]> Pileus Git - ~andy/linux/blob - arch/powerpc/kvm/book3s_64_mmu_hv.c
KVM: PPC: Book3S: MMIO emulation support for little endian guests
[~andy/linux] / arch / powerpc / kvm / book3s_64_mmu_hv.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
16  */
17
18 #include <linux/types.h>
19 #include <linux/string.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/highmem.h>
23 #include <linux/gfp.h>
24 #include <linux/slab.h>
25 #include <linux/hugetlb.h>
26 #include <linux/vmalloc.h>
27 #include <linux/srcu.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/file.h>
30
31 #include <asm/tlbflush.h>
32 #include <asm/kvm_ppc.h>
33 #include <asm/kvm_book3s.h>
34 #include <asm/mmu-hash64.h>
35 #include <asm/hvcall.h>
36 #include <asm/synch.h>
37 #include <asm/ppc-opcode.h>
38 #include <asm/cputable.h>
39
40 #include "book3s_hv_cma.h"
41
42 /* POWER7 has 10-bit LPIDs, PPC970 has 6-bit LPIDs */
43 #define MAX_LPID_970    63
44
45 /* Power architecture requires HPT is at least 256kB */
46 #define PPC_MIN_HPT_ORDER       18
47
48 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
49                                 long pte_index, unsigned long pteh,
50                                 unsigned long ptel, unsigned long *pte_idx_ret);
51 static void kvmppc_rmap_reset(struct kvm *kvm);
52
53 long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
54 {
55         unsigned long hpt;
56         struct revmap_entry *rev;
57         struct page *page = NULL;
58         long order = KVM_DEFAULT_HPT_ORDER;
59
60         if (htab_orderp) {
61                 order = *htab_orderp;
62                 if (order < PPC_MIN_HPT_ORDER)
63                         order = PPC_MIN_HPT_ORDER;
64         }
65
66         kvm->arch.hpt_cma_alloc = 0;
67         /*
68          * try first to allocate it from the kernel page allocator.
69          * We keep the CMA reserved for failed allocation.
70          */
71         hpt = __get_free_pages(GFP_KERNEL | __GFP_ZERO | __GFP_REPEAT |
72                                __GFP_NOWARN, order - PAGE_SHIFT);
73
74         /* Next try to allocate from the preallocated pool */
75         if (!hpt) {
76                 VM_BUG_ON(order < KVM_CMA_CHUNK_ORDER);
77                 page = kvm_alloc_hpt(1 << (order - PAGE_SHIFT));
78                 if (page) {
79                         hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
80                         kvm->arch.hpt_cma_alloc = 1;
81                 } else
82                         --order;
83         }
84
85         /* Lastly try successively smaller sizes from the page allocator */
86         while (!hpt && order > PPC_MIN_HPT_ORDER) {
87                 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
88                                        __GFP_NOWARN, order - PAGE_SHIFT);
89                 if (!hpt)
90                         --order;
91         }
92
93         if (!hpt)
94                 return -ENOMEM;
95
96         kvm->arch.hpt_virt = hpt;
97         kvm->arch.hpt_order = order;
98         /* HPTEs are 2**4 bytes long */
99         kvm->arch.hpt_npte = 1ul << (order - 4);
100         /* 128 (2**7) bytes in each HPTEG */
101         kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
102
103         /* Allocate reverse map array */
104         rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
105         if (!rev) {
106                 pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
107                 goto out_freehpt;
108         }
109         kvm->arch.revmap = rev;
110         kvm->arch.sdr1 = __pa(hpt) | (order - 18);
111
112         pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
113                 hpt, order, kvm->arch.lpid);
114
115         if (htab_orderp)
116                 *htab_orderp = order;
117         return 0;
118
119  out_freehpt:
120         if (kvm->arch.hpt_cma_alloc)
121                 kvm_release_hpt(page, 1 << (order - PAGE_SHIFT));
122         else
123                 free_pages(hpt, order - PAGE_SHIFT);
124         return -ENOMEM;
125 }
126
127 long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
128 {
129         long err = -EBUSY;
130         long order;
131
132         mutex_lock(&kvm->lock);
133         if (kvm->arch.rma_setup_done) {
134                 kvm->arch.rma_setup_done = 0;
135                 /* order rma_setup_done vs. vcpus_running */
136                 smp_mb();
137                 if (atomic_read(&kvm->arch.vcpus_running)) {
138                         kvm->arch.rma_setup_done = 1;
139                         goto out;
140                 }
141         }
142         if (kvm->arch.hpt_virt) {
143                 order = kvm->arch.hpt_order;
144                 /* Set the entire HPT to 0, i.e. invalid HPTEs */
145                 memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
146                 /*
147                  * Reset all the reverse-mapping chains for all memslots
148                  */
149                 kvmppc_rmap_reset(kvm);
150                 /* Ensure that each vcpu will flush its TLB on next entry. */
151                 cpumask_setall(&kvm->arch.need_tlb_flush);
152                 *htab_orderp = order;
153                 err = 0;
154         } else {
155                 err = kvmppc_alloc_hpt(kvm, htab_orderp);
156                 order = *htab_orderp;
157         }
158  out:
159         mutex_unlock(&kvm->lock);
160         return err;
161 }
162
163 void kvmppc_free_hpt(struct kvm *kvm)
164 {
165         kvmppc_free_lpid(kvm->arch.lpid);
166         vfree(kvm->arch.revmap);
167         if (kvm->arch.hpt_cma_alloc)
168                 kvm_release_hpt(virt_to_page(kvm->arch.hpt_virt),
169                                 1 << (kvm->arch.hpt_order - PAGE_SHIFT));
170         else
171                 free_pages(kvm->arch.hpt_virt,
172                            kvm->arch.hpt_order - PAGE_SHIFT);
173 }
174
175 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
176 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
177 {
178         return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
179 }
180
181 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
182 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
183 {
184         return (pgsize == 0x10000) ? 0x1000 : 0;
185 }
186
187 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
188                      unsigned long porder)
189 {
190         unsigned long i;
191         unsigned long npages;
192         unsigned long hp_v, hp_r;
193         unsigned long addr, hash;
194         unsigned long psize;
195         unsigned long hp0, hp1;
196         unsigned long idx_ret;
197         long ret;
198         struct kvm *kvm = vcpu->kvm;
199
200         psize = 1ul << porder;
201         npages = memslot->npages >> (porder - PAGE_SHIFT);
202
203         /* VRMA can't be > 1TB */
204         if (npages > 1ul << (40 - porder))
205                 npages = 1ul << (40 - porder);
206         /* Can't use more than 1 HPTE per HPTEG */
207         if (npages > kvm->arch.hpt_mask + 1)
208                 npages = kvm->arch.hpt_mask + 1;
209
210         hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
211                 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
212         hp1 = hpte1_pgsize_encoding(psize) |
213                 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
214
215         for (i = 0; i < npages; ++i) {
216                 addr = i << porder;
217                 /* can't use hpt_hash since va > 64 bits */
218                 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
219                 /*
220                  * We assume that the hash table is empty and no
221                  * vcpus are using it at this stage.  Since we create
222                  * at most one HPTE per HPTEG, we just assume entry 7
223                  * is available and use it.
224                  */
225                 hash = (hash << 3) + 7;
226                 hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
227                 hp_r = hp1 | addr;
228                 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
229                                                  &idx_ret);
230                 if (ret != H_SUCCESS) {
231                         pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
232                                addr, ret);
233                         break;
234                 }
235         }
236 }
237
238 int kvmppc_mmu_hv_init(void)
239 {
240         unsigned long host_lpid, rsvd_lpid;
241
242         if (!cpu_has_feature(CPU_FTR_HVMODE))
243                 return -EINVAL;
244
245         /* POWER7 has 10-bit LPIDs, PPC970 and e500mc have 6-bit LPIDs */
246         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
247                 host_lpid = mfspr(SPRN_LPID);   /* POWER7 */
248                 rsvd_lpid = LPID_RSVD;
249         } else {
250                 host_lpid = 0;                  /* PPC970 */
251                 rsvd_lpid = MAX_LPID_970;
252         }
253
254         kvmppc_init_lpid(rsvd_lpid + 1);
255
256         kvmppc_claim_lpid(host_lpid);
257         /* rsvd_lpid is reserved for use in partition switching */
258         kvmppc_claim_lpid(rsvd_lpid);
259
260         return 0;
261 }
262
263 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
264 {
265         kvmppc_set_msr(vcpu, MSR_SF | MSR_ME);
266 }
267
268 /*
269  * This is called to get a reference to a guest page if there isn't
270  * one already in the memslot->arch.slot_phys[] array.
271  */
272 static long kvmppc_get_guest_page(struct kvm *kvm, unsigned long gfn,
273                                   struct kvm_memory_slot *memslot,
274                                   unsigned long psize)
275 {
276         unsigned long start;
277         long np, err;
278         struct page *page, *hpage, *pages[1];
279         unsigned long s, pgsize;
280         unsigned long *physp;
281         unsigned int is_io, got, pgorder;
282         struct vm_area_struct *vma;
283         unsigned long pfn, i, npages;
284
285         physp = memslot->arch.slot_phys;
286         if (!physp)
287                 return -EINVAL;
288         if (physp[gfn - memslot->base_gfn])
289                 return 0;
290
291         is_io = 0;
292         got = 0;
293         page = NULL;
294         pgsize = psize;
295         err = -EINVAL;
296         start = gfn_to_hva_memslot(memslot, gfn);
297
298         /* Instantiate and get the page we want access to */
299         np = get_user_pages_fast(start, 1, 1, pages);
300         if (np != 1) {
301                 /* Look up the vma for the page */
302                 down_read(&current->mm->mmap_sem);
303                 vma = find_vma(current->mm, start);
304                 if (!vma || vma->vm_start > start ||
305                     start + psize > vma->vm_end ||
306                     !(vma->vm_flags & VM_PFNMAP))
307                         goto up_err;
308                 is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
309                 pfn = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
310                 /* check alignment of pfn vs. requested page size */
311                 if (psize > PAGE_SIZE && (pfn & ((psize >> PAGE_SHIFT) - 1)))
312                         goto up_err;
313                 up_read(&current->mm->mmap_sem);
314
315         } else {
316                 page = pages[0];
317                 got = KVMPPC_GOT_PAGE;
318
319                 /* See if this is a large page */
320                 s = PAGE_SIZE;
321                 if (PageHuge(page)) {
322                         hpage = compound_head(page);
323                         s <<= compound_order(hpage);
324                         /* Get the whole large page if slot alignment is ok */
325                         if (s > psize && slot_is_aligned(memslot, s) &&
326                             !(memslot->userspace_addr & (s - 1))) {
327                                 start &= ~(s - 1);
328                                 pgsize = s;
329                                 get_page(hpage);
330                                 put_page(page);
331                                 page = hpage;
332                         }
333                 }
334                 if (s < psize)
335                         goto out;
336                 pfn = page_to_pfn(page);
337         }
338
339         npages = pgsize >> PAGE_SHIFT;
340         pgorder = __ilog2(npages);
341         physp += (gfn - memslot->base_gfn) & ~(npages - 1);
342         spin_lock(&kvm->arch.slot_phys_lock);
343         for (i = 0; i < npages; ++i) {
344                 if (!physp[i]) {
345                         physp[i] = ((pfn + i) << PAGE_SHIFT) +
346                                 got + is_io + pgorder;
347                         got = 0;
348                 }
349         }
350         spin_unlock(&kvm->arch.slot_phys_lock);
351         err = 0;
352
353  out:
354         if (got)
355                 put_page(page);
356         return err;
357
358  up_err:
359         up_read(&current->mm->mmap_sem);
360         return err;
361 }
362
363 long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
364                                 long pte_index, unsigned long pteh,
365                                 unsigned long ptel, unsigned long *pte_idx_ret)
366 {
367         unsigned long psize, gpa, gfn;
368         struct kvm_memory_slot *memslot;
369         long ret;
370
371         if (kvm->arch.using_mmu_notifiers)
372                 goto do_insert;
373
374         psize = hpte_page_size(pteh, ptel);
375         if (!psize)
376                 return H_PARAMETER;
377
378         pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
379
380         /* Find the memslot (if any) for this address */
381         gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
382         gfn = gpa >> PAGE_SHIFT;
383         memslot = gfn_to_memslot(kvm, gfn);
384         if (memslot && !(memslot->flags & KVM_MEMSLOT_INVALID)) {
385                 if (!slot_is_aligned(memslot, psize))
386                         return H_PARAMETER;
387                 if (kvmppc_get_guest_page(kvm, gfn, memslot, psize) < 0)
388                         return H_PARAMETER;
389         }
390
391  do_insert:
392         /* Protect linux PTE lookup from page table destruction */
393         rcu_read_lock_sched();  /* this disables preemption too */
394         ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
395                                 current->mm->pgd, false, pte_idx_ret);
396         rcu_read_unlock_sched();
397         if (ret == H_TOO_HARD) {
398                 /* this can't happen */
399                 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
400                 ret = H_RESOURCE;       /* or something */
401         }
402         return ret;
403
404 }
405
406 /*
407  * We come here on a H_ENTER call from the guest when we are not
408  * using mmu notifiers and we don't have the requested page pinned
409  * already.
410  */
411 long kvmppc_virtmode_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
412                              long pte_index, unsigned long pteh,
413                              unsigned long ptel)
414 {
415         return kvmppc_virtmode_do_h_enter(vcpu->kvm, flags, pte_index,
416                                           pteh, ptel, &vcpu->arch.gpr[4]);
417 }
418
419 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
420                                                          gva_t eaddr)
421 {
422         u64 mask;
423         int i;
424
425         for (i = 0; i < vcpu->arch.slb_nr; i++) {
426                 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
427                         continue;
428
429                 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
430                         mask = ESID_MASK_1T;
431                 else
432                         mask = ESID_MASK;
433
434                 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
435                         return &vcpu->arch.slb[i];
436         }
437         return NULL;
438 }
439
440 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
441                         unsigned long ea)
442 {
443         unsigned long ra_mask;
444
445         ra_mask = hpte_page_size(v, r) - 1;
446         return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
447 }
448
449 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
450                         struct kvmppc_pte *gpte, bool data, bool iswrite)
451 {
452         struct kvm *kvm = vcpu->kvm;
453         struct kvmppc_slb *slbe;
454         unsigned long slb_v;
455         unsigned long pp, key;
456         unsigned long v, gr;
457         unsigned long *hptep;
458         int index;
459         int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
460
461         /* Get SLB entry */
462         if (virtmode) {
463                 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
464                 if (!slbe)
465                         return -EINVAL;
466                 slb_v = slbe->origv;
467         } else {
468                 /* real mode access */
469                 slb_v = vcpu->kvm->arch.vrma_slb_v;
470         }
471
472         /* Find the HPTE in the hash table */
473         index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
474                                          HPTE_V_VALID | HPTE_V_ABSENT);
475         if (index < 0)
476                 return -ENOENT;
477         hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
478         v = hptep[0] & ~HPTE_V_HVLOCK;
479         gr = kvm->arch.revmap[index].guest_rpte;
480
481         /* Unlock the HPTE */
482         asm volatile("lwsync" : : : "memory");
483         hptep[0] = v;
484
485         gpte->eaddr = eaddr;
486         gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
487
488         /* Get PP bits and key for permission check */
489         pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
490         key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
491         key &= slb_v;
492
493         /* Calculate permissions */
494         gpte->may_read = hpte_read_permission(pp, key);
495         gpte->may_write = hpte_write_permission(pp, key);
496         gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
497
498         /* Storage key permission check for POWER7 */
499         if (data && virtmode && cpu_has_feature(CPU_FTR_ARCH_206)) {
500                 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
501                 if (amrfield & 1)
502                         gpte->may_read = 0;
503                 if (amrfield & 2)
504                         gpte->may_write = 0;
505         }
506
507         /* Get the guest physical address */
508         gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
509         return 0;
510 }
511
512 /*
513  * Quick test for whether an instruction is a load or a store.
514  * If the instruction is a load or a store, then this will indicate
515  * which it is, at least on server processors.  (Embedded processors
516  * have some external PID instructions that don't follow the rule
517  * embodied here.)  If the instruction isn't a load or store, then
518  * this doesn't return anything useful.
519  */
520 static int instruction_is_store(unsigned int instr)
521 {
522         unsigned int mask;
523
524         mask = 0x10000000;
525         if ((instr & 0xfc000000) == 0x7c000000)
526                 mask = 0x100;           /* major opcode 31 */
527         return (instr & mask) != 0;
528 }
529
530 static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
531                                   unsigned long gpa, gva_t ea, int is_store)
532 {
533         int ret;
534         u32 last_inst;
535         unsigned long srr0 = kvmppc_get_pc(vcpu);
536
537         /* We try to load the last instruction.  We don't let
538          * emulate_instruction do it as it doesn't check what
539          * kvmppc_ld returns.
540          * If we fail, we just return to the guest and try executing it again.
541          */
542         if (vcpu->arch.last_inst == KVM_INST_FETCH_FAILED) {
543                 ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
544                 if (ret != EMULATE_DONE || last_inst == KVM_INST_FETCH_FAILED)
545                         return RESUME_GUEST;
546                 vcpu->arch.last_inst = last_inst;
547         }
548
549         /*
550          * WARNING: We do not know for sure whether the instruction we just
551          * read from memory is the same that caused the fault in the first
552          * place.  If the instruction we read is neither an load or a store,
553          * then it can't access memory, so we don't need to worry about
554          * enforcing access permissions.  So, assuming it is a load or
555          * store, we just check that its direction (load or store) is
556          * consistent with the original fault, since that's what we
557          * checked the access permissions against.  If there is a mismatch
558          * we just return and retry the instruction.
559          */
560
561         if (instruction_is_store(kvmppc_get_last_inst(vcpu)) != !!is_store)
562                 return RESUME_GUEST;
563
564         /*
565          * Emulated accesses are emulated by looking at the hash for
566          * translation once, then performing the access later. The
567          * translation could be invalidated in the meantime in which
568          * point performing the subsequent memory access on the old
569          * physical address could possibly be a security hole for the
570          * guest (but not the host).
571          *
572          * This is less of an issue for MMIO stores since they aren't
573          * globally visible. It could be an issue for MMIO loads to
574          * a certain extent but we'll ignore it for now.
575          */
576
577         vcpu->arch.paddr_accessed = gpa;
578         vcpu->arch.vaddr_accessed = ea;
579         return kvmppc_emulate_mmio(run, vcpu);
580 }
581
582 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
583                                 unsigned long ea, unsigned long dsisr)
584 {
585         struct kvm *kvm = vcpu->kvm;
586         unsigned long *hptep, hpte[3], r;
587         unsigned long mmu_seq, psize, pte_size;
588         unsigned long gpa, gfn, hva, pfn;
589         struct kvm_memory_slot *memslot;
590         unsigned long *rmap;
591         struct revmap_entry *rev;
592         struct page *page, *pages[1];
593         long index, ret, npages;
594         unsigned long is_io;
595         unsigned int writing, write_ok;
596         struct vm_area_struct *vma;
597         unsigned long rcbits;
598
599         /*
600          * Real-mode code has already searched the HPT and found the
601          * entry we're interested in.  Lock the entry and check that
602          * it hasn't changed.  If it has, just return and re-execute the
603          * instruction.
604          */
605         if (ea != vcpu->arch.pgfault_addr)
606                 return RESUME_GUEST;
607         index = vcpu->arch.pgfault_index;
608         hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
609         rev = &kvm->arch.revmap[index];
610         preempt_disable();
611         while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
612                 cpu_relax();
613         hpte[0] = hptep[0] & ~HPTE_V_HVLOCK;
614         hpte[1] = hptep[1];
615         hpte[2] = r = rev->guest_rpte;
616         asm volatile("lwsync" : : : "memory");
617         hptep[0] = hpte[0];
618         preempt_enable();
619
620         if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
621             hpte[1] != vcpu->arch.pgfault_hpte[1])
622                 return RESUME_GUEST;
623
624         /* Translate the logical address and get the page */
625         psize = hpte_page_size(hpte[0], r);
626         gpa = (r & HPTE_R_RPN & ~(psize - 1)) | (ea & (psize - 1));
627         gfn = gpa >> PAGE_SHIFT;
628         memslot = gfn_to_memslot(kvm, gfn);
629
630         /* No memslot means it's an emulated MMIO region */
631         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
632                 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
633                                               dsisr & DSISR_ISSTORE);
634
635         if (!kvm->arch.using_mmu_notifiers)
636                 return -EFAULT;         /* should never get here */
637
638         /* used to check for invalidations in progress */
639         mmu_seq = kvm->mmu_notifier_seq;
640         smp_rmb();
641
642         is_io = 0;
643         pfn = 0;
644         page = NULL;
645         pte_size = PAGE_SIZE;
646         writing = (dsisr & DSISR_ISSTORE) != 0;
647         /* If writing != 0, then the HPTE must allow writing, if we get here */
648         write_ok = writing;
649         hva = gfn_to_hva_memslot(memslot, gfn);
650         npages = get_user_pages_fast(hva, 1, writing, pages);
651         if (npages < 1) {
652                 /* Check if it's an I/O mapping */
653                 down_read(&current->mm->mmap_sem);
654                 vma = find_vma(current->mm, hva);
655                 if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
656                     (vma->vm_flags & VM_PFNMAP)) {
657                         pfn = vma->vm_pgoff +
658                                 ((hva - vma->vm_start) >> PAGE_SHIFT);
659                         pte_size = psize;
660                         is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
661                         write_ok = vma->vm_flags & VM_WRITE;
662                 }
663                 up_read(&current->mm->mmap_sem);
664                 if (!pfn)
665                         return -EFAULT;
666         } else {
667                 page = pages[0];
668                 if (PageHuge(page)) {
669                         page = compound_head(page);
670                         pte_size <<= compound_order(page);
671                 }
672                 /* if the guest wants write access, see if that is OK */
673                 if (!writing && hpte_is_writable(r)) {
674                         unsigned int hugepage_shift;
675                         pte_t *ptep, pte;
676
677                         /*
678                          * We need to protect against page table destruction
679                          * while looking up and updating the pte.
680                          */
681                         rcu_read_lock_sched();
682                         ptep = find_linux_pte_or_hugepte(current->mm->pgd,
683                                                          hva, &hugepage_shift);
684                         if (ptep) {
685                                 pte = kvmppc_read_update_linux_pte(ptep, 1,
686                                                            hugepage_shift);
687                                 if (pte_write(pte))
688                                         write_ok = 1;
689                         }
690                         rcu_read_unlock_sched();
691                 }
692                 pfn = page_to_pfn(page);
693         }
694
695         ret = -EFAULT;
696         if (psize > pte_size)
697                 goto out_put;
698
699         /* Check WIMG vs. the actual page we're accessing */
700         if (!hpte_cache_flags_ok(r, is_io)) {
701                 if (is_io)
702                         return -EFAULT;
703                 /*
704                  * Allow guest to map emulated device memory as
705                  * uncacheable, but actually make it cacheable.
706                  */
707                 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
708         }
709
710         /* Set the HPTE to point to pfn */
711         r = (r & ~(HPTE_R_PP0 - pte_size)) | (pfn << PAGE_SHIFT);
712         if (hpte_is_writable(r) && !write_ok)
713                 r = hpte_make_readonly(r);
714         ret = RESUME_GUEST;
715         preempt_disable();
716         while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
717                 cpu_relax();
718         if ((hptep[0] & ~HPTE_V_HVLOCK) != hpte[0] || hptep[1] != hpte[1] ||
719             rev->guest_rpte != hpte[2])
720                 /* HPTE has been changed under us; let the guest retry */
721                 goto out_unlock;
722         hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
723
724         rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
725         lock_rmap(rmap);
726
727         /* Check if we might have been invalidated; let the guest retry if so */
728         ret = RESUME_GUEST;
729         if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
730                 unlock_rmap(rmap);
731                 goto out_unlock;
732         }
733
734         /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
735         rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
736         r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
737
738         if (hptep[0] & HPTE_V_VALID) {
739                 /* HPTE was previously valid, so we need to invalidate it */
740                 unlock_rmap(rmap);
741                 hptep[0] |= HPTE_V_ABSENT;
742                 kvmppc_invalidate_hpte(kvm, hptep, index);
743                 /* don't lose previous R and C bits */
744                 r |= hptep[1] & (HPTE_R_R | HPTE_R_C);
745         } else {
746                 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
747         }
748
749         hptep[1] = r;
750         eieio();
751         hptep[0] = hpte[0];
752         asm volatile("ptesync" : : : "memory");
753         preempt_enable();
754         if (page && hpte_is_writable(r))
755                 SetPageDirty(page);
756
757  out_put:
758         if (page) {
759                 /*
760                  * We drop pages[0] here, not page because page might
761                  * have been set to the head page of a compound, but
762                  * we have to drop the reference on the correct tail
763                  * page to match the get inside gup()
764                  */
765                 put_page(pages[0]);
766         }
767         return ret;
768
769  out_unlock:
770         hptep[0] &= ~HPTE_V_HVLOCK;
771         preempt_enable();
772         goto out_put;
773 }
774
775 static void kvmppc_rmap_reset(struct kvm *kvm)
776 {
777         struct kvm_memslots *slots;
778         struct kvm_memory_slot *memslot;
779         int srcu_idx;
780
781         srcu_idx = srcu_read_lock(&kvm->srcu);
782         slots = kvm->memslots;
783         kvm_for_each_memslot(memslot, slots) {
784                 /*
785                  * This assumes it is acceptable to lose reference and
786                  * change bits across a reset.
787                  */
788                 memset(memslot->arch.rmap, 0,
789                        memslot->npages * sizeof(*memslot->arch.rmap));
790         }
791         srcu_read_unlock(&kvm->srcu, srcu_idx);
792 }
793
794 static int kvm_handle_hva_range(struct kvm *kvm,
795                                 unsigned long start,
796                                 unsigned long end,
797                                 int (*handler)(struct kvm *kvm,
798                                                unsigned long *rmapp,
799                                                unsigned long gfn))
800 {
801         int ret;
802         int retval = 0;
803         struct kvm_memslots *slots;
804         struct kvm_memory_slot *memslot;
805
806         slots = kvm_memslots(kvm);
807         kvm_for_each_memslot(memslot, slots) {
808                 unsigned long hva_start, hva_end;
809                 gfn_t gfn, gfn_end;
810
811                 hva_start = max(start, memslot->userspace_addr);
812                 hva_end = min(end, memslot->userspace_addr +
813                                         (memslot->npages << PAGE_SHIFT));
814                 if (hva_start >= hva_end)
815                         continue;
816                 /*
817                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
818                  * {gfn, gfn+1, ..., gfn_end-1}.
819                  */
820                 gfn = hva_to_gfn_memslot(hva_start, memslot);
821                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
822
823                 for (; gfn < gfn_end; ++gfn) {
824                         gfn_t gfn_offset = gfn - memslot->base_gfn;
825
826                         ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
827                         retval |= ret;
828                 }
829         }
830
831         return retval;
832 }
833
834 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
835                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
836                                          unsigned long gfn))
837 {
838         return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
839 }
840
841 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
842                            unsigned long gfn)
843 {
844         struct revmap_entry *rev = kvm->arch.revmap;
845         unsigned long h, i, j;
846         unsigned long *hptep;
847         unsigned long ptel, psize, rcbits;
848
849         for (;;) {
850                 lock_rmap(rmapp);
851                 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
852                         unlock_rmap(rmapp);
853                         break;
854                 }
855
856                 /*
857                  * To avoid an ABBA deadlock with the HPTE lock bit,
858                  * we can't spin on the HPTE lock while holding the
859                  * rmap chain lock.
860                  */
861                 i = *rmapp & KVMPPC_RMAP_INDEX;
862                 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
863                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
864                         /* unlock rmap before spinning on the HPTE lock */
865                         unlock_rmap(rmapp);
866                         while (hptep[0] & HPTE_V_HVLOCK)
867                                 cpu_relax();
868                         continue;
869                 }
870                 j = rev[i].forw;
871                 if (j == i) {
872                         /* chain is now empty */
873                         *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
874                 } else {
875                         /* remove i from chain */
876                         h = rev[i].back;
877                         rev[h].forw = j;
878                         rev[j].back = h;
879                         rev[i].forw = rev[i].back = i;
880                         *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
881                 }
882
883                 /* Now check and modify the HPTE */
884                 ptel = rev[i].guest_rpte;
885                 psize = hpte_page_size(hptep[0], ptel);
886                 if ((hptep[0] & HPTE_V_VALID) &&
887                     hpte_rpn(ptel, psize) == gfn) {
888                         if (kvm->arch.using_mmu_notifiers)
889                                 hptep[0] |= HPTE_V_ABSENT;
890                         kvmppc_invalidate_hpte(kvm, hptep, i);
891                         /* Harvest R and C */
892                         rcbits = hptep[1] & (HPTE_R_R | HPTE_R_C);
893                         *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
894                         if (rcbits & ~rev[i].guest_rpte) {
895                                 rev[i].guest_rpte = ptel | rcbits;
896                                 note_hpte_modification(kvm, &rev[i]);
897                         }
898                 }
899                 unlock_rmap(rmapp);
900                 hptep[0] &= ~HPTE_V_HVLOCK;
901         }
902         return 0;
903 }
904
905 int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
906 {
907         if (kvm->arch.using_mmu_notifiers)
908                 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
909         return 0;
910 }
911
912 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
913 {
914         if (kvm->arch.using_mmu_notifiers)
915                 kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
916         return 0;
917 }
918
919 void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
920                                   struct kvm_memory_slot *memslot)
921 {
922         unsigned long *rmapp;
923         unsigned long gfn;
924         unsigned long n;
925
926         rmapp = memslot->arch.rmap;
927         gfn = memslot->base_gfn;
928         for (n = memslot->npages; n; --n) {
929                 /*
930                  * Testing the present bit without locking is OK because
931                  * the memslot has been marked invalid already, and hence
932                  * no new HPTEs referencing this page can be created,
933                  * thus the present bit can't go from 0 to 1.
934                  */
935                 if (*rmapp & KVMPPC_RMAP_PRESENT)
936                         kvm_unmap_rmapp(kvm, rmapp, gfn);
937                 ++rmapp;
938                 ++gfn;
939         }
940 }
941
942 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
943                          unsigned long gfn)
944 {
945         struct revmap_entry *rev = kvm->arch.revmap;
946         unsigned long head, i, j;
947         unsigned long *hptep;
948         int ret = 0;
949
950  retry:
951         lock_rmap(rmapp);
952         if (*rmapp & KVMPPC_RMAP_REFERENCED) {
953                 *rmapp &= ~KVMPPC_RMAP_REFERENCED;
954                 ret = 1;
955         }
956         if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
957                 unlock_rmap(rmapp);
958                 return ret;
959         }
960
961         i = head = *rmapp & KVMPPC_RMAP_INDEX;
962         do {
963                 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
964                 j = rev[i].forw;
965
966                 /* If this HPTE isn't referenced, ignore it */
967                 if (!(hptep[1] & HPTE_R_R))
968                         continue;
969
970                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
971                         /* unlock rmap before spinning on the HPTE lock */
972                         unlock_rmap(rmapp);
973                         while (hptep[0] & HPTE_V_HVLOCK)
974                                 cpu_relax();
975                         goto retry;
976                 }
977
978                 /* Now check and modify the HPTE */
979                 if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_R)) {
980                         kvmppc_clear_ref_hpte(kvm, hptep, i);
981                         if (!(rev[i].guest_rpte & HPTE_R_R)) {
982                                 rev[i].guest_rpte |= HPTE_R_R;
983                                 note_hpte_modification(kvm, &rev[i]);
984                         }
985                         ret = 1;
986                 }
987                 hptep[0] &= ~HPTE_V_HVLOCK;
988         } while ((i = j) != head);
989
990         unlock_rmap(rmapp);
991         return ret;
992 }
993
994 int kvm_age_hva_hv(struct kvm *kvm, unsigned long hva)
995 {
996         if (!kvm->arch.using_mmu_notifiers)
997                 return 0;
998         return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
999 }
1000
1001 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1002                               unsigned long gfn)
1003 {
1004         struct revmap_entry *rev = kvm->arch.revmap;
1005         unsigned long head, i, j;
1006         unsigned long *hp;
1007         int ret = 1;
1008
1009         if (*rmapp & KVMPPC_RMAP_REFERENCED)
1010                 return 1;
1011
1012         lock_rmap(rmapp);
1013         if (*rmapp & KVMPPC_RMAP_REFERENCED)
1014                 goto out;
1015
1016         if (*rmapp & KVMPPC_RMAP_PRESENT) {
1017                 i = head = *rmapp & KVMPPC_RMAP_INDEX;
1018                 do {
1019                         hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
1020                         j = rev[i].forw;
1021                         if (hp[1] & HPTE_R_R)
1022                                 goto out;
1023                 } while ((i = j) != head);
1024         }
1025         ret = 0;
1026
1027  out:
1028         unlock_rmap(rmapp);
1029         return ret;
1030 }
1031
1032 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
1033 {
1034         if (!kvm->arch.using_mmu_notifiers)
1035                 return 0;
1036         return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
1037 }
1038
1039 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
1040 {
1041         if (!kvm->arch.using_mmu_notifiers)
1042                 return;
1043         kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
1044 }
1045
1046 static int kvm_test_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1047 {
1048         struct revmap_entry *rev = kvm->arch.revmap;
1049         unsigned long head, i, j;
1050         unsigned long *hptep;
1051         int ret = 0;
1052
1053  retry:
1054         lock_rmap(rmapp);
1055         if (*rmapp & KVMPPC_RMAP_CHANGED) {
1056                 *rmapp &= ~KVMPPC_RMAP_CHANGED;
1057                 ret = 1;
1058         }
1059         if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1060                 unlock_rmap(rmapp);
1061                 return ret;
1062         }
1063
1064         i = head = *rmapp & KVMPPC_RMAP_INDEX;
1065         do {
1066                 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
1067                 j = rev[i].forw;
1068
1069                 if (!(hptep[1] & HPTE_R_C))
1070                         continue;
1071
1072                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1073                         /* unlock rmap before spinning on the HPTE lock */
1074                         unlock_rmap(rmapp);
1075                         while (hptep[0] & HPTE_V_HVLOCK)
1076                                 cpu_relax();
1077                         goto retry;
1078                 }
1079
1080                 /* Now check and modify the HPTE */
1081                 if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_C)) {
1082                         /* need to make it temporarily absent to clear C */
1083                         hptep[0] |= HPTE_V_ABSENT;
1084                         kvmppc_invalidate_hpte(kvm, hptep, i);
1085                         hptep[1] &= ~HPTE_R_C;
1086                         eieio();
1087                         hptep[0] = (hptep[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
1088                         if (!(rev[i].guest_rpte & HPTE_R_C)) {
1089                                 rev[i].guest_rpte |= HPTE_R_C;
1090                                 note_hpte_modification(kvm, &rev[i]);
1091                         }
1092                         ret = 1;
1093                 }
1094                 hptep[0] &= ~HPTE_V_HVLOCK;
1095         } while ((i = j) != head);
1096
1097         unlock_rmap(rmapp);
1098         return ret;
1099 }
1100
1101 static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1102                               struct kvm_memory_slot *memslot,
1103                               unsigned long *map)
1104 {
1105         unsigned long gfn;
1106
1107         if (!vpa->dirty || !vpa->pinned_addr)
1108                 return;
1109         gfn = vpa->gpa >> PAGE_SHIFT;
1110         if (gfn < memslot->base_gfn ||
1111             gfn >= memslot->base_gfn + memslot->npages)
1112                 return;
1113
1114         vpa->dirty = false;
1115         if (map)
1116                 __set_bit_le(gfn - memslot->base_gfn, map);
1117 }
1118
1119 long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
1120                              unsigned long *map)
1121 {
1122         unsigned long i;
1123         unsigned long *rmapp;
1124         struct kvm_vcpu *vcpu;
1125
1126         preempt_disable();
1127         rmapp = memslot->arch.rmap;
1128         for (i = 0; i < memslot->npages; ++i) {
1129                 if (kvm_test_clear_dirty(kvm, rmapp) && map)
1130                         __set_bit_le(i, map);
1131                 ++rmapp;
1132         }
1133
1134         /* Harvest dirty bits from VPA and DTL updates */
1135         /* Note: we never modify the SLB shadow buffer areas */
1136         kvm_for_each_vcpu(i, vcpu, kvm) {
1137                 spin_lock(&vcpu->arch.vpa_update_lock);
1138                 harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
1139                 harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
1140                 spin_unlock(&vcpu->arch.vpa_update_lock);
1141         }
1142         preempt_enable();
1143         return 0;
1144 }
1145
1146 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1147                             unsigned long *nb_ret)
1148 {
1149         struct kvm_memory_slot *memslot;
1150         unsigned long gfn = gpa >> PAGE_SHIFT;
1151         struct page *page, *pages[1];
1152         int npages;
1153         unsigned long hva, offset;
1154         unsigned long pa;
1155         unsigned long *physp;
1156         int srcu_idx;
1157
1158         srcu_idx = srcu_read_lock(&kvm->srcu);
1159         memslot = gfn_to_memslot(kvm, gfn);
1160         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1161                 goto err;
1162         if (!kvm->arch.using_mmu_notifiers) {
1163                 physp = memslot->arch.slot_phys;
1164                 if (!physp)
1165                         goto err;
1166                 physp += gfn - memslot->base_gfn;
1167                 pa = *physp;
1168                 if (!pa) {
1169                         if (kvmppc_get_guest_page(kvm, gfn, memslot,
1170                                                   PAGE_SIZE) < 0)
1171                                 goto err;
1172                         pa = *physp;
1173                 }
1174                 page = pfn_to_page(pa >> PAGE_SHIFT);
1175                 get_page(page);
1176         } else {
1177                 hva = gfn_to_hva_memslot(memslot, gfn);
1178                 npages = get_user_pages_fast(hva, 1, 1, pages);
1179                 if (npages < 1)
1180                         goto err;
1181                 page = pages[0];
1182         }
1183         srcu_read_unlock(&kvm->srcu, srcu_idx);
1184
1185         offset = gpa & (PAGE_SIZE - 1);
1186         if (nb_ret)
1187                 *nb_ret = PAGE_SIZE - offset;
1188         return page_address(page) + offset;
1189
1190  err:
1191         srcu_read_unlock(&kvm->srcu, srcu_idx);
1192         return NULL;
1193 }
1194
1195 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1196                              bool dirty)
1197 {
1198         struct page *page = virt_to_page(va);
1199         struct kvm_memory_slot *memslot;
1200         unsigned long gfn;
1201         unsigned long *rmap;
1202         int srcu_idx;
1203
1204         put_page(page);
1205
1206         if (!dirty || !kvm->arch.using_mmu_notifiers)
1207                 return;
1208
1209         /* We need to mark this page dirty in the rmap chain */
1210         gfn = gpa >> PAGE_SHIFT;
1211         srcu_idx = srcu_read_lock(&kvm->srcu);
1212         memslot = gfn_to_memslot(kvm, gfn);
1213         if (memslot) {
1214                 rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
1215                 lock_rmap(rmap);
1216                 *rmap |= KVMPPC_RMAP_CHANGED;
1217                 unlock_rmap(rmap);
1218         }
1219         srcu_read_unlock(&kvm->srcu, srcu_idx);
1220 }
1221
1222 /*
1223  * Functions for reading and writing the hash table via reads and
1224  * writes on a file descriptor.
1225  *
1226  * Reads return the guest view of the hash table, which has to be
1227  * pieced together from the real hash table and the guest_rpte
1228  * values in the revmap array.
1229  *
1230  * On writes, each HPTE written is considered in turn, and if it
1231  * is valid, it is written to the HPT as if an H_ENTER with the
1232  * exact flag set was done.  When the invalid count is non-zero
1233  * in the header written to the stream, the kernel will make
1234  * sure that that many HPTEs are invalid, and invalidate them
1235  * if not.
1236  */
1237
1238 struct kvm_htab_ctx {
1239         unsigned long   index;
1240         unsigned long   flags;
1241         struct kvm      *kvm;
1242         int             first_pass;
1243 };
1244
1245 #define HPTE_SIZE       (2 * sizeof(unsigned long))
1246
1247 /*
1248  * Returns 1 if this HPT entry has been modified or has pending
1249  * R/C bit changes.
1250  */
1251 static int hpte_dirty(struct revmap_entry *revp, unsigned long *hptp)
1252 {
1253         unsigned long rcbits_unset;
1254
1255         if (revp->guest_rpte & HPTE_GR_MODIFIED)
1256                 return 1;
1257
1258         /* Also need to consider changes in reference and changed bits */
1259         rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1260         if ((hptp[0] & HPTE_V_VALID) && (hptp[1] & rcbits_unset))
1261                 return 1;
1262
1263         return 0;
1264 }
1265
1266 static long record_hpte(unsigned long flags, unsigned long *hptp,
1267                         unsigned long *hpte, struct revmap_entry *revp,
1268                         int want_valid, int first_pass)
1269 {
1270         unsigned long v, r;
1271         unsigned long rcbits_unset;
1272         int ok = 1;
1273         int valid, dirty;
1274
1275         /* Unmodified entries are uninteresting except on the first pass */
1276         dirty = hpte_dirty(revp, hptp);
1277         if (!first_pass && !dirty)
1278                 return 0;
1279
1280         valid = 0;
1281         if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1282                 valid = 1;
1283                 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1284                     !(hptp[0] & HPTE_V_BOLTED))
1285                         valid = 0;
1286         }
1287         if (valid != want_valid)
1288                 return 0;
1289
1290         v = r = 0;
1291         if (valid || dirty) {
1292                 /* lock the HPTE so it's stable and read it */
1293                 preempt_disable();
1294                 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1295                         cpu_relax();
1296                 v = hptp[0];
1297
1298                 /* re-evaluate valid and dirty from synchronized HPTE value */
1299                 valid = !!(v & HPTE_V_VALID);
1300                 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1301
1302                 /* Harvest R and C into guest view if necessary */
1303                 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1304                 if (valid && (rcbits_unset & hptp[1])) {
1305                         revp->guest_rpte |= (hptp[1] & (HPTE_R_R | HPTE_R_C)) |
1306                                 HPTE_GR_MODIFIED;
1307                         dirty = 1;
1308                 }
1309
1310                 if (v & HPTE_V_ABSENT) {
1311                         v &= ~HPTE_V_ABSENT;
1312                         v |= HPTE_V_VALID;
1313                         valid = 1;
1314                 }
1315                 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1316                         valid = 0;
1317
1318                 r = revp->guest_rpte;
1319                 /* only clear modified if this is the right sort of entry */
1320                 if (valid == want_valid && dirty) {
1321                         r &= ~HPTE_GR_MODIFIED;
1322                         revp->guest_rpte = r;
1323                 }
1324                 asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
1325                 hptp[0] &= ~HPTE_V_HVLOCK;
1326                 preempt_enable();
1327                 if (!(valid == want_valid && (first_pass || dirty)))
1328                         ok = 0;
1329         }
1330         hpte[0] = v;
1331         hpte[1] = r;
1332         return ok;
1333 }
1334
1335 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1336                              size_t count, loff_t *ppos)
1337 {
1338         struct kvm_htab_ctx *ctx = file->private_data;
1339         struct kvm *kvm = ctx->kvm;
1340         struct kvm_get_htab_header hdr;
1341         unsigned long *hptp;
1342         struct revmap_entry *revp;
1343         unsigned long i, nb, nw;
1344         unsigned long __user *lbuf;
1345         struct kvm_get_htab_header __user *hptr;
1346         unsigned long flags;
1347         int first_pass;
1348         unsigned long hpte[2];
1349
1350         if (!access_ok(VERIFY_WRITE, buf, count))
1351                 return -EFAULT;
1352
1353         first_pass = ctx->first_pass;
1354         flags = ctx->flags;
1355
1356         i = ctx->index;
1357         hptp = (unsigned long *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1358         revp = kvm->arch.revmap + i;
1359         lbuf = (unsigned long __user *)buf;
1360
1361         nb = 0;
1362         while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1363                 /* Initialize header */
1364                 hptr = (struct kvm_get_htab_header __user *)buf;
1365                 hdr.n_valid = 0;
1366                 hdr.n_invalid = 0;
1367                 nw = nb;
1368                 nb += sizeof(hdr);
1369                 lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1370
1371                 /* Skip uninteresting entries, i.e. clean on not-first pass */
1372                 if (!first_pass) {
1373                         while (i < kvm->arch.hpt_npte &&
1374                                !hpte_dirty(revp, hptp)) {
1375                                 ++i;
1376                                 hptp += 2;
1377                                 ++revp;
1378                         }
1379                 }
1380                 hdr.index = i;
1381
1382                 /* Grab a series of valid entries */
1383                 while (i < kvm->arch.hpt_npte &&
1384                        hdr.n_valid < 0xffff &&
1385                        nb + HPTE_SIZE < count &&
1386                        record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1387                         /* valid entry, write it out */
1388                         ++hdr.n_valid;
1389                         if (__put_user(hpte[0], lbuf) ||
1390                             __put_user(hpte[1], lbuf + 1))
1391                                 return -EFAULT;
1392                         nb += HPTE_SIZE;
1393                         lbuf += 2;
1394                         ++i;
1395                         hptp += 2;
1396                         ++revp;
1397                 }
1398                 /* Now skip invalid entries while we can */
1399                 while (i < kvm->arch.hpt_npte &&
1400                        hdr.n_invalid < 0xffff &&
1401                        record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1402                         /* found an invalid entry */
1403                         ++hdr.n_invalid;
1404                         ++i;
1405                         hptp += 2;
1406                         ++revp;
1407                 }
1408
1409                 if (hdr.n_valid || hdr.n_invalid) {
1410                         /* write back the header */
1411                         if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1412                                 return -EFAULT;
1413                         nw = nb;
1414                         buf = (char __user *)lbuf;
1415                 } else {
1416                         nb = nw;
1417                 }
1418
1419                 /* Check if we've wrapped around the hash table */
1420                 if (i >= kvm->arch.hpt_npte) {
1421                         i = 0;
1422                         ctx->first_pass = 0;
1423                         break;
1424                 }
1425         }
1426
1427         ctx->index = i;
1428
1429         return nb;
1430 }
1431
1432 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1433                               size_t count, loff_t *ppos)
1434 {
1435         struct kvm_htab_ctx *ctx = file->private_data;
1436         struct kvm *kvm = ctx->kvm;
1437         struct kvm_get_htab_header hdr;
1438         unsigned long i, j;
1439         unsigned long v, r;
1440         unsigned long __user *lbuf;
1441         unsigned long *hptp;
1442         unsigned long tmp[2];
1443         ssize_t nb;
1444         long int err, ret;
1445         int rma_setup;
1446
1447         if (!access_ok(VERIFY_READ, buf, count))
1448                 return -EFAULT;
1449
1450         /* lock out vcpus from running while we're doing this */
1451         mutex_lock(&kvm->lock);
1452         rma_setup = kvm->arch.rma_setup_done;
1453         if (rma_setup) {
1454                 kvm->arch.rma_setup_done = 0;   /* temporarily */
1455                 /* order rma_setup_done vs. vcpus_running */
1456                 smp_mb();
1457                 if (atomic_read(&kvm->arch.vcpus_running)) {
1458                         kvm->arch.rma_setup_done = 1;
1459                         mutex_unlock(&kvm->lock);
1460                         return -EBUSY;
1461                 }
1462         }
1463
1464         err = 0;
1465         for (nb = 0; nb + sizeof(hdr) <= count; ) {
1466                 err = -EFAULT;
1467                 if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1468                         break;
1469
1470                 err = 0;
1471                 if (nb + hdr.n_valid * HPTE_SIZE > count)
1472                         break;
1473
1474                 nb += sizeof(hdr);
1475                 buf += sizeof(hdr);
1476
1477                 err = -EINVAL;
1478                 i = hdr.index;
1479                 if (i >= kvm->arch.hpt_npte ||
1480                     i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
1481                         break;
1482
1483                 hptp = (unsigned long *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1484                 lbuf = (unsigned long __user *)buf;
1485                 for (j = 0; j < hdr.n_valid; ++j) {
1486                         err = -EFAULT;
1487                         if (__get_user(v, lbuf) || __get_user(r, lbuf + 1))
1488                                 goto out;
1489                         err = -EINVAL;
1490                         if (!(v & HPTE_V_VALID))
1491                                 goto out;
1492                         lbuf += 2;
1493                         nb += HPTE_SIZE;
1494
1495                         if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT))
1496                                 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1497                         err = -EIO;
1498                         ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1499                                                          tmp);
1500                         if (ret != H_SUCCESS) {
1501                                 pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1502                                        "r=%lx\n", ret, i, v, r);
1503                                 goto out;
1504                         }
1505                         if (!rma_setup && is_vrma_hpte(v)) {
1506                                 unsigned long psize = hpte_page_size(v, r);
1507                                 unsigned long senc = slb_pgsize_encoding(psize);
1508                                 unsigned long lpcr;
1509
1510                                 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1511                                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1512                                 lpcr = senc << (LPCR_VRMASD_SH - 4);
1513                                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
1514                                 rma_setup = 1;
1515                         }
1516                         ++i;
1517                         hptp += 2;
1518                 }
1519
1520                 for (j = 0; j < hdr.n_invalid; ++j) {
1521                         if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT))
1522                                 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1523                         ++i;
1524                         hptp += 2;
1525                 }
1526                 err = 0;
1527         }
1528
1529  out:
1530         /* Order HPTE updates vs. rma_setup_done */
1531         smp_wmb();
1532         kvm->arch.rma_setup_done = rma_setup;
1533         mutex_unlock(&kvm->lock);
1534
1535         if (err)
1536                 return err;
1537         return nb;
1538 }
1539
1540 static int kvm_htab_release(struct inode *inode, struct file *filp)
1541 {
1542         struct kvm_htab_ctx *ctx = filp->private_data;
1543
1544         filp->private_data = NULL;
1545         if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1546                 atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1547         kvm_put_kvm(ctx->kvm);
1548         kfree(ctx);
1549         return 0;
1550 }
1551
1552 static const struct file_operations kvm_htab_fops = {
1553         .read           = kvm_htab_read,
1554         .write          = kvm_htab_write,
1555         .llseek         = default_llseek,
1556         .release        = kvm_htab_release,
1557 };
1558
1559 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1560 {
1561         int ret;
1562         struct kvm_htab_ctx *ctx;
1563         int rwflag;
1564
1565         /* reject flags we don't recognize */
1566         if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1567                 return -EINVAL;
1568         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1569         if (!ctx)
1570                 return -ENOMEM;
1571         kvm_get_kvm(kvm);
1572         ctx->kvm = kvm;
1573         ctx->index = ghf->start_index;
1574         ctx->flags = ghf->flags;
1575         ctx->first_pass = 1;
1576
1577         rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1578         ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1579         if (ret < 0) {
1580                 kvm_put_kvm(kvm);
1581                 return ret;
1582         }
1583
1584         if (rwflag == O_RDONLY) {
1585                 mutex_lock(&kvm->slots_lock);
1586                 atomic_inc(&kvm->arch.hpte_mod_interest);
1587                 /* make sure kvmppc_do_h_enter etc. see the increment */
1588                 synchronize_srcu_expedited(&kvm->srcu);
1589                 mutex_unlock(&kvm->slots_lock);
1590         }
1591
1592         return ret;
1593 }
1594
1595 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
1596 {
1597         struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
1598
1599         if (cpu_has_feature(CPU_FTR_ARCH_206))
1600                 vcpu->arch.slb_nr = 32;         /* POWER7 */
1601         else
1602                 vcpu->arch.slb_nr = 64;
1603
1604         mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
1605         mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
1606
1607         vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
1608 }