]> Pileus Git - ~andy/linux/blobdiff - drivers/edac/amd64_edac.c
Merge branch 'for-linus' of git://www.jni.nu/cris
[~andy/linux] / drivers / edac / amd64_edac.c
index 5ec44a440d65b092dc3c26bc8946c73654cff72d..c36bf40568cf8e7de0aacaa5ce7219650cec5a26 100644 (file)
@@ -1,4 +1,5 @@
 #include "amd64_edac.h"
+#include <asm/k8.h>
 
 static struct edac_pci_ctl_info *amd64_ctl_pci;
 
@@ -1013,3 +1014,2341 @@ static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
        return type;
 }
 
+/*
+ * Read the DRAM Configuration Low register. It differs between CG, D & E revs
+ * and the later RevF memory controllers (DDR vs DDR2)
+ *
+ * Return:
+ *      number of memory channels in operation
+ * Pass back:
+ *      contents of the DCL0_LOW register
+ */
+static int k8_early_channel_count(struct amd64_pvt *pvt)
+{
+       int flag, err = 0;
+
+       err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
+       if (err)
+               return err;
+
+       if ((boot_cpu_data.x86_model >> 4) >= OPTERON_CPU_REV_F) {
+               /* RevF (NPT) and later */
+               flag = pvt->dclr0 & F10_WIDTH_128;
+       } else {
+               /* RevE and earlier */
+               flag = pvt->dclr0 & REVE_WIDTH_128;
+       }
+
+       /* not used */
+       pvt->dclr1 = 0;
+
+       return (flag) ? 2 : 1;
+}
+
+/* extract the ERROR ADDRESS for the K8 CPUs */
+static u64 k8_get_error_address(struct mem_ctl_info *mci,
+                               struct amd64_error_info_regs *info)
+{
+       return (((u64) (info->nbeah & 0xff)) << 32) +
+                       (info->nbeal & ~0x03);
+}
+
+/*
+ * Read the Base and Limit registers for K8 based Memory controllers; extract
+ * fields from the 'raw' reg into separate data fields
+ *
+ * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
+ */
+static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
+{
+       u32 low;
+       u32 off = dram << 3;    /* 8 bytes between DRAM entries */
+       int err;
+
+       err = pci_read_config_dword(pvt->addr_f1_ctl,
+                                   K8_DRAM_BASE_LOW + off, &low);
+       if (err)
+               debugf0("Reading K8_DRAM_BASE_LOW failed\n");
+
+       /* Extract parts into separate data entries */
+       pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
+       pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
+       pvt->dram_rw_en[dram] = (low & 0x3);
+
+       err = pci_read_config_dword(pvt->addr_f1_ctl,
+                                   K8_DRAM_LIMIT_LOW + off, &low);
+       if (err)
+               debugf0("Reading K8_DRAM_LIMIT_LOW failed\n");
+
+       /*
+        * Extract parts into separate data entries. Limit is the HIGHEST memory
+        * location of the region, so lower 24 bits need to be all ones
+        */
+       pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
+       pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
+       pvt->dram_DstNode[dram] = (low & 0x7);
+}
+
+static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
+                                       struct amd64_error_info_regs *info,
+                                       u64 SystemAddress)
+{
+       struct mem_ctl_info *src_mci;
+       unsigned short syndrome;
+       int channel, csrow;
+       u32 page, offset;
+
+       /* Extract the syndrome parts and form a 16-bit syndrome */
+       syndrome = EXTRACT_HIGH_SYNDROME(info->nbsl) << 8;
+       syndrome |= EXTRACT_LOW_SYNDROME(info->nbsh);
+
+       /* CHIPKILL enabled */
+       if (info->nbcfg & K8_NBCFG_CHIPKILL) {
+               channel = get_channel_from_ecc_syndrome(syndrome);
+               if (channel < 0) {
+                       /*
+                        * Syndrome didn't map, so we don't know which of the
+                        * 2 DIMMs is in error. So we need to ID 'both' of them
+                        * as suspect.
+                        */
+                       amd64_mc_printk(mci, KERN_WARNING,
+                                      "unknown syndrome 0x%x - possible error "
+                                      "reporting race\n", syndrome);
+                       edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
+                       return;
+               }
+       } else {
+               /*
+                * non-chipkill ecc mode
+                *
+                * The k8 documentation is unclear about how to determine the
+                * channel number when using non-chipkill memory.  This method
+                * was obtained from email communication with someone at AMD.
+                * (Wish the email was placed in this comment - norsk)
+                */
+               channel = ((SystemAddress & BIT(3)) != 0);
+       }
+
+       /*
+        * Find out which node the error address belongs to. This may be
+        * different from the node that detected the error.
+        */
+       src_mci = find_mc_by_sys_addr(mci, SystemAddress);
+       if (src_mci) {
+               amd64_mc_printk(mci, KERN_ERR,
+                            "failed to map error address 0x%lx to a node\n",
+                            (unsigned long)SystemAddress);
+               edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
+               return;
+       }
+
+       /* Now map the SystemAddress to a CSROW */
+       csrow = sys_addr_to_csrow(src_mci, SystemAddress);
+       if (csrow < 0) {
+               edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
+       } else {
+               error_address_to_page_and_offset(SystemAddress, &page, &offset);
+
+               edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
+                                 channel, EDAC_MOD_STR);
+       }
+}
+
+/*
+ * determrine the number of PAGES in for this DIMM's size based on its DRAM
+ * Address Mapping.
+ *
+ * First step is to calc the number of bits to shift a value of 1 left to
+ * indicate show many pages. Start with the DBAM value as the starting bits,
+ * then proceed to adjust those shift bits, based on CPU rev and the table.
+ * See BKDG on the DBAM
+ */
+static int k8_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
+{
+       int nr_pages;
+
+       if (pvt->ext_model >= OPTERON_CPU_REV_F) {
+               nr_pages = 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
+       } else {
+               /*
+                * RevE and less section; this line is tricky. It collapses the
+                * table used by RevD and later to one that matches revisions CG
+                * and earlier.
+                */
+               dram_map -= (pvt->ext_model >= OPTERON_CPU_REV_D) ?
+                               (dram_map > 8 ? 4 : (dram_map > 5 ?
+                               3 : (dram_map > 2 ? 1 : 0))) : 0;
+
+               /* 25 shift is 32MiB minimum DIMM size in RevE and prior */
+               nr_pages = 1 << (dram_map + 25 - PAGE_SHIFT);
+       }
+
+       return nr_pages;
+}
+
+/*
+ * Get the number of DCT channels in use.
+ *
+ * Return:
+ *     number of Memory Channels in operation
+ * Pass back:
+ *     contents of the DCL0_LOW register
+ */
+static int f10_early_channel_count(struct amd64_pvt *pvt)
+{
+       int err = 0, channels = 0;
+       u32 dbam;
+
+       err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
+       if (err)
+               goto err_reg;
+
+       err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
+       if (err)
+               goto err_reg;
+
+       /* If we are in 128 bit mode, then we are using 2 channels */
+       if (pvt->dclr0 & F10_WIDTH_128) {
+               debugf0("Data WIDTH is 128 bits - 2 channels\n");
+               channels = 2;
+               return channels;
+       }
+
+       /*
+        * Need to check if in UN-ganged mode: In such, there are 2 channels,
+        * but they are NOT in 128 bit mode and thus the above 'dcl0' status bit
+        * will be OFF.
+        *
+        * Need to check DCT0[0] and DCT1[0] to see if only one of them has
+        * their CSEnable bit on. If so, then SINGLE DIMM case.
+        */
+       debugf0("Data WIDTH is NOT 128 bits - need more decoding\n");
+
+       /*
+        * Check DRAM Bank Address Mapping values for each DIMM to see if there
+        * is more than just one DIMM present in unganged mode. Need to check
+        * both controllers since DIMMs can be placed in either one.
+        */
+       channels = 0;
+       err = pci_read_config_dword(pvt->dram_f2_ctl, DBAM0, &dbam);
+       if (err)
+               goto err_reg;
+
+       if (DBAM_DIMM(0, dbam) > 0)
+               channels++;
+       if (DBAM_DIMM(1, dbam) > 0)
+               channels++;
+       if (DBAM_DIMM(2, dbam) > 0)
+               channels++;
+       if (DBAM_DIMM(3, dbam) > 0)
+               channels++;
+
+       /* If more than 2 DIMMs are present, then we have 2 channels */
+       if (channels > 2)
+               channels = 2;
+       else if (channels == 0) {
+               /* No DIMMs on DCT0, so look at DCT1 */
+               err = pci_read_config_dword(pvt->dram_f2_ctl, DBAM1, &dbam);
+               if (err)
+                       goto err_reg;
+
+               if (DBAM_DIMM(0, dbam) > 0)
+                       channels++;
+               if (DBAM_DIMM(1, dbam) > 0)
+                       channels++;
+               if (DBAM_DIMM(2, dbam) > 0)
+                       channels++;
+               if (DBAM_DIMM(3, dbam) > 0)
+                       channels++;
+
+               if (channels > 2)
+                       channels = 2;
+       }
+
+       /* If we found ALL 0 values, then assume just ONE DIMM-ONE Channel */
+       if (channels == 0)
+               channels = 1;
+
+       debugf0("DIMM count= %d\n", channels);
+
+       return channels;
+
+err_reg:
+       return -1;
+
+}
+
+static int f10_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
+{
+       return 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
+}
+
+/* Enable extended configuration access via 0xCF8 feature */
+static void amd64_setup(struct amd64_pvt *pvt)
+{
+       u32 reg;
+
+       pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
+
+       pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
+       reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
+       pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
+}
+
+/* Restore the extended configuration access via 0xCF8 feature */
+static void amd64_teardown(struct amd64_pvt *pvt)
+{
+       u32 reg;
+
+       pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
+
+       reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
+       if (pvt->flags.cf8_extcfg)
+               reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
+       pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
+}
+
+static u64 f10_get_error_address(struct mem_ctl_info *mci,
+                       struct amd64_error_info_regs *info)
+{
+       return (((u64) (info->nbeah & 0xffff)) << 32) +
+                       (info->nbeal & ~0x01);
+}
+
+/*
+ * Read the Base and Limit registers for F10 based Memory controllers. Extract
+ * fields from the 'raw' reg into separate data fields.
+ *
+ * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
+ */
+static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
+{
+       u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
+
+       low_offset = K8_DRAM_BASE_LOW + (dram << 3);
+       high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
+
+       /* read the 'raw' DRAM BASE Address register */
+       pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_base);
+
+       /* Read from the ECS data register */
+       pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_base);
+
+       /* Extract parts into separate data entries */
+       pvt->dram_rw_en[dram] = (low_base & 0x3);
+
+       if (pvt->dram_rw_en[dram] == 0)
+               return;
+
+       pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
+
+       pvt->dram_base[dram] = (((((u64) high_base & 0x000000FF) << 32) |
+                               ((u64) low_base & 0xFFFF0000))) << 8;
+
+       low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
+       high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
+
+       /* read the 'raw' LIMIT registers */
+       pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_limit);
+
+       /* Read from the ECS data register for the HIGH portion */
+       pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_limit);
+
+       debugf0("  HW Regs: BASE=0x%08x-%08x      LIMIT=  0x%08x-%08x\n",
+               high_base, low_base, high_limit, low_limit);
+
+       pvt->dram_DstNode[dram] = (low_limit & 0x7);
+       pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
+
+       /*
+        * Extract address values and form a LIMIT address. Limit is the HIGHEST
+        * memory location of the region, so low 24 bits need to be all ones.
+        */
+       low_limit |= 0x0000FFFF;
+       pvt->dram_limit[dram] =
+               ((((u64) high_limit << 32) + (u64) low_limit) << 8) | (0xFF);
+}
+
+static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
+{
+       int err = 0;
+
+       err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
+                                   &pvt->dram_ctl_select_low);
+       if (err) {
+               debugf0("Reading F10_DCTL_SEL_LOW failed\n");
+       } else {
+               debugf0("DRAM_DCTL_SEL_LOW=0x%x  DctSelBaseAddr=0x%x\n",
+                       pvt->dram_ctl_select_low, dct_sel_baseaddr(pvt));
+
+               debugf0("  DRAM DCTs are=%s DRAM Is=%s DRAM-Ctl-"
+                               "sel-hi-range=%s\n",
+                       (dct_ganging_enabled(pvt) ? "GANGED" : "NOT GANGED"),
+                       (dct_dram_enabled(pvt) ? "Enabled"   : "Disabled"),
+                       (dct_high_range_enabled(pvt) ? "Enabled" : "Disabled"));
+
+               debugf0("  DctDatIntLv=%s MemCleared=%s DctSelIntLvAddr=0x%x\n",
+                       (dct_data_intlv_enabled(pvt) ? "Enabled" : "Disabled"),
+                       (dct_memory_cleared(pvt) ? "True " : "False "),
+                       dct_sel_interleave_addr(pvt));
+       }
+
+       err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
+                                   &pvt->dram_ctl_select_high);
+       if (err)
+               debugf0("Reading F10_DCTL_SEL_HIGH failed\n");
+}
+
+/*
+ * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
+ * Interleaving Modes.
+ */
+static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
+                               int hi_range_sel, u32 intlv_en)
+{
+       u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
+
+       if (dct_ganging_enabled(pvt))
+               cs = 0;
+       else if (hi_range_sel)
+               cs = dct_sel_high;
+       else if (dct_interleave_enabled(pvt)) {
+               /*
+                * see F2x110[DctSelIntLvAddr] - channel interleave mode
+                */
+               if (dct_sel_interleave_addr(pvt) == 0)
+                       cs = sys_addr >> 6 & 1;
+               else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
+                       temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
+
+                       if (dct_sel_interleave_addr(pvt) & 1)
+                               cs = (sys_addr >> 9 & 1) ^ temp;
+                       else
+                               cs = (sys_addr >> 6 & 1) ^ temp;
+               } else if (intlv_en & 4)
+                       cs = sys_addr >> 15 & 1;
+               else if (intlv_en & 2)
+                       cs = sys_addr >> 14 & 1;
+               else if (intlv_en & 1)
+                       cs = sys_addr >> 13 & 1;
+               else
+                       cs = sys_addr >> 12 & 1;
+       } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
+               cs = ~dct_sel_high & 1;
+       else
+               cs = 0;
+
+       return cs;
+}
+
+static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
+{
+       if (intlv_en == 1)
+               return 1;
+       else if (intlv_en == 3)
+               return 2;
+       else if (intlv_en == 7)
+               return 3;
+
+       return 0;
+}
+
+/* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
+static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
+                                                u32 dct_sel_base_addr,
+                                                u64 dct_sel_base_off,
+                                                u32 hole_valid, u32 hole_off,
+                                                u64 dram_base)
+{
+       u64 chan_off;
+
+       if (hi_range_sel) {
+               if (!(dct_sel_base_addr & 0xFFFFF800) &&
+                  hole_valid && (sys_addr >= 0x100000000ULL))
+                       chan_off = hole_off << 16;
+               else
+                       chan_off = dct_sel_base_off;
+       } else {
+               if (hole_valid && (sys_addr >= 0x100000000ULL))
+                       chan_off = hole_off << 16;
+               else
+                       chan_off = dram_base & 0xFFFFF8000000ULL;
+       }
+
+       return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
+                       (chan_off & 0x0000FFFFFF800000ULL);
+}
+
+/* Hack for the time being - Can we get this from BIOS?? */
+#define        CH0SPARE_RANK   0
+#define        CH1SPARE_RANK   1
+
+/*
+ * checks if the csrow passed in is marked as SPARED, if so returns the new
+ * spare row
+ */
+static inline int f10_process_possible_spare(int csrow,
+                               u32 cs, struct amd64_pvt *pvt)
+{
+       u32 swap_done;
+       u32 bad_dram_cs;
+
+       /* Depending on channel, isolate respective SPARING info */
+       if (cs) {
+               swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
+               bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
+               if (swap_done && (csrow == bad_dram_cs))
+                       csrow = CH1SPARE_RANK;
+       } else {
+               swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
+               bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
+               if (swap_done && (csrow == bad_dram_cs))
+                       csrow = CH0SPARE_RANK;
+       }
+       return csrow;
+}
+
+/*
+ * Iterate over the DRAM DCT "base" and "mask" registers looking for a
+ * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
+ *
+ * Return:
+ *     -EINVAL:  NOT FOUND
+ *     0..csrow = Chip-Select Row
+ */
+static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
+{
+       struct mem_ctl_info *mci;
+       struct amd64_pvt *pvt;
+       u32 cs_base, cs_mask;
+       int cs_found = -EINVAL;
+       int csrow;
+
+       mci = mci_lookup[nid];
+       if (!mci)
+               return cs_found;
+
+       pvt = mci->pvt_info;
+
+       debugf1("InputAddr=0x%x  channelselect=%d\n", in_addr, cs);
+
+       for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
+
+               cs_base = amd64_get_dct_base(pvt, cs, csrow);
+               if (!(cs_base & K8_DCSB_CS_ENABLE))
+                       continue;
+
+               /*
+                * We have an ENABLED CSROW, Isolate just the MASK bits of the
+                * target: [28:19] and [13:5], which map to [36:27] and [21:13]
+                * of the actual address.
+                */
+               cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
+
+               /*
+                * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
+                * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
+                */
+               cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
+
+               debugf1("    CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
+                               csrow, cs_base, cs_mask);
+
+               cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
+
+               debugf1("              Final CSMask=0x%x\n", cs_mask);
+               debugf1("    (InputAddr & ~CSMask)=0x%x "
+                               "(CSBase & ~CSMask)=0x%x\n",
+                               (in_addr & ~cs_mask), (cs_base & ~cs_mask));
+
+               if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
+                       cs_found = f10_process_possible_spare(csrow, cs, pvt);
+
+                       debugf1(" MATCH csrow=%d\n", cs_found);
+                       break;
+               }
+       }
+       return cs_found;
+}
+
+/* For a given @dram_range, check if @sys_addr falls within it. */
+static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
+                                 u64 sys_addr, int *nid, int *chan_sel)
+{
+       int node_id, cs_found = -EINVAL, high_range = 0;
+       u32 intlv_en, intlv_sel, intlv_shift, hole_off;
+       u32 hole_valid, tmp, dct_sel_base, channel;
+       u64 dram_base, chan_addr, dct_sel_base_off;
+
+       dram_base = pvt->dram_base[dram_range];
+       intlv_en = pvt->dram_IntlvEn[dram_range];
+
+       node_id = pvt->dram_DstNode[dram_range];
+       intlv_sel = pvt->dram_IntlvSel[dram_range];
+
+       debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
+               dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
+
+       /*
+        * This assumes that one node's DHAR is the same as all the other
+        * nodes' DHAR.
+        */
+       hole_off = (pvt->dhar & 0x0000FF80);
+       hole_valid = (pvt->dhar & 0x1);
+       dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
+
+       debugf1("   HoleOffset=0x%x  HoleValid=0x%x IntlvSel=0x%x\n",
+                       hole_off, hole_valid, intlv_sel);
+
+       if (intlv_en ||
+           (intlv_sel != ((sys_addr >> 12) & intlv_en)))
+               return -EINVAL;
+
+       dct_sel_base = dct_sel_baseaddr(pvt);
+
+       /*
+        * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
+        * select between DCT0 and DCT1.
+        */
+       if (dct_high_range_enabled(pvt) &&
+          !dct_ganging_enabled(pvt) &&
+          ((sys_addr >> 27) >= (dct_sel_base >> 11)))
+               high_range = 1;
+
+       channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
+
+       chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
+                                            dct_sel_base_off, hole_valid,
+                                            hole_off, dram_base);
+
+       intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
+
+       /* remove Node ID (in case of memory interleaving) */
+       tmp = chan_addr & 0xFC0;
+
+       chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
+
+       /* remove channel interleave and hash */
+       if (dct_interleave_enabled(pvt) &&
+          !dct_high_range_enabled(pvt) &&
+          !dct_ganging_enabled(pvt)) {
+               if (dct_sel_interleave_addr(pvt) != 1)
+                       chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
+               else {
+                       tmp = chan_addr & 0xFC0;
+                       chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
+                                       | tmp;
+               }
+       }
+
+       debugf1("   (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
+               chan_addr, (u32)(chan_addr >> 8));
+
+       cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
+
+       if (cs_found >= 0) {
+               *nid = node_id;
+               *chan_sel = channel;
+       }
+       return cs_found;
+}
+
+static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
+                                      int *node, int *chan_sel)
+{
+       int dram_range, cs_found = -EINVAL;
+       u64 dram_base, dram_limit;
+
+       for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
+
+               if (!pvt->dram_rw_en[dram_range])
+                       continue;
+
+               dram_base = pvt->dram_base[dram_range];
+               dram_limit = pvt->dram_limit[dram_range];
+
+               if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
+
+                       cs_found = f10_match_to_this_node(pvt, dram_range,
+                                                         sys_addr, node,
+                                                         chan_sel);
+                       if (cs_found >= 0)
+                               break;
+               }
+       }
+       return cs_found;
+}
+
+/*
+ * This the F10h reference code from AMD to map a @sys_addr to NodeID,
+ * CSROW, Channel.
+ *
+ * The @sys_addr is usually an error address received from the hardware.
+ */
+static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
+                                    struct amd64_error_info_regs *info,
+                                    u64 sys_addr)
+{
+       struct amd64_pvt *pvt = mci->pvt_info;
+       u32 page, offset;
+       unsigned short syndrome;
+       int nid, csrow, chan = 0;
+
+       csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
+
+       if (csrow >= 0) {
+               error_address_to_page_and_offset(sys_addr, &page, &offset);
+
+               syndrome = EXTRACT_HIGH_SYNDROME(info->nbsl) << 8;
+               syndrome |= EXTRACT_LOW_SYNDROME(info->nbsh);
+
+               /*
+                * Is CHIPKILL on? If so, then we can attempt to use the
+                * syndrome to isolate which channel the error was on.
+                */
+               if (pvt->nbcfg & K8_NBCFG_CHIPKILL)
+                       chan = get_channel_from_ecc_syndrome(syndrome);
+
+               if (chan >= 0) {
+                       edac_mc_handle_ce(mci, page, offset, syndrome,
+                                       csrow, chan, EDAC_MOD_STR);
+               } else {
+                       /*
+                        * Channel unknown, report all channels on this
+                        * CSROW as failed.
+                        */
+                       for (chan = 0; chan < mci->csrows[csrow].nr_channels;
+                                                               chan++) {
+                                       edac_mc_handle_ce(mci, page, offset,
+                                                       syndrome,
+                                                       csrow, chan,
+                                                       EDAC_MOD_STR);
+                       }
+               }
+
+       } else {
+               edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
+       }
+}
+
+/*
+ * Input (@index) is the DBAM DIMM value (1 of 4) used as an index into a shift
+ * table (revf_quad_ddr2_shift) which starts at 128MB DIMM size. Index of 0
+ * indicates an empty DIMM slot, as reported by Hardware on empty slots.
+ *
+ * Normalize to 128MB by subracting 27 bit shift.
+ */
+static int map_dbam_to_csrow_size(int index)
+{
+       int mega_bytes = 0;
+
+       if (index > 0 && index <= DBAM_MAX_VALUE)
+               mega_bytes = ((128 << (revf_quad_ddr2_shift[index]-27)));
+
+       return mega_bytes;
+}
+
+/*
+ * debug routine to display the memory sizes of a DIMM (ganged or not) and it
+ * CSROWs as well
+ */
+static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
+                                        int ganged)
+{
+       int dimm, size0, size1;
+       u32 dbam;
+       u32 *dcsb;
+
+       debugf1("  dbam%d: 0x%8.08x  CSROW is %s\n", ctrl,
+                       ctrl ? pvt->dbam1 : pvt->dbam0,
+                       ganged ? "GANGED - dbam1 not used" : "NON-GANGED");
+
+       dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
+       dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
+
+       /* Dump memory sizes for DIMM and its CSROWs */
+       for (dimm = 0; dimm < 4; dimm++) {
+
+               size0 = 0;
+               if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
+                       size0 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
+
+               size1 = 0;
+               if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
+                       size1 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
+
+               debugf1("     CTRL-%d DIMM-%d=%5dMB   CSROW-%d=%5dMB "
+                               "CSROW-%d=%5dMB\n",
+                               ctrl,
+                               dimm,
+                               size0 + size1,
+                               dimm * 2,
+                               size0,
+                               dimm * 2 + 1,
+                               size1);
+       }
+}
+
+/*
+ * Very early hardware probe on pci_probe thread to determine if this module
+ * supports the hardware.
+ *
+ * Return:
+ *      0 for OK
+ *      1 for error
+ */
+static int f10_probe_valid_hardware(struct amd64_pvt *pvt)
+{
+       int ret = 0;
+
+       /*
+        * If we are on a DDR3 machine, we don't know yet if
+        * we support that properly at this time
+        */
+       if ((pvt->dchr0 & F10_DCHR_Ddr3Mode) ||
+           (pvt->dchr1 & F10_DCHR_Ddr3Mode)) {
+
+               amd64_printk(KERN_WARNING,
+                       "%s() This machine is running with DDR3 memory. "
+                       "This is not currently supported. "
+                       "DCHR0=0x%x DCHR1=0x%x\n",
+                       __func__, pvt->dchr0, pvt->dchr1);
+
+               amd64_printk(KERN_WARNING,
+                       "   Contact '%s' module MAINTAINER to help add"
+                       " support.\n",
+                       EDAC_MOD_STR);
+
+               ret = 1;
+
+       }
+       return ret;
+}
+
+/*
+ * There currently are 3 types type of MC devices for AMD Athlon/Opterons
+ * (as per PCI DEVICE_IDs):
+ *
+ * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
+ * DEVICE ID, even though there is differences between the different Revisions
+ * (CG,D,E,F).
+ *
+ * Family F10h and F11h.
+ *
+ */
+static struct amd64_family_type amd64_family_types[] = {
+       [K8_CPUS] = {
+               .ctl_name = "RevF",
+               .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
+               .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
+               .ops = {
+                       .early_channel_count = k8_early_channel_count,
+                       .get_error_address = k8_get_error_address,
+                       .read_dram_base_limit = k8_read_dram_base_limit,
+                       .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
+                       .dbam_map_to_pages = k8_dbam_map_to_pages,
+               }
+       },
+       [F10_CPUS] = {
+               .ctl_name = "Family 10h",
+               .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
+               .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
+               .ops = {
+                       .probe_valid_hardware = f10_probe_valid_hardware,
+                       .early_channel_count = f10_early_channel_count,
+                       .get_error_address = f10_get_error_address,
+                       .read_dram_base_limit = f10_read_dram_base_limit,
+                       .read_dram_ctl_register = f10_read_dram_ctl_register,
+                       .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
+                       .dbam_map_to_pages = f10_dbam_map_to_pages,
+               }
+       },
+       [F11_CPUS] = {
+               .ctl_name = "Family 11h",
+               .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
+               .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
+               .ops = {
+                       .probe_valid_hardware = f10_probe_valid_hardware,
+                       .early_channel_count = f10_early_channel_count,
+                       .get_error_address = f10_get_error_address,
+                       .read_dram_base_limit = f10_read_dram_base_limit,
+                       .read_dram_ctl_register = f10_read_dram_ctl_register,
+                       .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
+                       .dbam_map_to_pages = f10_dbam_map_to_pages,
+               }
+       },
+};
+
+static struct pci_dev *pci_get_related_function(unsigned int vendor,
+                                               unsigned int device,
+                                               struct pci_dev *related)
+{
+       struct pci_dev *dev = NULL;
+
+       dev = pci_get_device(vendor, device, dev);
+       while (dev) {
+               if ((dev->bus->number == related->bus->number) &&
+                   (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
+                       break;
+               dev = pci_get_device(vendor, device, dev);
+       }
+
+       return dev;
+}
+
+/*
+ * syndrome mapping table for ECC ChipKill devices
+ *
+ * The comment in each row is the token (nibble) number that is in error.
+ * The least significant nibble of the syndrome is the mask for the bits
+ * that are in error (need to be toggled) for the particular nibble.
+ *
+ * Each row contains 16 entries.
+ * The first entry (0th) is the channel number for that row of syndromes.
+ * The remaining 15 entries are the syndromes for the respective Error
+ * bit mask index.
+ *
+ * 1st index entry is 0x0001 mask, indicating that the rightmost bit is the
+ * bit in error.
+ * The 2nd index entry is 0x0010 that the second bit is damaged.
+ * The 3rd index entry is 0x0011 indicating that the rightmost 2 bits
+ * are damaged.
+ * Thus so on until index 15, 0x1111, whose entry has the syndrome
+ * indicating that all 4 bits are damaged.
+ *
+ * A search is performed on this table looking for a given syndrome.
+ *
+ * See the AMD documentation for ECC syndromes. This ECC table is valid
+ * across all the versions of the AMD64 processors.
+ *
+ * A fast lookup is to use the LAST four bits of the 16-bit syndrome as a
+ * COLUMN index, then search all ROWS of that column, looking for a match
+ * with the input syndrome. The ROW value will be the token number.
+ *
+ * The 0'th entry on that row, can be returned as the CHANNEL (0 or 1) of this
+ * error.
+ */
+#define NUMBER_ECC_ROWS  36
+static const unsigned short ecc_chipkill_syndromes[NUMBER_ECC_ROWS][16] = {
+       /* Channel 0 syndromes */
+       {/*0*/  0, 0xe821, 0x7c32, 0x9413, 0xbb44, 0x5365, 0xc776, 0x2f57,
+          0xdd88, 0x35a9, 0xa1ba, 0x499b, 0x66cc, 0x8eed, 0x1afe, 0xf2df },
+       {/*1*/  0, 0x5d31, 0xa612, 0xfb23, 0x9584, 0xc8b5, 0x3396, 0x6ea7,
+          0xeac8, 0xb7f9, 0x4cda, 0x11eb, 0x7f4c, 0x227d, 0xd95e, 0x846f },
+       {/*2*/  0, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
+          0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f },
+       {/*3*/  0, 0x2021, 0x3032, 0x1013, 0x4044, 0x6065, 0x7076, 0x5057,
+          0x8088, 0xa0a9, 0xb0ba, 0x909b, 0xc0cc, 0xe0ed, 0xf0fe, 0xd0df },
+       {/*4*/  0, 0x5041, 0xa082, 0xf0c3, 0x9054, 0xc015, 0x30d6, 0x6097,
+          0xe0a8, 0xb0e9, 0x402a, 0x106b, 0x70fc, 0x20bd, 0xd07e, 0x803f },
+       {/*5*/  0, 0xbe21, 0xd732, 0x6913, 0x2144, 0x9f65, 0xf676, 0x4857,
+          0x3288, 0x8ca9, 0xe5ba, 0x5b9b, 0x13cc, 0xaded, 0xc4fe, 0x7adf },
+       {/*6*/  0, 0x4951, 0x8ea2, 0xc7f3, 0x5394, 0x1ac5, 0xdd36, 0x9467,
+          0xa1e8, 0xe8b9, 0x2f4a, 0x661b, 0xf27c, 0xbb2d, 0x7cde, 0x358f },
+       {/*7*/  0, 0x74e1, 0x9872, 0xec93, 0xd6b4, 0xa255, 0x4ec6, 0x3a27,
+          0x6bd8, 0x1f39, 0xf3aa, 0x874b, 0xbd6c, 0xc98d, 0x251e, 0x51ff },
+       {/*8*/  0, 0x15c1, 0x2a42, 0x3f83, 0xcef4, 0xdb35, 0xe4b6, 0xf177,
+          0x4758, 0x5299, 0x6d1a, 0x78db, 0x89ac, 0x9c6d, 0xa3ee, 0xb62f },
+       {/*9*/  0, 0x3d01, 0x1602, 0x2b03, 0x8504, 0xb805, 0x9306, 0xae07,
+          0xca08, 0xf709, 0xdc0a, 0xe10b, 0x4f0c, 0x720d, 0x590e, 0x640f },
+       {/*a*/  0, 0x9801, 0xec02, 0x7403, 0x6b04, 0xf305, 0x8706, 0x1f07,
+          0xbd08, 0x2509, 0x510a, 0xc90b, 0xd60c, 0x4e0d, 0x3a0e, 0xa20f },
+       {/*b*/  0, 0xd131, 0x6212, 0xb323, 0x3884, 0xe9b5, 0x5a96, 0x8ba7,
+          0x1cc8, 0xcdf9, 0x7eda, 0xafeb, 0x244c, 0xf57d, 0x465e, 0x976f },
+       {/*c*/  0, 0xe1d1, 0x7262, 0x93b3, 0xb834, 0x59e5, 0xca56, 0x2b87,
+          0xdc18, 0x3dc9, 0xae7a, 0x4fab, 0x542c, 0x85fd, 0x164e, 0xf79f },
+       {/*d*/  0, 0x6051, 0xb0a2, 0xd0f3, 0x1094, 0x70c5, 0xa036, 0xc067,
+          0x20e8, 0x40b9, 0x904a, 0x601b, 0x307c, 0x502d, 0x80de, 0xe08f },
+       {/*e*/  0, 0xa4c1, 0xf842, 0x5c83, 0xe6f4, 0x4235, 0x1eb6, 0xba77,
+          0x7b58, 0xdf99, 0x831a, 0x27db, 0x9dac, 0x396d, 0x65ee, 0xc12f },
+       {/*f*/  0, 0x11c1, 0x2242, 0x3383, 0xc8f4, 0xd935, 0xeab6, 0xfb77,
+          0x4c58, 0x5d99, 0x6e1a, 0x7fdb, 0x84ac, 0x956d, 0xa6ee, 0xb72f },
+
+       /* Channel 1 syndromes */
+       {/*10*/ 1, 0x45d1, 0x8a62, 0xcfb3, 0x5e34, 0x1be5, 0xd456, 0x9187,
+          0xa718, 0xe2c9, 0x2d7a, 0x68ab, 0xf92c, 0xbcfd, 0x734e, 0x369f },
+       {/*11*/ 1, 0x63e1, 0xb172, 0xd293, 0x14b4, 0x7755, 0xa5c6, 0xc627,
+          0x28d8, 0x4b39, 0x99aa, 0xfa4b, 0x3c6c, 0x5f8d, 0x8d1e, 0xeeff },
+       {/*12*/ 1, 0xb741, 0xd982, 0x6ec3, 0x2254, 0x9515, 0xfbd6, 0x4c97,
+          0x33a8, 0x84e9, 0xea2a, 0x5d6b, 0x11fc, 0xa6bd, 0xc87e, 0x7f3f },
+       {/*13*/ 1, 0xdd41, 0x6682, 0xbbc3, 0x3554, 0xe815, 0x53d6, 0xce97,
+          0x1aa8, 0xc7e9, 0x7c2a, 0xa1fb, 0x2ffc, 0xf2bd, 0x497e, 0x943f },
+       {/*14*/ 1, 0x2bd1, 0x3d62, 0x16b3, 0x4f34, 0x64e5, 0x7256, 0x5987,
+          0x8518, 0xaec9, 0xb87a, 0x93ab, 0xca2c, 0xe1fd, 0xf74e, 0xdc9f },
+       {/*15*/ 1, 0x83c1, 0xc142, 0x4283, 0xa4f4, 0x2735, 0x65b6, 0xe677,
+          0xf858, 0x7b99, 0x391a, 0xbadb, 0x5cac, 0xdf6d, 0x9dee, 0x1e2f },
+       {/*16*/ 1, 0x8fd1, 0xc562, 0x4ab3, 0xa934, 0x26e5, 0x6c56, 0xe387,
+          0xfe18, 0x71c9, 0x3b7a, 0xb4ab, 0x572c, 0xd8fd, 0x924e, 0x1d9f },
+       {/*17*/ 1, 0x4791, 0x89e2, 0xce73, 0x5264, 0x15f5, 0xdb86, 0x9c17,
+          0xa3b8, 0xe429, 0x2a5a, 0x6dcb, 0xf1dc, 0xb64d, 0x783e, 0x3faf },
+       {/*18*/ 1, 0x5781, 0xa9c2, 0xfe43, 0x92a4, 0xc525, 0x3b66, 0x6ce7,
+          0xe3f8, 0xb479, 0x4a3a, 0x1dbb, 0x715c, 0x26dd, 0xd89e, 0x8f1f },
+       {/*19*/ 1, 0xbf41, 0xd582, 0x6ac3, 0x2954, 0x9615, 0xfcd6, 0x4397,
+          0x3ea8, 0x81e9, 0xeb2a, 0x546b, 0x17fc, 0xa8bd, 0xc27e, 0x7d3f },
+       {/*1a*/ 1, 0x9891, 0xe1e2, 0x7273, 0x6464, 0xf7f5, 0x8586, 0x1617,
+          0xb8b8, 0x2b29, 0x595a, 0xcacb, 0xdcdc, 0x4f4d, 0x3d3e, 0xaeaf },
+       {/*1b*/ 1, 0xcce1, 0x4472, 0x8893, 0xfdb4, 0x3f55, 0xb9c6, 0x7527,
+          0x56d8, 0x9a39, 0x12aa, 0xde4b, 0xab6c, 0x678d, 0xef1e, 0x23ff },
+       {/*1c*/ 1, 0xa761, 0xf9b2, 0x5ed3, 0xe214, 0x4575, 0x1ba6, 0xbcc7,
+          0x7328, 0xd449, 0x8a9a, 0x2dfb, 0x913c, 0x365d, 0x688e, 0xcfef },
+       {/*1d*/ 1, 0xff61, 0x55b2, 0xaad3, 0x7914, 0x8675, 0x2ca6, 0xd3c7,
+          0x9e28, 0x6149, 0xcb9a, 0x34fb, 0xe73c, 0x185d, 0xb28e, 0x4def },
+       {/*1e*/ 1, 0x5451, 0xa8a2, 0xfcf3, 0x9694, 0xc2c5, 0x3e36, 0x6a67,
+          0xebe8, 0xbfb9, 0x434a, 0x171b, 0x7d7c, 0x292d, 0xd5de, 0x818f },
+       {/*1f*/ 1, 0x6fc1, 0xb542, 0xda83, 0x19f4, 0x7635, 0xacb6, 0xc377,
+          0x2e58, 0x4199, 0x9b1a, 0xf4db, 0x37ac, 0x586d, 0x82ee, 0xed2f },
+
+       /* ECC bits are also in the set of tokens and they too can go bad
+        * first 2 cover channel 0, while the second 2 cover channel 1
+        */
+       {/*20*/ 0, 0xbe01, 0xd702, 0x6903, 0x2104, 0x9f05, 0xf606, 0x4807,
+          0x3208, 0x8c09, 0xe50a, 0x5b0b, 0x130c, 0xad0d, 0xc40e, 0x7a0f },
+       {/*21*/ 0, 0x4101, 0x8202, 0xc303, 0x5804, 0x1905, 0xda06, 0x9b07,
+          0xac08, 0xed09, 0x2e0a, 0x6f0b, 0x640c, 0xb50d, 0x760e, 0x370f },
+       {/*22*/ 1, 0xc441, 0x4882, 0x8cc3, 0xf654, 0x3215, 0xbed6, 0x7a97,
+          0x5ba8, 0x9fe9, 0x132a, 0xd76b, 0xadfc, 0x69bd, 0xe57e, 0x213f },
+       {/*23*/ 1, 0x7621, 0x9b32, 0xed13, 0xda44, 0xac65, 0x4176, 0x3757,
+          0x6f88, 0x19a9, 0xf4ba, 0x829b, 0xb5cc, 0xc3ed, 0x2efe, 0x58df }
+};
+
+/*
+ * Given the syndrome argument, scan each of the channel tables for a syndrome
+ * match. Depending on which table it is found, return the channel number.
+ */
+static int get_channel_from_ecc_syndrome(unsigned short syndrome)
+{
+       int row;
+       int column;
+
+       /* Determine column to scan */
+       column = syndrome & 0xF;
+
+       /* Scan all rows, looking for syndrome, or end of table */
+       for (row = 0; row < NUMBER_ECC_ROWS; row++) {
+               if (ecc_chipkill_syndromes[row][column] == syndrome)
+                       return ecc_chipkill_syndromes[row][0];
+       }
+
+       debugf0("syndrome(%x) not found\n", syndrome);
+       return -1;
+}
+
+/*
+ * Check for valid error in the NB Status High register. If so, proceed to read
+ * NB Status Low, NB Address Low and NB Address High registers and store data
+ * into error structure.
+ *
+ * Returns:
+ *     - 1: if hardware regs contains valid error info
+ *     - 0: if no valid error is indicated
+ */
+static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
+                                    struct amd64_error_info_regs *regs)
+{
+       struct amd64_pvt *pvt;
+       struct pci_dev *misc_f3_ctl;
+       int err = 0;
+
+       pvt = mci->pvt_info;
+       misc_f3_ctl = pvt->misc_f3_ctl;
+
+       err = pci_read_config_dword(misc_f3_ctl, K8_NBSH, &regs->nbsh);
+       if (err)
+               goto err_reg;
+
+       if (!(regs->nbsh & K8_NBSH_VALID_BIT))
+               return 0;
+
+       /* valid error, read remaining error information registers */
+       err = pci_read_config_dword(misc_f3_ctl, K8_NBSL, &regs->nbsl);
+       if (err)
+               goto err_reg;
+
+       err = pci_read_config_dword(misc_f3_ctl, K8_NBEAL, &regs->nbeal);
+       if (err)
+               goto err_reg;
+
+       err = pci_read_config_dword(misc_f3_ctl, K8_NBEAH, &regs->nbeah);
+       if (err)
+               goto err_reg;
+
+       err = pci_read_config_dword(misc_f3_ctl, K8_NBCFG, &regs->nbcfg);
+       if (err)
+               goto err_reg;
+
+       return 1;
+
+err_reg:
+       debugf0("Reading error info register failed\n");
+       return 0;
+}
+
+/*
+ * This function is called to retrieve the error data from hardware and store it
+ * in the info structure.
+ *
+ * Returns:
+ *     - 1: if a valid error is found
+ *     - 0: if no error is found
+ */
+static int amd64_get_error_info(struct mem_ctl_info *mci,
+                               struct amd64_error_info_regs *info)
+{
+       struct amd64_pvt *pvt;
+       struct amd64_error_info_regs regs;
+
+       pvt = mci->pvt_info;
+
+       if (!amd64_get_error_info_regs(mci, info))
+               return 0;
+
+       /*
+        * Here's the problem with the K8's EDAC reporting: There are four
+        * registers which report pieces of error information. They are shared
+        * between CEs and UEs. Furthermore, contrary to what is stated in the
+        * BKDG, the overflow bit is never used! Every error always updates the
+        * reporting registers.
+        *
+        * Can you see the race condition? All four error reporting registers
+        * must be read before a new error updates them! There is no way to read
+        * all four registers atomically. The best than can be done is to detect
+        * that a race has occured and then report the error without any kind of
+        * precision.
+        *
+        * What is still positive is that errors are still reported and thus
+        * problems can still be detected - just not localized because the
+        * syndrome and address are spread out across registers.
+        *
+        * Grrrrr!!!!!  Here's hoping that AMD fixes this in some future K8 rev.
+        * UEs and CEs should have separate register sets with proper overflow
+        * bits that are used! At very least the problem can be fixed by
+        * honoring the ErrValid bit in 'nbsh' and not updating registers - just
+        * set the overflow bit - unless the current error is CE and the new
+        * error is UE which would be the only situation for overwriting the
+        * current values.
+        */
+
+       regs = *info;
+
+       /* Use info from the second read - most current */
+       if (unlikely(!amd64_get_error_info_regs(mci, info)))
+               return 0;
+
+       /* clear the error bits in hardware */
+       pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
+
+       /* Check for the possible race condition */
+       if ((regs.nbsh != info->nbsh) ||
+            (regs.nbsl != info->nbsl) ||
+            (regs.nbeah != info->nbeah) ||
+            (regs.nbeal != info->nbeal)) {
+               amd64_mc_printk(mci, KERN_WARNING,
+                               "hardware STATUS read access race condition "
+                               "detected!\n");
+               return 0;
+       }
+       return 1;
+}
+
+static inline void amd64_decode_gart_tlb_error(struct mem_ctl_info *mci,
+                                        struct amd64_error_info_regs *info)
+{
+       u32 err_code;
+       u32 ec_tt;              /* error code transaction type (2b) */
+       u32 ec_ll;              /* error code cache level (2b) */
+
+       err_code = EXTRACT_ERROR_CODE(info->nbsl);
+       ec_ll = EXTRACT_LL_CODE(err_code);
+       ec_tt = EXTRACT_TT_CODE(err_code);
+
+       amd64_mc_printk(mci, KERN_ERR,
+                    "GART TLB event: transaction type(%s), "
+                    "cache level(%s)\n", tt_msgs[ec_tt], ll_msgs[ec_ll]);
+}
+
+static inline void amd64_decode_mem_cache_error(struct mem_ctl_info *mci,
+                                     struct amd64_error_info_regs *info)
+{
+       u32 err_code;
+       u32 ec_rrrr;            /* error code memory transaction (4b) */
+       u32 ec_tt;              /* error code transaction type (2b) */
+       u32 ec_ll;              /* error code cache level (2b) */
+
+       err_code = EXTRACT_ERROR_CODE(info->nbsl);
+       ec_ll = EXTRACT_LL_CODE(err_code);
+       ec_tt = EXTRACT_TT_CODE(err_code);
+       ec_rrrr = EXTRACT_RRRR_CODE(err_code);
+
+       amd64_mc_printk(mci, KERN_ERR,
+                    "cache hierarchy error: memory transaction type(%s), "
+                    "transaction type(%s), cache level(%s)\n",
+                    rrrr_msgs[ec_rrrr], tt_msgs[ec_tt], ll_msgs[ec_ll]);
+}
+
+
+/*
+ * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
+ * ADDRESS and process.
+ */
+static void amd64_handle_ce(struct mem_ctl_info *mci,
+                           struct amd64_error_info_regs *info)
+{
+       struct amd64_pvt *pvt = mci->pvt_info;
+       u64 SystemAddress;
+
+       /* Ensure that the Error Address is VALID */
+       if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
+               amd64_mc_printk(mci, KERN_ERR,
+                       "HW has no ERROR_ADDRESS available\n");
+               edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
+               return;
+       }
+
+       SystemAddress = extract_error_address(mci, info);
+
+       amd64_mc_printk(mci, KERN_ERR,
+               "CE ERROR_ADDRESS= 0x%llx\n", SystemAddress);
+
+       pvt->ops->map_sysaddr_to_csrow(mci, info, SystemAddress);
+}
+
+/* Handle any Un-correctable Errors (UEs) */
+static void amd64_handle_ue(struct mem_ctl_info *mci,
+                           struct amd64_error_info_regs *info)
+{
+       int csrow;
+       u64 SystemAddress;
+       u32 page, offset;
+       struct mem_ctl_info *log_mci, *src_mci = NULL;
+
+       log_mci = mci;
+
+       if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
+               amd64_mc_printk(mci, KERN_CRIT,
+                       "HW has no ERROR_ADDRESS available\n");
+               edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
+               return;
+       }
+
+       SystemAddress = extract_error_address(mci, info);
+
+       /*
+        * Find out which node the error address belongs to. This may be
+        * different from the node that detected the error.
+        */
+       src_mci = find_mc_by_sys_addr(mci, SystemAddress);
+       if (!src_mci) {
+               amd64_mc_printk(mci, KERN_CRIT,
+                       "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
+                       (unsigned long)SystemAddress);
+               edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
+               return;
+       }
+
+       log_mci = src_mci;
+
+       csrow = sys_addr_to_csrow(log_mci, SystemAddress);
+       if (csrow < 0) {
+               amd64_mc_printk(mci, KERN_CRIT,
+                       "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
+                       (unsigned long)SystemAddress);
+               edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
+       } else {
+               error_address_to_page_and_offset(SystemAddress, &page, &offset);
+               edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
+       }
+}
+
+static void amd64_decode_bus_error(struct mem_ctl_info *mci,
+                                  struct amd64_error_info_regs *info)
+{
+       u32 err_code, ext_ec;
+       u32 ec_pp;              /* error code participating processor (2p) */
+       u32 ec_to;              /* error code timed out (1b) */
+       u32 ec_rrrr;            /* error code memory transaction (4b) */
+       u32 ec_ii;              /* error code memory or I/O (2b) */
+       u32 ec_ll;              /* error code cache level (2b) */
+
+       ext_ec = EXTRACT_EXT_ERROR_CODE(info->nbsl);
+       err_code = EXTRACT_ERROR_CODE(info->nbsl);
+
+       ec_ll = EXTRACT_LL_CODE(err_code);
+       ec_ii = EXTRACT_II_CODE(err_code);
+       ec_rrrr = EXTRACT_RRRR_CODE(err_code);
+       ec_to = EXTRACT_TO_CODE(err_code);
+       ec_pp = EXTRACT_PP_CODE(err_code);
+
+       amd64_mc_printk(mci, KERN_ERR,
+               "BUS ERROR:\n"
+               "  time-out(%s) mem or i/o(%s)\n"
+               "  participating processor(%s)\n"
+               "  memory transaction type(%s)\n"
+               "  cache level(%s) Error Found by: %s\n",
+               to_msgs[ec_to],
+               ii_msgs[ec_ii],
+               pp_msgs[ec_pp],
+               rrrr_msgs[ec_rrrr],
+               ll_msgs[ec_ll],
+               (info->nbsh & K8_NBSH_ERR_SCRUBER) ?
+                       "Scrubber" : "Normal Operation");
+
+       /* If this was an 'observed' error, early out */
+       if (ec_pp == K8_NBSL_PP_OBS)
+               return;         /* We aren't the node involved */
+
+       /* Parse out the extended error code for ECC events */
+       switch (ext_ec) {
+       /* F10 changed to one Extended ECC error code */
+       case F10_NBSL_EXT_ERR_RES:              /* Reserved field */
+       case F10_NBSL_EXT_ERR_ECC:              /* F10 ECC ext err code */
+               break;
+
+       default:
+               amd64_mc_printk(mci, KERN_ERR, "NOT ECC: no special error "
+                                              "handling for this error\n");
+               return;
+       }
+
+       if (info->nbsh & K8_NBSH_CECC)
+               amd64_handle_ce(mci, info);
+       else if (info->nbsh & K8_NBSH_UECC)
+               amd64_handle_ue(mci, info);
+
+       /*
+        * If main error is CE then overflow must be CE.  If main error is UE
+        * then overflow is unknown.  We'll call the overflow a CE - if
+        * panic_on_ue is set then we're already panic'ed and won't arrive
+        * here. Else, then apparently someone doesn't think that UE's are
+        * catastrophic.
+        */
+       if (info->nbsh & K8_NBSH_OVERFLOW)
+               edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR
+                                         "Error Overflow set");
+}
+
+int amd64_process_error_info(struct mem_ctl_info *mci,
+                            struct amd64_error_info_regs *info,
+                            int handle_errors)
+{
+       struct amd64_pvt *pvt;
+       struct amd64_error_info_regs *regs;
+       u32 err_code, ext_ec;
+       int gart_tlb_error = 0;
+
+       pvt = mci->pvt_info;
+
+       /* If caller doesn't want us to process the error, return */
+       if (!handle_errors)
+               return 1;
+
+       regs = info;
+
+       debugf1("NorthBridge ERROR: mci(0x%p)\n", mci);
+       debugf1("  MC node(%d) Error-Address(0x%.8x-%.8x)\n",
+               pvt->mc_node_id, regs->nbeah, regs->nbeal);
+       debugf1("  nbsh(0x%.8x) nbsl(0x%.8x)\n",
+               regs->nbsh, regs->nbsl);
+       debugf1("  Valid Error=%s Overflow=%s\n",
+               (regs->nbsh & K8_NBSH_VALID_BIT) ? "True" : "False",
+               (regs->nbsh & K8_NBSH_OVERFLOW) ? "True" : "False");
+       debugf1("  Err Uncorrected=%s MCA Error Reporting=%s\n",
+               (regs->nbsh & K8_NBSH_UNCORRECTED_ERR) ?
+                       "True" : "False",
+               (regs->nbsh & K8_NBSH_ERR_ENABLE) ?
+                       "True" : "False");
+       debugf1("  MiscErr Valid=%s ErrAddr Valid=%s PCC=%s\n",
+               (regs->nbsh & K8_NBSH_MISC_ERR_VALID) ?
+                       "True" : "False",
+               (regs->nbsh & K8_NBSH_VALID_ERROR_ADDR) ?
+                       "True" : "False",
+               (regs->nbsh & K8_NBSH_PCC) ?
+                       "True" : "False");
+       debugf1("  CECC=%s UECC=%s Found by Scruber=%s\n",
+               (regs->nbsh & K8_NBSH_CECC) ?
+                       "True" : "False",
+               (regs->nbsh & K8_NBSH_UECC) ?
+                       "True" : "False",
+               (regs->nbsh & K8_NBSH_ERR_SCRUBER) ?
+                       "True" : "False");
+       debugf1("  CORE0=%s CORE1=%s CORE2=%s CORE3=%s\n",
+               (regs->nbsh & K8_NBSH_CORE0) ? "True" : "False",
+               (regs->nbsh & K8_NBSH_CORE1) ? "True" : "False",
+               (regs->nbsh & K8_NBSH_CORE2) ? "True" : "False",
+               (regs->nbsh & K8_NBSH_CORE3) ? "True" : "False");
+
+
+       err_code = EXTRACT_ERROR_CODE(regs->nbsl);
+
+       /* Determine which error type:
+        *      1) GART errors - non-fatal, developmental events
+        *      2) MEMORY errors
+        *      3) BUS errors
+        *      4) Unknown error
+        */
+       if (TEST_TLB_ERROR(err_code)) {
+               /*
+                * GART errors are intended to help graphics driver developers
+                * to detect bad GART PTEs. It is recommended by AMD to disable
+                * GART table walk error reporting by default[1] (currently
+                * being disabled in mce_cpu_quirks()) and according to the
+                * comment in mce_cpu_quirks(), such GART errors can be
+                * incorrectly triggered. We may see these errors anyway and
+                * unless requested by the user, they won't be reported.
+                *
+                * [1] section 13.10.1 on BIOS and Kernel Developers Guide for
+                *     AMD NPT family 0Fh processors
+                */
+               if (report_gart_errors == 0)
+                       return 1;
+
+               /*
+                * Only if GART error reporting is requested should we generate
+                * any logs.
+                */
+               gart_tlb_error = 1;
+
+               debugf1("GART TLB error\n");
+               amd64_decode_gart_tlb_error(mci, info);
+       } else if (TEST_MEM_ERROR(err_code)) {
+               debugf1("Memory/Cache error\n");
+               amd64_decode_mem_cache_error(mci, info);
+       } else if (TEST_BUS_ERROR(err_code)) {
+               debugf1("Bus (Link/DRAM) error\n");
+               amd64_decode_bus_error(mci, info);
+       } else {
+               /* shouldn't reach here! */
+               amd64_mc_printk(mci, KERN_WARNING,
+                            "%s(): unknown MCE error 0x%x\n", __func__,
+                            err_code);
+       }
+
+       ext_ec = EXTRACT_EXT_ERROR_CODE(regs->nbsl);
+       amd64_mc_printk(mci, KERN_ERR,
+               "ExtErr=(0x%x) %s\n", ext_ec, ext_msgs[ext_ec]);
+
+       if (((ext_ec >= F10_NBSL_EXT_ERR_CRC &&
+                       ext_ec <= F10_NBSL_EXT_ERR_TGT) ||
+                       (ext_ec == F10_NBSL_EXT_ERR_RMW)) &&
+                       EXTRACT_LDT_LINK(info->nbsh)) {
+
+               amd64_mc_printk(mci, KERN_ERR,
+                       "Error on hypertransport link: %s\n",
+                       htlink_msgs[
+                       EXTRACT_LDT_LINK(info->nbsh)]);
+       }
+
+       /*
+        * Check the UE bit of the NB status high register, if set generate some
+        * logs. If NOT a GART error, then process the event as a NO-INFO event.
+        * If it was a GART error, skip that process.
+        */
+       if (regs->nbsh & K8_NBSH_UNCORRECTED_ERR) {
+               amd64_mc_printk(mci, KERN_CRIT, "uncorrected error\n");
+               if (!gart_tlb_error)
+                       edac_mc_handle_ue_no_info(mci, "UE bit is set\n");
+       }
+
+       if (regs->nbsh & K8_NBSH_PCC)
+               amd64_mc_printk(mci, KERN_CRIT,
+                       "PCC (processor context corrupt) set\n");
+
+       return 1;
+}
+EXPORT_SYMBOL_GPL(amd64_process_error_info);
+
+/*
+ * The main polling 'check' function, called FROM the edac core to perform the
+ * error checking and if an error is encountered, error processing.
+ */
+static void amd64_check(struct mem_ctl_info *mci)
+{
+       struct amd64_error_info_regs info;
+
+       if (amd64_get_error_info(mci, &info))
+               amd64_process_error_info(mci, &info, 1);
+}
+
+/*
+ * Input:
+ *     1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
+ *     2) AMD Family index value
+ *
+ * Ouput:
+ *     Upon return of 0, the following filled in:
+ *
+ *             struct pvt->addr_f1_ctl
+ *             struct pvt->misc_f3_ctl
+ *
+ *     Filled in with related device funcitions of 'dram_f2_ctl'
+ *     These devices are "reserved" via the pci_get_device()
+ *
+ *     Upon return of 1 (error status):
+ *
+ *             Nothing reserved
+ */
+static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
+{
+       const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
+
+       /* Reserve the ADDRESS MAP Device */
+       pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
+                                                   amd64_dev->addr_f1_ctl,
+                                                   pvt->dram_f2_ctl);
+
+       if (!pvt->addr_f1_ctl) {
+               amd64_printk(KERN_ERR, "error address map device not found: "
+                            "vendor %x device 0x%x (broken BIOS?)\n",
+                            PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
+               return 1;
+       }
+
+       /* Reserve the MISC Device */
+       pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
+                                                   amd64_dev->misc_f3_ctl,
+                                                   pvt->dram_f2_ctl);
+
+       if (!pvt->misc_f3_ctl) {
+               pci_dev_put(pvt->addr_f1_ctl);
+               pvt->addr_f1_ctl = NULL;
+
+               amd64_printk(KERN_ERR, "error miscellaneous device not found: "
+                            "vendor %x device 0x%x (broken BIOS?)\n",
+                            PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
+               return 1;
+       }
+
+       debugf1("    Addr Map device PCI Bus ID:\t%s\n",
+               pci_name(pvt->addr_f1_ctl));
+       debugf1("    DRAM MEM-CTL PCI Bus ID:\t%s\n",
+               pci_name(pvt->dram_f2_ctl));
+       debugf1("    Misc device PCI Bus ID:\t%s\n",
+               pci_name(pvt->misc_f3_ctl));
+
+       return 0;
+}
+
+static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
+{
+       pci_dev_put(pvt->addr_f1_ctl);
+       pci_dev_put(pvt->misc_f3_ctl);
+}
+
+/*
+ * Retrieve the hardware registers of the memory controller (this includes the
+ * 'Address Map' and 'Misc' device regs)
+ */
+static void amd64_read_mc_registers(struct amd64_pvt *pvt)
+{
+       u64 msr_val;
+       int dram, err = 0;
+
+       /*
+        * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
+        * those are Read-As-Zero
+        */
+       rdmsrl(MSR_K8_TOP_MEM1, msr_val);
+       pvt->top_mem = msr_val >> 23;
+       debugf0("  TOP_MEM=0x%08llx\n", pvt->top_mem);
+
+       /* check first whether TOP_MEM2 is enabled */
+       rdmsrl(MSR_K8_SYSCFG, msr_val);
+       if (msr_val & (1U << 21)) {
+               rdmsrl(MSR_K8_TOP_MEM2, msr_val);
+               pvt->top_mem2 = msr_val >> 23;
+               debugf0("  TOP_MEM2=0x%08llx\n", pvt->top_mem2);
+       } else
+               debugf0("  TOP_MEM2 disabled.\n");
+
+       amd64_cpu_display_info(pvt);
+
+       err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
+       if (err)
+               goto err_reg;
+
+       if (pvt->ops->read_dram_ctl_register)
+               pvt->ops->read_dram_ctl_register(pvt);
+
+       for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
+               /*
+                * Call CPU specific READ function to get the DRAM Base and
+                * Limit values from the DCT.
+                */
+               pvt->ops->read_dram_base_limit(pvt, dram);
+
+               /*
+                * Only print out debug info on rows with both R and W Enabled.
+                * Normal processing, compiler should optimize this whole 'if'
+                * debug output block away.
+                */
+               if (pvt->dram_rw_en[dram] != 0) {
+                       debugf1("  DRAM_BASE[%d]: 0x%8.08x-%8.08x "
+                               "DRAM_LIMIT:  0x%8.08x-%8.08x\n",
+                               dram,
+                               (u32)(pvt->dram_base[dram] >> 32),
+                               (u32)(pvt->dram_base[dram] & 0xFFFFFFFF),
+                               (u32)(pvt->dram_limit[dram] >> 32),
+                               (u32)(pvt->dram_limit[dram] & 0xFFFFFFFF));
+                       debugf1("        IntlvEn=%s %s %s "
+                               "IntlvSel=%d DstNode=%d\n",
+                               pvt->dram_IntlvEn[dram] ?
+                                       "Enabled" : "Disabled",
+                               (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
+                               (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
+                               pvt->dram_IntlvSel[dram],
+                               pvt->dram_DstNode[dram]);
+               }
+       }
+
+       amd64_read_dct_base_mask(pvt);
+
+       err = pci_read_config_dword(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
+       if (err)
+               goto err_reg;
+
+       amd64_read_dbam_reg(pvt);
+
+       err = pci_read_config_dword(pvt->misc_f3_ctl,
+                               F10_ONLINE_SPARE, &pvt->online_spare);
+       if (err)
+               goto err_reg;
+
+       err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
+       if (err)
+               goto err_reg;
+
+       err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
+       if (err)
+               goto err_reg;
+
+       if (!dct_ganging_enabled(pvt)) {
+               err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1,
+                                               &pvt->dclr1);
+               if (err)
+                       goto err_reg;
+
+               err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_1,
+                                               &pvt->dchr1);
+               if (err)
+                       goto err_reg;
+       }
+
+       amd64_dump_misc_regs(pvt);
+
+err_reg:
+       debugf0("Reading an MC register failed\n");
+
+}
+
+/*
+ * NOTE: CPU Revision Dependent code
+ *
+ * Input:
+ *     @csrow_nr ChipSelect Row Number (0..CHIPSELECT_COUNT-1)
+ *     k8 private pointer to -->
+ *                     DRAM Bank Address mapping register
+ *                     node_id
+ *                     DCL register where dual_channel_active is
+ *
+ * The DBAM register consists of 4 sets of 4 bits each definitions:
+ *
+ * Bits:       CSROWs
+ * 0-3         CSROWs 0 and 1
+ * 4-7         CSROWs 2 and 3
+ * 8-11                CSROWs 4 and 5
+ * 12-15       CSROWs 6 and 7
+ *
+ * Values range from: 0 to 15
+ * The meaning of the values depends on CPU revision and dual-channel state,
+ * see relevant BKDG more info.
+ *
+ * The memory controller provides for total of only 8 CSROWs in its current
+ * architecture. Each "pair" of CSROWs normally represents just one DIMM in
+ * single channel or two (2) DIMMs in dual channel mode.
+ *
+ * The following code logic collapses the various tables for CSROW based on CPU
+ * revision.
+ *
+ * Returns:
+ *     The number of PAGE_SIZE pages on the specified CSROW number it
+ *     encompasses
+ *
+ */
+static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
+{
+       u32 dram_map, nr_pages;
+
+       /*
+        * The math on this doesn't look right on the surface because x/2*4 can
+        * be simplified to x*2 but this expression makes use of the fact that
+        * it is integral math where 1/2=0. This intermediate value becomes the
+        * number of bits to shift the DBAM register to extract the proper CSROW
+        * field.
+        */
+       dram_map = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
+
+       nr_pages = pvt->ops->dbam_map_to_pages(pvt, dram_map);
+
+       /*
+        * If dual channel then double the memory size of single channel.
+        * Channel count is 1 or 2
+        */
+       nr_pages <<= (pvt->channel_count - 1);
+
+       debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, dram_map);
+       debugf0("    nr_pages= %u  channel-count = %d\n",
+               nr_pages, pvt->channel_count);
+
+       return nr_pages;
+}
+
+/*
+ * Initialize the array of csrow attribute instances, based on the values
+ * from pci config hardware registers.
+ */
+static int amd64_init_csrows(struct mem_ctl_info *mci)
+{
+       struct csrow_info *csrow;
+       struct amd64_pvt *pvt;
+       u64 input_addr_min, input_addr_max, sys_addr;
+       int i, err = 0, empty = 1;
+
+       pvt = mci->pvt_info;
+
+       err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
+       if (err)
+               debugf0("Reading K8_NBCFG failed\n");
+
+       debugf0("NBCFG= 0x%x  CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
+               (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
+               (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
+               );
+
+       for (i = 0; i < CHIPSELECT_COUNT; i++) {
+               csrow = &mci->csrows[i];
+
+               if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
+                       debugf1("----CSROW %d EMPTY for node %d\n", i,
+                               pvt->mc_node_id);
+                       continue;
+               }
+
+               debugf1("----CSROW %d VALID for MC node %d\n",
+                       i, pvt->mc_node_id);
+
+               empty = 0;
+               csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
+               find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
+               sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
+               csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
+               sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
+               csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
+               csrow->page_mask = ~mask_from_dct_mask(pvt, i);
+               /* 8 bytes of resolution */
+
+               csrow->mtype = amd64_determine_memory_type(pvt);
+
+               debugf1("  for MC node %d csrow %d:\n", pvt->mc_node_id, i);
+               debugf1("    input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
+                       (unsigned long)input_addr_min,
+                       (unsigned long)input_addr_max);
+               debugf1("    sys_addr: 0x%lx  page_mask: 0x%lx\n",
+                       (unsigned long)sys_addr, csrow->page_mask);
+               debugf1("    nr_pages: %u  first_page: 0x%lx "
+                       "last_page: 0x%lx\n",
+                       (unsigned)csrow->nr_pages,
+                       csrow->first_page, csrow->last_page);
+
+               /*
+                * determine whether CHIPKILL or JUST ECC or NO ECC is operating
+                */
+               if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
+                       csrow->edac_mode =
+                           (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
+                           EDAC_S4ECD4ED : EDAC_SECDED;
+               else
+                       csrow->edac_mode = EDAC_NONE;
+       }
+
+       return empty;
+}
+
+/*
+ * Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we"
+ * enable it.
+ */
+static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
+{
+       struct amd64_pvt *pvt = mci->pvt_info;
+       const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id);
+       int cpu, idx = 0, err = 0;
+       struct msr msrs[cpumask_weight(cpumask)];
+       u32 value;
+       u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
+
+       if (!ecc_enable_override)
+               return;
+
+       memset(msrs, 0, sizeof(msrs));
+
+       amd64_printk(KERN_WARNING,
+               "'ecc_enable_override' parameter is active, "
+               "Enabling AMD ECC hardware now: CAUTION\n");
+
+       err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
+       if (err)
+               debugf0("Reading K8_NBCTL failed\n");
+
+       /* turn on UECCn and CECCEn bits */
+       pvt->old_nbctl = value & mask;
+       pvt->nbctl_mcgctl_saved = 1;
+
+       value |= mask;
+       pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
+
+       rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
+
+       for_each_cpu(cpu, cpumask) {
+               if (msrs[idx].l & K8_MSR_MCGCTL_NBE)
+                       set_bit(idx, &pvt->old_mcgctl);
+
+               msrs[idx].l |= K8_MSR_MCGCTL_NBE;
+               idx++;
+       }
+       wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
+
+       err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
+       if (err)
+               debugf0("Reading K8_NBCFG failed\n");
+
+       debugf0("NBCFG(1)= 0x%x  CHIPKILL= %s ECC_ENABLE= %s\n", value,
+               (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
+               (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
+
+       if (!(value & K8_NBCFG_ECC_ENABLE)) {
+               amd64_printk(KERN_WARNING,
+                       "This node reports that DRAM ECC is "
+                       "currently Disabled; ENABLING now\n");
+
+               /* Attempt to turn on DRAM ECC Enable */
+               value |= K8_NBCFG_ECC_ENABLE;
+               pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
+
+               err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
+               if (err)
+                       debugf0("Reading K8_NBCFG failed\n");
+
+               if (!(value & K8_NBCFG_ECC_ENABLE)) {
+                       amd64_printk(KERN_WARNING,
+                               "Hardware rejects Enabling DRAM ECC checking\n"
+                               "Check memory DIMM configuration\n");
+               } else {
+                       amd64_printk(KERN_DEBUG,
+                               "Hardware accepted DRAM ECC Enable\n");
+               }
+       }
+       debugf0("NBCFG(2)= 0x%x  CHIPKILL= %s ECC_ENABLE= %s\n", value,
+               (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
+               (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
+
+       pvt->ctl_error_info.nbcfg = value;
+}
+
+static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
+{
+       const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id);
+       int cpu, idx = 0, err = 0;
+       struct msr msrs[cpumask_weight(cpumask)];
+       u32 value;
+       u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
+
+       if (!pvt->nbctl_mcgctl_saved)
+               return;
+
+       memset(msrs, 0, sizeof(msrs));
+
+       err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
+       if (err)
+               debugf0("Reading K8_NBCTL failed\n");
+       value &= ~mask;
+       value |= pvt->old_nbctl;
+
+       /* restore the NB Enable MCGCTL bit */
+       pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
+
+       rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
+
+       for_each_cpu(cpu, cpumask) {
+               msrs[idx].l &= ~K8_MSR_MCGCTL_NBE;
+               msrs[idx].l |=
+                       test_bit(idx, &pvt->old_mcgctl) << K8_MSR_MCGCTL_NBE;
+               idx++;
+       }
+
+       wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
+}
+
+static void check_mcg_ctl(void *ret)
+{
+       u64 msr_val = 0;
+       u8 nbe;
+
+       rdmsrl(MSR_IA32_MCG_CTL, msr_val);
+       nbe = msr_val & K8_MSR_MCGCTL_NBE;
+
+       debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
+               raw_smp_processor_id(), msr_val,
+               (nbe ? "enabled" : "disabled"));
+
+       if (!nbe)
+               *(int *)ret = 0;
+}
+
+/* check MCG_CTL on all the cpus on this node */
+static int amd64_mcg_ctl_enabled_on_cpus(const cpumask_t *mask)
+{
+       int ret = 1;
+       preempt_disable();
+       smp_call_function_many(mask, check_mcg_ctl, &ret, 1);
+       preempt_enable();
+
+       return ret;
+}
+
+/*
+ * EDAC requires that the BIOS have ECC enabled before taking over the
+ * processing of ECC errors. This is because the BIOS can properly initialize
+ * the memory system completely. A command line option allows to force-enable
+ * hardware ECC later in amd64_enable_ecc_error_reporting().
+ */
+static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
+{
+       u32 value;
+       int err = 0, ret = 0;
+       u8 ecc_enabled = 0;
+
+       err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
+       if (err)
+               debugf0("Reading K8_NBCTL failed\n");
+
+       ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
+
+       ret = amd64_mcg_ctl_enabled_on_cpus(cpumask_of_node(pvt->mc_node_id));
+
+       debugf0("K8_NBCFG=0x%x,  DRAM ECC is %s\n", value,
+                       (value & K8_NBCFG_ECC_ENABLE ? "enabled" : "disabled"));
+
+       if (!ecc_enabled || !ret) {
+               if (!ecc_enabled) {
+                       amd64_printk(KERN_WARNING, "This node reports that "
+                                                  "Memory ECC is currently "
+                                                  "disabled.\n");
+
+                       amd64_printk(KERN_WARNING, "bit 0x%lx in register "
+                               "F3x%x of the MISC_CONTROL device (%s) "
+                               "should be enabled\n", K8_NBCFG_ECC_ENABLE,
+                               K8_NBCFG, pci_name(pvt->misc_f3_ctl));
+               }
+               if (!ret) {
+                       amd64_printk(KERN_WARNING, "bit 0x%016lx in MSR 0x%08x "
+                                       "of node %d should be enabled\n",
+                                       K8_MSR_MCGCTL_NBE, MSR_IA32_MCG_CTL,
+                                       pvt->mc_node_id);
+               }
+               if (!ecc_enable_override) {
+                       amd64_printk(KERN_WARNING, "WARNING: ECC is NOT "
+                               "currently enabled by the BIOS. Module "
+                               "will NOT be loaded.\n"
+                               "    Either Enable ECC in the BIOS, "
+                               "or use the 'ecc_enable_override' "
+                               "parameter.\n"
+                               "    Might be a BIOS bug, if BIOS says "
+                               "ECC is enabled\n"
+                               "    Use of the override can cause "
+                               "unknown side effects.\n");
+                       ret = -ENODEV;
+               }
+       } else {
+               amd64_printk(KERN_INFO,
+                       "ECC is enabled by BIOS, Proceeding "
+                       "with EDAC module initialization\n");
+
+               /* CLEAR the override, since BIOS controlled it */
+               ecc_enable_override = 0;
+       }
+
+       return ret;
+}
+
+struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
+                                         ARRAY_SIZE(amd64_inj_attrs) +
+                                         1];
+
+struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
+
+static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
+{
+       unsigned int i = 0, j = 0;
+
+       for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
+               sysfs_attrs[i] = amd64_dbg_attrs[i];
+
+       for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
+               sysfs_attrs[i] = amd64_inj_attrs[j];
+
+       sysfs_attrs[i] = terminator;
+
+       mci->mc_driver_sysfs_attributes = sysfs_attrs;
+}
+
+static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
+{
+       struct amd64_pvt *pvt = mci->pvt_info;
+
+       mci->mtype_cap          = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
+       mci->edac_ctl_cap       = EDAC_FLAG_NONE;
+       mci->edac_cap           = EDAC_FLAG_NONE;
+
+       if (pvt->nbcap & K8_NBCAP_SECDED)
+               mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
+
+       if (pvt->nbcap & K8_NBCAP_CHIPKILL)
+               mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
+
+       mci->edac_cap           = amd64_determine_edac_cap(pvt);
+       mci->mod_name           = EDAC_MOD_STR;
+       mci->mod_ver            = EDAC_AMD64_VERSION;
+       mci->ctl_name           = get_amd_family_name(pvt->mc_type_index);
+       mci->dev_name           = pci_name(pvt->dram_f2_ctl);
+       mci->ctl_page_to_phys   = NULL;
+
+       /* IMPORTANT: Set the polling 'check' function in this module */
+       mci->edac_check         = amd64_check;
+
+       /* memory scrubber interface */
+       mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
+       mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
+}
+
+/*
+ * Init stuff for this DRAM Controller device.
+ *
+ * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
+ * Space feature MUST be enabled on ALL Processors prior to actually reading
+ * from the ECS registers. Since the loading of the module can occur on any
+ * 'core', and cores don't 'see' all the other processors ECS data when the
+ * others are NOT enabled. Our solution is to first enable ECS access in this
+ * routine on all processors, gather some data in a amd64_pvt structure and
+ * later come back in a finish-setup function to perform that final
+ * initialization. See also amd64_init_2nd_stage() for that.
+ */
+static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
+                                   int mc_type_index)
+{
+       struct amd64_pvt *pvt = NULL;
+       int err = 0, ret;
+
+       ret = -ENOMEM;
+       pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
+       if (!pvt)
+               goto err_exit;
+
+       pvt->mc_node_id = get_mc_node_id_from_pdev(dram_f2_ctl);
+
+       pvt->dram_f2_ctl        = dram_f2_ctl;
+       pvt->ext_model          = boot_cpu_data.x86_model >> 4;
+       pvt->mc_type_index      = mc_type_index;
+       pvt->ops                = family_ops(mc_type_index);
+       pvt->old_mcgctl         = 0;
+
+       /*
+        * We have the dram_f2_ctl device as an argument, now go reserve its
+        * sibling devices from the PCI system.
+        */
+       ret = -ENODEV;
+       err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
+       if (err)
+               goto err_free;
+
+       ret = -EINVAL;
+       err = amd64_check_ecc_enabled(pvt);
+       if (err)
+               goto err_put;
+
+       /*
+        * Key operation here: setup of HW prior to performing ops on it. Some
+        * setup is required to access ECS data. After this is performed, the
+        * 'teardown' function must be called upon error and normal exit paths.
+        */
+       if (boot_cpu_data.x86 >= 0x10)
+               amd64_setup(pvt);
+
+       /*
+        * Save the pointer to the private data for use in 2nd initialization
+        * stage
+        */
+       pvt_lookup[pvt->mc_node_id] = pvt;
+
+       return 0;
+
+err_put:
+       amd64_free_mc_sibling_devices(pvt);
+
+err_free:
+       kfree(pvt);
+
+err_exit:
+       return ret;
+}
+
+/*
+ * This is the finishing stage of the init code. Needs to be performed after all
+ * MCs' hardware have been prepped for accessing extended config space.
+ */
+static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
+{
+       int node_id = pvt->mc_node_id;
+       struct mem_ctl_info *mci;
+       int ret, err = 0;
+
+       amd64_read_mc_registers(pvt);
+
+       ret = -ENODEV;
+       if (pvt->ops->probe_valid_hardware) {
+               err = pvt->ops->probe_valid_hardware(pvt);
+               if (err)
+                       goto err_exit;
+       }
+
+       /*
+        * We need to determine how many memory channels there are. Then use
+        * that information for calculating the size of the dynamic instance
+        * tables in the 'mci' structure
+        */
+       pvt->channel_count = pvt->ops->early_channel_count(pvt);
+       if (pvt->channel_count < 0)
+               goto err_exit;
+
+       ret = -ENOMEM;
+       mci = edac_mc_alloc(0, CHIPSELECT_COUNT, pvt->channel_count, node_id);
+       if (!mci)
+               goto err_exit;
+
+       mci->pvt_info = pvt;
+
+       mci->dev = &pvt->dram_f2_ctl->dev;
+       amd64_setup_mci_misc_attributes(mci);
+
+       if (amd64_init_csrows(mci))
+               mci->edac_cap = EDAC_FLAG_NONE;
+
+       amd64_enable_ecc_error_reporting(mci);
+       amd64_set_mc_sysfs_attributes(mci);
+
+       ret = -ENODEV;
+       if (edac_mc_add_mc(mci)) {
+               debugf1("failed edac_mc_add_mc()\n");
+               goto err_add_mc;
+       }
+
+       mci_lookup[node_id] = mci;
+       pvt_lookup[node_id] = NULL;
+       return 0;
+
+err_add_mc:
+       edac_mc_free(mci);
+
+err_exit:
+       debugf0("failure to init 2nd stage: ret=%d\n", ret);
+
+       amd64_restore_ecc_error_reporting(pvt);
+
+       if (boot_cpu_data.x86 > 0xf)
+               amd64_teardown(pvt);
+
+       amd64_free_mc_sibling_devices(pvt);
+
+       kfree(pvt_lookup[pvt->mc_node_id]);
+       pvt_lookup[node_id] = NULL;
+
+       return ret;
+}
+
+
+static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
+                                const struct pci_device_id *mc_type)
+{
+       int ret = 0;
+
+       debugf0("(MC node=%d,mc_type='%s')\n",
+               get_mc_node_id_from_pdev(pdev),
+               get_amd_family_name(mc_type->driver_data));
+
+       ret = pci_enable_device(pdev);
+       if (ret < 0)
+               ret = -EIO;
+       else
+               ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
+
+       if (ret < 0)
+               debugf0("ret=%d\n", ret);
+
+       return ret;
+}
+
+static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
+{
+       struct mem_ctl_info *mci;
+       struct amd64_pvt *pvt;
+
+       /* Remove from EDAC CORE tracking list */
+       mci = edac_mc_del_mc(&pdev->dev);
+       if (!mci)
+               return;
+
+       pvt = mci->pvt_info;
+
+       amd64_restore_ecc_error_reporting(pvt);
+
+       if (boot_cpu_data.x86 > 0xf)
+               amd64_teardown(pvt);
+
+       amd64_free_mc_sibling_devices(pvt);
+
+       kfree(pvt);
+       mci->pvt_info = NULL;
+
+       mci_lookup[pvt->mc_node_id] = NULL;
+
+       /* Free the EDAC CORE resources */
+       edac_mc_free(mci);
+}
+
+/*
+ * This table is part of the interface for loading drivers for PCI devices. The
+ * PCI core identifies what devices are on a system during boot, and then
+ * inquiry this table to see if this driver is for a given device found.
+ */
+static const struct pci_device_id amd64_pci_table[] __devinitdata = {
+       {
+               .vendor         = PCI_VENDOR_ID_AMD,
+               .device         = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
+               .subvendor      = PCI_ANY_ID,
+               .subdevice      = PCI_ANY_ID,
+               .class          = 0,
+               .class_mask     = 0,
+               .driver_data    = K8_CPUS
+       },
+       {
+               .vendor         = PCI_VENDOR_ID_AMD,
+               .device         = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
+               .subvendor      = PCI_ANY_ID,
+               .subdevice      = PCI_ANY_ID,
+               .class          = 0,
+               .class_mask     = 0,
+               .driver_data    = F10_CPUS
+       },
+       {
+               .vendor         = PCI_VENDOR_ID_AMD,
+               .device         = PCI_DEVICE_ID_AMD_11H_NB_DRAM,
+               .subvendor      = PCI_ANY_ID,
+               .subdevice      = PCI_ANY_ID,
+               .class          = 0,
+               .class_mask     = 0,
+               .driver_data    = F11_CPUS
+       },
+       {0, }
+};
+MODULE_DEVICE_TABLE(pci, amd64_pci_table);
+
+static struct pci_driver amd64_pci_driver = {
+       .name           = EDAC_MOD_STR,
+       .probe          = amd64_init_one_instance,
+       .remove         = __devexit_p(amd64_remove_one_instance),
+       .id_table       = amd64_pci_table,
+};
+
+static void amd64_setup_pci_device(void)
+{
+       struct mem_ctl_info *mci;
+       struct amd64_pvt *pvt;
+
+       if (amd64_ctl_pci)
+               return;
+
+       mci = mci_lookup[0];
+       if (mci) {
+
+               pvt = mci->pvt_info;
+               amd64_ctl_pci =
+                       edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
+                                                   EDAC_MOD_STR);
+
+               if (!amd64_ctl_pci) {
+                       pr_warning("%s(): Unable to create PCI control\n",
+                                  __func__);
+
+                       pr_warning("%s(): PCI error report via EDAC not set\n",
+                                  __func__);
+                       }
+       }
+}
+
+static int __init amd64_edac_init(void)
+{
+       int nb, err = -ENODEV;
+
+       edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
+
+       opstate_init();
+
+       if (cache_k8_northbridges() < 0)
+               goto err_exit;
+
+       err = pci_register_driver(&amd64_pci_driver);
+       if (err)
+               return err;
+
+       /*
+        * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
+        * amd64_pvt structs. These will be used in the 2nd stage init function
+        * to finish initialization of the MC instances.
+        */
+       for (nb = 0; nb < num_k8_northbridges; nb++) {
+               if (!pvt_lookup[nb])
+                       continue;
+
+               err = amd64_init_2nd_stage(pvt_lookup[nb]);
+               if (err)
+                       goto err_exit;
+       }
+
+       amd64_setup_pci_device();
+
+       return 0;
+
+err_exit:
+       debugf0("'finish_setup' stage failed\n");
+       pci_unregister_driver(&amd64_pci_driver);
+
+       return err;
+}
+
+static void __exit amd64_edac_exit(void)
+{
+       if (amd64_ctl_pci)
+               edac_pci_release_generic_ctl(amd64_ctl_pci);
+
+       pci_unregister_driver(&amd64_pci_driver);
+}
+
+module_init(amd64_edac_init);
+module_exit(amd64_edac_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
+               "Dave Peterson, Thayne Harbaugh");
+MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
+               EDAC_AMD64_VERSION);
+
+module_param(edac_op_state, int, 0444);
+MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");