]> Pileus Git - ~andy/linux/blob - arch/sparc/kernel/smp_64.c
sparc: Use generic idle loop
[~andy/linux] / arch / sparc / kernel / smp_64.c
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4  */
5
6 #include <linux/export.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
28
29 #include <asm/head.h>
30 #include <asm/ptrace.h>
31 #include <linux/atomic.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mmu_context.h>
34 #include <asm/cpudata.h>
35 #include <asm/hvtramp.h>
36 #include <asm/io.h>
37 #include <asm/timer.h>
38
39 #include <asm/irq.h>
40 #include <asm/irq_regs.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/oplib.h>
44 #include <asm/uaccess.h>
45 #include <asm/starfire.h>
46 #include <asm/tlb.h>
47 #include <asm/sections.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/ldc.h>
51 #include <asm/hypervisor.h>
52 #include <asm/pcr.h>
53
54 #include "cpumap.h"
55
56 int sparc64_multi_core __read_mostly;
57
58 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
59 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
60         { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
61
62 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
63 EXPORT_SYMBOL(cpu_core_map);
64
65 static cpumask_t smp_commenced_mask;
66
67 void smp_info(struct seq_file *m)
68 {
69         int i;
70         
71         seq_printf(m, "State:\n");
72         for_each_online_cpu(i)
73                 seq_printf(m, "CPU%d:\t\tonline\n", i);
74 }
75
76 void smp_bogo(struct seq_file *m)
77 {
78         int i;
79         
80         for_each_online_cpu(i)
81                 seq_printf(m,
82                            "Cpu%dClkTck\t: %016lx\n",
83                            i, cpu_data(i).clock_tick);
84 }
85
86 extern void setup_sparc64_timer(void);
87
88 static volatile unsigned long callin_flag = 0;
89
90 void __cpuinit smp_callin(void)
91 {
92         int cpuid = hard_smp_processor_id();
93
94         __local_per_cpu_offset = __per_cpu_offset(cpuid);
95
96         if (tlb_type == hypervisor)
97                 sun4v_ktsb_register();
98
99         __flush_tlb_all();
100
101         setup_sparc64_timer();
102
103         if (cheetah_pcache_forced_on)
104                 cheetah_enable_pcache();
105
106         callin_flag = 1;
107         __asm__ __volatile__("membar #Sync\n\t"
108                              "flush  %%g6" : : : "memory");
109
110         /* Clear this or we will die instantly when we
111          * schedule back to this idler...
112          */
113         current_thread_info()->new_child = 0;
114
115         /* Attach to the address space of init_task. */
116         atomic_inc(&init_mm.mm_count);
117         current->active_mm = &init_mm;
118
119         /* inform the notifiers about the new cpu */
120         notify_cpu_starting(cpuid);
121
122         while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
123                 rmb();
124
125         set_cpu_online(cpuid, true);
126         local_irq_enable();
127
128         /* idle thread is expected to have preempt disabled */
129         preempt_disable();
130
131         cpu_startup_entry(CPUHP_ONLINE);
132 }
133
134 void cpu_panic(void)
135 {
136         printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
137         panic("SMP bolixed\n");
138 }
139
140 /* This tick register synchronization scheme is taken entirely from
141  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
142  *
143  * The only change I've made is to rework it so that the master
144  * initiates the synchonization instead of the slave. -DaveM
145  */
146
147 #define MASTER  0
148 #define SLAVE   (SMP_CACHE_BYTES/sizeof(unsigned long))
149
150 #define NUM_ROUNDS      64      /* magic value */
151 #define NUM_ITERS       5       /* likewise */
152
153 static DEFINE_SPINLOCK(itc_sync_lock);
154 static unsigned long go[SLAVE + 1];
155
156 #define DEBUG_TICK_SYNC 0
157
158 static inline long get_delta (long *rt, long *master)
159 {
160         unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
161         unsigned long tcenter, t0, t1, tm;
162         unsigned long i;
163
164         for (i = 0; i < NUM_ITERS; i++) {
165                 t0 = tick_ops->get_tick();
166                 go[MASTER] = 1;
167                 membar_safe("#StoreLoad");
168                 while (!(tm = go[SLAVE]))
169                         rmb();
170                 go[SLAVE] = 0;
171                 wmb();
172                 t1 = tick_ops->get_tick();
173
174                 if (t1 - t0 < best_t1 - best_t0)
175                         best_t0 = t0, best_t1 = t1, best_tm = tm;
176         }
177
178         *rt = best_t1 - best_t0;
179         *master = best_tm - best_t0;
180
181         /* average best_t0 and best_t1 without overflow: */
182         tcenter = (best_t0/2 + best_t1/2);
183         if (best_t0 % 2 + best_t1 % 2 == 2)
184                 tcenter++;
185         return tcenter - best_tm;
186 }
187
188 void smp_synchronize_tick_client(void)
189 {
190         long i, delta, adj, adjust_latency = 0, done = 0;
191         unsigned long flags, rt, master_time_stamp;
192 #if DEBUG_TICK_SYNC
193         struct {
194                 long rt;        /* roundtrip time */
195                 long master;    /* master's timestamp */
196                 long diff;      /* difference between midpoint and master's timestamp */
197                 long lat;       /* estimate of itc adjustment latency */
198         } t[NUM_ROUNDS];
199 #endif
200
201         go[MASTER] = 1;
202
203         while (go[MASTER])
204                 rmb();
205
206         local_irq_save(flags);
207         {
208                 for (i = 0; i < NUM_ROUNDS; i++) {
209                         delta = get_delta(&rt, &master_time_stamp);
210                         if (delta == 0)
211                                 done = 1;       /* let's lock on to this... */
212
213                         if (!done) {
214                                 if (i > 0) {
215                                         adjust_latency += -delta;
216                                         adj = -delta + adjust_latency/4;
217                                 } else
218                                         adj = -delta;
219
220                                 tick_ops->add_tick(adj);
221                         }
222 #if DEBUG_TICK_SYNC
223                         t[i].rt = rt;
224                         t[i].master = master_time_stamp;
225                         t[i].diff = delta;
226                         t[i].lat = adjust_latency/4;
227 #endif
228                 }
229         }
230         local_irq_restore(flags);
231
232 #if DEBUG_TICK_SYNC
233         for (i = 0; i < NUM_ROUNDS; i++)
234                 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
235                        t[i].rt, t[i].master, t[i].diff, t[i].lat);
236 #endif
237
238         printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
239                "(last diff %ld cycles, maxerr %lu cycles)\n",
240                smp_processor_id(), delta, rt);
241 }
242
243 static void smp_start_sync_tick_client(int cpu);
244
245 static void smp_synchronize_one_tick(int cpu)
246 {
247         unsigned long flags, i;
248
249         go[MASTER] = 0;
250
251         smp_start_sync_tick_client(cpu);
252
253         /* wait for client to be ready */
254         while (!go[MASTER])
255                 rmb();
256
257         /* now let the client proceed into his loop */
258         go[MASTER] = 0;
259         membar_safe("#StoreLoad");
260
261         spin_lock_irqsave(&itc_sync_lock, flags);
262         {
263                 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
264                         while (!go[MASTER])
265                                 rmb();
266                         go[MASTER] = 0;
267                         wmb();
268                         go[SLAVE] = tick_ops->get_tick();
269                         membar_safe("#StoreLoad");
270                 }
271         }
272         spin_unlock_irqrestore(&itc_sync_lock, flags);
273 }
274
275 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
276 /* XXX Put this in some common place. XXX */
277 static unsigned long kimage_addr_to_ra(void *p)
278 {
279         unsigned long val = (unsigned long) p;
280
281         return kern_base + (val - KERNBASE);
282 }
283
284 static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, void **descrp)
285 {
286         extern unsigned long sparc64_ttable_tl0;
287         extern unsigned long kern_locked_tte_data;
288         struct hvtramp_descr *hdesc;
289         unsigned long trampoline_ra;
290         struct trap_per_cpu *tb;
291         u64 tte_vaddr, tte_data;
292         unsigned long hv_err;
293         int i;
294
295         hdesc = kzalloc(sizeof(*hdesc) +
296                         (sizeof(struct hvtramp_mapping) *
297                          num_kernel_image_mappings - 1),
298                         GFP_KERNEL);
299         if (!hdesc) {
300                 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
301                        "hvtramp_descr.\n");
302                 return;
303         }
304         *descrp = hdesc;
305
306         hdesc->cpu = cpu;
307         hdesc->num_mappings = num_kernel_image_mappings;
308
309         tb = &trap_block[cpu];
310
311         hdesc->fault_info_va = (unsigned long) &tb->fault_info;
312         hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
313
314         hdesc->thread_reg = thread_reg;
315
316         tte_vaddr = (unsigned long) KERNBASE;
317         tte_data = kern_locked_tte_data;
318
319         for (i = 0; i < hdesc->num_mappings; i++) {
320                 hdesc->maps[i].vaddr = tte_vaddr;
321                 hdesc->maps[i].tte   = tte_data;
322                 tte_vaddr += 0x400000;
323                 tte_data  += 0x400000;
324         }
325
326         trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
327
328         hv_err = sun4v_cpu_start(cpu, trampoline_ra,
329                                  kimage_addr_to_ra(&sparc64_ttable_tl0),
330                                  __pa(hdesc));
331         if (hv_err)
332                 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
333                        "gives error %lu\n", hv_err);
334 }
335 #endif
336
337 extern unsigned long sparc64_cpu_startup;
338
339 /* The OBP cpu startup callback truncates the 3rd arg cookie to
340  * 32-bits (I think) so to be safe we have it read the pointer
341  * contained here so we work on >4GB machines. -DaveM
342  */
343 static struct thread_info *cpu_new_thread = NULL;
344
345 static int __cpuinit smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
346 {
347         unsigned long entry =
348                 (unsigned long)(&sparc64_cpu_startup);
349         unsigned long cookie =
350                 (unsigned long)(&cpu_new_thread);
351         void *descr = NULL;
352         int timeout, ret;
353
354         callin_flag = 0;
355         cpu_new_thread = task_thread_info(idle);
356
357         if (tlb_type == hypervisor) {
358 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
359                 if (ldom_domaining_enabled)
360                         ldom_startcpu_cpuid(cpu,
361                                             (unsigned long) cpu_new_thread,
362                                             &descr);
363                 else
364 #endif
365                         prom_startcpu_cpuid(cpu, entry, cookie);
366         } else {
367                 struct device_node *dp = of_find_node_by_cpuid(cpu);
368
369                 prom_startcpu(dp->phandle, entry, cookie);
370         }
371
372         for (timeout = 0; timeout < 50000; timeout++) {
373                 if (callin_flag)
374                         break;
375                 udelay(100);
376         }
377
378         if (callin_flag) {
379                 ret = 0;
380         } else {
381                 printk("Processor %d is stuck.\n", cpu);
382                 ret = -ENODEV;
383         }
384         cpu_new_thread = NULL;
385
386         kfree(descr);
387
388         return ret;
389 }
390
391 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
392 {
393         u64 result, target;
394         int stuck, tmp;
395
396         if (this_is_starfire) {
397                 /* map to real upaid */
398                 cpu = (((cpu & 0x3c) << 1) |
399                         ((cpu & 0x40) >> 4) |
400                         (cpu & 0x3));
401         }
402
403         target = (cpu << 14) | 0x70;
404 again:
405         /* Ok, this is the real Spitfire Errata #54.
406          * One must read back from a UDB internal register
407          * after writes to the UDB interrupt dispatch, but
408          * before the membar Sync for that write.
409          * So we use the high UDB control register (ASI 0x7f,
410          * ADDR 0x20) for the dummy read. -DaveM
411          */
412         tmp = 0x40;
413         __asm__ __volatile__(
414         "wrpr   %1, %2, %%pstate\n\t"
415         "stxa   %4, [%0] %3\n\t"
416         "stxa   %5, [%0+%8] %3\n\t"
417         "add    %0, %8, %0\n\t"
418         "stxa   %6, [%0+%8] %3\n\t"
419         "membar #Sync\n\t"
420         "stxa   %%g0, [%7] %3\n\t"
421         "membar #Sync\n\t"
422         "mov    0x20, %%g1\n\t"
423         "ldxa   [%%g1] 0x7f, %%g0\n\t"
424         "membar #Sync"
425         : "=r" (tmp)
426         : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
427           "r" (data0), "r" (data1), "r" (data2), "r" (target),
428           "r" (0x10), "0" (tmp)
429         : "g1");
430
431         /* NOTE: PSTATE_IE is still clear. */
432         stuck = 100000;
433         do {
434                 __asm__ __volatile__("ldxa [%%g0] %1, %0"
435                         : "=r" (result)
436                         : "i" (ASI_INTR_DISPATCH_STAT));
437                 if (result == 0) {
438                         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
439                                              : : "r" (pstate));
440                         return;
441                 }
442                 stuck -= 1;
443                 if (stuck == 0)
444                         break;
445         } while (result & 0x1);
446         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
447                              : : "r" (pstate));
448         if (stuck == 0) {
449                 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
450                        smp_processor_id(), result);
451         } else {
452                 udelay(2);
453                 goto again;
454         }
455 }
456
457 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
458 {
459         u64 *mondo, data0, data1, data2;
460         u16 *cpu_list;
461         u64 pstate;
462         int i;
463
464         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
465         cpu_list = __va(tb->cpu_list_pa);
466         mondo = __va(tb->cpu_mondo_block_pa);
467         data0 = mondo[0];
468         data1 = mondo[1];
469         data2 = mondo[2];
470         for (i = 0; i < cnt; i++)
471                 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
472 }
473
474 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
475  * packet, but we have no use for that.  However we do take advantage of
476  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
477  */
478 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
479 {
480         int nack_busy_id, is_jbus, need_more;
481         u64 *mondo, pstate, ver, busy_mask;
482         u16 *cpu_list;
483
484         cpu_list = __va(tb->cpu_list_pa);
485         mondo = __va(tb->cpu_mondo_block_pa);
486
487         /* Unfortunately, someone at Sun had the brilliant idea to make the
488          * busy/nack fields hard-coded by ITID number for this Ultra-III
489          * derivative processor.
490          */
491         __asm__ ("rdpr %%ver, %0" : "=r" (ver));
492         is_jbus = ((ver >> 32) == __JALAPENO_ID ||
493                    (ver >> 32) == __SERRANO_ID);
494
495         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
496
497 retry:
498         need_more = 0;
499         __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
500                              : : "r" (pstate), "i" (PSTATE_IE));
501
502         /* Setup the dispatch data registers. */
503         __asm__ __volatile__("stxa      %0, [%3] %6\n\t"
504                              "stxa      %1, [%4] %6\n\t"
505                              "stxa      %2, [%5] %6\n\t"
506                              "membar    #Sync\n\t"
507                              : /* no outputs */
508                              : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
509                                "r" (0x40), "r" (0x50), "r" (0x60),
510                                "i" (ASI_INTR_W));
511
512         nack_busy_id = 0;
513         busy_mask = 0;
514         {
515                 int i;
516
517                 for (i = 0; i < cnt; i++) {
518                         u64 target, nr;
519
520                         nr = cpu_list[i];
521                         if (nr == 0xffff)
522                                 continue;
523
524                         target = (nr << 14) | 0x70;
525                         if (is_jbus) {
526                                 busy_mask |= (0x1UL << (nr * 2));
527                         } else {
528                                 target |= (nack_busy_id << 24);
529                                 busy_mask |= (0x1UL <<
530                                               (nack_busy_id * 2));
531                         }
532                         __asm__ __volatile__(
533                                 "stxa   %%g0, [%0] %1\n\t"
534                                 "membar #Sync\n\t"
535                                 : /* no outputs */
536                                 : "r" (target), "i" (ASI_INTR_W));
537                         nack_busy_id++;
538                         if (nack_busy_id == 32) {
539                                 need_more = 1;
540                                 break;
541                         }
542                 }
543         }
544
545         /* Now, poll for completion. */
546         {
547                 u64 dispatch_stat, nack_mask;
548                 long stuck;
549
550                 stuck = 100000 * nack_busy_id;
551                 nack_mask = busy_mask << 1;
552                 do {
553                         __asm__ __volatile__("ldxa      [%%g0] %1, %0"
554                                              : "=r" (dispatch_stat)
555                                              : "i" (ASI_INTR_DISPATCH_STAT));
556                         if (!(dispatch_stat & (busy_mask | nack_mask))) {
557                                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
558                                                      : : "r" (pstate));
559                                 if (unlikely(need_more)) {
560                                         int i, this_cnt = 0;
561                                         for (i = 0; i < cnt; i++) {
562                                                 if (cpu_list[i] == 0xffff)
563                                                         continue;
564                                                 cpu_list[i] = 0xffff;
565                                                 this_cnt++;
566                                                 if (this_cnt == 32)
567                                                         break;
568                                         }
569                                         goto retry;
570                                 }
571                                 return;
572                         }
573                         if (!--stuck)
574                                 break;
575                 } while (dispatch_stat & busy_mask);
576
577                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
578                                      : : "r" (pstate));
579
580                 if (dispatch_stat & busy_mask) {
581                         /* Busy bits will not clear, continue instead
582                          * of freezing up on this cpu.
583                          */
584                         printk("CPU[%d]: mondo stuckage result[%016llx]\n",
585                                smp_processor_id(), dispatch_stat);
586                 } else {
587                         int i, this_busy_nack = 0;
588
589                         /* Delay some random time with interrupts enabled
590                          * to prevent deadlock.
591                          */
592                         udelay(2 * nack_busy_id);
593
594                         /* Clear out the mask bits for cpus which did not
595                          * NACK us.
596                          */
597                         for (i = 0; i < cnt; i++) {
598                                 u64 check_mask, nr;
599
600                                 nr = cpu_list[i];
601                                 if (nr == 0xffff)
602                                         continue;
603
604                                 if (is_jbus)
605                                         check_mask = (0x2UL << (2*nr));
606                                 else
607                                         check_mask = (0x2UL <<
608                                                       this_busy_nack);
609                                 if ((dispatch_stat & check_mask) == 0)
610                                         cpu_list[i] = 0xffff;
611                                 this_busy_nack += 2;
612                                 if (this_busy_nack == 64)
613                                         break;
614                         }
615
616                         goto retry;
617                 }
618         }
619 }
620
621 /* Multi-cpu list version.  */
622 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
623 {
624         int retries, this_cpu, prev_sent, i, saw_cpu_error;
625         unsigned long status;
626         u16 *cpu_list;
627
628         this_cpu = smp_processor_id();
629
630         cpu_list = __va(tb->cpu_list_pa);
631
632         saw_cpu_error = 0;
633         retries = 0;
634         prev_sent = 0;
635         do {
636                 int forward_progress, n_sent;
637
638                 status = sun4v_cpu_mondo_send(cnt,
639                                               tb->cpu_list_pa,
640                                               tb->cpu_mondo_block_pa);
641
642                 /* HV_EOK means all cpus received the xcall, we're done.  */
643                 if (likely(status == HV_EOK))
644                         break;
645
646                 /* First, see if we made any forward progress.
647                  *
648                  * The hypervisor indicates successful sends by setting
649                  * cpu list entries to the value 0xffff.
650                  */
651                 n_sent = 0;
652                 for (i = 0; i < cnt; i++) {
653                         if (likely(cpu_list[i] == 0xffff))
654                                 n_sent++;
655                 }
656
657                 forward_progress = 0;
658                 if (n_sent > prev_sent)
659                         forward_progress = 1;
660
661                 prev_sent = n_sent;
662
663                 /* If we get a HV_ECPUERROR, then one or more of the cpus
664                  * in the list are in error state.  Use the cpu_state()
665                  * hypervisor call to find out which cpus are in error state.
666                  */
667                 if (unlikely(status == HV_ECPUERROR)) {
668                         for (i = 0; i < cnt; i++) {
669                                 long err;
670                                 u16 cpu;
671
672                                 cpu = cpu_list[i];
673                                 if (cpu == 0xffff)
674                                         continue;
675
676                                 err = sun4v_cpu_state(cpu);
677                                 if (err == HV_CPU_STATE_ERROR) {
678                                         saw_cpu_error = (cpu + 1);
679                                         cpu_list[i] = 0xffff;
680                                 }
681                         }
682                 } else if (unlikely(status != HV_EWOULDBLOCK))
683                         goto fatal_mondo_error;
684
685                 /* Don't bother rewriting the CPU list, just leave the
686                  * 0xffff and non-0xffff entries in there and the
687                  * hypervisor will do the right thing.
688                  *
689                  * Only advance timeout state if we didn't make any
690                  * forward progress.
691                  */
692                 if (unlikely(!forward_progress)) {
693                         if (unlikely(++retries > 10000))
694                                 goto fatal_mondo_timeout;
695
696                         /* Delay a little bit to let other cpus catch up
697                          * on their cpu mondo queue work.
698                          */
699                         udelay(2 * cnt);
700                 }
701         } while (1);
702
703         if (unlikely(saw_cpu_error))
704                 goto fatal_mondo_cpu_error;
705
706         return;
707
708 fatal_mondo_cpu_error:
709         printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
710                "(including %d) were in error state\n",
711                this_cpu, saw_cpu_error - 1);
712         return;
713
714 fatal_mondo_timeout:
715         printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
716                " progress after %d retries.\n",
717                this_cpu, retries);
718         goto dump_cpu_list_and_out;
719
720 fatal_mondo_error:
721         printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
722                this_cpu, status);
723         printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
724                "mondo_block_pa(%lx)\n",
725                this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
726
727 dump_cpu_list_and_out:
728         printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
729         for (i = 0; i < cnt; i++)
730                 printk("%u ", cpu_list[i]);
731         printk("]\n");
732 }
733
734 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
735
736 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
737 {
738         struct trap_per_cpu *tb;
739         int this_cpu, i, cnt;
740         unsigned long flags;
741         u16 *cpu_list;
742         u64 *mondo;
743
744         /* We have to do this whole thing with interrupts fully disabled.
745          * Otherwise if we send an xcall from interrupt context it will
746          * corrupt both our mondo block and cpu list state.
747          *
748          * One consequence of this is that we cannot use timeout mechanisms
749          * that depend upon interrupts being delivered locally.  So, for
750          * example, we cannot sample jiffies and expect it to advance.
751          *
752          * Fortunately, udelay() uses %stick/%tick so we can use that.
753          */
754         local_irq_save(flags);
755
756         this_cpu = smp_processor_id();
757         tb = &trap_block[this_cpu];
758
759         mondo = __va(tb->cpu_mondo_block_pa);
760         mondo[0] = data0;
761         mondo[1] = data1;
762         mondo[2] = data2;
763         wmb();
764
765         cpu_list = __va(tb->cpu_list_pa);
766
767         /* Setup the initial cpu list.  */
768         cnt = 0;
769         for_each_cpu(i, mask) {
770                 if (i == this_cpu || !cpu_online(i))
771                         continue;
772                 cpu_list[cnt++] = i;
773         }
774
775         if (cnt)
776                 xcall_deliver_impl(tb, cnt);
777
778         local_irq_restore(flags);
779 }
780
781 /* Send cross call to all processors mentioned in MASK_P
782  * except self.  Really, there are only two cases currently,
783  * "cpu_online_mask" and "mm_cpumask(mm)".
784  */
785 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
786 {
787         u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
788
789         xcall_deliver(data0, data1, data2, mask);
790 }
791
792 /* Send cross call to all processors except self. */
793 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
794 {
795         smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
796 }
797
798 extern unsigned long xcall_sync_tick;
799
800 static void smp_start_sync_tick_client(int cpu)
801 {
802         xcall_deliver((u64) &xcall_sync_tick, 0, 0,
803                       cpumask_of(cpu));
804 }
805
806 extern unsigned long xcall_call_function;
807
808 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
809 {
810         xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
811 }
812
813 extern unsigned long xcall_call_function_single;
814
815 void arch_send_call_function_single_ipi(int cpu)
816 {
817         xcall_deliver((u64) &xcall_call_function_single, 0, 0,
818                       cpumask_of(cpu));
819 }
820
821 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
822 {
823         clear_softint(1 << irq);
824         generic_smp_call_function_interrupt();
825 }
826
827 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
828 {
829         clear_softint(1 << irq);
830         generic_smp_call_function_single_interrupt();
831 }
832
833 static void tsb_sync(void *info)
834 {
835         struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
836         struct mm_struct *mm = info;
837
838         /* It is not valid to test "current->active_mm == mm" here.
839          *
840          * The value of "current" is not changed atomically with
841          * switch_mm().  But that's OK, we just need to check the
842          * current cpu's trap block PGD physical address.
843          */
844         if (tp->pgd_paddr == __pa(mm->pgd))
845                 tsb_context_switch(mm);
846 }
847
848 void smp_tsb_sync(struct mm_struct *mm)
849 {
850         smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
851 }
852
853 extern unsigned long xcall_flush_tlb_mm;
854 extern unsigned long xcall_flush_tlb_pending;
855 extern unsigned long xcall_flush_tlb_kernel_range;
856 extern unsigned long xcall_fetch_glob_regs;
857 extern unsigned long xcall_fetch_glob_pmu;
858 extern unsigned long xcall_fetch_glob_pmu_n4;
859 extern unsigned long xcall_receive_signal;
860 extern unsigned long xcall_new_mmu_context_version;
861 #ifdef CONFIG_KGDB
862 extern unsigned long xcall_kgdb_capture;
863 #endif
864
865 #ifdef DCACHE_ALIASING_POSSIBLE
866 extern unsigned long xcall_flush_dcache_page_cheetah;
867 #endif
868 extern unsigned long xcall_flush_dcache_page_spitfire;
869
870 #ifdef CONFIG_DEBUG_DCFLUSH
871 extern atomic_t dcpage_flushes;
872 extern atomic_t dcpage_flushes_xcall;
873 #endif
874
875 static inline void __local_flush_dcache_page(struct page *page)
876 {
877 #ifdef DCACHE_ALIASING_POSSIBLE
878         __flush_dcache_page(page_address(page),
879                             ((tlb_type == spitfire) &&
880                              page_mapping(page) != NULL));
881 #else
882         if (page_mapping(page) != NULL &&
883             tlb_type == spitfire)
884                 __flush_icache_page(__pa(page_address(page)));
885 #endif
886 }
887
888 void smp_flush_dcache_page_impl(struct page *page, int cpu)
889 {
890         int this_cpu;
891
892         if (tlb_type == hypervisor)
893                 return;
894
895 #ifdef CONFIG_DEBUG_DCFLUSH
896         atomic_inc(&dcpage_flushes);
897 #endif
898
899         this_cpu = get_cpu();
900
901         if (cpu == this_cpu) {
902                 __local_flush_dcache_page(page);
903         } else if (cpu_online(cpu)) {
904                 void *pg_addr = page_address(page);
905                 u64 data0 = 0;
906
907                 if (tlb_type == spitfire) {
908                         data0 = ((u64)&xcall_flush_dcache_page_spitfire);
909                         if (page_mapping(page) != NULL)
910                                 data0 |= ((u64)1 << 32);
911                 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
912 #ifdef DCACHE_ALIASING_POSSIBLE
913                         data0 = ((u64)&xcall_flush_dcache_page_cheetah);
914 #endif
915                 }
916                 if (data0) {
917                         xcall_deliver(data0, __pa(pg_addr),
918                                       (u64) pg_addr, cpumask_of(cpu));
919 #ifdef CONFIG_DEBUG_DCFLUSH
920                         atomic_inc(&dcpage_flushes_xcall);
921 #endif
922                 }
923         }
924
925         put_cpu();
926 }
927
928 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
929 {
930         void *pg_addr;
931         u64 data0;
932
933         if (tlb_type == hypervisor)
934                 return;
935
936         preempt_disable();
937
938 #ifdef CONFIG_DEBUG_DCFLUSH
939         atomic_inc(&dcpage_flushes);
940 #endif
941         data0 = 0;
942         pg_addr = page_address(page);
943         if (tlb_type == spitfire) {
944                 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
945                 if (page_mapping(page) != NULL)
946                         data0 |= ((u64)1 << 32);
947         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
948 #ifdef DCACHE_ALIASING_POSSIBLE
949                 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
950 #endif
951         }
952         if (data0) {
953                 xcall_deliver(data0, __pa(pg_addr),
954                               (u64) pg_addr, cpu_online_mask);
955 #ifdef CONFIG_DEBUG_DCFLUSH
956                 atomic_inc(&dcpage_flushes_xcall);
957 #endif
958         }
959         __local_flush_dcache_page(page);
960
961         preempt_enable();
962 }
963
964 void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
965 {
966         struct mm_struct *mm;
967         unsigned long flags;
968
969         clear_softint(1 << irq);
970
971         /* See if we need to allocate a new TLB context because
972          * the version of the one we are using is now out of date.
973          */
974         mm = current->active_mm;
975         if (unlikely(!mm || (mm == &init_mm)))
976                 return;
977
978         spin_lock_irqsave(&mm->context.lock, flags);
979
980         if (unlikely(!CTX_VALID(mm->context)))
981                 get_new_mmu_context(mm);
982
983         spin_unlock_irqrestore(&mm->context.lock, flags);
984
985         load_secondary_context(mm);
986         __flush_tlb_mm(CTX_HWBITS(mm->context),
987                        SECONDARY_CONTEXT);
988 }
989
990 void smp_new_mmu_context_version(void)
991 {
992         smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
993 }
994
995 #ifdef CONFIG_KGDB
996 void kgdb_roundup_cpus(unsigned long flags)
997 {
998         smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
999 }
1000 #endif
1001
1002 void smp_fetch_global_regs(void)
1003 {
1004         smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1005 }
1006
1007 void smp_fetch_global_pmu(void)
1008 {
1009         if (tlb_type == hypervisor &&
1010             sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1011                 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1012         else
1013                 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1014 }
1015
1016 /* We know that the window frames of the user have been flushed
1017  * to the stack before we get here because all callers of us
1018  * are flush_tlb_*() routines, and these run after flush_cache_*()
1019  * which performs the flushw.
1020  *
1021  * The SMP TLB coherency scheme we use works as follows:
1022  *
1023  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1024  *    space has (potentially) executed on, this is the heuristic
1025  *    we use to avoid doing cross calls.
1026  *
1027  *    Also, for flushing from kswapd and also for clones, we
1028  *    use cpu_vm_mask as the list of cpus to make run the TLB.
1029  *
1030  * 2) TLB context numbers are shared globally across all processors
1031  *    in the system, this allows us to play several games to avoid
1032  *    cross calls.
1033  *
1034  *    One invariant is that when a cpu switches to a process, and
1035  *    that processes tsk->active_mm->cpu_vm_mask does not have the
1036  *    current cpu's bit set, that tlb context is flushed locally.
1037  *
1038  *    If the address space is non-shared (ie. mm->count == 1) we avoid
1039  *    cross calls when we want to flush the currently running process's
1040  *    tlb state.  This is done by clearing all cpu bits except the current
1041  *    processor's in current->mm->cpu_vm_mask and performing the
1042  *    flush locally only.  This will force any subsequent cpus which run
1043  *    this task to flush the context from the local tlb if the process
1044  *    migrates to another cpu (again).
1045  *
1046  * 3) For shared address spaces (threads) and swapping we bite the
1047  *    bullet for most cases and perform the cross call (but only to
1048  *    the cpus listed in cpu_vm_mask).
1049  *
1050  *    The performance gain from "optimizing" away the cross call for threads is
1051  *    questionable (in theory the big win for threads is the massive sharing of
1052  *    address space state across processors).
1053  */
1054
1055 /* This currently is only used by the hugetlb arch pre-fault
1056  * hook on UltraSPARC-III+ and later when changing the pagesize
1057  * bits of the context register for an address space.
1058  */
1059 void smp_flush_tlb_mm(struct mm_struct *mm)
1060 {
1061         u32 ctx = CTX_HWBITS(mm->context);
1062         int cpu = get_cpu();
1063
1064         if (atomic_read(&mm->mm_users) == 1) {
1065                 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1066                 goto local_flush_and_out;
1067         }
1068
1069         smp_cross_call_masked(&xcall_flush_tlb_mm,
1070                               ctx, 0, 0,
1071                               mm_cpumask(mm));
1072
1073 local_flush_and_out:
1074         __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1075
1076         put_cpu();
1077 }
1078
1079 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1080 {
1081         u32 ctx = CTX_HWBITS(mm->context);
1082         int cpu = get_cpu();
1083
1084         if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1085                 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1086         else
1087                 smp_cross_call_masked(&xcall_flush_tlb_pending,
1088                                       ctx, nr, (unsigned long) vaddrs,
1089                                       mm_cpumask(mm));
1090
1091         __flush_tlb_pending(ctx, nr, vaddrs);
1092
1093         put_cpu();
1094 }
1095
1096 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1097 {
1098         start &= PAGE_MASK;
1099         end    = PAGE_ALIGN(end);
1100         if (start != end) {
1101                 smp_cross_call(&xcall_flush_tlb_kernel_range,
1102                                0, start, end);
1103
1104                 __flush_tlb_kernel_range(start, end);
1105         }
1106 }
1107
1108 /* CPU capture. */
1109 /* #define CAPTURE_DEBUG */
1110 extern unsigned long xcall_capture;
1111
1112 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1113 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1114 static unsigned long penguins_are_doing_time;
1115
1116 void smp_capture(void)
1117 {
1118         int result = atomic_add_ret(1, &smp_capture_depth);
1119
1120         if (result == 1) {
1121                 int ncpus = num_online_cpus();
1122
1123 #ifdef CAPTURE_DEBUG
1124                 printk("CPU[%d]: Sending penguins to jail...",
1125                        smp_processor_id());
1126 #endif
1127                 penguins_are_doing_time = 1;
1128                 atomic_inc(&smp_capture_registry);
1129                 smp_cross_call(&xcall_capture, 0, 0, 0);
1130                 while (atomic_read(&smp_capture_registry) != ncpus)
1131                         rmb();
1132 #ifdef CAPTURE_DEBUG
1133                 printk("done\n");
1134 #endif
1135         }
1136 }
1137
1138 void smp_release(void)
1139 {
1140         if (atomic_dec_and_test(&smp_capture_depth)) {
1141 #ifdef CAPTURE_DEBUG
1142                 printk("CPU[%d]: Giving pardon to "
1143                        "imprisoned penguins\n",
1144                        smp_processor_id());
1145 #endif
1146                 penguins_are_doing_time = 0;
1147                 membar_safe("#StoreLoad");
1148                 atomic_dec(&smp_capture_registry);
1149         }
1150 }
1151
1152 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1153  * set, so they can service tlb flush xcalls...
1154  */
1155 extern void prom_world(int);
1156
1157 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1158 {
1159         clear_softint(1 << irq);
1160
1161         preempt_disable();
1162
1163         __asm__ __volatile__("flushw");
1164         prom_world(1);
1165         atomic_inc(&smp_capture_registry);
1166         membar_safe("#StoreLoad");
1167         while (penguins_are_doing_time)
1168                 rmb();
1169         atomic_dec(&smp_capture_registry);
1170         prom_world(0);
1171
1172         preempt_enable();
1173 }
1174
1175 /* /proc/profile writes can call this, don't __init it please. */
1176 int setup_profiling_timer(unsigned int multiplier)
1177 {
1178         return -EINVAL;
1179 }
1180
1181 void __init smp_prepare_cpus(unsigned int max_cpus)
1182 {
1183 }
1184
1185 void smp_prepare_boot_cpu(void)
1186 {
1187 }
1188
1189 void __init smp_setup_processor_id(void)
1190 {
1191         if (tlb_type == spitfire)
1192                 xcall_deliver_impl = spitfire_xcall_deliver;
1193         else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1194                 xcall_deliver_impl = cheetah_xcall_deliver;
1195         else
1196                 xcall_deliver_impl = hypervisor_xcall_deliver;
1197 }
1198
1199 void smp_fill_in_sib_core_maps(void)
1200 {
1201         unsigned int i;
1202
1203         for_each_present_cpu(i) {
1204                 unsigned int j;
1205
1206                 cpumask_clear(&cpu_core_map[i]);
1207                 if (cpu_data(i).core_id == 0) {
1208                         cpumask_set_cpu(i, &cpu_core_map[i]);
1209                         continue;
1210                 }
1211
1212                 for_each_present_cpu(j) {
1213                         if (cpu_data(i).core_id ==
1214                             cpu_data(j).core_id)
1215                                 cpumask_set_cpu(j, &cpu_core_map[i]);
1216                 }
1217         }
1218
1219         for_each_present_cpu(i) {
1220                 unsigned int j;
1221
1222                 cpumask_clear(&per_cpu(cpu_sibling_map, i));
1223                 if (cpu_data(i).proc_id == -1) {
1224                         cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1225                         continue;
1226                 }
1227
1228                 for_each_present_cpu(j) {
1229                         if (cpu_data(i).proc_id ==
1230                             cpu_data(j).proc_id)
1231                                 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1232                 }
1233         }
1234 }
1235
1236 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
1237 {
1238         int ret = smp_boot_one_cpu(cpu, tidle);
1239
1240         if (!ret) {
1241                 cpumask_set_cpu(cpu, &smp_commenced_mask);
1242                 while (!cpu_online(cpu))
1243                         mb();
1244                 if (!cpu_online(cpu)) {
1245                         ret = -ENODEV;
1246                 } else {
1247                         /* On SUN4V, writes to %tick and %stick are
1248                          * not allowed.
1249                          */
1250                         if (tlb_type != hypervisor)
1251                                 smp_synchronize_one_tick(cpu);
1252                 }
1253         }
1254         return ret;
1255 }
1256
1257 #ifdef CONFIG_HOTPLUG_CPU
1258 void cpu_play_dead(void)
1259 {
1260         int cpu = smp_processor_id();
1261         unsigned long pstate;
1262
1263         idle_task_exit();
1264
1265         if (tlb_type == hypervisor) {
1266                 struct trap_per_cpu *tb = &trap_block[cpu];
1267
1268                 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1269                                 tb->cpu_mondo_pa, 0);
1270                 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1271                                 tb->dev_mondo_pa, 0);
1272                 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1273                                 tb->resum_mondo_pa, 0);
1274                 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1275                                 tb->nonresum_mondo_pa, 0);
1276         }
1277
1278         cpumask_clear_cpu(cpu, &smp_commenced_mask);
1279         membar_safe("#Sync");
1280
1281         local_irq_disable();
1282
1283         __asm__ __volatile__(
1284                 "rdpr   %%pstate, %0\n\t"
1285                 "wrpr   %0, %1, %%pstate"
1286                 : "=r" (pstate)
1287                 : "i" (PSTATE_IE));
1288
1289         while (1)
1290                 barrier();
1291 }
1292
1293 int __cpu_disable(void)
1294 {
1295         int cpu = smp_processor_id();
1296         cpuinfo_sparc *c;
1297         int i;
1298
1299         for_each_cpu(i, &cpu_core_map[cpu])
1300                 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1301         cpumask_clear(&cpu_core_map[cpu]);
1302
1303         for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1304                 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1305         cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1306
1307         c = &cpu_data(cpu);
1308
1309         c->core_id = 0;
1310         c->proc_id = -1;
1311
1312         smp_wmb();
1313
1314         /* Make sure no interrupts point to this cpu.  */
1315         fixup_irqs();
1316
1317         local_irq_enable();
1318         mdelay(1);
1319         local_irq_disable();
1320
1321         set_cpu_online(cpu, false);
1322
1323         cpu_map_rebuild();
1324
1325         return 0;
1326 }
1327
1328 void __cpu_die(unsigned int cpu)
1329 {
1330         int i;
1331
1332         for (i = 0; i < 100; i++) {
1333                 smp_rmb();
1334                 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1335                         break;
1336                 msleep(100);
1337         }
1338         if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1339                 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1340         } else {
1341 #if defined(CONFIG_SUN_LDOMS)
1342                 unsigned long hv_err;
1343                 int limit = 100;
1344
1345                 do {
1346                         hv_err = sun4v_cpu_stop(cpu);
1347                         if (hv_err == HV_EOK) {
1348                                 set_cpu_present(cpu, false);
1349                                 break;
1350                         }
1351                 } while (--limit > 0);
1352                 if (limit <= 0) {
1353                         printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1354                                hv_err);
1355                 }
1356 #endif
1357         }
1358 }
1359 #endif
1360
1361 void __init smp_cpus_done(unsigned int max_cpus)
1362 {
1363         pcr_arch_init();
1364 }
1365
1366 void smp_send_reschedule(int cpu)
1367 {
1368         xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1369                       cpumask_of(cpu));
1370 }
1371
1372 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1373 {
1374         clear_softint(1 << irq);
1375         scheduler_ipi();
1376 }
1377
1378 /* This is a nop because we capture all other cpus
1379  * anyways when making the PROM active.
1380  */
1381 void smp_send_stop(void)
1382 {
1383 }
1384
1385 /**
1386  * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1387  * @cpu: cpu to allocate for
1388  * @size: size allocation in bytes
1389  * @align: alignment
1390  *
1391  * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1392  * does the right thing for NUMA regardless of the current
1393  * configuration.
1394  *
1395  * RETURNS:
1396  * Pointer to the allocated area on success, NULL on failure.
1397  */
1398 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1399                                         size_t align)
1400 {
1401         const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1402 #ifdef CONFIG_NEED_MULTIPLE_NODES
1403         int node = cpu_to_node(cpu);
1404         void *ptr;
1405
1406         if (!node_online(node) || !NODE_DATA(node)) {
1407                 ptr = __alloc_bootmem(size, align, goal);
1408                 pr_info("cpu %d has no node %d or node-local memory\n",
1409                         cpu, node);
1410                 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1411                          cpu, size, __pa(ptr));
1412         } else {
1413                 ptr = __alloc_bootmem_node(NODE_DATA(node),
1414                                            size, align, goal);
1415                 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1416                          "%016lx\n", cpu, size, node, __pa(ptr));
1417         }
1418         return ptr;
1419 #else
1420         return __alloc_bootmem(size, align, goal);
1421 #endif
1422 }
1423
1424 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1425 {
1426         free_bootmem(__pa(ptr), size);
1427 }
1428
1429 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1430 {
1431         if (cpu_to_node(from) == cpu_to_node(to))
1432                 return LOCAL_DISTANCE;
1433         else
1434                 return REMOTE_DISTANCE;
1435 }
1436
1437 static void __init pcpu_populate_pte(unsigned long addr)
1438 {
1439         pgd_t *pgd = pgd_offset_k(addr);
1440         pud_t *pud;
1441         pmd_t *pmd;
1442
1443         pud = pud_offset(pgd, addr);
1444         if (pud_none(*pud)) {
1445                 pmd_t *new;
1446
1447                 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1448                 pud_populate(&init_mm, pud, new);
1449         }
1450
1451         pmd = pmd_offset(pud, addr);
1452         if (!pmd_present(*pmd)) {
1453                 pte_t *new;
1454
1455                 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1456                 pmd_populate_kernel(&init_mm, pmd, new);
1457         }
1458 }
1459
1460 void __init setup_per_cpu_areas(void)
1461 {
1462         unsigned long delta;
1463         unsigned int cpu;
1464         int rc = -EINVAL;
1465
1466         if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1467                 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1468                                             PERCPU_DYNAMIC_RESERVE, 4 << 20,
1469                                             pcpu_cpu_distance,
1470                                             pcpu_alloc_bootmem,
1471                                             pcpu_free_bootmem);
1472                 if (rc)
1473                         pr_warning("PERCPU: %s allocator failed (%d), "
1474                                    "falling back to page size\n",
1475                                    pcpu_fc_names[pcpu_chosen_fc], rc);
1476         }
1477         if (rc < 0)
1478                 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1479                                            pcpu_alloc_bootmem,
1480                                            pcpu_free_bootmem,
1481                                            pcpu_populate_pte);
1482         if (rc < 0)
1483                 panic("cannot initialize percpu area (err=%d)", rc);
1484
1485         delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1486         for_each_possible_cpu(cpu)
1487                 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1488
1489         /* Setup %g5 for the boot cpu.  */
1490         __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1491
1492         of_fill_in_cpu_data();
1493         if (tlb_type == hypervisor)
1494                 mdesc_fill_in_cpu_data(cpu_all_mask);
1495 }