]> Pileus Git - ~andy/linux/blob - arch/sparc/kernel/process_64.c
32a280ec38c1d6edef71b5576ce474221726ec1e
[~andy/linux] / arch / sparc / kernel / process_64.c
1 /*  arch/sparc64/kernel/process.c
2  *
3  *  Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
4  *  Copyright (C) 1996       Eddie C. Dost   (ecd@skynet.be)
5  *  Copyright (C) 1997, 1998 Jakub Jelinek   (jj@sunsite.mff.cuni.cz)
6  */
7
8 /*
9  * This file handles the architecture-dependent parts of process handling..
10  */
11
12 #include <stdarg.h>
13
14 #include <linux/errno.h>
15 #include <linux/export.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/ptrace.h>
23 #include <linux/slab.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/compat.h>
27 #include <linux/tick.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/perf_event.h>
31 #include <linux/elfcore.h>
32 #include <linux/sysrq.h>
33 #include <linux/nmi.h>
34 #include <linux/context_tracking.h>
35
36 #include <asm/uaccess.h>
37 #include <asm/page.h>
38 #include <asm/pgalloc.h>
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
41 #include <asm/pstate.h>
42 #include <asm/elf.h>
43 #include <asm/fpumacro.h>
44 #include <asm/head.h>
45 #include <asm/cpudata.h>
46 #include <asm/mmu_context.h>
47 #include <asm/unistd.h>
48 #include <asm/hypervisor.h>
49 #include <asm/syscalls.h>
50 #include <asm/irq_regs.h>
51 #include <asm/smp.h>
52 #include <asm/pcr.h>
53
54 #include "kstack.h"
55
56 /* Idle loop support on sparc64. */
57 void arch_cpu_idle(void)
58 {
59         if (tlb_type != hypervisor) {
60                 touch_nmi_watchdog();
61         } else {
62                 unsigned long pstate;
63
64                 /* The sun4v sleeping code requires that we have PSTATE.IE cleared over
65                  * the cpu sleep hypervisor call.
66                  */
67                 __asm__ __volatile__(
68                         "rdpr %%pstate, %0\n\t"
69                         "andn %0, %1, %0\n\t"
70                         "wrpr %0, %%g0, %%pstate"
71                         : "=&r" (pstate)
72                         : "i" (PSTATE_IE));
73
74                 if (!need_resched() && !cpu_is_offline(smp_processor_id()))
75                         sun4v_cpu_yield();
76
77                 /* Re-enable interrupts. */
78                 __asm__ __volatile__(
79                         "rdpr %%pstate, %0\n\t"
80                         "or %0, %1, %0\n\t"
81                         "wrpr %0, %%g0, %%pstate"
82                         : "=&r" (pstate)
83                         : "i" (PSTATE_IE));
84         }
85         local_irq_enable();
86 }
87
88 #ifdef CONFIG_HOTPLUG_CPU
89 void arch_cpu_idle_dead()
90 {
91         sched_preempt_enable_no_resched();
92         cpu_play_dead();
93 }
94 #endif
95
96 #ifdef CONFIG_COMPAT
97 static void show_regwindow32(struct pt_regs *regs)
98 {
99         struct reg_window32 __user *rw;
100         struct reg_window32 r_w;
101         mm_segment_t old_fs;
102         
103         __asm__ __volatile__ ("flushw");
104         rw = compat_ptr((unsigned)regs->u_regs[14]);
105         old_fs = get_fs();
106         set_fs (USER_DS);
107         if (copy_from_user (&r_w, rw, sizeof(r_w))) {
108                 set_fs (old_fs);
109                 return;
110         }
111
112         set_fs (old_fs);                        
113         printk("l0: %08x l1: %08x l2: %08x l3: %08x "
114                "l4: %08x l5: %08x l6: %08x l7: %08x\n",
115                r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
116                r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
117         printk("i0: %08x i1: %08x i2: %08x i3: %08x "
118                "i4: %08x i5: %08x i6: %08x i7: %08x\n",
119                r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
120                r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
121 }
122 #else
123 #define show_regwindow32(regs)  do { } while (0)
124 #endif
125
126 static void show_regwindow(struct pt_regs *regs)
127 {
128         struct reg_window __user *rw;
129         struct reg_window *rwk;
130         struct reg_window r_w;
131         mm_segment_t old_fs;
132
133         if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
134                 __asm__ __volatile__ ("flushw");
135                 rw = (struct reg_window __user *)
136                         (regs->u_regs[14] + STACK_BIAS);
137                 rwk = (struct reg_window *)
138                         (regs->u_regs[14] + STACK_BIAS);
139                 if (!(regs->tstate & TSTATE_PRIV)) {
140                         old_fs = get_fs();
141                         set_fs (USER_DS);
142                         if (copy_from_user (&r_w, rw, sizeof(r_w))) {
143                                 set_fs (old_fs);
144                                 return;
145                         }
146                         rwk = &r_w;
147                         set_fs (old_fs);                        
148                 }
149         } else {
150                 show_regwindow32(regs);
151                 return;
152         }
153         printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
154                rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
155         printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
156                rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
157         printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
158                rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
159         printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
160                rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
161         if (regs->tstate & TSTATE_PRIV)
162                 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
163 }
164
165 void show_regs(struct pt_regs *regs)
166 {
167         show_regs_print_info(KERN_DEFAULT);
168
169         printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x    %s\n", regs->tstate,
170                regs->tpc, regs->tnpc, regs->y, print_tainted());
171         printk("TPC: <%pS>\n", (void *) regs->tpc);
172         printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
173                regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
174                regs->u_regs[3]);
175         printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
176                regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
177                regs->u_regs[7]);
178         printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
179                regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
180                regs->u_regs[11]);
181         printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
182                regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
183                regs->u_regs[15]);
184         printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
185         show_regwindow(regs);
186         show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
187 }
188
189 union global_cpu_snapshot global_cpu_snapshot[NR_CPUS];
190 static DEFINE_SPINLOCK(global_cpu_snapshot_lock);
191
192 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
193                               int this_cpu)
194 {
195         struct global_reg_snapshot *rp;
196
197         flushw_all();
198
199         rp = &global_cpu_snapshot[this_cpu].reg;
200
201         rp->tstate = regs->tstate;
202         rp->tpc = regs->tpc;
203         rp->tnpc = regs->tnpc;
204         rp->o7 = regs->u_regs[UREG_I7];
205
206         if (regs->tstate & TSTATE_PRIV) {
207                 struct reg_window *rw;
208
209                 rw = (struct reg_window *)
210                         (regs->u_regs[UREG_FP] + STACK_BIAS);
211                 if (kstack_valid(tp, (unsigned long) rw)) {
212                         rp->i7 = rw->ins[7];
213                         rw = (struct reg_window *)
214                                 (rw->ins[6] + STACK_BIAS);
215                         if (kstack_valid(tp, (unsigned long) rw))
216                                 rp->rpc = rw->ins[7];
217                 }
218         } else {
219                 rp->i7 = 0;
220                 rp->rpc = 0;
221         }
222         rp->thread = tp;
223 }
224
225 /* In order to avoid hangs we do not try to synchronize with the
226  * global register dump client cpus.  The last store they make is to
227  * the thread pointer, so do a short poll waiting for that to become
228  * non-NULL.
229  */
230 static void __global_reg_poll(struct global_reg_snapshot *gp)
231 {
232         int limit = 0;
233
234         while (!gp->thread && ++limit < 100) {
235                 barrier();
236                 udelay(1);
237         }
238 }
239
240 void arch_trigger_all_cpu_backtrace(void)
241 {
242         struct thread_info *tp = current_thread_info();
243         struct pt_regs *regs = get_irq_regs();
244         unsigned long flags;
245         int this_cpu, cpu;
246
247         if (!regs)
248                 regs = tp->kregs;
249
250         spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
251
252         memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
253
254         this_cpu = raw_smp_processor_id();
255
256         __global_reg_self(tp, regs, this_cpu);
257
258         smp_fetch_global_regs();
259
260         for_each_online_cpu(cpu) {
261                 struct global_reg_snapshot *gp = &global_cpu_snapshot[cpu].reg;
262
263                 __global_reg_poll(gp);
264
265                 tp = gp->thread;
266                 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
267                        (cpu == this_cpu ? '*' : ' '), cpu,
268                        gp->tstate, gp->tpc, gp->tnpc,
269                        ((tp && tp->task) ? tp->task->comm : "NULL"),
270                        ((tp && tp->task) ? tp->task->pid : -1));
271
272                 if (gp->tstate & TSTATE_PRIV) {
273                         printk("             TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
274                                (void *) gp->tpc,
275                                (void *) gp->o7,
276                                (void *) gp->i7,
277                                (void *) gp->rpc);
278                 } else {
279                         printk("             TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
280                                gp->tpc, gp->o7, gp->i7, gp->rpc);
281                 }
282         }
283
284         memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
285
286         spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
287 }
288
289 #ifdef CONFIG_MAGIC_SYSRQ
290
291 static void sysrq_handle_globreg(int key)
292 {
293         arch_trigger_all_cpu_backtrace();
294 }
295
296 static struct sysrq_key_op sparc_globalreg_op = {
297         .handler        = sysrq_handle_globreg,
298         .help_msg       = "global-regs(y)",
299         .action_msg     = "Show Global CPU Regs",
300 };
301
302 static void __global_pmu_self(int this_cpu)
303 {
304         struct global_pmu_snapshot *pp;
305         int i, num;
306
307         pp = &global_cpu_snapshot[this_cpu].pmu;
308
309         num = 1;
310         if (tlb_type == hypervisor &&
311             sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
312                 num = 4;
313
314         for (i = 0; i < num; i++) {
315                 pp->pcr[i] = pcr_ops->read_pcr(i);
316                 pp->pic[i] = pcr_ops->read_pic(i);
317         }
318 }
319
320 static void __global_pmu_poll(struct global_pmu_snapshot *pp)
321 {
322         int limit = 0;
323
324         while (!pp->pcr[0] && ++limit < 100) {
325                 barrier();
326                 udelay(1);
327         }
328 }
329
330 static void pmu_snapshot_all_cpus(void)
331 {
332         unsigned long flags;
333         int this_cpu, cpu;
334
335         spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
336
337         memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
338
339         this_cpu = raw_smp_processor_id();
340
341         __global_pmu_self(this_cpu);
342
343         smp_fetch_global_pmu();
344
345         for_each_online_cpu(cpu) {
346                 struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu;
347
348                 __global_pmu_poll(pp);
349
350                 printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n",
351                        (cpu == this_cpu ? '*' : ' '), cpu,
352                        pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3],
353                        pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]);
354         }
355
356         memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
357
358         spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
359 }
360
361 static void sysrq_handle_globpmu(int key)
362 {
363         pmu_snapshot_all_cpus();
364 }
365
366 static struct sysrq_key_op sparc_globalpmu_op = {
367         .handler        = sysrq_handle_globpmu,
368         .help_msg       = "global-pmu(x)",
369         .action_msg     = "Show Global PMU Regs",
370 };
371
372 static int __init sparc_sysrq_init(void)
373 {
374         int ret = register_sysrq_key('y', &sparc_globalreg_op);
375
376         if (!ret)
377                 ret = register_sysrq_key('x', &sparc_globalpmu_op);
378         return ret;
379 }
380
381 core_initcall(sparc_sysrq_init);
382
383 #endif
384
385 unsigned long thread_saved_pc(struct task_struct *tsk)
386 {
387         struct thread_info *ti = task_thread_info(tsk);
388         unsigned long ret = 0xdeadbeefUL;
389         
390         if (ti && ti->ksp) {
391                 unsigned long *sp;
392                 sp = (unsigned long *)(ti->ksp + STACK_BIAS);
393                 if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
394                     sp[14]) {
395                         unsigned long *fp;
396                         fp = (unsigned long *)(sp[14] + STACK_BIAS);
397                         if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
398                                 ret = fp[15];
399                 }
400         }
401         return ret;
402 }
403
404 /* Free current thread data structures etc.. */
405 void exit_thread(void)
406 {
407         struct thread_info *t = current_thread_info();
408
409         if (t->utraps) {
410                 if (t->utraps[0] < 2)
411                         kfree (t->utraps);
412                 else
413                         t->utraps[0]--;
414         }
415 }
416
417 void flush_thread(void)
418 {
419         struct thread_info *t = current_thread_info();
420         struct mm_struct *mm;
421
422         mm = t->task->mm;
423         if (mm)
424                 tsb_context_switch(mm);
425
426         set_thread_wsaved(0);
427
428         /* Clear FPU register state. */
429         t->fpsaved[0] = 0;
430 }
431
432 /* It's a bit more tricky when 64-bit tasks are involved... */
433 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
434 {
435         bool stack_64bit = test_thread_64bit_stack(psp);
436         unsigned long fp, distance, rval;
437
438         if (stack_64bit) {
439                 csp += STACK_BIAS;
440                 psp += STACK_BIAS;
441                 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
442                 fp += STACK_BIAS;
443                 if (test_thread_flag(TIF_32BIT))
444                         fp &= 0xffffffff;
445         } else
446                 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
447
448         /* Now align the stack as this is mandatory in the Sparc ABI
449          * due to how register windows work.  This hides the
450          * restriction from thread libraries etc.
451          */
452         csp &= ~15UL;
453
454         distance = fp - psp;
455         rval = (csp - distance);
456         if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
457                 rval = 0;
458         else if (!stack_64bit) {
459                 if (put_user(((u32)csp),
460                              &(((struct reg_window32 __user *)rval)->ins[6])))
461                         rval = 0;
462         } else {
463                 if (put_user(((u64)csp - STACK_BIAS),
464                              &(((struct reg_window __user *)rval)->ins[6])))
465                         rval = 0;
466                 else
467                         rval = rval - STACK_BIAS;
468         }
469
470         return rval;
471 }
472
473 /* Standard stuff. */
474 static inline void shift_window_buffer(int first_win, int last_win,
475                                        struct thread_info *t)
476 {
477         int i;
478
479         for (i = first_win; i < last_win; i++) {
480                 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
481                 memcpy(&t->reg_window[i], &t->reg_window[i+1],
482                        sizeof(struct reg_window));
483         }
484 }
485
486 void synchronize_user_stack(void)
487 {
488         struct thread_info *t = current_thread_info();
489         unsigned long window;
490
491         flush_user_windows();
492         if ((window = get_thread_wsaved()) != 0) {
493                 window -= 1;
494                 do {
495                         struct reg_window *rwin = &t->reg_window[window];
496                         int winsize = sizeof(struct reg_window);
497                         unsigned long sp;
498
499                         sp = t->rwbuf_stkptrs[window];
500
501                         if (test_thread_64bit_stack(sp))
502                                 sp += STACK_BIAS;
503                         else
504                                 winsize = sizeof(struct reg_window32);
505
506                         if (!copy_to_user((char __user *)sp, rwin, winsize)) {
507                                 shift_window_buffer(window, get_thread_wsaved() - 1, t);
508                                 set_thread_wsaved(get_thread_wsaved() - 1);
509                         }
510                 } while (window--);
511         }
512 }
513
514 static void stack_unaligned(unsigned long sp)
515 {
516         siginfo_t info;
517
518         info.si_signo = SIGBUS;
519         info.si_errno = 0;
520         info.si_code = BUS_ADRALN;
521         info.si_addr = (void __user *) sp;
522         info.si_trapno = 0;
523         force_sig_info(SIGBUS, &info, current);
524 }
525
526 void fault_in_user_windows(void)
527 {
528         struct thread_info *t = current_thread_info();
529         unsigned long window;
530
531         flush_user_windows();
532         window = get_thread_wsaved();
533
534         if (likely(window != 0)) {
535                 window -= 1;
536                 do {
537                         struct reg_window *rwin = &t->reg_window[window];
538                         int winsize = sizeof(struct reg_window);
539                         unsigned long sp;
540
541                         sp = t->rwbuf_stkptrs[window];
542
543                         if (test_thread_64bit_stack(sp))
544                                 sp += STACK_BIAS;
545                         else
546                                 winsize = sizeof(struct reg_window32);
547
548                         if (unlikely(sp & 0x7UL))
549                                 stack_unaligned(sp);
550
551                         if (unlikely(copy_to_user((char __user *)sp,
552                                                   rwin, winsize)))
553                                 goto barf;
554                 } while (window--);
555         }
556         set_thread_wsaved(0);
557         return;
558
559 barf:
560         set_thread_wsaved(window + 1);
561         user_exit();
562         do_exit(SIGILL);
563 }
564
565 asmlinkage long sparc_do_fork(unsigned long clone_flags,
566                               unsigned long stack_start,
567                               struct pt_regs *regs,
568                               unsigned long stack_size)
569 {
570         int __user *parent_tid_ptr, *child_tid_ptr;
571         unsigned long orig_i1 = regs->u_regs[UREG_I1];
572         long ret;
573
574 #ifdef CONFIG_COMPAT
575         if (test_thread_flag(TIF_32BIT)) {
576                 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
577                 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
578         } else
579 #endif
580         {
581                 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
582                 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
583         }
584
585         ret = do_fork(clone_flags, stack_start, stack_size,
586                       parent_tid_ptr, child_tid_ptr);
587
588         /* If we get an error and potentially restart the system
589          * call, we're screwed because copy_thread() clobbered
590          * the parent's %o1.  So detect that case and restore it
591          * here.
592          */
593         if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
594                 regs->u_regs[UREG_I1] = orig_i1;
595
596         return ret;
597 }
598
599 /* Copy a Sparc thread.  The fork() return value conventions
600  * under SunOS are nothing short of bletcherous:
601  * Parent -->  %o0 == childs  pid, %o1 == 0
602  * Child  -->  %o0 == parents pid, %o1 == 1
603  */
604 int copy_thread(unsigned long clone_flags, unsigned long sp,
605                 unsigned long arg, struct task_struct *p)
606 {
607         struct thread_info *t = task_thread_info(p);
608         struct pt_regs *regs = current_pt_regs();
609         struct sparc_stackf *parent_sf;
610         unsigned long child_stack_sz;
611         char *child_trap_frame;
612
613         /* Calculate offset to stack_frame & pt_regs */
614         child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ);
615         child_trap_frame = (task_stack_page(p) +
616                             (THREAD_SIZE - child_stack_sz));
617
618         t->new_child = 1;
619         t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
620         t->kregs = (struct pt_regs *) (child_trap_frame +
621                                        sizeof(struct sparc_stackf));
622         t->fpsaved[0] = 0;
623
624         if (unlikely(p->flags & PF_KTHREAD)) {
625                 memset(child_trap_frame, 0, child_stack_sz);
626                 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 
627                         (current_pt_regs()->tstate + 1) & TSTATE_CWP;
628                 t->current_ds = ASI_P;
629                 t->kregs->u_regs[UREG_G1] = sp; /* function */
630                 t->kregs->u_regs[UREG_G2] = arg;
631                 return 0;
632         }
633
634         parent_sf = ((struct sparc_stackf *) regs) - 1;
635         memcpy(child_trap_frame, parent_sf, child_stack_sz);
636         if (t->flags & _TIF_32BIT) {
637                 sp &= 0x00000000ffffffffUL;
638                 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
639         }
640         t->kregs->u_regs[UREG_FP] = sp;
641         __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 
642                 (regs->tstate + 1) & TSTATE_CWP;
643         t->current_ds = ASI_AIUS;
644         if (sp != regs->u_regs[UREG_FP]) {
645                 unsigned long csp;
646
647                 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
648                 if (!csp)
649                         return -EFAULT;
650                 t->kregs->u_regs[UREG_FP] = csp;
651         }
652         if (t->utraps)
653                 t->utraps[0]++;
654
655         /* Set the return value for the child. */
656         t->kregs->u_regs[UREG_I0] = current->pid;
657         t->kregs->u_regs[UREG_I1] = 1;
658
659         /* Set the second return value for the parent. */
660         regs->u_regs[UREG_I1] = 0;
661
662         if (clone_flags & CLONE_SETTLS)
663                 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
664
665         return 0;
666 }
667
668 typedef struct {
669         union {
670                 unsigned int    pr_regs[32];
671                 unsigned long   pr_dregs[16];
672         } pr_fr;
673         unsigned int __unused;
674         unsigned int    pr_fsr;
675         unsigned char   pr_qcnt;
676         unsigned char   pr_q_entrysize;
677         unsigned char   pr_en;
678         unsigned int    pr_q[64];
679 } elf_fpregset_t32;
680
681 /*
682  * fill in the fpu structure for a core dump.
683  */
684 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
685 {
686         unsigned long *kfpregs = current_thread_info()->fpregs;
687         unsigned long fprs = current_thread_info()->fpsaved[0];
688
689         if (test_thread_flag(TIF_32BIT)) {
690                 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
691
692                 if (fprs & FPRS_DL)
693                         memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
694                                sizeof(unsigned int) * 32);
695                 else
696                         memset(&fpregs32->pr_fr.pr_regs[0], 0,
697                                sizeof(unsigned int) * 32);
698                 fpregs32->pr_qcnt = 0;
699                 fpregs32->pr_q_entrysize = 8;
700                 memset(&fpregs32->pr_q[0], 0,
701                        (sizeof(unsigned int) * 64));
702                 if (fprs & FPRS_FEF) {
703                         fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
704                         fpregs32->pr_en = 1;
705                 } else {
706                         fpregs32->pr_fsr = 0;
707                         fpregs32->pr_en = 0;
708                 }
709         } else {
710                 if(fprs & FPRS_DL)
711                         memcpy(&fpregs->pr_regs[0], kfpregs,
712                                sizeof(unsigned int) * 32);
713                 else
714                         memset(&fpregs->pr_regs[0], 0,
715                                sizeof(unsigned int) * 32);
716                 if(fprs & FPRS_DU)
717                         memcpy(&fpregs->pr_regs[16], kfpregs+16,
718                                sizeof(unsigned int) * 32);
719                 else
720                         memset(&fpregs->pr_regs[16], 0,
721                                sizeof(unsigned int) * 32);
722                 if(fprs & FPRS_FEF) {
723                         fpregs->pr_fsr = current_thread_info()->xfsr[0];
724                         fpregs->pr_gsr = current_thread_info()->gsr[0];
725                 } else {
726                         fpregs->pr_fsr = fpregs->pr_gsr = 0;
727                 }
728                 fpregs->pr_fprs = fprs;
729         }
730         return 1;
731 }
732 EXPORT_SYMBOL(dump_fpu);
733
734 unsigned long get_wchan(struct task_struct *task)
735 {
736         unsigned long pc, fp, bias = 0;
737         struct thread_info *tp;
738         struct reg_window *rw;
739         unsigned long ret = 0;
740         int count = 0; 
741
742         if (!task || task == current ||
743             task->state == TASK_RUNNING)
744                 goto out;
745
746         tp = task_thread_info(task);
747         bias = STACK_BIAS;
748         fp = task_thread_info(task)->ksp + bias;
749
750         do {
751                 if (!kstack_valid(tp, fp))
752                         break;
753                 rw = (struct reg_window *) fp;
754                 pc = rw->ins[7];
755                 if (!in_sched_functions(pc)) {
756                         ret = pc;
757                         goto out;
758                 }
759                 fp = rw->ins[6] + bias;
760         } while (++count < 16);
761
762 out:
763         return ret;
764 }