]> Pileus Git - ~andy/linux/blobdiff - tools/perf/bench/numa.c
perf: Add 'perf bench numa mem' NUMA performance measurement suite
[~andy/linux] / tools / perf / bench / numa.c
diff --git a/tools/perf/bench/numa.c b/tools/perf/bench/numa.c
new file mode 100644 (file)
index 0000000..30d1c32
--- /dev/null
@@ -0,0 +1,1731 @@
+/*
+ * numa.c
+ *
+ * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
+ */
+
+#include "../perf.h"
+#include "../builtin.h"
+#include "../util/util.h"
+#include "../util/parse-options.h"
+
+#include "bench.h"
+
+#include <errno.h>
+#include <sched.h>
+#include <stdio.h>
+#include <assert.h>
+#include <malloc.h>
+#include <signal.h>
+#include <stdlib.h>
+#include <string.h>
+#include <unistd.h>
+#include <pthread.h>
+#include <sys/mman.h>
+#include <sys/time.h>
+#include <sys/wait.h>
+#include <sys/prctl.h>
+#include <sys/types.h>
+
+#include <numa.h>
+#include <numaif.h>
+
+/*
+ * Regular printout to the terminal, supressed if -q is specified:
+ */
+#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
+
+/*
+ * Debug printf:
+ */
+#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
+
+struct thread_data {
+       int                     curr_cpu;
+       cpu_set_t               bind_cpumask;
+       int                     bind_node;
+       u8                      *process_data;
+       int                     process_nr;
+       int                     thread_nr;
+       int                     task_nr;
+       unsigned int            loops_done;
+       u64                     val;
+       u64                     runtime_ns;
+       pthread_mutex_t         *process_lock;
+};
+
+/* Parameters set by options: */
+
+struct params {
+       /* Startup synchronization: */
+       bool                    serialize_startup;
+
+       /* Task hierarchy: */
+       int                     nr_proc;
+       int                     nr_threads;
+
+       /* Working set sizes: */
+       const char              *mb_global_str;
+       const char              *mb_proc_str;
+       const char              *mb_proc_locked_str;
+       const char              *mb_thread_str;
+
+       double                  mb_global;
+       double                  mb_proc;
+       double                  mb_proc_locked;
+       double                  mb_thread;
+
+       /* Access patterns to the working set: */
+       bool                    data_reads;
+       bool                    data_writes;
+       bool                    data_backwards;
+       bool                    data_zero_memset;
+       bool                    data_rand_walk;
+       u32                     nr_loops;
+       u32                     nr_secs;
+       u32                     sleep_usecs;
+
+       /* Working set initialization: */
+       bool                    init_zero;
+       bool                    init_random;
+       bool                    init_cpu0;
+
+       /* Misc options: */
+       int                     show_details;
+       int                     run_all;
+       int                     thp;
+
+       long                    bytes_global;
+       long                    bytes_process;
+       long                    bytes_process_locked;
+       long                    bytes_thread;
+
+       int                     nr_tasks;
+       bool                    show_quiet;
+
+       bool                    show_convergence;
+       bool                    measure_convergence;
+
+       int                     perturb_secs;
+       int                     nr_cpus;
+       int                     nr_nodes;
+
+       /* Affinity options -C and -N: */
+       char                    *cpu_list_str;
+       char                    *node_list_str;
+};
+
+
+/* Global, read-writable area, accessible to all processes and threads: */
+
+struct global_info {
+       u8                      *data;
+
+       pthread_mutex_t         startup_mutex;
+       int                     nr_tasks_started;
+
+       pthread_mutex_t         startup_done_mutex;
+
+       pthread_mutex_t         start_work_mutex;
+       int                     nr_tasks_working;
+
+       pthread_mutex_t         stop_work_mutex;
+       u64                     bytes_done;
+
+       struct thread_data      *threads;
+
+       /* Convergence latency measurement: */
+       bool                    all_converged;
+       bool                    stop_work;
+
+       int                     print_once;
+
+       struct params           p;
+};
+
+static struct global_info      *g = NULL;
+
+static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
+static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
+
+struct params p0;
+
+static const struct option options[] = {
+       OPT_INTEGER('p', "nr_proc"      , &p0.nr_proc,          "number of processes"),
+       OPT_INTEGER('t', "nr_threads"   , &p0.nr_threads,       "number of threads per process"),
+
+       OPT_STRING('G', "mb_global"     , &p0.mb_global_str,    "MB", "global  memory (MBs)"),
+       OPT_STRING('P', "mb_proc"       , &p0.mb_proc_str,      "MB", "process memory (MBs)"),
+       OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
+       OPT_STRING('T', "mb_thread"     , &p0.mb_thread_str,    "MB", "thread  memory (MBs)"),
+
+       OPT_UINTEGER('l', "nr_loops"    , &p0.nr_loops,         "max number of loops to run"),
+       OPT_UINTEGER('s', "nr_secs"     , &p0.nr_secs,          "max number of seconds to run"),
+       OPT_UINTEGER('u', "usleep"      , &p0.sleep_usecs,      "usecs to sleep per loop iteration"),
+
+       OPT_BOOLEAN('R', "data_reads"   , &p0.data_reads,       "access the data via writes (can be mixed with -W)"),
+       OPT_BOOLEAN('W', "data_writes"  , &p0.data_writes,      "access the data via writes (can be mixed with -R)"),
+       OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,  "access the data backwards as well"),
+       OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
+       OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,  "access the data with random (32bit LFSR) walk"),
+
+
+       OPT_BOOLEAN('z', "init_zero"    , &p0.init_zero,        "bzero the initial allocations"),
+       OPT_BOOLEAN('I', "init_random"  , &p0.init_random,      "randomize the contents of the initial allocations"),
+       OPT_BOOLEAN('0', "init_cpu0"    , &p0.init_cpu0,        "do the initial allocations on CPU#0"),
+       OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,      "perturb thread 0/0 every X secs, to test convergence stability"),
+
+       OPT_INCR   ('d', "show_details" , &p0.show_details,     "Show details"),
+       OPT_INCR   ('a', "all"          , &p0.run_all,          "Run all tests in the suite"),
+       OPT_INTEGER('H', "thp"          , &p0.thp,              "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
+       OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"),
+       OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
+       OPT_BOOLEAN('q', "quiet"        , &p0.show_quiet,       "bzero the initial allocations"),
+       OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
+
+       /* Special option string parsing callbacks: */
+        OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
+                       "bind the first N tasks to these specific cpus (the rest is unbound)",
+                       parse_cpus_opt),
+        OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
+                       "bind the first N tasks to these specific memory nodes (the rest is unbound)",
+                       parse_nodes_opt),
+       OPT_END()
+};
+
+static const char * const bench_numa_usage[] = {
+       "perf bench numa <options>",
+       NULL
+};
+
+static const char * const numa_usage[] = {
+       "perf bench numa mem [<options>]",
+       NULL
+};
+
+static cpu_set_t bind_to_cpu(int target_cpu)
+{
+       cpu_set_t orig_mask, mask;
+       int ret;
+
+       ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
+       BUG_ON(ret);
+
+       CPU_ZERO(&mask);
+
+       if (target_cpu == -1) {
+               int cpu;
+
+               for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
+                       CPU_SET(cpu, &mask);
+       } else {
+               BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
+               CPU_SET(target_cpu, &mask);
+       }
+
+       ret = sched_setaffinity(0, sizeof(mask), &mask);
+       BUG_ON(ret);
+
+       return orig_mask;
+}
+
+static cpu_set_t bind_to_node(int target_node)
+{
+       int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
+       cpu_set_t orig_mask, mask;
+       int cpu;
+       int ret;
+
+       BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
+       BUG_ON(!cpus_per_node);
+
+       ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
+       BUG_ON(ret);
+
+       CPU_ZERO(&mask);
+
+       if (target_node == -1) {
+               for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
+                       CPU_SET(cpu, &mask);
+       } else {
+               int cpu_start = (target_node + 0) * cpus_per_node;
+               int cpu_stop  = (target_node + 1) * cpus_per_node;
+
+               BUG_ON(cpu_stop > g->p.nr_cpus);
+
+               for (cpu = cpu_start; cpu < cpu_stop; cpu++)
+                       CPU_SET(cpu, &mask);
+       }
+
+       ret = sched_setaffinity(0, sizeof(mask), &mask);
+       BUG_ON(ret);
+
+       return orig_mask;
+}
+
+static void bind_to_cpumask(cpu_set_t mask)
+{
+       int ret;
+
+       ret = sched_setaffinity(0, sizeof(mask), &mask);
+       BUG_ON(ret);
+}
+
+static void mempol_restore(void)
+{
+       int ret;
+
+       ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
+
+       BUG_ON(ret);
+}
+
+static void bind_to_memnode(int node)
+{
+       unsigned long nodemask;
+       int ret;
+
+       if (node == -1)
+               return;
+
+       BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask));
+       nodemask = 1L << node;
+
+       ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
+       dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
+
+       BUG_ON(ret);
+}
+
+#define HPSIZE (2*1024*1024)
+
+#define set_taskname(fmt...)                           \
+do {                                                   \
+       char name[20];                                  \
+                                                       \
+       snprintf(name, 20, fmt);                        \
+       prctl(PR_SET_NAME, name);                       \
+} while (0)
+
+static u8 *alloc_data(ssize_t bytes0, int map_flags,
+                     int init_zero, int init_cpu0, int thp, int init_random)
+{
+       cpu_set_t orig_mask;
+       ssize_t bytes;
+       u8 *buf;
+       int ret;
+
+       if (!bytes0)
+               return NULL;
+
+       /* Allocate and initialize all memory on CPU#0: */
+       if (init_cpu0) {
+               orig_mask = bind_to_node(0);
+               bind_to_memnode(0);
+       }
+
+       bytes = bytes0 + HPSIZE;
+
+       buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
+       BUG_ON(buf == (void *)-1);
+
+       if (map_flags == MAP_PRIVATE) {
+               if (thp > 0) {
+                       ret = madvise(buf, bytes, MADV_HUGEPAGE);
+                       if (ret && !g->print_once) {
+                               g->print_once = 1;
+                               printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
+                       }
+               }
+               if (thp < 0) {
+                       ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
+                       if (ret && !g->print_once) {
+                               g->print_once = 1;
+                               printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
+                       }
+               }
+       }
+
+       if (init_zero) {
+               bzero(buf, bytes);
+       } else {
+               /* Initialize random contents, different in each word: */
+               if (init_random) {
+                       u64 *wbuf = (void *)buf;
+                       long off = rand();
+                       long i;
+
+                       for (i = 0; i < bytes/8; i++)
+                               wbuf[i] = i + off;
+               }
+       }
+
+       /* Align to 2MB boundary: */
+       buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
+
+       /* Restore affinity: */
+       if (init_cpu0) {
+               bind_to_cpumask(orig_mask);
+               mempol_restore();
+       }
+
+       return buf;
+}
+
+static void free_data(void *data, ssize_t bytes)
+{
+       int ret;
+
+       if (!data)
+               return;
+
+       ret = munmap(data, bytes);
+       BUG_ON(ret);
+}
+
+/*
+ * Create a shared memory buffer that can be shared between processes, zeroed:
+ */
+static void * zalloc_shared_data(ssize_t bytes)
+{
+       return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
+}
+
+/*
+ * Create a shared memory buffer that can be shared between processes:
+ */
+static void * setup_shared_data(ssize_t bytes)
+{
+       return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
+}
+
+/*
+ * Allocate process-local memory - this will either be shared between
+ * threads of this process, or only be accessed by this thread:
+ */
+static void * setup_private_data(ssize_t bytes)
+{
+       return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
+}
+
+/*
+ * Return a process-shared (global) mutex:
+ */
+static void init_global_mutex(pthread_mutex_t *mutex)
+{
+       pthread_mutexattr_t attr;
+
+       pthread_mutexattr_init(&attr);
+       pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
+       pthread_mutex_init(mutex, &attr);
+}
+
+static int parse_cpu_list(const char *arg)
+{
+       p0.cpu_list_str = strdup(arg);
+
+       dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
+
+       return 0;
+}
+
+static void parse_setup_cpu_list(void)
+{
+       struct thread_data *td;
+       char *str0, *str;
+       int t;
+
+       if (!g->p.cpu_list_str)
+               return;
+
+       dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
+
+       str0 = str = strdup(g->p.cpu_list_str);
+       t = 0;
+
+       BUG_ON(!str);
+
+       tprintf("# binding tasks to CPUs:\n");
+       tprintf("#  ");
+
+       while (true) {
+               int bind_cpu, bind_cpu_0, bind_cpu_1;
+               char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
+               int bind_len;
+               int step;
+               int mul;
+
+               tok = strsep(&str, ",");
+               if (!tok)
+                       break;
+
+               tok_end = strstr(tok, "-");
+
+               dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
+               if (!tok_end) {
+                       /* Single CPU specified: */
+                       bind_cpu_0 = bind_cpu_1 = atol(tok);
+               } else {
+                       /* CPU range specified (for example: "5-11"): */
+                       bind_cpu_0 = atol(tok);
+                       bind_cpu_1 = atol(tok_end + 1);
+               }
+
+               step = 1;
+               tok_step = strstr(tok, "#");
+               if (tok_step) {
+                       step = atol(tok_step + 1);
+                       BUG_ON(step <= 0 || step >= g->p.nr_cpus);
+               }
+
+               /*
+                * Mask length.
+                * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
+                * where the _4 means the next 4 CPUs are allowed.
+                */
+               bind_len = 1;
+               tok_len = strstr(tok, "_");
+               if (tok_len) {
+                       bind_len = atol(tok_len + 1);
+                       BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
+               }
+
+               /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
+               mul = 1;
+               tok_mul = strstr(tok, "x");
+               if (tok_mul) {
+                       mul = atol(tok_mul + 1);
+                       BUG_ON(mul <= 0);
+               }
+
+               dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
+
+               BUG_ON(bind_cpu_0 < 0 || bind_cpu_0 >= g->p.nr_cpus);
+               BUG_ON(bind_cpu_1 < 0 || bind_cpu_1 >= g->p.nr_cpus);
+               BUG_ON(bind_cpu_0 > bind_cpu_1);
+
+               for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
+                       int i;
+
+                       for (i = 0; i < mul; i++) {
+                               int cpu;
+
+                               if (t >= g->p.nr_tasks) {
+                                       printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
+                                       goto out;
+                               }
+                               td = g->threads + t;
+
+                               if (t)
+                                       tprintf(",");
+                               if (bind_len > 1) {
+                                       tprintf("%2d/%d", bind_cpu, bind_len);
+                               } else {
+                                       tprintf("%2d", bind_cpu);
+                               }
+
+                               CPU_ZERO(&td->bind_cpumask);
+                               for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
+                                       BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
+                                       CPU_SET(cpu, &td->bind_cpumask);
+                               }
+                               t++;
+                       }
+               }
+       }
+out:
+
+       tprintf("\n");
+
+       if (t < g->p.nr_tasks)
+               printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
+
+       free(str0);
+}
+
+static int parse_cpus_opt(const struct option *opt __maybe_unused,
+                         const char *arg, int unset __maybe_unused)
+{
+       if (!arg)
+               return -1;
+
+       return parse_cpu_list(arg);
+}
+
+static int parse_node_list(const char *arg)
+{
+       p0.node_list_str = strdup(arg);
+
+       dprintf("got NODE list: {%s}\n", p0.node_list_str);
+
+       return 0;
+}
+
+static void parse_setup_node_list(void)
+{
+       struct thread_data *td;
+       char *str0, *str;
+       int t;
+
+       if (!g->p.node_list_str)
+               return;
+
+       dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
+
+       str0 = str = strdup(g->p.node_list_str);
+       t = 0;
+
+       BUG_ON(!str);
+
+       tprintf("# binding tasks to NODEs:\n");
+       tprintf("# ");
+
+       while (true) {
+               int bind_node, bind_node_0, bind_node_1;
+               char *tok, *tok_end, *tok_step, *tok_mul;
+               int step;
+               int mul;
+
+               tok = strsep(&str, ",");
+               if (!tok)
+                       break;
+
+               tok_end = strstr(tok, "-");
+
+               dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
+               if (!tok_end) {
+                       /* Single NODE specified: */
+                       bind_node_0 = bind_node_1 = atol(tok);
+               } else {
+                       /* NODE range specified (for example: "5-11"): */
+                       bind_node_0 = atol(tok);
+                       bind_node_1 = atol(tok_end + 1);
+               }
+
+               step = 1;
+               tok_step = strstr(tok, "#");
+               if (tok_step) {
+                       step = atol(tok_step + 1);
+                       BUG_ON(step <= 0 || step >= g->p.nr_nodes);
+               }
+
+               /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
+               mul = 1;
+               tok_mul = strstr(tok, "x");
+               if (tok_mul) {
+                       mul = atol(tok_mul + 1);
+                       BUG_ON(mul <= 0);
+               }
+
+               dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
+
+               BUG_ON(bind_node_0 < 0 || bind_node_0 >= g->p.nr_nodes);
+               BUG_ON(bind_node_1 < 0 || bind_node_1 >= g->p.nr_nodes);
+               BUG_ON(bind_node_0 > bind_node_1);
+
+               for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
+                       int i;
+
+                       for (i = 0; i < mul; i++) {
+                               if (t >= g->p.nr_tasks) {
+                                       printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
+                                       goto out;
+                               }
+                               td = g->threads + t;
+
+                               if (!t)
+                                       tprintf(" %2d", bind_node);
+                               else
+                                       tprintf(",%2d", bind_node);
+
+                               td->bind_node = bind_node;
+                               t++;
+                       }
+               }
+       }
+out:
+
+       tprintf("\n");
+
+       if (t < g->p.nr_tasks)
+               printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
+
+       free(str0);
+}
+
+static int parse_nodes_opt(const struct option *opt __maybe_unused,
+                         const char *arg, int unset __maybe_unused)
+{
+       if (!arg)
+               return -1;
+
+       return parse_node_list(arg);
+
+       return 0;
+}
+
+#define BIT(x) (1ul << x)
+
+static inline uint32_t lfsr_32(uint32_t lfsr)
+{
+       const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
+       return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
+}
+
+/*
+ * Make sure there's real data dependency to RAM (when read
+ * accesses are enabled), so the compiler, the CPU and the
+ * kernel (KSM, zero page, etc.) cannot optimize away RAM
+ * accesses:
+ */
+static inline u64 access_data(u64 *data __attribute__((unused)), u64 val)
+{
+       if (g->p.data_reads)
+               val += *data;
+       if (g->p.data_writes)
+               *data = val + 1;
+       return val;
+}
+
+/*
+ * The worker process does two types of work, a forwards going
+ * loop and a backwards going loop.
+ *
+ * We do this so that on multiprocessor systems we do not create
+ * a 'train' of processing, with highly synchronized processes,
+ * skewing the whole benchmark.
+ */
+static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
+{
+       long words = bytes/sizeof(u64);
+       u64 *data = (void *)__data;
+       long chunk_0, chunk_1;
+       u64 *d0, *d, *d1;
+       long off;
+       long i;
+
+       BUG_ON(!data && words);
+       BUG_ON(data && !words);
+
+       if (!data)
+               return val;
+
+       /* Very simple memset() work variant: */
+       if (g->p.data_zero_memset && !g->p.data_rand_walk) {
+               bzero(data, bytes);
+               return val;
+       }
+
+       /* Spread out by PID/TID nr and by loop nr: */
+       chunk_0 = words/nr_max;
+       chunk_1 = words/g->p.nr_loops;
+       off = nr*chunk_0 + loop*chunk_1;
+
+       while (off >= words)
+               off -= words;
+
+       if (g->p.data_rand_walk) {
+               u32 lfsr = nr + loop + val;
+               int j;
+
+               for (i = 0; i < words/1024; i++) {
+                       long start, end;
+
+                       lfsr = lfsr_32(lfsr);
+
+                       start = lfsr % words;
+                       end = min(start + 1024, words-1);
+
+                       if (g->p.data_zero_memset) {
+                               bzero(data + start, (end-start) * sizeof(u64));
+                       } else {
+                               for (j = start; j < end; j++)
+                                       val = access_data(data + j, val);
+                       }
+               }
+       } else if (!g->p.data_backwards || (nr + loop) & 1) {
+
+               d0 = data + off;
+               d  = data + off + 1;
+               d1 = data + words;
+
+               /* Process data forwards: */
+               for (;;) {
+                       if (unlikely(d >= d1))
+                               d = data;
+                       if (unlikely(d == d0))
+                               break;
+
+                       val = access_data(d, val);
+
+                       d++;
+               }
+       } else {
+               /* Process data backwards: */
+
+               d0 = data + off;
+               d  = data + off - 1;
+               d1 = data + words;
+
+               /* Process data forwards: */
+               for (;;) {
+                       if (unlikely(d < data))
+                               d = data + words-1;
+                       if (unlikely(d == d0))
+                               break;
+
+                       val = access_data(d, val);
+
+                       d--;
+               }
+       }
+
+       return val;
+}
+
+static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
+{
+       unsigned int cpu;
+
+       cpu = sched_getcpu();
+
+       g->threads[task_nr].curr_cpu = cpu;
+       prctl(0, bytes_worked);
+}
+
+#define MAX_NR_NODES   64
+
+/*
+ * Count the number of nodes a process's threads
+ * are spread out on.
+ *
+ * A count of 1 means that the process is compressed
+ * to a single node. A count of g->p.nr_nodes means it's
+ * spread out on the whole system.
+ */
+static int count_process_nodes(int process_nr)
+{
+       char node_present[MAX_NR_NODES] = { 0, };
+       int nodes;
+       int n, t;
+
+       for (t = 0; t < g->p.nr_threads; t++) {
+               struct thread_data *td;
+               int task_nr;
+               int node;
+
+               task_nr = process_nr*g->p.nr_threads + t;
+               td = g->threads + task_nr;
+
+               node = numa_node_of_cpu(td->curr_cpu);
+               node_present[node] = 1;
+       }
+
+       nodes = 0;
+
+       for (n = 0; n < MAX_NR_NODES; n++)
+               nodes += node_present[n];
+
+       return nodes;
+}
+
+/*
+ * Count the number of distinct process-threads a node contains.
+ *
+ * A count of 1 means that the node contains only a single
+ * process. If all nodes on the system contain at most one
+ * process then we are well-converged.
+ */
+static int count_node_processes(int node)
+{
+       int processes = 0;
+       int t, p;
+
+       for (p = 0; p < g->p.nr_proc; p++) {
+               for (t = 0; t < g->p.nr_threads; t++) {
+                       struct thread_data *td;
+                       int task_nr;
+                       int n;
+
+                       task_nr = p*g->p.nr_threads + t;
+                       td = g->threads + task_nr;
+
+                       n = numa_node_of_cpu(td->curr_cpu);
+                       if (n == node) {
+                               processes++;
+                               break;
+                       }
+               }
+       }
+
+       return processes;
+}
+
+static void calc_convergence_compression(int *strong)
+{
+       unsigned int nodes_min, nodes_max;
+       int p;
+
+       nodes_min = -1;
+       nodes_max =  0;
+
+       for (p = 0; p < g->p.nr_proc; p++) {
+               unsigned int nodes = count_process_nodes(p);
+
+               nodes_min = min(nodes, nodes_min);
+               nodes_max = max(nodes, nodes_max);
+       }
+
+       /* Strong convergence: all threads compress on a single node: */
+       if (nodes_min == 1 && nodes_max == 1) {
+               *strong = 1;
+       } else {
+               *strong = 0;
+               tprintf(" {%d-%d}", nodes_min, nodes_max);
+       }
+}
+
+static void calc_convergence(double runtime_ns_max, double *convergence)
+{
+       unsigned int loops_done_min, loops_done_max;
+       int process_groups;
+       int nodes[MAX_NR_NODES];
+       int distance;
+       int nr_min;
+       int nr_max;
+       int strong;
+       int sum;
+       int nr;
+       int node;
+       int cpu;
+       int t;
+
+       if (!g->p.show_convergence && !g->p.measure_convergence)
+               return;
+
+       for (node = 0; node < g->p.nr_nodes; node++)
+               nodes[node] = 0;
+
+       loops_done_min = -1;
+       loops_done_max = 0;
+
+       for (t = 0; t < g->p.nr_tasks; t++) {
+               struct thread_data *td = g->threads + t;
+               unsigned int loops_done;
+
+               cpu = td->curr_cpu;
+
+               /* Not all threads have written it yet: */
+               if (cpu < 0)
+                       continue;
+
+               node = numa_node_of_cpu(cpu);
+
+               nodes[node]++;
+
+               loops_done = td->loops_done;
+               loops_done_min = min(loops_done, loops_done_min);
+               loops_done_max = max(loops_done, loops_done_max);
+       }
+
+       nr_max = 0;
+       nr_min = g->p.nr_tasks;
+       sum = 0;
+
+       for (node = 0; node < g->p.nr_nodes; node++) {
+               nr = nodes[node];
+               nr_min = min(nr, nr_min);
+               nr_max = max(nr, nr_max);
+               sum += nr;
+       }
+       BUG_ON(nr_min > nr_max);
+
+       BUG_ON(sum > g->p.nr_tasks);
+
+       if (0 && (sum < g->p.nr_tasks))
+               return;
+
+       /*
+        * Count the number of distinct process groups present
+        * on nodes - when we are converged this will decrease
+        * to g->p.nr_proc:
+        */
+       process_groups = 0;
+
+       for (node = 0; node < g->p.nr_nodes; node++) {
+               int processes = count_node_processes(node);
+
+               nr = nodes[node];
+               tprintf(" %2d/%-2d", nr, processes);
+
+               process_groups += processes;
+       }
+
+       distance = nr_max - nr_min;
+
+       tprintf(" [%2d/%-2d]", distance, process_groups);
+
+       tprintf(" l:%3d-%-3d (%3d)",
+               loops_done_min, loops_done_max, loops_done_max-loops_done_min);
+
+       if (loops_done_min && loops_done_max) {
+               double skew = 1.0 - (double)loops_done_min/loops_done_max;
+
+               tprintf(" [%4.1f%%]", skew * 100.0);
+       }
+
+       calc_convergence_compression(&strong);
+
+       if (strong && process_groups == g->p.nr_proc) {
+               if (!*convergence) {
+                       *convergence = runtime_ns_max;
+                       tprintf(" (%6.1fs converged)\n", *convergence/1e9);
+                       if (g->p.measure_convergence) {
+                               g->all_converged = true;
+                               g->stop_work = true;
+                       }
+               }
+       } else {
+               if (*convergence) {
+                       tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9);
+                       *convergence = 0;
+               }
+               tprintf("\n");
+       }
+}
+
+static void show_summary(double runtime_ns_max, int l, double *convergence)
+{
+       tprintf("\r #  %5.1f%%  [%.1f mins]",
+               (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0);
+
+       calc_convergence(runtime_ns_max, convergence);
+
+       if (g->p.show_details >= 0)
+               fflush(stdout);
+}
+
+static void *worker_thread(void *__tdata)
+{
+       struct thread_data *td = __tdata;
+       struct timeval start0, start, stop, diff;
+       int process_nr = td->process_nr;
+       int thread_nr = td->thread_nr;
+       unsigned long last_perturbance;
+       int task_nr = td->task_nr;
+       int details = g->p.show_details;
+       int first_task, last_task;
+       double convergence = 0;
+       u64 val = td->val;
+       double runtime_ns_max;
+       u8 *global_data;
+       u8 *process_data;
+       u8 *thread_data;
+       u64 bytes_done;
+       long work_done;
+       u32 l;
+
+       bind_to_cpumask(td->bind_cpumask);
+       bind_to_memnode(td->bind_node);
+
+       set_taskname("thread %d/%d", process_nr, thread_nr);
+
+       global_data = g->data;
+       process_data = td->process_data;
+       thread_data = setup_private_data(g->p.bytes_thread);
+
+       bytes_done = 0;
+
+       last_task = 0;
+       if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
+               last_task = 1;
+
+       first_task = 0;
+       if (process_nr == 0 && thread_nr == 0)
+               first_task = 1;
+
+       if (details >= 2) {
+               printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
+                       process_nr, thread_nr, global_data, process_data, thread_data);
+       }
+
+       if (g->p.serialize_startup) {
+               pthread_mutex_lock(&g->startup_mutex);
+               g->nr_tasks_started++;
+               pthread_mutex_unlock(&g->startup_mutex);
+
+               /* Here we will wait for the main process to start us all at once: */
+               pthread_mutex_lock(&g->start_work_mutex);
+               g->nr_tasks_working++;
+
+               /* Last one wake the main process: */
+               if (g->nr_tasks_working == g->p.nr_tasks)
+                       pthread_mutex_unlock(&g->startup_done_mutex);
+
+               pthread_mutex_unlock(&g->start_work_mutex);
+       }
+
+       gettimeofday(&start0, NULL);
+
+       start = stop = start0;
+       last_perturbance = start.tv_sec;
+
+       for (l = 0; l < g->p.nr_loops; l++) {
+               start = stop;
+
+               if (g->stop_work)
+                       break;
+
+               val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,      l, val);
+               val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,   l, val);
+               val += do_work(thread_data,  g->p.bytes_thread,  0,          1,         l, val);
+
+               if (g->p.sleep_usecs) {
+                       pthread_mutex_lock(td->process_lock);
+                       usleep(g->p.sleep_usecs);
+                       pthread_mutex_unlock(td->process_lock);
+               }
+               /*
+                * Amount of work to be done under a process-global lock:
+                */
+               if (g->p.bytes_process_locked) {
+                       pthread_mutex_lock(td->process_lock);
+                       val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,    l, val);
+                       pthread_mutex_unlock(td->process_lock);
+               }
+
+               work_done = g->p.bytes_global + g->p.bytes_process +
+                           g->p.bytes_process_locked + g->p.bytes_thread;
+
+               update_curr_cpu(task_nr, work_done);
+               bytes_done += work_done;
+
+               if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
+                       continue;
+
+               td->loops_done = l;
+
+               gettimeofday(&stop, NULL);
+
+               /* Check whether our max runtime timed out: */
+               if (g->p.nr_secs) {
+                       timersub(&stop, &start0, &diff);
+                       if (diff.tv_sec >= g->p.nr_secs) {
+                               g->stop_work = true;
+                               break;
+                       }
+               }
+
+               /* Update the summary at most once per second: */
+               if (start.tv_sec == stop.tv_sec)
+                       continue;
+
+               /*
+                * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
+                * by migrating to CPU#0:
+                */
+               if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
+                       cpu_set_t orig_mask;
+                       int target_cpu;
+                       int this_cpu;
+
+                       last_perturbance = stop.tv_sec;
+
+                       /*
+                        * Depending on where we are running, move into
+                        * the other half of the system, to create some
+                        * real disturbance:
+                        */
+                       this_cpu = g->threads[task_nr].curr_cpu;
+                       if (this_cpu < g->p.nr_cpus/2)
+                               target_cpu = g->p.nr_cpus-1;
+                       else
+                               target_cpu = 0;
+
+                       orig_mask = bind_to_cpu(target_cpu);
+
+                       /* Here we are running on the target CPU already */
+                       if (details >= 1)
+                               printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
+
+                       bind_to_cpumask(orig_mask);
+               }
+
+               if (details >= 3) {
+                       timersub(&stop, &start, &diff);
+                       runtime_ns_max = diff.tv_sec * 1000000000;
+                       runtime_ns_max += diff.tv_usec * 1000;
+
+                       if (details >= 0) {
+                               printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016lx]\n",
+                                       process_nr, thread_nr, runtime_ns_max / bytes_done, val);
+                       }
+                       fflush(stdout);
+               }
+               if (!last_task)
+                       continue;
+
+               timersub(&stop, &start0, &diff);
+               runtime_ns_max = diff.tv_sec * 1000000000ULL;
+               runtime_ns_max += diff.tv_usec * 1000ULL;
+
+               show_summary(runtime_ns_max, l, &convergence);
+       }
+
+       gettimeofday(&stop, NULL);
+       timersub(&stop, &start0, &diff);
+       td->runtime_ns = diff.tv_sec * 1000000000ULL;
+       td->runtime_ns += diff.tv_usec * 1000ULL;
+
+       free_data(thread_data, g->p.bytes_thread);
+
+       pthread_mutex_lock(&g->stop_work_mutex);
+       g->bytes_done += bytes_done;
+       pthread_mutex_unlock(&g->stop_work_mutex);
+
+       return NULL;
+}
+
+/*
+ * A worker process starts a couple of threads:
+ */
+static void worker_process(int process_nr)
+{
+       pthread_mutex_t process_lock;
+       struct thread_data *td;
+       pthread_t *pthreads;
+       u8 *process_data;
+       int task_nr;
+       int ret;
+       int t;
+
+       pthread_mutex_init(&process_lock, NULL);
+       set_taskname("process %d", process_nr);
+
+       /*
+        * Pick up the memory policy and the CPU binding of our first thread,
+        * so that we initialize memory accordingly:
+        */
+       task_nr = process_nr*g->p.nr_threads;
+       td = g->threads + task_nr;
+
+       bind_to_memnode(td->bind_node);
+       bind_to_cpumask(td->bind_cpumask);
+
+       pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
+       process_data = setup_private_data(g->p.bytes_process);
+
+       if (g->p.show_details >= 3) {
+               printf(" # process %2d global mem: %p, process mem: %p\n",
+                       process_nr, g->data, process_data);
+       }
+
+       for (t = 0; t < g->p.nr_threads; t++) {
+               task_nr = process_nr*g->p.nr_threads + t;
+               td = g->threads + task_nr;
+
+               td->process_data = process_data;
+               td->process_nr   = process_nr;
+               td->thread_nr    = t;
+               td->task_nr      = task_nr;
+               td->val          = rand();
+               td->curr_cpu     = -1;
+               td->process_lock = &process_lock;
+
+               ret = pthread_create(pthreads + t, NULL, worker_thread, td);
+               BUG_ON(ret);
+       }
+
+       for (t = 0; t < g->p.nr_threads; t++) {
+                ret = pthread_join(pthreads[t], NULL);
+               BUG_ON(ret);
+       }
+
+       free_data(process_data, g->p.bytes_process);
+       free(pthreads);
+}
+
+static void print_summary(void)
+{
+       if (g->p.show_details < 0)
+               return;
+
+       printf("\n ###\n");
+       printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
+               g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
+       printf(" #      %5dx %5ldMB global  shared mem operations\n",
+                       g->p.nr_loops, g->p.bytes_global/1024/1024);
+       printf(" #      %5dx %5ldMB process shared mem operations\n",
+                       g->p.nr_loops, g->p.bytes_process/1024/1024);
+       printf(" #      %5dx %5ldMB thread  local  mem operations\n",
+                       g->p.nr_loops, g->p.bytes_thread/1024/1024);
+
+       printf(" ###\n");
+
+       printf("\n ###\n"); fflush(stdout);
+}
+
+static void init_thread_data(void)
+{
+       ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
+       int t;
+
+       g->threads = zalloc_shared_data(size);
+
+       for (t = 0; t < g->p.nr_tasks; t++) {
+               struct thread_data *td = g->threads + t;
+               int cpu;
+
+               /* Allow all nodes by default: */
+               td->bind_node = -1;
+
+               /* Allow all CPUs by default: */
+               CPU_ZERO(&td->bind_cpumask);
+               for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
+                       CPU_SET(cpu, &td->bind_cpumask);
+       }
+}
+
+static void deinit_thread_data(void)
+{
+       ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
+
+       free_data(g->threads, size);
+}
+
+static int init(void)
+{
+       g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
+
+       /* Copy over options: */
+       g->p = p0;
+
+       g->p.nr_cpus = numa_num_configured_cpus();
+
+       g->p.nr_nodes = numa_max_node() + 1;
+
+       /* char array in count_process_nodes(): */
+       BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
+
+       if (g->p.show_quiet && !g->p.show_details)
+               g->p.show_details = -1;
+
+       /* Some memory should be specified: */
+       if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
+               return -1;
+
+       if (g->p.mb_global_str) {
+               g->p.mb_global = atof(g->p.mb_global_str);
+               BUG_ON(g->p.mb_global < 0);
+       }
+
+       if (g->p.mb_proc_str) {
+               g->p.mb_proc = atof(g->p.mb_proc_str);
+               BUG_ON(g->p.mb_proc < 0);
+       }
+
+       if (g->p.mb_proc_locked_str) {
+               g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
+               BUG_ON(g->p.mb_proc_locked < 0);
+               BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
+       }
+
+       if (g->p.mb_thread_str) {
+               g->p.mb_thread = atof(g->p.mb_thread_str);
+               BUG_ON(g->p.mb_thread < 0);
+       }
+
+       BUG_ON(g->p.nr_threads <= 0);
+       BUG_ON(g->p.nr_proc <= 0);
+
+       g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
+
+       g->p.bytes_global               = g->p.mb_global        *1024L*1024L;
+       g->p.bytes_process              = g->p.mb_proc          *1024L*1024L;
+       g->p.bytes_process_locked       = g->p.mb_proc_locked   *1024L*1024L;
+       g->p.bytes_thread               = g->p.mb_thread        *1024L*1024L;
+
+       g->data = setup_shared_data(g->p.bytes_global);
+
+       /* Startup serialization: */
+       init_global_mutex(&g->start_work_mutex);
+       init_global_mutex(&g->startup_mutex);
+       init_global_mutex(&g->startup_done_mutex);
+       init_global_mutex(&g->stop_work_mutex);
+
+       init_thread_data();
+
+       tprintf("#\n");
+       parse_setup_cpu_list();
+       parse_setup_node_list();
+       tprintf("#\n");
+
+       print_summary();
+
+       return 0;
+}
+
+static void deinit(void)
+{
+       free_data(g->data, g->p.bytes_global);
+       g->data = NULL;
+
+       deinit_thread_data();
+
+       free_data(g, sizeof(*g));
+       g = NULL;
+}
+
+/*
+ * Print a short or long result, depending on the verbosity setting:
+ */
+static void print_res(const char *name, double val,
+                     const char *txt_unit, const char *txt_short, const char *txt_long)
+{
+       if (!name)
+               name = "main,";
+
+       if (g->p.show_quiet)
+               printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
+       else
+               printf(" %14.3f %s\n", val, txt_long);
+}
+
+static int __bench_numa(const char *name)
+{
+       struct timeval start, stop, diff;
+       u64 runtime_ns_min, runtime_ns_sum;
+       pid_t *pids, pid, wpid;
+       double delta_runtime;
+       double runtime_avg;
+       double runtime_sec_max;
+       double runtime_sec_min;
+       int wait_stat;
+       double bytes;
+       int i, t;
+
+       if (init())
+               return -1;
+
+       pids = zalloc(g->p.nr_proc * sizeof(*pids));
+       pid = -1;
+
+       /* All threads try to acquire it, this way we can wait for them to start up: */
+       pthread_mutex_lock(&g->start_work_mutex);
+
+       if (g->p.serialize_startup) {
+               tprintf(" #\n");
+               tprintf(" # Startup synchronization: ..."); fflush(stdout);
+       }
+
+       gettimeofday(&start, NULL);
+
+       for (i = 0; i < g->p.nr_proc; i++) {
+               pid = fork();
+               dprintf(" # process %2d: PID %d\n", i, pid);
+
+               BUG_ON(pid < 0);
+               if (!pid) {
+                       /* Child process: */
+                       worker_process(i);
+
+                       exit(0);
+               }
+               pids[i] = pid;
+
+       }
+       /* Wait for all the threads to start up: */
+       while (g->nr_tasks_started != g->p.nr_tasks)
+               usleep(1000);
+
+       BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
+
+       if (g->p.serialize_startup) {
+               double startup_sec;
+
+               pthread_mutex_lock(&g->startup_done_mutex);
+
+               /* This will start all threads: */
+               pthread_mutex_unlock(&g->start_work_mutex);
+
+               /* This mutex is locked - the last started thread will wake us: */
+               pthread_mutex_lock(&g->startup_done_mutex);
+
+               gettimeofday(&stop, NULL);
+
+               timersub(&stop, &start, &diff);
+
+               startup_sec = diff.tv_sec * 1000000000.0;
+               startup_sec += diff.tv_usec * 1000.0;
+               startup_sec /= 1e9;
+
+               tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
+               tprintf(" #\n");
+
+               start = stop;
+               pthread_mutex_unlock(&g->startup_done_mutex);
+       } else {
+               gettimeofday(&start, NULL);
+       }
+
+       /* Parent process: */
+
+
+       for (i = 0; i < g->p.nr_proc; i++) {
+               wpid = waitpid(pids[i], &wait_stat, 0);
+               BUG_ON(wpid < 0);
+               BUG_ON(!WIFEXITED(wait_stat));
+
+       }
+
+       runtime_ns_sum = 0;
+       runtime_ns_min = -1LL;
+
+       for (t = 0; t < g->p.nr_tasks; t++) {
+               u64 thread_runtime_ns = g->threads[t].runtime_ns;
+
+               runtime_ns_sum += thread_runtime_ns;
+               runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
+       }
+
+       gettimeofday(&stop, NULL);
+       timersub(&stop, &start, &diff);
+
+       BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
+
+       tprintf("\n ###\n");
+       tprintf("\n");
+
+       runtime_sec_max = diff.tv_sec * 1000000000.0;
+       runtime_sec_max += diff.tv_usec * 1000.0;
+       runtime_sec_max /= 1e9;
+
+       runtime_sec_min = runtime_ns_min/1e9;
+
+       bytes = g->bytes_done;
+       runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9;
+
+       if (g->p.measure_convergence) {
+               print_res(name, runtime_sec_max,
+                       "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
+       }
+
+       print_res(name, runtime_sec_max,
+               "secs,", "runtime-max/thread",  "secs slowest (max) thread-runtime");
+
+       print_res(name, runtime_sec_min,
+               "secs,", "runtime-min/thread",  "secs fastest (min) thread-runtime");
+
+       print_res(name, runtime_avg,
+               "secs,", "runtime-avg/thread",  "secs average thread-runtime");
+
+       delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
+       print_res(name, delta_runtime / runtime_sec_max * 100.0,
+               "%,", "spread-runtime/thread",  "% difference between max/avg runtime");
+
+       print_res(name, bytes / g->p.nr_tasks / 1e9,
+               "GB,", "data/thread",           "GB data processed, per thread");
+
+       print_res(name, bytes / 1e9,
+               "GB,", "data-total",            "GB data processed, total");
+
+       print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks),
+               "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
+
+       print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
+               "GB/sec,", "thread-speed",      "GB/sec/thread speed");
+
+       print_res(name, bytes / runtime_sec_max / 1e9,
+               "GB/sec,", "total-speed",       "GB/sec total speed");
+
+       free(pids);
+
+       deinit();
+
+       return 0;
+}
+
+#define MAX_ARGS 50
+
+static int command_size(const char **argv)
+{
+       int size = 0;
+
+       while (*argv) {
+               size++;
+               argv++;
+       }
+
+       BUG_ON(size >= MAX_ARGS);
+
+       return size;
+}
+
+static void init_params(struct params *p, const char *name, int argc, const char **argv)
+{
+       int i;
+
+       printf("\n # Running %s \"perf bench numa", name);
+
+       for (i = 0; i < argc; i++)
+               printf(" %s", argv[i]);
+
+       printf("\"\n");
+
+       memset(p, 0, sizeof(*p));
+
+       /* Initialize nonzero defaults: */
+
+       p->serialize_startup            = 1;
+       p->data_reads                   = true;
+       p->data_writes                  = true;
+       p->data_backwards               = true;
+       p->data_rand_walk               = true;
+       p->nr_loops                     = -1;
+       p->init_random                  = true;
+}
+
+static int run_bench_numa(const char *name, const char **argv)
+{
+       int argc = command_size(argv);
+
+       init_params(&p0, name, argc, argv);
+       argc = parse_options(argc, argv, options, bench_numa_usage, 0);
+       if (argc)
+               goto err;
+
+       if (__bench_numa(name))
+               goto err;
+
+       return 0;
+
+err:
+       usage_with_options(numa_usage, options);
+       return -1;
+}
+
+#define OPT_BW_RAM             "-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
+#define OPT_BW_RAM_NOTHP       OPT_BW_RAM,             "--thp", "-1"
+
+#define OPT_CONV               "-s", "100", "-zZ0qcm", "--thp", " 1"
+#define OPT_CONV_NOTHP         OPT_CONV,               "--thp", "-1"
+
+#define OPT_BW                 "-s",  "20", "-zZ0q",   "--thp", " 1"
+#define OPT_BW_NOTHP           OPT_BW,                 "--thp", "-1"
+
+/*
+ * The built-in test-suite executed by "perf bench numa -a".
+ *
+ * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
+ */
+static const char *tests[][MAX_ARGS] = {
+   /* Basic single-stream NUMA bandwidth measurements: */
+   { "RAM-bw-local,",    "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
+                         "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
+   { "RAM-bw-local-NOTHP,",
+                         "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
+                         "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
+   { "RAM-bw-remote,",   "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
+                         "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
+
+   /* 2-stream NUMA bandwidth measurements: */
+   { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
+                          "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
+   { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
+                          "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
+
+   /* Cross-stream NUMA bandwidth measurement: */
+   { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
+                          "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
+
+   /* Convergence latency measurements: */
+   { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
+   { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
+   { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
+   { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
+   { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
+   { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
+   { " 4x4-convergence-NOTHP,",
+                         "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
+   { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
+   { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
+   { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
+   { " 8x4-convergence-NOTHP,",
+                         "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
+   { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
+   { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
+   { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
+   { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
+   { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
+
+   /* Various NUMA process/thread layout bandwidth measurements: */
+   { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
+   { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
+   { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
+   { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
+   { " 8x1-bw-process-NOTHP,",
+                         "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
+   { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
+
+   { " 4x1-bw-thread,",          "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
+   { " 8x1-bw-thread,",          "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
+   { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
+   { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
+
+   { " 2x3-bw-thread,",          "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
+   { " 4x4-bw-thread,",          "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
+   { " 4x6-bw-thread,",          "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
+   { " 4x8-bw-thread,",          "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
+   { " 4x8-bw-thread-NOTHP,",
+                         "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
+   { " 3x3-bw-thread,",          "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
+   { " 5x5-bw-thread,",          "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
+
+   { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
+   { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
+
+   { "numa02-bw,",       "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
+   { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
+   { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
+   { "numa01-bw-thread-NOTHP,",
+                         "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
+};
+
+static int bench_all(void)
+{
+       int nr = ARRAY_SIZE(tests);
+       int ret;
+       int i;
+
+       ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
+       BUG_ON(ret < 0);
+
+       for (i = 0; i < nr; i++) {
+               if (run_bench_numa(tests[i][0], tests[i] + 1))
+                       return -1;
+       }
+
+       printf("\n");
+
+       return 0;
+}
+
+int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused)
+{
+       init_params(&p0, "main,", argc, argv);
+       argc = parse_options(argc, argv, options, bench_numa_usage, 0);
+       if (argc)
+               goto err;
+
+       if (p0.run_all)
+               return bench_all();
+
+       if (__bench_numa(NULL))
+               goto err;
+
+       return 0;
+
+err:
+       usage_with_options(numa_usage, options);
+       return -1;
+}