]> Pileus Git - ~andy/linux/blob - arch/powerpc/kernel/setup_64.c
Merge remote-tracking branch 'origin/next' into kvm-ppc-next
[~andy/linux] / arch / powerpc / kernel / setup_64.c
1 /*
2  * 
3  * Common boot and setup code.
4  *
5  * Copyright (C) 2001 PPC64 Team, IBM Corp
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12
13 #undef DEBUG
14
15 #include <linux/export.h>
16 #include <linux/string.h>
17 #include <linux/sched.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/reboot.h>
21 #include <linux/delay.h>
22 #include <linux/initrd.h>
23 #include <linux/seq_file.h>
24 #include <linux/ioport.h>
25 #include <linux/console.h>
26 #include <linux/utsname.h>
27 #include <linux/tty.h>
28 #include <linux/root_dev.h>
29 #include <linux/notifier.h>
30 #include <linux/cpu.h>
31 #include <linux/unistd.h>
32 #include <linux/serial.h>
33 #include <linux/serial_8250.h>
34 #include <linux/bootmem.h>
35 #include <linux/pci.h>
36 #include <linux/lockdep.h>
37 #include <linux/memblock.h>
38 #include <linux/hugetlb.h>
39
40 #include <asm/io.h>
41 #include <asm/kdump.h>
42 #include <asm/prom.h>
43 #include <asm/processor.h>
44 #include <asm/pgtable.h>
45 #include <asm/smp.h>
46 #include <asm/elf.h>
47 #include <asm/machdep.h>
48 #include <asm/paca.h>
49 #include <asm/time.h>
50 #include <asm/cputable.h>
51 #include <asm/sections.h>
52 #include <asm/btext.h>
53 #include <asm/nvram.h>
54 #include <asm/setup.h>
55 #include <asm/rtas.h>
56 #include <asm/iommu.h>
57 #include <asm/serial.h>
58 #include <asm/cache.h>
59 #include <asm/page.h>
60 #include <asm/mmu.h>
61 #include <asm/firmware.h>
62 #include <asm/xmon.h>
63 #include <asm/udbg.h>
64 #include <asm/kexec.h>
65 #include <asm/mmu_context.h>
66 #include <asm/code-patching.h>
67 #include <asm/kvm_ppc.h>
68 #include <asm/hugetlb.h>
69
70 #include "setup.h"
71
72 #ifdef DEBUG
73 #define DBG(fmt...) udbg_printf(fmt)
74 #else
75 #define DBG(fmt...)
76 #endif
77
78 int boot_cpuid = 0;
79 int spinning_secondaries;
80 u64 ppc64_pft_size;
81
82 /* Pick defaults since we might want to patch instructions
83  * before we've read this from the device tree.
84  */
85 struct ppc64_caches ppc64_caches = {
86         .dline_size = 0x40,
87         .log_dline_size = 6,
88         .iline_size = 0x40,
89         .log_iline_size = 6
90 };
91 EXPORT_SYMBOL_GPL(ppc64_caches);
92
93 /*
94  * These are used in binfmt_elf.c to put aux entries on the stack
95  * for each elf executable being started.
96  */
97 int dcache_bsize;
98 int icache_bsize;
99 int ucache_bsize;
100
101 #ifdef CONFIG_SMP
102
103 static char *smt_enabled_cmdline;
104
105 /* Look for ibm,smt-enabled OF option */
106 static void check_smt_enabled(void)
107 {
108         struct device_node *dn;
109         const char *smt_option;
110
111         /* Default to enabling all threads */
112         smt_enabled_at_boot = threads_per_core;
113
114         /* Allow the command line to overrule the OF option */
115         if (smt_enabled_cmdline) {
116                 if (!strcmp(smt_enabled_cmdline, "on"))
117                         smt_enabled_at_boot = threads_per_core;
118                 else if (!strcmp(smt_enabled_cmdline, "off"))
119                         smt_enabled_at_boot = 0;
120                 else {
121                         long smt;
122                         int rc;
123
124                         rc = strict_strtol(smt_enabled_cmdline, 10, &smt);
125                         if (!rc)
126                                 smt_enabled_at_boot =
127                                         min(threads_per_core, (int)smt);
128                 }
129         } else {
130                 dn = of_find_node_by_path("/options");
131                 if (dn) {
132                         smt_option = of_get_property(dn, "ibm,smt-enabled",
133                                                      NULL);
134
135                         if (smt_option) {
136                                 if (!strcmp(smt_option, "on"))
137                                         smt_enabled_at_boot = threads_per_core;
138                                 else if (!strcmp(smt_option, "off"))
139                                         smt_enabled_at_boot = 0;
140                         }
141
142                         of_node_put(dn);
143                 }
144         }
145 }
146
147 /* Look for smt-enabled= cmdline option */
148 static int __init early_smt_enabled(char *p)
149 {
150         smt_enabled_cmdline = p;
151         return 0;
152 }
153 early_param("smt-enabled", early_smt_enabled);
154
155 #else
156 #define check_smt_enabled()
157 #endif /* CONFIG_SMP */
158
159 /** Fix up paca fields required for the boot cpu */
160 static void fixup_boot_paca(void)
161 {
162         /* The boot cpu is started */
163         get_paca()->cpu_start = 1;
164         /* Allow percpu accesses to work until we setup percpu data */
165         get_paca()->data_offset = 0;
166 }
167
168 /*
169  * Early initialization entry point. This is called by head.S
170  * with MMU translation disabled. We rely on the "feature" of
171  * the CPU that ignores the top 2 bits of the address in real
172  * mode so we can access kernel globals normally provided we
173  * only toy with things in the RMO region. From here, we do
174  * some early parsing of the device-tree to setup out MEMBLOCK
175  * data structures, and allocate & initialize the hash table
176  * and segment tables so we can start running with translation
177  * enabled.
178  *
179  * It is this function which will call the probe() callback of
180  * the various platform types and copy the matching one to the
181  * global ppc_md structure. Your platform can eventually do
182  * some very early initializations from the probe() routine, but
183  * this is not recommended, be very careful as, for example, the
184  * device-tree is not accessible via normal means at this point.
185  */
186
187 void __init early_setup(unsigned long dt_ptr)
188 {
189         static __initdata struct paca_struct boot_paca;
190
191         /* -------- printk is _NOT_ safe to use here ! ------- */
192
193         /* Identify CPU type */
194         identify_cpu(0, mfspr(SPRN_PVR));
195
196         /* Assume we're on cpu 0 for now. Don't write to the paca yet! */
197         initialise_paca(&boot_paca, 0);
198         setup_paca(&boot_paca);
199         fixup_boot_paca();
200
201         /* Initialize lockdep early or else spinlocks will blow */
202         lockdep_init();
203
204         /* -------- printk is now safe to use ------- */
205
206         /* Enable early debugging if any specified (see udbg.h) */
207         udbg_early_init();
208
209         DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
210
211         /*
212          * Do early initialization using the flattened device
213          * tree, such as retrieving the physical memory map or
214          * calculating/retrieving the hash table size.
215          */
216         early_init_devtree(__va(dt_ptr));
217
218         /* Now we know the logical id of our boot cpu, setup the paca. */
219         setup_paca(&paca[boot_cpuid]);
220         fixup_boot_paca();
221
222         /* Probe the machine type */
223         probe_machine();
224
225         setup_kdump_trampoline();
226
227         DBG("Found, Initializing memory management...\n");
228
229         /* Initialize the hash table or TLB handling */
230         early_init_mmu();
231
232         kvm_cma_reserve();
233
234         /*
235          * Reserve any gigantic pages requested on the command line.
236          * memblock needs to have been initialized by the time this is
237          * called since this will reserve memory.
238          */
239         reserve_hugetlb_gpages();
240
241         DBG(" <- early_setup()\n");
242 }
243
244 #ifdef CONFIG_SMP
245 void early_setup_secondary(void)
246 {
247         /* Mark interrupts enabled in PACA */
248         get_paca()->soft_enabled = 0;
249
250         /* Initialize the hash table or TLB handling */
251         early_init_mmu_secondary();
252 }
253
254 #endif /* CONFIG_SMP */
255
256 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
257 void smp_release_cpus(void)
258 {
259         unsigned long *ptr;
260         int i;
261
262         DBG(" -> smp_release_cpus()\n");
263
264         /* All secondary cpus are spinning on a common spinloop, release them
265          * all now so they can start to spin on their individual paca
266          * spinloops. For non SMP kernels, the secondary cpus never get out
267          * of the common spinloop.
268          */
269
270         ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
271                         - PHYSICAL_START);
272         *ptr = __pa(generic_secondary_smp_init);
273
274         /* And wait a bit for them to catch up */
275         for (i = 0; i < 100000; i++) {
276                 mb();
277                 HMT_low();
278                 if (spinning_secondaries == 0)
279                         break;
280                 udelay(1);
281         }
282         DBG("spinning_secondaries = %d\n", spinning_secondaries);
283
284         DBG(" <- smp_release_cpus()\n");
285 }
286 #endif /* CONFIG_SMP || CONFIG_KEXEC */
287
288 /*
289  * Initialize some remaining members of the ppc64_caches and systemcfg
290  * structures
291  * (at least until we get rid of them completely). This is mostly some
292  * cache informations about the CPU that will be used by cache flush
293  * routines and/or provided to userland
294  */
295 static void __init initialize_cache_info(void)
296 {
297         struct device_node *np;
298         unsigned long num_cpus = 0;
299
300         DBG(" -> initialize_cache_info()\n");
301
302         for_each_node_by_type(np, "cpu") {
303                 num_cpus += 1;
304
305                 /*
306                  * We're assuming *all* of the CPUs have the same
307                  * d-cache and i-cache sizes... -Peter
308                  */
309                 if (num_cpus == 1) {
310                         const u32 *sizep, *lsizep;
311                         u32 size, lsize;
312
313                         size = 0;
314                         lsize = cur_cpu_spec->dcache_bsize;
315                         sizep = of_get_property(np, "d-cache-size", NULL);
316                         if (sizep != NULL)
317                                 size = *sizep;
318                         lsizep = of_get_property(np, "d-cache-block-size",
319                                                  NULL);
320                         /* fallback if block size missing */
321                         if (lsizep == NULL)
322                                 lsizep = of_get_property(np,
323                                                          "d-cache-line-size",
324                                                          NULL);
325                         if (lsizep != NULL)
326                                 lsize = *lsizep;
327                         if (sizep == 0 || lsizep == 0)
328                                 DBG("Argh, can't find dcache properties ! "
329                                     "sizep: %p, lsizep: %p\n", sizep, lsizep);
330
331                         ppc64_caches.dsize = size;
332                         ppc64_caches.dline_size = lsize;
333                         ppc64_caches.log_dline_size = __ilog2(lsize);
334                         ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
335
336                         size = 0;
337                         lsize = cur_cpu_spec->icache_bsize;
338                         sizep = of_get_property(np, "i-cache-size", NULL);
339                         if (sizep != NULL)
340                                 size = *sizep;
341                         lsizep = of_get_property(np, "i-cache-block-size",
342                                                  NULL);
343                         if (lsizep == NULL)
344                                 lsizep = of_get_property(np,
345                                                          "i-cache-line-size",
346                                                          NULL);
347                         if (lsizep != NULL)
348                                 lsize = *lsizep;
349                         if (sizep == 0 || lsizep == 0)
350                                 DBG("Argh, can't find icache properties ! "
351                                     "sizep: %p, lsizep: %p\n", sizep, lsizep);
352
353                         ppc64_caches.isize = size;
354                         ppc64_caches.iline_size = lsize;
355                         ppc64_caches.log_iline_size = __ilog2(lsize);
356                         ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
357                 }
358         }
359
360         DBG(" <- initialize_cache_info()\n");
361 }
362
363
364 /*
365  * Do some initial setup of the system.  The parameters are those which 
366  * were passed in from the bootloader.
367  */
368 void __init setup_system(void)
369 {
370         DBG(" -> setup_system()\n");
371
372         /* Apply the CPUs-specific and firmware specific fixups to kernel
373          * text (nop out sections not relevant to this CPU or this firmware)
374          */
375         do_feature_fixups(cur_cpu_spec->cpu_features,
376                           &__start___ftr_fixup, &__stop___ftr_fixup);
377         do_feature_fixups(cur_cpu_spec->mmu_features,
378                           &__start___mmu_ftr_fixup, &__stop___mmu_ftr_fixup);
379         do_feature_fixups(powerpc_firmware_features,
380                           &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup);
381         do_lwsync_fixups(cur_cpu_spec->cpu_features,
382                          &__start___lwsync_fixup, &__stop___lwsync_fixup);
383         do_final_fixups();
384
385         /*
386          * Unflatten the device-tree passed by prom_init or kexec
387          */
388         unflatten_device_tree();
389
390         /*
391          * Fill the ppc64_caches & systemcfg structures with informations
392          * retrieved from the device-tree.
393          */
394         initialize_cache_info();
395
396 #ifdef CONFIG_PPC_RTAS
397         /*
398          * Initialize RTAS if available
399          */
400         rtas_initialize();
401 #endif /* CONFIG_PPC_RTAS */
402
403         /*
404          * Check if we have an initrd provided via the device-tree
405          */
406         check_for_initrd();
407
408         /*
409          * Do some platform specific early initializations, that includes
410          * setting up the hash table pointers. It also sets up some interrupt-mapping
411          * related options that will be used by finish_device_tree()
412          */
413         if (ppc_md.init_early)
414                 ppc_md.init_early();
415
416         /*
417          * We can discover serial ports now since the above did setup the
418          * hash table management for us, thus ioremap works. We do that early
419          * so that further code can be debugged
420          */
421         find_legacy_serial_ports();
422
423         /*
424          * Register early console
425          */
426         register_early_udbg_console();
427
428         /*
429          * Initialize xmon
430          */
431         xmon_setup();
432
433         smp_setup_cpu_maps();
434         check_smt_enabled();
435
436 #ifdef CONFIG_SMP
437         /* Release secondary cpus out of their spinloops at 0x60 now that
438          * we can map physical -> logical CPU ids
439          */
440         smp_release_cpus();
441 #endif
442
443         printk("Starting Linux PPC64 %s\n", init_utsname()->version);
444
445         printk("-----------------------------------------------------\n");
446         printk("ppc64_pft_size                = 0x%llx\n", ppc64_pft_size);
447         printk("physicalMemorySize            = 0x%llx\n", memblock_phys_mem_size());
448         if (ppc64_caches.dline_size != 0x80)
449                 printk("ppc64_caches.dcache_line_size = 0x%x\n",
450                        ppc64_caches.dline_size);
451         if (ppc64_caches.iline_size != 0x80)
452                 printk("ppc64_caches.icache_line_size = 0x%x\n",
453                        ppc64_caches.iline_size);
454 #ifdef CONFIG_PPC_STD_MMU_64
455         if (htab_address)
456                 printk("htab_address                  = 0x%p\n", htab_address);
457         printk("htab_hash_mask                = 0x%lx\n", htab_hash_mask);
458 #endif /* CONFIG_PPC_STD_MMU_64 */
459         if (PHYSICAL_START > 0)
460                 printk("physical_start                = 0x%llx\n",
461                        (unsigned long long)PHYSICAL_START);
462         printk("-----------------------------------------------------\n");
463
464         DBG(" <- setup_system()\n");
465 }
466
467 /* This returns the limit below which memory accesses to the linear
468  * mapping are guarnateed not to cause a TLB or SLB miss. This is
469  * used to allocate interrupt or emergency stacks for which our
470  * exception entry path doesn't deal with being interrupted.
471  */
472 static u64 safe_stack_limit(void)
473 {
474 #ifdef CONFIG_PPC_BOOK3E
475         /* Freescale BookE bolts the entire linear mapping */
476         if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
477                 return linear_map_top;
478         /* Other BookE, we assume the first GB is bolted */
479         return 1ul << 30;
480 #else
481         /* BookS, the first segment is bolted */
482         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
483                 return 1UL << SID_SHIFT_1T;
484         return 1UL << SID_SHIFT;
485 #endif
486 }
487
488 static void __init irqstack_early_init(void)
489 {
490         u64 limit = safe_stack_limit();
491         unsigned int i;
492
493         /*
494          * Interrupt stacks must be in the first segment since we
495          * cannot afford to take SLB misses on them.
496          */
497         for_each_possible_cpu(i) {
498                 softirq_ctx[i] = (struct thread_info *)
499                         __va(memblock_alloc_base(THREAD_SIZE,
500                                             THREAD_SIZE, limit));
501                 hardirq_ctx[i] = (struct thread_info *)
502                         __va(memblock_alloc_base(THREAD_SIZE,
503                                             THREAD_SIZE, limit));
504         }
505 }
506
507 #ifdef CONFIG_PPC_BOOK3E
508 static void __init exc_lvl_early_init(void)
509 {
510         extern unsigned int interrupt_base_book3e;
511         extern unsigned int exc_debug_debug_book3e;
512
513         unsigned int i;
514
515         for_each_possible_cpu(i) {
516                 critirq_ctx[i] = (struct thread_info *)
517                         __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
518                 dbgirq_ctx[i] = (struct thread_info *)
519                         __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
520                 mcheckirq_ctx[i] = (struct thread_info *)
521                         __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
522         }
523
524         if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
525                 patch_branch(&interrupt_base_book3e + (0x040 / 4) + 1,
526                              (unsigned long)&exc_debug_debug_book3e, 0);
527 }
528 #else
529 #define exc_lvl_early_init()
530 #endif
531
532 /*
533  * Stack space used when we detect a bad kernel stack pointer, and
534  * early in SMP boots before relocation is enabled.
535  */
536 static void __init emergency_stack_init(void)
537 {
538         u64 limit;
539         unsigned int i;
540
541         /*
542          * Emergency stacks must be under 256MB, we cannot afford to take
543          * SLB misses on them. The ABI also requires them to be 128-byte
544          * aligned.
545          *
546          * Since we use these as temporary stacks during secondary CPU
547          * bringup, we need to get at them in real mode. This means they
548          * must also be within the RMO region.
549          */
550         limit = min(safe_stack_limit(), ppc64_rma_size);
551
552         for_each_possible_cpu(i) {
553                 unsigned long sp;
554                 sp  = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
555                 sp += THREAD_SIZE;
556                 paca[i].emergency_sp = __va(sp);
557         }
558 }
559
560 /*
561  * Called into from start_kernel this initializes bootmem, which is used
562  * to manage page allocation until mem_init is called.
563  */
564 void __init setup_arch(char **cmdline_p)
565 {
566         ppc64_boot_msg(0x12, "Setup Arch");
567
568         *cmdline_p = cmd_line;
569
570         /*
571          * Set cache line size based on type of cpu as a default.
572          * Systems with OF can look in the properties on the cpu node(s)
573          * for a possibly more accurate value.
574          */
575         dcache_bsize = ppc64_caches.dline_size;
576         icache_bsize = ppc64_caches.iline_size;
577
578         /* reboot on panic */
579         panic_timeout = 180;
580
581         if (ppc_md.panic)
582                 setup_panic();
583
584         init_mm.start_code = (unsigned long)_stext;
585         init_mm.end_code = (unsigned long) _etext;
586         init_mm.end_data = (unsigned long) _edata;
587         init_mm.brk = klimit;
588 #ifdef CONFIG_PPC_64K_PAGES
589         init_mm.context.pte_frag = NULL;
590 #endif
591         irqstack_early_init();
592         exc_lvl_early_init();
593         emergency_stack_init();
594
595 #ifdef CONFIG_PPC_STD_MMU_64
596         stabs_alloc();
597 #endif
598         /* set up the bootmem stuff with available memory */
599         do_init_bootmem();
600         sparse_init();
601
602 #ifdef CONFIG_DUMMY_CONSOLE
603         conswitchp = &dummy_con;
604 #endif
605
606         if (ppc_md.setup_arch)
607                 ppc_md.setup_arch();
608
609         paging_init();
610
611         /* Initialize the MMU context management stuff */
612         mmu_context_init();
613
614         /* Interrupt code needs to be 64K-aligned */
615         if ((unsigned long)_stext & 0xffff)
616                 panic("Kernelbase not 64K-aligned (0x%lx)!\n",
617                       (unsigned long)_stext);
618
619         ppc64_boot_msg(0x15, "Setup Done");
620 }
621
622
623 /* ToDo: do something useful if ppc_md is not yet setup. */
624 #define PPC64_LINUX_FUNCTION 0x0f000000
625 #define PPC64_IPL_MESSAGE 0xc0000000
626 #define PPC64_TERM_MESSAGE 0xb0000000
627
628 static void ppc64_do_msg(unsigned int src, const char *msg)
629 {
630         if (ppc_md.progress) {
631                 char buf[128];
632
633                 sprintf(buf, "%08X\n", src);
634                 ppc_md.progress(buf, 0);
635                 snprintf(buf, 128, "%s", msg);
636                 ppc_md.progress(buf, 0);
637         }
638 }
639
640 /* Print a boot progress message. */
641 void ppc64_boot_msg(unsigned int src, const char *msg)
642 {
643         ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg);
644         printk("[boot]%04x %s\n", src, msg);
645 }
646
647 #ifdef CONFIG_SMP
648 #define PCPU_DYN_SIZE           ()
649
650 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
651 {
652         return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align,
653                                     __pa(MAX_DMA_ADDRESS));
654 }
655
656 static void __init pcpu_fc_free(void *ptr, size_t size)
657 {
658         free_bootmem(__pa(ptr), size);
659 }
660
661 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
662 {
663         if (cpu_to_node(from) == cpu_to_node(to))
664                 return LOCAL_DISTANCE;
665         else
666                 return REMOTE_DISTANCE;
667 }
668
669 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
670 EXPORT_SYMBOL(__per_cpu_offset);
671
672 void __init setup_per_cpu_areas(void)
673 {
674         const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
675         size_t atom_size;
676         unsigned long delta;
677         unsigned int cpu;
678         int rc;
679
680         /*
681          * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
682          * to group units.  For larger mappings, use 1M atom which
683          * should be large enough to contain a number of units.
684          */
685         if (mmu_linear_psize == MMU_PAGE_4K)
686                 atom_size = PAGE_SIZE;
687         else
688                 atom_size = 1 << 20;
689
690         rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
691                                     pcpu_fc_alloc, pcpu_fc_free);
692         if (rc < 0)
693                 panic("cannot initialize percpu area (err=%d)", rc);
694
695         delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
696         for_each_possible_cpu(cpu) {
697                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
698                 paca[cpu].data_offset = __per_cpu_offset[cpu];
699         }
700 }
701 #endif
702
703
704 #ifdef CONFIG_PPC_INDIRECT_IO
705 struct ppc_pci_io ppc_pci_io;
706 EXPORT_SYMBOL(ppc_pci_io);
707 #endif /* CONFIG_PPC_INDIRECT_IO */
708