]> Pileus Git - ~andy/linux/blob - arch/powerpc/kernel/process.c
sparc64: Make sure %pil interrupts are enabled during hypervisor yield.
[~andy/linux] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/time.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
52 #include <asm/tm.h>
53 #include <asm/debug.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/firmware.h>
56 #endif
57 #include <linux/kprobes.h>
58 #include <linux/kdebug.h>
59
60 /* Transactional Memory debug */
61 #ifdef TM_DEBUG_SW
62 #define TM_DEBUG(x...) printk(KERN_INFO x)
63 #else
64 #define TM_DEBUG(x...) do { } while(0)
65 #endif
66
67 extern unsigned long _get_SP(void);
68
69 #ifndef CONFIG_SMP
70 struct task_struct *last_task_used_math = NULL;
71 struct task_struct *last_task_used_altivec = NULL;
72 struct task_struct *last_task_used_vsx = NULL;
73 struct task_struct *last_task_used_spe = NULL;
74 #endif
75
76 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
77 void giveup_fpu_maybe_transactional(struct task_struct *tsk)
78 {
79         /*
80          * If we are saving the current thread's registers, and the
81          * thread is in a transactional state, set the TIF_RESTORE_TM
82          * bit so that we know to restore the registers before
83          * returning to userspace.
84          */
85         if (tsk == current && tsk->thread.regs &&
86             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
87             !test_thread_flag(TIF_RESTORE_TM)) {
88                 tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
89                 set_thread_flag(TIF_RESTORE_TM);
90         }
91
92         giveup_fpu(tsk);
93 }
94
95 void giveup_altivec_maybe_transactional(struct task_struct *tsk)
96 {
97         /*
98          * If we are saving the current thread's registers, and the
99          * thread is in a transactional state, set the TIF_RESTORE_TM
100          * bit so that we know to restore the registers before
101          * returning to userspace.
102          */
103         if (tsk == current && tsk->thread.regs &&
104             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
105             !test_thread_flag(TIF_RESTORE_TM)) {
106                 tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
107                 set_thread_flag(TIF_RESTORE_TM);
108         }
109
110         giveup_altivec(tsk);
111 }
112
113 #else
114 #define giveup_fpu_maybe_transactional(tsk)     giveup_fpu(tsk)
115 #define giveup_altivec_maybe_transactional(tsk) giveup_altivec(tsk)
116 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
117
118 #ifdef CONFIG_PPC_FPU
119 /*
120  * Make sure the floating-point register state in the
121  * the thread_struct is up to date for task tsk.
122  */
123 void flush_fp_to_thread(struct task_struct *tsk)
124 {
125         if (tsk->thread.regs) {
126                 /*
127                  * We need to disable preemption here because if we didn't,
128                  * another process could get scheduled after the regs->msr
129                  * test but before we have finished saving the FP registers
130                  * to the thread_struct.  That process could take over the
131                  * FPU, and then when we get scheduled again we would store
132                  * bogus values for the remaining FP registers.
133                  */
134                 preempt_disable();
135                 if (tsk->thread.regs->msr & MSR_FP) {
136 #ifdef CONFIG_SMP
137                         /*
138                          * This should only ever be called for current or
139                          * for a stopped child process.  Since we save away
140                          * the FP register state on context switch on SMP,
141                          * there is something wrong if a stopped child appears
142                          * to still have its FP state in the CPU registers.
143                          */
144                         BUG_ON(tsk != current);
145 #endif
146                         giveup_fpu_maybe_transactional(tsk);
147                 }
148                 preempt_enable();
149         }
150 }
151 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
152 #endif /* CONFIG_PPC_FPU */
153
154 void enable_kernel_fp(void)
155 {
156         WARN_ON(preemptible());
157
158 #ifdef CONFIG_SMP
159         if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
160                 giveup_fpu_maybe_transactional(current);
161         else
162                 giveup_fpu(NULL);       /* just enables FP for kernel */
163 #else
164         giveup_fpu_maybe_transactional(last_task_used_math);
165 #endif /* CONFIG_SMP */
166 }
167 EXPORT_SYMBOL(enable_kernel_fp);
168
169 #ifdef CONFIG_ALTIVEC
170 void enable_kernel_altivec(void)
171 {
172         WARN_ON(preemptible());
173
174 #ifdef CONFIG_SMP
175         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
176                 giveup_altivec_maybe_transactional(current);
177         else
178                 giveup_altivec_notask();
179 #else
180         giveup_altivec_maybe_transactional(last_task_used_altivec);
181 #endif /* CONFIG_SMP */
182 }
183 EXPORT_SYMBOL(enable_kernel_altivec);
184
185 /*
186  * Make sure the VMX/Altivec register state in the
187  * the thread_struct is up to date for task tsk.
188  */
189 void flush_altivec_to_thread(struct task_struct *tsk)
190 {
191         if (tsk->thread.regs) {
192                 preempt_disable();
193                 if (tsk->thread.regs->msr & MSR_VEC) {
194 #ifdef CONFIG_SMP
195                         BUG_ON(tsk != current);
196 #endif
197                         giveup_altivec_maybe_transactional(tsk);
198                 }
199                 preempt_enable();
200         }
201 }
202 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
203 #endif /* CONFIG_ALTIVEC */
204
205 #ifdef CONFIG_VSX
206 #if 0
207 /* not currently used, but some crazy RAID module might want to later */
208 void enable_kernel_vsx(void)
209 {
210         WARN_ON(preemptible());
211
212 #ifdef CONFIG_SMP
213         if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
214                 giveup_vsx(current);
215         else
216                 giveup_vsx(NULL);       /* just enable vsx for kernel - force */
217 #else
218         giveup_vsx(last_task_used_vsx);
219 #endif /* CONFIG_SMP */
220 }
221 EXPORT_SYMBOL(enable_kernel_vsx);
222 #endif
223
224 void giveup_vsx(struct task_struct *tsk)
225 {
226         giveup_fpu_maybe_transactional(tsk);
227         giveup_altivec_maybe_transactional(tsk);
228         __giveup_vsx(tsk);
229 }
230
231 void flush_vsx_to_thread(struct task_struct *tsk)
232 {
233         if (tsk->thread.regs) {
234                 preempt_disable();
235                 if (tsk->thread.regs->msr & MSR_VSX) {
236 #ifdef CONFIG_SMP
237                         BUG_ON(tsk != current);
238 #endif
239                         giveup_vsx(tsk);
240                 }
241                 preempt_enable();
242         }
243 }
244 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
245 #endif /* CONFIG_VSX */
246
247 #ifdef CONFIG_SPE
248
249 void enable_kernel_spe(void)
250 {
251         WARN_ON(preemptible());
252
253 #ifdef CONFIG_SMP
254         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
255                 giveup_spe(current);
256         else
257                 giveup_spe(NULL);       /* just enable SPE for kernel - force */
258 #else
259         giveup_spe(last_task_used_spe);
260 #endif /* __SMP __ */
261 }
262 EXPORT_SYMBOL(enable_kernel_spe);
263
264 void flush_spe_to_thread(struct task_struct *tsk)
265 {
266         if (tsk->thread.regs) {
267                 preempt_disable();
268                 if (tsk->thread.regs->msr & MSR_SPE) {
269 #ifdef CONFIG_SMP
270                         BUG_ON(tsk != current);
271 #endif
272                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
273                         giveup_spe(tsk);
274                 }
275                 preempt_enable();
276         }
277 }
278 #endif /* CONFIG_SPE */
279
280 #ifndef CONFIG_SMP
281 /*
282  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
283  * and the current task has some state, discard it.
284  */
285 void discard_lazy_cpu_state(void)
286 {
287         preempt_disable();
288         if (last_task_used_math == current)
289                 last_task_used_math = NULL;
290 #ifdef CONFIG_ALTIVEC
291         if (last_task_used_altivec == current)
292                 last_task_used_altivec = NULL;
293 #endif /* CONFIG_ALTIVEC */
294 #ifdef CONFIG_VSX
295         if (last_task_used_vsx == current)
296                 last_task_used_vsx = NULL;
297 #endif /* CONFIG_VSX */
298 #ifdef CONFIG_SPE
299         if (last_task_used_spe == current)
300                 last_task_used_spe = NULL;
301 #endif
302         preempt_enable();
303 }
304 #endif /* CONFIG_SMP */
305
306 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
307 void do_send_trap(struct pt_regs *regs, unsigned long address,
308                   unsigned long error_code, int signal_code, int breakpt)
309 {
310         siginfo_t info;
311
312         current->thread.trap_nr = signal_code;
313         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
314                         11, SIGSEGV) == NOTIFY_STOP)
315                 return;
316
317         /* Deliver the signal to userspace */
318         info.si_signo = SIGTRAP;
319         info.si_errno = breakpt;        /* breakpoint or watchpoint id */
320         info.si_code = signal_code;
321         info.si_addr = (void __user *)address;
322         force_sig_info(SIGTRAP, &info, current);
323 }
324 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
325 void do_break (struct pt_regs *regs, unsigned long address,
326                     unsigned long error_code)
327 {
328         siginfo_t info;
329
330         current->thread.trap_nr = TRAP_HWBKPT;
331         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
332                         11, SIGSEGV) == NOTIFY_STOP)
333                 return;
334
335         if (debugger_break_match(regs))
336                 return;
337
338         /* Clear the breakpoint */
339         hw_breakpoint_disable();
340
341         /* Deliver the signal to userspace */
342         info.si_signo = SIGTRAP;
343         info.si_errno = 0;
344         info.si_code = TRAP_HWBKPT;
345         info.si_addr = (void __user *)address;
346         force_sig_info(SIGTRAP, &info, current);
347 }
348 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
349
350 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
351
352 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
353 /*
354  * Set the debug registers back to their default "safe" values.
355  */
356 static void set_debug_reg_defaults(struct thread_struct *thread)
357 {
358         thread->debug.iac1 = thread->debug.iac2 = 0;
359 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
360         thread->debug.iac3 = thread->debug.iac4 = 0;
361 #endif
362         thread->debug.dac1 = thread->debug.dac2 = 0;
363 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
364         thread->debug.dvc1 = thread->debug.dvc2 = 0;
365 #endif
366         thread->debug.dbcr0 = 0;
367 #ifdef CONFIG_BOOKE
368         /*
369          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
370          */
371         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
372                         DBCR1_IAC3US | DBCR1_IAC4US;
373         /*
374          * Force Data Address Compare User/Supervisor bits to be User-only
375          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
376          */
377         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
378 #else
379         thread->debug.dbcr1 = 0;
380 #endif
381 }
382
383 static void prime_debug_regs(struct debug_reg *debug)
384 {
385         /*
386          * We could have inherited MSR_DE from userspace, since
387          * it doesn't get cleared on exception entry.  Make sure
388          * MSR_DE is clear before we enable any debug events.
389          */
390         mtmsr(mfmsr() & ~MSR_DE);
391
392         mtspr(SPRN_IAC1, debug->iac1);
393         mtspr(SPRN_IAC2, debug->iac2);
394 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
395         mtspr(SPRN_IAC3, debug->iac3);
396         mtspr(SPRN_IAC4, debug->iac4);
397 #endif
398         mtspr(SPRN_DAC1, debug->dac1);
399         mtspr(SPRN_DAC2, debug->dac2);
400 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
401         mtspr(SPRN_DVC1, debug->dvc1);
402         mtspr(SPRN_DVC2, debug->dvc2);
403 #endif
404         mtspr(SPRN_DBCR0, debug->dbcr0);
405         mtspr(SPRN_DBCR1, debug->dbcr1);
406 #ifdef CONFIG_BOOKE
407         mtspr(SPRN_DBCR2, debug->dbcr2);
408 #endif
409 }
410 /*
411  * Unless neither the old or new thread are making use of the
412  * debug registers, set the debug registers from the values
413  * stored in the new thread.
414  */
415 void switch_booke_debug_regs(struct debug_reg *new_debug)
416 {
417         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
418                 || (new_debug->dbcr0 & DBCR0_IDM))
419                         prime_debug_regs(new_debug);
420 }
421 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
422 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
423 #ifndef CONFIG_HAVE_HW_BREAKPOINT
424 static void set_debug_reg_defaults(struct thread_struct *thread)
425 {
426         thread->hw_brk.address = 0;
427         thread->hw_brk.type = 0;
428         set_breakpoint(&thread->hw_brk);
429 }
430 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
431 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
432
433 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
434 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
435 {
436         mtspr(SPRN_DAC1, dabr);
437 #ifdef CONFIG_PPC_47x
438         isync();
439 #endif
440         return 0;
441 }
442 #elif defined(CONFIG_PPC_BOOK3S)
443 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
444 {
445         mtspr(SPRN_DABR, dabr);
446         if (cpu_has_feature(CPU_FTR_DABRX))
447                 mtspr(SPRN_DABRX, dabrx);
448         return 0;
449 }
450 #else
451 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
452 {
453         return -EINVAL;
454 }
455 #endif
456
457 static inline int set_dabr(struct arch_hw_breakpoint *brk)
458 {
459         unsigned long dabr, dabrx;
460
461         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
462         dabrx = ((brk->type >> 3) & 0x7);
463
464         if (ppc_md.set_dabr)
465                 return ppc_md.set_dabr(dabr, dabrx);
466
467         return __set_dabr(dabr, dabrx);
468 }
469
470 static inline int set_dawr(struct arch_hw_breakpoint *brk)
471 {
472         unsigned long dawr, dawrx, mrd;
473
474         dawr = brk->address;
475
476         dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
477                                    << (63 - 58); //* read/write bits */
478         dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
479                                    << (63 - 59); //* translate */
480         dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
481                                    >> 3; //* PRIM bits */
482         /* dawr length is stored in field MDR bits 48:53.  Matches range in
483            doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
484            0b111111=64DW.
485            brk->len is in bytes.
486            This aligns up to double word size, shifts and does the bias.
487         */
488         mrd = ((brk->len + 7) >> 3) - 1;
489         dawrx |= (mrd & 0x3f) << (63 - 53);
490
491         if (ppc_md.set_dawr)
492                 return ppc_md.set_dawr(dawr, dawrx);
493         mtspr(SPRN_DAWR, dawr);
494         mtspr(SPRN_DAWRX, dawrx);
495         return 0;
496 }
497
498 int set_breakpoint(struct arch_hw_breakpoint *brk)
499 {
500         __get_cpu_var(current_brk) = *brk;
501
502         if (cpu_has_feature(CPU_FTR_DAWR))
503                 return set_dawr(brk);
504
505         return set_dabr(brk);
506 }
507
508 #ifdef CONFIG_PPC64
509 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
510 #endif
511
512 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
513                               struct arch_hw_breakpoint *b)
514 {
515         if (a->address != b->address)
516                 return false;
517         if (a->type != b->type)
518                 return false;
519         if (a->len != b->len)
520                 return false;
521         return true;
522 }
523
524 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
525 static void tm_reclaim_thread(struct thread_struct *thr,
526                               struct thread_info *ti, uint8_t cause)
527 {
528         unsigned long msr_diff = 0;
529
530         /*
531          * If FP/VSX registers have been already saved to the
532          * thread_struct, move them to the transact_fp array.
533          * We clear the TIF_RESTORE_TM bit since after the reclaim
534          * the thread will no longer be transactional.
535          */
536         if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
537                 msr_diff = thr->tm_orig_msr & ~thr->regs->msr;
538                 if (msr_diff & MSR_FP)
539                         memcpy(&thr->transact_fp, &thr->fp_state,
540                                sizeof(struct thread_fp_state));
541                 if (msr_diff & MSR_VEC)
542                         memcpy(&thr->transact_vr, &thr->vr_state,
543                                sizeof(struct thread_vr_state));
544                 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
545                 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
546         }
547
548         tm_reclaim(thr, thr->regs->msr, cause);
549
550         /* Having done the reclaim, we now have the checkpointed
551          * FP/VSX values in the registers.  These might be valid
552          * even if we have previously called enable_kernel_fp() or
553          * flush_fp_to_thread(), so update thr->regs->msr to
554          * indicate their current validity.
555          */
556         thr->regs->msr |= msr_diff;
557 }
558
559 void tm_reclaim_current(uint8_t cause)
560 {
561         tm_enable();
562         tm_reclaim_thread(&current->thread, current_thread_info(), cause);
563 }
564
565 static inline void tm_reclaim_task(struct task_struct *tsk)
566 {
567         /* We have to work out if we're switching from/to a task that's in the
568          * middle of a transaction.
569          *
570          * In switching we need to maintain a 2nd register state as
571          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
572          * checkpointed (tbegin) state in ckpt_regs and saves the transactional
573          * (current) FPRs into oldtask->thread.transact_fpr[].
574          *
575          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
576          */
577         struct thread_struct *thr = &tsk->thread;
578
579         if (!thr->regs)
580                 return;
581
582         if (!MSR_TM_ACTIVE(thr->regs->msr))
583                 goto out_and_saveregs;
584
585         /* Stash the original thread MSR, as giveup_fpu et al will
586          * modify it.  We hold onto it to see whether the task used
587          * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
588          * tm_orig_msr is already set.
589          */
590         if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
591                 thr->tm_orig_msr = thr->regs->msr;
592
593         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
594                  "ccr=%lx, msr=%lx, trap=%lx)\n",
595                  tsk->pid, thr->regs->nip,
596                  thr->regs->ccr, thr->regs->msr,
597                  thr->regs->trap);
598
599         tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
600
601         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
602                  tsk->pid);
603
604 out_and_saveregs:
605         /* Always save the regs here, even if a transaction's not active.
606          * This context-switches a thread's TM info SPRs.  We do it here to
607          * be consistent with the restore path (in recheckpoint) which
608          * cannot happen later in _switch().
609          */
610         tm_save_sprs(thr);
611 }
612
613 static inline void tm_recheckpoint_new_task(struct task_struct *new)
614 {
615         unsigned long msr;
616
617         if (!cpu_has_feature(CPU_FTR_TM))
618                 return;
619
620         /* Recheckpoint the registers of the thread we're about to switch to.
621          *
622          * If the task was using FP, we non-lazily reload both the original and
623          * the speculative FP register states.  This is because the kernel
624          * doesn't see if/when a TM rollback occurs, so if we take an FP
625          * unavoidable later, we are unable to determine which set of FP regs
626          * need to be restored.
627          */
628         if (!new->thread.regs)
629                 return;
630
631         /* The TM SPRs are restored here, so that TEXASR.FS can be set
632          * before the trecheckpoint and no explosion occurs.
633          */
634         tm_restore_sprs(&new->thread);
635
636         if (!MSR_TM_ACTIVE(new->thread.regs->msr))
637                 return;
638         msr = new->thread.tm_orig_msr;
639         /* Recheckpoint to restore original checkpointed register state. */
640         TM_DEBUG("*** tm_recheckpoint of pid %d "
641                  "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
642                  new->pid, new->thread.regs->msr, msr);
643
644         /* This loads the checkpointed FP/VEC state, if used */
645         tm_recheckpoint(&new->thread, msr);
646
647         /* This loads the speculative FP/VEC state, if used */
648         if (msr & MSR_FP) {
649                 do_load_up_transact_fpu(&new->thread);
650                 new->thread.regs->msr |=
651                         (MSR_FP | new->thread.fpexc_mode);
652         }
653 #ifdef CONFIG_ALTIVEC
654         if (msr & MSR_VEC) {
655                 do_load_up_transact_altivec(&new->thread);
656                 new->thread.regs->msr |= MSR_VEC;
657         }
658 #endif
659         /* We may as well turn on VSX too since all the state is restored now */
660         if (msr & MSR_VSX)
661                 new->thread.regs->msr |= MSR_VSX;
662
663         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
664                  "(kernel msr 0x%lx)\n",
665                  new->pid, mfmsr());
666 }
667
668 static inline void __switch_to_tm(struct task_struct *prev)
669 {
670         if (cpu_has_feature(CPU_FTR_TM)) {
671                 tm_enable();
672                 tm_reclaim_task(prev);
673         }
674 }
675
676 /*
677  * This is called if we are on the way out to userspace and the
678  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
679  * FP and/or vector state and does so if necessary.
680  * If userspace is inside a transaction (whether active or
681  * suspended) and FP/VMX/VSX instructions have ever been enabled
682  * inside that transaction, then we have to keep them enabled
683  * and keep the FP/VMX/VSX state loaded while ever the transaction
684  * continues.  The reason is that if we didn't, and subsequently
685  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
686  * we don't know whether it's the same transaction, and thus we
687  * don't know which of the checkpointed state and the transactional
688  * state to use.
689  */
690 void restore_tm_state(struct pt_regs *regs)
691 {
692         unsigned long msr_diff;
693
694         clear_thread_flag(TIF_RESTORE_TM);
695         if (!MSR_TM_ACTIVE(regs->msr))
696                 return;
697
698         msr_diff = current->thread.tm_orig_msr & ~regs->msr;
699         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
700         if (msr_diff & MSR_FP) {
701                 fp_enable();
702                 load_fp_state(&current->thread.fp_state);
703                 regs->msr |= current->thread.fpexc_mode;
704         }
705         if (msr_diff & MSR_VEC) {
706                 vec_enable();
707                 load_vr_state(&current->thread.vr_state);
708         }
709         regs->msr |= msr_diff;
710 }
711
712 #else
713 #define tm_recheckpoint_new_task(new)
714 #define __switch_to_tm(prev)
715 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
716
717 struct task_struct *__switch_to(struct task_struct *prev,
718         struct task_struct *new)
719 {
720         struct thread_struct *new_thread, *old_thread;
721         struct task_struct *last;
722 #ifdef CONFIG_PPC_BOOK3S_64
723         struct ppc64_tlb_batch *batch;
724 #endif
725
726         WARN_ON(!irqs_disabled());
727
728         /* Back up the TAR across context switches.
729          * Note that the TAR is not available for use in the kernel.  (To
730          * provide this, the TAR should be backed up/restored on exception
731          * entry/exit instead, and be in pt_regs.  FIXME, this should be in
732          * pt_regs anyway (for debug).)
733          * Save the TAR here before we do treclaim/trecheckpoint as these
734          * will change the TAR.
735          */
736         save_tar(&prev->thread);
737
738         __switch_to_tm(prev);
739
740 #ifdef CONFIG_SMP
741         /* avoid complexity of lazy save/restore of fpu
742          * by just saving it every time we switch out if
743          * this task used the fpu during the last quantum.
744          *
745          * If it tries to use the fpu again, it'll trap and
746          * reload its fp regs.  So we don't have to do a restore
747          * every switch, just a save.
748          *  -- Cort
749          */
750         if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
751                 giveup_fpu(prev);
752 #ifdef CONFIG_ALTIVEC
753         /*
754          * If the previous thread used altivec in the last quantum
755          * (thus changing altivec regs) then save them.
756          * We used to check the VRSAVE register but not all apps
757          * set it, so we don't rely on it now (and in fact we need
758          * to save & restore VSCR even if VRSAVE == 0).  -- paulus
759          *
760          * On SMP we always save/restore altivec regs just to avoid the
761          * complexity of changing processors.
762          *  -- Cort
763          */
764         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
765                 giveup_altivec(prev);
766 #endif /* CONFIG_ALTIVEC */
767 #ifdef CONFIG_VSX
768         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
769                 /* VMX and FPU registers are already save here */
770                 __giveup_vsx(prev);
771 #endif /* CONFIG_VSX */
772 #ifdef CONFIG_SPE
773         /*
774          * If the previous thread used spe in the last quantum
775          * (thus changing spe regs) then save them.
776          *
777          * On SMP we always save/restore spe regs just to avoid the
778          * complexity of changing processors.
779          */
780         if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
781                 giveup_spe(prev);
782 #endif /* CONFIG_SPE */
783
784 #else  /* CONFIG_SMP */
785 #ifdef CONFIG_ALTIVEC
786         /* Avoid the trap.  On smp this this never happens since
787          * we don't set last_task_used_altivec -- Cort
788          */
789         if (new->thread.regs && last_task_used_altivec == new)
790                 new->thread.regs->msr |= MSR_VEC;
791 #endif /* CONFIG_ALTIVEC */
792 #ifdef CONFIG_VSX
793         if (new->thread.regs && last_task_used_vsx == new)
794                 new->thread.regs->msr |= MSR_VSX;
795 #endif /* CONFIG_VSX */
796 #ifdef CONFIG_SPE
797         /* Avoid the trap.  On smp this this never happens since
798          * we don't set last_task_used_spe
799          */
800         if (new->thread.regs && last_task_used_spe == new)
801                 new->thread.regs->msr |= MSR_SPE;
802 #endif /* CONFIG_SPE */
803
804 #endif /* CONFIG_SMP */
805
806 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
807         switch_booke_debug_regs(&new->thread.debug);
808 #else
809 /*
810  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
811  * schedule DABR
812  */
813 #ifndef CONFIG_HAVE_HW_BREAKPOINT
814         if (unlikely(!hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
815                 set_breakpoint(&new->thread.hw_brk);
816 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
817 #endif
818
819
820         new_thread = &new->thread;
821         old_thread = &current->thread;
822
823 #ifdef CONFIG_PPC64
824         /*
825          * Collect processor utilization data per process
826          */
827         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
828                 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
829                 long unsigned start_tb, current_tb;
830                 start_tb = old_thread->start_tb;
831                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
832                 old_thread->accum_tb += (current_tb - start_tb);
833                 new_thread->start_tb = current_tb;
834         }
835 #endif /* CONFIG_PPC64 */
836
837 #ifdef CONFIG_PPC_BOOK3S_64
838         batch = &__get_cpu_var(ppc64_tlb_batch);
839         if (batch->active) {
840                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
841                 if (batch->index)
842                         __flush_tlb_pending(batch);
843                 batch->active = 0;
844         }
845 #endif /* CONFIG_PPC_BOOK3S_64 */
846
847         /*
848          * We can't take a PMU exception inside _switch() since there is a
849          * window where the kernel stack SLB and the kernel stack are out
850          * of sync. Hard disable here.
851          */
852         hard_irq_disable();
853
854         tm_recheckpoint_new_task(new);
855
856         last = _switch(old_thread, new_thread);
857
858 #ifdef CONFIG_PPC_BOOK3S_64
859         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
860                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
861                 batch = &__get_cpu_var(ppc64_tlb_batch);
862                 batch->active = 1;
863         }
864 #endif /* CONFIG_PPC_BOOK3S_64 */
865
866         return last;
867 }
868
869 static int instructions_to_print = 16;
870
871 static void show_instructions(struct pt_regs *regs)
872 {
873         int i;
874         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
875                         sizeof(int));
876
877         printk("Instruction dump:");
878
879         for (i = 0; i < instructions_to_print; i++) {
880                 int instr;
881
882                 if (!(i % 8))
883                         printk("\n");
884
885 #if !defined(CONFIG_BOOKE)
886                 /* If executing with the IMMU off, adjust pc rather
887                  * than print XXXXXXXX.
888                  */
889                 if (!(regs->msr & MSR_IR))
890                         pc = (unsigned long)phys_to_virt(pc);
891 #endif
892
893                 /* We use __get_user here *only* to avoid an OOPS on a
894                  * bad address because the pc *should* only be a
895                  * kernel address.
896                  */
897                 if (!__kernel_text_address(pc) ||
898                      __get_user(instr, (unsigned int __user *)pc)) {
899                         printk(KERN_CONT "XXXXXXXX ");
900                 } else {
901                         if (regs->nip == pc)
902                                 printk(KERN_CONT "<%08x> ", instr);
903                         else
904                                 printk(KERN_CONT "%08x ", instr);
905                 }
906
907                 pc += sizeof(int);
908         }
909
910         printk("\n");
911 }
912
913 static struct regbit {
914         unsigned long bit;
915         const char *name;
916 } msr_bits[] = {
917 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
918         {MSR_SF,        "SF"},
919         {MSR_HV,        "HV"},
920 #endif
921         {MSR_VEC,       "VEC"},
922         {MSR_VSX,       "VSX"},
923 #ifdef CONFIG_BOOKE
924         {MSR_CE,        "CE"},
925 #endif
926         {MSR_EE,        "EE"},
927         {MSR_PR,        "PR"},
928         {MSR_FP,        "FP"},
929         {MSR_ME,        "ME"},
930 #ifdef CONFIG_BOOKE
931         {MSR_DE,        "DE"},
932 #else
933         {MSR_SE,        "SE"},
934         {MSR_BE,        "BE"},
935 #endif
936         {MSR_IR,        "IR"},
937         {MSR_DR,        "DR"},
938         {MSR_PMM,       "PMM"},
939 #ifndef CONFIG_BOOKE
940         {MSR_RI,        "RI"},
941         {MSR_LE,        "LE"},
942 #endif
943         {0,             NULL}
944 };
945
946 static void printbits(unsigned long val, struct regbit *bits)
947 {
948         const char *sep = "";
949
950         printk("<");
951         for (; bits->bit; ++bits)
952                 if (val & bits->bit) {
953                         printk("%s%s", sep, bits->name);
954                         sep = ",";
955                 }
956         printk(">");
957 }
958
959 #ifdef CONFIG_PPC64
960 #define REG             "%016lx"
961 #define REGS_PER_LINE   4
962 #define LAST_VOLATILE   13
963 #else
964 #define REG             "%08lx"
965 #define REGS_PER_LINE   8
966 #define LAST_VOLATILE   12
967 #endif
968
969 void show_regs(struct pt_regs * regs)
970 {
971         int i, trap;
972
973         show_regs_print_info(KERN_DEFAULT);
974
975         printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
976                regs->nip, regs->link, regs->ctr);
977         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
978                regs, regs->trap, print_tainted(), init_utsname()->release);
979         printk("MSR: "REG" ", regs->msr);
980         printbits(regs->msr, msr_bits);
981         printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
982         trap = TRAP(regs);
983         if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
984                 printk("CFAR: "REG" ", regs->orig_gpr3);
985         if (trap == 0x200 || trap == 0x300 || trap == 0x600)
986 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
987                 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
988 #else
989                 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
990 #endif
991 #ifdef CONFIG_PPC64
992         printk("SOFTE: %ld ", regs->softe);
993 #endif
994 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
995         if (MSR_TM_ACTIVE(regs->msr))
996                 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
997 #endif
998
999         for (i = 0;  i < 32;  i++) {
1000                 if ((i % REGS_PER_LINE) == 0)
1001                         printk("\nGPR%02d: ", i);
1002                 printk(REG " ", regs->gpr[i]);
1003                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1004                         break;
1005         }
1006         printk("\n");
1007 #ifdef CONFIG_KALLSYMS
1008         /*
1009          * Lookup NIP late so we have the best change of getting the
1010          * above info out without failing
1011          */
1012         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1013         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1014 #endif
1015         show_stack(current, (unsigned long *) regs->gpr[1]);
1016         if (!user_mode(regs))
1017                 show_instructions(regs);
1018 }
1019
1020 void exit_thread(void)
1021 {
1022         discard_lazy_cpu_state();
1023 }
1024
1025 void flush_thread(void)
1026 {
1027         discard_lazy_cpu_state();
1028
1029 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1030         flush_ptrace_hw_breakpoint(current);
1031 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1032         set_debug_reg_defaults(&current->thread);
1033 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1034 }
1035
1036 void
1037 release_thread(struct task_struct *t)
1038 {
1039 }
1040
1041 /*
1042  * this gets called so that we can store coprocessor state into memory and
1043  * copy the current task into the new thread.
1044  */
1045 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1046 {
1047         flush_fp_to_thread(src);
1048         flush_altivec_to_thread(src);
1049         flush_vsx_to_thread(src);
1050         flush_spe_to_thread(src);
1051
1052         *dst = *src;
1053
1054         clear_task_ebb(dst);
1055
1056         return 0;
1057 }
1058
1059 /*
1060  * Copy a thread..
1061  */
1062 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
1063
1064 int copy_thread(unsigned long clone_flags, unsigned long usp,
1065                 unsigned long arg, struct task_struct *p)
1066 {
1067         struct pt_regs *childregs, *kregs;
1068         extern void ret_from_fork(void);
1069         extern void ret_from_kernel_thread(void);
1070         void (*f)(void);
1071         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1072
1073         /* Copy registers */
1074         sp -= sizeof(struct pt_regs);
1075         childregs = (struct pt_regs *) sp;
1076         if (unlikely(p->flags & PF_KTHREAD)) {
1077                 struct thread_info *ti = (void *)task_stack_page(p);
1078                 memset(childregs, 0, sizeof(struct pt_regs));
1079                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1080                 childregs->gpr[14] = usp;       /* function */
1081 #ifdef CONFIG_PPC64
1082                 clear_tsk_thread_flag(p, TIF_32BIT);
1083                 childregs->softe = 1;
1084 #endif
1085                 childregs->gpr[15] = arg;
1086                 p->thread.regs = NULL;  /* no user register state */
1087                 ti->flags |= _TIF_RESTOREALL;
1088                 f = ret_from_kernel_thread;
1089         } else {
1090                 struct pt_regs *regs = current_pt_regs();
1091                 CHECK_FULL_REGS(regs);
1092                 *childregs = *regs;
1093                 if (usp)
1094                         childregs->gpr[1] = usp;
1095                 p->thread.regs = childregs;
1096                 childregs->gpr[3] = 0;  /* Result from fork() */
1097                 if (clone_flags & CLONE_SETTLS) {
1098 #ifdef CONFIG_PPC64
1099                         if (!is_32bit_task())
1100                                 childregs->gpr[13] = childregs->gpr[6];
1101                         else
1102 #endif
1103                                 childregs->gpr[2] = childregs->gpr[6];
1104                 }
1105
1106                 f = ret_from_fork;
1107         }
1108         sp -= STACK_FRAME_OVERHEAD;
1109
1110         /*
1111          * The way this works is that at some point in the future
1112          * some task will call _switch to switch to the new task.
1113          * That will pop off the stack frame created below and start
1114          * the new task running at ret_from_fork.  The new task will
1115          * do some house keeping and then return from the fork or clone
1116          * system call, using the stack frame created above.
1117          */
1118         ((unsigned long *)sp)[0] = 0;
1119         sp -= sizeof(struct pt_regs);
1120         kregs = (struct pt_regs *) sp;
1121         sp -= STACK_FRAME_OVERHEAD;
1122         p->thread.ksp = sp;
1123 #ifdef CONFIG_PPC32
1124         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1125                                 _ALIGN_UP(sizeof(struct thread_info), 16);
1126 #endif
1127 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1128         p->thread.ptrace_bps[0] = NULL;
1129 #endif
1130
1131         p->thread.fp_save_area = NULL;
1132 #ifdef CONFIG_ALTIVEC
1133         p->thread.vr_save_area = NULL;
1134 #endif
1135
1136 #ifdef CONFIG_PPC_STD_MMU_64
1137         if (mmu_has_feature(MMU_FTR_SLB)) {
1138                 unsigned long sp_vsid;
1139                 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1140
1141                 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1142                         sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1143                                 << SLB_VSID_SHIFT_1T;
1144                 else
1145                         sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1146                                 << SLB_VSID_SHIFT;
1147                 sp_vsid |= SLB_VSID_KERNEL | llp;
1148                 p->thread.ksp_vsid = sp_vsid;
1149         }
1150 #endif /* CONFIG_PPC_STD_MMU_64 */
1151 #ifdef CONFIG_PPC64 
1152         if (cpu_has_feature(CPU_FTR_DSCR)) {
1153                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1154                 p->thread.dscr = current->thread.dscr;
1155         }
1156         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1157                 p->thread.ppr = INIT_PPR;
1158 #endif
1159         /*
1160          * The PPC64 ABI makes use of a TOC to contain function 
1161          * pointers.  The function (ret_from_except) is actually a pointer
1162          * to the TOC entry.  The first entry is a pointer to the actual
1163          * function.
1164          */
1165 #ifdef CONFIG_PPC64
1166         kregs->nip = *((unsigned long *)f);
1167 #else
1168         kregs->nip = (unsigned long)f;
1169 #endif
1170         return 0;
1171 }
1172
1173 /*
1174  * Set up a thread for executing a new program
1175  */
1176 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1177 {
1178 #ifdef CONFIG_PPC64
1179         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1180 #endif
1181
1182         /*
1183          * If we exec out of a kernel thread then thread.regs will not be
1184          * set.  Do it now.
1185          */
1186         if (!current->thread.regs) {
1187                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1188                 current->thread.regs = regs - 1;
1189         }
1190
1191         memset(regs->gpr, 0, sizeof(regs->gpr));
1192         regs->ctr = 0;
1193         regs->link = 0;
1194         regs->xer = 0;
1195         regs->ccr = 0;
1196         regs->gpr[1] = sp;
1197
1198         /*
1199          * We have just cleared all the nonvolatile GPRs, so make
1200          * FULL_REGS(regs) return true.  This is necessary to allow
1201          * ptrace to examine the thread immediately after exec.
1202          */
1203         regs->trap &= ~1UL;
1204
1205 #ifdef CONFIG_PPC32
1206         regs->mq = 0;
1207         regs->nip = start;
1208         regs->msr = MSR_USER;
1209 #else
1210         if (!is_32bit_task()) {
1211                 unsigned long entry;
1212
1213                 if (is_elf2_task()) {
1214                         /* Look ma, no function descriptors! */
1215                         entry = start;
1216
1217                         /*
1218                          * Ulrich says:
1219                          *   The latest iteration of the ABI requires that when
1220                          *   calling a function (at its global entry point),
1221                          *   the caller must ensure r12 holds the entry point
1222                          *   address (so that the function can quickly
1223                          *   establish addressability).
1224                          */
1225                         regs->gpr[12] = start;
1226                         /* Make sure that's restored on entry to userspace. */
1227                         set_thread_flag(TIF_RESTOREALL);
1228                 } else {
1229                         unsigned long toc;
1230
1231                         /* start is a relocated pointer to the function
1232                          * descriptor for the elf _start routine.  The first
1233                          * entry in the function descriptor is the entry
1234                          * address of _start and the second entry is the TOC
1235                          * value we need to use.
1236                          */
1237                         __get_user(entry, (unsigned long __user *)start);
1238                         __get_user(toc, (unsigned long __user *)start+1);
1239
1240                         /* Check whether the e_entry function descriptor entries
1241                          * need to be relocated before we can use them.
1242                          */
1243                         if (load_addr != 0) {
1244                                 entry += load_addr;
1245                                 toc   += load_addr;
1246                         }
1247                         regs->gpr[2] = toc;
1248                 }
1249                 regs->nip = entry;
1250                 regs->msr = MSR_USER64;
1251         } else {
1252                 regs->nip = start;
1253                 regs->gpr[2] = 0;
1254                 regs->msr = MSR_USER32;
1255         }
1256 #endif
1257         discard_lazy_cpu_state();
1258 #ifdef CONFIG_VSX
1259         current->thread.used_vsr = 0;
1260 #endif
1261         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1262         current->thread.fp_save_area = NULL;
1263 #ifdef CONFIG_ALTIVEC
1264         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1265         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1266         current->thread.vr_save_area = NULL;
1267         current->thread.vrsave = 0;
1268         current->thread.used_vr = 0;
1269 #endif /* CONFIG_ALTIVEC */
1270 #ifdef CONFIG_SPE
1271         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1272         current->thread.acc = 0;
1273         current->thread.spefscr = 0;
1274         current->thread.used_spe = 0;
1275 #endif /* CONFIG_SPE */
1276 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1277         if (cpu_has_feature(CPU_FTR_TM))
1278                 regs->msr |= MSR_TM;
1279         current->thread.tm_tfhar = 0;
1280         current->thread.tm_texasr = 0;
1281         current->thread.tm_tfiar = 0;
1282 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1283 }
1284
1285 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1286                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1287
1288 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1289 {
1290         struct pt_regs *regs = tsk->thread.regs;
1291
1292         /* This is a bit hairy.  If we are an SPE enabled  processor
1293          * (have embedded fp) we store the IEEE exception enable flags in
1294          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1295          * mode (asyn, precise, disabled) for 'Classic' FP. */
1296         if (val & PR_FP_EXC_SW_ENABLE) {
1297 #ifdef CONFIG_SPE
1298                 if (cpu_has_feature(CPU_FTR_SPE)) {
1299                         /*
1300                          * When the sticky exception bits are set
1301                          * directly by userspace, it must call prctl
1302                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1303                          * in the existing prctl settings) or
1304                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1305                          * the bits being set).  <fenv.h> functions
1306                          * saving and restoring the whole
1307                          * floating-point environment need to do so
1308                          * anyway to restore the prctl settings from
1309                          * the saved environment.
1310                          */
1311                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1312                         tsk->thread.fpexc_mode = val &
1313                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1314                         return 0;
1315                 } else {
1316                         return -EINVAL;
1317                 }
1318 #else
1319                 return -EINVAL;
1320 #endif
1321         }
1322
1323         /* on a CONFIG_SPE this does not hurt us.  The bits that
1324          * __pack_fe01 use do not overlap with bits used for
1325          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1326          * on CONFIG_SPE implementations are reserved so writing to
1327          * them does not change anything */
1328         if (val > PR_FP_EXC_PRECISE)
1329                 return -EINVAL;
1330         tsk->thread.fpexc_mode = __pack_fe01(val);
1331         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1332                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1333                         | tsk->thread.fpexc_mode;
1334         return 0;
1335 }
1336
1337 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1338 {
1339         unsigned int val;
1340
1341         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1342 #ifdef CONFIG_SPE
1343                 if (cpu_has_feature(CPU_FTR_SPE)) {
1344                         /*
1345                          * When the sticky exception bits are set
1346                          * directly by userspace, it must call prctl
1347                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1348                          * in the existing prctl settings) or
1349                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1350                          * the bits being set).  <fenv.h> functions
1351                          * saving and restoring the whole
1352                          * floating-point environment need to do so
1353                          * anyway to restore the prctl settings from
1354                          * the saved environment.
1355                          */
1356                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1357                         val = tsk->thread.fpexc_mode;
1358                 } else
1359                         return -EINVAL;
1360 #else
1361                 return -EINVAL;
1362 #endif
1363         else
1364                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1365         return put_user(val, (unsigned int __user *) adr);
1366 }
1367
1368 int set_endian(struct task_struct *tsk, unsigned int val)
1369 {
1370         struct pt_regs *regs = tsk->thread.regs;
1371
1372         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1373             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1374                 return -EINVAL;
1375
1376         if (regs == NULL)
1377                 return -EINVAL;
1378
1379         if (val == PR_ENDIAN_BIG)
1380                 regs->msr &= ~MSR_LE;
1381         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1382                 regs->msr |= MSR_LE;
1383         else
1384                 return -EINVAL;
1385
1386         return 0;
1387 }
1388
1389 int get_endian(struct task_struct *tsk, unsigned long adr)
1390 {
1391         struct pt_regs *regs = tsk->thread.regs;
1392         unsigned int val;
1393
1394         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1395             !cpu_has_feature(CPU_FTR_REAL_LE))
1396                 return -EINVAL;
1397
1398         if (regs == NULL)
1399                 return -EINVAL;
1400
1401         if (regs->msr & MSR_LE) {
1402                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1403                         val = PR_ENDIAN_LITTLE;
1404                 else
1405                         val = PR_ENDIAN_PPC_LITTLE;
1406         } else
1407                 val = PR_ENDIAN_BIG;
1408
1409         return put_user(val, (unsigned int __user *)adr);
1410 }
1411
1412 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1413 {
1414         tsk->thread.align_ctl = val;
1415         return 0;
1416 }
1417
1418 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1419 {
1420         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1421 }
1422
1423 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1424                                   unsigned long nbytes)
1425 {
1426         unsigned long stack_page;
1427         unsigned long cpu = task_cpu(p);
1428
1429         /*
1430          * Avoid crashing if the stack has overflowed and corrupted
1431          * task_cpu(p), which is in the thread_info struct.
1432          */
1433         if (cpu < NR_CPUS && cpu_possible(cpu)) {
1434                 stack_page = (unsigned long) hardirq_ctx[cpu];
1435                 if (sp >= stack_page + sizeof(struct thread_struct)
1436                     && sp <= stack_page + THREAD_SIZE - nbytes)
1437                         return 1;
1438
1439                 stack_page = (unsigned long) softirq_ctx[cpu];
1440                 if (sp >= stack_page + sizeof(struct thread_struct)
1441                     && sp <= stack_page + THREAD_SIZE - nbytes)
1442                         return 1;
1443         }
1444         return 0;
1445 }
1446
1447 int validate_sp(unsigned long sp, struct task_struct *p,
1448                        unsigned long nbytes)
1449 {
1450         unsigned long stack_page = (unsigned long)task_stack_page(p);
1451
1452         if (sp >= stack_page + sizeof(struct thread_struct)
1453             && sp <= stack_page + THREAD_SIZE - nbytes)
1454                 return 1;
1455
1456         return valid_irq_stack(sp, p, nbytes);
1457 }
1458
1459 EXPORT_SYMBOL(validate_sp);
1460
1461 unsigned long get_wchan(struct task_struct *p)
1462 {
1463         unsigned long ip, sp;
1464         int count = 0;
1465
1466         if (!p || p == current || p->state == TASK_RUNNING)
1467                 return 0;
1468
1469         sp = p->thread.ksp;
1470         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1471                 return 0;
1472
1473         do {
1474                 sp = *(unsigned long *)sp;
1475                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1476                         return 0;
1477                 if (count > 0) {
1478                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1479                         if (!in_sched_functions(ip))
1480                                 return ip;
1481                 }
1482         } while (count++ < 16);
1483         return 0;
1484 }
1485
1486 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1487
1488 void show_stack(struct task_struct *tsk, unsigned long *stack)
1489 {
1490         unsigned long sp, ip, lr, newsp;
1491         int count = 0;
1492         int firstframe = 1;
1493 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1494         int curr_frame = current->curr_ret_stack;
1495         extern void return_to_handler(void);
1496         unsigned long rth = (unsigned long)return_to_handler;
1497         unsigned long mrth = -1;
1498 #ifdef CONFIG_PPC64
1499         extern void mod_return_to_handler(void);
1500         rth = *(unsigned long *)rth;
1501         mrth = (unsigned long)mod_return_to_handler;
1502         mrth = *(unsigned long *)mrth;
1503 #endif
1504 #endif
1505
1506         sp = (unsigned long) stack;
1507         if (tsk == NULL)
1508                 tsk = current;
1509         if (sp == 0) {
1510                 if (tsk == current)
1511                         asm("mr %0,1" : "=r" (sp));
1512                 else
1513                         sp = tsk->thread.ksp;
1514         }
1515
1516         lr = 0;
1517         printk("Call Trace:\n");
1518         do {
1519                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1520                         return;
1521
1522                 stack = (unsigned long *) sp;
1523                 newsp = stack[0];
1524                 ip = stack[STACK_FRAME_LR_SAVE];
1525                 if (!firstframe || ip != lr) {
1526                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1527 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1528                         if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1529                                 printk(" (%pS)",
1530                                        (void *)current->ret_stack[curr_frame].ret);
1531                                 curr_frame--;
1532                         }
1533 #endif
1534                         if (firstframe)
1535                                 printk(" (unreliable)");
1536                         printk("\n");
1537                 }
1538                 firstframe = 0;
1539
1540                 /*
1541                  * See if this is an exception frame.
1542                  * We look for the "regshere" marker in the current frame.
1543                  */
1544                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1545                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1546                         struct pt_regs *regs = (struct pt_regs *)
1547                                 (sp + STACK_FRAME_OVERHEAD);
1548                         lr = regs->link;
1549                         printk("--- Exception: %lx at %pS\n    LR = %pS\n",
1550                                regs->trap, (void *)regs->nip, (void *)lr);
1551                         firstframe = 1;
1552                 }
1553
1554                 sp = newsp;
1555         } while (count++ < kstack_depth_to_print);
1556 }
1557
1558 #ifdef CONFIG_PPC64
1559 /* Called with hard IRQs off */
1560 void notrace __ppc64_runlatch_on(void)
1561 {
1562         struct thread_info *ti = current_thread_info();
1563         unsigned long ctrl;
1564
1565         ctrl = mfspr(SPRN_CTRLF);
1566         ctrl |= CTRL_RUNLATCH;
1567         mtspr(SPRN_CTRLT, ctrl);
1568
1569         ti->local_flags |= _TLF_RUNLATCH;
1570 }
1571
1572 /* Called with hard IRQs off */
1573 void notrace __ppc64_runlatch_off(void)
1574 {
1575         struct thread_info *ti = current_thread_info();
1576         unsigned long ctrl;
1577
1578         ti->local_flags &= ~_TLF_RUNLATCH;
1579
1580         ctrl = mfspr(SPRN_CTRLF);
1581         ctrl &= ~CTRL_RUNLATCH;
1582         mtspr(SPRN_CTRLT, ctrl);
1583 }
1584 #endif /* CONFIG_PPC64 */
1585
1586 unsigned long arch_align_stack(unsigned long sp)
1587 {
1588         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1589                 sp -= get_random_int() & ~PAGE_MASK;
1590         return sp & ~0xf;
1591 }
1592
1593 static inline unsigned long brk_rnd(void)
1594 {
1595         unsigned long rnd = 0;
1596
1597         /* 8MB for 32bit, 1GB for 64bit */
1598         if (is_32bit_task())
1599                 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1600         else
1601                 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1602
1603         return rnd << PAGE_SHIFT;
1604 }
1605
1606 unsigned long arch_randomize_brk(struct mm_struct *mm)
1607 {
1608         unsigned long base = mm->brk;
1609         unsigned long ret;
1610
1611 #ifdef CONFIG_PPC_STD_MMU_64
1612         /*
1613          * If we are using 1TB segments and we are allowed to randomise
1614          * the heap, we can put it above 1TB so it is backed by a 1TB
1615          * segment. Otherwise the heap will be in the bottom 1TB
1616          * which always uses 256MB segments and this may result in a
1617          * performance penalty.
1618          */
1619         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1620                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1621 #endif
1622
1623         ret = PAGE_ALIGN(base + brk_rnd());
1624
1625         if (ret < mm->brk)
1626                 return mm->brk;
1627
1628         return ret;
1629 }
1630
1631 unsigned long randomize_et_dyn(unsigned long base)
1632 {
1633         unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1634
1635         if (ret < base)
1636                 return base;
1637
1638         return ret;
1639 }