/* GDK - The GIMP Drawing Kit * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library. If not, see . */ /* * Modified by the GTK+ Team and others 1997-2000. See the AUTHORS * file for a list of people on the GTK+ Team. See the ChangeLog * files for a list of changes. These files are distributed with * GTK+ at ftp://ftp.gtk.org/pub/gtk/. */ #include "config.h" #define GDK_DISABLE_DEPRECATION_WARNINGS 1 #include "gdkmain.h" #include "gdkinternals.h" #include "gdkintl.h" #ifndef HAVE_XCONVERTCASE #include "gdkkeysyms.h" #endif #include #include /** * SECTION:general * @Short_description: Library initialization and miscellaneous functions * @Title: General * * This section describes the GDK initialization functions and miscellaneous * utility functions, as well as deprecation facilities. * * The GDK and GTK+ headers annotate deprecated APIs in a way that produces * compiler warnings if these deprecated APIs are used. The warnings * can be turned off by defining the macro %GDK_DISABLE_DEPRECATION_WARNINGS * before including the glib.h header. * * GDK and GTK+ also provide support for building applications against * defined subsets of deprecated or new APIs. Define the macro * %GDK_VERSION_MIN_REQUIRED to specify up to what version * you want to receive warnings about deprecated APIs. Define the * macro %GDK_VERSION_MAX_ALLOWED to specify the newest version * whose API you want to use. */ /** * GDK_WINDOWING_X11: * * The #GDK_WINDOWING_X11 macro is defined if the X11 backend * is supported. * * Use this macro to guard code that is specific to the X11 backend. */ /** * GDK_WINDOWING_WIN32: * * The #GDK_WINDOWING_WIN32 macro is defined if the Win32 backend * is supported. * * Use this macro to guard code that is specific to the Win32 backend. */ /** * GDK_WINDOWING_QUARTZ: * * The #GDK_WINDOWING_QUARTZ macro is defined if the Quartz backend * is supported. * * Use this macro to guard code that is specific to the Quartz backend. */ /** * GDK_DISABLE_DEPRECATION_WARNINGS: * * A macro that should be defined before including the gdk.h header. * If it is defined, no compiler warnings will be produced for uses * of deprecated GDK APIs. */ typedef struct _GdkPredicate GdkPredicate; struct _GdkPredicate { GdkEventFunc func; gpointer data; }; typedef struct _GdkThreadsDispatch GdkThreadsDispatch; struct _GdkThreadsDispatch { GSourceFunc func; gpointer data; GDestroyNotify destroy; }; /* Private variable declarations */ static int gdk_initialized = 0; /* 1 if the library is initialized, * 0 otherwise. */ static gchar *gdk_progclass = NULL; static GMutex gdk_threads_mutex; static GCallback gdk_threads_lock = NULL; static GCallback gdk_threads_unlock = NULL; #ifdef G_ENABLE_DEBUG static const GDebugKey gdk_debug_keys[] = { {"events", GDK_DEBUG_EVENTS}, {"misc", GDK_DEBUG_MISC}, {"dnd", GDK_DEBUG_DND}, {"xim", GDK_DEBUG_XIM}, {"nograbs", GDK_DEBUG_NOGRABS}, {"input", GDK_DEBUG_INPUT}, {"cursor", GDK_DEBUG_CURSOR}, {"multihead", GDK_DEBUG_MULTIHEAD}, {"xinerama", GDK_DEBUG_XINERAMA}, {"draw", GDK_DEBUG_DRAW}, {"eventloop", GDK_DEBUG_EVENTLOOP}, {"frames", GDK_DEBUG_FRAMES}, {"settings", GDK_DEBUG_SETTINGS} }; static gboolean gdk_arg_debug_cb (const char *key, const char *value, gpointer user_data, GError **error) { guint debug_value = g_parse_debug_string (value, (GDebugKey *) gdk_debug_keys, G_N_ELEMENTS (gdk_debug_keys)); if (debug_value == 0 && value != NULL && strcmp (value, "") != 0) { g_set_error (error, G_OPTION_ERROR, G_OPTION_ERROR_FAILED, _("Error parsing option --gdk-debug")); return FALSE; } _gdk_debug_flags |= debug_value; return TRUE; } static gboolean gdk_arg_no_debug_cb (const char *key, const char *value, gpointer user_data, GError **error) { guint debug_value = g_parse_debug_string (value, (GDebugKey *) gdk_debug_keys, G_N_ELEMENTS (gdk_debug_keys)); if (debug_value == 0 && value != NULL && strcmp (value, "") != 0) { g_set_error (error, G_OPTION_ERROR, G_OPTION_ERROR_FAILED, _("Error parsing option --gdk-no-debug")); return FALSE; } _gdk_debug_flags &= ~debug_value; return TRUE; } #endif /* G_ENABLE_DEBUG */ static gboolean gdk_arg_class_cb (const char *key, const char *value, gpointer user_data, GError **error) { gdk_set_program_class (value); return TRUE; } static gboolean gdk_arg_name_cb (const char *key, const char *value, gpointer user_data, GError **error) { g_set_prgname (value); return TRUE; } static const GOptionEntry gdk_args[] = { { "class", 0, 0, G_OPTION_ARG_CALLBACK, gdk_arg_class_cb, /* Description of --class=CLASS in --help output */ N_("Program class as used by the window manager"), /* Placeholder in --class=CLASS in --help output */ N_("CLASS") }, { "name", 0, 0, G_OPTION_ARG_CALLBACK, gdk_arg_name_cb, /* Description of --name=NAME in --help output */ N_("Program name as used by the window manager"), /* Placeholder in --name=NAME in --help output */ N_("NAME") }, { "display", 0, G_OPTION_FLAG_IN_MAIN, G_OPTION_ARG_STRING, &_gdk_display_name, /* Description of --display=DISPLAY in --help output */ N_("X display to use"), /* Placeholder in --display=DISPLAY in --help output */ N_("DISPLAY") }, #ifdef G_ENABLE_DEBUG { "gdk-debug", 0, 0, G_OPTION_ARG_CALLBACK, gdk_arg_debug_cb, /* Description of --gdk-debug=FLAGS in --help output */ N_("GDK debugging flags to set"), /* Placeholder in --gdk-debug=FLAGS in --help output */ N_("FLAGS") }, { "gdk-no-debug", 0, 0, G_OPTION_ARG_CALLBACK, gdk_arg_no_debug_cb, /* Description of --gdk-no-debug=FLAGS in --help output */ N_("GDK debugging flags to unset"), /* Placeholder in --gdk-no-debug=FLAGS in --help output */ N_("FLAGS") }, #endif { NULL } }; /** * gdk_add_option_entries_libgtk_only: * @group: An option group. * * Appends gdk option entries to the passed in option group. This is * not public API and must not be used by applications. */ void gdk_add_option_entries_libgtk_only (GOptionGroup *group) { g_option_group_add_entries (group, gdk_args); } void gdk_pre_parse_libgtk_only (void) { const char *rendering_mode; gdk_initialized = TRUE; /* We set the fallback program class here, rather than lazily in * gdk_get_program_class, since we don't want -name to override it. */ gdk_progclass = g_strdup (g_get_prgname ()); if (gdk_progclass && gdk_progclass[0]) gdk_progclass[0] = g_ascii_toupper (gdk_progclass[0]); #ifdef G_ENABLE_DEBUG { gchar *debug_string = getenv("GDK_DEBUG"); if (debug_string != NULL) _gdk_debug_flags = g_parse_debug_string (debug_string, (GDebugKey *) gdk_debug_keys, G_N_ELEMENTS (gdk_debug_keys)); } #endif /* G_ENABLE_DEBUG */ if (getenv ("GDK_NATIVE_WINDOWS")) { g_warning ("The GDK_NATIVE_WINDOWS environment variable is not supported in GTK3.\n" "See the documentation for gdk_window_ensure_native() on how to get native windows."); g_unsetenv ("GDK_NATIVE_WINDOWS"); } rendering_mode = g_getenv ("GDK_RENDERING"); if (rendering_mode) { if (g_str_equal (rendering_mode, "similar")) _gdk_rendering_mode = GDK_RENDERING_MODE_SIMILAR; else if (g_str_equal (rendering_mode, "image")) _gdk_rendering_mode = GDK_RENDERING_MODE_IMAGE; else if (g_str_equal (rendering_mode, "recording")) _gdk_rendering_mode = GDK_RENDERING_MODE_RECORDING; } /* Do any setup particular to the windowing system */ gdk_display_manager_get (); } /** * gdk_parse_args: * @argc: the number of command line arguments. * @argv: (inout) (array length=argc): the array of command line arguments. * * Parse command line arguments, and store for future * use by calls to gdk_display_open(). * * Any arguments used by GDK are removed from the array and @argc and @argv are * updated accordingly. * * You shouldn't call this function explicitely if you are using * gtk_init(), gtk_init_check(), gdk_init(), or gdk_init_check(). * * Since: 2.2 **/ void gdk_parse_args (int *argc, char ***argv) { GOptionContext *option_context; GOptionGroup *option_group; GError *error = NULL; if (gdk_initialized) return; gdk_pre_parse_libgtk_only (); option_context = g_option_context_new (NULL); g_option_context_set_ignore_unknown_options (option_context, TRUE); g_option_context_set_help_enabled (option_context, FALSE); option_group = g_option_group_new (NULL, NULL, NULL, NULL, NULL); g_option_context_set_main_group (option_context, option_group); g_option_group_add_entries (option_group, gdk_args); if (!g_option_context_parse (option_context, argc, argv, &error)) { g_warning ("%s", error->message); g_error_free (error); } g_option_context_free (option_context); GDK_NOTE (MISC, g_message ("progname: \"%s\"", g_get_prgname ())); } /** * gdk_get_display_arg_name: * * Gets the display name specified in the command line arguments passed * to gdk_init() or gdk_parse_args(), if any. * * Returns: the display name, if specified explicitely, otherwise %NULL * this string is owned by GTK+ and must not be modified or freed. * * Since: 2.2 */ const gchar * gdk_get_display_arg_name (void) { if (!_gdk_display_arg_name) _gdk_display_arg_name = g_strdup (_gdk_display_name); return _gdk_display_arg_name; } /** * gdk_display_open_default_libgtk_only: * * Opens the default display specified by command line arguments or * environment variables, sets it as the default display, and returns * it. gdk_parse_args must have been called first. If the default * display has previously been set, simply returns that. An internal * function that should not be used by applications. * * Return value: (transfer none): the default display, if it could be * opened, otherwise %NULL. **/ GdkDisplay * gdk_display_open_default_libgtk_only (void) { GdkDisplay *display; g_return_val_if_fail (gdk_initialized, NULL); display = gdk_display_get_default (); if (display) return display; display = gdk_display_open (gdk_get_display_arg_name ()); return display; } /** * gdk_init_check: * @argc: (inout): the number of command line arguments. * @argv: (array length=argc) (inout): the array of command line arguments. * * Initializes the GDK library and connects to the windowing system, * returning %TRUE on success. * * Any arguments used by GDK are removed from the array and @argc and @argv * are updated accordingly. * * GTK+ initializes GDK in gtk_init() and so this function is not usually * needed by GTK+ applications. * * Returns: %TRUE if initialization succeeded. */ gboolean gdk_init_check (int *argc, char ***argv) { gdk_parse_args (argc, argv); return gdk_display_open_default_libgtk_only () != NULL; } /** * gdk_init: * @argc: (inout): the number of command line arguments. * @argv: (array length=argc) (inout): the array of command line arguments. * * Initializes the GDK library and connects to the windowing system. * If initialization fails, a warning message is output and the application * terminates with a call to exit(1). * * Any arguments used by GDK are removed from the array and @argc and @argv * are updated accordingly. * * GTK+ initializes GDK in gtk_init() and so this function is not usually * needed by GTK+ applications. */ void gdk_init (int *argc, char ***argv) { if (!gdk_init_check (argc, argv)) { const char *display_name = gdk_get_display_arg_name (); g_warning ("cannot open display: %s", display_name ? display_name : ""); exit(1); } } /** * SECTION:threads * @Short_description: Functions for using GDK in multi-threaded programs * @Title: Threads * * For thread safety, GDK relies on the thread primitives in GLib, * and on the thread-safe GLib main loop. * * GLib is completely thread safe (all global data is automatically * locked), but individual data structure instances are not automatically * locked for performance reasons. So e.g. you must coordinate * accesses to the same #GHashTable from multiple threads. * * GTK+ is "thread aware" but not thread safe — it provides a * global lock controlled by gdk_threads_enter()/gdk_threads_leave() * which protects all use of GTK+. That is, only one thread can use GTK+ * at any given time. * * You must call gdk_threads_init() before executing any other GTK+ or * GDK functions in a threaded GTK+ program. * * Idles, timeouts, and input functions from GLib, such as g_idle_add(), * are executed outside of the main GTK+ lock. So, if you need to call * GTK+ inside of such a callback, you must surround the callback with * a gdk_threads_enter()/gdk_threads_leave() pair or use * gdk_threads_add_idle_full() which does this for you. * However, event dispatching from the mainloop is still executed within * the main GTK+ lock, so callback functions connected to event signals * like #GtkWidget::button-press-event, do not need thread protection. * * In particular, this means, if you are writing widgets that might * be used in threaded programs, you must surround * timeouts and idle functions in this matter. * * As always, you must also surround any calls to GTK+ not made within * a signal handler with a gdk_threads_enter()/gdk_threads_leave() pair. * * Before calling gdk_threads_leave() from a thread other * than your main thread, you probably want to call gdk_flush() * to send all pending commands to the windowing system. * (The reason you don't need to do this from the main thread * is that GDK always automatically flushes pending commands * when it runs out of incoming events to process and has * to sleep while waiting for more events.) * * A minimal main program for a threaded GTK+ application * looks like: * * * int * main (int argc, char *argv[]) * { * GtkWidget *window; * * gdk_threads_init (); * gdk_threads_enter (); * * gtk_init (&argc, &argv); * * window = create_window (); * gtk_widget_show (window); * * gtk_main (); * gdk_threads_leave (); * * return 0; * } * * * * Callbacks require a bit of attention. Callbacks from GTK+ signals * are made within the GTK+ lock. However callbacks from GLib (timeouts, * IO callbacks, and idle functions) are made outside of the GTK+ * lock. So, within a signal handler you do not need to call * gdk_threads_enter(), but within the other types of callbacks, you * do. * * Erik Mouw contributed the following code example to * illustrate how to use threads within GTK+ programs. * * * /*------------------------------------------------------------------------- * * Filename: gtk-thread.c * * Version: 0.99.1 * * Copyright: Copyright (C) 1999, Erik Mouw * * Author: Erik Mouw <J.A.K.Mouw@its.tudelft.nl> * * Description: GTK threads example. * * Created at: Sun Oct 17 21:27:09 1999 * * Modified by: Erik Mouw <J.A.K.Mouw@its.tudelft.nl> * * Modified at: Sun Oct 24 17:21:41 1999 * *-----------------------------------------------------------------------*/ * /* * * Compile with: * * * * cc -o gtk-thread gtk-thread.c `gtk-config --cflags --libs gthread` * * * * Thanks to Sebastian Wilhelmi and Owen Taylor for pointing out some * * bugs. * * * */ * * #include * #include * #include * #include * #include * #include * #include * * #define YES_IT_IS (1) * #define NO_IT_IS_NOT (0) * * typedef struct * { * GtkWidget *label; * int what; * } yes_or_no_args; * * G_LOCK_DEFINE_STATIC (yes_or_no); * static volatile int yes_or_no = YES_IT_IS; * * void destroy (GtkWidget *widget, gpointer data) * { * gtk_main_quit (); * } * * void *argument_thread (void *args) * { * yes_or_no_args *data = (yes_or_no_args *)args; * gboolean say_something; * * for (;;) * { * /* sleep a while */ * sleep(rand() / (RAND_MAX / 3) + 1); * * /* lock the yes_or_no_variable */ * G_LOCK(yes_or_no); * * /* do we have to say something? */ * say_something = (yes_or_no != data->what); * * if(say_something) * { * /* set the variable */ * yes_or_no = data->what; * } * * /* Unlock the yes_or_no variable */ * G_UNLOCK (yes_or_no); * * if (say_something) * { * /* get GTK thread lock */ * gdk_threads_enter (); * * /* set label text */ * if(data->what == YES_IT_IS) * gtk_label_set_text (GTK_LABEL (data->label), "O yes, it is!"); * else * gtk_label_set_text (GTK_LABEL (data->label), "O no, it isn't!"); * * /* release GTK thread lock */ * gdk_threads_leave (); * } * } * * return NULL; * } * * int main (int argc, char *argv[]) * { * GtkWidget *window; * GtkWidget *label; * yes_or_no_args yes_args, no_args; * pthread_t no_tid, yes_tid; * * /* init threads */ * gdk_threads_init (); * gdk_threads_enter (); * * /* init gtk */ * gtk_init(&argc, &argv); * * /* init random number generator */ * srand ((unsigned int) time (NULL)); * * /* create a window */ * window = gtk_window_new (GTK_WINDOW_TOPLEVEL); * * g_signal_connect (window, "destroy", G_CALLBACK (destroy), NULL); * * gtk_container_set_border_width (GTK_CONTAINER (window), 10); * * /* create a label */ * label = gtk_label_new ("And now for something completely different ..."); * gtk_container_add (GTK_CONTAINER (window), label); * * /* show everything */ * gtk_widget_show (label); * gtk_widget_show (window); * * /* create the threads */ * yes_args.label = label; * yes_args.what = YES_IT_IS; * pthread_create (&yes_tid, NULL, argument_thread, &yes_args); * * no_args.label = label; * no_args.what = NO_IT_IS_NOT; * pthread_create (&no_tid, NULL, argument_thread, &no_args); * * /* enter the GTK main loop */ * gtk_main (); * gdk_threads_leave (); * * return 0; * } * * * * Unfortunately, all of the above documentation holds with the X11 * backend only. With the Win32 backend, GDK and GTK+ calls should not * be attempted from multiple threads at all. Combining the GDK lock * with other locks such as the Python global interpreter lock can be * complicated. * * For these reason, the threading support has been deprecated in * GTK+ 3.6. Instead of calling GTK+ directly from multiple threads, * it is recommended to use g_idle_add(), g_main_context_invoke() * and similar functions to make these calls from the main thread * instead. The main thread is the thread which has called gtk_init() * and is running the GTK+ mainloop. GTK+ itself will continue to * use the GDK lock internally as long as the deprecated functionality * is still available, and other libraries should probably do the same. */ /** * gdk_threads_enter: * * This function marks the beginning of a critical section in which * GDK and GTK+ functions can be called safely and without causing race * conditions. Only one thread at a time can be in such a critial * section. * * Deprecated:3.6: All GDK and GTK+ calls should be made from the main * thread */ void gdk_threads_enter (void) { if (gdk_threads_lock) (*gdk_threads_lock) (); } /** * gdk_threads_leave: * * Leaves a critical region begun with gdk_threads_enter(). * * Deprecated:3.6: All GDK and GTK+ calls should be made from the main * thread */ void gdk_threads_leave (void) { if (gdk_threads_unlock) (*gdk_threads_unlock) (); } static void gdk_threads_impl_lock (void) { g_mutex_lock (&gdk_threads_mutex); } static void gdk_threads_impl_unlock (void) { g_mutex_unlock (&gdk_threads_mutex); } /** * gdk_threads_init: * * Initializes GDK so that it can be used from multiple threads * in conjunction with gdk_threads_enter() and gdk_threads_leave(). * * This call must be made before any use of the main loop from * GTK+; to be safe, call it before gtk_init(). * * Deprecated:3.6: All GDK and GTK+ calls should be made from the main * thread */ void gdk_threads_init (void) { if (!gdk_threads_lock) gdk_threads_lock = gdk_threads_impl_lock; if (!gdk_threads_unlock) gdk_threads_unlock = gdk_threads_impl_unlock; } /** * gdk_threads_set_lock_functions: (skip) * @enter_fn: function called to guard GDK * @leave_fn: function called to release the guard * * Allows the application to replace the standard method that * GDK uses to protect its data structures. Normally, GDK * creates a single #GMutex that is locked by gdk_threads_enter(), * and released by gdk_threads_leave(); using this function an * application provides, instead, a function @enter_fn that is * called by gdk_threads_enter() and a function @leave_fn that is * called by gdk_threads_leave(). * * The functions must provide at least same locking functionality * as the default implementation, but can also do extra application * specific processing. * * As an example, consider an application that has its own recursive * lock that when held, holds the GTK+ lock as well. When GTK+ unlocks * the GTK+ lock when entering a recursive main loop, the application * must temporarily release its lock as well. * * Most threaded GTK+ apps won't need to use this method. * * This method must be called before gdk_threads_init(), and cannot * be called multiple times. * * Deprecated:3.6: All GDK and GTK+ calls should be made from the main * thread * * Since: 2.4 **/ void gdk_threads_set_lock_functions (GCallback enter_fn, GCallback leave_fn) { g_return_if_fail (gdk_threads_lock == NULL && gdk_threads_unlock == NULL); gdk_threads_lock = enter_fn; gdk_threads_unlock = leave_fn; } static gboolean gdk_threads_dispatch (gpointer data) { GdkThreadsDispatch *dispatch = data; gboolean ret = FALSE; gdk_threads_enter (); if (!g_source_is_destroyed (g_main_current_source ())) ret = dispatch->func (dispatch->data); gdk_threads_leave (); return ret; } static void gdk_threads_dispatch_free (gpointer data) { GdkThreadsDispatch *dispatch = data; if (dispatch->destroy && dispatch->data) dispatch->destroy (dispatch->data); g_slice_free (GdkThreadsDispatch, data); } /** * gdk_threads_add_idle_full: * @priority: the priority of the idle source. Typically this will be in the * range between #G_PRIORITY_DEFAULT_IDLE and #G_PRIORITY_HIGH_IDLE * @function: function to call * @data: data to pass to @function * @notify: (allow-none): function to call when the idle is removed, or %NULL * * Adds a function to be called whenever there are no higher priority * events pending. If the function returns %FALSE it is automatically * removed from the list of event sources and will not be called again. * * This variant of g_idle_add_full() calls @function with the GDK lock * held. It can be thought of a MT-safe version for GTK+ widgets for the * following use case, where you have to worry about idle_callback() * running in thread A and accessing @self after it has been finalized * in thread B: * * |[ * static gboolean * idle_callback (gpointer data) * { * /* gdk_threads_enter(); would be needed for g_idle_add() */ * * SomeWidget *self = data; * /* do stuff with self */ * * self->idle_id = 0; * * /* gdk_threads_leave(); would be needed for g_idle_add() */ * return FALSE; * } * * static void * some_widget_do_stuff_later (SomeWidget *self) * { * self->idle_id = gdk_threads_add_idle (idle_callback, self) * /* using g_idle_add() here would require thread protection in the callback */ * } * * static void * some_widget_finalize (GObject *object) * { * SomeWidget *self = SOME_WIDGET (object); * if (self->idle_id) * g_source_remove (self->idle_id); * G_OBJECT_CLASS (parent_class)->finalize (object); * } * ]| * * Return value: the ID (greater than 0) of the event source. * * Since: 2.12 * Rename to: gdk_threads_add_idle */ guint gdk_threads_add_idle_full (gint priority, GSourceFunc function, gpointer data, GDestroyNotify notify) { GdkThreadsDispatch *dispatch; g_return_val_if_fail (function != NULL, 0); dispatch = g_slice_new (GdkThreadsDispatch); dispatch->func = function; dispatch->data = data; dispatch->destroy = notify; return g_idle_add_full (priority, gdk_threads_dispatch, dispatch, gdk_threads_dispatch_free); } /** * gdk_threads_add_idle: (skip) * @function: function to call * @data: data to pass to @function * * A wrapper for the common usage of gdk_threads_add_idle_full() * assigning the default priority, #G_PRIORITY_DEFAULT_IDLE. * * See gdk_threads_add_idle_full(). * * Return value: the ID (greater than 0) of the event source. * * Since: 2.12 */ guint gdk_threads_add_idle (GSourceFunc function, gpointer data) { return gdk_threads_add_idle_full (G_PRIORITY_DEFAULT_IDLE, function, data, NULL); } /** * gdk_threads_add_timeout_full: * @priority: the priority of the timeout source. Typically this will be in the * range between #G_PRIORITY_DEFAULT_IDLE and #G_PRIORITY_HIGH_IDLE. * @interval: the time between calls to the function, in milliseconds * (1/1000ths of a second) * @function: function to call * @data: data to pass to @function * @notify: (allow-none): function to call when the timeout is removed, or %NULL * * Sets a function to be called at regular intervals holding the GDK lock, * with the given priority. The function is called repeatedly until it * returns %FALSE, at which point the timeout is automatically destroyed * and the function will not be called again. The @notify function is * called when the timeout is destroyed. The first call to the * function will be at the end of the first @interval. * * Note that timeout functions may be delayed, due to the processing of other * event sources. Thus they should not be relied on for precise timing. * After each call to the timeout function, the time of the next * timeout is recalculated based on the current time and the given interval * (it does not try to 'catch up' time lost in delays). * * This variant of g_timeout_add_full() can be thought of a MT-safe version * for GTK+ widgets for the following use case: * * |[ * static gboolean timeout_callback (gpointer data) * { * SomeWidget *self = data; * * /* do stuff with self */ * * self->timeout_id = 0; * * return G_SOURCE_REMOVE; * } * * static void some_widget_do_stuff_later (SomeWidget *self) * { * self->timeout_id = g_timeout_add (timeout_callback, self) * } * * static void some_widget_finalize (GObject *object) * { * SomeWidget *self = SOME_WIDGET (object); * * if (self->timeout_id) * g_source_remove (self->timeout_id); * * G_OBJECT_CLASS (parent_class)->finalize (object); * } * ]| * * Return value: the ID (greater than 0) of the event source. * * Since: 2.12 * Rename to: gdk_threads_add_timeout */ guint gdk_threads_add_timeout_full (gint priority, guint interval, GSourceFunc function, gpointer data, GDestroyNotify notify) { GdkThreadsDispatch *dispatch; g_return_val_if_fail (function != NULL, 0); dispatch = g_slice_new (GdkThreadsDispatch); dispatch->func = function; dispatch->data = data; dispatch->destroy = notify; return g_timeout_add_full (priority, interval, gdk_threads_dispatch, dispatch, gdk_threads_dispatch_free); } /** * gdk_threads_add_timeout: (skip) * @interval: the time between calls to the function, in milliseconds * (1/1000ths of a second) * @function: function to call * @data: data to pass to @function * * A wrapper for the common usage of gdk_threads_add_timeout_full() * assigning the default priority, #G_PRIORITY_DEFAULT. * * See gdk_threads_add_timeout_full(). * * Return value: the ID (greater than 0) of the event source. * * Since: 2.12 */ guint gdk_threads_add_timeout (guint interval, GSourceFunc function, gpointer data) { return gdk_threads_add_timeout_full (G_PRIORITY_DEFAULT, interval, function, data, NULL); } /** * gdk_threads_add_timeout_seconds_full: * @priority: the priority of the timeout source. Typically this will be in the * range between #G_PRIORITY_DEFAULT_IDLE and #G_PRIORITY_HIGH_IDLE. * @interval: the time between calls to the function, in seconds * @function: function to call * @data: data to pass to @function * @notify: (allow-none): function to call when the timeout is removed, or %NULL * * A variant of gdk_threads_add_timeout_full() with second-granularity. * See g_timeout_add_seconds_full() for a discussion of why it is * a good idea to use this function if you don't need finer granularity. * * Return value: the ID (greater than 0) of the event source. * * Since: 2.14 * Rename to: gdk_threads_add_timeout_seconds */ guint gdk_threads_add_timeout_seconds_full (gint priority, guint interval, GSourceFunc function, gpointer data, GDestroyNotify notify) { GdkThreadsDispatch *dispatch; g_return_val_if_fail (function != NULL, 0); dispatch = g_slice_new (GdkThreadsDispatch); dispatch->func = function; dispatch->data = data; dispatch->destroy = notify; return g_timeout_add_seconds_full (priority, interval, gdk_threads_dispatch, dispatch, gdk_threads_dispatch_free); } /** * gdk_threads_add_timeout_seconds: (skip) * @interval: the time between calls to the function, in seconds * @function: function to call * @data: data to pass to @function * * A wrapper for the common usage of gdk_threads_add_timeout_seconds_full() * assigning the default priority, #G_PRIORITY_DEFAULT. * * For details, see gdk_threads_add_timeout_full(). * * Return value: the ID (greater than 0) of the event source. * * Since: 2.14 */ guint gdk_threads_add_timeout_seconds (guint interval, GSourceFunc function, gpointer data) { return gdk_threads_add_timeout_seconds_full (G_PRIORITY_DEFAULT, interval, function, data, NULL); } /** * gdk_get_program_class: * * Gets the program class. Unless the program class has explicitly * been set with gdk_set_program_class() or with the * commandline option, the default value is the program name (determined * with g_get_prgname()) with the first character converted to uppercase. * * Returns: the program class. */ const char * gdk_get_program_class (void) { return gdk_progclass; } /** * gdk_set_program_class: * @program_class: a string. * * Sets the program class. The X11 backend uses the program class to set * the class name part of the WM_CLASS property on * toplevel windows; see the ICCCM. */ void gdk_set_program_class (const char *program_class) { g_free (gdk_progclass); gdk_progclass = g_strdup (program_class); } /** * gdk_disable_multidevice: * * Disables multidevice support in GDK. This call must happen prior * to gdk_display_open(), gtk_init(), gtk_init_with_args() or * gtk_init_check() in order to take effect. * * Most common GTK+ applications won't ever need to call this. Only * applications that do mixed GDK/Xlib calls could want to disable * multidevice support if such Xlib code deals with input devices in * any way and doesn't observe the presence of XInput 2. * * Since: 3.0 */ void gdk_disable_multidevice (void) { if (gdk_initialized) return; _gdk_disable_multidevice = TRUE; }