/* * Mirics MSi3101 SDR Dongle driver * * Copyright (C) 2013 Antti Palosaari * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * That driver is somehow based of pwc driver: * (C) 1999-2004 Nemosoft Unv. * (C) 2004-2006 Luc Saillard (luc@saillard.org) * (C) 2011 Hans de Goede * * Development tree of that driver will be on: * http://git.linuxtv.org/anttip/media_tree.git/shortlog/refs/heads/mirics * * GNU Radio plugin "gr-kernel" for device usage will be on: * http://git.linuxtv.org/anttip/gr-kernel.git * * TODO: * Help is very highly welcome for these + all the others you could imagine: * - split USB ADC interface and RF tuner to own drivers (msi2500 and msi001) * - move controls to V4L2 API * - use libv4l2 for stream format conversions * - gr-kernel: switch to v4l2_mmap (current read eats a lot of cpu) * - SDRSharp support */ #include #include #include #include #include #include #include #include #include #include struct msi3101_gain { u8 tot:7; u8 baseband:6; bool lna:1; bool mixer:1; }; /* 60 – 120 MHz band, lna 24dB, mixer 19dB */ static const struct msi3101_gain msi3101_gain_lut_120[] = { { 0, 0, 0, 0}, { 1, 1, 0, 0}, { 2, 2, 0, 0}, { 3, 3, 0, 0}, { 4, 4, 0, 0}, { 5, 5, 0, 0}, { 6, 6, 0, 0}, { 7, 7, 0, 0}, { 8, 8, 0, 0}, { 9, 9, 0, 0}, { 10, 10, 0, 0}, { 11, 11, 0, 0}, { 12, 12, 0, 0}, { 13, 13, 0, 0}, { 14, 14, 0, 0}, { 15, 15, 0, 0}, { 16, 16, 0, 0}, { 17, 17, 0, 0}, { 18, 18, 0, 0}, { 19, 19, 0, 0}, { 20, 20, 0, 0}, { 21, 21, 0, 0}, { 22, 22, 0, 0}, { 23, 23, 0, 0}, { 24, 24, 0, 0}, { 25, 25, 0, 0}, { 26, 26, 0, 0}, { 27, 27, 0, 0}, { 28, 28, 0, 0}, { 29, 5, 1, 0}, { 30, 6, 1, 0}, { 31, 7, 1, 0}, { 32, 8, 1, 0}, { 33, 9, 1, 0}, { 34, 10, 1, 0}, { 35, 11, 1, 0}, { 36, 12, 1, 0}, { 37, 13, 1, 0}, { 38, 14, 1, 0}, { 39, 15, 1, 0}, { 40, 16, 1, 0}, { 41, 17, 1, 0}, { 42, 18, 1, 0}, { 43, 19, 1, 0}, { 44, 20, 1, 0}, { 45, 21, 1, 0}, { 46, 22, 1, 0}, { 47, 23, 1, 0}, { 48, 24, 1, 0}, { 49, 25, 1, 0}, { 50, 26, 1, 0}, { 51, 27, 1, 0}, { 52, 28, 1, 0}, { 53, 29, 1, 0}, { 54, 30, 1, 0}, { 55, 31, 1, 0}, { 56, 32, 1, 0}, { 57, 33, 1, 0}, { 58, 34, 1, 0}, { 59, 35, 1, 0}, { 60, 36, 1, 0}, { 61, 37, 1, 0}, { 62, 38, 1, 0}, { 63, 39, 1, 0}, { 64, 40, 1, 0}, { 65, 41, 1, 0}, { 66, 42, 1, 0}, { 67, 43, 1, 0}, { 68, 44, 1, 0}, { 69, 45, 1, 0}, { 70, 46, 1, 0}, { 71, 47, 1, 0}, { 72, 48, 1, 0}, { 73, 49, 1, 0}, { 74, 50, 1, 0}, { 75, 51, 1, 0}, { 76, 52, 1, 0}, { 77, 53, 1, 0}, { 78, 54, 1, 0}, { 79, 55, 1, 0}, { 80, 56, 1, 0}, { 81, 57, 1, 0}, { 82, 58, 1, 0}, { 83, 40, 1, 1}, { 84, 41, 1, 1}, { 85, 42, 1, 1}, { 86, 43, 1, 1}, { 87, 44, 1, 1}, { 88, 45, 1, 1}, { 89, 46, 1, 1}, { 90, 47, 1, 1}, { 91, 48, 1, 1}, { 92, 49, 1, 1}, { 93, 50, 1, 1}, { 94, 51, 1, 1}, { 95, 52, 1, 1}, { 96, 53, 1, 1}, { 97, 54, 1, 1}, { 98, 55, 1, 1}, { 99, 56, 1, 1}, {100, 57, 1, 1}, {101, 58, 1, 1}, {102, 59, 1, 1}, }; /* 120 – 245 MHz band, lna 24dB, mixer 19dB */ static const struct msi3101_gain msi3101_gain_lut_245[] = { { 0, 0, 0, 0}, { 1, 1, 0, 0}, { 2, 2, 0, 0}, { 3, 3, 0, 0}, { 4, 4, 0, 0}, { 5, 5, 0, 0}, { 6, 6, 0, 0}, { 7, 7, 0, 0}, { 8, 8, 0, 0}, { 9, 9, 0, 0}, { 10, 10, 0, 0}, { 11, 11, 0, 0}, { 12, 12, 0, 0}, { 13, 13, 0, 0}, { 14, 14, 0, 0}, { 15, 15, 0, 0}, { 16, 16, 0, 0}, { 17, 17, 0, 0}, { 18, 18, 0, 0}, { 19, 19, 0, 0}, { 20, 20, 0, 0}, { 21, 21, 0, 0}, { 22, 22, 0, 0}, { 23, 23, 0, 0}, { 24, 24, 0, 0}, { 25, 25, 0, 0}, { 26, 26, 0, 0}, { 27, 27, 0, 0}, { 28, 28, 0, 0}, { 29, 5, 1, 0}, { 30, 6, 1, 0}, { 31, 7, 1, 0}, { 32, 8, 1, 0}, { 33, 9, 1, 0}, { 34, 10, 1, 0}, { 35, 11, 1, 0}, { 36, 12, 1, 0}, { 37, 13, 1, 0}, { 38, 14, 1, 0}, { 39, 15, 1, 0}, { 40, 16, 1, 0}, { 41, 17, 1, 0}, { 42, 18, 1, 0}, { 43, 19, 1, 0}, { 44, 20, 1, 0}, { 45, 21, 1, 0}, { 46, 22, 1, 0}, { 47, 23, 1, 0}, { 48, 24, 1, 0}, { 49, 25, 1, 0}, { 50, 26, 1, 0}, { 51, 27, 1, 0}, { 52, 28, 1, 0}, { 53, 29, 1, 0}, { 54, 30, 1, 0}, { 55, 31, 1, 0}, { 56, 32, 1, 0}, { 57, 33, 1, 0}, { 58, 34, 1, 0}, { 59, 35, 1, 0}, { 60, 36, 1, 0}, { 61, 37, 1, 0}, { 62, 38, 1, 0}, { 63, 39, 1, 0}, { 64, 40, 1, 0}, { 65, 41, 1, 0}, { 66, 42, 1, 0}, { 67, 43, 1, 0}, { 68, 44, 1, 0}, { 69, 45, 1, 0}, { 70, 46, 1, 0}, { 71, 47, 1, 0}, { 72, 48, 1, 0}, { 73, 49, 1, 0}, { 74, 50, 1, 0}, { 75, 51, 1, 0}, { 76, 52, 1, 0}, { 77, 53, 1, 0}, { 78, 54, 1, 0}, { 79, 55, 1, 0}, { 80, 56, 1, 0}, { 81, 57, 1, 0}, { 82, 58, 1, 0}, { 83, 40, 1, 1}, { 84, 41, 1, 1}, { 85, 42, 1, 1}, { 86, 43, 1, 1}, { 87, 44, 1, 1}, { 88, 45, 1, 1}, { 89, 46, 1, 1}, { 90, 47, 1, 1}, { 91, 48, 1, 1}, { 92, 49, 1, 1}, { 93, 50, 1, 1}, { 94, 51, 1, 1}, { 95, 52, 1, 1}, { 96, 53, 1, 1}, { 97, 54, 1, 1}, { 98, 55, 1, 1}, { 99, 56, 1, 1}, {100, 57, 1, 1}, {101, 58, 1, 1}, {102, 59, 1, 1}, }; /* 420 – 1000 MHz band, lna 7dB, mixer 19dB */ static const struct msi3101_gain msi3101_gain_lut_1000[] = { { 0, 0, 0, 0}, { 1, 1, 0, 0}, { 2, 2, 0, 0}, { 3, 3, 0, 0}, { 4, 4, 0, 0}, { 5, 5, 0, 0}, { 6, 6, 0, 0}, { 7, 7, 0, 0}, { 8, 8, 0, 0}, { 9, 9, 0, 0}, { 10, 10, 0, 0}, { 11, 11, 0, 0}, { 12, 5, 1, 0}, { 13, 6, 1, 0}, { 14, 7, 1, 0}, { 15, 8, 1, 0}, { 16, 9, 1, 0}, { 17, 10, 1, 0}, { 18, 11, 1, 0}, { 19, 12, 1, 0}, { 20, 13, 1, 0}, { 21, 14, 1, 0}, { 22, 15, 1, 0}, { 23, 16, 1, 0}, { 24, 17, 1, 0}, { 25, 18, 1, 0}, { 26, 19, 1, 0}, { 27, 20, 1, 0}, { 28, 21, 1, 0}, { 29, 22, 1, 0}, { 30, 23, 1, 0}, { 31, 24, 1, 0}, { 32, 25, 1, 0}, { 33, 26, 1, 0}, { 34, 27, 1, 0}, { 35, 28, 1, 0}, { 36, 29, 1, 0}, { 37, 30, 1, 0}, { 38, 31, 1, 0}, { 39, 32, 1, 0}, { 40, 33, 1, 0}, { 41, 34, 1, 0}, { 42, 35, 1, 0}, { 43, 36, 1, 0}, { 44, 37, 1, 0}, { 45, 38, 1, 0}, { 46, 39, 1, 0}, { 47, 40, 1, 0}, { 48, 41, 1, 0}, { 49, 42, 1, 0}, { 50, 43, 1, 0}, { 51, 44, 1, 0}, { 52, 45, 1, 0}, { 53, 46, 1, 0}, { 54, 47, 1, 0}, { 55, 48, 1, 0}, { 56, 49, 1, 0}, { 57, 50, 1, 0}, { 58, 51, 1, 0}, { 59, 52, 1, 0}, { 60, 53, 1, 0}, { 61, 54, 1, 0}, { 62, 55, 1, 0}, { 63, 56, 1, 0}, { 64, 57, 1, 0}, { 65, 58, 1, 0}, { 66, 40, 1, 1}, { 67, 41, 1, 1}, { 68, 42, 1, 1}, { 69, 43, 1, 1}, { 70, 44, 1, 1}, { 71, 45, 1, 1}, { 72, 46, 1, 1}, { 73, 47, 1, 1}, { 74, 48, 1, 1}, { 75, 49, 1, 1}, { 76, 50, 1, 1}, { 77, 51, 1, 1}, { 78, 52, 1, 1}, { 79, 53, 1, 1}, { 80, 54, 1, 1}, { 81, 55, 1, 1}, { 82, 56, 1, 1}, { 83, 57, 1, 1}, { 84, 58, 1, 1}, { 85, 59, 1, 1}, }; /* * iConfiguration 0 * bInterfaceNumber 0 * bAlternateSetting 1 * bNumEndpoints 1 * bEndpointAddress 0x81 EP 1 IN * bmAttributes 1 * Transfer Type Isochronous * wMaxPacketSize 0x1400 3x 1024 bytes * bInterval 1 */ #define MAX_ISO_BUFS (8) #define ISO_FRAMES_PER_DESC (8) #define ISO_MAX_FRAME_SIZE (3 * 1024) #define ISO_BUFFER_SIZE (ISO_FRAMES_PER_DESC * ISO_MAX_FRAME_SIZE) #define MAX_ISOC_ERRORS 20 /* TODO: These should be moved to V4L2 API */ #define MSI3101_CID_SAMPLING_MODE ((V4L2_CID_USER_BASE | 0xf000) + 0) #define MSI3101_CID_SAMPLING_RATE ((V4L2_CID_USER_BASE | 0xf000) + 1) #define MSI3101_CID_SAMPLING_RESOLUTION ((V4L2_CID_USER_BASE | 0xf000) + 2) #define MSI3101_CID_TUNER_RF ((V4L2_CID_USER_BASE | 0xf000) + 10) #define MSI3101_CID_TUNER_BW ((V4L2_CID_USER_BASE | 0xf000) + 11) #define MSI3101_CID_TUNER_IF ((V4L2_CID_USER_BASE | 0xf000) + 12) #define MSI3101_CID_TUNER_GAIN ((V4L2_CID_USER_BASE | 0xf000) + 13) /* intermediate buffers with raw data from the USB device */ struct msi3101_frame_buf { struct vb2_buffer vb; /* common v4l buffer stuff -- must be first */ struct list_head list; }; struct msi3101_state { struct video_device vdev; struct v4l2_device v4l2_dev; /* videobuf2 queue and queued buffers list */ struct vb2_queue vb_queue; struct list_head queued_bufs; spinlock_t queued_bufs_lock; /* Protects queued_bufs */ /* Note if taking both locks v4l2_lock must always be locked first! */ struct mutex v4l2_lock; /* Protects everything else */ struct mutex vb_queue_lock; /* Protects vb_queue and capt_file */ /* Pointer to our usb_device, will be NULL after unplug */ struct usb_device *udev; /* Both mutexes most be hold when setting! */ unsigned int isoc_errors; /* number of contiguous ISOC errors */ unsigned int vb_full; /* vb is full and packets dropped */ struct urb *urbs[MAX_ISO_BUFS]; int (*convert_stream) (struct msi3101_state *s, u32 *dst, u8 *src, unsigned int src_len); /* Controls */ struct v4l2_ctrl_handler ctrl_handler; struct v4l2_ctrl *ctrl_sampling_rate; struct v4l2_ctrl *ctrl_tuner_rf; struct v4l2_ctrl *ctrl_tuner_bw; struct v4l2_ctrl *ctrl_tuner_if; struct v4l2_ctrl *ctrl_tuner_gain; u32 next_sample; /* for track lost packets */ u32 sample; /* for sample rate calc */ unsigned long jiffies; unsigned int sample_ctrl_bit[4]; }; /* Private functions */ static struct msi3101_frame_buf *msi3101_get_next_fill_buf( struct msi3101_state *s) { unsigned long flags = 0; struct msi3101_frame_buf *buf = NULL; spin_lock_irqsave(&s->queued_bufs_lock, flags); if (list_empty(&s->queued_bufs)) goto leave; buf = list_entry(s->queued_bufs.next, struct msi3101_frame_buf, list); list_del(&buf->list); leave: spin_unlock_irqrestore(&s->queued_bufs_lock, flags); return buf; } /* * +=========================================================================== * | 00-1023 | USB packet type '384' * +=========================================================================== * | 00- 03 | sequence number of first sample in that USB packet * +--------------------------------------------------------------------------- * | 04- 15 | garbage * +--------------------------------------------------------------------------- * | 16- 175 | samples * +--------------------------------------------------------------------------- * | 176- 179 | control bits for previous samples * +--------------------------------------------------------------------------- * | 180- 339 | samples * +--------------------------------------------------------------------------- * | 340- 343 | control bits for previous samples * +--------------------------------------------------------------------------- * | 344- 503 | samples * +--------------------------------------------------------------------------- * | 504- 507 | control bits for previous samples * +--------------------------------------------------------------------------- * | 508- 667 | samples * +--------------------------------------------------------------------------- * | 668- 671 | control bits for previous samples * +--------------------------------------------------------------------------- * | 672- 831 | samples * +--------------------------------------------------------------------------- * | 832- 835 | control bits for previous samples * +--------------------------------------------------------------------------- * | 836- 995 | samples * +--------------------------------------------------------------------------- * | 996- 999 | control bits for previous samples * +--------------------------------------------------------------------------- * | 1000-1023 | garbage * +--------------------------------------------------------------------------- * * Bytes 4 - 7 could have some meaning? * * Control bits for previous samples is 32-bit field, containing 16 x 2-bit * numbers. This results one 2-bit number for 8 samples. It is likely used for * for bit shifting sample by given bits, increasing actual sampling resolution. * Number 2 (0b10) was never seen. * * 6 * 16 * 2 * 4 = 768 samples. 768 * 4 = 3072 bytes */ /* * Integer to 32-bit IEEE floating point representation routine is taken * from Radeon R600 driver (drivers/gpu/drm/radeon/r600_blit_kms.c). * * TODO: Currently we do conversion here in Kernel, but in future that will * be moved to the libv4l2 library as video format conversions are. */ #define I2F_FRAC_BITS 23 #define I2F_MASK ((1 << I2F_FRAC_BITS) - 1) /* * Converts signed 8-bit integer into 32-bit IEEE floating point * representation. */ static u32 msi3101_convert_sample_504(struct msi3101_state *s, u16 x) { u32 msb, exponent, fraction, sign; /* Zero is special */ if (!x) return 0; /* Negative / positive value */ if (x & (1 << 7)) { x = -x; x &= 0x7f; /* result is 7 bit ... + sign */ sign = 1 << 31; } else { sign = 0 << 31; } /* Get location of the most significant bit */ msb = __fls(x); fraction = ror32(x, (msb - I2F_FRAC_BITS) & 0x1f) & I2F_MASK; exponent = (127 + msb) << I2F_FRAC_BITS; return (fraction + exponent) | sign; } static int msi3101_convert_stream_504(struct msi3101_state *s, u32 *dst, u8 *src, unsigned int src_len) { int i, j, i_max, dst_len = 0; u16 sample[2]; u32 sample_num[3]; /* There could be 1-3 1024 bytes URB frames */ i_max = src_len / 1024; for (i = 0; i < i_max; i++) { sample_num[i] = src[3] << 24 | src[2] << 16 | src[1] << 8 | src[0] << 0; if (i == 0 && s->next_sample != sample_num[0]) { dev_dbg_ratelimited(&s->udev->dev, "%d samples lost, %d %08x:%08x\n", sample_num[0] - s->next_sample, src_len, s->next_sample, sample_num[0]); } /* * Dump all unknown 'garbage' data - maybe we will discover * someday if there is something rational... */ dev_dbg_ratelimited(&s->udev->dev, "%*ph\n", 12, &src[4]); src += 16; for (j = 0; j < 1008; j += 2) { sample[0] = src[j + 0]; sample[1] = src[j + 1]; *dst++ = msi3101_convert_sample_504(s, sample[0]); *dst++ = msi3101_convert_sample_504(s, sample[1]); } /* 504 x I+Q 32bit float samples */ dst_len += 504 * 2 * 4; src += 1008; } /* calculate samping rate and output it in 10 seconds intervals */ if ((s->jiffies + msecs_to_jiffies(10000)) <= jiffies) { unsigned long jiffies_now = jiffies; unsigned long msecs = jiffies_to_msecs(jiffies_now) - jiffies_to_msecs(s->jiffies); unsigned int samples = sample_num[i_max - 1] - s->sample; s->jiffies = jiffies_now; s->sample = sample_num[i_max - 1]; dev_dbg(&s->udev->dev, "slen=%d samples=%u msecs=%lu sampling rate=%lu\n", src_len, samples, msecs, samples * 1000UL / msecs); } /* next sample (sample = sample + i * 504) */ s->next_sample = sample_num[i_max - 1] + 504; return dst_len; } /* * Converts signed ~10+2-bit integer into 32-bit IEEE floating point * representation. */ static u32 msi3101_convert_sample_384(struct msi3101_state *s, u16 x, int shift) { u32 msb, exponent, fraction, sign; s->sample_ctrl_bit[shift]++; /* Zero is special */ if (!x) return 0; if (shift == 3) shift = 2; /* Convert 10-bit two's complement to 12-bit */ if (x & (1 << 9)) { x |= ~0U << 10; /* set all the rest bits to one */ x <<= shift; x = -x; x &= 0x7ff; /* result is 11 bit ... + sign */ sign = 1 << 31; } else { x <<= shift; sign = 0 << 31; } /* Get location of the most significant bit */ msb = __fls(x); fraction = ror32(x, (msb - I2F_FRAC_BITS) & 0x1f) & I2F_MASK; exponent = (127 + msb) << I2F_FRAC_BITS; return (fraction + exponent) | sign; } static int msi3101_convert_stream_384(struct msi3101_state *s, u32 *dst, u8 *src, unsigned int src_len) { int i, j, k, l, i_max, dst_len = 0; u16 sample[4]; u32 bits; u32 sample_num[3]; /* There could be 1-3 1024 bytes URB frames */ i_max = src_len / 1024; for (i = 0; i < i_max; i++) { sample_num[i] = src[3] << 24 | src[2] << 16 | src[1] << 8 | src[0] << 0; if (i == 0 && s->next_sample != sample_num[0]) { dev_dbg_ratelimited(&s->udev->dev, "%d samples lost, %d %08x:%08x\n", sample_num[0] - s->next_sample, src_len, s->next_sample, sample_num[0]); } /* * Dump all unknown 'garbage' data - maybe we will discover * someday if there is something rational... */ dev_dbg_ratelimited(&s->udev->dev, "%*ph %*ph\n", 12, &src[4], 24, &src[1000]); src += 16; for (j = 0; j < 6; j++) { bits = src[160 + 3] << 24 | src[160 + 2] << 16 | src[160 + 1] << 8 | src[160 + 0] << 0; for (k = 0; k < 16; k++) { for (l = 0; l < 10; l += 5) { sample[0] = (src[l + 0] & 0xff) >> 0 | (src[l + 1] & 0x03) << 8; sample[1] = (src[l + 1] & 0xfc) >> 2 | (src[l + 2] & 0x0f) << 6; sample[2] = (src[l + 2] & 0xf0) >> 4 | (src[l + 3] & 0x3f) << 4; sample[3] = (src[l + 3] & 0xc0) >> 6 | (src[l + 4] & 0xff) << 2; *dst++ = msi3101_convert_sample_384(s, sample[0], (bits >> (2 * k)) & 0x3); *dst++ = msi3101_convert_sample_384(s, sample[1], (bits >> (2 * k)) & 0x3); *dst++ = msi3101_convert_sample_384(s, sample[2], (bits >> (2 * k)) & 0x3); *dst++ = msi3101_convert_sample_384(s, sample[3], (bits >> (2 * k)) & 0x3); } src += 10; } dev_dbg_ratelimited(&s->udev->dev, "sample control bits %08x\n", bits); src += 4; } /* 384 x I+Q 32bit float samples */ dst_len += 384 * 2 * 4; src += 24; } /* calculate samping rate and output it in 10 seconds intervals */ if ((s->jiffies + msecs_to_jiffies(10000)) <= jiffies) { unsigned long jiffies_now = jiffies; unsigned long msecs = jiffies_to_msecs(jiffies_now) - jiffies_to_msecs(s->jiffies); unsigned int samples = sample_num[i_max - 1] - s->sample; s->jiffies = jiffies_now; s->sample = sample_num[i_max - 1]; dev_dbg(&s->udev->dev, "slen=%d samples=%u msecs=%lu sampling rate=%lu bits=%d.%d.%d.%d\n", src_len, samples, msecs, samples * 1000UL / msecs, s->sample_ctrl_bit[0], s->sample_ctrl_bit[1], s->sample_ctrl_bit[2], s->sample_ctrl_bit[3]); } /* next sample (sample = sample + i * 384) */ s->next_sample = sample_num[i_max - 1] + 384; return dst_len; } /* * Converts signed 12-bit integer into 32-bit IEEE floating point * representation. */ static u32 msi3101_convert_sample_336(struct msi3101_state *s, u16 x) { u32 msb, exponent, fraction, sign; /* Zero is special */ if (!x) return 0; /* Negative / positive value */ if (x & (1 << 11)) { x = -x; x &= 0x7ff; /* result is 11 bit ... + sign */ sign = 1 << 31; } else { sign = 0 << 31; } /* Get location of the most significant bit */ msb = __fls(x); fraction = ror32(x, (msb - I2F_FRAC_BITS) & 0x1f) & I2F_MASK; exponent = (127 + msb) << I2F_FRAC_BITS; return (fraction + exponent) | sign; } static int msi3101_convert_stream_336(struct msi3101_state *s, u32 *dst, u8 *src, unsigned int src_len) { int i, j, i_max, dst_len = 0; u16 sample[2]; u32 sample_num[3]; /* There could be 1-3 1024 bytes URB frames */ i_max = src_len / 1024; for (i = 0; i < i_max; i++) { sample_num[i] = src[3] << 24 | src[2] << 16 | src[1] << 8 | src[0] << 0; if (i == 0 && s->next_sample != sample_num[0]) { dev_dbg_ratelimited(&s->udev->dev, "%d samples lost, %d %08x:%08x\n", sample_num[0] - s->next_sample, src_len, s->next_sample, sample_num[0]); } /* * Dump all unknown 'garbage' data - maybe we will discover * someday if there is something rational... */ dev_dbg_ratelimited(&s->udev->dev, "%*ph\n", 12, &src[4]); src += 16; for (j = 0; j < 1008; j += 3) { sample[0] = (src[j + 0] & 0xff) >> 0 | (src[j + 1] & 0x0f) << 8; sample[1] = (src[j + 1] & 0xf0) >> 4 | (src[j + 2] & 0xff) << 4; *dst++ = msi3101_convert_sample_336(s, sample[0]); *dst++ = msi3101_convert_sample_336(s, sample[1]); } /* 336 x I+Q 32bit float samples */ dst_len += 336 * 2 * 4; src += 1008; } /* calculate samping rate and output it in 10 seconds intervals */ if ((s->jiffies + msecs_to_jiffies(10000)) <= jiffies) { unsigned long jiffies_now = jiffies; unsigned long msecs = jiffies_to_msecs(jiffies_now) - jiffies_to_msecs(s->jiffies); unsigned int samples = sample_num[i_max - 1] - s->sample; s->jiffies = jiffies_now; s->sample = sample_num[i_max - 1]; dev_dbg(&s->udev->dev, "slen=%d samples=%u msecs=%lu sampling rate=%lu\n", src_len, samples, msecs, samples * 1000UL / msecs); } /* next sample (sample = sample + i * 336) */ s->next_sample = sample_num[i_max - 1] + 336; return dst_len; } /* * Converts signed 14-bit integer into 32-bit IEEE floating point * representation. */ static u32 msi3101_convert_sample_252(struct msi3101_state *s, u16 x) { u32 msb, exponent, fraction, sign; /* Zero is special */ if (!x) return 0; /* Negative / positive value */ if (x & (1 << 13)) { x = -x; x &= 0x1fff; /* result is 13 bit ... + sign */ sign = 1 << 31; } else { sign = 0 << 31; } /* Get location of the most significant bit */ msb = __fls(x); fraction = ror32(x, (msb - I2F_FRAC_BITS) & 0x1f) & I2F_MASK; exponent = (127 + msb) << I2F_FRAC_BITS; return (fraction + exponent) | sign; } static int msi3101_convert_stream_252(struct msi3101_state *s, u32 *dst, u8 *src, unsigned int src_len) { int i, j, i_max, dst_len = 0; u16 sample[2]; u32 sample_num[3]; /* There could be 1-3 1024 bytes URB frames */ i_max = src_len / 1024; for (i = 0; i < i_max; i++) { sample_num[i] = src[3] << 24 | src[2] << 16 | src[1] << 8 | src[0] << 0; if (i == 0 && s->next_sample != sample_num[0]) { dev_dbg_ratelimited(&s->udev->dev, "%d samples lost, %d %08x:%08x\n", sample_num[0] - s->next_sample, src_len, s->next_sample, sample_num[0]); } /* * Dump all unknown 'garbage' data - maybe we will discover * someday if there is something rational... */ dev_dbg_ratelimited(&s->udev->dev, "%*ph\n", 12, &src[4]); src += 16; for (j = 0; j < 1008; j += 4) { sample[0] = src[j + 0] >> 0 | src[j + 1] << 8; sample[1] = src[j + 2] >> 0 | src[j + 3] << 8; *dst++ = msi3101_convert_sample_252(s, sample[0]); *dst++ = msi3101_convert_sample_252(s, sample[1]); } /* 252 x I+Q 32bit float samples */ dst_len += 252 * 2 * 4; src += 1008; } /* calculate samping rate and output it in 10 seconds intervals */ if ((s->jiffies + msecs_to_jiffies(10000)) <= jiffies) { unsigned long jiffies_now = jiffies; unsigned long msecs = jiffies_to_msecs(jiffies_now) - jiffies_to_msecs(s->jiffies); unsigned int samples = sample_num[i_max - 1] - s->sample; s->jiffies = jiffies_now; s->sample = sample_num[i_max - 1]; dev_dbg(&s->udev->dev, "slen=%d samples=%u msecs=%lu sampling rate=%lu\n", src_len, samples, msecs, samples * 1000UL / msecs); } /* next sample (sample = sample + i * 252) */ s->next_sample = sample_num[i_max - 1] + 252; return dst_len; } /* * This gets called for the Isochronous pipe (stream). This is done in interrupt * time, so it has to be fast, not crash, and not stall. Neat. */ static void msi3101_isoc_handler(struct urb *urb) { struct msi3101_state *s = (struct msi3101_state *)urb->context; int i, flen, fstatus; unsigned char *iso_buf = NULL; struct msi3101_frame_buf *fbuf; if (urb->status == -ENOENT || urb->status == -ECONNRESET || urb->status == -ESHUTDOWN) { dev_dbg(&s->udev->dev, "URB (%p) unlinked %ssynchronuously\n", urb, urb->status == -ENOENT ? "" : "a"); return; } if (urb->status != 0) { dev_dbg(&s->udev->dev, "msi3101_isoc_handler() called with status %d\n", urb->status); /* Give up after a number of contiguous errors */ if (++s->isoc_errors > MAX_ISOC_ERRORS) dev_dbg(&s->udev->dev, "Too many ISOC errors, bailing out\n"); goto handler_end; } else { /* Reset ISOC error counter. We did get here, after all. */ s->isoc_errors = 0; } /* Compact data */ for (i = 0; i < urb->number_of_packets; i++) { void *ptr; /* Check frame error */ fstatus = urb->iso_frame_desc[i].status; if (fstatus) { dev_dbg_ratelimited(&s->udev->dev, "frame=%d/%d has error %d skipping\n", i, urb->number_of_packets, fstatus); goto skip; } /* Check if that frame contains data */ flen = urb->iso_frame_desc[i].actual_length; if (flen == 0) goto skip; iso_buf = urb->transfer_buffer + urb->iso_frame_desc[i].offset; /* Get free framebuffer */ fbuf = msi3101_get_next_fill_buf(s); if (fbuf == NULL) { s->vb_full++; dev_dbg_ratelimited(&s->udev->dev, "videobuf is full, %d packets dropped\n", s->vb_full); goto skip; } /* fill framebuffer */ ptr = vb2_plane_vaddr(&fbuf->vb, 0); flen = s->convert_stream(s, ptr, iso_buf, flen); vb2_set_plane_payload(&fbuf->vb, 0, flen); vb2_buffer_done(&fbuf->vb, VB2_BUF_STATE_DONE); skip: ; } handler_end: i = usb_submit_urb(urb, GFP_ATOMIC); if (i != 0) dev_dbg(&s->udev->dev, "Error (%d) re-submitting urb in msi3101_isoc_handler\n", i); } static void msi3101_iso_stop(struct msi3101_state *s) { int i; dev_dbg(&s->udev->dev, "%s:\n", __func__); /* Unlinking ISOC buffers one by one */ for (i = 0; i < MAX_ISO_BUFS; i++) { if (s->urbs[i]) { dev_dbg(&s->udev->dev, "Unlinking URB %p\n", s->urbs[i]); usb_kill_urb(s->urbs[i]); } } } static void msi3101_iso_free(struct msi3101_state *s) { int i; dev_dbg(&s->udev->dev, "%s:\n", __func__); /* Freeing ISOC buffers one by one */ for (i = 0; i < MAX_ISO_BUFS; i++) { if (s->urbs[i]) { dev_dbg(&s->udev->dev, "Freeing URB\n"); if (s->urbs[i]->transfer_buffer) { usb_free_coherent(s->udev, s->urbs[i]->transfer_buffer_length, s->urbs[i]->transfer_buffer, s->urbs[i]->transfer_dma); } usb_free_urb(s->urbs[i]); s->urbs[i] = NULL; } } } /* Both v4l2_lock and vb_queue_lock should be locked when calling this */ static void msi3101_isoc_cleanup(struct msi3101_state *s) { dev_dbg(&s->udev->dev, "%s:\n", __func__); msi3101_iso_stop(s); msi3101_iso_free(s); } /* Both v4l2_lock and vb_queue_lock should be locked when calling this */ static int msi3101_isoc_init(struct msi3101_state *s) { struct usb_device *udev; struct urb *urb; int i, j, ret; dev_dbg(&s->udev->dev, "%s:\n", __func__); s->isoc_errors = 0; udev = s->udev; ret = usb_set_interface(s->udev, 0, 1); if (ret < 0) return ret; /* Allocate and init Isochronuous urbs */ for (i = 0; i < MAX_ISO_BUFS; i++) { urb = usb_alloc_urb(ISO_FRAMES_PER_DESC, GFP_KERNEL); if (urb == NULL) { dev_err(&s->udev->dev, "Failed to allocate urb %d\n", i); msi3101_isoc_cleanup(s); return -ENOMEM; } s->urbs[i] = urb; dev_dbg(&s->udev->dev, "Allocated URB at 0x%p\n", urb); urb->interval = 1; urb->dev = udev; urb->pipe = usb_rcvisocpipe(udev, 0x81); urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP; urb->transfer_buffer = usb_alloc_coherent(udev, ISO_BUFFER_SIZE, GFP_KERNEL, &urb->transfer_dma); if (urb->transfer_buffer == NULL) { dev_err(&s->udev->dev, "Failed to allocate urb buffer %d\n", i); msi3101_isoc_cleanup(s); return -ENOMEM; } urb->transfer_buffer_length = ISO_BUFFER_SIZE; urb->complete = msi3101_isoc_handler; urb->context = s; urb->start_frame = 0; urb->number_of_packets = ISO_FRAMES_PER_DESC; for (j = 0; j < ISO_FRAMES_PER_DESC; j++) { urb->iso_frame_desc[j].offset = j * ISO_MAX_FRAME_SIZE; urb->iso_frame_desc[j].length = ISO_MAX_FRAME_SIZE; } } /* link */ for (i = 0; i < MAX_ISO_BUFS; i++) { ret = usb_submit_urb(s->urbs[i], GFP_KERNEL); if (ret) { dev_err(&s->udev->dev, "isoc_init() submit_urb %d failed with error %d\n", i, ret); msi3101_isoc_cleanup(s); return ret; } dev_dbg(&s->udev->dev, "URB 0x%p submitted.\n", s->urbs[i]); } /* All is done... */ return 0; } /* Must be called with vb_queue_lock hold */ static void msi3101_cleanup_queued_bufs(struct msi3101_state *s) { unsigned long flags = 0; dev_dbg(&s->udev->dev, "%s:\n", __func__); spin_lock_irqsave(&s->queued_bufs_lock, flags); while (!list_empty(&s->queued_bufs)) { struct msi3101_frame_buf *buf; buf = list_entry(s->queued_bufs.next, struct msi3101_frame_buf, list); list_del(&buf->list); vb2_buffer_done(&buf->vb, VB2_BUF_STATE_ERROR); } spin_unlock_irqrestore(&s->queued_bufs_lock, flags); } /* The user yanked out the cable... */ static void msi3101_disconnect(struct usb_interface *intf) { struct v4l2_device *v = usb_get_intfdata(intf); struct msi3101_state *s = container_of(v, struct msi3101_state, v4l2_dev); dev_dbg(&s->udev->dev, "%s:\n", __func__); mutex_lock(&s->vb_queue_lock); mutex_lock(&s->v4l2_lock); /* No need to keep the urbs around after disconnection */ s->udev = NULL; v4l2_device_disconnect(&s->v4l2_dev); video_unregister_device(&s->vdev); mutex_unlock(&s->v4l2_lock); mutex_unlock(&s->vb_queue_lock); v4l2_device_put(&s->v4l2_dev); } static int msi3101_querycap(struct file *file, void *fh, struct v4l2_capability *cap) { struct msi3101_state *s = video_drvdata(file); dev_dbg(&s->udev->dev, "%s:\n", __func__); strlcpy(cap->driver, KBUILD_MODNAME, sizeof(cap->driver)); strlcpy(cap->card, s->vdev.name, sizeof(cap->card)); usb_make_path(s->udev, cap->bus_info, sizeof(cap->bus_info)); cap->device_caps = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_STREAMING | V4L2_CAP_READWRITE; cap->device_caps = V4L2_CAP_TUNER; cap->capabilities = cap->device_caps | V4L2_CAP_DEVICE_CAPS; return 0; } /* Videobuf2 operations */ static int msi3101_queue_setup(struct vb2_queue *vq, const struct v4l2_format *fmt, unsigned int *nbuffers, unsigned int *nplanes, unsigned int sizes[], void *alloc_ctxs[]) { struct msi3101_state *s = vb2_get_drv_priv(vq); dev_dbg(&s->udev->dev, "%s: *nbuffers=%d\n", __func__, *nbuffers); /* Absolute min and max number of buffers available for mmap() */ *nbuffers = 32; *nplanes = 1; sizes[0] = PAGE_ALIGN(3 * 3072); /* 3 * 768 * 4 */ dev_dbg(&s->udev->dev, "%s: nbuffers=%d sizes[0]=%d\n", __func__, *nbuffers, sizes[0]); return 0; } static int msi3101_buf_prepare(struct vb2_buffer *vb) { struct msi3101_state *s = vb2_get_drv_priv(vb->vb2_queue); /* Don't allow queing new buffers after device disconnection */ if (!s->udev) return -ENODEV; return 0; } static void msi3101_buf_queue(struct vb2_buffer *vb) { struct msi3101_state *s = vb2_get_drv_priv(vb->vb2_queue); struct msi3101_frame_buf *buf = container_of(vb, struct msi3101_frame_buf, vb); unsigned long flags = 0; /* Check the device has not disconnected between prep and queuing */ if (!s->udev) { vb2_buffer_done(&buf->vb, VB2_BUF_STATE_ERROR); return; } spin_lock_irqsave(&s->queued_bufs_lock, flags); list_add_tail(&buf->list, &s->queued_bufs); spin_unlock_irqrestore(&s->queued_bufs_lock, flags); } #define CMD_WREG 0x41 #define CMD_START_STREAMING 0x43 #define CMD_STOP_STREAMING 0x45 #define CMD_READ_UNKNOW 0x48 #define msi3101_dbg_usb_control_msg(udev, r, t, v, _i, b, l) { \ char *direction; \ if (t == (USB_TYPE_VENDOR | USB_DIR_OUT)) \ direction = ">>>"; \ else \ direction = "<<<"; \ dev_dbg(&udev->dev, "%s: %02x %02x %02x %02x %02x %02x %02x %02x " \ "%s %*ph\n", __func__, t, r, v & 0xff, v >> 8, \ _i & 0xff, _i >> 8, l & 0xff, l >> 8, direction, l, b); \ } static int msi3101_ctrl_msg(struct msi3101_state *s, u8 cmd, u32 data) { int ret; u8 request = cmd; u8 requesttype = USB_DIR_OUT | USB_TYPE_VENDOR; u16 value = (data >> 0) & 0xffff; u16 index = (data >> 16) & 0xffff; msi3101_dbg_usb_control_msg(s->udev, request, requesttype, value, index, NULL, 0); ret = usb_control_msg(s->udev, usb_sndctrlpipe(s->udev, 0), request, requesttype, value, index, NULL, 0, 2000); if (ret) dev_err(&s->udev->dev, "%s: failed %d, cmd %02x, data %04x\n", __func__, ret, cmd, data); return ret; }; static int msi3101_tuner_write(struct msi3101_state *s, u32 data) { return msi3101_ctrl_msg(s, CMD_WREG, data << 8 | 0x09); }; #define F_REF 24000000 #define DIV_R_IN 2 static int msi3101_set_usb_adc(struct msi3101_state *s) { int ret, div_n, div_m, div_r_out, f_sr, f_vco, fract; u32 reg3, reg4, reg7; f_sr = s->ctrl_sampling_rate->val64; /* select stream format */ if (f_sr < 6000000) { s->convert_stream = msi3101_convert_stream_252; reg7 = 0x00009407; } else if (f_sr < 8000000) { s->convert_stream = msi3101_convert_stream_336; reg7 = 0x00008507; } else if (f_sr < 9000000) { s->convert_stream = msi3101_convert_stream_384; reg7 = 0x0000a507; } else { s->convert_stream = msi3101_convert_stream_504; reg7 = 0x000c9407; } /* * Synthesizer config is just a educated guess... * * [7:0] 0x03, register address * [8] 1, always * [9] ? * [12:10] output divider * [13] 0 ? * [14] 0 ? * [15] fractional MSB, bit 20 * [16:19] N * [23:20] ? * [24:31] 0x01 * * output divider * val div * 0 - (invalid) * 1 4 * 2 6 * 3 8 * 4 10 * 5 12 * 6 14 * 7 16 * * VCO 202000000 - 720000000++ */ reg3 = 0x01000303; reg4 = 0x00000004; /* XXX: Filters? AGC? */ if (f_sr < 6000000) reg3 |= 0x1 << 20; else if (f_sr < 7000000) reg3 |= 0x5 << 20; else if (f_sr < 8500000) reg3 |= 0x9 << 20; else reg3 |= 0xd << 20; for (div_r_out = 4; div_r_out < 16; div_r_out += 2) { f_vco = f_sr * div_r_out * 12; dev_dbg(&s->udev->dev, "%s: div_r_out=%d f_vco=%d\n", __func__, div_r_out, f_vco); if (f_vco >= 202000000) break; } div_n = f_vco / (F_REF * DIV_R_IN); div_m = f_vco % (F_REF * DIV_R_IN); fract = 0x200000ul * div_m / (F_REF * DIV_R_IN); reg3 |= div_n << 16; reg3 |= (div_r_out / 2 - 1) << 10; reg3 |= ((fract >> 20) & 0x000001) << 15; /* [20] */ reg4 |= ((fract >> 0) & 0x0fffff) << 8; /* [19:0] */ dev_dbg(&s->udev->dev, "%s: f_sr=%d f_vco=%d div_n=%d div_m=%d div_r_out=%d reg3=%08x reg4=%08x\n", __func__, f_sr, f_vco, div_n, div_m, div_r_out, reg3, reg4); ret = msi3101_ctrl_msg(s, CMD_WREG, 0x00608008); if (ret) goto err; ret = msi3101_ctrl_msg(s, CMD_WREG, 0x00000c05); if (ret) goto err; ret = msi3101_ctrl_msg(s, CMD_WREG, 0x00020000); if (ret) goto err; ret = msi3101_ctrl_msg(s, CMD_WREG, 0x00480102); if (ret) goto err; ret = msi3101_ctrl_msg(s, CMD_WREG, 0x00f38008); if (ret) goto err; ret = msi3101_ctrl_msg(s, CMD_WREG, reg7); if (ret) goto err; ret = msi3101_ctrl_msg(s, CMD_WREG, reg4); if (ret) goto err; ret = msi3101_ctrl_msg(s, CMD_WREG, reg3); if (ret) goto err; err: return ret; }; static int msi3101_set_tuner(struct msi3101_state *s) { int ret, i, len; unsigned int n, m, thresh, frac, vco_step, tmp, f_if1; u32 reg; u64 f_vco, tmp64; u8 mode, filter_mode, lo_div; const struct msi3101_gain *gain_lut; static const struct { u32 rf; u8 mode; u8 lo_div; } band_lut[] = { { 50000000, 0xe1, 16}, /* AM_MODE2, antenna 2 */ {108000000, 0x42, 32}, /* VHF_MODE */ {330000000, 0x44, 16}, /* B3_MODE */ {960000000, 0x48, 4}, /* B45_MODE */ { ~0U, 0x50, 2}, /* BL_MODE */ }; static const struct { u32 freq; u8 filter_mode; } if_freq_lut[] = { { 0, 0x03}, /* Zero IF */ { 450000, 0x02}, /* 450 kHz IF */ {1620000, 0x01}, /* 1.62 MHz IF */ {2048000, 0x00}, /* 2.048 MHz IF */ }; static const struct { u32 freq; u8 val; } bandwidth_lut[] = { { 200000, 0x00}, /* 200 kHz */ { 300000, 0x01}, /* 300 kHz */ { 600000, 0x02}, /* 600 kHz */ {1536000, 0x03}, /* 1.536 MHz */ {5000000, 0x04}, /* 5 MHz */ {6000000, 0x05}, /* 6 MHz */ {7000000, 0x06}, /* 7 MHz */ {8000000, 0x07}, /* 8 MHz */ }; unsigned int f_rf = s->ctrl_tuner_rf->val64; /* * bandwidth (Hz) * 200000, 300000, 600000, 1536000, 5000000, 6000000, 7000000, 8000000 */ unsigned int bandwidth = s->ctrl_tuner_bw->val; /* * intermediate frequency (Hz) * 0, 450000, 1620000, 2048000 */ unsigned int f_if = s->ctrl_tuner_if->val; /* * gain reduction (dB) * 0 - 102 below 420 MHz * 0 - 85 above 420 MHz */ int gain = s->ctrl_tuner_gain->val; dev_dbg(&s->udev->dev, "%s: f_rf=%d bandwidth=%d f_if=%d gain=%d\n", __func__, f_rf, bandwidth, f_if, gain); ret = -EINVAL; for (i = 0; i < ARRAY_SIZE(band_lut); i++) { if (f_rf <= band_lut[i].rf) { mode = band_lut[i].mode; lo_div = band_lut[i].lo_div; break; } } if (i == ARRAY_SIZE(band_lut)) goto err; /* AM_MODE is upconverted */ if ((mode >> 0) & 0x1) f_if1 = 5 * F_REF; else f_if1 = 0; for (i = 0; i < ARRAY_SIZE(if_freq_lut); i++) { if (f_if == if_freq_lut[i].freq) { filter_mode = if_freq_lut[i].filter_mode; break; } } if (i == ARRAY_SIZE(if_freq_lut)) goto err; for (i = 0; i < ARRAY_SIZE(bandwidth_lut); i++) { if (bandwidth == bandwidth_lut[i].freq) { bandwidth = bandwidth_lut[i].val; break; } } if (i == ARRAY_SIZE(bandwidth_lut)) goto err; #define F_OUT_STEP 1 #define R_REF 4 f_vco = (f_rf + f_if + f_if1) * lo_div; tmp64 = f_vco; m = do_div(tmp64, F_REF * R_REF); n = (unsigned int) tmp64; vco_step = F_OUT_STEP * lo_div; thresh = (F_REF * R_REF) / vco_step; frac = 1ul * thresh * m / (F_REF * R_REF); /* Find out greatest common divisor and divide to smaller. */ tmp = gcd(thresh, frac); thresh /= tmp; frac /= tmp; /* Force divide to reg max. Resolution will be reduced. */ tmp = DIV_ROUND_UP(thresh, 4095); thresh = DIV_ROUND_CLOSEST(thresh, tmp); frac = DIV_ROUND_CLOSEST(frac, tmp); /* calc real RF set */ tmp = 1ul * F_REF * R_REF * n; tmp += 1ul * F_REF * R_REF * frac / thresh; tmp /= lo_div; dev_dbg(&s->udev->dev, "%s: rf=%u:%u n=%d thresh=%d frac=%d\n", __func__, f_rf, tmp, n, thresh, frac); ret = msi3101_tuner_write(s, 0x00000e); if (ret) goto err; ret = msi3101_tuner_write(s, 0x000003); if (ret) goto err; reg = 0 << 0; reg |= mode << 4; reg |= filter_mode << 12; reg |= bandwidth << 14; reg |= 0x02 << 17; reg |= 0x00 << 20; ret = msi3101_tuner_write(s, reg); if (ret) goto err; reg = 5 << 0; reg |= thresh << 4; reg |= 1 << 19; reg |= 1 << 21; ret = msi3101_tuner_write(s, reg); if (ret) goto err; reg = 2 << 0; reg |= frac << 4; reg |= n << 16; ret = msi3101_tuner_write(s, reg); if (ret) goto err; if (f_rf < 120000000) { gain_lut = msi3101_gain_lut_120; len = ARRAY_SIZE(msi3101_gain_lut_120); } else if (f_rf < 245000000) { gain_lut = msi3101_gain_lut_245; len = ARRAY_SIZE(msi3101_gain_lut_120); } else { gain_lut = msi3101_gain_lut_1000; len = ARRAY_SIZE(msi3101_gain_lut_1000); } for (i = 0; i < len; i++) { if (gain_lut[i].tot >= gain) break; } if (i == len) goto err; dev_dbg(&s->udev->dev, "%s: gain tot=%d baseband=%d lna=%d mixer=%d\n", __func__, gain_lut[i].tot, gain_lut[i].baseband, gain_lut[i].lna, gain_lut[i].mixer); reg = 1 << 0; reg |= gain_lut[i].baseband << 4; reg |= 0 << 10; reg |= gain_lut[i].mixer << 12; reg |= gain_lut[i].lna << 13; reg |= 4 << 14; reg |= 0 << 17; ret = msi3101_tuner_write(s, reg); if (ret) goto err; reg = 6 << 0; reg |= 63 << 4; reg |= 4095 << 10; ret = msi3101_tuner_write(s, reg); if (ret) goto err; return 0; err: dev_dbg(&s->udev->dev, "%s: failed %d\n", __func__, ret); return ret; }; static int msi3101_start_streaming(struct vb2_queue *vq, unsigned int count) { struct msi3101_state *s = vb2_get_drv_priv(vq); int ret; dev_dbg(&s->udev->dev, "%s:\n", __func__); if (!s->udev) return -ENODEV; if (mutex_lock_interruptible(&s->v4l2_lock)) return -ERESTARTSYS; ret = msi3101_set_usb_adc(s); ret = msi3101_isoc_init(s); if (ret) msi3101_cleanup_queued_bufs(s); ret = msi3101_ctrl_msg(s, CMD_START_STREAMING, 0); mutex_unlock(&s->v4l2_lock); return ret; } static int msi3101_stop_streaming(struct vb2_queue *vq) { struct msi3101_state *s = vb2_get_drv_priv(vq); dev_dbg(&s->udev->dev, "%s:\n", __func__); if (mutex_lock_interruptible(&s->v4l2_lock)) return -ERESTARTSYS; if (s->udev) msi3101_isoc_cleanup(s); msi3101_cleanup_queued_bufs(s); /* according to tests, at least 700us delay is required */ msleep(20); msi3101_ctrl_msg(s, CMD_STOP_STREAMING, 0); mutex_unlock(&s->v4l2_lock); return 0; } static struct vb2_ops msi3101_vb2_ops = { .queue_setup = msi3101_queue_setup, .buf_prepare = msi3101_buf_prepare, .buf_queue = msi3101_buf_queue, .start_streaming = msi3101_start_streaming, .stop_streaming = msi3101_stop_streaming, .wait_prepare = vb2_ops_wait_prepare, .wait_finish = vb2_ops_wait_finish, }; static int msi3101_enum_input(struct file *file, void *fh, struct v4l2_input *i) { if (i->index != 0) return -EINVAL; strlcpy(i->name, "SDR data", sizeof(i->name)); i->type = V4L2_INPUT_TYPE_CAMERA; return 0; } static int msi3101_g_input(struct file *file, void *fh, unsigned int *i) { *i = 0; return 0; } static int msi3101_s_input(struct file *file, void *fh, unsigned int i) { return i ? -EINVAL : 0; } static int vidioc_s_tuner(struct file *file, void *priv, const struct v4l2_tuner *v) { struct msi3101_state *s = video_drvdata(file); dev_dbg(&s->udev->dev, "%s:\n", __func__); return 0; } static int vidioc_g_tuner(struct file *file, void *priv, struct v4l2_tuner *v) { struct msi3101_state *s = video_drvdata(file); dev_dbg(&s->udev->dev, "%s:\n", __func__); strcpy(v->name, "SDR RX"); v->capability = V4L2_TUNER_CAP_LOW; return 0; } static int vidioc_s_frequency(struct file *file, void *priv, const struct v4l2_frequency *f) { struct msi3101_state *s = video_drvdata(file); dev_dbg(&s->udev->dev, "%s: frequency=%lu Hz (%u)\n", __func__, f->frequency * 625UL / 10UL, f->frequency); return v4l2_ctrl_s_ctrl_int64(s->ctrl_tuner_rf, f->frequency * 625UL / 10UL); } const struct v4l2_ioctl_ops msi3101_ioctl_ops = { .vidioc_querycap = msi3101_querycap, .vidioc_enum_input = msi3101_enum_input, .vidioc_g_input = msi3101_g_input, .vidioc_s_input = msi3101_s_input, .vidioc_reqbufs = vb2_ioctl_reqbufs, .vidioc_create_bufs = vb2_ioctl_create_bufs, .vidioc_prepare_buf = vb2_ioctl_prepare_buf, .vidioc_querybuf = vb2_ioctl_querybuf, .vidioc_qbuf = vb2_ioctl_qbuf, .vidioc_dqbuf = vb2_ioctl_dqbuf, .vidioc_streamon = vb2_ioctl_streamon, .vidioc_streamoff = vb2_ioctl_streamoff, .vidioc_g_tuner = vidioc_g_tuner, .vidioc_s_tuner = vidioc_s_tuner, .vidioc_s_frequency = vidioc_s_frequency, .vidioc_subscribe_event = v4l2_ctrl_subscribe_event, .vidioc_unsubscribe_event = v4l2_event_unsubscribe, .vidioc_log_status = v4l2_ctrl_log_status, }; static const struct v4l2_file_operations msi3101_fops = { .owner = THIS_MODULE, .open = v4l2_fh_open, .release = vb2_fop_release, .read = vb2_fop_read, .poll = vb2_fop_poll, .mmap = vb2_fop_mmap, .unlocked_ioctl = video_ioctl2, }; static struct video_device msi3101_template = { .name = "Mirics MSi3101 SDR Dongle", .release = video_device_release_empty, .fops = &msi3101_fops, .ioctl_ops = &msi3101_ioctl_ops, }; static int msi3101_s_ctrl(struct v4l2_ctrl *ctrl) { struct msi3101_state *s = container_of(ctrl->handler, struct msi3101_state, ctrl_handler); int ret; dev_dbg(&s->udev->dev, "%s: id=%d name=%s val=%d min=%d max=%d step=%d\n", __func__, ctrl->id, ctrl->name, ctrl->val, ctrl->minimum, ctrl->maximum, ctrl->step); switch (ctrl->id) { case MSI3101_CID_SAMPLING_MODE: case MSI3101_CID_SAMPLING_RATE: case MSI3101_CID_SAMPLING_RESOLUTION: ret = 0; break; case MSI3101_CID_TUNER_RF: case MSI3101_CID_TUNER_BW: case MSI3101_CID_TUNER_IF: case MSI3101_CID_TUNER_GAIN: ret = msi3101_set_tuner(s); break; default: ret = -EINVAL; } return ret; } static const struct v4l2_ctrl_ops msi3101_ctrl_ops = { .s_ctrl = msi3101_s_ctrl, }; static void msi3101_video_release(struct v4l2_device *v) { struct msi3101_state *s = container_of(v, struct msi3101_state, v4l2_dev); v4l2_ctrl_handler_free(&s->ctrl_handler); v4l2_device_unregister(&s->v4l2_dev); kfree(s); } static int msi3101_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(intf); struct msi3101_state *s = NULL; int ret; static const char * const ctrl_sampling_mode_qmenu_strings[] = { "Quadrature Sampling", NULL, }; static const struct v4l2_ctrl_config ctrl_sampling_mode = { .ops = &msi3101_ctrl_ops, .id = MSI3101_CID_SAMPLING_MODE, .type = V4L2_CTRL_TYPE_MENU, .flags = V4L2_CTRL_FLAG_INACTIVE, .name = "Sampling Mode", .qmenu = ctrl_sampling_mode_qmenu_strings, }; static const struct v4l2_ctrl_config ctrl_sampling_rate = { .ops = &msi3101_ctrl_ops, .id = MSI3101_CID_SAMPLING_RATE, .type = V4L2_CTRL_TYPE_INTEGER64, .name = "Sampling Rate", .min = 500000, .max = 12000000, .def = 2048000, .step = 1, }; static const struct v4l2_ctrl_config ctrl_sampling_resolution = { .ops = &msi3101_ctrl_ops, .id = MSI3101_CID_SAMPLING_RESOLUTION, .type = V4L2_CTRL_TYPE_INTEGER, .flags = V4L2_CTRL_FLAG_INACTIVE, .name = "Sampling Resolution", .min = 10, .max = 10, .def = 10, .step = 1, }; static const struct v4l2_ctrl_config ctrl_tuner_rf = { .ops = &msi3101_ctrl_ops, .id = MSI3101_CID_TUNER_RF, .type = V4L2_CTRL_TYPE_INTEGER64, .name = "Tuner RF", .min = 40000000, .max = 2000000000, .def = 100000000, .step = 1, }; static const struct v4l2_ctrl_config ctrl_tuner_bw = { .ops = &msi3101_ctrl_ops, .id = MSI3101_CID_TUNER_BW, .type = V4L2_CTRL_TYPE_INTEGER, .name = "Tuner BW", .min = 200000, .max = 8000000, .def = 600000, .step = 1, }; static const struct v4l2_ctrl_config ctrl_tuner_if = { .ops = &msi3101_ctrl_ops, .id = MSI3101_CID_TUNER_IF, .type = V4L2_CTRL_TYPE_INTEGER, .flags = V4L2_CTRL_FLAG_INACTIVE, .name = "Tuner IF", .min = 0, .max = 2048000, .def = 0, .step = 1, }; static const struct v4l2_ctrl_config ctrl_tuner_gain = { .ops = &msi3101_ctrl_ops, .id = MSI3101_CID_TUNER_GAIN, .type = V4L2_CTRL_TYPE_INTEGER, .name = "Tuner Gain", .min = 0, .max = 102, .def = 0, .step = 1, }; s = kzalloc(sizeof(struct msi3101_state), GFP_KERNEL); if (s == NULL) { pr_err("Could not allocate memory for msi3101_state\n"); return -ENOMEM; } mutex_init(&s->v4l2_lock); mutex_init(&s->vb_queue_lock); spin_lock_init(&s->queued_bufs_lock); INIT_LIST_HEAD(&s->queued_bufs); s->udev = udev; /* Init videobuf2 queue structure */ s->vb_queue.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; s->vb_queue.io_modes = VB2_MMAP | VB2_USERPTR | VB2_READ; s->vb_queue.drv_priv = s; s->vb_queue.buf_struct_size = sizeof(struct msi3101_frame_buf); s->vb_queue.ops = &msi3101_vb2_ops; s->vb_queue.mem_ops = &vb2_vmalloc_memops; s->vb_queue.timestamp_type = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC; ret = vb2_queue_init(&s->vb_queue); if (ret < 0) { dev_err(&s->udev->dev, "Could not initialize vb2 queue\n"); goto err_free_mem; } /* Init video_device structure */ s->vdev = msi3101_template; s->vdev.queue = &s->vb_queue; s->vdev.queue->lock = &s->vb_queue_lock; set_bit(V4L2_FL_USE_FH_PRIO, &s->vdev.flags); video_set_drvdata(&s->vdev, s); /* Register controls */ v4l2_ctrl_handler_init(&s->ctrl_handler, 7); v4l2_ctrl_new_custom(&s->ctrl_handler, &ctrl_sampling_mode, NULL); s->ctrl_sampling_rate = v4l2_ctrl_new_custom(&s->ctrl_handler, &ctrl_sampling_rate, NULL); v4l2_ctrl_new_custom(&s->ctrl_handler, &ctrl_sampling_resolution, NULL); s->ctrl_tuner_rf = v4l2_ctrl_new_custom(&s->ctrl_handler, &ctrl_tuner_rf, NULL); s->ctrl_tuner_bw = v4l2_ctrl_new_custom(&s->ctrl_handler, &ctrl_tuner_bw, NULL); s->ctrl_tuner_if = v4l2_ctrl_new_custom(&s->ctrl_handler, &ctrl_tuner_if, NULL); s->ctrl_tuner_gain = v4l2_ctrl_new_custom(&s->ctrl_handler, &ctrl_tuner_gain, NULL); if (s->ctrl_handler.error) { ret = s->ctrl_handler.error; dev_err(&s->udev->dev, "Could not initialize controls\n"); goto err_free_controls; } /* Register the v4l2_device structure */ s->v4l2_dev.release = msi3101_video_release; ret = v4l2_device_register(&intf->dev, &s->v4l2_dev); if (ret) { dev_err(&s->udev->dev, "Failed to register v4l2-device (%d)\n", ret); goto err_free_controls; } s->v4l2_dev.ctrl_handler = &s->ctrl_handler; s->vdev.v4l2_dev = &s->v4l2_dev; s->vdev.lock = &s->v4l2_lock; ret = video_register_device(&s->vdev, VFL_TYPE_GRABBER, -1); if (ret < 0) { dev_err(&s->udev->dev, "Failed to register as video device (%d)\n", ret); goto err_unregister_v4l2_dev; } dev_info(&s->udev->dev, "Registered as %s\n", video_device_node_name(&s->vdev)); return 0; err_unregister_v4l2_dev: v4l2_device_unregister(&s->v4l2_dev); err_free_controls: v4l2_ctrl_handler_free(&s->ctrl_handler); err_free_mem: kfree(s); return ret; } /* USB device ID list */ static struct usb_device_id msi3101_id_table[] = { { USB_DEVICE(0x1df7, 0x2500) }, /* Mirics MSi3101 SDR Dongle */ { USB_DEVICE(0x2040, 0xd300) }, /* Hauppauge WinTV 133559 LF */ { } }; MODULE_DEVICE_TABLE(usb, msi3101_id_table); /* USB subsystem interface */ static struct usb_driver msi3101_driver = { .name = KBUILD_MODNAME, .probe = msi3101_probe, .disconnect = msi3101_disconnect, .id_table = msi3101_id_table, }; module_usb_driver(msi3101_driver); MODULE_AUTHOR("Antti Palosaari "); MODULE_DESCRIPTION("Mirics MSi3101 SDR Dongle"); MODULE_LICENSE("GPL");