]> Pileus Git - ~andy/linux/blobdiff - mm/hugetlb.c
Merge remote-tracking branch 'asoc/topic/fsl' into asoc-next
[~andy/linux] / mm / hugetlb.c
index dec5772c8c5c8fd35b3f1d665252e7845468f3b0..0b7656e804d126cf0fcfa04a8b427396af86deb1 100644 (file)
@@ -21,6 +21,7 @@
 #include <linux/rmap.h>
 #include <linux/swap.h>
 #include <linux/swapops.h>
+#include <linux/page-isolation.h>
 
 #include <asm/page.h>
 #include <asm/pgtable.h>
@@ -33,7 +34,6 @@
 #include "internal.h"
 
 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
-static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
 unsigned long hugepages_treat_as_movable;
 
 int hugetlb_max_hstate __read_mostly;
@@ -48,7 +48,8 @@ static unsigned long __initdata default_hstate_max_huge_pages;
 static unsigned long __initdata default_hstate_size;
 
 /*
- * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
+ * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
+ * free_huge_pages, and surplus_huge_pages.
  */
 DEFINE_SPINLOCK(hugetlb_lock);
 
@@ -521,9 +522,15 @@ static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
 {
        struct page *page;
 
-       if (list_empty(&h->hugepage_freelists[nid]))
+       list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
+               if (!is_migrate_isolate_page(page))
+                       break;
+       /*
+        * if 'non-isolated free hugepage' not found on the list,
+        * the allocation fails.
+        */
+       if (&h->hugepage_freelists[nid] == &page->lru)
                return NULL;
-       page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
        list_move(&page->lru, &h->hugepage_activelist);
        set_page_refcounted(page);
        h->free_huge_pages--;
@@ -531,6 +538,15 @@ static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
        return page;
 }
 
+/* Movability of hugepages depends on migration support. */
+static inline gfp_t htlb_alloc_mask(struct hstate *h)
+{
+       if (hugepages_treat_as_movable || hugepage_migration_support(h))
+               return GFP_HIGHUSER_MOVABLE;
+       else
+               return GFP_HIGHUSER;
+}
+
 static struct page *dequeue_huge_page_vma(struct hstate *h,
                                struct vm_area_struct *vma,
                                unsigned long address, int avoid_reserve,
@@ -560,11 +576,11 @@ static struct page *dequeue_huge_page_vma(struct hstate *h,
 retry_cpuset:
        cpuset_mems_cookie = get_mems_allowed();
        zonelist = huge_zonelist(vma, address,
-                                       htlb_alloc_mask, &mpol, &nodemask);
+                                       htlb_alloc_mask(h), &mpol, &nodemask);
 
        for_each_zone_zonelist_nodemask(zone, z, zonelist,
                                                MAX_NR_ZONES - 1, nodemask) {
-               if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
+               if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
                        page = dequeue_huge_page_node(h, zone_to_nid(zone));
                        if (page) {
                                if (avoid_reserve)
@@ -572,6 +588,7 @@ retry_cpuset:
                                if (!vma_has_reserves(vma, chg))
                                        break;
 
+                               SetPagePrivate(page);
                                h->resv_huge_pages--;
                                break;
                        }
@@ -629,15 +646,21 @@ static void free_huge_page(struct page *page)
        int nid = page_to_nid(page);
        struct hugepage_subpool *spool =
                (struct hugepage_subpool *)page_private(page);
+       bool restore_reserve;
 
        set_page_private(page, 0);
        page->mapping = NULL;
        BUG_ON(page_count(page));
        BUG_ON(page_mapcount(page));
+       restore_reserve = PagePrivate(page);
+       ClearPagePrivate(page);
 
        spin_lock(&hugetlb_lock);
        hugetlb_cgroup_uncharge_page(hstate_index(h),
                                     pages_per_huge_page(h), page);
+       if (restore_reserve)
+               h->resv_huge_pages++;
+
        if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
                /* remove the page from active list */
                list_del(&page->lru);
@@ -673,8 +696,22 @@ static void prep_compound_gigantic_page(struct page *page, unsigned long order)
        /* we rely on prep_new_huge_page to set the destructor */
        set_compound_order(page, order);
        __SetPageHead(page);
+       __ClearPageReserved(page);
        for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
                __SetPageTail(p);
+               /*
+                * For gigantic hugepages allocated through bootmem at
+                * boot, it's safer to be consistent with the not-gigantic
+                * hugepages and clear the PG_reserved bit from all tail pages
+                * too.  Otherwse drivers using get_user_pages() to access tail
+                * pages may get the reference counting wrong if they see
+                * PG_reserved set on a tail page (despite the head page not
+                * having PG_reserved set).  Enforcing this consistency between
+                * head and tail pages allows drivers to optimize away a check
+                * on the head page when they need know if put_page() is needed
+                * after get_user_pages().
+                */
+               __ClearPageReserved(p);
                set_page_count(p, 0);
                p->first_page = page;
        }
@@ -724,7 +761,7 @@ static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
                return NULL;
 
        page = alloc_pages_exact_node(nid,
-               htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
+               htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
                                                __GFP_REPEAT|__GFP_NOWARN,
                huge_page_order(h));
        if (page) {
@@ -871,6 +908,44 @@ static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
        return ret;
 }
 
+/*
+ * Dissolve a given free hugepage into free buddy pages. This function does
+ * nothing for in-use (including surplus) hugepages.
+ */
+static void dissolve_free_huge_page(struct page *page)
+{
+       spin_lock(&hugetlb_lock);
+       if (PageHuge(page) && !page_count(page)) {
+               struct hstate *h = page_hstate(page);
+               int nid = page_to_nid(page);
+               list_del(&page->lru);
+               h->free_huge_pages--;
+               h->free_huge_pages_node[nid]--;
+               update_and_free_page(h, page);
+       }
+       spin_unlock(&hugetlb_lock);
+}
+
+/*
+ * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
+ * make specified memory blocks removable from the system.
+ * Note that start_pfn should aligned with (minimum) hugepage size.
+ */
+void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
+{
+       unsigned int order = 8 * sizeof(void *);
+       unsigned long pfn;
+       struct hstate *h;
+
+       /* Set scan step to minimum hugepage size */
+       for_each_hstate(h)
+               if (order > huge_page_order(h))
+                       order = huge_page_order(h);
+       VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
+       for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
+               dissolve_free_huge_page(pfn_to_page(pfn));
+}
+
 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
 {
        struct page *page;
@@ -913,12 +988,12 @@ static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
        spin_unlock(&hugetlb_lock);
 
        if (nid == NUMA_NO_NODE)
-               page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
+               page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
                                   __GFP_REPEAT|__GFP_NOWARN,
                                   huge_page_order(h));
        else
                page = alloc_pages_exact_node(nid,
-                       htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
+                       htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
                        __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
 
        if (page && arch_prepare_hugepage(page)) {
@@ -1200,6 +1275,20 @@ static struct page *alloc_huge_page(struct vm_area_struct *vma,
        return page;
 }
 
+/*
+ * alloc_huge_page()'s wrapper which simply returns the page if allocation
+ * succeeds, otherwise NULL. This function is called from new_vma_page(),
+ * where no ERR_VALUE is expected to be returned.
+ */
+struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
+                               unsigned long addr, int avoid_reserve)
+{
+       struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
+       if (IS_ERR(page))
+               page = NULL;
+       return page;
+}
+
 int __weak alloc_bootmem_huge_page(struct hstate *h)
 {
        struct huge_bootmem_page *m;
@@ -1255,9 +1344,9 @@ static void __init gather_bootmem_prealloc(void)
 #else
                page = virt_to_page(m);
 #endif
-               __ClearPageReserved(page);
                WARN_ON(page_count(page) != 1);
                prep_compound_huge_page(page, h->order);
+               WARN_ON(PageReserved(page));
                prep_new_huge_page(h, page, page_to_nid(page));
                /*
                 * If we had gigantic hugepages allocated at boot time, we need
@@ -2051,18 +2140,6 @@ int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
 }
 #endif /* CONFIG_NUMA */
 
-int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
-                       void __user *buffer,
-                       size_t *length, loff_t *ppos)
-{
-       proc_dointvec(table, write, buffer, length, ppos);
-       if (hugepages_treat_as_movable)
-               htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
-       else
-               htlb_alloc_mask = GFP_HIGHUSER;
-       return 0;
-}
-
 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
                        void __user *buffer,
                        size_t *length, loff_t *ppos)
@@ -2564,8 +2641,7 @@ retry_avoidcopy:
         * at the time of fork() could consume its reserves on COW instead
         * of the full address range.
         */
-       if (!(vma->vm_flags & VM_MAYSHARE) &&
-                       is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
+       if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
                        old_page != pagecache_page)
                outside_reserve = 1;
 
@@ -2637,6 +2713,8 @@ retry_avoidcopy:
        spin_lock(&mm->page_table_lock);
        ptep = huge_pte_offset(mm, address & huge_page_mask(h));
        if (likely(pte_same(huge_ptep_get(ptep), pte))) {
+               ClearPagePrivate(new_page);
+
                /* Break COW */
                huge_ptep_clear_flush(vma, address, ptep);
                set_huge_pte_at(mm, address, ptep,
@@ -2648,10 +2726,11 @@ retry_avoidcopy:
        }
        spin_unlock(&mm->page_table_lock);
        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
-       /* Caller expects lock to be held */
-       spin_lock(&mm->page_table_lock);
        page_cache_release(new_page);
        page_cache_release(old_page);
+
+       /* Caller expects lock to be held */
+       spin_lock(&mm->page_table_lock);
        return 0;
 }
 
@@ -2747,6 +2826,7 @@ retry:
                                        goto retry;
                                goto out;
                        }
+                       ClearPagePrivate(page);
 
                        spin_lock(&inode->i_lock);
                        inode->i_blocks += blocks_per_huge_page(h);
@@ -2793,8 +2873,10 @@ retry:
        if (!huge_pte_none(huge_ptep_get(ptep)))
                goto backout;
 
-       if (anon_rmap)
+       if (anon_rmap) {
+               ClearPagePrivate(page);
                hugepage_add_new_anon_rmap(page, vma, address);
+       }
        else
                page_dup_rmap(page);
        new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
@@ -3411,3 +3493,45 @@ int dequeue_hwpoisoned_huge_page(struct page *hpage)
        return ret;
 }
 #endif
+
+bool isolate_huge_page(struct page *page, struct list_head *list)
+{
+       VM_BUG_ON(!PageHead(page));
+       if (!get_page_unless_zero(page))
+               return false;
+       spin_lock(&hugetlb_lock);
+       list_move_tail(&page->lru, list);
+       spin_unlock(&hugetlb_lock);
+       return true;
+}
+
+void putback_active_hugepage(struct page *page)
+{
+       VM_BUG_ON(!PageHead(page));
+       spin_lock(&hugetlb_lock);
+       list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
+       spin_unlock(&hugetlb_lock);
+       put_page(page);
+}
+
+bool is_hugepage_active(struct page *page)
+{
+       VM_BUG_ON(!PageHuge(page));
+       /*
+        * This function can be called for a tail page because the caller,
+        * scan_movable_pages, scans through a given pfn-range which typically
+        * covers one memory block. In systems using gigantic hugepage (1GB
+        * for x86_64,) a hugepage is larger than a memory block, and we don't
+        * support migrating such large hugepages for now, so return false
+        * when called for tail pages.
+        */
+       if (PageTail(page))
+               return false;
+       /*
+        * Refcount of a hwpoisoned hugepages is 1, but they are not active,
+        * so we should return false for them.
+        */
+       if (unlikely(PageHWPoison(page)))
+               return false;
+       return page_count(page) > 0;
+}