1767                 event->pmu = &pmu;
1768
1769                 if (event->group_leader != event)
1770                         err = validate_group(event);
1771                 else
1772                         err = validate_event(event);
1773
1774                 event->pmu = tmp;
1775         }
1776         if (err) {
1777                 if (event->destroy)
1778                         event->destroy(event);
1779         }
1780
1781         return err;
1782 }
1783
1784 static int x86_pmu_event_idx(struct perf_event *event)
1785 {
1786         int idx = event->hw.idx;
1787
1788         if (!x86_pmu.attr_rdpmc)
1789                 return 0;
1790
1791         if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
1792                 idx -= INTEL_PMC_IDX_FIXED;
1793                 idx |= 1 << 30;
1794         }
1795
1796         return idx + 1;
1797 }
1798
1799 static ssize_t get_attr_rdpmc(struct device *cdev,
1800                               struct device_attribute *attr,
1801                               char *buf)
1802 {
1803         return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
1804 }
1805
1806 static void change_rdpmc(void *info)
1807 {
1808         bool enable = !!(unsigned long)info;
1809
1810         if (enable)
1811                 set_in_cr4(X86_CR4_PCE);
1812         else
1813                 clear_in_cr4(X86_CR4_PCE);
1814 }
1815
1816 static ssize_t set_attr_rdpmc(struct device *cdev,
1817                               struct device_attribute *attr,
1818                               const char *buf, size_t count)
1819 {
1820         unsigned long val;
1821         ssize_t ret;
1822
1823         ret = kstrtoul(buf, 0, &val);
1824         if (ret)
1825                 return ret;
1826
1827         if (x86_pmu.attr_rdpmc_broken)
1828                 return -ENOTSUPP;
1829
1830         if (!!val != !!x86_pmu.attr_rdpmc) {
1831                 x86_pmu.attr_rdpmc = !!val;
1832                 on_each_cpu(change_rdpmc, (void *)val, 1);
1833         }
1834
1835         return count;
1836 }
1837
1838 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
1839
1840 static struct attribute *x86_pmu_attrs[] = {
1841         &dev_attr_rdpmc.attr,
1842         NULL,
1843 };
1844
1845 static struct attribute_group x86_pmu_attr_group = {
1846         .attrs = x86_pmu_attrs,
1847 };
1848
1849 static const struct attribute_group *x86_pmu_attr_groups[] = {
1850         &x86_pmu_attr_group,
1851         &x86_pmu_format_group,
1852         &x86_pmu_events_group,
1853         NULL,
1854 };
1855
1856 static void x86_pmu_flush_branch_stack(void)
1857 {
1858         if (x86_pmu.flush_branch_stack)
1859                 x86_pmu.flush_branch_stack();
1860 }
1861
1862 void perf_check_microcode(void)
1863 {
1864         if (x86_pmu.check_microcode)
1865                 x86_pmu.check_microcode();
1866 }
1867 EXPORT_SYMBOL_GPL(perf_check_microcode);
1868
1869 static struct pmu pmu = {
1870         .pmu_enable             = x86_pmu_enable,
1871         .pmu_disable            = x86_pmu_disable,
1872
1873         .attr_groups            = x86_pmu_attr_groups,
1874
1875         .event_init             = x86_pmu_event_init,
1876
1877         .add                    = x86_pmu_add,
1878         .del                    = x86_pmu_del,
1879         .start                  = x86_pmu_start,
1880         .stop                   = x86_pmu_stop,
1881         .read                   = x86_pmu_read,
1882
1883         .start_txn              = x86_pmu_start_txn,
1884         .cancel_txn             = x86_pmu_cancel_txn,
1885         .commit_txn             = x86_pmu_commit_txn,
1886
1887         .event_idx              = x86_pmu_event_idx,
1888         .flush_branch_stack     = x86_pmu_flush_branch_stack,
1889 };
1890
1891 void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
1892 {
1893         struct cyc2ns_data *data;
1894
1895         userpg->cap_user_time = 0;
1896         userpg->cap_user_time_zero = 0;
1897         userpg->cap_user_rdpmc = x86_pmu.attr_rdpmc;
1898         userpg->pmc_width = x86_pmu.cntval_bits;
1899
1900         if (!sched_clock_stable())
1901                 return;
1902
1903         data = cyc2ns_read_begin();
1904
1905         userpg->cap_user_time = 1;
1906         userpg->time_mult = data->cyc2ns_mul;
1907         userpg->time_shift = data->cyc2ns_shift;
1908         userpg->time_offset = data->cyc2ns_offset - now;
1909
1910         userpg->cap_user_time_zero = 1;
1911         userpg->time_zero = data->cyc2ns_offset;
1912
1913         cyc2ns_read_end(data);
1914 }
1915
1916 /*
1917  * callchain support
1918  */
1919
1920 static int backtrace_stack(void *data, char *name)
1921 {
1922         return 0;
1923 }
1924
1925 static void backtrace_address(void *data, unsigned long addr, int reliable)
1926 {
1927         struct perf_callchain_entry *entry = data;
1928
1929         perf_callchain_store(entry, addr);
1930 }
1931
1932 static const struct stacktrace_ops backtrace_ops = {
1933         .stack                  = backtrace_stack,
1934         .address                = backtrace_address,
1935         .walk_stack             = print_context_stack_bp,
1936 };
1937
1938 void
1939 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1940 {
1941         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1942                 /* TODO: We don't support guest os callchain now */
1943                 return;
1944         }
1945
1946         perf_callchain_store(entry, regs->ip);
1947
1948         dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
1949 }
1950
1951 static inline int
1952 valid_user_frame(const void __user *fp, unsigned long size)
1953 {
1954         return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1955 }
1956
1957 static unsigned long get_segment_base(unsigned int segment)
1958 {
1959         struct desc_struct *desc;
1960         int idx = segment >> 3;
1961
1962         if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1963                 if (idx > LDT_ENTRIES)
1964                         return 0;
1965
1966                 if (idx > current->active_mm->context.size)
1967                         return 0;
1968
1969                 desc = current->active_mm->context.ldt;
1970         } else {
1971                 if (idx > GDT_ENTRIES)
1972                         return 0;
1973
1974                 desc = __this_cpu_ptr(&gdt_page.gdt[0]);
1975         }
1976
1977         return get_desc_base(desc + idx);
1978 }
1979
1980 #ifdef CONFIG_COMPAT
1981
1982 #include <asm/compat.h>
1983
1984 static inline int
1985 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1986 {
1987         /* 32-bit process in 64-bit kernel. */
1988         unsigned long ss_base, cs_base;
1989         struct stack_frame_ia32 frame;
1990         const void __user *fp;
1991
1992         if (!test_thread_flag(TIF_IA32))
1993                 return 0;
1994
1995         cs_base = get_segment_base(regs->cs);
1996         ss_base = get_segment_base(regs->ss);
1997
1998         fp = compat_ptr(ss_base + regs->bp);
1999         while (entry->nr < PERF_MAX_STACK_DEPTH) {
2000                 unsigned long bytes;
2001                 frame.next_frame     = 0;
2002                 frame.return_address = 0;
2003
2004                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2005                 if (bytes != 0)
2006                         break;
2007
2008                 if (!valid_user_frame(fp, sizeof(frame)))
2009                         break;
2010
2011                 perf_callchain_store(entry, cs_base + frame.return_address);
2012                 fp = compat_ptr(ss_base + frame.next_frame);
2013         }
2014         return 1;
2015 }
2016 #else
2017 static inline int
2018 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2019 {
2020     return 0;
2021 }
2022 #endif
2023
2024 void
2025 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
2026 {
2027         struct stack_frame frame;
2028         const void __user *fp;
2029
2030         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2031                 /* TODO: We don't support guest os callchain now */
2032                 return;
2033         }
2034
2035         /*
2036          * We don't know what to do with VM86 stacks.. ignore them for now.
2037          */
2038         if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2039                 return;
2040
2041         fp = (void __user *)regs->bp;
2042
2043         perf_callchain_store(entry, regs->ip);
2044
2045         if (!current->mm)
2046                 return;
2047
2048         if (perf_callchain_user32(regs, entry))
2049                 return;
2050
2051         while (entry->nr < PERF_MAX_STACK_DEPTH) {
2052                 unsigned long bytes;
2053                 frame.next_frame             = NULL;
2054                 frame.return_address = 0;
2055
2056                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2057                 if (bytes != 0)
2058                         break;
2059
2060                 if (!valid_user_frame(fp, sizeof(frame)))
2061                         break;
2062
2063                 perf_callchain_store(entry, frame.return_address);
2064                 fp = frame.next_frame;
2065         }
2066 }
2067
2068 /*
2069  * Deal with code segment offsets for the various execution modes:
2070  *
2071  *   VM86 - the good olde 16 bit days, where the linear address is
2072  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2073  *
2074  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2075  *          to figure out what the 32bit base address is.
2076  *
2077  *    X32 - has TIF_X32 set, but is running in x86_64
2078  *
2079  * X86_64 - CS,DS,SS,ES are all zero based.
2080  */
2081 static unsigned long code_segment_base(struct pt_regs *regs)
2082 {
2083         /*
2084          * If we are in VM86 mode, add the segment offset to convert to a
2085          * linear address.
2086          */
2087         if (regs->flags & X86_VM_MASK)
2088                 return 0x10 * regs->cs;
2089
2090         /*
2091          * For IA32 we look at the GDT/LDT segment base to convert the
2092          * effective IP to a linear address.
2093          */
2094 #ifdef CONFIG_X86_32
2095         if (user_mode(regs) && regs->cs != __USER_CS)
2096                 return get_segment_base(regs->cs);
2097 #else
2098         if (test_thread_flag(TIF_IA32)) {
2099                 if (user_mode(regs) && regs->cs != __USER32_CS)
2100                         return get_segment_base(regs->cs);
2101         }
2102 #endif
2103         return 0;
2104 }
2105
2106 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2107 {
2108         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2109                 return perf_guest_cbs->get_guest_ip();
2110
2111         return regs->ip + code_segment_base(regs);
2112 }
2113
2114 unsigned long perf_misc_flags(struct pt_regs *regs)
2115 {
2116         int misc = 0;
2117
2118         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2119                 if (perf_guest_cbs->is_user_mode())
2120                         misc |= PERF_RECORD_MISC_GUEST_USER;
2121                 else
2122                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2123         } else {
2124                 if (user_mode(regs))
2125                         misc |= PERF_RECORD_MISC_USER;
2126                 else
2127                         misc |= PERF_RECORD_MISC_KERNEL;
2128         }
2129
2130         if (regs->flags & PERF_EFLAGS_EXACT)
2131                 misc |= PERF_RECORD_MISC_EXACT_IP;
2132
2133         return misc;
2134 }
2135
2136 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2137 {
2138         cap->version            = x86_pmu.version;
2139         cap->num_counters_gp    = x86_pmu.num_counters;
2140         cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2141         cap->bit_width_gp       = x86_pmu.cntval_bits;
2142         cap->bit_width_fixed    = x86_pmu.cntval_bits;
2143         cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
2144         cap->events_mask_len    = x86_pmu.events_mask_len;
2145 }
2146 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);