]> Pileus Git - ~andy/linux/blob - arch/arm64/kernel/perf_event.c
12e6ccb88691c65e6a20d761275babb1af369182
[~andy/linux] / arch / arm64 / kernel / perf_event.c
1 /*
2  * PMU support
3  *
4  * Copyright (C) 2012 ARM Limited
5  * Author: Will Deacon <will.deacon@arm.com>
6  *
7  * This code is based heavily on the ARMv7 perf event code.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 #define pr_fmt(fmt) "hw perfevents: " fmt
22
23 #include <linux/bitmap.h>
24 #include <linux/interrupt.h>
25 #include <linux/kernel.h>
26 #include <linux/export.h>
27 #include <linux/perf_event.h>
28 #include <linux/platform_device.h>
29 #include <linux/spinlock.h>
30 #include <linux/uaccess.h>
31
32 #include <asm/cputype.h>
33 #include <asm/irq.h>
34 #include <asm/irq_regs.h>
35 #include <asm/pmu.h>
36 #include <asm/stacktrace.h>
37
38 /*
39  * ARMv8 supports a maximum of 32 events.
40  * The cycle counter is included in this total.
41  */
42 #define ARMPMU_MAX_HWEVENTS             32
43
44 static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
45 static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
46 static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
47
48 #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
49
50 /* Set at runtime when we know what CPU type we are. */
51 static struct arm_pmu *cpu_pmu;
52
53 int
54 armpmu_get_max_events(void)
55 {
56         int max_events = 0;
57
58         if (cpu_pmu != NULL)
59                 max_events = cpu_pmu->num_events;
60
61         return max_events;
62 }
63 EXPORT_SYMBOL_GPL(armpmu_get_max_events);
64
65 int perf_num_counters(void)
66 {
67         return armpmu_get_max_events();
68 }
69 EXPORT_SYMBOL_GPL(perf_num_counters);
70
71 #define HW_OP_UNSUPPORTED               0xFFFF
72
73 #define C(_x) \
74         PERF_COUNT_HW_CACHE_##_x
75
76 #define CACHE_OP_UNSUPPORTED            0xFFFF
77
78 static int
79 armpmu_map_cache_event(const unsigned (*cache_map)
80                                       [PERF_COUNT_HW_CACHE_MAX]
81                                       [PERF_COUNT_HW_CACHE_OP_MAX]
82                                       [PERF_COUNT_HW_CACHE_RESULT_MAX],
83                        u64 config)
84 {
85         unsigned int cache_type, cache_op, cache_result, ret;
86
87         cache_type = (config >>  0) & 0xff;
88         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
89                 return -EINVAL;
90
91         cache_op = (config >>  8) & 0xff;
92         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
93                 return -EINVAL;
94
95         cache_result = (config >> 16) & 0xff;
96         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
97                 return -EINVAL;
98
99         ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
100
101         if (ret == CACHE_OP_UNSUPPORTED)
102                 return -ENOENT;
103
104         return ret;
105 }
106
107 static int
108 armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
109 {
110         int mapping;
111
112         if (config >= PERF_COUNT_HW_MAX)
113                 return -EINVAL;
114
115         mapping = (*event_map)[config];
116         return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
117 }
118
119 static int
120 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
121 {
122         return (int)(config & raw_event_mask);
123 }
124
125 static int map_cpu_event(struct perf_event *event,
126                          const unsigned (*event_map)[PERF_COUNT_HW_MAX],
127                          const unsigned (*cache_map)
128                                         [PERF_COUNT_HW_CACHE_MAX]
129                                         [PERF_COUNT_HW_CACHE_OP_MAX]
130                                         [PERF_COUNT_HW_CACHE_RESULT_MAX],
131                          u32 raw_event_mask)
132 {
133         u64 config = event->attr.config;
134
135         switch (event->attr.type) {
136         case PERF_TYPE_HARDWARE:
137                 return armpmu_map_event(event_map, config);
138         case PERF_TYPE_HW_CACHE:
139                 return armpmu_map_cache_event(cache_map, config);
140         case PERF_TYPE_RAW:
141                 return armpmu_map_raw_event(raw_event_mask, config);
142         }
143
144         return -ENOENT;
145 }
146
147 int
148 armpmu_event_set_period(struct perf_event *event,
149                         struct hw_perf_event *hwc,
150                         int idx)
151 {
152         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
153         s64 left = local64_read(&hwc->period_left);
154         s64 period = hwc->sample_period;
155         int ret = 0;
156
157         if (unlikely(left <= -period)) {
158                 left = period;
159                 local64_set(&hwc->period_left, left);
160                 hwc->last_period = period;
161                 ret = 1;
162         }
163
164         if (unlikely(left <= 0)) {
165                 left += period;
166                 local64_set(&hwc->period_left, left);
167                 hwc->last_period = period;
168                 ret = 1;
169         }
170
171         if (left > (s64)armpmu->max_period)
172                 left = armpmu->max_period;
173
174         local64_set(&hwc->prev_count, (u64)-left);
175
176         armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
177
178         perf_event_update_userpage(event);
179
180         return ret;
181 }
182
183 u64
184 armpmu_event_update(struct perf_event *event,
185                     struct hw_perf_event *hwc,
186                     int idx)
187 {
188         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
189         u64 delta, prev_raw_count, new_raw_count;
190
191 again:
192         prev_raw_count = local64_read(&hwc->prev_count);
193         new_raw_count = armpmu->read_counter(idx);
194
195         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
196                              new_raw_count) != prev_raw_count)
197                 goto again;
198
199         delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
200
201         local64_add(delta, &event->count);
202         local64_sub(delta, &hwc->period_left);
203
204         return new_raw_count;
205 }
206
207 static void
208 armpmu_read(struct perf_event *event)
209 {
210         struct hw_perf_event *hwc = &event->hw;
211
212         /* Don't read disabled counters! */
213         if (hwc->idx < 0)
214                 return;
215
216         armpmu_event_update(event, hwc, hwc->idx);
217 }
218
219 static void
220 armpmu_stop(struct perf_event *event, int flags)
221 {
222         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
223         struct hw_perf_event *hwc = &event->hw;
224
225         /*
226          * ARM pmu always has to update the counter, so ignore
227          * PERF_EF_UPDATE, see comments in armpmu_start().
228          */
229         if (!(hwc->state & PERF_HES_STOPPED)) {
230                 armpmu->disable(hwc, hwc->idx);
231                 barrier(); /* why? */
232                 armpmu_event_update(event, hwc, hwc->idx);
233                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
234         }
235 }
236
237 static void
238 armpmu_start(struct perf_event *event, int flags)
239 {
240         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
241         struct hw_perf_event *hwc = &event->hw;
242
243         /*
244          * ARM pmu always has to reprogram the period, so ignore
245          * PERF_EF_RELOAD, see the comment below.
246          */
247         if (flags & PERF_EF_RELOAD)
248                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
249
250         hwc->state = 0;
251         /*
252          * Set the period again. Some counters can't be stopped, so when we
253          * were stopped we simply disabled the IRQ source and the counter
254          * may have been left counting. If we don't do this step then we may
255          * get an interrupt too soon or *way* too late if the overflow has
256          * happened since disabling.
257          */
258         armpmu_event_set_period(event, hwc, hwc->idx);
259         armpmu->enable(hwc, hwc->idx);
260 }
261
262 static void
263 armpmu_del(struct perf_event *event, int flags)
264 {
265         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
266         struct pmu_hw_events *hw_events = armpmu->get_hw_events();
267         struct hw_perf_event *hwc = &event->hw;
268         int idx = hwc->idx;
269
270         WARN_ON(idx < 0);
271
272         armpmu_stop(event, PERF_EF_UPDATE);
273         hw_events->events[idx] = NULL;
274         clear_bit(idx, hw_events->used_mask);
275
276         perf_event_update_userpage(event);
277 }
278
279 static int
280 armpmu_add(struct perf_event *event, int flags)
281 {
282         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
283         struct pmu_hw_events *hw_events = armpmu->get_hw_events();
284         struct hw_perf_event *hwc = &event->hw;
285         int idx;
286         int err = 0;
287
288         perf_pmu_disable(event->pmu);
289
290         /* If we don't have a space for the counter then finish early. */
291         idx = armpmu->get_event_idx(hw_events, hwc);
292         if (idx < 0) {
293                 err = idx;
294                 goto out;
295         }
296
297         /*
298          * If there is an event in the counter we are going to use then make
299          * sure it is disabled.
300          */
301         event->hw.idx = idx;
302         armpmu->disable(hwc, idx);
303         hw_events->events[idx] = event;
304
305         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
306         if (flags & PERF_EF_START)
307                 armpmu_start(event, PERF_EF_RELOAD);
308
309         /* Propagate our changes to the userspace mapping. */
310         perf_event_update_userpage(event);
311
312 out:
313         perf_pmu_enable(event->pmu);
314         return err;
315 }
316
317 static int
318 validate_event(struct pmu_hw_events *hw_events,
319                struct perf_event *event)
320 {
321         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
322         struct hw_perf_event fake_event = event->hw;
323         struct pmu *leader_pmu = event->group_leader->pmu;
324
325         if (is_software_event(event))
326                 return 1;
327
328         if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
329                 return 1;
330
331         return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
332 }
333
334 static int
335 validate_group(struct perf_event *event)
336 {
337         struct perf_event *sibling, *leader = event->group_leader;
338         struct pmu_hw_events fake_pmu;
339         DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
340
341         /*
342          * Initialise the fake PMU. We only need to populate the
343          * used_mask for the purposes of validation.
344          */
345         memset(fake_used_mask, 0, sizeof(fake_used_mask));
346         fake_pmu.used_mask = fake_used_mask;
347
348         if (!validate_event(&fake_pmu, leader))
349                 return -EINVAL;
350
351         list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
352                 if (!validate_event(&fake_pmu, sibling))
353                         return -EINVAL;
354         }
355
356         if (!validate_event(&fake_pmu, event))
357                 return -EINVAL;
358
359         return 0;
360 }
361
362 static void
363 armpmu_release_hardware(struct arm_pmu *armpmu)
364 {
365         int i, irq, irqs;
366         struct platform_device *pmu_device = armpmu->plat_device;
367
368         irqs = min(pmu_device->num_resources, num_possible_cpus());
369
370         for (i = 0; i < irqs; ++i) {
371                 if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
372                         continue;
373                 irq = platform_get_irq(pmu_device, i);
374                 if (irq >= 0)
375                         free_irq(irq, armpmu);
376         }
377 }
378
379 static int
380 armpmu_reserve_hardware(struct arm_pmu *armpmu)
381 {
382         int i, err, irq, irqs;
383         struct platform_device *pmu_device = armpmu->plat_device;
384
385         if (!pmu_device) {
386                 pr_err("no PMU device registered\n");
387                 return -ENODEV;
388         }
389
390         irqs = min(pmu_device->num_resources, num_possible_cpus());
391         if (irqs < 1) {
392                 pr_err("no irqs for PMUs defined\n");
393                 return -ENODEV;
394         }
395
396         for (i = 0; i < irqs; ++i) {
397                 err = 0;
398                 irq = platform_get_irq(pmu_device, i);
399                 if (irq < 0)
400                         continue;
401
402                 /*
403                  * If we have a single PMU interrupt that we can't shift,
404                  * assume that we're running on a uniprocessor machine and
405                  * continue. Otherwise, continue without this interrupt.
406                  */
407                 if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
408                         pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
409                                     irq, i);
410                         continue;
411                 }
412
413                 err = request_irq(irq, armpmu->handle_irq,
414                                   IRQF_NOBALANCING,
415                                   "arm-pmu", armpmu);
416                 if (err) {
417                         pr_err("unable to request IRQ%d for ARM PMU counters\n",
418                                 irq);
419                         armpmu_release_hardware(armpmu);
420                         return err;
421                 }
422
423                 cpumask_set_cpu(i, &armpmu->active_irqs);
424         }
425
426         return 0;
427 }
428
429 static void
430 hw_perf_event_destroy(struct perf_event *event)
431 {
432         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
433         atomic_t *active_events  = &armpmu->active_events;
434         struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
435
436         if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
437                 armpmu_release_hardware(armpmu);
438                 mutex_unlock(pmu_reserve_mutex);
439         }
440 }
441
442 static int
443 event_requires_mode_exclusion(struct perf_event_attr *attr)
444 {
445         return attr->exclude_idle || attr->exclude_user ||
446                attr->exclude_kernel || attr->exclude_hv;
447 }
448
449 static int
450 __hw_perf_event_init(struct perf_event *event)
451 {
452         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
453         struct hw_perf_event *hwc = &event->hw;
454         int mapping, err;
455
456         mapping = armpmu->map_event(event);
457
458         if (mapping < 0) {
459                 pr_debug("event %x:%llx not supported\n", event->attr.type,
460                          event->attr.config);
461                 return mapping;
462         }
463
464         /*
465          * We don't assign an index until we actually place the event onto
466          * hardware. Use -1 to signify that we haven't decided where to put it
467          * yet. For SMP systems, each core has it's own PMU so we can't do any
468          * clever allocation or constraints checking at this point.
469          */
470         hwc->idx                = -1;
471         hwc->config_base        = 0;
472         hwc->config             = 0;
473         hwc->event_base         = 0;
474
475         /*
476          * Check whether we need to exclude the counter from certain modes.
477          */
478         if ((!armpmu->set_event_filter ||
479              armpmu->set_event_filter(hwc, &event->attr)) &&
480              event_requires_mode_exclusion(&event->attr)) {
481                 pr_debug("ARM performance counters do not support mode exclusion\n");
482                 return -EPERM;
483         }
484
485         /*
486          * Store the event encoding into the config_base field.
487          */
488         hwc->config_base            |= (unsigned long)mapping;
489
490         if (!hwc->sample_period) {
491                 /*
492                  * For non-sampling runs, limit the sample_period to half
493                  * of the counter width. That way, the new counter value
494                  * is far less likely to overtake the previous one unless
495                  * you have some serious IRQ latency issues.
496                  */
497                 hwc->sample_period  = armpmu->max_period >> 1;
498                 hwc->last_period    = hwc->sample_period;
499                 local64_set(&hwc->period_left, hwc->sample_period);
500         }
501
502         err = 0;
503         if (event->group_leader != event) {
504                 err = validate_group(event);
505                 if (err)
506                         return -EINVAL;
507         }
508
509         return err;
510 }
511
512 static int armpmu_event_init(struct perf_event *event)
513 {
514         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
515         int err = 0;
516         atomic_t *active_events = &armpmu->active_events;
517
518         if (armpmu->map_event(event) == -ENOENT)
519                 return -ENOENT;
520
521         event->destroy = hw_perf_event_destroy;
522
523         if (!atomic_inc_not_zero(active_events)) {
524                 mutex_lock(&armpmu->reserve_mutex);
525                 if (atomic_read(active_events) == 0)
526                         err = armpmu_reserve_hardware(armpmu);
527
528                 if (!err)
529                         atomic_inc(active_events);
530                 mutex_unlock(&armpmu->reserve_mutex);
531         }
532
533         if (err)
534                 return err;
535
536         err = __hw_perf_event_init(event);
537         if (err)
538                 hw_perf_event_destroy(event);
539
540         return err;
541 }
542
543 static void armpmu_enable(struct pmu *pmu)
544 {
545         struct arm_pmu *armpmu = to_arm_pmu(pmu);
546         struct pmu_hw_events *hw_events = armpmu->get_hw_events();
547         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
548
549         if (enabled)
550                 armpmu->start();
551 }
552
553 static void armpmu_disable(struct pmu *pmu)
554 {
555         struct arm_pmu *armpmu = to_arm_pmu(pmu);
556         armpmu->stop();
557 }
558
559 static void __init armpmu_init(struct arm_pmu *armpmu)
560 {
561         atomic_set(&armpmu->active_events, 0);
562         mutex_init(&armpmu->reserve_mutex);
563
564         armpmu->pmu = (struct pmu) {
565                 .pmu_enable     = armpmu_enable,
566                 .pmu_disable    = armpmu_disable,
567                 .event_init     = armpmu_event_init,
568                 .add            = armpmu_add,
569                 .del            = armpmu_del,
570                 .start          = armpmu_start,
571                 .stop           = armpmu_stop,
572                 .read           = armpmu_read,
573         };
574 }
575
576 int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type)
577 {
578         armpmu_init(armpmu);
579         return perf_pmu_register(&armpmu->pmu, name, type);
580 }
581
582 /*
583  * ARMv8 PMUv3 Performance Events handling code.
584  * Common event types.
585  */
586 enum armv8_pmuv3_perf_types {
587         /* Required events. */
588         ARMV8_PMUV3_PERFCTR_PMNC_SW_INCR                        = 0x00,
589         ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL                    = 0x03,
590         ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS                    = 0x04,
591         ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED                  = 0x10,
592         ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES                        = 0x11,
593         ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED                      = 0x12,
594
595         /* At least one of the following is required. */
596         ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED                      = 0x08,
597         ARMV8_PMUV3_PERFCTR_OP_SPEC                             = 0x1B,
598
599         /* Common architectural events. */
600         ARMV8_PMUV3_PERFCTR_MEM_READ                            = 0x06,
601         ARMV8_PMUV3_PERFCTR_MEM_WRITE                           = 0x07,
602         ARMV8_PMUV3_PERFCTR_EXC_TAKEN                           = 0x09,
603         ARMV8_PMUV3_PERFCTR_EXC_EXECUTED                        = 0x0A,
604         ARMV8_PMUV3_PERFCTR_CID_WRITE                           = 0x0B,
605         ARMV8_PMUV3_PERFCTR_PC_WRITE                            = 0x0C,
606         ARMV8_PMUV3_PERFCTR_PC_IMM_BRANCH                       = 0x0D,
607         ARMV8_PMUV3_PERFCTR_PC_PROC_RETURN                      = 0x0E,
608         ARMV8_PMUV3_PERFCTR_MEM_UNALIGNED_ACCESS                = 0x0F,
609         ARMV8_PMUV3_PERFCTR_TTBR_WRITE                          = 0x1C,
610
611         /* Common microarchitectural events. */
612         ARMV8_PMUV3_PERFCTR_L1_ICACHE_REFILL                    = 0x01,
613         ARMV8_PMUV3_PERFCTR_ITLB_REFILL                         = 0x02,
614         ARMV8_PMUV3_PERFCTR_DTLB_REFILL                         = 0x05,
615         ARMV8_PMUV3_PERFCTR_MEM_ACCESS                          = 0x13,
616         ARMV8_PMUV3_PERFCTR_L1_ICACHE_ACCESS                    = 0x14,
617         ARMV8_PMUV3_PERFCTR_L1_DCACHE_WB                        = 0x15,
618         ARMV8_PMUV3_PERFCTR_L2_CACHE_ACCESS                     = 0x16,
619         ARMV8_PMUV3_PERFCTR_L2_CACHE_REFILL                     = 0x17,
620         ARMV8_PMUV3_PERFCTR_L2_CACHE_WB                         = 0x18,
621         ARMV8_PMUV3_PERFCTR_BUS_ACCESS                          = 0x19,
622         ARMV8_PMUV3_PERFCTR_MEM_ERROR                           = 0x1A,
623         ARMV8_PMUV3_PERFCTR_BUS_CYCLES                          = 0x1D,
624 };
625
626 /* PMUv3 HW events mapping. */
627 static const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = {
628         [PERF_COUNT_HW_CPU_CYCLES]              = ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES,
629         [PERF_COUNT_HW_INSTRUCTIONS]            = ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED,
630         [PERF_COUNT_HW_CACHE_REFERENCES]        = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
631         [PERF_COUNT_HW_CACHE_MISSES]            = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
632         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = HW_OP_UNSUPPORTED,
633         [PERF_COUNT_HW_BRANCH_MISSES]           = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
634         [PERF_COUNT_HW_BUS_CYCLES]              = HW_OP_UNSUPPORTED,
635         [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = HW_OP_UNSUPPORTED,
636         [PERF_COUNT_HW_STALLED_CYCLES_BACKEND]  = HW_OP_UNSUPPORTED,
637 };
638
639 static const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
640                                                 [PERF_COUNT_HW_CACHE_OP_MAX]
641                                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
642         [C(L1D)] = {
643                 [C(OP_READ)] = {
644                         [C(RESULT_ACCESS)]      = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
645                         [C(RESULT_MISS)]        = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
646                 },
647                 [C(OP_WRITE)] = {
648                         [C(RESULT_ACCESS)]      = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
649                         [C(RESULT_MISS)]        = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
650                 },
651                 [C(OP_PREFETCH)] = {
652                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
653                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
654                 },
655         },
656         [C(L1I)] = {
657                 [C(OP_READ)] = {
658                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
659                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
660                 },
661                 [C(OP_WRITE)] = {
662                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
663                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
664                 },
665                 [C(OP_PREFETCH)] = {
666                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
667                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
668                 },
669         },
670         [C(LL)] = {
671                 [C(OP_READ)] = {
672                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
673                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
674                 },
675                 [C(OP_WRITE)] = {
676                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
677                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
678                 },
679                 [C(OP_PREFETCH)] = {
680                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
681                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
682                 },
683         },
684         [C(DTLB)] = {
685                 [C(OP_READ)] = {
686                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
687                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
688                 },
689                 [C(OP_WRITE)] = {
690                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
691                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
692                 },
693                 [C(OP_PREFETCH)] = {
694                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
695                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
696                 },
697         },
698         [C(ITLB)] = {
699                 [C(OP_READ)] = {
700                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
701                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
702                 },
703                 [C(OP_WRITE)] = {
704                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
705                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
706                 },
707                 [C(OP_PREFETCH)] = {
708                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
709                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
710                 },
711         },
712         [C(BPU)] = {
713                 [C(OP_READ)] = {
714                         [C(RESULT_ACCESS)]      = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED,
715                         [C(RESULT_MISS)]        = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
716                 },
717                 [C(OP_WRITE)] = {
718                         [C(RESULT_ACCESS)]      = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED,
719                         [C(RESULT_MISS)]        = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
720                 },
721                 [C(OP_PREFETCH)] = {
722                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
723                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
724                 },
725         },
726         [C(NODE)] = {
727                 [C(OP_READ)] = {
728                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
729                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
730                 },
731                 [C(OP_WRITE)] = {
732                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
733                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
734                 },
735                 [C(OP_PREFETCH)] = {
736                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
737                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
738                 },
739         },
740 };
741
742 /*
743  * Perf Events' indices
744  */
745 #define ARMV8_IDX_CYCLE_COUNTER 0
746 #define ARMV8_IDX_COUNTER0      1
747 #define ARMV8_IDX_COUNTER_LAST  (ARMV8_IDX_CYCLE_COUNTER + cpu_pmu->num_events - 1)
748
749 #define ARMV8_MAX_COUNTERS      32
750 #define ARMV8_COUNTER_MASK      (ARMV8_MAX_COUNTERS - 1)
751
752 /*
753  * ARMv8 low level PMU access
754  */
755
756 /*
757  * Perf Event to low level counters mapping
758  */
759 #define ARMV8_IDX_TO_COUNTER(x) \
760         (((x) - ARMV8_IDX_COUNTER0) & ARMV8_COUNTER_MASK)
761
762 /*
763  * Per-CPU PMCR: config reg
764  */
765 #define ARMV8_PMCR_E            (1 << 0) /* Enable all counters */
766 #define ARMV8_PMCR_P            (1 << 1) /* Reset all counters */
767 #define ARMV8_PMCR_C            (1 << 2) /* Cycle counter reset */
768 #define ARMV8_PMCR_D            (1 << 3) /* CCNT counts every 64th cpu cycle */
769 #define ARMV8_PMCR_X            (1 << 4) /* Export to ETM */
770 #define ARMV8_PMCR_DP           (1 << 5) /* Disable CCNT if non-invasive debug*/
771 #define ARMV8_PMCR_N_SHIFT      11       /* Number of counters supported */
772 #define ARMV8_PMCR_N_MASK       0x1f
773 #define ARMV8_PMCR_MASK         0x3f     /* Mask for writable bits */
774
775 /*
776  * PMOVSR: counters overflow flag status reg
777  */
778 #define ARMV8_OVSR_MASK         0xffffffff      /* Mask for writable bits */
779 #define ARMV8_OVERFLOWED_MASK   ARMV8_OVSR_MASK
780
781 /*
782  * PMXEVTYPER: Event selection reg
783  */
784 #define ARMV8_EVTYPE_MASK       0xc00000ff      /* Mask for writable bits */
785 #define ARMV8_EVTYPE_EVENT      0xff            /* Mask for EVENT bits */
786
787 /*
788  * Event filters for PMUv3
789  */
790 #define ARMV8_EXCLUDE_EL1       (1 << 31)
791 #define ARMV8_EXCLUDE_EL0       (1 << 30)
792 #define ARMV8_INCLUDE_EL2       (1 << 27)
793
794 static inline u32 armv8pmu_pmcr_read(void)
795 {
796         u32 val;
797         asm volatile("mrs %0, pmcr_el0" : "=r" (val));
798         return val;
799 }
800
801 static inline void armv8pmu_pmcr_write(u32 val)
802 {
803         val &= ARMV8_PMCR_MASK;
804         isb();
805         asm volatile("msr pmcr_el0, %0" :: "r" (val));
806 }
807
808 static inline int armv8pmu_has_overflowed(u32 pmovsr)
809 {
810         return pmovsr & ARMV8_OVERFLOWED_MASK;
811 }
812
813 static inline int armv8pmu_counter_valid(int idx)
814 {
815         return idx >= ARMV8_IDX_CYCLE_COUNTER && idx <= ARMV8_IDX_COUNTER_LAST;
816 }
817
818 static inline int armv8pmu_counter_has_overflowed(u32 pmnc, int idx)
819 {
820         int ret = 0;
821         u32 counter;
822
823         if (!armv8pmu_counter_valid(idx)) {
824                 pr_err("CPU%u checking wrong counter %d overflow status\n",
825                         smp_processor_id(), idx);
826         } else {
827                 counter = ARMV8_IDX_TO_COUNTER(idx);
828                 ret = pmnc & BIT(counter);
829         }
830
831         return ret;
832 }
833
834 static inline int armv8pmu_select_counter(int idx)
835 {
836         u32 counter;
837
838         if (!armv8pmu_counter_valid(idx)) {
839                 pr_err("CPU%u selecting wrong PMNC counter %d\n",
840                         smp_processor_id(), idx);
841                 return -EINVAL;
842         }
843
844         counter = ARMV8_IDX_TO_COUNTER(idx);
845         asm volatile("msr pmselr_el0, %0" :: "r" (counter));
846         isb();
847
848         return idx;
849 }
850
851 static inline u32 armv8pmu_read_counter(int idx)
852 {
853         u32 value = 0;
854
855         if (!armv8pmu_counter_valid(idx))
856                 pr_err("CPU%u reading wrong counter %d\n",
857                         smp_processor_id(), idx);
858         else if (idx == ARMV8_IDX_CYCLE_COUNTER)
859                 asm volatile("mrs %0, pmccntr_el0" : "=r" (value));
860         else if (armv8pmu_select_counter(idx) == idx)
861                 asm volatile("mrs %0, pmxevcntr_el0" : "=r" (value));
862
863         return value;
864 }
865
866 static inline void armv8pmu_write_counter(int idx, u32 value)
867 {
868         if (!armv8pmu_counter_valid(idx))
869                 pr_err("CPU%u writing wrong counter %d\n",
870                         smp_processor_id(), idx);
871         else if (idx == ARMV8_IDX_CYCLE_COUNTER)
872                 asm volatile("msr pmccntr_el0, %0" :: "r" (value));
873         else if (armv8pmu_select_counter(idx) == idx)
874                 asm volatile("msr pmxevcntr_el0, %0" :: "r" (value));
875 }
876
877 static inline void armv8pmu_write_evtype(int idx, u32 val)
878 {
879         if (armv8pmu_select_counter(idx) == idx) {
880                 val &= ARMV8_EVTYPE_MASK;
881                 asm volatile("msr pmxevtyper_el0, %0" :: "r" (val));
882         }
883 }
884
885 static inline int armv8pmu_enable_counter(int idx)
886 {
887         u32 counter;
888
889         if (!armv8pmu_counter_valid(idx)) {
890                 pr_err("CPU%u enabling wrong PMNC counter %d\n",
891                         smp_processor_id(), idx);
892                 return -EINVAL;
893         }
894
895         counter = ARMV8_IDX_TO_COUNTER(idx);
896         asm volatile("msr pmcntenset_el0, %0" :: "r" (BIT(counter)));
897         return idx;
898 }
899
900 static inline int armv8pmu_disable_counter(int idx)
901 {
902         u32 counter;
903
904         if (!armv8pmu_counter_valid(idx)) {
905                 pr_err("CPU%u disabling wrong PMNC counter %d\n",
906                         smp_processor_id(), idx);
907                 return -EINVAL;
908         }
909
910         counter = ARMV8_IDX_TO_COUNTER(idx);
911         asm volatile("msr pmcntenclr_el0, %0" :: "r" (BIT(counter)));
912         return idx;
913 }
914
915 static inline int armv8pmu_enable_intens(int idx)
916 {
917         u32 counter;
918
919         if (!armv8pmu_counter_valid(idx)) {
920                 pr_err("CPU%u enabling wrong PMNC counter IRQ enable %d\n",
921                         smp_processor_id(), idx);
922                 return -EINVAL;
923         }
924
925         counter = ARMV8_IDX_TO_COUNTER(idx);
926         asm volatile("msr pmintenset_el1, %0" :: "r" (BIT(counter)));
927         return idx;
928 }
929
930 static inline int armv8pmu_disable_intens(int idx)
931 {
932         u32 counter;
933
934         if (!armv8pmu_counter_valid(idx)) {
935                 pr_err("CPU%u disabling wrong PMNC counter IRQ enable %d\n",
936                         smp_processor_id(), idx);
937                 return -EINVAL;
938         }
939
940         counter = ARMV8_IDX_TO_COUNTER(idx);
941         asm volatile("msr pmintenclr_el1, %0" :: "r" (BIT(counter)));
942         isb();
943         /* Clear the overflow flag in case an interrupt is pending. */
944         asm volatile("msr pmovsclr_el0, %0" :: "r" (BIT(counter)));
945         isb();
946         return idx;
947 }
948
949 static inline u32 armv8pmu_getreset_flags(void)
950 {
951         u32 value;
952
953         /* Read */
954         asm volatile("mrs %0, pmovsclr_el0" : "=r" (value));
955
956         /* Write to clear flags */
957         value &= ARMV8_OVSR_MASK;
958         asm volatile("msr pmovsclr_el0, %0" :: "r" (value));
959
960         return value;
961 }
962
963 static void armv8pmu_enable_event(struct hw_perf_event *hwc, int idx)
964 {
965         unsigned long flags;
966         struct pmu_hw_events *events = cpu_pmu->get_hw_events();
967
968         /*
969          * Enable counter and interrupt, and set the counter to count
970          * the event that we're interested in.
971          */
972         raw_spin_lock_irqsave(&events->pmu_lock, flags);
973
974         /*
975          * Disable counter
976          */
977         armv8pmu_disable_counter(idx);
978
979         /*
980          * Set event (if destined for PMNx counters).
981          */
982         armv8pmu_write_evtype(idx, hwc->config_base);
983
984         /*
985          * Enable interrupt for this counter
986          */
987         armv8pmu_enable_intens(idx);
988
989         /*
990          * Enable counter
991          */
992         armv8pmu_enable_counter(idx);
993
994         raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
995 }
996
997 static void armv8pmu_disable_event(struct hw_perf_event *hwc, int idx)
998 {
999         unsigned long flags;
1000         struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1001
1002         /*
1003          * Disable counter and interrupt
1004          */
1005         raw_spin_lock_irqsave(&events->pmu_lock, flags);
1006
1007         /*
1008          * Disable counter
1009          */
1010         armv8pmu_disable_counter(idx);
1011
1012         /*
1013          * Disable interrupt for this counter
1014          */
1015         armv8pmu_disable_intens(idx);
1016
1017         raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1018 }
1019
1020 static irqreturn_t armv8pmu_handle_irq(int irq_num, void *dev)
1021 {
1022         u32 pmovsr;
1023         struct perf_sample_data data;
1024         struct pmu_hw_events *cpuc;
1025         struct pt_regs *regs;
1026         int idx;
1027
1028         /*
1029          * Get and reset the IRQ flags
1030          */
1031         pmovsr = armv8pmu_getreset_flags();
1032
1033         /*
1034          * Did an overflow occur?
1035          */
1036         if (!armv8pmu_has_overflowed(pmovsr))
1037                 return IRQ_NONE;
1038
1039         /*
1040          * Handle the counter(s) overflow(s)
1041          */
1042         regs = get_irq_regs();
1043
1044         cpuc = &__get_cpu_var(cpu_hw_events);
1045         for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
1046                 struct perf_event *event = cpuc->events[idx];
1047                 struct hw_perf_event *hwc;
1048
1049                 /* Ignore if we don't have an event. */
1050                 if (!event)
1051                         continue;
1052
1053                 /*
1054                  * We have a single interrupt for all counters. Check that
1055                  * each counter has overflowed before we process it.
1056                  */
1057                 if (!armv8pmu_counter_has_overflowed(pmovsr, idx))
1058                         continue;
1059
1060                 hwc = &event->hw;
1061                 armpmu_event_update(event, hwc, idx);
1062                 perf_sample_data_init(&data, 0, hwc->last_period);
1063                 if (!armpmu_event_set_period(event, hwc, idx))
1064                         continue;
1065
1066                 if (perf_event_overflow(event, &data, regs))
1067                         cpu_pmu->disable(hwc, idx);
1068         }
1069
1070         /*
1071          * Handle the pending perf events.
1072          *
1073          * Note: this call *must* be run with interrupts disabled. For
1074          * platforms that can have the PMU interrupts raised as an NMI, this
1075          * will not work.
1076          */
1077         irq_work_run();
1078
1079         return IRQ_HANDLED;
1080 }
1081
1082 static void armv8pmu_start(void)
1083 {
1084         unsigned long flags;
1085         struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1086
1087         raw_spin_lock_irqsave(&events->pmu_lock, flags);
1088         /* Enable all counters */
1089         armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMCR_E);
1090         raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1091 }
1092
1093 static void armv8pmu_stop(void)
1094 {
1095         unsigned long flags;
1096         struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1097
1098         raw_spin_lock_irqsave(&events->pmu_lock, flags);
1099         /* Disable all counters */
1100         armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMCR_E);
1101         raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1102 }
1103
1104 static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc,
1105                                   struct hw_perf_event *event)
1106 {
1107         int idx;
1108         unsigned long evtype = event->config_base & ARMV8_EVTYPE_EVENT;
1109
1110         /* Always place a cycle counter into the cycle counter. */
1111         if (evtype == ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES) {
1112                 if (test_and_set_bit(ARMV8_IDX_CYCLE_COUNTER, cpuc->used_mask))
1113                         return -EAGAIN;
1114
1115                 return ARMV8_IDX_CYCLE_COUNTER;
1116         }
1117
1118         /*
1119          * For anything other than a cycle counter, try and use
1120          * the events counters
1121          */
1122         for (idx = ARMV8_IDX_COUNTER0; idx < cpu_pmu->num_events; ++idx) {
1123                 if (!test_and_set_bit(idx, cpuc->used_mask))
1124                         return idx;
1125         }
1126
1127         /* The counters are all in use. */
1128         return -EAGAIN;
1129 }
1130
1131 /*
1132  * Add an event filter to a given event. This will only work for PMUv2 PMUs.
1133  */
1134 static int armv8pmu_set_event_filter(struct hw_perf_event *event,
1135                                      struct perf_event_attr *attr)
1136 {
1137         unsigned long config_base = 0;
1138
1139         if (attr->exclude_idle)
1140                 return -EPERM;
1141         if (attr->exclude_user)
1142                 config_base |= ARMV8_EXCLUDE_EL0;
1143         if (attr->exclude_kernel)
1144                 config_base |= ARMV8_EXCLUDE_EL1;
1145         if (!attr->exclude_hv)
1146                 config_base |= ARMV8_INCLUDE_EL2;
1147
1148         /*
1149          * Install the filter into config_base as this is used to
1150          * construct the event type.
1151          */
1152         event->config_base = config_base;
1153
1154         return 0;
1155 }
1156
1157 static void armv8pmu_reset(void *info)
1158 {
1159         u32 idx, nb_cnt = cpu_pmu->num_events;
1160
1161         /* The counter and interrupt enable registers are unknown at reset. */
1162         for (idx = ARMV8_IDX_CYCLE_COUNTER; idx < nb_cnt; ++idx)
1163                 armv8pmu_disable_event(NULL, idx);
1164
1165         /* Initialize & Reset PMNC: C and P bits. */
1166         armv8pmu_pmcr_write(ARMV8_PMCR_P | ARMV8_PMCR_C);
1167
1168         /* Disable access from userspace. */
1169         asm volatile("msr pmuserenr_el0, %0" :: "r" (0));
1170 }
1171
1172 static int armv8_pmuv3_map_event(struct perf_event *event)
1173 {
1174         return map_cpu_event(event, &armv8_pmuv3_perf_map,
1175                                 &armv8_pmuv3_perf_cache_map, 0xFF);
1176 }
1177
1178 static struct arm_pmu armv8pmu = {
1179         .handle_irq             = armv8pmu_handle_irq,
1180         .enable                 = armv8pmu_enable_event,
1181         .disable                = armv8pmu_disable_event,
1182         .read_counter           = armv8pmu_read_counter,
1183         .write_counter          = armv8pmu_write_counter,
1184         .get_event_idx          = armv8pmu_get_event_idx,
1185         .start                  = armv8pmu_start,
1186         .stop                   = armv8pmu_stop,
1187         .reset                  = armv8pmu_reset,
1188         .max_period             = (1LLU << 32) - 1,
1189 };
1190
1191 static u32 __init armv8pmu_read_num_pmnc_events(void)
1192 {
1193         u32 nb_cnt;
1194
1195         /* Read the nb of CNTx counters supported from PMNC */
1196         nb_cnt = (armv8pmu_pmcr_read() >> ARMV8_PMCR_N_SHIFT) & ARMV8_PMCR_N_MASK;
1197
1198         /* Add the CPU cycles counter and return */
1199         return nb_cnt + 1;
1200 }
1201
1202 static struct arm_pmu *__init armv8_pmuv3_pmu_init(void)
1203 {
1204         armv8pmu.name                   = "arm/armv8-pmuv3";
1205         armv8pmu.map_event              = armv8_pmuv3_map_event;
1206         armv8pmu.num_events             = armv8pmu_read_num_pmnc_events();
1207         armv8pmu.set_event_filter       = armv8pmu_set_event_filter;
1208         return &armv8pmu;
1209 }
1210
1211 /*
1212  * Ensure the PMU has sane values out of reset.
1213  * This requires SMP to be available, so exists as a separate initcall.
1214  */
1215 static int __init
1216 cpu_pmu_reset(void)
1217 {
1218         if (cpu_pmu && cpu_pmu->reset)
1219                 return on_each_cpu(cpu_pmu->reset, NULL, 1);
1220         return 0;
1221 }
1222 arch_initcall(cpu_pmu_reset);
1223
1224 /*
1225  * PMU platform driver and devicetree bindings.
1226  */
1227 static struct of_device_id armpmu_of_device_ids[] = {
1228         {.compatible = "arm,armv8-pmuv3"},
1229         {},
1230 };
1231
1232 static int armpmu_device_probe(struct platform_device *pdev)
1233 {
1234         if (!cpu_pmu)
1235                 return -ENODEV;
1236
1237         cpu_pmu->plat_device = pdev;
1238         return 0;
1239 }
1240
1241 static struct platform_driver armpmu_driver = {
1242         .driver         = {
1243                 .name   = "arm-pmu",
1244                 .of_match_table = armpmu_of_device_ids,
1245         },
1246         .probe          = armpmu_device_probe,
1247 };
1248
1249 static int __init register_pmu_driver(void)
1250 {
1251         return platform_driver_register(&armpmu_driver);
1252 }
1253 device_initcall(register_pmu_driver);
1254
1255 static struct pmu_hw_events *armpmu_get_cpu_events(void)
1256 {
1257         return &__get_cpu_var(cpu_hw_events);
1258 }
1259
1260 static void __init cpu_pmu_init(struct arm_pmu *armpmu)
1261 {
1262         int cpu;
1263         for_each_possible_cpu(cpu) {
1264                 struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
1265                 events->events = per_cpu(hw_events, cpu);
1266                 events->used_mask = per_cpu(used_mask, cpu);
1267                 raw_spin_lock_init(&events->pmu_lock);
1268         }
1269         armpmu->get_hw_events = armpmu_get_cpu_events;
1270 }
1271
1272 static int __init init_hw_perf_events(void)
1273 {
1274         u64 dfr = read_cpuid(ID_AA64DFR0_EL1);
1275
1276         switch ((dfr >> 8) & 0xf) {
1277         case 0x1:       /* PMUv3 */
1278                 cpu_pmu = armv8_pmuv3_pmu_init();
1279                 break;
1280         }
1281
1282         if (cpu_pmu) {
1283                 pr_info("enabled with %s PMU driver, %d counters available\n",
1284                         cpu_pmu->name, cpu_pmu->num_events);
1285                 cpu_pmu_init(cpu_pmu);
1286                 armpmu_register(cpu_pmu, "cpu", PERF_TYPE_RAW);
1287         } else {
1288                 pr_info("no hardware support available\n");
1289         }
1290
1291         return 0;
1292 }
1293 early_initcall(init_hw_perf_events);
1294
1295 /*
1296  * Callchain handling code.
1297  */
1298 struct frame_tail {
1299         struct frame_tail   __user *fp;
1300         unsigned long       lr;
1301 } __attribute__((packed));
1302
1303 /*
1304  * Get the return address for a single stackframe and return a pointer to the
1305  * next frame tail.
1306  */
1307 static struct frame_tail __user *
1308 user_backtrace(struct frame_tail __user *tail,
1309                struct perf_callchain_entry *entry)
1310 {
1311         struct frame_tail buftail;
1312         unsigned long err;
1313
1314         /* Also check accessibility of one struct frame_tail beyond */
1315         if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
1316                 return NULL;
1317
1318         pagefault_disable();
1319         err = __copy_from_user_inatomic(&buftail, tail, sizeof(buftail));
1320         pagefault_enable();
1321
1322         if (err)
1323                 return NULL;
1324
1325         perf_callchain_store(entry, buftail.lr);
1326
1327         /*
1328          * Frame pointers should strictly progress back up the stack
1329          * (towards higher addresses).
1330          */
1331         if (tail >= buftail.fp)
1332                 return NULL;
1333
1334         return buftail.fp;
1335 }
1336
1337 void perf_callchain_user(struct perf_callchain_entry *entry,
1338                          struct pt_regs *regs)
1339 {
1340         struct frame_tail __user *tail;
1341
1342         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1343                 /* We don't support guest os callchain now */
1344                 return;
1345         }
1346
1347         perf_callchain_store(entry, regs->pc);
1348         tail = (struct frame_tail __user *)regs->regs[29];
1349
1350         while (entry->nr < PERF_MAX_STACK_DEPTH &&
1351                tail && !((unsigned long)tail & 0xf))
1352                 tail = user_backtrace(tail, entry);
1353 }
1354
1355 /*
1356  * Gets called by walk_stackframe() for every stackframe. This will be called
1357  * whist unwinding the stackframe and is like a subroutine return so we use
1358  * the PC.
1359  */
1360 static int callchain_trace(struct stackframe *frame, void *data)
1361 {
1362         struct perf_callchain_entry *entry = data;
1363         perf_callchain_store(entry, frame->pc);
1364         return 0;
1365 }
1366
1367 void perf_callchain_kernel(struct perf_callchain_entry *entry,
1368                            struct pt_regs *regs)
1369 {
1370         struct stackframe frame;
1371
1372         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1373                 /* We don't support guest os callchain now */
1374                 return;
1375         }
1376
1377         frame.fp = regs->regs[29];
1378         frame.sp = regs->sp;
1379         frame.pc = regs->pc;
1380         walk_stackframe(&frame, callchain_trace, entry);
1381 }
1382
1383 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1384 {
1385         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1386                 return perf_guest_cbs->get_guest_ip();
1387
1388         return instruction_pointer(regs);
1389 }
1390
1391 unsigned long perf_misc_flags(struct pt_regs *regs)
1392 {
1393         int misc = 0;
1394
1395         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1396                 if (perf_guest_cbs->is_user_mode())
1397                         misc |= PERF_RECORD_MISC_GUEST_USER;
1398                 else
1399                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1400         } else {
1401                 if (user_mode(regs))
1402                         misc |= PERF_RECORD_MISC_USER;
1403                 else
1404                         misc |= PERF_RECORD_MISC_KERNEL;
1405         }
1406
1407         return misc;
1408 }