/* mvsas.c - Marvell 88SE6440 SAS/SATA support Copyright 2007 Red Hat, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. --------------------------------------------------------------- Random notes: * hardware supports controlling the endian-ness of data structures. this permits elimination of all the le32_to_cpu() and cpu_to_le32() conversions. */ #include #include #include #include #include #include #include #include #include #define DRV_NAME "mvsas" #define DRV_VERSION "0.1" #define mr32(reg) readl(regs + MVS_##reg) #define mw32(reg,val) writel((val), regs + MVS_##reg) #define mw32_f(reg,val) do { \ writel((val), regs + MVS_##reg); \ readl(regs + MVS_##reg); \ } while (0) /* driver compile-time configuration */ enum driver_configuration { MVS_TX_RING_SZ = 1024, /* TX ring size (12-bit) */ MVS_RX_RING_SZ = 1024, /* RX ring size (12-bit) */ /* software requires power-of-2 ring size */ MVS_SLOTS = 512, /* command slots */ MVS_SLOT_BUF_SZ = 8192, /* cmd tbl + IU + status + PRD */ MVS_SSP_CMD_SZ = 64, /* SSP command table buffer size */ MVS_ATA_CMD_SZ = 128, /* SATA command table buffer size */ MVS_OAF_SZ = 64, /* Open address frame buffer size */ MVS_RX_FIS_COUNT = 17, /* Optional rx'd FISs (max 17) */ }; /* unchangeable hardware details */ enum hardware_details { MVS_MAX_PHYS = 8, /* max. possible phys */ MVS_MAX_PORTS = 8, /* max. possible ports */ MVS_RX_FISL_SZ = 0x400 + (MVS_RX_FIS_COUNT * 0x100), }; /* peripheral registers (BAR2) */ enum peripheral_registers { SPI_CTL = 0x10, /* EEPROM control */ SPI_CMD = 0x14, /* EEPROM command */ SPI_DATA = 0x18, /* EEPROM data */ }; enum peripheral_register_bits { TWSI_RDY = (1U << 7), /* EEPROM interface ready */ TWSI_RD = (1U << 4), /* EEPROM read access */ SPI_ADDR_MASK = 0x3ffff, /* bits 17:0 */ }; /* enhanced mode registers (BAR4) */ enum hw_registers { MVS_GBL_CTL = 0x04, /* global control */ MVS_GBL_INT_STAT = 0x08, /* global irq status */ MVS_GBL_PI = 0x0C, /* ports implemented bitmask */ MVS_GBL_PORT_TYPE = 0x00, /* port type */ MVS_CTL = 0x100, /* SAS/SATA port configuration */ MVS_PCS = 0x104, /* SAS/SATA port control/status */ MVS_CMD_LIST_LO = 0x108, /* cmd list addr */ MVS_CMD_LIST_HI = 0x10C, MVS_RX_FIS_LO = 0x110, /* RX FIS list addr */ MVS_RX_FIS_HI = 0x114, MVS_TX_CFG = 0x120, /* TX configuration */ MVS_TX_LO = 0x124, /* TX (delivery) ring addr */ MVS_TX_HI = 0x128, MVS_RX_PROD_IDX = 0x12C, /* RX producer pointer */ MVS_RX_CONS_IDX = 0x130, /* RX consumer pointer (RO) */ MVS_RX_CFG = 0x134, /* RX configuration */ MVS_RX_LO = 0x138, /* RX (completion) ring addr */ MVS_RX_HI = 0x13C, MVS_INT_COAL = 0x148, /* Int coalescing config */ MVS_INT_COAL_TMOUT = 0x14C, /* Int coalescing timeout */ MVS_INT_STAT = 0x150, /* Central int status */ MVS_INT_MASK = 0x154, /* Central int enable */ MVS_INT_STAT_SRS = 0x158, /* SATA register set status */ /* ports 1-3 follow after this */ MVS_P0_INT_STAT = 0x160, /* port0 interrupt status */ MVS_P0_INT_MASK = 0x164, /* port0 interrupt mask */ /* ports 1-3 follow after this */ MVS_P0_SER_CTLSTAT = 0x180, /* port0 serial control/status */ MVS_CMD_ADDR = 0x1B8, /* Command register port (addr) */ MVS_CMD_DATA = 0x1BC, /* Command register port (data) */ /* ports 1-3 follow after this */ MVS_P0_CFG_ADDR = 0x1C0, /* port0 phy register address */ MVS_P0_CFG_DATA = 0x1C4, /* port0 phy register data */ }; enum hw_register_bits { /* MVS_GBL_CTL */ INT_EN = (1U << 1), /* Global int enable */ HBA_RST = (1U << 0), /* HBA reset */ /* MVS_GBL_INT_STAT */ INT_XOR = (1U << 4), /* XOR engine event */ INT_SAS_SATA = (1U << 0), /* SAS/SATA event */ /* MVS_GBL_PORT_TYPE */ /* shl for ports 1-3 */ SATA_TARGET = (1U << 16), /* port0 SATA target enable */ AUTO_DET = (1U << 8), /* port0 SAS/SATA autodetect */ SAS_MODE = (1U << 0), /* port0 SAS(1), SATA(0) mode */ /* SAS_MODE value may be * dictated (in hw) by values * of SATA_TARGET & AUTO_DET */ /* MVS_TX_CFG */ TX_EN = (1U << 16), /* Enable TX */ TX_RING_SZ_MASK = 0xfff, /* TX ring size, bits 11:0 */ /* MVS_RX_CFG */ RX_EN = (1U << 16), /* Enable RX */ RX_RING_SZ_MASK = 0xfff, /* RX ring size, bits 11:0 */ /* MVS_INT_COAL */ COAL_EN = (1U << 16), /* Enable int coalescing */ /* MVS_INT_STAT, MVS_INT_MASK */ CINT_I2C = (1U << 31), /* I2C event */ CINT_SW0 = (1U << 30), /* software event 0 */ CINT_SW1 = (1U << 29), /* software event 1 */ CINT_PRD_BC = (1U << 28), /* PRD BC err for read cmd */ CINT_DMA_PCIE = (1U << 27), /* DMA to PCIE timeout */ CINT_MEM = (1U << 26), /* int mem parity err */ CINT_I2C_SLAVE = (1U << 25), /* slave I2C event */ CINT_SRS = (1U << 3), /* SRS event */ CINT_CI_STOP = (1U << 10), /* cmd issue stopped */ CINT_DONE = (1U << 0), /* cmd completion */ /* shl for ports 1-3 */ CINT_PORT_STOPPED = (1U << 16), /* port0 stopped */ CINT_PORT = (1U << 8), /* port0 event */ /* TX (delivery) ring bits */ TXQ_CMD_SHIFT = 29, TXQ_CMD_SSP = 1, /* SSP protocol */ TXQ_CMD_SMP = 2, /* SMP protocol */ TXQ_CMD_STP = 3, /* STP/SATA protocol */ TXQ_CMD_SSP_FREE_LIST = 4, /* add to SSP targ free list */ TXQ_CMD_SLOT_RESET = 7, /* reset command slot */ TXQ_MODE_I = (1U << 28), /* mode: 0=target,1=initiator */ TXQ_PRIO_HI = (1U << 27), /* priority: 0=normal, 1=high */ TXQ_SRS_SHIFT = 20, /* SATA register set */ TXQ_SRS_MASK = 0x7f, TXQ_PHY_SHIFT = 12, /* PHY bitmap */ TXQ_PHY_MASK = 0xff, TXQ_SLOT_MASK = 0xfff, /* slot number */ /* RX (completion) ring bits */ RXQ_GOOD = (1U << 23), /* Response good */ RXQ_SLOT_RESET = (1U << 21), /* Slot reset complete */ RXQ_CMD_RX = (1U << 20), /* target cmd received */ RXQ_ATTN = (1U << 19), /* attention */ RXQ_RSP = (1U << 18), /* response frame xfer'd */ RXQ_ERR = (1U << 17), /* err info rec xfer'd */ RXQ_DONE = (1U << 16), /* cmd complete */ RXQ_SLOT_MASK = 0xfff, /* slot number */ /* mvs_cmd_hdr bits */ MCH_PRD_LEN_SHIFT = 16, /* 16-bit PRD table len */ MCH_SSP_FR_TYPE_SHIFT = 13, /* SSP frame type */ /* SSP initiator only */ MCH_SSP_FR_CMD = 0x0, /* COMMAND frame */ /* SSP initiator or target */ MCH_SSP_FR_TASK = 0x1, /* TASK frame */ /* SSP target only */ MCH_SSP_FR_XFER_RDY = 0x4, /* XFER_RDY frame */ MCH_SSP_FR_RESP = 0x5, /* RESPONSE frame */ MCH_SSP_FR_READ = 0x6, /* Read DATA frame(s) */ MCH_SSP_FR_READ_RESP = 0x7, /* ditto, plus RESPONSE */ MCH_PASSTHRU = (1U << 12), /* pass-through (SSP) */ MCH_FBURST = (1U << 11), /* first burst (SSP) */ MCH_CHK_LEN = (1U << 10), /* chk xfer len (SSP) */ MCH_RETRY = (1U << 9), /* tport layer retry (SSP) */ MCH_PROTECTION = (1U << 8), /* protection info rec (SSP) */ MCH_RESET = (1U << 7), /* Reset (STP/SATA) */ MCH_FPDMA = (1U << 6), /* First party DMA (STP/SATA) */ MCH_ATAPI = (1U << 5), /* ATAPI (STP/SATA) */ MCH_BIST = (1U << 4), /* BIST activate (STP/SATA) */ MCH_PMP_MASK = 0xf, /* PMP from cmd FIS (STP/SATA)*/ CCTL_RST = (1U << 5), /* port logic reset */ /* 0(LSB first), 1(MSB first) */ CCTL_ENDIAN_DATA = (1U << 3), /* PRD data */ CCTL_ENDIAN_RSP = (1U << 2), /* response frame */ CCTL_ENDIAN_OPEN = (1U << 1), /* open address frame */ CCTL_ENDIAN_CMD = (1U << 0), /* command table */ /* MVS_Px_SER_CTLSTAT (per-phy control) */ PHY_SSP_RST = (1U << 3), /* reset SSP link layer */ PHY_BCAST_CHG = (1U << 2), /* broadcast(change) notif */ PHY_RST_HARD = (1U << 1), /* hard reset + phy reset */ PHY_RST = (1U << 0), /* phy reset */ /* MVS_Px_INT_STAT, MVS_Px_INT_MASK (per-phy events) */ PHYEV_UNASSOC_FIS = (1U << 19), /* unassociated FIS rx'd */ PHYEV_AN = (1U << 18), /* SATA async notification */ PHYEV_BIST_ACT = (1U << 17), /* BIST activate FIS */ PHYEV_SIG_FIS = (1U << 16), /* signature FIS */ PHYEV_POOF = (1U << 12), /* phy ready from 1 -> 0 */ PHYEV_IU_BIG = (1U << 11), /* IU too long err */ PHYEV_IU_SMALL = (1U << 10), /* IU too short err */ PHYEV_UNK_TAG = (1U << 9), /* unknown tag */ PHYEV_BROAD_CH = (1U << 8), /* broadcast(CHANGE) */ PHYEV_COMWAKE = (1U << 7), /* COMWAKE rx'd */ PHYEV_PORT_SEL = (1U << 6), /* port selector present */ PHYEV_HARD_RST = (1U << 5), /* hard reset rx'd */ PHYEV_ID_TMOUT = (1U << 4), /* identify timeout */ PHYEV_ID_FAIL = (1U << 3), /* identify failed */ PHYEV_ID_DONE = (1U << 2), /* identify done */ PHYEV_HARD_RST_DONE = (1U << 1), /* hard reset done */ PHYEV_RDY_CH = (1U << 0), /* phy ready changed state */ /* MVS_PCS */ PCS_SATA_RETRY = (1U << 8), /* retry ctl FIS on R_ERR */ PCS_RSP_RX_EN = (1U << 7), /* raw response rx */ PCS_SELF_CLEAR = (1U << 5), /* self-clearing int mode */ PCS_FIS_RX_EN = (1U << 4), /* FIS rx enable */ PCS_CMD_STOP_ERR = (1U << 3), /* cmd stop-on-err enable */ PCS_CMD_RST = (1U << 2), /* reset cmd issue */ PCS_CMD_EN = (1U << 0), /* enable cmd issue */ }; enum mvs_info_flags { MVF_MSI = (1U << 0), /* MSI is enabled */ MVF_PHY_PWR_FIX = (1U << 1), /* bug workaround */ }; enum sas_cmd_port_registers { CMD_CMRST_OOB_DET = 0x100, /* COMRESET OOB detect register */ CMD_CMWK_OOB_DET = 0x104, /* COMWAKE OOB detect register */ CMD_CMSAS_OOB_DET = 0x108, /* COMSAS OOB detect register */ CMD_BRST_OOB_DET = 0x10c, /* burst OOB detect register */ CMD_OOB_SPACE = 0x110, /* OOB space control register */ CMD_OOB_BURST = 0x114, /* OOB burst control register */ CMD_PHY_TIMER = 0x118, /* PHY timer control register */ CMD_PHY_CONFIG0 = 0x11c, /* PHY config register 0 */ CMD_PHY_CONFIG1 = 0x120, /* PHY config register 1 */ CMD_SAS_CTL0 = 0x124, /* SAS control register 0 */ CMD_SAS_CTL1 = 0x128, /* SAS control register 1 */ CMD_SAS_CTL2 = 0x12c, /* SAS control register 2 */ CMD_SAS_CTL3 = 0x130, /* SAS control register 3 */ CMD_ID_TEST = 0x134, /* ID test register */ CMD_PL_TIMER = 0x138, /* PL timer register */ CMD_WD_TIMER = 0x13c, /* WD timer register */ CMD_PORT_SEL_COUNT = 0x140, /* port selector count register */ CMD_APP_MEM_CTL = 0x144, /* Application Memory Control */ CMD_XOR_MEM_CTL = 0x148, /* XOR Block Memory Control */ CMD_DMA_MEM_CTL = 0x14c, /* DMA Block Memory Control */ CMD_PORT_MEM_CTL0 = 0x150, /* Port Memory Control 0 */ CMD_PORT_MEM_CTL1 = 0x154, /* Port Memory Control 1 */ CMD_SATA_PORT_MEM_CTL0 = 0x158, /* SATA Port Memory Control 0 */ CMD_SATA_PORT_MEM_CTL1 = 0x15c, /* SATA Port Memory Control 1 */ CMD_XOR_MEM_BIST_CTL = 0x160, /* XOR Memory BIST Control */ CMD_XOR_MEM_BIST_STAT = 0x164, /* XOR Memroy BIST Status */ CMD_DMA_MEM_BIST_CTL = 0x168, /* DMA Memory BIST Control */ CMD_DMA_MEM_BIST_STAT = 0x16c, /* DMA Memory BIST Status */ CMD_PORT_MEM_BIST_CTL = 0x170, /* Port Memory BIST Control */ CMD_PORT_MEM_BIST_STAT0 = 0x174, /* Port Memory BIST Status 0 */ CMD_PORT_MEM_BIST_STAT1 = 0x178, /* Port Memory BIST Status 1 */ CMD_STP_MEM_BIST_CTL = 0x17c, /* STP Memory BIST Control */ CMD_STP_MEM_BIST_STAT0 = 0x180, /* STP Memory BIST Status 0 */ CMD_STP_MEM_BIST_STAT1 = 0x184, /* STP Memory BIST Status 1 */ CMD_RESET_COUNT = 0x188, /* Reset Count */ CMD_MONTR_DATA_SEL = 0x18C, /* Monitor Data/Select */ CMD_PLL_PHY_CONFIG = 0x190, /* PLL/PHY Configuration */ CMD_PHY_CTL = 0x194, /* PHY Control and Status */ CMD_PHY_TEST_COUNT0 = 0x198, /* Phy Test Count 0 */ CMD_PHY_TEST_COUNT1 = 0x19C, /* Phy Test Count 1 */ CMD_PHY_TEST_COUNT2 = 0x1A0, /* Phy Test Count 2 */ CMD_APP_ERR_CONFIG = 0x1A4, /* Application Error Configuration */ CMD_PND_FIFO_CTL0 = 0x1A8, /* Pending FIFO Control 0 */ CMD_HOST_CTL = 0x1AC, /* Host Control Status */ CMD_HOST_WR_DATA = 0x1B0, /* Host Write Data */ CMD_HOST_RD_DATA = 0x1B4, /* Host Read Data */ CMD_PHY_MODE_21 = 0x1B8, /* Phy Mode 21 */ CMD_SL_MODE0 = 0x1BC, /* SL Mode 0 */ CMD_SL_MODE1 = 0x1C0, /* SL Mode 1 */ CMD_PND_FIFO_CTL1 = 0x1C4, /* Pending FIFO Control 1 */ }; /* SAS/SATA configuration port registers, aka phy registers */ enum sas_sata_config_port_regs { PHYR_IDENTIFY = 0x0, /* info for IDENTIFY frame */ PHYR_ADDR_LO = 0x4, /* my SAS address (low) */ PHYR_ADDR_HI = 0x8, /* my SAS address (high) */ PHYR_ATT_DEV_INFO = 0xC, /* attached device info */ PHYR_ATT_ADDR_LO = 0x10, /* attached dev SAS addr (low) */ PHYR_ATT_ADDR_HI = 0x14, /* attached dev SAS addr (high) */ PHYR_SATA_CTL = 0x18, /* SATA control */ PHYR_PHY_STAT = 0x1C, /* PHY status */ PHYR_WIDE_PORT = 0x38, /* wide port participating */ PHYR_CURRENT0 = 0x80, /* current connection info 0 */ PHYR_CURRENT1 = 0x84, /* current connection info 1 */ PHYR_CURRENT2 = 0x88, /* current connection info 2 */ }; enum pci_cfg_registers { PCR_PHY_CTL = 0x40, PCR_PHY_CTL2 = 0x90, }; enum pci_cfg_register_bits { PCTL_PWR_ON = (0xFU << 24), PCTL_OFF = (0xFU << 12), }; enum nvram_layout_offsets { NVR_SIG = 0x00, /* 0xAA, 0x55 */ NVR_SAS_ADDR = 0x02, /* 8-byte SAS address */ }; enum chip_flavors { chip_6320, chip_6440, chip_6480, }; struct mvs_chip_info { unsigned int n_phy; unsigned int srs_sz; unsigned int slot_width; }; struct mvs_err_info { __le32 flags; __le32 flags2; }; struct mvs_prd { __le64 addr; /* 64-bit buffer address */ __le32 reserved; __le32 len; /* 16-bit length */ }; struct mvs_cmd_hdr { __le32 flags; /* PRD tbl len; SAS, SATA ctl */ __le32 lens; /* cmd, max resp frame len */ __le32 tags; /* targ port xfer tag; tag */ __le32 data_len; /* data xfer len */ __le64 cmd_tbl; /* command table address */ __le64 open_frame; /* open addr frame address */ __le64 status_buf; /* status buffer address */ __le64 prd_tbl; /* PRD tbl address */ __le32 reserved[4]; }; struct mvs_slot_info { struct sas_task *task; unsigned int n_elem; /* DMA buffer for storing cmd tbl, open addr frame, status buffer, * and PRD table */ void *buf; dma_addr_t buf_dma; void *response; }; struct mvs_port { struct asd_sas_port sas_port; }; struct mvs_phy { struct mvs_port *port; struct asd_sas_phy sas_phy; u8 frame_rcvd[24 + 1024]; }; struct mvs_info { unsigned long flags; spinlock_t lock; /* host-wide lock */ struct pci_dev *pdev; /* our device */ void __iomem *regs; /* enhanced mode registers */ void __iomem *peri_regs; /* peripheral registers */ u8 sas_addr[SAS_ADDR_SIZE]; struct sas_ha_struct sas; /* SCSI/SAS glue */ struct Scsi_Host *shost; __le32 *tx; /* TX (delivery) DMA ring */ dma_addr_t tx_dma; u32 tx_prod; /* cached next-producer idx */ __le32 *rx; /* RX (completion) DMA ring */ dma_addr_t rx_dma; u32 rx_cons; /* RX consumer idx */ __le32 *rx_fis; /* RX'd FIS area */ dma_addr_t rx_fis_dma; struct mvs_cmd_hdr *slot; /* DMA command header slots */ dma_addr_t slot_dma; const struct mvs_chip_info *chip; /* further per-slot information */ struct mvs_slot_info slot_info[MVS_SLOTS]; unsigned long tags[(MVS_SLOTS / sizeof(unsigned long)) + 1]; struct mvs_phy phy[MVS_MAX_PHYS]; struct mvs_port port[MVS_MAX_PHYS]; }; static struct scsi_transport_template *mvs_stt; static const struct mvs_chip_info mvs_chips[] = { [chip_6320] = { 2, 16, 9 }, [chip_6440] = { 4, 16, 9 }, [chip_6480] = { 8, 32, 10 }, }; static struct scsi_host_template mvs_sht = { .module = THIS_MODULE, .name = DRV_NAME, .queuecommand = sas_queuecommand, .target_alloc = sas_target_alloc, .slave_configure = sas_slave_configure, .slave_destroy = sas_slave_destroy, .change_queue_depth = sas_change_queue_depth, .change_queue_type = sas_change_queue_type, .bios_param = sas_bios_param, .can_queue = 1, .cmd_per_lun = 1, .this_id = -1, .sg_tablesize = SG_ALL, .max_sectors = SCSI_DEFAULT_MAX_SECTORS, .use_clustering = ENABLE_CLUSTERING, .eh_device_reset_handler= sas_eh_device_reset_handler, .eh_bus_reset_handler = sas_eh_bus_reset_handler, .slave_alloc = sas_slave_alloc, .target_destroy = sas_target_destroy, .ioctl = sas_ioctl, }; static void mvs_int_rx(struct mvs_info *mvi, bool self_clear); /* move to PCI layer or libata core? */ static int pci_go_64(struct pci_dev *pdev) { int rc; if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) { rc = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK); if (rc) { rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK); if (rc) { dev_printk(KERN_ERR, &pdev->dev, "64-bit DMA enable failed\n"); return rc; } } } else { rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK); if (rc) { dev_printk(KERN_ERR, &pdev->dev, "32-bit DMA enable failed\n"); return rc; } rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK); if (rc) { dev_printk(KERN_ERR, &pdev->dev, "32-bit consistent DMA enable failed\n"); return rc; } } return rc; } static void mvs_tag_clear(struct mvs_info *mvi, unsigned int tag) { mvi->tags[tag / sizeof(unsigned long)] &= ~(1UL << (tag % sizeof(unsigned long))); } static void mvs_tag_set(struct mvs_info *mvi, unsigned int tag) { mvi->tags[tag / sizeof(unsigned long)] |= (1UL << (tag % sizeof(unsigned long))); } static bool mvs_tag_test(struct mvs_info *mvi, unsigned int tag) { return mvi->tags[tag / sizeof(unsigned long)] & (1UL << (tag % sizeof(unsigned long))); } static int mvs_tag_alloc(struct mvs_info *mvi, unsigned int *tag_out) { unsigned int i; for (i = 0; i < MVS_SLOTS; i++) if (!mvs_tag_test(mvi, i)) { mvs_tag_set(mvi, i); *tag_out = i; return 0; } return -EBUSY; } static int mvs_eep_read(void __iomem *regs, unsigned int addr, u32 *data) { int timeout = 1000; if (addr & ~SPI_ADDR_MASK) return -EINVAL; writel(addr, regs + SPI_CMD); writel(TWSI_RD, regs + SPI_CTL); while (timeout-- > 0) { if (readl(regs + SPI_CTL) & TWSI_RDY) { *data = readl(regs + SPI_DATA); return 0; } udelay(10); } return -EBUSY; } static int mvs_eep_read_buf(void __iomem *regs, unsigned int addr, void *buf, unsigned int buflen) { unsigned int addr_end, tmp_addr, i, j; u32 tmp = 0; int rc; u8 *tmp8, *buf8 = buf; addr_end = addr + buflen; tmp_addr = ALIGN(addr, 4); if (addr > 0xff) return -EINVAL; j = addr & 0x3; if (j) { rc = mvs_eep_read(regs, tmp_addr, &tmp); if (rc) return rc; tmp8 = (u8 *) &tmp; for (i = j; i < 4; i++) *buf8++ = tmp8[i]; tmp_addr += 4; } for (j = ALIGN(addr_end, 4); tmp_addr < j; tmp_addr += 4) { rc = mvs_eep_read(regs, tmp_addr, &tmp); if (rc) return rc; memcpy(buf8, &tmp, 4); buf8 += 4; } if (tmp_addr < addr_end) { rc = mvs_eep_read(regs, tmp_addr, &tmp); if (rc) return rc; tmp8 = (u8 *) &tmp; j = addr_end - tmp_addr; for (i = 0; i < j; i++) *buf8++ = tmp8[i]; tmp_addr += 4; } return 0; } static int mvs_nvram_read(struct mvs_info *mvi, unsigned int addr, void *buf, unsigned int buflen) { void __iomem *regs = mvi->regs; int rc, i; unsigned int sum; u8 hdr[2], *tmp; const char *msg; rc = mvs_eep_read_buf(regs, addr, &hdr, 2); if (rc) { msg = "nvram hdr read failed"; goto err_out; } rc = mvs_eep_read_buf(regs, addr + 2, buf, buflen); if (rc) { msg = "nvram read failed"; goto err_out; } if (hdr[0] != 0x5A) { /* entry id */ msg = "invalid nvram entry id"; rc = -ENOENT; goto err_out; } tmp = buf; sum = ((unsigned int)hdr[0]) + ((unsigned int)hdr[1]); for (i = 0; i < buflen; i++) sum += ((unsigned int)tmp[i]); if (sum) { msg = "nvram checksum failure"; rc = -EILSEQ; goto err_out; } return 0; err_out: dev_printk(KERN_ERR, &mvi->pdev->dev, "%s", msg); return rc; } static void mvs_int_port(struct mvs_info *mvi, int port_no, u32 events) { /* FIXME */ } static void mvs_int_sata(struct mvs_info *mvi) { /* FIXME */ } static void mvs_slot_free(struct mvs_info *mvi, struct sas_task *task, struct mvs_slot_info *slot, unsigned int slot_idx) { if (slot->n_elem) pci_unmap_sg(mvi->pdev, task->scatter, slot->n_elem, task->data_dir); switch (task->task_proto) { case SAS_PROTOCOL_SMP: pci_unmap_sg(mvi->pdev, &task->smp_task.smp_resp, 1, PCI_DMA_FROMDEVICE); pci_unmap_sg(mvi->pdev, &task->smp_task.smp_req, 1, PCI_DMA_TODEVICE); break; case SAS_PROTOCOL_SATA: case SAS_PROTOCOL_STP: case SAS_PROTOCOL_SSP: default: /* do nothing */ break; } mvs_tag_clear(mvi, slot_idx); } static void mvs_slot_err(struct mvs_info *mvi, struct sas_task *task, unsigned int slot_idx) { /* FIXME */ } static void mvs_slot_complete(struct mvs_info *mvi, u32 rx_desc) { unsigned int slot_idx = rx_desc & RXQ_SLOT_MASK; struct mvs_slot_info *slot = &mvi->slot_info[slot_idx]; struct sas_task *task = slot->task; struct task_status_struct *tstat = &task->task_status; bool aborted; spin_lock(&task->task_state_lock); aborted = task->task_state_flags & SAS_TASK_STATE_ABORTED; if (!aborted) { task->task_state_flags &= ~(SAS_TASK_STATE_PENDING | SAS_TASK_AT_INITIATOR); task->task_state_flags |= SAS_TASK_STATE_DONE; } spin_unlock(&task->task_state_lock); if (aborted) return; memset(tstat, 0, sizeof(*tstat)); tstat->resp = SAS_TASK_COMPLETE; /* error info record present */ if (rx_desc & RXQ_ERR) { tstat->stat = SAM_CHECK_COND; mvs_slot_err(mvi, task, slot_idx); goto out; } switch (task->task_proto) { case SAS_PROTOCOL_SSP: /* hw says status == 0, datapres == 0 */ if (rx_desc & RXQ_GOOD) tstat->stat = SAM_GOOD; /* response frame present */ else if (rx_desc & RXQ_RSP) { struct ssp_response_iu *iu = slot->response + sizeof(struct mvs_err_info); sas_ssp_task_response(&mvi->pdev->dev, task, iu); } /* should never happen? */ else tstat->stat = SAM_CHECK_COND; break; case SAS_PROTOCOL_SMP: tstat->stat = SAM_GOOD; break; case SAS_PROTOCOL_SATA: case SAS_PROTOCOL_STP: if ((rx_desc & (RXQ_DONE | RXQ_ERR | RXQ_ATTN)) == RXQ_DONE) tstat->stat = SAM_GOOD; else tstat->stat = SAM_CHECK_COND; /* FIXME: read taskfile data from SATA register set * associated with SATA target */ break; default: tstat->stat = SAM_CHECK_COND; break; } out: mvs_slot_free(mvi, task, slot, slot_idx); task->task_done(task); } static void mvs_int_full(struct mvs_info *mvi) { void __iomem *regs = mvi->regs; u32 tmp, stat; int i; stat = mr32(INT_STAT); for (i = 0; i < MVS_MAX_PORTS; i++) { tmp = (stat >> i) & (CINT_PORT | CINT_PORT_STOPPED); if (tmp) mvs_int_port(mvi, i, tmp); } if (stat & CINT_SRS) mvs_int_sata(mvi); if (stat & (CINT_CI_STOP | CINT_DONE)) mvs_int_rx(mvi, false); mw32(INT_STAT, stat); } static void mvs_int_rx(struct mvs_info *mvi, bool self_clear) { u32 rx_prod_idx, rx_desc; bool attn = false; /* the first dword in the RX ring is special: it contains * a mirror of the hardware's RX producer index, so that * we don't have to stall the CPU reading that register. * The actual RX ring is offset by one dword, due to this. */ rx_prod_idx = le32_to_cpu(mvi->rx[0]) & 0xfff; if (rx_prod_idx == 0xfff) { /* h/w hasn't touched RX ring yet */ mvi->rx_cons = 0xfff; return; } if (mvi->rx_cons == 0xfff) mvi->rx_cons = MVS_RX_RING_SZ - 1; while (mvi->rx_cons != rx_prod_idx) { /* increment our internal RX consumer pointer */ mvi->rx_cons = (mvi->rx_cons + 1) & (MVS_RX_RING_SZ - 1); /* Read RX descriptor at offset+1, due to above */ rx_desc = le32_to_cpu(mvi->rx[mvi->rx_cons + 1]); if (rx_desc & RXQ_DONE) /* we had a completion, error or no */ mvs_slot_complete(mvi, rx_desc); if (rx_desc & RXQ_ATTN) attn = true; } if (attn && self_clear) mvs_int_full(mvi); } static irqreturn_t mvs_interrupt(int irq, void *opaque) { struct mvs_info *mvi = opaque; void __iomem *regs = mvi->regs; u32 stat; stat = mr32(GBL_INT_STAT); if (stat == 0 || stat == 0xffffffff) return IRQ_NONE; spin_lock(&mvi->lock); mvs_int_full(mvi); spin_unlock(&mvi->lock); return IRQ_HANDLED; } static irqreturn_t mvs_msi_interrupt(int irq, void *opaque) { struct mvs_info *mvi = opaque; spin_lock(&mvi->lock); mvs_int_rx(mvi, true); spin_unlock(&mvi->lock); return IRQ_HANDLED; } struct mvs_task_exec_info { struct sas_task *task; struct mvs_cmd_hdr *hdr; unsigned int tag; int n_elem; }; static int mvs_task_prep_smp(struct mvs_info *mvi, struct mvs_task_exec_info *tei) { int elem, rc; struct mvs_cmd_hdr *hdr = tei->hdr; struct scatterlist *sg_req, *sg_resp; unsigned int req_len, resp_len, tag = tei->tag; /* * DMA-map SMP request, response buffers */ sg_req = &tei->task->smp_task.smp_req; elem = pci_map_sg(mvi->pdev, sg_req, 1, PCI_DMA_TODEVICE); if (!elem) return -ENOMEM; req_len = sg_dma_len(sg_req); sg_resp = &tei->task->smp_task.smp_resp; elem = pci_map_sg(mvi->pdev, sg_resp, 1, PCI_DMA_FROMDEVICE); if (!elem) { rc = -ENOMEM; goto err_out; } resp_len = sg_dma_len(sg_resp); /* must be in dwords */ if ((req_len & 0x3) || (resp_len & 0x3)) { rc = -EINVAL; goto err_out_2; } /* * Fill in TX ring and command slot header */ mvi->tx[tag] = cpu_to_le32( (TXQ_CMD_SMP << TXQ_CMD_SHIFT) | TXQ_MODE_I | tag); hdr->flags = 0; hdr->lens = cpu_to_le32(((resp_len / 4) << 16) | (req_len / 4)); hdr->tags = cpu_to_le32(tag); hdr->data_len = 0; hdr->cmd_tbl = cpu_to_le64(sg_dma_address(sg_req)); hdr->open_frame = 0; hdr->status_buf = cpu_to_le64(sg_dma_address(sg_resp)); hdr->prd_tbl = 0; return 0; err_out_2: pci_unmap_sg(mvi->pdev, &tei->task->smp_task.smp_resp, 1, PCI_DMA_FROMDEVICE); err_out: pci_unmap_sg(mvi->pdev, &tei->task->smp_task.smp_req, 1, PCI_DMA_TODEVICE); return rc; } static int mvs_task_prep_ata(struct mvs_info *mvi, struct mvs_task_exec_info *tei) { struct sas_task *task = tei->task; struct domain_device *dev = task->dev; struct mvs_cmd_hdr *hdr = tei->hdr; struct asd_sas_port *sas_port = dev->port; unsigned int tag = tei->tag; struct mvs_slot_info *slot = &mvi->slot_info[tag]; u32 flags = (tei->n_elem << MCH_PRD_LEN_SHIFT); struct scatterlist *sg; struct mvs_prd *buf_prd; void *buf_tmp; u8 *buf_cmd, *buf_oaf; dma_addr_t buf_tmp_dma; unsigned int i, req_len, resp_len; /* FIXME: fill in SATA register set */ mvi->tx[tag] = cpu_to_le32(TXQ_MODE_I | tag | (TXQ_CMD_STP << TXQ_CMD_SHIFT) | (sas_port->phy_mask << TXQ_PHY_SHIFT)); if (task->ata_task.use_ncq) flags |= MCH_FPDMA; if (dev->sata_dev.command_set == ATAPI_COMMAND_SET) flags |= MCH_ATAPI; /* FIXME: fill in port multiplier number */ hdr->flags = cpu_to_le32(flags); hdr->tags = cpu_to_le32(tag); hdr->data_len = cpu_to_le32(task->total_xfer_len); /* * arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs */ memset(slot->buf, 0, MVS_SLOT_BUF_SZ); /* region 1: command table area (MVS_ATA_CMD_SZ bytes) ***************/ buf_cmd = buf_tmp = slot->buf; buf_tmp_dma = slot->buf_dma; hdr->cmd_tbl = cpu_to_le64(buf_tmp_dma); buf_tmp += MVS_ATA_CMD_SZ; buf_tmp_dma += MVS_ATA_CMD_SZ; /* region 2: open address frame area (MVS_OAF_SZ bytes) **********/ /* used for STP. unused for SATA? */ buf_oaf = buf_tmp; hdr->open_frame = cpu_to_le64(buf_tmp_dma); buf_tmp += MVS_OAF_SZ; buf_tmp_dma += MVS_OAF_SZ; /* region 3: PRD table ***********************************************/ buf_prd = buf_tmp; hdr->prd_tbl = cpu_to_le64(buf_tmp_dma); i = sizeof(struct mvs_prd) * tei->n_elem; buf_tmp += i; buf_tmp_dma += i; /* region 4: status buffer (larger the PRD, smaller this buf) ********/ /* FIXME: probably unused, for SATA. kept here just in case * we get a STP/SATA error information record */ slot->response = buf_tmp; hdr->status_buf = cpu_to_le64(buf_tmp_dma); req_len = sizeof(struct ssp_frame_hdr) + 28; resp_len = MVS_SLOT_BUF_SZ - MVS_ATA_CMD_SZ - sizeof(struct mvs_err_info) - i; /* request, response lengths */ hdr->lens = cpu_to_le32(((resp_len / 4) << 16) | (req_len / 4)); /* fill in command FIS and ATAPI CDB */ memcpy(buf_cmd, &task->ata_task.fis, sizeof(struct host_to_dev_fis)); memcpy(buf_cmd + 0x40, task->ata_task.atapi_packet, 16); /* fill in PRD (scatter/gather) table, if any */ sg = task->scatter; for (i = 0; i < tei->n_elem; i++) { buf_prd->addr = cpu_to_le64(sg_dma_address(sg)); buf_prd->len = cpu_to_le32(sg_dma_len(sg)); sg++; buf_prd++; } return 0; } static int mvs_task_prep_ssp(struct mvs_info *mvi, struct mvs_task_exec_info *tei) { struct sas_task *task = tei->task; struct asd_sas_port *sas_port = task->dev->port; struct mvs_cmd_hdr *hdr = tei->hdr; struct mvs_slot_info *slot; struct scatterlist *sg; unsigned int resp_len, req_len, i, tag = tei->tag; struct mvs_prd *buf_prd; struct ssp_frame_hdr *ssp_hdr; void *buf_tmp; u8 *buf_cmd, *buf_oaf, fburst = 0; dma_addr_t buf_tmp_dma; u32 flags; slot = &mvi->slot_info[tag]; mvi->tx[tag] = cpu_to_le32(TXQ_MODE_I | tag | (TXQ_CMD_SSP << TXQ_CMD_SHIFT) | (sas_port->phy_mask << TXQ_PHY_SHIFT)); flags = MCH_RETRY; if (task->ssp_task.enable_first_burst) { flags |= MCH_FBURST; fburst = (1 << 7); } hdr->flags = cpu_to_le32(flags | (tei->n_elem << MCH_PRD_LEN_SHIFT) | (MCH_SSP_FR_CMD << MCH_SSP_FR_TYPE_SHIFT)); hdr->tags = cpu_to_le32(tag); hdr->data_len = cpu_to_le32(task->total_xfer_len); /* * arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs */ memset(slot->buf, 0, MVS_SLOT_BUF_SZ); /* region 1: command table area (MVS_SSP_CMD_SZ bytes) ***************/ buf_cmd = buf_tmp = slot->buf; buf_tmp_dma = slot->buf_dma; hdr->cmd_tbl = cpu_to_le64(buf_tmp_dma); buf_tmp += MVS_SSP_CMD_SZ; buf_tmp_dma += MVS_SSP_CMD_SZ; /* region 2: open address frame area (MVS_OAF_SZ bytes) **********/ buf_oaf = buf_tmp; hdr->open_frame = cpu_to_le64(buf_tmp_dma); buf_tmp += MVS_OAF_SZ; buf_tmp_dma += MVS_OAF_SZ; /* region 3: PRD table ***********************************************/ buf_prd = buf_tmp; hdr->prd_tbl = cpu_to_le64(buf_tmp_dma); i = sizeof(struct mvs_prd) * tei->n_elem; buf_tmp += i; buf_tmp_dma += i; /* region 4: status buffer (larger the PRD, smaller this buf) ********/ slot->response = buf_tmp; hdr->status_buf = cpu_to_le64(buf_tmp_dma); req_len = sizeof(struct ssp_frame_hdr) + 28; resp_len = MVS_SLOT_BUF_SZ - MVS_SSP_CMD_SZ - MVS_OAF_SZ - sizeof(struct mvs_err_info) - i; /* request, response lengths */ hdr->lens = cpu_to_le32(((resp_len / 4) << 16) | (req_len / 4)); /* generate open address frame hdr (first 12 bytes) */ buf_oaf[0] = (1 << 7) | (1 << 4) | 0x1; /* initiator, SSP, ftype 1h */ buf_oaf[1] = task->dev->linkrate & 0xf; buf_oaf[2] = tag >> 8; buf_oaf[3] = tag; memcpy(buf_oaf + 4, task->dev->sas_addr, SAS_ADDR_SIZE); /* fill in SSP frame header */ ssp_hdr = (struct ssp_frame_hdr *) buf_cmd; ssp_hdr->frame_type = SSP_COMMAND; memcpy(ssp_hdr->hashed_dest_addr, task->dev->hashed_sas_addr, HASHED_SAS_ADDR_SIZE); memcpy(ssp_hdr->hashed_src_addr, task->dev->port->ha->hashed_sas_addr, HASHED_SAS_ADDR_SIZE); ssp_hdr->tag = cpu_to_be16(tag); /* fill in command frame IU */ buf_cmd += sizeof(*ssp_hdr); memcpy(buf_cmd, &task->ssp_task.LUN, 8); buf_cmd[9] = fburst | task->ssp_task.task_attr | (task->ssp_task.task_prio << 3); memcpy(buf_cmd + 12, &task->ssp_task.cdb, 16); /* fill in PRD (scatter/gather) table, if any */ sg = task->scatter; for (i = 0; i < tei->n_elem; i++) { buf_prd->addr = cpu_to_le64(sg_dma_address(sg)); buf_prd->len = cpu_to_le32(sg_dma_len(sg)); sg++; buf_prd++; } return 0; } static int mvs_task_exec(struct sas_task *task, const int num, gfp_t gfp_flags) { struct mvs_info *mvi = task->dev->port->ha->lldd_ha; unsigned int tag = 0xdeadbeef, rc, n_elem = 0; void __iomem *regs = mvi->regs; unsigned long flags; struct mvs_task_exec_info tei; /* FIXME: STP/SATA support not complete yet */ if (task->task_proto == SAS_PROTOCOL_SATA || task->task_proto == SAS_PROTOCOL_STP) return -SAS_DEV_NO_RESPONSE; if (task->num_scatter) { n_elem = pci_map_sg(mvi->pdev, task->scatter, task->num_scatter, task->data_dir); if (!n_elem) return -ENOMEM; } spin_lock_irqsave(&mvi->lock, flags); rc = mvs_tag_alloc(mvi, &tag); if (rc) goto err_out; mvi->slot_info[tag].task = task; mvi->slot_info[tag].n_elem = n_elem; tei.task = task; tei.hdr = &mvi->slot[tag]; tei.tag = tag; tei.n_elem = n_elem; switch (task->task_proto) { case SAS_PROTOCOL_SMP: rc = mvs_task_prep_smp(mvi, &tei); break; case SAS_PROTOCOL_SSP: rc = mvs_task_prep_ssp(mvi, &tei); break; case SAS_PROTOCOL_SATA: case SAS_PROTOCOL_STP: rc = mvs_task_prep_ata(mvi, &tei); break; default: rc = -EINVAL; break; } if (rc) goto err_out_tag; /* TODO: select normal or high priority */ mw32(RX_PROD_IDX, mvi->tx_prod); mvi->tx_prod = (mvi->tx_prod + 1) & (MVS_TX_RING_SZ - 1); spin_lock(&task->task_state_lock); task->task_state_flags |= SAS_TASK_AT_INITIATOR; spin_unlock(&task->task_state_lock); spin_unlock_irqrestore(&mvi->lock, flags); return 0; err_out_tag: mvs_tag_clear(mvi, tag); err_out: if (n_elem) pci_unmap_sg(mvi->pdev, task->scatter, n_elem, task->data_dir); spin_unlock_irqrestore(&mvi->lock, flags); return rc; } static void mvs_free(struct mvs_info *mvi) { int i; if (!mvi) return; for (i = 0; i < MVS_SLOTS; i++) { struct mvs_slot_info *slot = &mvi->slot_info[i]; if (slot->buf) dma_free_coherent(&mvi->pdev->dev, MVS_SLOT_BUF_SZ, slot->buf, slot->buf_dma); } if (mvi->tx) dma_free_coherent(&mvi->pdev->dev, sizeof(*mvi->tx) * MVS_TX_RING_SZ, mvi->tx, mvi->tx_dma); if (mvi->rx_fis) dma_free_coherent(&mvi->pdev->dev, MVS_RX_FISL_SZ, mvi->rx_fis, mvi->rx_fis_dma); if (mvi->rx) dma_free_coherent(&mvi->pdev->dev, sizeof(*mvi->rx) * MVS_RX_RING_SZ, mvi->rx, mvi->rx_dma); if (mvi->slot) dma_free_coherent(&mvi->pdev->dev, sizeof(*mvi->slot) * MVS_RX_RING_SZ, mvi->slot, mvi->slot_dma); if (mvi->peri_regs) iounmap(mvi->peri_regs); if (mvi->regs) iounmap(mvi->regs); if (mvi->shost) scsi_host_put(mvi->shost); kfree(mvi->sas.sas_port); kfree(mvi->sas.sas_phy); kfree(mvi); } /* FIXME: locking? */ static int mvs_phy_control(struct asd_sas_phy *sas_phy, enum phy_func func, void *funcdata) { struct mvs_info *mvi = sas_phy->ha->lldd_ha; void __iomem *reg; int rc = 0, phy_id = sas_phy->id; u32 tmp; reg = mvi->regs + MVS_P0_SER_CTLSTAT + (phy_id * 4); switch (func) { case PHY_FUNC_SET_LINK_RATE: { struct sas_phy_linkrates *rates = funcdata; u32 lrmin = 0, lrmax = 0; lrmin = (rates->minimum_linkrate << 8); lrmax = (rates->maximum_linkrate << 12); tmp = readl(reg); if (lrmin) { tmp &= ~(0xf << 8); tmp |= lrmin; } if (lrmax) { tmp &= ~(0xf << 12); tmp |= lrmax; } writel(tmp, reg); break; } case PHY_FUNC_HARD_RESET: tmp = readl(reg); if (tmp & PHY_RST_HARD) break; writel(tmp | PHY_RST_HARD, reg); break; case PHY_FUNC_LINK_RESET: writel(readl(reg) | PHY_RST, reg); break; case PHY_FUNC_DISABLE: case PHY_FUNC_RELEASE_SPINUP_HOLD: default: rc = -EOPNOTSUPP; } return rc; } static void __devinit mvs_phy_init(struct mvs_info *mvi, int phy_id) { struct mvs_phy *phy = &mvi->phy[phy_id]; struct asd_sas_phy *sas_phy = &phy->sas_phy; sas_phy->enabled = (phy_id < mvi->chip->n_phy) ? 1 : 0; sas_phy->class = SAS; sas_phy->iproto = SAS_PROTOCOL_ALL; sas_phy->tproto = 0; sas_phy->type = PHY_TYPE_PHYSICAL; sas_phy->role = PHY_ROLE_INITIATOR; sas_phy->oob_mode = OOB_NOT_CONNECTED; sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN; sas_phy->id = phy_id; sas_phy->sas_addr = &mvi->sas_addr[0]; sas_phy->frame_rcvd = &phy->frame_rcvd[0]; sas_phy->ha = &mvi->sas; sas_phy->lldd_phy = phy; } static struct mvs_info * __devinit mvs_alloc(struct pci_dev *pdev, const struct pci_device_id *ent) { struct mvs_info *mvi; unsigned long res_start, res_len; struct asd_sas_phy **arr_phy; struct asd_sas_port **arr_port; const struct mvs_chip_info *chip = &mvs_chips[ent->driver_data]; int i; /* * alloc and init our per-HBA mvs_info struct */ mvi = kzalloc(sizeof(*mvi), GFP_KERNEL); if (!mvi) return NULL; spin_lock_init(&mvi->lock); mvi->pdev = pdev; mvi->chip = chip; if (pdev->device == 0x6440 && pdev->revision == 0) mvi->flags |= MVF_PHY_PWR_FIX; /* * alloc and init SCSI, SAS glue */ mvi->shost = scsi_host_alloc(&mvs_sht, sizeof(void *)); if (!mvi->shost) goto err_out; arr_phy = kcalloc(MVS_MAX_PHYS, sizeof(void *), GFP_KERNEL); arr_port = kcalloc(MVS_MAX_PHYS, sizeof(void *), GFP_KERNEL); if (!arr_phy || !arr_port) goto err_out; for (i = 0; i < MVS_MAX_PHYS; i++) { mvs_phy_init(mvi, i); arr_phy[i] = &mvi->phy[i].sas_phy; arr_port[i] = &mvi->port[i].sas_port; } SHOST_TO_SAS_HA(mvi->shost) = &mvi->sas; mvi->shost->transportt = mvs_stt; mvi->shost->max_id = ~0; mvi->shost->max_lun = ~0; mvi->shost->max_cmd_len = ~0; mvi->sas.sas_ha_name = DRV_NAME; mvi->sas.dev = &pdev->dev; mvi->sas.lldd_module = THIS_MODULE; mvi->sas.sas_addr = &mvi->sas_addr[0]; mvi->sas.sas_phy = arr_phy; mvi->sas.sas_port = arr_port; mvi->sas.num_phys = chip->n_phy; mvi->sas.lldd_max_execute_num = MVS_TX_RING_SZ - 1;/* FIXME: correct? */ mvi->sas.lldd_queue_size = MVS_TX_RING_SZ - 1; /* FIXME: correct? */ mvi->sas.lldd_ha = mvi; mvi->sas.core.shost = mvi->shost; mvs_tag_set(mvi, MVS_TX_RING_SZ - 1); /* * ioremap main and peripheral registers */ res_start = pci_resource_start(pdev, 2); res_len = pci_resource_len(pdev, 2); if (!res_start || !res_len) goto err_out; mvi->peri_regs = ioremap_nocache(res_start, res_len); if (!mvi->regs) goto err_out; res_start = pci_resource_start(pdev, 4); res_len = pci_resource_len(pdev, 4); if (!res_start || !res_len) goto err_out; mvi->regs = ioremap_nocache(res_start, res_len); if (!mvi->regs) goto err_out; /* * alloc and init our DMA areas */ mvi->tx = dma_alloc_coherent(&pdev->dev, sizeof(*mvi->tx) * MVS_TX_RING_SZ, &mvi->tx_dma, GFP_KERNEL); if (!mvi->tx) goto err_out; memset(mvi->tx, 0, sizeof(*mvi->tx) * MVS_TX_RING_SZ); mvi->rx_fis = dma_alloc_coherent(&pdev->dev, MVS_RX_FISL_SZ, &mvi->rx_fis_dma, GFP_KERNEL); if (!mvi->rx_fis) goto err_out; memset(mvi->rx_fis, 0, MVS_RX_FISL_SZ); mvi->rx = dma_alloc_coherent(&pdev->dev, sizeof(*mvi->rx) * MVS_RX_RING_SZ, &mvi->rx_dma, GFP_KERNEL); if (!mvi->rx) goto err_out; memset(mvi->rx, 0, sizeof(*mvi->rx) * MVS_RX_RING_SZ); mvi->rx[0] = cpu_to_le32(0xfff); mvi->rx_cons = 0xfff; mvi->slot = dma_alloc_coherent(&pdev->dev, sizeof(*mvi->slot) * MVS_SLOTS, &mvi->slot_dma, GFP_KERNEL); if (!mvi->slot) goto err_out; memset(mvi->slot, 0, sizeof(*mvi->slot) * MVS_SLOTS); for (i = 0; i < MVS_SLOTS; i++) { struct mvs_slot_info *slot = &mvi->slot_info[i]; slot->buf = dma_alloc_coherent(&pdev->dev, MVS_SLOT_BUF_SZ, &slot->buf_dma, GFP_KERNEL); if (!slot->buf) goto err_out; memset(slot->buf, 0, MVS_SLOT_BUF_SZ); } /* finally, read NVRAM to get our SAS address */ if (mvs_nvram_read(mvi, NVR_SAS_ADDR, &mvi->sas_addr, 8)) goto err_out; return mvi; err_out: mvs_free(mvi); return NULL; } static u32 mvs_cr32(void __iomem *regs, u32 addr) { mw32(CMD_ADDR, addr); return mr32(CMD_DATA); } static void mvs_cw32(void __iomem *regs, u32 addr, u32 val) { mw32(CMD_ADDR, addr); mw32(CMD_DATA, val); } #if 0 static u32 mvs_phy_read(struct mvs_info *mvi, unsigned int phy_id, u32 addr) { void __iomem *regs = mvi->regs; void __iomem *phy_regs = regs + MVS_P0_CFG_ADDR + (phy_id * 8); writel(addr, phy_regs); return readl(phy_regs + 4); } #endif static void mvs_phy_write(struct mvs_info *mvi, unsigned int phy_id, u32 addr, u32 val) { void __iomem *regs = mvi->regs; void __iomem *phy_regs = regs + MVS_P0_CFG_ADDR + (phy_id * 8); writel(addr, phy_regs); writel(val, phy_regs + 4); readl(phy_regs); /* flush */ } static void __devinit mvs_phy_hacks(struct mvs_info *mvi) { void __iomem *regs = mvi->regs; u32 tmp; /* workaround for SATA R-ERR, to ignore phy glitch */ tmp = mvs_cr32(regs, CMD_PHY_TIMER); tmp &= ~(1 << 9); tmp |= (1 << 10); mvs_cw32(regs, CMD_PHY_TIMER, tmp); /* enable retry 127 times */ mvs_cw32(regs, CMD_SAS_CTL1, 0x7f7f); /* extend open frame timeout to max */ tmp = mvs_cr32(regs, CMD_SAS_CTL0); tmp &= ~0xffff; tmp |= 0x3fff; mvs_cw32(regs, CMD_SAS_CTL0, tmp); /* workaround for WDTIMEOUT , set to 550 ms */ mvs_cw32(regs, CMD_WD_TIMER, 0xffffff); /* not to halt for different port op during wideport link change */ mvs_cw32(regs, CMD_APP_ERR_CONFIG, 0xffefbf7d); /* workaround for Seagate disk not-found OOB sequence, recv * COMINIT before sending out COMWAKE */ tmp = mvs_cr32(regs, CMD_PHY_MODE_21); tmp &= 0x0000ffff; tmp |= 0x00fa0000; mvs_cw32(regs, CMD_PHY_MODE_21, tmp); tmp = mvs_cr32(regs, CMD_PHY_TIMER); tmp &= 0x1fffffff; tmp |= (2U << 29); /* 8 ms retry */ mvs_cw32(regs, CMD_PHY_TIMER, tmp); } static int __devinit mvs_hw_init(struct mvs_info *mvi) { void __iomem *regs = mvi->regs; int i; u32 tmp, cctl; /* make sure interrupts are masked immediately (paranoia) */ mw32(GBL_CTL, 0); tmp = mr32(GBL_CTL); if (!(tmp & HBA_RST)) { if (mvi->flags & MVF_PHY_PWR_FIX) { pci_read_config_dword(mvi->pdev, PCR_PHY_CTL, &tmp); tmp &= ~PCTL_PWR_ON; tmp |= PCTL_OFF; pci_write_config_dword(mvi->pdev, PCR_PHY_CTL, tmp); pci_read_config_dword(mvi->pdev, PCR_PHY_CTL2, &tmp); tmp &= ~PCTL_PWR_ON; tmp |= PCTL_OFF; pci_write_config_dword(mvi->pdev, PCR_PHY_CTL2, tmp); } /* global reset, incl. COMRESET/H_RESET_N (self-clearing) */ mw32_f(GBL_CTL, HBA_RST); } /* wait for reset to finish; timeout is just a guess */ i = 1000; while (i-- > 0) { msleep(10); if (!(mr32(GBL_CTL) & HBA_RST)) break; } if (mr32(GBL_CTL) & HBA_RST) { dev_printk(KERN_ERR, &mvi->pdev->dev, "HBA reset failed\n"); return -EBUSY; } /* make sure RST is set; HBA_RST /should/ have done that for us */ cctl = mr32(CTL); if (cctl & CCTL_RST) cctl &= ~CCTL_RST; else mw32_f(CTL, cctl | CCTL_RST); pci_read_config_dword(mvi->pdev, PCR_PHY_CTL, &tmp); tmp |= PCTL_PWR_ON; tmp &= ~PCTL_OFF; pci_write_config_dword(mvi->pdev, PCR_PHY_CTL, tmp); pci_read_config_dword(mvi->pdev, PCR_PHY_CTL2, &tmp); tmp |= PCTL_PWR_ON; tmp &= ~PCTL_OFF; pci_write_config_dword(mvi->pdev, PCR_PHY_CTL2, tmp); mw32_f(CTL, cctl); mvs_phy_hacks(mvi); mw32(CMD_LIST_LO, mvi->slot_dma); mw32(CMD_LIST_HI, (mvi->slot_dma >> 16) >> 16); mw32(RX_FIS_LO, mvi->rx_fis_dma); mw32(RX_FIS_HI, (mvi->rx_fis_dma >> 16) >> 16); mw32(TX_CFG, MVS_TX_RING_SZ); mw32(TX_LO, mvi->tx_dma); mw32(TX_HI, (mvi->tx_dma >> 16) >> 16); mw32(RX_CFG, MVS_RX_RING_SZ); mw32(RX_LO, mvi->rx_dma); mw32(RX_HI, (mvi->rx_dma >> 16) >> 16); /* init and reset phys */ for (i = 0; i < mvi->chip->n_phy; i++) { /* FIXME: is this the correct dword order? */ u32 lo = *((u32 *) &mvi->sas_addr[0]); u32 hi = *((u32 *) &mvi->sas_addr[4]); /* set phy local SAS address */ mvs_phy_write(mvi, i, PHYR_ADDR_LO, lo); mvs_phy_write(mvi, i, PHYR_ADDR_HI, hi); /* reset phy */ tmp = readl(regs + MVS_P0_SER_CTLSTAT + (i * 4)); tmp |= PHY_RST; writel(tmp, regs + MVS_P0_SER_CTLSTAT + (i * 4)); } msleep(100); for (i = 0; i < mvi->chip->n_phy; i++) { /* set phy int mask */ writel(PHYEV_BROAD_CH | PHYEV_RDY_CH, regs + MVS_P0_INT_MASK + (i * 8)); /* clear phy int status */ tmp = readl(regs + MVS_P0_INT_STAT + (i * 8)); writel(tmp, regs + MVS_P0_INT_STAT + (i * 8)); } /* FIXME: update wide port bitmaps */ /* ladies and gentlemen, start your engines */ mw32(TX_CFG, MVS_TX_RING_SZ | TX_EN); mw32(RX_CFG, MVS_RX_RING_SZ | RX_EN); mw32(PCS, PCS_SATA_RETRY | PCS_FIS_RX_EN | PCS_CMD_EN | ((mvi->flags & MVF_MSI) ? PCS_SELF_CLEAR : 0)); /* re-enable interrupts globally */ mw32(GBL_CTL, INT_EN); return 0; } static void __devinit mvs_print_info(struct mvs_info *mvi) { struct pci_dev *pdev = mvi->pdev; static int printed_version; if (!printed_version++) dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n"); dev_printk(KERN_INFO, &pdev->dev, "%u phys, addr %llx\n", mvi->chip->n_phy, SAS_ADDR(mvi->sas_addr)); } static int __devinit mvs_pci_init(struct pci_dev *pdev, const struct pci_device_id *ent) { int rc; struct mvs_info *mvi; irq_handler_t irq_handler = mvs_interrupt; rc = pci_enable_device(pdev); if (rc) return rc; pci_set_master(pdev); rc = pci_request_regions(pdev, DRV_NAME); if (rc) goto err_out_disable; rc = pci_go_64(pdev); if (rc) goto err_out_regions; mvi = mvs_alloc(pdev, ent); if (!mvi) { rc = -ENOMEM; goto err_out_regions; } rc = mvs_hw_init(mvi); if (rc) goto err_out_mvi; if (!pci_enable_msi(pdev)) { mvi->flags |= MVF_MSI; irq_handler = mvs_msi_interrupt; } rc = request_irq(pdev->irq, irq_handler, IRQF_SHARED, DRV_NAME, mvi); if (rc) goto err_out_msi; rc = scsi_add_host(mvi->shost, &pdev->dev); if (rc) goto err_out_irq; rc = sas_register_ha(&mvi->sas); if (rc) goto err_out_shost; pci_set_drvdata(pdev, mvi); mvs_print_info(mvi); scsi_scan_host(mvi->shost); return 0; err_out_shost: scsi_remove_host(mvi->shost); err_out_irq: free_irq(pdev->irq, mvi); err_out_msi: if (mvi->flags |= MVF_MSI) pci_disable_msi(pdev); err_out_mvi: mvs_free(mvi); err_out_regions: pci_release_regions(pdev); err_out_disable: pci_disable_device(pdev); return rc; } static void __devexit mvs_pci_remove(struct pci_dev *pdev) { struct mvs_info *mvi = pci_get_drvdata(pdev); pci_set_drvdata(pdev, NULL); sas_unregister_ha(&mvi->sas); sas_remove_host(mvi->shost); scsi_remove_host(mvi->shost); free_irq(pdev->irq, mvi); if (mvi->flags & MVF_MSI) pci_disable_msi(pdev); mvs_free(mvi); pci_release_regions(pdev); pci_disable_device(pdev); } static struct sas_domain_function_template mvs_transport_ops = { .lldd_execute_task = mvs_task_exec, .lldd_control_phy = mvs_phy_control, }; static struct pci_device_id __devinitdata mvs_pci_table[] = { { PCI_VDEVICE(MARVELL, 0x6320), chip_6320 }, { PCI_VDEVICE(MARVELL, 0x6340), chip_6440 }, { PCI_VDEVICE(MARVELL, 0x6440), chip_6440 }, { PCI_VDEVICE(MARVELL, 0x6480), chip_6480 }, { } /* terminate list */ }; static struct pci_driver mvs_pci_driver = { .name = DRV_NAME, .id_table = mvs_pci_table, .probe = mvs_pci_init, .remove = __devexit_p(mvs_pci_remove), }; static int __init mvs_init(void) { int rc; mvs_stt = sas_domain_attach_transport(&mvs_transport_ops); if (!mvs_stt) return -ENOMEM; rc = pci_register_driver(&mvs_pci_driver); if (rc) goto err_out; return 0; err_out: sas_release_transport(mvs_stt); return rc; } static void __exit mvs_exit(void) { pci_unregister_driver(&mvs_pci_driver); sas_release_transport(mvs_stt); } module_init(mvs_init); module_exit(mvs_exit); MODULE_AUTHOR("Jeff Garzik "); MODULE_DESCRIPTION("Marvell 88SE6440 SAS/SATA controller driver"); MODULE_VERSION(DRV_VERSION); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(pci, mvs_pci_table);