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One tool for one job?

Those days are dead and gone and the eulogy
was delivered by Perl Python.” -Rob Pike



When to use sed and awk?

When to use sed?
I When you are “editing” a file
I Short programs 1-5 lines

When to use awk?
I When you need to “summarize” a file
I Slightly longer programs 5-50 lines



When not to use them?

I For longer program, use a programming language
I Awk lacks type checking, etc

I For some very simple things
I grep, tr, seq
I Unix shell expansion ${var/from/to}
I Fancy editor commands (vim, emacs)



Sed - simple commands

Example



commands

s regular expression find/replace
y translate characters (like tr)

p, P print out the current line
i, a insert or append text

c change line
n, N read the next line of input
q, Q exit/quit

r, R, w, W read/write files
b, t, T branch to label

d, D delete pattern space
h, H, g, G, x work with the pattern and hold spaces



addresses and ranges

number match a line number
$ the last line

/rege/ match a regular expression (not the same as s///)
first step match every step’th line starting with first

0,addr match every step’th line starting with first
addr,+N address addr and N following lines
addr, N match addr and lines up to a multiple of N



branching

I Can be used for loops
I Skipping when a pattern fails
I I rarely use these



the hold space

I Can be used for loops
I Skipping when a pattern fails
I Can be used like a variable
I Also rarely used



fizz buzz

Example



Awk - simple commands

Example



Command structure

Basic awk scripts consist of patterns and actions
When a pattern matches, the action is executed
Some special patterns: BEGIN, END, BEGINFILE,
ENDFILE

PATTERN { ACTION }
PATTERN { ACTION }



Records and fields

Text is split twice when reading the file
Patterns are matched against records
Fields can be accessed using $N

Records by default, a line, changed using RS
Fields by default, a word ina line, changed using FS



Command line arguments

-v Set a variable (var=val)
-F Change field separator, can also be done from

BEGIN

awk −v ’ var=$VAR’ ’ { s c r i p t }



Awk quirks

I default values are 0, no need for declaration
I string concatonation is implicit



vpaste examples - get param

Example



vpaste examples - cut file

Example



vpaste examples - stat

Example



vpaste examples - head

Example



vpaste examples - cowlife

Example



awk as a programming language

I built-in functions
I user defined functions
I variables
I file i/o
I networking



Variables and arrays



Statements

I if (condition) body [ else body ]
I while (condition) body
I for (i=0; i<10; i++) body
I for (i in array) body
I break, continue
I delete var, delete array[index]
I swtich (expr) case value: body; default: body



Builtin functions

Math atan2, cos, exp, int, log, rand, sin, sqrt, srand
Strings asort, gsub, length, match, split, sprintf

Time mktime, strftime, systime
Bitwise add, or, xor, etc



I/O and networking

I next, nextfile, print, printf
I system, fflush

Reading from files and commands
I getline [var] [<file]
I command | getline [var]
I command |& getline [var]

Writing to files and commands
I print .. > > file
I print .. | command
I print .. |& command



User defined functions

f u n c t i o n sayhi (name, s t r ) {
s t r = " Hel lo , " name " ! ’
p r i n t s t r

}



GNU extensions

Example
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