Software Programming Assignment #2
Due: Mar 13, 2014 @ 6PM

Note 1: This homework has to be done in teams of three (according to the registrar’s records the # of
students in the class is 27, a multiple of 3). Please use Piazza to find team members. As you form
confirmed teams, please let me know by filling out the web form at http://goo.gl/g18dZn. I'll approve smaller
teams of 2 only if the # of students in the class is actually not a multiple of 3, in which case I'd approve
either one or two teams of 2 as appropriate. Teams of 2 won’t have to do the event generation mode (and
anything related to that mode).

Note 2: Your submission is in the form of a URL to a Dropbox folder whose contents should be organized
as per the instructions at the end, and optionally URL to a video demonstration. Please submit via the web
form at http://qoo.ql/L GpLvx.

The objective of this homework is two-fold: (i) To employ time synchronization concepts, (ii) To use Android
in the context of embedded application. Besides mbed, of which your team would already have three, you
would also need a BeagleBone Black (BBB) configured to run Android. If you don’t have a BeagleBone
Black, you can borrow one from me. You'd also need an 8GB or more SD Card and an ethernet cable.

1. Configure BeagleBone Black to run Android by following the instructions at
https://docs.google.com/document/d/1gXYd3piRO1zp4uT2v8VB4E6mTfgWeVUhMmKdziO
xino The document includes instructions to set things up so that you may use a VNC viewer
application on your host (there are many VNC viewers available for various OS) to look at the
Android display. Alternatively, you’d need a monitor with a HDMI input.

2. Your goal is to design a distributed event monitor and event generator system using two of
the mbeds and the BBB. To do this, you’d need to develop a time synchronization strategy

3. Connect two of the mbeds, the BBB, and a host computer as follows:

o mbed1 connects to mbed2 via a serial link (UART)

o BBB connects to mbed1 via a serial link (UART)

o BBB connects to the host via a LAN
Additionally, for purposes of code download or debugging, you can connect the two mbeds
to a host via USB. The figure at the end shows how the connectivity looks like.

4. [20%] Event monitoring mode: In this mode you need to monitor one external signal at
each of the two mbeds in your system and assign events (0 to 1 transitions on a wire
connected to a pin of your choice) timestamps according to a common time coordinate. The
origin for your time coordinate should (roughly) correspond to the wall clock time. The
quality of your design is defined by its performance on two metrics:

o difference in the timestamps reported by the two nodes for a common event
o difference in the timestamps reports for two events at the same mbed vs. the actual
time difference

5. [20%] Event generation mode: In this mode you need to generate synchronized events
on a GPIO pin of mbed1 and mbed2. Specifically, given a period T in milliseconds (ranging
from 10 ms to 10000 ms), the three nodes should generate time synchronized square waves
(i.e. 50% duty cycle) whose edges are aligned in time. The quality of your design is defined by
its performance on two metrics:

o difference in occurrence time of same edge at the two mbeds as observed by an
external observer

http://goo.gl/g18dZn
http://goo.gl/LGpLvx

©)

difference between T and the externally observed occurrence time of two successive
rising edges (or two successive falling edges) at the same mbed

6. [20%] Frontend App: You should write a simple Android app for BBB for controlling the
two operation modes of your system.

©)

©)

In the event monitoring mode the app should display the timestamps of the latest
event on each of two mbeds, allow event timestamps to be logged into a file, and
allow events to be sent to Xively. The app should allow separate on/off control for
file logging and Xively logging for events, and allow configuring log file name, Xively
feed id and Xively key (these parameters are common for all three nodes).

m The events in the file should be logged such that each line is of the form
node_id, timestamp where node_id is 1 for mbed1, and 2 for mbed2, and
timestamp is in ISO8601 format (similar to Xively) with 8 digits in the
fractional part of second (i.e. to 1/100th microsecond resolution).

m When logging to Xively, in order to make visualization easier, give values of 0
and 1 to alternate events to the same node. Also use mbed1 and mbed2 as
channel names.

In the event generation mode the application should let you control T (from 10 to
10000 ms) and also start/stop the event generation.

7. [20%] Testing Mbed: For the third mbed in your team (mbed3), write two simple
programs for testing purposes. You’d connect the testing mbed to

©)

Program 1 generates on a GPIO pin of your choice a square waveforms of 50% duty
cycle with following controls: a configurable period T (from 0.1 ms to 10 s), and a
control to start/stop the waveform generation. Make sure that your square waveform
has a period which is as precisely T as possible - you may want to use the hardware
counter/time to do this. You don’t need to provide a fancy front end for this: the
configuration could be done via a file which the program reads whenever the file is
updated. You’d connect the output pin to the event inputs of mbed1, and mbed2.
Program 2 monitors two GPIO pins on your choice, captures a high resolution
timestamp according to a local clock whenever it sees a 0 to 1 event on a pin, and
sends this information (i.e. pin and timestamp) to the host. You should come up with
as high resolution a timestamp as you can as it would directly impact the quality of
the performance you report, and so should use the event capture capabilities of
mbed’s counter.

8. [20%] Submission instructions: Create a Dropox folder with the following contents

o

Report: At the top level of the folder should be a file report.pdf with your report.
Include in your report a succinct description of your system structure and your time
synchronization strategy, as well as a summary of the results from your performance
tests.

Code (source code and binary): Submit source code and ready to run binaries for
BBB, the three mbeds, and the host, along with a description of how to run it. Create
five folders labelled BBB, mbed1, mbed2, mbed3, and host.

Installation instructions for hardware and software: Provide an installation
instruction file install.pdf with details on hardware connectivity (specifically which
pins you used and how to connect them), as well as software setup (how to run your
software).

Results of performance tests: Include summary analysis of the results of
following tests in your report, and provide raw data as spreadsheets inside a
sub-folder names results.

20of4

o

m Test 1: Configure Testing Mbed with Program 1, generating waveforms of
period T. Wire the output pin of Testing Mbed to event input pins of mbedz,
and mbed2 so that both of them receive identical events. For T = 1 second,
capture timestamps for 100 consecutive events at mbed1 and mbed2, and
put them in a spreadsheet.

1. For each event occurrence find the pairwise timestamping error (i.e.
mbedi-mbed2). Report average error.

2. Compute average inter-event interval for successive events at mbed1.
Do the same at mbed2. Report % error for each relative to the
expected T.

m Test 2: Configure Testing Mbed with Program 2, monitoring event waveforms
generated at mbed1 and mbed2. Also, configure mbed1 and mbed2 to
generate events at 1 s period. Capture trains of 100 events for each node, and
enter the timestamps captured by Program 2 into a spreadsheet.

1. You’'d expect that i-th timestamps in the events generated at the two
mbeds (mbed1 and mbed2) will be synchronized and will have the
same timestamp. Report average synchronization error between
mbed2-mbeda.

2. Repeat for periods of 5s and 10 s.

Demo: Either give an in-person demonstration by the deadline, or submit a link to a
narrated video via the web form.

9. Tips and Hints

O

To accomplish this project, you’d need to do UART communication from BBB to
mbed. BBB has several UARTs (UARTO - UART5, mapped to /dev/ttyOo -
/dev/ttyOs, described in http://beaglebone.cameon.net/home/serial-ports-uart).
The UARTO is by default used by the serial console, so you’ll have to use
UART1-UARTS5.

The UART1-UARTS5 pins are by default configured as GPIOs on the BBB. You'd need to

set the pins to UART mode, as described in
http://stackoverflow.com/questions/19683336/root-permission-to-configure-uart1
-in-beaglebone and Tutorial 07 in
http://sourceforge.net/projects/androidonbeaglebonebtutorials/.

On BBB, you can use the microcom tool (similar to minicom/screen on a desktop)
shipped with busybox (http://busybox.net/) to test the UART communication in the
adb console. To cross-compile busybox for the BBB, you'll need the Linaro cross-gec:
http://releases.linaro.org/13.05/components/toolchain/gce-linaro/4.8 . After
compile, push the busybox binary file to /data/busybox/ using adb.

To do UART communication in Android, you'd need to use Android Serial API
(https://code.google.com/p/android-serialport-api/). Check out the demos in this
library. Remember to choose the appropriate device and baud rate before you
proceed. If you see “read/write permission denied”, you should change permission of
the corresponding device.

10. System connectivity diagram: The following figure shows how the various nodes will get
connected. Precise details such as which UART and which GPIO pins to use are left for you to
decide, but you must document them in the report.

3of4

http://www.google.com/url?q=http%3A%2F%2Fbeaglebone.cameon.net%2Fhome%2Fserial-ports-uart&sa=D&sntz=1&usg=AFQjCNEenYvg9NU8-rzJe1ePUQwLUHlg-w
http://www.google.com/url?q=http%3A%2F%2Fstackoverflow.com%2Fquestions%2F19683336%2Froot-permission-to-configure-uart1-in-beaglebone&sa=D&sntz=1&usg=AFQjCNGVVhnmH6XDNe1sTWWK1xCd7Eol5w
http://www.google.com/url?q=http%3A%2F%2Fstackoverflow.com%2Fquestions%2F19683336%2Froot-permission-to-configure-uart1-in-beaglebone&sa=D&sntz=1&usg=AFQjCNGVVhnmH6XDNe1sTWWK1xCd7Eol5w
http://www.google.com/url?q=http%3A%2F%2Fsourceforge.net%2Fprojects%2Fandroidonbeaglebonebtutorials%2F&sa=D&sntz=1&usg=AFQjCNEfNHexVNg6r_HSUlpnJpT7I9Zw2g
http://www.google.com/url?q=http%3A%2F%2Fbusybox.net%2F&sa=D&sntz=1&usg=AFQjCNHqO2hodp0aecl4tCd_ZvOdk9Xbdw
http://www.google.com/url?q=http%3A%2F%2Freleases.linaro.org%2F13.05%2Fcomponents%2Ftoolchain%2Fgcc-linaro%2F4.8&sa=D&sntz=1&usg=AFQjCNF_CdZqsxEix9Oi9VTFJ6kbAvfPaQ
https://code.google.com/p/android-serialport-api/

fo LAN o LAN

O levia! LASE fov progeamimivng & dabugmag

r SRR EE .
pm=EE=TmE Emg

Fl a
.r". a T

mbedi mbed2 mbed3 (Teshing)

40of 4

