]> Pileus Git - ~andy/linux/blob - arch/powerpc/kvm/book3s_hv.c
Merge branch 'kvm-ppc-next' of git://github.com/agraf/linux-2.6 into kvm-queue
[~andy/linux] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35
36 #include <asm/reg.h>
37 #include <asm/cputable.h>
38 #include <asm/cacheflush.h>
39 #include <asm/tlbflush.h>
40 #include <asm/uaccess.h>
41 #include <asm/io.h>
42 #include <asm/kvm_ppc.h>
43 #include <asm/kvm_book3s.h>
44 #include <asm/mmu_context.h>
45 #include <asm/lppaca.h>
46 #include <asm/processor.h>
47 #include <asm/cputhreads.h>
48 #include <asm/page.h>
49 #include <asm/hvcall.h>
50 #include <asm/switch_to.h>
51 #include <asm/smp.h>
52 #include <linux/gfp.h>
53 #include <linux/vmalloc.h>
54 #include <linux/highmem.h>
55 #include <linux/hugetlb.h>
56 #include <linux/module.h>
57
58 #include "book3s.h"
59
60 /* #define EXIT_DEBUG */
61 /* #define EXIT_DEBUG_SIMPLE */
62 /* #define EXIT_DEBUG_INT */
63
64 /* Used to indicate that a guest page fault needs to be handled */
65 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
66
67 /* Used as a "null" value for timebase values */
68 #define TB_NIL  (~(u64)0)
69
70 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
71 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
72
73 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
74 {
75         int me;
76         int cpu = vcpu->cpu;
77         wait_queue_head_t *wqp;
78
79         wqp = kvm_arch_vcpu_wq(vcpu);
80         if (waitqueue_active(wqp)) {
81                 wake_up_interruptible(wqp);
82                 ++vcpu->stat.halt_wakeup;
83         }
84
85         me = get_cpu();
86
87         /* CPU points to the first thread of the core */
88         if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
89 #ifdef CONFIG_KVM_XICS
90                 int real_cpu = cpu + vcpu->arch.ptid;
91                 if (paca[real_cpu].kvm_hstate.xics_phys)
92                         xics_wake_cpu(real_cpu);
93                 else
94 #endif
95                 if (cpu_online(cpu))
96                         smp_send_reschedule(cpu);
97         }
98         put_cpu();
99 }
100
101 /*
102  * We use the vcpu_load/put functions to measure stolen time.
103  * Stolen time is counted as time when either the vcpu is able to
104  * run as part of a virtual core, but the task running the vcore
105  * is preempted or sleeping, or when the vcpu needs something done
106  * in the kernel by the task running the vcpu, but that task is
107  * preempted or sleeping.  Those two things have to be counted
108  * separately, since one of the vcpu tasks will take on the job
109  * of running the core, and the other vcpu tasks in the vcore will
110  * sleep waiting for it to do that, but that sleep shouldn't count
111  * as stolen time.
112  *
113  * Hence we accumulate stolen time when the vcpu can run as part of
114  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
115  * needs its task to do other things in the kernel (for example,
116  * service a page fault) in busy_stolen.  We don't accumulate
117  * stolen time for a vcore when it is inactive, or for a vcpu
118  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
119  * a misnomer; it means that the vcpu task is not executing in
120  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
121  * the kernel.  We don't have any way of dividing up that time
122  * between time that the vcpu is genuinely stopped, time that
123  * the task is actively working on behalf of the vcpu, and time
124  * that the task is preempted, so we don't count any of it as
125  * stolen.
126  *
127  * Updates to busy_stolen are protected by arch.tbacct_lock;
128  * updates to vc->stolen_tb are protected by the arch.tbacct_lock
129  * of the vcpu that has taken responsibility for running the vcore
130  * (i.e. vc->runner).  The stolen times are measured in units of
131  * timebase ticks.  (Note that the != TB_NIL checks below are
132  * purely defensive; they should never fail.)
133  */
134
135 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
136 {
137         struct kvmppc_vcore *vc = vcpu->arch.vcore;
138         unsigned long flags;
139
140         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
141         if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
142             vc->preempt_tb != TB_NIL) {
143                 vc->stolen_tb += mftb() - vc->preempt_tb;
144                 vc->preempt_tb = TB_NIL;
145         }
146         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
147             vcpu->arch.busy_preempt != TB_NIL) {
148                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
149                 vcpu->arch.busy_preempt = TB_NIL;
150         }
151         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
152 }
153
154 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
155 {
156         struct kvmppc_vcore *vc = vcpu->arch.vcore;
157         unsigned long flags;
158
159         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
160         if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
161                 vc->preempt_tb = mftb();
162         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
163                 vcpu->arch.busy_preempt = mftb();
164         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
165 }
166
167 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
168 {
169         vcpu->arch.shregs.msr = msr;
170         kvmppc_end_cede(vcpu);
171 }
172
173 void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
174 {
175         vcpu->arch.pvr = pvr;
176 }
177
178 int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
179 {
180         unsigned long pcr = 0;
181         struct kvmppc_vcore *vc = vcpu->arch.vcore;
182
183         if (arch_compat) {
184                 if (!cpu_has_feature(CPU_FTR_ARCH_206))
185                         return -EINVAL; /* 970 has no compat mode support */
186
187                 switch (arch_compat) {
188                 case PVR_ARCH_205:
189                         /*
190                          * If an arch bit is set in PCR, all the defined
191                          * higher-order arch bits also have to be set.
192                          */
193                         pcr = PCR_ARCH_206 | PCR_ARCH_205;
194                         break;
195                 case PVR_ARCH_206:
196                 case PVR_ARCH_206p:
197                         pcr = PCR_ARCH_206;
198                         break;
199                 case PVR_ARCH_207:
200                         break;
201                 default:
202                         return -EINVAL;
203                 }
204
205                 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
206                         /* POWER7 can't emulate POWER8 */
207                         if (!(pcr & PCR_ARCH_206))
208                                 return -EINVAL;
209                         pcr &= ~PCR_ARCH_206;
210                 }
211         }
212
213         spin_lock(&vc->lock);
214         vc->arch_compat = arch_compat;
215         vc->pcr = pcr;
216         spin_unlock(&vc->lock);
217
218         return 0;
219 }
220
221 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
222 {
223         int r;
224
225         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
226         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
227                vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
228         for (r = 0; r < 16; ++r)
229                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
230                        r, kvmppc_get_gpr(vcpu, r),
231                        r+16, kvmppc_get_gpr(vcpu, r+16));
232         pr_err("ctr = %.16lx  lr  = %.16lx\n",
233                vcpu->arch.ctr, vcpu->arch.lr);
234         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
235                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
236         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
237                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
238         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
239                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
240         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
241                vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
242         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
243         pr_err("fault dar = %.16lx dsisr = %.8x\n",
244                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
245         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
246         for (r = 0; r < vcpu->arch.slb_max; ++r)
247                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
248                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
249         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
250                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
251                vcpu->arch.last_inst);
252 }
253
254 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
255 {
256         int r;
257         struct kvm_vcpu *v, *ret = NULL;
258
259         mutex_lock(&kvm->lock);
260         kvm_for_each_vcpu(r, v, kvm) {
261                 if (v->vcpu_id == id) {
262                         ret = v;
263                         break;
264                 }
265         }
266         mutex_unlock(&kvm->lock);
267         return ret;
268 }
269
270 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
271 {
272         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
273         vpa->yield_count = 1;
274 }
275
276 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
277                    unsigned long addr, unsigned long len)
278 {
279         /* check address is cacheline aligned */
280         if (addr & (L1_CACHE_BYTES - 1))
281                 return -EINVAL;
282         spin_lock(&vcpu->arch.vpa_update_lock);
283         if (v->next_gpa != addr || v->len != len) {
284                 v->next_gpa = addr;
285                 v->len = addr ? len : 0;
286                 v->update_pending = 1;
287         }
288         spin_unlock(&vcpu->arch.vpa_update_lock);
289         return 0;
290 }
291
292 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
293 struct reg_vpa {
294         u32 dummy;
295         union {
296                 u16 hword;
297                 u32 word;
298         } length;
299 };
300
301 static int vpa_is_registered(struct kvmppc_vpa *vpap)
302 {
303         if (vpap->update_pending)
304                 return vpap->next_gpa != 0;
305         return vpap->pinned_addr != NULL;
306 }
307
308 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
309                                        unsigned long flags,
310                                        unsigned long vcpuid, unsigned long vpa)
311 {
312         struct kvm *kvm = vcpu->kvm;
313         unsigned long len, nb;
314         void *va;
315         struct kvm_vcpu *tvcpu;
316         int err;
317         int subfunc;
318         struct kvmppc_vpa *vpap;
319
320         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
321         if (!tvcpu)
322                 return H_PARAMETER;
323
324         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
325         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
326             subfunc == H_VPA_REG_SLB) {
327                 /* Registering new area - address must be cache-line aligned */
328                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
329                         return H_PARAMETER;
330
331                 /* convert logical addr to kernel addr and read length */
332                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
333                 if (va == NULL)
334                         return H_PARAMETER;
335                 if (subfunc == H_VPA_REG_VPA)
336                         len = ((struct reg_vpa *)va)->length.hword;
337                 else
338                         len = ((struct reg_vpa *)va)->length.word;
339                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
340
341                 /* Check length */
342                 if (len > nb || len < sizeof(struct reg_vpa))
343                         return H_PARAMETER;
344         } else {
345                 vpa = 0;
346                 len = 0;
347         }
348
349         err = H_PARAMETER;
350         vpap = NULL;
351         spin_lock(&tvcpu->arch.vpa_update_lock);
352
353         switch (subfunc) {
354         case H_VPA_REG_VPA:             /* register VPA */
355                 if (len < sizeof(struct lppaca))
356                         break;
357                 vpap = &tvcpu->arch.vpa;
358                 err = 0;
359                 break;
360
361         case H_VPA_REG_DTL:             /* register DTL */
362                 if (len < sizeof(struct dtl_entry))
363                         break;
364                 len -= len % sizeof(struct dtl_entry);
365
366                 /* Check that they have previously registered a VPA */
367                 err = H_RESOURCE;
368                 if (!vpa_is_registered(&tvcpu->arch.vpa))
369                         break;
370
371                 vpap = &tvcpu->arch.dtl;
372                 err = 0;
373                 break;
374
375         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
376                 /* Check that they have previously registered a VPA */
377                 err = H_RESOURCE;
378                 if (!vpa_is_registered(&tvcpu->arch.vpa))
379                         break;
380
381                 vpap = &tvcpu->arch.slb_shadow;
382                 err = 0;
383                 break;
384
385         case H_VPA_DEREG_VPA:           /* deregister VPA */
386                 /* Check they don't still have a DTL or SLB buf registered */
387                 err = H_RESOURCE;
388                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
389                     vpa_is_registered(&tvcpu->arch.slb_shadow))
390                         break;
391
392                 vpap = &tvcpu->arch.vpa;
393                 err = 0;
394                 break;
395
396         case H_VPA_DEREG_DTL:           /* deregister DTL */
397                 vpap = &tvcpu->arch.dtl;
398                 err = 0;
399                 break;
400
401         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
402                 vpap = &tvcpu->arch.slb_shadow;
403                 err = 0;
404                 break;
405         }
406
407         if (vpap) {
408                 vpap->next_gpa = vpa;
409                 vpap->len = len;
410                 vpap->update_pending = 1;
411         }
412
413         spin_unlock(&tvcpu->arch.vpa_update_lock);
414
415         return err;
416 }
417
418 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
419 {
420         struct kvm *kvm = vcpu->kvm;
421         void *va;
422         unsigned long nb;
423         unsigned long gpa;
424
425         /*
426          * We need to pin the page pointed to by vpap->next_gpa,
427          * but we can't call kvmppc_pin_guest_page under the lock
428          * as it does get_user_pages() and down_read().  So we
429          * have to drop the lock, pin the page, then get the lock
430          * again and check that a new area didn't get registered
431          * in the meantime.
432          */
433         for (;;) {
434                 gpa = vpap->next_gpa;
435                 spin_unlock(&vcpu->arch.vpa_update_lock);
436                 va = NULL;
437                 nb = 0;
438                 if (gpa)
439                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
440                 spin_lock(&vcpu->arch.vpa_update_lock);
441                 if (gpa == vpap->next_gpa)
442                         break;
443                 /* sigh... unpin that one and try again */
444                 if (va)
445                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
446         }
447
448         vpap->update_pending = 0;
449         if (va && nb < vpap->len) {
450                 /*
451                  * If it's now too short, it must be that userspace
452                  * has changed the mappings underlying guest memory,
453                  * so unregister the region.
454                  */
455                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
456                 va = NULL;
457         }
458         if (vpap->pinned_addr)
459                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
460                                         vpap->dirty);
461         vpap->gpa = gpa;
462         vpap->pinned_addr = va;
463         vpap->dirty = false;
464         if (va)
465                 vpap->pinned_end = va + vpap->len;
466 }
467
468 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
469 {
470         if (!(vcpu->arch.vpa.update_pending ||
471               vcpu->arch.slb_shadow.update_pending ||
472               vcpu->arch.dtl.update_pending))
473                 return;
474
475         spin_lock(&vcpu->arch.vpa_update_lock);
476         if (vcpu->arch.vpa.update_pending) {
477                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
478                 if (vcpu->arch.vpa.pinned_addr)
479                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
480         }
481         if (vcpu->arch.dtl.update_pending) {
482                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
483                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
484                 vcpu->arch.dtl_index = 0;
485         }
486         if (vcpu->arch.slb_shadow.update_pending)
487                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
488         spin_unlock(&vcpu->arch.vpa_update_lock);
489 }
490
491 /*
492  * Return the accumulated stolen time for the vcore up until `now'.
493  * The caller should hold the vcore lock.
494  */
495 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
496 {
497         u64 p;
498
499         /*
500          * If we are the task running the vcore, then since we hold
501          * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
502          * can't be updated, so we don't need the tbacct_lock.
503          * If the vcore is inactive, it can't become active (since we
504          * hold the vcore lock), so the vcpu load/put functions won't
505          * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
506          */
507         if (vc->vcore_state != VCORE_INACTIVE &&
508             vc->runner->arch.run_task != current) {
509                 spin_lock_irq(&vc->runner->arch.tbacct_lock);
510                 p = vc->stolen_tb;
511                 if (vc->preempt_tb != TB_NIL)
512                         p += now - vc->preempt_tb;
513                 spin_unlock_irq(&vc->runner->arch.tbacct_lock);
514         } else {
515                 p = vc->stolen_tb;
516         }
517         return p;
518 }
519
520 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
521                                     struct kvmppc_vcore *vc)
522 {
523         struct dtl_entry *dt;
524         struct lppaca *vpa;
525         unsigned long stolen;
526         unsigned long core_stolen;
527         u64 now;
528
529         dt = vcpu->arch.dtl_ptr;
530         vpa = vcpu->arch.vpa.pinned_addr;
531         now = mftb();
532         core_stolen = vcore_stolen_time(vc, now);
533         stolen = core_stolen - vcpu->arch.stolen_logged;
534         vcpu->arch.stolen_logged = core_stolen;
535         spin_lock_irq(&vcpu->arch.tbacct_lock);
536         stolen += vcpu->arch.busy_stolen;
537         vcpu->arch.busy_stolen = 0;
538         spin_unlock_irq(&vcpu->arch.tbacct_lock);
539         if (!dt || !vpa)
540                 return;
541         memset(dt, 0, sizeof(struct dtl_entry));
542         dt->dispatch_reason = 7;
543         dt->processor_id = vc->pcpu + vcpu->arch.ptid;
544         dt->timebase = now + vc->tb_offset;
545         dt->enqueue_to_dispatch_time = stolen;
546         dt->srr0 = kvmppc_get_pc(vcpu);
547         dt->srr1 = vcpu->arch.shregs.msr;
548         ++dt;
549         if (dt == vcpu->arch.dtl.pinned_end)
550                 dt = vcpu->arch.dtl.pinned_addr;
551         vcpu->arch.dtl_ptr = dt;
552         /* order writing *dt vs. writing vpa->dtl_idx */
553         smp_wmb();
554         vpa->dtl_idx = ++vcpu->arch.dtl_index;
555         vcpu->arch.dtl.dirty = true;
556 }
557
558 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
559 {
560         unsigned long req = kvmppc_get_gpr(vcpu, 3);
561         unsigned long target, ret = H_SUCCESS;
562         struct kvm_vcpu *tvcpu;
563         int idx, rc;
564
565         switch (req) {
566         case H_ENTER:
567                 idx = srcu_read_lock(&vcpu->kvm->srcu);
568                 ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
569                                               kvmppc_get_gpr(vcpu, 5),
570                                               kvmppc_get_gpr(vcpu, 6),
571                                               kvmppc_get_gpr(vcpu, 7));
572                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
573                 break;
574         case H_CEDE:
575                 break;
576         case H_PROD:
577                 target = kvmppc_get_gpr(vcpu, 4);
578                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
579                 if (!tvcpu) {
580                         ret = H_PARAMETER;
581                         break;
582                 }
583                 tvcpu->arch.prodded = 1;
584                 smp_mb();
585                 if (vcpu->arch.ceded) {
586                         if (waitqueue_active(&vcpu->wq)) {
587                                 wake_up_interruptible(&vcpu->wq);
588                                 vcpu->stat.halt_wakeup++;
589                         }
590                 }
591                 break;
592         case H_CONFER:
593                 target = kvmppc_get_gpr(vcpu, 4);
594                 if (target == -1)
595                         break;
596                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
597                 if (!tvcpu) {
598                         ret = H_PARAMETER;
599                         break;
600                 }
601                 kvm_vcpu_yield_to(tvcpu);
602                 break;
603         case H_REGISTER_VPA:
604                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
605                                         kvmppc_get_gpr(vcpu, 5),
606                                         kvmppc_get_gpr(vcpu, 6));
607                 break;
608         case H_RTAS:
609                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
610                         return RESUME_HOST;
611
612                 idx = srcu_read_lock(&vcpu->kvm->srcu);
613                 rc = kvmppc_rtas_hcall(vcpu);
614                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
615
616                 if (rc == -ENOENT)
617                         return RESUME_HOST;
618                 else if (rc == 0)
619                         break;
620
621                 /* Send the error out to userspace via KVM_RUN */
622                 return rc;
623
624         case H_XIRR:
625         case H_CPPR:
626         case H_EOI:
627         case H_IPI:
628         case H_IPOLL:
629         case H_XIRR_X:
630                 if (kvmppc_xics_enabled(vcpu)) {
631                         ret = kvmppc_xics_hcall(vcpu, req);
632                         break;
633                 } /* fallthrough */
634         default:
635                 return RESUME_HOST;
636         }
637         kvmppc_set_gpr(vcpu, 3, ret);
638         vcpu->arch.hcall_needed = 0;
639         return RESUME_GUEST;
640 }
641
642 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
643                                  struct task_struct *tsk)
644 {
645         int r = RESUME_HOST;
646
647         vcpu->stat.sum_exits++;
648
649         run->exit_reason = KVM_EXIT_UNKNOWN;
650         run->ready_for_interrupt_injection = 1;
651         switch (vcpu->arch.trap) {
652         /* We're good on these - the host merely wanted to get our attention */
653         case BOOK3S_INTERRUPT_HV_DECREMENTER:
654                 vcpu->stat.dec_exits++;
655                 r = RESUME_GUEST;
656                 break;
657         case BOOK3S_INTERRUPT_EXTERNAL:
658         case BOOK3S_INTERRUPT_H_DOORBELL:
659                 vcpu->stat.ext_intr_exits++;
660                 r = RESUME_GUEST;
661                 break;
662         case BOOK3S_INTERRUPT_PERFMON:
663                 r = RESUME_GUEST;
664                 break;
665         case BOOK3S_INTERRUPT_MACHINE_CHECK:
666                 /*
667                  * Deliver a machine check interrupt to the guest.
668                  * We have to do this, even if the host has handled the
669                  * machine check, because machine checks use SRR0/1 and
670                  * the interrupt might have trashed guest state in them.
671                  */
672                 kvmppc_book3s_queue_irqprio(vcpu,
673                                             BOOK3S_INTERRUPT_MACHINE_CHECK);
674                 r = RESUME_GUEST;
675                 break;
676         case BOOK3S_INTERRUPT_PROGRAM:
677         {
678                 ulong flags;
679                 /*
680                  * Normally program interrupts are delivered directly
681                  * to the guest by the hardware, but we can get here
682                  * as a result of a hypervisor emulation interrupt
683                  * (e40) getting turned into a 700 by BML RTAS.
684                  */
685                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
686                 kvmppc_core_queue_program(vcpu, flags);
687                 r = RESUME_GUEST;
688                 break;
689         }
690         case BOOK3S_INTERRUPT_SYSCALL:
691         {
692                 /* hcall - punt to userspace */
693                 int i;
694
695                 /* hypercall with MSR_PR has already been handled in rmode,
696                  * and never reaches here.
697                  */
698
699                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
700                 for (i = 0; i < 9; ++i)
701                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
702                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
703                 vcpu->arch.hcall_needed = 1;
704                 r = RESUME_HOST;
705                 break;
706         }
707         /*
708          * We get these next two if the guest accesses a page which it thinks
709          * it has mapped but which is not actually present, either because
710          * it is for an emulated I/O device or because the corresonding
711          * host page has been paged out.  Any other HDSI/HISI interrupts
712          * have been handled already.
713          */
714         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
715                 r = RESUME_PAGE_FAULT;
716                 break;
717         case BOOK3S_INTERRUPT_H_INST_STORAGE:
718                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
719                 vcpu->arch.fault_dsisr = 0;
720                 r = RESUME_PAGE_FAULT;
721                 break;
722         /*
723          * This occurs if the guest executes an illegal instruction.
724          * We just generate a program interrupt to the guest, since
725          * we don't emulate any guest instructions at this stage.
726          */
727         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
728                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
729                 r = RESUME_GUEST;
730                 break;
731         /*
732          * This occurs if the guest (kernel or userspace), does something that
733          * is prohibited by HFSCR.  We just generate a program interrupt to
734          * the guest.
735          */
736         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
737                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
738                 r = RESUME_GUEST;
739                 break;
740         default:
741                 kvmppc_dump_regs(vcpu);
742                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
743                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
744                         vcpu->arch.shregs.msr);
745                 run->hw.hardware_exit_reason = vcpu->arch.trap;
746                 r = RESUME_HOST;
747                 break;
748         }
749
750         return r;
751 }
752
753 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
754                                             struct kvm_sregs *sregs)
755 {
756         int i;
757
758         memset(sregs, 0, sizeof(struct kvm_sregs));
759         sregs->pvr = vcpu->arch.pvr;
760         for (i = 0; i < vcpu->arch.slb_max; i++) {
761                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
762                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
763         }
764
765         return 0;
766 }
767
768 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
769                                             struct kvm_sregs *sregs)
770 {
771         int i, j;
772
773         kvmppc_set_pvr_hv(vcpu, sregs->pvr);
774
775         j = 0;
776         for (i = 0; i < vcpu->arch.slb_nr; i++) {
777                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
778                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
779                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
780                         ++j;
781                 }
782         }
783         vcpu->arch.slb_max = j;
784
785         return 0;
786 }
787
788 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr)
789 {
790         struct kvmppc_vcore *vc = vcpu->arch.vcore;
791         u64 mask;
792
793         spin_lock(&vc->lock);
794         /*
795          * If ILE (interrupt little-endian) has changed, update the
796          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
797          */
798         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
799                 struct kvm *kvm = vcpu->kvm;
800                 struct kvm_vcpu *vcpu;
801                 int i;
802
803                 mutex_lock(&kvm->lock);
804                 kvm_for_each_vcpu(i, vcpu, kvm) {
805                         if (vcpu->arch.vcore != vc)
806                                 continue;
807                         if (new_lpcr & LPCR_ILE)
808                                 vcpu->arch.intr_msr |= MSR_LE;
809                         else
810                                 vcpu->arch.intr_msr &= ~MSR_LE;
811                 }
812                 mutex_unlock(&kvm->lock);
813         }
814
815         /*
816          * Userspace can only modify DPFD (default prefetch depth),
817          * ILE (interrupt little-endian) and TC (translation control).
818          * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
819          */
820         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
821         if (cpu_has_feature(CPU_FTR_ARCH_207S))
822                 mask |= LPCR_AIL;
823         vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
824         spin_unlock(&vc->lock);
825 }
826
827 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
828                                  union kvmppc_one_reg *val)
829 {
830         int r = 0;
831         long int i;
832
833         switch (id) {
834         case KVM_REG_PPC_HIOR:
835                 *val = get_reg_val(id, 0);
836                 break;
837         case KVM_REG_PPC_DABR:
838                 *val = get_reg_val(id, vcpu->arch.dabr);
839                 break;
840         case KVM_REG_PPC_DABRX:
841                 *val = get_reg_val(id, vcpu->arch.dabrx);
842                 break;
843         case KVM_REG_PPC_DSCR:
844                 *val = get_reg_val(id, vcpu->arch.dscr);
845                 break;
846         case KVM_REG_PPC_PURR:
847                 *val = get_reg_val(id, vcpu->arch.purr);
848                 break;
849         case KVM_REG_PPC_SPURR:
850                 *val = get_reg_val(id, vcpu->arch.spurr);
851                 break;
852         case KVM_REG_PPC_AMR:
853                 *val = get_reg_val(id, vcpu->arch.amr);
854                 break;
855         case KVM_REG_PPC_UAMOR:
856                 *val = get_reg_val(id, vcpu->arch.uamor);
857                 break;
858         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
859                 i = id - KVM_REG_PPC_MMCR0;
860                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
861                 break;
862         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
863                 i = id - KVM_REG_PPC_PMC1;
864                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
865                 break;
866         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
867                 i = id - KVM_REG_PPC_SPMC1;
868                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
869                 break;
870         case KVM_REG_PPC_SIAR:
871                 *val = get_reg_val(id, vcpu->arch.siar);
872                 break;
873         case KVM_REG_PPC_SDAR:
874                 *val = get_reg_val(id, vcpu->arch.sdar);
875                 break;
876         case KVM_REG_PPC_SIER:
877                 *val = get_reg_val(id, vcpu->arch.sier);
878                 break;
879         case KVM_REG_PPC_IAMR:
880                 *val = get_reg_val(id, vcpu->arch.iamr);
881                 break;
882 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
883         case KVM_REG_PPC_TFHAR:
884                 *val = get_reg_val(id, vcpu->arch.tfhar);
885                 break;
886         case KVM_REG_PPC_TFIAR:
887                 *val = get_reg_val(id, vcpu->arch.tfiar);
888                 break;
889         case KVM_REG_PPC_TEXASR:
890                 *val = get_reg_val(id, vcpu->arch.texasr);
891                 break;
892 #endif
893         case KVM_REG_PPC_FSCR:
894                 *val = get_reg_val(id, vcpu->arch.fscr);
895                 break;
896         case KVM_REG_PPC_PSPB:
897                 *val = get_reg_val(id, vcpu->arch.pspb);
898                 break;
899         case KVM_REG_PPC_EBBHR:
900                 *val = get_reg_val(id, vcpu->arch.ebbhr);
901                 break;
902         case KVM_REG_PPC_EBBRR:
903                 *val = get_reg_val(id, vcpu->arch.ebbrr);
904                 break;
905         case KVM_REG_PPC_BESCR:
906                 *val = get_reg_val(id, vcpu->arch.bescr);
907                 break;
908         case KVM_REG_PPC_TAR:
909                 *val = get_reg_val(id, vcpu->arch.tar);
910                 break;
911         case KVM_REG_PPC_DPDES:
912                 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
913                 break;
914         case KVM_REG_PPC_DAWR:
915                 *val = get_reg_val(id, vcpu->arch.dawr);
916                 break;
917         case KVM_REG_PPC_DAWRX:
918                 *val = get_reg_val(id, vcpu->arch.dawrx);
919                 break;
920         case KVM_REG_PPC_CIABR:
921                 *val = get_reg_val(id, vcpu->arch.ciabr);
922                 break;
923         case KVM_REG_PPC_IC:
924                 *val = get_reg_val(id, vcpu->arch.ic);
925                 break;
926         case KVM_REG_PPC_VTB:
927                 *val = get_reg_val(id, vcpu->arch.vtb);
928                 break;
929         case KVM_REG_PPC_CSIGR:
930                 *val = get_reg_val(id, vcpu->arch.csigr);
931                 break;
932         case KVM_REG_PPC_TACR:
933                 *val = get_reg_val(id, vcpu->arch.tacr);
934                 break;
935         case KVM_REG_PPC_TCSCR:
936                 *val = get_reg_val(id, vcpu->arch.tcscr);
937                 break;
938         case KVM_REG_PPC_PID:
939                 *val = get_reg_val(id, vcpu->arch.pid);
940                 break;
941         case KVM_REG_PPC_ACOP:
942                 *val = get_reg_val(id, vcpu->arch.acop);
943                 break;
944         case KVM_REG_PPC_WORT:
945                 *val = get_reg_val(id, vcpu->arch.wort);
946                 break;
947         case KVM_REG_PPC_VPA_ADDR:
948                 spin_lock(&vcpu->arch.vpa_update_lock);
949                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
950                 spin_unlock(&vcpu->arch.vpa_update_lock);
951                 break;
952         case KVM_REG_PPC_VPA_SLB:
953                 spin_lock(&vcpu->arch.vpa_update_lock);
954                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
955                 val->vpaval.length = vcpu->arch.slb_shadow.len;
956                 spin_unlock(&vcpu->arch.vpa_update_lock);
957                 break;
958         case KVM_REG_PPC_VPA_DTL:
959                 spin_lock(&vcpu->arch.vpa_update_lock);
960                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
961                 val->vpaval.length = vcpu->arch.dtl.len;
962                 spin_unlock(&vcpu->arch.vpa_update_lock);
963                 break;
964         case KVM_REG_PPC_TB_OFFSET:
965                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
966                 break;
967         case KVM_REG_PPC_LPCR:
968                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
969                 break;
970         case KVM_REG_PPC_PPR:
971                 *val = get_reg_val(id, vcpu->arch.ppr);
972                 break;
973         case KVM_REG_PPC_ARCH_COMPAT:
974                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
975                 break;
976         default:
977                 r = -EINVAL;
978                 break;
979         }
980
981         return r;
982 }
983
984 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
985                                  union kvmppc_one_reg *val)
986 {
987         int r = 0;
988         long int i;
989         unsigned long addr, len;
990
991         switch (id) {
992         case KVM_REG_PPC_HIOR:
993                 /* Only allow this to be set to zero */
994                 if (set_reg_val(id, *val))
995                         r = -EINVAL;
996                 break;
997         case KVM_REG_PPC_DABR:
998                 vcpu->arch.dabr = set_reg_val(id, *val);
999                 break;
1000         case KVM_REG_PPC_DABRX:
1001                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1002                 break;
1003         case KVM_REG_PPC_DSCR:
1004                 vcpu->arch.dscr = set_reg_val(id, *val);
1005                 break;
1006         case KVM_REG_PPC_PURR:
1007                 vcpu->arch.purr = set_reg_val(id, *val);
1008                 break;
1009         case KVM_REG_PPC_SPURR:
1010                 vcpu->arch.spurr = set_reg_val(id, *val);
1011                 break;
1012         case KVM_REG_PPC_AMR:
1013                 vcpu->arch.amr = set_reg_val(id, *val);
1014                 break;
1015         case KVM_REG_PPC_UAMOR:
1016                 vcpu->arch.uamor = set_reg_val(id, *val);
1017                 break;
1018         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1019                 i = id - KVM_REG_PPC_MMCR0;
1020                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1021                 break;
1022         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1023                 i = id - KVM_REG_PPC_PMC1;
1024                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1025                 break;
1026         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1027                 i = id - KVM_REG_PPC_SPMC1;
1028                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1029                 break;
1030         case KVM_REG_PPC_SIAR:
1031                 vcpu->arch.siar = set_reg_val(id, *val);
1032                 break;
1033         case KVM_REG_PPC_SDAR:
1034                 vcpu->arch.sdar = set_reg_val(id, *val);
1035                 break;
1036         case KVM_REG_PPC_SIER:
1037                 vcpu->arch.sier = set_reg_val(id, *val);
1038                 break;
1039         case KVM_REG_PPC_IAMR:
1040                 vcpu->arch.iamr = set_reg_val(id, *val);
1041                 break;
1042 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1043         case KVM_REG_PPC_TFHAR:
1044                 vcpu->arch.tfhar = set_reg_val(id, *val);
1045                 break;
1046         case KVM_REG_PPC_TFIAR:
1047                 vcpu->arch.tfiar = set_reg_val(id, *val);
1048                 break;
1049         case KVM_REG_PPC_TEXASR:
1050                 vcpu->arch.texasr = set_reg_val(id, *val);
1051                 break;
1052 #endif
1053         case KVM_REG_PPC_FSCR:
1054                 vcpu->arch.fscr = set_reg_val(id, *val);
1055                 break;
1056         case KVM_REG_PPC_PSPB:
1057                 vcpu->arch.pspb = set_reg_val(id, *val);
1058                 break;
1059         case KVM_REG_PPC_EBBHR:
1060                 vcpu->arch.ebbhr = set_reg_val(id, *val);
1061                 break;
1062         case KVM_REG_PPC_EBBRR:
1063                 vcpu->arch.ebbrr = set_reg_val(id, *val);
1064                 break;
1065         case KVM_REG_PPC_BESCR:
1066                 vcpu->arch.bescr = set_reg_val(id, *val);
1067                 break;
1068         case KVM_REG_PPC_TAR:
1069                 vcpu->arch.tar = set_reg_val(id, *val);
1070                 break;
1071         case KVM_REG_PPC_DPDES:
1072                 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1073                 break;
1074         case KVM_REG_PPC_DAWR:
1075                 vcpu->arch.dawr = set_reg_val(id, *val);
1076                 break;
1077         case KVM_REG_PPC_DAWRX:
1078                 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1079                 break;
1080         case KVM_REG_PPC_CIABR:
1081                 vcpu->arch.ciabr = set_reg_val(id, *val);
1082                 /* Don't allow setting breakpoints in hypervisor code */
1083                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1084                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
1085                 break;
1086         case KVM_REG_PPC_IC:
1087                 vcpu->arch.ic = set_reg_val(id, *val);
1088                 break;
1089         case KVM_REG_PPC_VTB:
1090                 vcpu->arch.vtb = set_reg_val(id, *val);
1091                 break;
1092         case KVM_REG_PPC_CSIGR:
1093                 vcpu->arch.csigr = set_reg_val(id, *val);
1094                 break;
1095         case KVM_REG_PPC_TACR:
1096                 vcpu->arch.tacr = set_reg_val(id, *val);
1097                 break;
1098         case KVM_REG_PPC_TCSCR:
1099                 vcpu->arch.tcscr = set_reg_val(id, *val);
1100                 break;
1101         case KVM_REG_PPC_PID:
1102                 vcpu->arch.pid = set_reg_val(id, *val);
1103                 break;
1104         case KVM_REG_PPC_ACOP:
1105                 vcpu->arch.acop = set_reg_val(id, *val);
1106                 break;
1107         case KVM_REG_PPC_WORT:
1108                 vcpu->arch.wort = set_reg_val(id, *val);
1109                 break;
1110         case KVM_REG_PPC_VPA_ADDR:
1111                 addr = set_reg_val(id, *val);
1112                 r = -EINVAL;
1113                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1114                               vcpu->arch.dtl.next_gpa))
1115                         break;
1116                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1117                 break;
1118         case KVM_REG_PPC_VPA_SLB:
1119                 addr = val->vpaval.addr;
1120                 len = val->vpaval.length;
1121                 r = -EINVAL;
1122                 if (addr && !vcpu->arch.vpa.next_gpa)
1123                         break;
1124                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1125                 break;
1126         case KVM_REG_PPC_VPA_DTL:
1127                 addr = val->vpaval.addr;
1128                 len = val->vpaval.length;
1129                 r = -EINVAL;
1130                 if (addr && (len < sizeof(struct dtl_entry) ||
1131                              !vcpu->arch.vpa.next_gpa))
1132                         break;
1133                 len -= len % sizeof(struct dtl_entry);
1134                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1135                 break;
1136         case KVM_REG_PPC_TB_OFFSET:
1137                 /* round up to multiple of 2^24 */
1138                 vcpu->arch.vcore->tb_offset =
1139                         ALIGN(set_reg_val(id, *val), 1UL << 24);
1140                 break;
1141         case KVM_REG_PPC_LPCR:
1142                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val));
1143                 break;
1144         case KVM_REG_PPC_PPR:
1145                 vcpu->arch.ppr = set_reg_val(id, *val);
1146                 break;
1147         case KVM_REG_PPC_ARCH_COMPAT:
1148                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1149                 break;
1150         default:
1151                 r = -EINVAL;
1152                 break;
1153         }
1154
1155         return r;
1156 }
1157
1158 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1159                                                    unsigned int id)
1160 {
1161         struct kvm_vcpu *vcpu;
1162         int err = -EINVAL;
1163         int core;
1164         struct kvmppc_vcore *vcore;
1165
1166         core = id / threads_per_core;
1167         if (core >= KVM_MAX_VCORES)
1168                 goto out;
1169
1170         err = -ENOMEM;
1171         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1172         if (!vcpu)
1173                 goto out;
1174
1175         err = kvm_vcpu_init(vcpu, kvm, id);
1176         if (err)
1177                 goto free_vcpu;
1178
1179         vcpu->arch.shared = &vcpu->arch.shregs;
1180         vcpu->arch.mmcr[0] = MMCR0_FC;
1181         vcpu->arch.ctrl = CTRL_RUNLATCH;
1182         /* default to host PVR, since we can't spoof it */
1183         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1184         spin_lock_init(&vcpu->arch.vpa_update_lock);
1185         spin_lock_init(&vcpu->arch.tbacct_lock);
1186         vcpu->arch.busy_preempt = TB_NIL;
1187         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1188
1189         kvmppc_mmu_book3s_hv_init(vcpu);
1190
1191         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1192
1193         init_waitqueue_head(&vcpu->arch.cpu_run);
1194
1195         mutex_lock(&kvm->lock);
1196         vcore = kvm->arch.vcores[core];
1197         if (!vcore) {
1198                 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1199                 if (vcore) {
1200                         INIT_LIST_HEAD(&vcore->runnable_threads);
1201                         spin_lock_init(&vcore->lock);
1202                         init_waitqueue_head(&vcore->wq);
1203                         vcore->preempt_tb = TB_NIL;
1204                         vcore->lpcr = kvm->arch.lpcr;
1205                         vcore->first_vcpuid = core * threads_per_core;
1206                         vcore->kvm = kvm;
1207                 }
1208                 kvm->arch.vcores[core] = vcore;
1209                 kvm->arch.online_vcores++;
1210         }
1211         mutex_unlock(&kvm->lock);
1212
1213         if (!vcore)
1214                 goto free_vcpu;
1215
1216         spin_lock(&vcore->lock);
1217         ++vcore->num_threads;
1218         spin_unlock(&vcore->lock);
1219         vcpu->arch.vcore = vcore;
1220         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1221
1222         vcpu->arch.cpu_type = KVM_CPU_3S_64;
1223         kvmppc_sanity_check(vcpu);
1224
1225         return vcpu;
1226
1227 free_vcpu:
1228         kmem_cache_free(kvm_vcpu_cache, vcpu);
1229 out:
1230         return ERR_PTR(err);
1231 }
1232
1233 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
1234 {
1235         if (vpa->pinned_addr)
1236                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
1237                                         vpa->dirty);
1238 }
1239
1240 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1241 {
1242         spin_lock(&vcpu->arch.vpa_update_lock);
1243         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
1244         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1245         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1246         spin_unlock(&vcpu->arch.vpa_update_lock);
1247         kvm_vcpu_uninit(vcpu);
1248         kmem_cache_free(kvm_vcpu_cache, vcpu);
1249 }
1250
1251 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
1252 {
1253         /* Indicate we want to get back into the guest */
1254         return 1;
1255 }
1256
1257 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1258 {
1259         unsigned long dec_nsec, now;
1260
1261         now = get_tb();
1262         if (now > vcpu->arch.dec_expires) {
1263                 /* decrementer has already gone negative */
1264                 kvmppc_core_queue_dec(vcpu);
1265                 kvmppc_core_prepare_to_enter(vcpu);
1266                 return;
1267         }
1268         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1269                    / tb_ticks_per_sec;
1270         hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1271                       HRTIMER_MODE_REL);
1272         vcpu->arch.timer_running = 1;
1273 }
1274
1275 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1276 {
1277         vcpu->arch.ceded = 0;
1278         if (vcpu->arch.timer_running) {
1279                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1280                 vcpu->arch.timer_running = 0;
1281         }
1282 }
1283
1284 extern void __kvmppc_vcore_entry(void);
1285
1286 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1287                                    struct kvm_vcpu *vcpu)
1288 {
1289         u64 now;
1290
1291         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1292                 return;
1293         spin_lock_irq(&vcpu->arch.tbacct_lock);
1294         now = mftb();
1295         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1296                 vcpu->arch.stolen_logged;
1297         vcpu->arch.busy_preempt = now;
1298         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1299         spin_unlock_irq(&vcpu->arch.tbacct_lock);
1300         --vc->n_runnable;
1301         list_del(&vcpu->arch.run_list);
1302 }
1303
1304 static int kvmppc_grab_hwthread(int cpu)
1305 {
1306         struct paca_struct *tpaca;
1307         long timeout = 1000;
1308
1309         tpaca = &paca[cpu];
1310
1311         /* Ensure the thread won't go into the kernel if it wakes */
1312         tpaca->kvm_hstate.hwthread_req = 1;
1313         tpaca->kvm_hstate.kvm_vcpu = NULL;
1314
1315         /*
1316          * If the thread is already executing in the kernel (e.g. handling
1317          * a stray interrupt), wait for it to get back to nap mode.
1318          * The smp_mb() is to ensure that our setting of hwthread_req
1319          * is visible before we look at hwthread_state, so if this
1320          * races with the code at system_reset_pSeries and the thread
1321          * misses our setting of hwthread_req, we are sure to see its
1322          * setting of hwthread_state, and vice versa.
1323          */
1324         smp_mb();
1325         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1326                 if (--timeout <= 0) {
1327                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
1328                         return -EBUSY;
1329                 }
1330                 udelay(1);
1331         }
1332         return 0;
1333 }
1334
1335 static void kvmppc_release_hwthread(int cpu)
1336 {
1337         struct paca_struct *tpaca;
1338
1339         tpaca = &paca[cpu];
1340         tpaca->kvm_hstate.hwthread_req = 0;
1341         tpaca->kvm_hstate.kvm_vcpu = NULL;
1342 }
1343
1344 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
1345 {
1346         int cpu;
1347         struct paca_struct *tpaca;
1348         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1349
1350         if (vcpu->arch.timer_running) {
1351                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1352                 vcpu->arch.timer_running = 0;
1353         }
1354         cpu = vc->pcpu + vcpu->arch.ptid;
1355         tpaca = &paca[cpu];
1356         tpaca->kvm_hstate.kvm_vcpu = vcpu;
1357         tpaca->kvm_hstate.kvm_vcore = vc;
1358         tpaca->kvm_hstate.ptid = vcpu->arch.ptid;
1359         vcpu->cpu = vc->pcpu;
1360         smp_wmb();
1361 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1362         if (cpu != smp_processor_id()) {
1363 #ifdef CONFIG_KVM_XICS
1364                 xics_wake_cpu(cpu);
1365 #endif
1366                 if (vcpu->arch.ptid)
1367                         ++vc->n_woken;
1368         }
1369 #endif
1370 }
1371
1372 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
1373 {
1374         int i;
1375
1376         HMT_low();
1377         i = 0;
1378         while (vc->nap_count < vc->n_woken) {
1379                 if (++i >= 1000000) {
1380                         pr_err("kvmppc_wait_for_nap timeout %d %d\n",
1381                                vc->nap_count, vc->n_woken);
1382                         break;
1383                 }
1384                 cpu_relax();
1385         }
1386         HMT_medium();
1387 }
1388
1389 /*
1390  * Check that we are on thread 0 and that any other threads in
1391  * this core are off-line.  Then grab the threads so they can't
1392  * enter the kernel.
1393  */
1394 static int on_primary_thread(void)
1395 {
1396         int cpu = smp_processor_id();
1397         int thr = cpu_thread_in_core(cpu);
1398
1399         if (thr)
1400                 return 0;
1401         while (++thr < threads_per_core)
1402                 if (cpu_online(cpu + thr))
1403                         return 0;
1404
1405         /* Grab all hw threads so they can't go into the kernel */
1406         for (thr = 1; thr < threads_per_core; ++thr) {
1407                 if (kvmppc_grab_hwthread(cpu + thr)) {
1408                         /* Couldn't grab one; let the others go */
1409                         do {
1410                                 kvmppc_release_hwthread(cpu + thr);
1411                         } while (--thr > 0);
1412                         return 0;
1413                 }
1414         }
1415         return 1;
1416 }
1417
1418 /*
1419  * Run a set of guest threads on a physical core.
1420  * Called with vc->lock held.
1421  */
1422 static void kvmppc_run_core(struct kvmppc_vcore *vc)
1423 {
1424         struct kvm_vcpu *vcpu, *vnext;
1425         long ret;
1426         u64 now;
1427         int i, need_vpa_update;
1428         int srcu_idx;
1429         struct kvm_vcpu *vcpus_to_update[threads_per_core];
1430
1431         /* don't start if any threads have a signal pending */
1432         need_vpa_update = 0;
1433         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1434                 if (signal_pending(vcpu->arch.run_task))
1435                         return;
1436                 if (vcpu->arch.vpa.update_pending ||
1437                     vcpu->arch.slb_shadow.update_pending ||
1438                     vcpu->arch.dtl.update_pending)
1439                         vcpus_to_update[need_vpa_update++] = vcpu;
1440         }
1441
1442         /*
1443          * Initialize *vc, in particular vc->vcore_state, so we can
1444          * drop the vcore lock if necessary.
1445          */
1446         vc->n_woken = 0;
1447         vc->nap_count = 0;
1448         vc->entry_exit_count = 0;
1449         vc->vcore_state = VCORE_STARTING;
1450         vc->in_guest = 0;
1451         vc->napping_threads = 0;
1452
1453         /*
1454          * Updating any of the vpas requires calling kvmppc_pin_guest_page,
1455          * which can't be called with any spinlocks held.
1456          */
1457         if (need_vpa_update) {
1458                 spin_unlock(&vc->lock);
1459                 for (i = 0; i < need_vpa_update; ++i)
1460                         kvmppc_update_vpas(vcpus_to_update[i]);
1461                 spin_lock(&vc->lock);
1462         }
1463
1464         /*
1465          * Make sure we are running on thread 0, and that
1466          * secondary threads are offline.
1467          */
1468         if (threads_per_core > 1 && !on_primary_thread()) {
1469                 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1470                         vcpu->arch.ret = -EBUSY;
1471                 goto out;
1472         }
1473
1474         vc->pcpu = smp_processor_id();
1475         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1476                 kvmppc_start_thread(vcpu);
1477                 kvmppc_create_dtl_entry(vcpu, vc);
1478         }
1479
1480         /* Set this explicitly in case thread 0 doesn't have a vcpu */
1481         get_paca()->kvm_hstate.kvm_vcore = vc;
1482         get_paca()->kvm_hstate.ptid = 0;
1483
1484         vc->vcore_state = VCORE_RUNNING;
1485         preempt_disable();
1486         spin_unlock(&vc->lock);
1487
1488         kvm_guest_enter();
1489
1490         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
1491
1492         __kvmppc_vcore_entry();
1493
1494         spin_lock(&vc->lock);
1495         /* disable sending of IPIs on virtual external irqs */
1496         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1497                 vcpu->cpu = -1;
1498         /* wait for secondary threads to finish writing their state to memory */
1499         if (vc->nap_count < vc->n_woken)
1500                 kvmppc_wait_for_nap(vc);
1501         for (i = 0; i < threads_per_core; ++i)
1502                 kvmppc_release_hwthread(vc->pcpu + i);
1503         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
1504         vc->vcore_state = VCORE_EXITING;
1505         spin_unlock(&vc->lock);
1506
1507         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
1508
1509         /* make sure updates to secondary vcpu structs are visible now */
1510         smp_mb();
1511         kvm_guest_exit();
1512
1513         preempt_enable();
1514         cond_resched();
1515
1516         spin_lock(&vc->lock);
1517         now = get_tb();
1518         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1519                 /* cancel pending dec exception if dec is positive */
1520                 if (now < vcpu->arch.dec_expires &&
1521                     kvmppc_core_pending_dec(vcpu))
1522                         kvmppc_core_dequeue_dec(vcpu);
1523
1524                 ret = RESUME_GUEST;
1525                 if (vcpu->arch.trap)
1526                         ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
1527                                                     vcpu->arch.run_task);
1528
1529                 vcpu->arch.ret = ret;
1530                 vcpu->arch.trap = 0;
1531
1532                 if (vcpu->arch.ceded) {
1533                         if (ret != RESUME_GUEST)
1534                                 kvmppc_end_cede(vcpu);
1535                         else
1536                                 kvmppc_set_timer(vcpu);
1537                 }
1538         }
1539
1540  out:
1541         vc->vcore_state = VCORE_INACTIVE;
1542         list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
1543                                  arch.run_list) {
1544                 if (vcpu->arch.ret != RESUME_GUEST) {
1545                         kvmppc_remove_runnable(vc, vcpu);
1546                         wake_up(&vcpu->arch.cpu_run);
1547                 }
1548         }
1549 }
1550
1551 /*
1552  * Wait for some other vcpu thread to execute us, and
1553  * wake us up when we need to handle something in the host.
1554  */
1555 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1556 {
1557         DEFINE_WAIT(wait);
1558
1559         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
1560         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
1561                 schedule();
1562         finish_wait(&vcpu->arch.cpu_run, &wait);
1563 }
1564
1565 /*
1566  * All the vcpus in this vcore are idle, so wait for a decrementer
1567  * or external interrupt to one of the vcpus.  vc->lock is held.
1568  */
1569 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
1570 {
1571         DEFINE_WAIT(wait);
1572
1573         prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
1574         vc->vcore_state = VCORE_SLEEPING;
1575         spin_unlock(&vc->lock);
1576         schedule();
1577         finish_wait(&vc->wq, &wait);
1578         spin_lock(&vc->lock);
1579         vc->vcore_state = VCORE_INACTIVE;
1580 }
1581
1582 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1583 {
1584         int n_ceded;
1585         struct kvmppc_vcore *vc;
1586         struct kvm_vcpu *v, *vn;
1587
1588         kvm_run->exit_reason = 0;
1589         vcpu->arch.ret = RESUME_GUEST;
1590         vcpu->arch.trap = 0;
1591         kvmppc_update_vpas(vcpu);
1592
1593         /*
1594          * Synchronize with other threads in this virtual core
1595          */
1596         vc = vcpu->arch.vcore;
1597         spin_lock(&vc->lock);
1598         vcpu->arch.ceded = 0;
1599         vcpu->arch.run_task = current;
1600         vcpu->arch.kvm_run = kvm_run;
1601         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
1602         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1603         vcpu->arch.busy_preempt = TB_NIL;
1604         list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
1605         ++vc->n_runnable;
1606
1607         /*
1608          * This happens the first time this is called for a vcpu.
1609          * If the vcore is already running, we may be able to start
1610          * this thread straight away and have it join in.
1611          */
1612         if (!signal_pending(current)) {
1613                 if (vc->vcore_state == VCORE_RUNNING &&
1614                     VCORE_EXIT_COUNT(vc) == 0) {
1615                         kvmppc_create_dtl_entry(vcpu, vc);
1616                         kvmppc_start_thread(vcpu);
1617                 } else if (vc->vcore_state == VCORE_SLEEPING) {
1618                         wake_up(&vc->wq);
1619                 }
1620
1621         }
1622
1623         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1624                !signal_pending(current)) {
1625                 if (vc->vcore_state != VCORE_INACTIVE) {
1626                         spin_unlock(&vc->lock);
1627                         kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
1628                         spin_lock(&vc->lock);
1629                         continue;
1630                 }
1631                 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
1632                                          arch.run_list) {
1633                         kvmppc_core_prepare_to_enter(v);
1634                         if (signal_pending(v->arch.run_task)) {
1635                                 kvmppc_remove_runnable(vc, v);
1636                                 v->stat.signal_exits++;
1637                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
1638                                 v->arch.ret = -EINTR;
1639                                 wake_up(&v->arch.cpu_run);
1640                         }
1641                 }
1642                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1643                         break;
1644                 vc->runner = vcpu;
1645                 n_ceded = 0;
1646                 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
1647                         if (!v->arch.pending_exceptions)
1648                                 n_ceded += v->arch.ceded;
1649                         else
1650                                 v->arch.ceded = 0;
1651                 }
1652                 if (n_ceded == vc->n_runnable)
1653                         kvmppc_vcore_blocked(vc);
1654                 else
1655                         kvmppc_run_core(vc);
1656                 vc->runner = NULL;
1657         }
1658
1659         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1660                (vc->vcore_state == VCORE_RUNNING ||
1661                 vc->vcore_state == VCORE_EXITING)) {
1662                 spin_unlock(&vc->lock);
1663                 kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
1664                 spin_lock(&vc->lock);
1665         }
1666
1667         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
1668                 kvmppc_remove_runnable(vc, vcpu);
1669                 vcpu->stat.signal_exits++;
1670                 kvm_run->exit_reason = KVM_EXIT_INTR;
1671                 vcpu->arch.ret = -EINTR;
1672         }
1673
1674         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
1675                 /* Wake up some vcpu to run the core */
1676                 v = list_first_entry(&vc->runnable_threads,
1677                                      struct kvm_vcpu, arch.run_list);
1678                 wake_up(&v->arch.cpu_run);
1679         }
1680
1681         spin_unlock(&vc->lock);
1682         return vcpu->arch.ret;
1683 }
1684
1685 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
1686 {
1687         int r;
1688         int srcu_idx;
1689
1690         if (!vcpu->arch.sane) {
1691                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1692                 return -EINVAL;
1693         }
1694
1695         kvmppc_core_prepare_to_enter(vcpu);
1696
1697         /* No need to go into the guest when all we'll do is come back out */
1698         if (signal_pending(current)) {
1699                 run->exit_reason = KVM_EXIT_INTR;
1700                 return -EINTR;
1701         }
1702
1703         atomic_inc(&vcpu->kvm->arch.vcpus_running);
1704         /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
1705         smp_mb();
1706
1707         /* On the first time here, set up HTAB and VRMA or RMA */
1708         if (!vcpu->kvm->arch.rma_setup_done) {
1709                 r = kvmppc_hv_setup_htab_rma(vcpu);
1710                 if (r)
1711                         goto out;
1712         }
1713
1714         flush_fp_to_thread(current);
1715         flush_altivec_to_thread(current);
1716         flush_vsx_to_thread(current);
1717         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1718         vcpu->arch.pgdir = current->mm->pgd;
1719         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1720
1721         do {
1722                 r = kvmppc_run_vcpu(run, vcpu);
1723
1724                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
1725                     !(vcpu->arch.shregs.msr & MSR_PR)) {
1726                         r = kvmppc_pseries_do_hcall(vcpu);
1727                         kvmppc_core_prepare_to_enter(vcpu);
1728                 } else if (r == RESUME_PAGE_FAULT) {
1729                         srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1730                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
1731                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1732                         srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1733                 }
1734         } while (r == RESUME_GUEST);
1735
1736  out:
1737         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1738         atomic_dec(&vcpu->kvm->arch.vcpus_running);
1739         return r;
1740 }
1741
1742
1743 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
1744    Assumes POWER7 or PPC970. */
1745 static inline int lpcr_rmls(unsigned long rma_size)
1746 {
1747         switch (rma_size) {
1748         case 32ul << 20:        /* 32 MB */
1749                 if (cpu_has_feature(CPU_FTR_ARCH_206))
1750                         return 8;       /* only supported on POWER7 */
1751                 return -1;
1752         case 64ul << 20:        /* 64 MB */
1753                 return 3;
1754         case 128ul << 20:       /* 128 MB */
1755                 return 7;
1756         case 256ul << 20:       /* 256 MB */
1757                 return 4;
1758         case 1ul << 30:         /* 1 GB */
1759                 return 2;
1760         case 16ul << 30:        /* 16 GB */
1761                 return 1;
1762         case 256ul << 30:       /* 256 GB */
1763                 return 0;
1764         default:
1765                 return -1;
1766         }
1767 }
1768
1769 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1770 {
1771         struct page *page;
1772         struct kvm_rma_info *ri = vma->vm_file->private_data;
1773
1774         if (vmf->pgoff >= kvm_rma_pages)
1775                 return VM_FAULT_SIGBUS;
1776
1777         page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1778         get_page(page);
1779         vmf->page = page;
1780         return 0;
1781 }
1782
1783 static const struct vm_operations_struct kvm_rma_vm_ops = {
1784         .fault = kvm_rma_fault,
1785 };
1786
1787 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1788 {
1789         vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1790         vma->vm_ops = &kvm_rma_vm_ops;
1791         return 0;
1792 }
1793
1794 static int kvm_rma_release(struct inode *inode, struct file *filp)
1795 {
1796         struct kvm_rma_info *ri = filp->private_data;
1797
1798         kvm_release_rma(ri);
1799         return 0;
1800 }
1801
1802 static const struct file_operations kvm_rma_fops = {
1803         .mmap           = kvm_rma_mmap,
1804         .release        = kvm_rma_release,
1805 };
1806
1807 static long kvm_vm_ioctl_allocate_rma(struct kvm *kvm,
1808                                       struct kvm_allocate_rma *ret)
1809 {
1810         long fd;
1811         struct kvm_rma_info *ri;
1812         /*
1813          * Only do this on PPC970 in HV mode
1814          */
1815         if (!cpu_has_feature(CPU_FTR_HVMODE) ||
1816             !cpu_has_feature(CPU_FTR_ARCH_201))
1817                 return -EINVAL;
1818
1819         if (!kvm_rma_pages)
1820                 return -EINVAL;
1821
1822         ri = kvm_alloc_rma();
1823         if (!ri)
1824                 return -ENOMEM;
1825
1826         fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR | O_CLOEXEC);
1827         if (fd < 0)
1828                 kvm_release_rma(ri);
1829
1830         ret->rma_size = kvm_rma_pages << PAGE_SHIFT;
1831         return fd;
1832 }
1833
1834 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
1835                                      int linux_psize)
1836 {
1837         struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
1838
1839         if (!def->shift)
1840                 return;
1841         (*sps)->page_shift = def->shift;
1842         (*sps)->slb_enc = def->sllp;
1843         (*sps)->enc[0].page_shift = def->shift;
1844         /*
1845          * Only return base page encoding. We don't want to return
1846          * all the supporting pte_enc, because our H_ENTER doesn't
1847          * support MPSS yet. Once they do, we can start passing all
1848          * support pte_enc here
1849          */
1850         (*sps)->enc[0].pte_enc = def->penc[linux_psize];
1851         (*sps)++;
1852 }
1853
1854 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
1855                                          struct kvm_ppc_smmu_info *info)
1856 {
1857         struct kvm_ppc_one_seg_page_size *sps;
1858
1859         info->flags = KVM_PPC_PAGE_SIZES_REAL;
1860         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1861                 info->flags |= KVM_PPC_1T_SEGMENTS;
1862         info->slb_size = mmu_slb_size;
1863
1864         /* We only support these sizes for now, and no muti-size segments */
1865         sps = &info->sps[0];
1866         kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
1867         kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
1868         kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
1869
1870         return 0;
1871 }
1872
1873 /*
1874  * Get (and clear) the dirty memory log for a memory slot.
1875  */
1876 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
1877                                          struct kvm_dirty_log *log)
1878 {
1879         struct kvm_memory_slot *memslot;
1880         int r;
1881         unsigned long n;
1882
1883         mutex_lock(&kvm->slots_lock);
1884
1885         r = -EINVAL;
1886         if (log->slot >= KVM_USER_MEM_SLOTS)
1887                 goto out;
1888
1889         memslot = id_to_memslot(kvm->memslots, log->slot);
1890         r = -ENOENT;
1891         if (!memslot->dirty_bitmap)
1892                 goto out;
1893
1894         n = kvm_dirty_bitmap_bytes(memslot);
1895         memset(memslot->dirty_bitmap, 0, n);
1896
1897         r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
1898         if (r)
1899                 goto out;
1900
1901         r = -EFAULT;
1902         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1903                 goto out;
1904
1905         r = 0;
1906 out:
1907         mutex_unlock(&kvm->slots_lock);
1908         return r;
1909 }
1910
1911 static void unpin_slot(struct kvm_memory_slot *memslot)
1912 {
1913         unsigned long *physp;
1914         unsigned long j, npages, pfn;
1915         struct page *page;
1916
1917         physp = memslot->arch.slot_phys;
1918         npages = memslot->npages;
1919         if (!physp)
1920                 return;
1921         for (j = 0; j < npages; j++) {
1922                 if (!(physp[j] & KVMPPC_GOT_PAGE))
1923                         continue;
1924                 pfn = physp[j] >> PAGE_SHIFT;
1925                 page = pfn_to_page(pfn);
1926                 SetPageDirty(page);
1927                 put_page(page);
1928         }
1929 }
1930
1931 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
1932                                         struct kvm_memory_slot *dont)
1933 {
1934         if (!dont || free->arch.rmap != dont->arch.rmap) {
1935                 vfree(free->arch.rmap);
1936                 free->arch.rmap = NULL;
1937         }
1938         if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
1939                 unpin_slot(free);
1940                 vfree(free->arch.slot_phys);
1941                 free->arch.slot_phys = NULL;
1942         }
1943 }
1944
1945 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
1946                                          unsigned long npages)
1947 {
1948         slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
1949         if (!slot->arch.rmap)
1950                 return -ENOMEM;
1951         slot->arch.slot_phys = NULL;
1952
1953         return 0;
1954 }
1955
1956 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
1957                                         struct kvm_memory_slot *memslot,
1958                                         struct kvm_userspace_memory_region *mem)
1959 {
1960         unsigned long *phys;
1961
1962         /* Allocate a slot_phys array if needed */
1963         phys = memslot->arch.slot_phys;
1964         if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
1965                 phys = vzalloc(memslot->npages * sizeof(unsigned long));
1966                 if (!phys)
1967                         return -ENOMEM;
1968                 memslot->arch.slot_phys = phys;
1969         }
1970
1971         return 0;
1972 }
1973
1974 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
1975                                 struct kvm_userspace_memory_region *mem,
1976                                 const struct kvm_memory_slot *old)
1977 {
1978         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
1979         struct kvm_memory_slot *memslot;
1980
1981         if (npages && old->npages) {
1982                 /*
1983                  * If modifying a memslot, reset all the rmap dirty bits.
1984                  * If this is a new memslot, we don't need to do anything
1985                  * since the rmap array starts out as all zeroes,
1986                  * i.e. no pages are dirty.
1987                  */
1988                 memslot = id_to_memslot(kvm->memslots, mem->slot);
1989                 kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
1990         }
1991 }
1992
1993 /*
1994  * Update LPCR values in kvm->arch and in vcores.
1995  * Caller must hold kvm->lock.
1996  */
1997 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
1998 {
1999         long int i;
2000         u32 cores_done = 0;
2001
2002         if ((kvm->arch.lpcr & mask) == lpcr)
2003                 return;
2004
2005         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
2006
2007         for (i = 0; i < KVM_MAX_VCORES; ++i) {
2008                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
2009                 if (!vc)
2010                         continue;
2011                 spin_lock(&vc->lock);
2012                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
2013                 spin_unlock(&vc->lock);
2014                 if (++cores_done >= kvm->arch.online_vcores)
2015                         break;
2016         }
2017 }
2018
2019 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
2020 {
2021         return;
2022 }
2023
2024 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
2025 {
2026         int err = 0;
2027         struct kvm *kvm = vcpu->kvm;
2028         struct kvm_rma_info *ri = NULL;
2029         unsigned long hva;
2030         struct kvm_memory_slot *memslot;
2031         struct vm_area_struct *vma;
2032         unsigned long lpcr = 0, senc;
2033         unsigned long lpcr_mask = 0;
2034         unsigned long psize, porder;
2035         unsigned long rma_size;
2036         unsigned long rmls;
2037         unsigned long *physp;
2038         unsigned long i, npages;
2039         int srcu_idx;
2040
2041         mutex_lock(&kvm->lock);
2042         if (kvm->arch.rma_setup_done)
2043                 goto out;       /* another vcpu beat us to it */
2044
2045         /* Allocate hashed page table (if not done already) and reset it */
2046         if (!kvm->arch.hpt_virt) {
2047                 err = kvmppc_alloc_hpt(kvm, NULL);
2048                 if (err) {
2049                         pr_err("KVM: Couldn't alloc HPT\n");
2050                         goto out;
2051                 }
2052         }
2053
2054         /* Look up the memslot for guest physical address 0 */
2055         srcu_idx = srcu_read_lock(&kvm->srcu);
2056         memslot = gfn_to_memslot(kvm, 0);
2057
2058         /* We must have some memory at 0 by now */
2059         err = -EINVAL;
2060         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2061                 goto out_srcu;
2062
2063         /* Look up the VMA for the start of this memory slot */
2064         hva = memslot->userspace_addr;
2065         down_read(&current->mm->mmap_sem);
2066         vma = find_vma(current->mm, hva);
2067         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
2068                 goto up_out;
2069
2070         psize = vma_kernel_pagesize(vma);
2071         porder = __ilog2(psize);
2072
2073         /* Is this one of our preallocated RMAs? */
2074         if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
2075             hva == vma->vm_start)
2076                 ri = vma->vm_file->private_data;
2077
2078         up_read(&current->mm->mmap_sem);
2079
2080         if (!ri) {
2081                 /* On POWER7, use VRMA; on PPC970, give up */
2082                 err = -EPERM;
2083                 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
2084                         pr_err("KVM: CPU requires an RMO\n");
2085                         goto out_srcu;
2086                 }
2087
2088                 /* We can handle 4k, 64k or 16M pages in the VRMA */
2089                 err = -EINVAL;
2090                 if (!(psize == 0x1000 || psize == 0x10000 ||
2091                       psize == 0x1000000))
2092                         goto out_srcu;
2093
2094                 /* Update VRMASD field in the LPCR */
2095                 senc = slb_pgsize_encoding(psize);
2096                 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
2097                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
2098                 lpcr_mask = LPCR_VRMASD;
2099                 /* the -4 is to account for senc values starting at 0x10 */
2100                 lpcr = senc << (LPCR_VRMASD_SH - 4);
2101
2102                 /* Create HPTEs in the hash page table for the VRMA */
2103                 kvmppc_map_vrma(vcpu, memslot, porder);
2104
2105         } else {
2106                 /* Set up to use an RMO region */
2107                 rma_size = kvm_rma_pages;
2108                 if (rma_size > memslot->npages)
2109                         rma_size = memslot->npages;
2110                 rma_size <<= PAGE_SHIFT;
2111                 rmls = lpcr_rmls(rma_size);
2112                 err = -EINVAL;
2113                 if ((long)rmls < 0) {
2114                         pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
2115                         goto out_srcu;
2116                 }
2117                 atomic_inc(&ri->use_count);
2118                 kvm->arch.rma = ri;
2119
2120                 /* Update LPCR and RMOR */
2121                 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
2122                         /* PPC970; insert RMLS value (split field) in HID4 */
2123                         lpcr_mask = (1ul << HID4_RMLS0_SH) |
2124                                 (3ul << HID4_RMLS2_SH) | HID4_RMOR;
2125                         lpcr = ((rmls >> 2) << HID4_RMLS0_SH) |
2126                                 ((rmls & 3) << HID4_RMLS2_SH);
2127                         /* RMOR is also in HID4 */
2128                         lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
2129                                 << HID4_RMOR_SH;
2130                 } else {
2131                         /* POWER7 */
2132                         lpcr_mask = LPCR_VPM0 | LPCR_VRMA_L | LPCR_RMLS;
2133                         lpcr = rmls << LPCR_RMLS_SH;
2134                         kvm->arch.rmor = ri->base_pfn << PAGE_SHIFT;
2135                 }
2136                 pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
2137                         ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
2138
2139                 /* Initialize phys addrs of pages in RMO */
2140                 npages = kvm_rma_pages;
2141                 porder = __ilog2(npages);
2142                 physp = memslot->arch.slot_phys;
2143                 if (physp) {
2144                         if (npages > memslot->npages)
2145                                 npages = memslot->npages;
2146                         spin_lock(&kvm->arch.slot_phys_lock);
2147                         for (i = 0; i < npages; ++i)
2148                                 physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
2149                                         porder;
2150                         spin_unlock(&kvm->arch.slot_phys_lock);
2151                 }
2152         }
2153
2154         kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
2155
2156         /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
2157         smp_wmb();
2158         kvm->arch.rma_setup_done = 1;
2159         err = 0;
2160  out_srcu:
2161         srcu_read_unlock(&kvm->srcu, srcu_idx);
2162  out:
2163         mutex_unlock(&kvm->lock);
2164         return err;
2165
2166  up_out:
2167         up_read(&current->mm->mmap_sem);
2168         goto out_srcu;
2169 }
2170
2171 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
2172 {
2173         unsigned long lpcr, lpid;
2174
2175         /* Allocate the guest's logical partition ID */
2176
2177         lpid = kvmppc_alloc_lpid();
2178         if ((long)lpid < 0)
2179                 return -ENOMEM;
2180         kvm->arch.lpid = lpid;
2181
2182         /*
2183          * Since we don't flush the TLB when tearing down a VM,
2184          * and this lpid might have previously been used,
2185          * make sure we flush on each core before running the new VM.
2186          */
2187         cpumask_setall(&kvm->arch.need_tlb_flush);
2188
2189         kvm->arch.rma = NULL;
2190
2191         kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
2192
2193         if (cpu_has_feature(CPU_FTR_ARCH_201)) {
2194                 /* PPC970; HID4 is effectively the LPCR */
2195                 kvm->arch.host_lpid = 0;
2196                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
2197                 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
2198                 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
2199                         ((lpid & 0xf) << HID4_LPID5_SH);
2200         } else {
2201                 /* POWER7; init LPCR for virtual RMA mode */
2202                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
2203                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
2204                 lpcr &= LPCR_PECE | LPCR_LPES;
2205                 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
2206                         LPCR_VPM0 | LPCR_VPM1;
2207                 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
2208                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
2209                 /* On POWER8 turn on online bit to enable PURR/SPURR */
2210                 if (cpu_has_feature(CPU_FTR_ARCH_207S))
2211                         lpcr |= LPCR_ONL;
2212         }
2213         kvm->arch.lpcr = lpcr;
2214
2215         kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
2216         spin_lock_init(&kvm->arch.slot_phys_lock);
2217
2218         /*
2219          * Don't allow secondary CPU threads to come online
2220          * while any KVM VMs exist.
2221          */
2222         inhibit_secondary_onlining();
2223
2224         return 0;
2225 }
2226
2227 static void kvmppc_free_vcores(struct kvm *kvm)
2228 {
2229         long int i;
2230
2231         for (i = 0; i < KVM_MAX_VCORES; ++i)
2232                 kfree(kvm->arch.vcores[i]);
2233         kvm->arch.online_vcores = 0;
2234 }
2235
2236 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
2237 {
2238         uninhibit_secondary_onlining();
2239
2240         kvmppc_free_vcores(kvm);
2241         if (kvm->arch.rma) {
2242                 kvm_release_rma(kvm->arch.rma);
2243                 kvm->arch.rma = NULL;
2244         }
2245
2246         kvmppc_free_hpt(kvm);
2247 }
2248
2249 /* We don't need to emulate any privileged instructions or dcbz */
2250 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
2251                                      unsigned int inst, int *advance)
2252 {
2253         return EMULATE_FAIL;
2254 }
2255
2256 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
2257                                         ulong spr_val)
2258 {
2259         return EMULATE_FAIL;
2260 }
2261
2262 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
2263                                         ulong *spr_val)
2264 {
2265         return EMULATE_FAIL;
2266 }
2267
2268 static int kvmppc_core_check_processor_compat_hv(void)
2269 {
2270         if (!cpu_has_feature(CPU_FTR_HVMODE))
2271                 return -EIO;
2272         return 0;
2273 }
2274
2275 static long kvm_arch_vm_ioctl_hv(struct file *filp,
2276                                  unsigned int ioctl, unsigned long arg)
2277 {
2278         struct kvm *kvm __maybe_unused = filp->private_data;
2279         void __user *argp = (void __user *)arg;
2280         long r;
2281
2282         switch (ioctl) {
2283
2284         case KVM_ALLOCATE_RMA: {
2285                 struct kvm_allocate_rma rma;
2286                 struct kvm *kvm = filp->private_data;
2287
2288                 r = kvm_vm_ioctl_allocate_rma(kvm, &rma);
2289                 if (r >= 0 && copy_to_user(argp, &rma, sizeof(rma)))
2290                         r = -EFAULT;
2291                 break;
2292         }
2293
2294         case KVM_PPC_ALLOCATE_HTAB: {
2295                 u32 htab_order;
2296
2297                 r = -EFAULT;
2298                 if (get_user(htab_order, (u32 __user *)argp))
2299                         break;
2300                 r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
2301                 if (r)
2302                         break;
2303                 r = -EFAULT;
2304                 if (put_user(htab_order, (u32 __user *)argp))
2305                         break;
2306                 r = 0;
2307                 break;
2308         }
2309
2310         case KVM_PPC_GET_HTAB_FD: {
2311                 struct kvm_get_htab_fd ghf;
2312
2313                 r = -EFAULT;
2314                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
2315                         break;
2316                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
2317                 break;
2318         }
2319
2320         default:
2321                 r = -ENOTTY;
2322         }
2323
2324         return r;
2325 }
2326
2327 static struct kvmppc_ops kvm_ops_hv = {
2328         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
2329         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
2330         .get_one_reg = kvmppc_get_one_reg_hv,
2331         .set_one_reg = kvmppc_set_one_reg_hv,
2332         .vcpu_load   = kvmppc_core_vcpu_load_hv,
2333         .vcpu_put    = kvmppc_core_vcpu_put_hv,
2334         .set_msr     = kvmppc_set_msr_hv,
2335         .vcpu_run    = kvmppc_vcpu_run_hv,
2336         .vcpu_create = kvmppc_core_vcpu_create_hv,
2337         .vcpu_free   = kvmppc_core_vcpu_free_hv,
2338         .check_requests = kvmppc_core_check_requests_hv,
2339         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
2340         .flush_memslot  = kvmppc_core_flush_memslot_hv,
2341         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
2342         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
2343         .unmap_hva = kvm_unmap_hva_hv,
2344         .unmap_hva_range = kvm_unmap_hva_range_hv,
2345         .age_hva  = kvm_age_hva_hv,
2346         .test_age_hva = kvm_test_age_hva_hv,
2347         .set_spte_hva = kvm_set_spte_hva_hv,
2348         .mmu_destroy  = kvmppc_mmu_destroy_hv,
2349         .free_memslot = kvmppc_core_free_memslot_hv,
2350         .create_memslot = kvmppc_core_create_memslot_hv,
2351         .init_vm =  kvmppc_core_init_vm_hv,
2352         .destroy_vm = kvmppc_core_destroy_vm_hv,
2353         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
2354         .emulate_op = kvmppc_core_emulate_op_hv,
2355         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
2356         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
2357         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
2358         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
2359 };
2360
2361 static int kvmppc_book3s_init_hv(void)
2362 {
2363         int r;
2364         /*
2365          * FIXME!! Do we need to check on all cpus ?
2366          */
2367         r = kvmppc_core_check_processor_compat_hv();
2368         if (r < 0)
2369                 return r;
2370
2371         kvm_ops_hv.owner = THIS_MODULE;
2372         kvmppc_hv_ops = &kvm_ops_hv;
2373
2374         r = kvmppc_mmu_hv_init();
2375         return r;
2376 }
2377
2378 static void kvmppc_book3s_exit_hv(void)
2379 {
2380         kvmppc_hv_ops = NULL;
2381 }
2382
2383 module_init(kvmppc_book3s_init_hv);
2384 module_exit(kvmppc_book3s_exit_hv);
2385 MODULE_LICENSE("GPL");
2386 MODULE_ALIAS_MISCDEV(KVM_MINOR);
2387 MODULE_ALIAS("devname:kvm");