Project Objective & Project Content
The objective of this homework is to explore organizing embedded software using mbed as the platform in context of a simple system. For this purpose, we monitor and control the data collection behavior of the sensors on FRDM-KL46Z. Furthermore, to save the data for future use, we upload the sampling data to Xively service. The overall diagram is showed in fig.1.
USB[image:]
Xively Server
Network
MKL46Z256
VLL4
ACC
MAG
TCH
LGT
ADC

Design Description
· Data Collection (mbed)
Data collection is managed by FRDM-KL46Z. User’s behavior may only change its configuration. We introduce a timer interruption in [CPU PART NUMBER] to collect sensors data at intervals, which is shared among all the sensors. The timer interrupts every 0.1 seconds (this can be changed based on TIME_ACCURACY). Sensors collect data if its interval is reached.
The overall software organization is as follows:
· main(): we implement poling to take the place of the actual timer interruption, so that it will not block the serial receiving interruption, which is essential to user interaction quality.
· void clock1_interrupt(void): responsible for the timer maintenance and sampling issues. Ticks each time it is called, and calls function to acquire and send sensor information if it is time.
· void sendXXXInfo(void): the function for gathering and sending sensor data information. The information will first be packed into DATA_FRAME by function packToFrame(), and then sent by DMA.
· void serialRx_interrupt(void): used for handling serial receiving interruption. In this function, we receive the data from the port, and pack them in the buffer. All the data that is not helpful to construct a COMMAND_FRAME will be discarded. When a frame is constructed, we dump it to function runCommand().
· void runCommand(control_t *cmd): analyze the command that is packed in frames and execute it if the command is valid.
DMA STUFFS!!!

· Data Transition (mbed & host)
FRDM-KL46Z is physically connected to PC over USB, which guarantees a high baudrate of 962100 bps. Moreover, the serial-over-USB driver enables the mbed to communicate with PC using UART protocol. Since the mbed can be perceived as a slave to the PC, we let the mbed collect and send data, while PC is responsible for generating commands.
The overall Protocol working Process will be as follows:
· mbed -> PC:
1) As soon as each piece of sensor’s information is gathered, the mbed will pack the information as DATA_FRAME, and send it through serial port.
2) The length of DATA_FRAME is not fixed, it has HEADER, TAIL to define the boarder of the frame from stream of data. dataType will tell the frame receiver, what type of data is packed in this frame, snsType gives information on who sent the pack of data, and dataNum will indicate how many of them is been sent.
3) When the PC receives the DATA_FRAME, which is the only thing it can receive from the mbed, it first try to reconstruct it. If the reconstruction is successful, it then analyze the frame based on the DATA_FRAME template, and then if the data is reasonable, it decides whether to display them according to its displaying mechanism.

· PC -> mbed:
1) The mbed is not immediately working after it is connected to the host (PC). It just waits for the configuration command from the host.
2) The host opens its serial port, and sendsthe configuration information that is packed as COMMAND_FRAME, to initialize the mbed, and gets it to work. And then, the host just wait for events.
3) If the host receives a DATA_FRAME from the mbed, it analyzes, executes and displays the frame.
4) 4 If a user changed some configuration on at the user interface, the host saves the configuration at local place, and then packs the command into COMMAND_FRAME, and send it to the mbed.
5) The COMMAND_FRAME, is also not fix-sized. HEADER and TAIL define the frame boarder. cmdType indicates what kind of command is this; snsType indicates which sensor the host is trying to control; there is an optional “interval” field that gives the new interval if the cmdType is SET_INT;

To ensure efficiency, we pack the sensor data as well as PC command into frames in Bytes, rather than strings in characters. The frame format is shown in fig.2.
Data_Frame:
	1 Byte
	4 bits
	4 bits
	1 Byte
	(Varied Size)
	1 Byte

	HEADER
	dataType
	snsType
	dataNum
	data
	TAIL

Command_Frame:
	1 Byte
	4 bits
	4 bits
	4 Byte
	1 Byte

	HEADER
	cmdType
	snsType
	Interval
	TAIL

Comments:
	1. HEADER: 	0x02, constant, indicating the start of a frame
	2.dataType: 	0x00 – INT		0x01 – LONG	
0x10 – FLOAT	0x11 – DOUBLE
	3. snsType:	0x00000 – LIGHT_SENSOR	0x00001 – ACC_SENSOR
			0x00010 – MAG_SENSOR	0x00011 – TOUCH_SENSOR
			0x00100 – ADC_SENSOR
	4. dataNum: 	data number. Number of data pack in the frame
	5. data: 	sensor data. How it is packed is based on dataType and dataNum
	6. cmdType:	0x000 – START	0x001 – STOP		0x010 – SET)INT
	7. Interval:	sampling rate. Representing a float of 4 Bytes.
	9. TAIL:	0x0A, constant, indicating the end of a frame

· User Control (host)
We designed a UI for the control of our mbed. Unllike in the command window, where users are required to remember some command lines, all configurations (serial bauderate, data pattern, sensorEnable, sensor sampling rate setting) are displayed nicely on the interface. It is plain and apparent, so there will be no detailed introduction to it.
The functioning of the host consists mainly three parts, (1) receiving data from the mbed; (2) interacting with the users, and send new configurations to the mbed; (3)uploading data to Xively. The uploading process will be introduced in next section. For workflow information on the first two parts, please refer to the Protocol part in Data Transaction. Some its important functions are introduced as follows.

class Config: responsible for the changes in the mbed. The host will save a local copy each time the configuration is changed. And if there is no configuration information when the host tries to initialize the mbed, it will use default values in this class.
class Device: takes hands on all serial-related issues:
	connect(self) & disconnect(self): enable/disable the serial port
	set_enable: send commands to change the sensor enable state on the mbed
	set_rate: send commands to change the sensor sampling rate of the sensor
class Frame: a class defined in Device, designed for frame-related issues:
	parse(self, byte): analyze the DATA_FRAME from the sensors
	convert(self): display the received data if required
class Visual: used for maintaining user interface and respond to user interaction
	on_enable(self): tell the device to send START/STOP command
	on_rate(self): tell the device to send SET_INT command
	load_config(self): load in the configuration information
	update(self, state): update and display the samples
	()

Data Upload
[bookmark: _GoBack]()

image1.emf

USB

