/* * Copyright (c) 2010 Broadcom Corporation * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* Toplevel file. Relies on dhd_linux.c to send commands to the dongle. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dhd.h" #include "wl_cfg80211.h" #define BRCMF_SCAN_IE_LEN_MAX 2048 #define BRCMF_PNO_VERSION 2 #define BRCMF_PNO_TIME 30 #define BRCMF_PNO_REPEAT 4 #define BRCMF_PNO_FREQ_EXPO_MAX 3 #define BRCMF_PNO_MAX_PFN_COUNT 16 #define BRCMF_PNO_ENABLE_ADAPTSCAN_BIT 6 #define BRCMF_PNO_HIDDEN_BIT 2 #define BRCMF_PNO_WPA_AUTH_ANY 0xFFFFFFFF #define BRCMF_PNO_SCAN_COMPLETE 1 #define BRCMF_PNO_SCAN_INCOMPLETE 0 #define TLV_LEN_OFF 1 /* length offset */ #define TLV_HDR_LEN 2 /* header length */ #define TLV_BODY_OFF 2 /* body offset */ #define TLV_OUI_LEN 3 /* oui id length */ #define WPA_OUI "\x00\x50\xF2" /* WPA OUI */ #define WPA_OUI_TYPE 1 #define RSN_OUI "\x00\x0F\xAC" /* RSN OUI */ #define WME_OUI_TYPE 2 #define VS_IE_FIXED_HDR_LEN 6 #define WPA_IE_VERSION_LEN 2 #define WPA_IE_MIN_OUI_LEN 4 #define WPA_IE_SUITE_COUNT_LEN 2 #define WPA_CIPHER_NONE 0 /* None */ #define WPA_CIPHER_WEP_40 1 /* WEP (40-bit) */ #define WPA_CIPHER_TKIP 2 /* TKIP: default for WPA */ #define WPA_CIPHER_AES_CCM 4 /* AES (CCM) */ #define WPA_CIPHER_WEP_104 5 /* WEP (104-bit) */ #define RSN_AKM_NONE 0 /* None (IBSS) */ #define RSN_AKM_UNSPECIFIED 1 /* Over 802.1x */ #define RSN_AKM_PSK 2 /* Pre-shared Key */ #define RSN_CAP_LEN 2 /* Length of RSN capabilities */ #define RSN_CAP_PTK_REPLAY_CNTR_MASK 0x000C #define VNDR_IE_CMD_LEN 4 /* length of the set command * string :"add", "del" (+ NUL) */ #define VNDR_IE_COUNT_OFFSET 4 #define VNDR_IE_PKTFLAG_OFFSET 8 #define VNDR_IE_VSIE_OFFSET 12 #define VNDR_IE_HDR_SIZE 12 #define VNDR_IE_BEACON_FLAG 0x1 #define VNDR_IE_PRBRSP_FLAG 0x2 #define MAX_VNDR_IE_NUMBER 5 #define DOT11_MGMT_HDR_LEN 24 /* d11 management header len */ #define DOT11_BCN_PRB_FIXED_LEN 12 /* beacon/probe fixed length */ #define BRCMF_ASSOC_PARAMS_FIXED_SIZE \ (sizeof(struct brcmf_assoc_params_le) - sizeof(u16)) static const u8 ether_bcast[ETH_ALEN] = {255, 255, 255, 255, 255, 255}; static u32 brcmf_dbg_level = WL_DBG_ERR; static bool check_sys_up(struct wiphy *wiphy) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); if (!test_bit(WL_STATUS_READY, &cfg->status)) { WL_INFO("device is not ready : status (%d)\n", (int)cfg->status); return false; } return true; } #define CHAN2G(_channel, _freq, _flags) { \ .band = IEEE80211_BAND_2GHZ, \ .center_freq = (_freq), \ .hw_value = (_channel), \ .flags = (_flags), \ .max_antenna_gain = 0, \ .max_power = 30, \ } #define CHAN5G(_channel, _flags) { \ .band = IEEE80211_BAND_5GHZ, \ .center_freq = 5000 + (5 * (_channel)), \ .hw_value = (_channel), \ .flags = (_flags), \ .max_antenna_gain = 0, \ .max_power = 30, \ } #define RATE_TO_BASE100KBPS(rate) (((rate) * 10) / 2) #define RATETAB_ENT(_rateid, _flags) \ { \ .bitrate = RATE_TO_BASE100KBPS(_rateid), \ .hw_value = (_rateid), \ .flags = (_flags), \ } static struct ieee80211_rate __wl_rates[] = { RATETAB_ENT(BRCM_RATE_1M, 0), RATETAB_ENT(BRCM_RATE_2M, IEEE80211_RATE_SHORT_PREAMBLE), RATETAB_ENT(BRCM_RATE_5M5, IEEE80211_RATE_SHORT_PREAMBLE), RATETAB_ENT(BRCM_RATE_11M, IEEE80211_RATE_SHORT_PREAMBLE), RATETAB_ENT(BRCM_RATE_6M, 0), RATETAB_ENT(BRCM_RATE_9M, 0), RATETAB_ENT(BRCM_RATE_12M, 0), RATETAB_ENT(BRCM_RATE_18M, 0), RATETAB_ENT(BRCM_RATE_24M, 0), RATETAB_ENT(BRCM_RATE_36M, 0), RATETAB_ENT(BRCM_RATE_48M, 0), RATETAB_ENT(BRCM_RATE_54M, 0), }; #define wl_a_rates (__wl_rates + 4) #define wl_a_rates_size 8 #define wl_g_rates (__wl_rates + 0) #define wl_g_rates_size 12 static struct ieee80211_channel __wl_2ghz_channels[] = { CHAN2G(1, 2412, 0), CHAN2G(2, 2417, 0), CHAN2G(3, 2422, 0), CHAN2G(4, 2427, 0), CHAN2G(5, 2432, 0), CHAN2G(6, 2437, 0), CHAN2G(7, 2442, 0), CHAN2G(8, 2447, 0), CHAN2G(9, 2452, 0), CHAN2G(10, 2457, 0), CHAN2G(11, 2462, 0), CHAN2G(12, 2467, 0), CHAN2G(13, 2472, 0), CHAN2G(14, 2484, 0), }; static struct ieee80211_channel __wl_5ghz_a_channels[] = { CHAN5G(34, 0), CHAN5G(36, 0), CHAN5G(38, 0), CHAN5G(40, 0), CHAN5G(42, 0), CHAN5G(44, 0), CHAN5G(46, 0), CHAN5G(48, 0), CHAN5G(52, 0), CHAN5G(56, 0), CHAN5G(60, 0), CHAN5G(64, 0), CHAN5G(100, 0), CHAN5G(104, 0), CHAN5G(108, 0), CHAN5G(112, 0), CHAN5G(116, 0), CHAN5G(120, 0), CHAN5G(124, 0), CHAN5G(128, 0), CHAN5G(132, 0), CHAN5G(136, 0), CHAN5G(140, 0), CHAN5G(149, 0), CHAN5G(153, 0), CHAN5G(157, 0), CHAN5G(161, 0), CHAN5G(165, 0), CHAN5G(184, 0), CHAN5G(188, 0), CHAN5G(192, 0), CHAN5G(196, 0), CHAN5G(200, 0), CHAN5G(204, 0), CHAN5G(208, 0), CHAN5G(212, 0), CHAN5G(216, 0), }; static struct ieee80211_channel __wl_5ghz_n_channels[] = { CHAN5G(32, 0), CHAN5G(34, 0), CHAN5G(36, 0), CHAN5G(38, 0), CHAN5G(40, 0), CHAN5G(42, 0), CHAN5G(44, 0), CHAN5G(46, 0), CHAN5G(48, 0), CHAN5G(50, 0), CHAN5G(52, 0), CHAN5G(54, 0), CHAN5G(56, 0), CHAN5G(58, 0), CHAN5G(60, 0), CHAN5G(62, 0), CHAN5G(64, 0), CHAN5G(66, 0), CHAN5G(68, 0), CHAN5G(70, 0), CHAN5G(72, 0), CHAN5G(74, 0), CHAN5G(76, 0), CHAN5G(78, 0), CHAN5G(80, 0), CHAN5G(82, 0), CHAN5G(84, 0), CHAN5G(86, 0), CHAN5G(88, 0), CHAN5G(90, 0), CHAN5G(92, 0), CHAN5G(94, 0), CHAN5G(96, 0), CHAN5G(98, 0), CHAN5G(100, 0), CHAN5G(102, 0), CHAN5G(104, 0), CHAN5G(106, 0), CHAN5G(108, 0), CHAN5G(110, 0), CHAN5G(112, 0), CHAN5G(114, 0), CHAN5G(116, 0), CHAN5G(118, 0), CHAN5G(120, 0), CHAN5G(122, 0), CHAN5G(124, 0), CHAN5G(126, 0), CHAN5G(128, 0), CHAN5G(130, 0), CHAN5G(132, 0), CHAN5G(134, 0), CHAN5G(136, 0), CHAN5G(138, 0), CHAN5G(140, 0), CHAN5G(142, 0), CHAN5G(144, 0), CHAN5G(145, 0), CHAN5G(146, 0), CHAN5G(147, 0), CHAN5G(148, 0), CHAN5G(149, 0), CHAN5G(150, 0), CHAN5G(151, 0), CHAN5G(152, 0), CHAN5G(153, 0), CHAN5G(154, 0), CHAN5G(155, 0), CHAN5G(156, 0), CHAN5G(157, 0), CHAN5G(158, 0), CHAN5G(159, 0), CHAN5G(160, 0), CHAN5G(161, 0), CHAN5G(162, 0), CHAN5G(163, 0), CHAN5G(164, 0), CHAN5G(165, 0), CHAN5G(166, 0), CHAN5G(168, 0), CHAN5G(170, 0), CHAN5G(172, 0), CHAN5G(174, 0), CHAN5G(176, 0), CHAN5G(178, 0), CHAN5G(180, 0), CHAN5G(182, 0), CHAN5G(184, 0), CHAN5G(186, 0), CHAN5G(188, 0), CHAN5G(190, 0), CHAN5G(192, 0), CHAN5G(194, 0), CHAN5G(196, 0), CHAN5G(198, 0), CHAN5G(200, 0), CHAN5G(202, 0), CHAN5G(204, 0), CHAN5G(206, 0), CHAN5G(208, 0), CHAN5G(210, 0), CHAN5G(212, 0), CHAN5G(214, 0), CHAN5G(216, 0), CHAN5G(218, 0), CHAN5G(220, 0), CHAN5G(222, 0), CHAN5G(224, 0), CHAN5G(226, 0), CHAN5G(228, 0), }; static struct ieee80211_supported_band __wl_band_2ghz = { .band = IEEE80211_BAND_2GHZ, .channels = __wl_2ghz_channels, .n_channels = ARRAY_SIZE(__wl_2ghz_channels), .bitrates = wl_g_rates, .n_bitrates = wl_g_rates_size, }; static struct ieee80211_supported_band __wl_band_5ghz_a = { .band = IEEE80211_BAND_5GHZ, .channels = __wl_5ghz_a_channels, .n_channels = ARRAY_SIZE(__wl_5ghz_a_channels), .bitrates = wl_a_rates, .n_bitrates = wl_a_rates_size, }; static struct ieee80211_supported_band __wl_band_5ghz_n = { .band = IEEE80211_BAND_5GHZ, .channels = __wl_5ghz_n_channels, .n_channels = ARRAY_SIZE(__wl_5ghz_n_channels), .bitrates = wl_a_rates, .n_bitrates = wl_a_rates_size, }; static const u32 __wl_cipher_suites[] = { WLAN_CIPHER_SUITE_WEP40, WLAN_CIPHER_SUITE_WEP104, WLAN_CIPHER_SUITE_TKIP, WLAN_CIPHER_SUITE_CCMP, WLAN_CIPHER_SUITE_AES_CMAC, }; /* tag_ID/length/value_buffer tuple */ struct brcmf_tlv { u8 id; u8 len; u8 data[1]; }; /* Vendor specific ie. id = 221, oui and type defines exact ie */ struct brcmf_vs_tlv { u8 id; u8 len; u8 oui[3]; u8 oui_type; }; struct parsed_vndr_ie_info { u8 *ie_ptr; u32 ie_len; /* total length including id & length field */ struct brcmf_vs_tlv vndrie; }; struct parsed_vndr_ies { u32 count; struct parsed_vndr_ie_info ie_info[MAX_VNDR_IE_NUMBER]; }; /* Quarter dBm units to mW * Table starts at QDBM_OFFSET, so the first entry is mW for qdBm=153 * Table is offset so the last entry is largest mW value that fits in * a u16. */ #define QDBM_OFFSET 153 /* Offset for first entry */ #define QDBM_TABLE_LEN 40 /* Table size */ /* Smallest mW value that will round up to the first table entry, QDBM_OFFSET. * Value is ( mW(QDBM_OFFSET - 1) + mW(QDBM_OFFSET) ) / 2 */ #define QDBM_TABLE_LOW_BOUND 6493 /* Low bound */ /* Largest mW value that will round down to the last table entry, * QDBM_OFFSET + QDBM_TABLE_LEN-1. * Value is ( mW(QDBM_OFFSET + QDBM_TABLE_LEN - 1) + * mW(QDBM_OFFSET + QDBM_TABLE_LEN) ) / 2. */ #define QDBM_TABLE_HIGH_BOUND 64938 /* High bound */ static const u16 nqdBm_to_mW_map[QDBM_TABLE_LEN] = { /* qdBm: +0 +1 +2 +3 +4 +5 +6 +7 */ /* 153: */ 6683, 7079, 7499, 7943, 8414, 8913, 9441, 10000, /* 161: */ 10593, 11220, 11885, 12589, 13335, 14125, 14962, 15849, /* 169: */ 16788, 17783, 18836, 19953, 21135, 22387, 23714, 25119, /* 177: */ 26607, 28184, 29854, 31623, 33497, 35481, 37584, 39811, /* 185: */ 42170, 44668, 47315, 50119, 53088, 56234, 59566, 63096 }; static u16 brcmf_qdbm_to_mw(u8 qdbm) { uint factor = 1; int idx = qdbm - QDBM_OFFSET; if (idx >= QDBM_TABLE_LEN) /* clamp to max u16 mW value */ return 0xFFFF; /* scale the qdBm index up to the range of the table 0-40 * where an offset of 40 qdBm equals a factor of 10 mW. */ while (idx < 0) { idx += 40; factor *= 10; } /* return the mW value scaled down to the correct factor of 10, * adding in factor/2 to get proper rounding. */ return (nqdBm_to_mW_map[idx] + factor / 2) / factor; } static u8 brcmf_mw_to_qdbm(u16 mw) { u8 qdbm; int offset; uint mw_uint = mw; uint boundary; /* handle boundary case */ if (mw_uint <= 1) return 0; offset = QDBM_OFFSET; /* move mw into the range of the table */ while (mw_uint < QDBM_TABLE_LOW_BOUND) { mw_uint *= 10; offset -= 40; } for (qdbm = 0; qdbm < QDBM_TABLE_LEN - 1; qdbm++) { boundary = nqdBm_to_mW_map[qdbm] + (nqdBm_to_mW_map[qdbm + 1] - nqdBm_to_mW_map[qdbm]) / 2; if (mw_uint < boundary) break; } qdbm += (u8) offset; return qdbm; } /* function for reading/writing a single u32 from/to the dongle */ static int brcmf_exec_dcmd_u32(struct net_device *ndev, u32 cmd, u32 *par) { int err; __le32 par_le = cpu_to_le32(*par); err = brcmf_exec_dcmd(ndev, cmd, &par_le, sizeof(__le32)); *par = le32_to_cpu(par_le); return err; } static s32 brcmf_dev_iovar_setbuf_bsscfg(struct net_device *ndev, s8 *name, void *param, s32 paramlen, void *buf, s32 buflen, s32 bssidx) { s32 err = -ENOMEM; u32 len; len = brcmf_c_mkiovar_bsscfg(name, param, paramlen, buf, buflen, bssidx); BUG_ON(!len); if (len > 0) err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_VAR, buf, len); if (err) WL_ERR("error (%d)\n", err); return err; } static s32 brcmf_dev_iovar_getbuf_bsscfg(struct net_device *ndev, s8 *name, void *param, s32 paramlen, void *buf, s32 buflen, s32 bssidx) { s32 err = -ENOMEM; u32 len; len = brcmf_c_mkiovar_bsscfg(name, param, paramlen, buf, buflen, bssidx); BUG_ON(!len); if (len > 0) err = brcmf_exec_dcmd(ndev, BRCMF_C_GET_VAR, buf, len); if (err) WL_ERR("error (%d)\n", err); return err; } static void convert_key_from_CPU(struct brcmf_wsec_key *key, struct brcmf_wsec_key_le *key_le) { key_le->index = cpu_to_le32(key->index); key_le->len = cpu_to_le32(key->len); key_le->algo = cpu_to_le32(key->algo); key_le->flags = cpu_to_le32(key->flags); key_le->rxiv.hi = cpu_to_le32(key->rxiv.hi); key_le->rxiv.lo = cpu_to_le16(key->rxiv.lo); key_le->iv_initialized = cpu_to_le32(key->iv_initialized); memcpy(key_le->data, key->data, sizeof(key->data)); memcpy(key_le->ea, key->ea, sizeof(key->ea)); } static int send_key_to_dongle(struct brcmf_cfg80211_info *cfg, s32 bssidx, struct net_device *ndev, struct brcmf_wsec_key *key) { int err; struct brcmf_wsec_key_le key_le; convert_key_from_CPU(key, &key_le); err = brcmf_dev_iovar_setbuf_bsscfg(ndev, "wsec_key", &key_le, sizeof(key_le), cfg->extra_buf, WL_EXTRA_BUF_MAX, bssidx); if (err) WL_ERR("wsec_key error (%d)\n", err); return err; } static s32 brcmf_cfg80211_change_iface(struct wiphy *wiphy, struct net_device *ndev, enum nl80211_iftype type, u32 *flags, struct vif_params *params) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); s32 infra = 0; s32 ap = 0; s32 err = 0; WL_TRACE("Enter, ndev=%p, type=%d\n", ndev, type); switch (type) { case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_WDS: WL_ERR("type (%d) : currently we do not support this type\n", type); return -EOPNOTSUPP; case NL80211_IFTYPE_ADHOC: cfg->conf->mode = WL_MODE_IBSS; infra = 0; break; case NL80211_IFTYPE_STATION: cfg->conf->mode = WL_MODE_BSS; infra = 1; break; case NL80211_IFTYPE_AP: cfg->conf->mode = WL_MODE_AP; ap = 1; break; default: err = -EINVAL; goto done; } if (ap) { set_bit(WL_STATUS_AP_CREATING, &cfg->status); if (!cfg->ap_info) cfg->ap_info = kzalloc(sizeof(*cfg->ap_info), GFP_KERNEL); if (!cfg->ap_info) { err = -ENOMEM; goto done; } WL_INFO("IF Type = AP\n"); } else { err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_SET_INFRA, &infra); if (err) { WL_ERR("WLC_SET_INFRA error (%d)\n", err); err = -EAGAIN; goto done; } WL_INFO("IF Type = %s\n", (cfg->conf->mode == WL_MODE_IBSS) ? "Adhoc" : "Infra"); } ndev->ieee80211_ptr->iftype = type; done: WL_TRACE("Exit\n"); return err; } static s32 brcmf_dev_intvar_set(struct net_device *ndev, s8 *name, s32 val) { s8 buf[BRCMF_DCMD_SMLEN]; u32 len; s32 err = 0; __le32 val_le; val_le = cpu_to_le32(val); len = brcmf_c_mkiovar(name, (char *)(&val_le), sizeof(val_le), buf, sizeof(buf)); BUG_ON(!len); err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_VAR, buf, len); if (err) WL_ERR("error (%d)\n", err); return err; } static s32 brcmf_dev_intvar_get(struct net_device *ndev, s8 *name, s32 *retval) { union { s8 buf[BRCMF_DCMD_SMLEN]; __le32 val; } var; u32 len; u32 data_null; s32 err = 0; len = brcmf_c_mkiovar(name, (char *)(&data_null), 0, (char *)(&var), sizeof(var.buf)); BUG_ON(!len); err = brcmf_exec_dcmd(ndev, BRCMF_C_GET_VAR, &var, len); if (err) WL_ERR("error (%d)\n", err); *retval = le32_to_cpu(var.val); return err; } static s32 brcmf_dev_intvar_set_bsscfg(struct net_device *ndev, s8 *name, u32 val, s32 bssidx) { s8 buf[BRCMF_DCMD_SMLEN]; __le32 val_le; val_le = cpu_to_le32(val); return brcmf_dev_iovar_setbuf_bsscfg(ndev, name, &val_le, sizeof(val_le), buf, sizeof(buf), bssidx); } static s32 brcmf_dev_intvar_get_bsscfg(struct net_device *ndev, s8 *name, s32 *val, s32 bssidx) { s8 buf[BRCMF_DCMD_SMLEN]; s32 err; __le32 val_le; memset(buf, 0, sizeof(buf)); err = brcmf_dev_iovar_getbuf_bsscfg(ndev, name, val, sizeof(*val), buf, sizeof(buf), bssidx); if (err == 0) { memcpy(&val_le, buf, sizeof(val_le)); *val = le32_to_cpu(val_le); } return err; } /* * For now brcmf_find_bssidx will return 0. Once p2p gets implemented this * should return the ndev matching bssidx. */ static s32 brcmf_find_bssidx(struct brcmf_cfg80211_info *cfg, struct net_device *ndev) { return 0; } static void brcmf_set_mpc(struct net_device *ndev, int mpc) { s32 err = 0; struct brcmf_cfg80211_info *cfg = ndev_to_cfg(ndev); if (test_bit(WL_STATUS_READY, &cfg->status)) { err = brcmf_dev_intvar_set(ndev, "mpc", mpc); if (err) { WL_ERR("fail to set mpc\n"); return; } WL_INFO("MPC : %d\n", mpc); } } static void brcmf_iscan_prep(struct brcmf_scan_params_le *params_le, struct brcmf_ssid *ssid) { memcpy(params_le->bssid, ether_bcast, ETH_ALEN); params_le->bss_type = DOT11_BSSTYPE_ANY; params_le->scan_type = 0; params_le->channel_num = 0; params_le->nprobes = cpu_to_le32(-1); params_le->active_time = cpu_to_le32(-1); params_le->passive_time = cpu_to_le32(-1); params_le->home_time = cpu_to_le32(-1); if (ssid && ssid->SSID_len) { params_le->ssid_le.SSID_len = cpu_to_le32(ssid->SSID_len); memcpy(¶ms_le->ssid_le.SSID, ssid->SSID, ssid->SSID_len); } } static s32 brcmf_dev_iovar_setbuf(struct net_device *ndev, s8 * iovar, void *param, s32 paramlen, void *bufptr, s32 buflen) { s32 iolen; iolen = brcmf_c_mkiovar(iovar, param, paramlen, bufptr, buflen); BUG_ON(!iolen); return brcmf_exec_dcmd(ndev, BRCMF_C_SET_VAR, bufptr, iolen); } static s32 brcmf_dev_iovar_getbuf(struct net_device *ndev, s8 * iovar, void *param, s32 paramlen, void *bufptr, s32 buflen) { s32 iolen; iolen = brcmf_c_mkiovar(iovar, param, paramlen, bufptr, buflen); BUG_ON(!iolen); return brcmf_exec_dcmd(ndev, BRCMF_C_GET_VAR, bufptr, buflen); } static s32 brcmf_run_iscan(struct brcmf_cfg80211_iscan_ctrl *iscan, struct brcmf_ssid *ssid, u16 action) { s32 params_size = BRCMF_SCAN_PARAMS_FIXED_SIZE + offsetof(struct brcmf_iscan_params_le, params_le); struct brcmf_iscan_params_le *params; s32 err = 0; if (ssid && ssid->SSID_len) params_size += sizeof(struct brcmf_ssid); params = kzalloc(params_size, GFP_KERNEL); if (!params) return -ENOMEM; BUG_ON(params_size >= BRCMF_DCMD_SMLEN); brcmf_iscan_prep(¶ms->params_le, ssid); params->version = cpu_to_le32(BRCMF_ISCAN_REQ_VERSION); params->action = cpu_to_le16(action); params->scan_duration = cpu_to_le16(0); err = brcmf_dev_iovar_setbuf(iscan->ndev, "iscan", params, params_size, iscan->dcmd_buf, BRCMF_DCMD_SMLEN); if (err) { if (err == -EBUSY) WL_INFO("system busy : iscan canceled\n"); else WL_ERR("error (%d)\n", err); } kfree(params); return err; } static s32 brcmf_do_iscan(struct brcmf_cfg80211_info *cfg) { struct brcmf_cfg80211_iscan_ctrl *iscan = cfg_to_iscan(cfg); struct net_device *ndev = cfg_to_ndev(cfg); struct brcmf_ssid ssid; __le32 passive_scan; s32 err = 0; /* Broadcast scan by default */ memset(&ssid, 0, sizeof(ssid)); iscan->state = WL_ISCAN_STATE_SCANING; passive_scan = cfg->active_scan ? 0 : cpu_to_le32(1); err = brcmf_exec_dcmd(cfg_to_ndev(cfg), BRCMF_C_SET_PASSIVE_SCAN, &passive_scan, sizeof(passive_scan)); if (err) { WL_ERR("error (%d)\n", err); return err; } brcmf_set_mpc(ndev, 0); cfg->iscan_kickstart = true; err = brcmf_run_iscan(iscan, &ssid, BRCMF_SCAN_ACTION_START); if (err) { brcmf_set_mpc(ndev, 1); cfg->iscan_kickstart = false; return err; } mod_timer(&iscan->timer, jiffies + iscan->timer_ms * HZ / 1000); iscan->timer_on = 1; return err; } static s32 brcmf_cfg80211_iscan(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_scan_request *request, struct cfg80211_ssid *this_ssid) { struct brcmf_cfg80211_info *cfg = ndev_to_cfg(ndev); struct cfg80211_ssid *ssids; struct brcmf_cfg80211_scan_req *sr = cfg->scan_req_int; __le32 passive_scan; bool iscan_req; bool spec_scan; s32 err = 0; u32 SSID_len; if (test_bit(WL_STATUS_SCANNING, &cfg->status)) { WL_ERR("Scanning already : status (%lu)\n", cfg->status); return -EAGAIN; } if (test_bit(WL_STATUS_SCAN_ABORTING, &cfg->status)) { WL_ERR("Scanning being aborted : status (%lu)\n", cfg->status); return -EAGAIN; } if (test_bit(WL_STATUS_CONNECTING, &cfg->status)) { WL_ERR("Connecting : status (%lu)\n", cfg->status); return -EAGAIN; } iscan_req = false; spec_scan = false; if (request) { /* scan bss */ ssids = request->ssids; if (cfg->iscan_on && (!ssids || !ssids->ssid_len)) iscan_req = true; } else { /* scan in ibss */ /* we don't do iscan in ibss */ ssids = this_ssid; } cfg->scan_request = request; set_bit(WL_STATUS_SCANNING, &cfg->status); if (iscan_req) { err = brcmf_do_iscan(cfg); if (!err) return err; else goto scan_out; } else { WL_SCAN("ssid \"%s\", ssid_len (%d)\n", ssids->ssid, ssids->ssid_len); memset(&sr->ssid_le, 0, sizeof(sr->ssid_le)); SSID_len = min_t(u8, sizeof(sr->ssid_le.SSID), ssids->ssid_len); sr->ssid_le.SSID_len = cpu_to_le32(0); if (SSID_len) { memcpy(sr->ssid_le.SSID, ssids->ssid, SSID_len); sr->ssid_le.SSID_len = cpu_to_le32(SSID_len); spec_scan = true; } else { WL_SCAN("Broadcast scan\n"); } passive_scan = cfg->active_scan ? 0 : cpu_to_le32(1); err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_PASSIVE_SCAN, &passive_scan, sizeof(passive_scan)); if (err) { WL_ERR("WLC_SET_PASSIVE_SCAN error (%d)\n", err); goto scan_out; } brcmf_set_mpc(ndev, 0); err = brcmf_exec_dcmd(ndev, BRCMF_C_SCAN, &sr->ssid_le, sizeof(sr->ssid_le)); if (err) { if (err == -EBUSY) WL_INFO("system busy : scan for \"%s\" " "canceled\n", sr->ssid_le.SSID); else WL_ERR("WLC_SCAN error (%d)\n", err); brcmf_set_mpc(ndev, 1); goto scan_out; } } return 0; scan_out: clear_bit(WL_STATUS_SCANNING, &cfg->status); cfg->scan_request = NULL; return err; } static void brcmf_escan_prep(struct brcmf_scan_params_le *params_le, struct cfg80211_scan_request *request) { u32 n_ssids; u32 n_channels; s32 i; s32 offset; u16 chanspec; u16 channel; struct ieee80211_channel *req_channel; char *ptr; struct brcmf_ssid_le ssid_le; memcpy(params_le->bssid, ether_bcast, ETH_ALEN); params_le->bss_type = DOT11_BSSTYPE_ANY; params_le->scan_type = 0; params_le->channel_num = 0; params_le->nprobes = cpu_to_le32(-1); params_le->active_time = cpu_to_le32(-1); params_le->passive_time = cpu_to_le32(-1); params_le->home_time = cpu_to_le32(-1); memset(¶ms_le->ssid_le, 0, sizeof(params_le->ssid_le)); /* if request is null exit so it will be all channel broadcast scan */ if (!request) return; n_ssids = request->n_ssids; n_channels = request->n_channels; /* Copy channel array if applicable */ WL_SCAN("### List of channelspecs to scan ### %d\n", n_channels); if (n_channels > 0) { for (i = 0; i < n_channels; i++) { chanspec = 0; req_channel = request->channels[i]; channel = ieee80211_frequency_to_channel( req_channel->center_freq); if (req_channel->band == IEEE80211_BAND_2GHZ) chanspec |= WL_CHANSPEC_BAND_2G; else chanspec |= WL_CHANSPEC_BAND_5G; if (req_channel->flags & IEEE80211_CHAN_NO_HT40) { chanspec |= WL_CHANSPEC_BW_20; chanspec |= WL_CHANSPEC_CTL_SB_NONE; } else { chanspec |= WL_CHANSPEC_BW_40; if (req_channel->flags & IEEE80211_CHAN_NO_HT40PLUS) chanspec |= WL_CHANSPEC_CTL_SB_LOWER; else chanspec |= WL_CHANSPEC_CTL_SB_UPPER; } chanspec |= (channel & WL_CHANSPEC_CHAN_MASK); WL_SCAN("Chan : %d, Channel spec: %x\n", channel, chanspec); params_le->channel_list[i] = cpu_to_le16(chanspec); } } else { WL_SCAN("Scanning all channels\n"); } /* Copy ssid array if applicable */ WL_SCAN("### List of SSIDs to scan ### %d\n", n_ssids); if (n_ssids > 0) { offset = offsetof(struct brcmf_scan_params_le, channel_list) + n_channels * sizeof(u16); offset = roundup(offset, sizeof(u32)); ptr = (char *)params_le + offset; for (i = 0; i < n_ssids; i++) { memset(&ssid_le, 0, sizeof(ssid_le)); ssid_le.SSID_len = cpu_to_le32(request->ssids[i].ssid_len); memcpy(ssid_le.SSID, request->ssids[i].ssid, request->ssids[i].ssid_len); if (!ssid_le.SSID_len) WL_SCAN("%d: Broadcast scan\n", i); else WL_SCAN("%d: scan for %s size =%d\n", i, ssid_le.SSID, ssid_le.SSID_len); memcpy(ptr, &ssid_le, sizeof(ssid_le)); ptr += sizeof(ssid_le); } } else { WL_SCAN("Broadcast scan %p\n", request->ssids); if ((request->ssids) && request->ssids->ssid_len) { WL_SCAN("SSID %s len=%d\n", params_le->ssid_le.SSID, request->ssids->ssid_len); params_le->ssid_le.SSID_len = cpu_to_le32(request->ssids->ssid_len); memcpy(¶ms_le->ssid_le.SSID, request->ssids->ssid, request->ssids->ssid_len); } } /* Adding mask to channel numbers */ params_le->channel_num = cpu_to_le32((n_ssids << BRCMF_SCAN_PARAMS_NSSID_SHIFT) | (n_channels & BRCMF_SCAN_PARAMS_COUNT_MASK)); } static s32 brcmf_notify_escan_complete(struct brcmf_cfg80211_info *cfg, struct net_device *ndev, bool aborted, bool fw_abort) { struct brcmf_scan_params_le params_le; struct cfg80211_scan_request *scan_request; s32 err = 0; WL_SCAN("Enter\n"); /* clear scan request, because the FW abort can cause a second call */ /* to this functon and might cause a double cfg80211_scan_done */ scan_request = cfg->scan_request; cfg->scan_request = NULL; if (timer_pending(&cfg->escan_timeout)) del_timer_sync(&cfg->escan_timeout); if (fw_abort) { /* Do a scan abort to stop the driver's scan engine */ WL_SCAN("ABORT scan in firmware\n"); memset(¶ms_le, 0, sizeof(params_le)); memcpy(params_le.bssid, ether_bcast, ETH_ALEN); params_le.bss_type = DOT11_BSSTYPE_ANY; params_le.scan_type = 0; params_le.channel_num = cpu_to_le32(1); params_le.nprobes = cpu_to_le32(1); params_le.active_time = cpu_to_le32(-1); params_le.passive_time = cpu_to_le32(-1); params_le.home_time = cpu_to_le32(-1); /* Scan is aborted by setting channel_list[0] to -1 */ params_le.channel_list[0] = cpu_to_le16(-1); /* E-Scan (or anyother type) can be aborted by SCAN */ err = brcmf_exec_dcmd(ndev, BRCMF_C_SCAN, ¶ms_le, sizeof(params_le)); if (err) WL_ERR("Scan abort failed\n"); } /* * e-scan can be initiated by scheduled scan * which takes precedence. */ if (cfg->sched_escan) { WL_SCAN("scheduled scan completed\n"); cfg->sched_escan = false; if (!aborted) cfg80211_sched_scan_results(cfg_to_wiphy(cfg)); brcmf_set_mpc(ndev, 1); } else if (scan_request) { WL_SCAN("ESCAN Completed scan: %s\n", aborted ? "Aborted" : "Done"); cfg80211_scan_done(scan_request, aborted); brcmf_set_mpc(ndev, 1); } if (!test_and_clear_bit(WL_STATUS_SCANNING, &cfg->status)) { WL_ERR("Scan complete while device not scanning\n"); return -EPERM; } return err; } static s32 brcmf_run_escan(struct brcmf_cfg80211_info *cfg, struct net_device *ndev, struct cfg80211_scan_request *request, u16 action) { s32 params_size = BRCMF_SCAN_PARAMS_FIXED_SIZE + offsetof(struct brcmf_escan_params_le, params_le); struct brcmf_escan_params_le *params; s32 err = 0; WL_SCAN("E-SCAN START\n"); if (request != NULL) { /* Allocate space for populating ssids in struct */ params_size += sizeof(u32) * ((request->n_channels + 1) / 2); /* Allocate space for populating ssids in struct */ params_size += sizeof(struct brcmf_ssid) * request->n_ssids; } params = kzalloc(params_size, GFP_KERNEL); if (!params) { err = -ENOMEM; goto exit; } BUG_ON(params_size + sizeof("escan") >= BRCMF_DCMD_MEDLEN); brcmf_escan_prep(¶ms->params_le, request); params->version = cpu_to_le32(BRCMF_ESCAN_REQ_VERSION); params->action = cpu_to_le16(action); params->sync_id = cpu_to_le16(0x1234); err = brcmf_dev_iovar_setbuf(ndev, "escan", params, params_size, cfg->escan_ioctl_buf, BRCMF_DCMD_MEDLEN); if (err) { if (err == -EBUSY) WL_INFO("system busy : escan canceled\n"); else WL_ERR("error (%d)\n", err); } kfree(params); exit: return err; } static s32 brcmf_do_escan(struct brcmf_cfg80211_info *cfg, struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_scan_request *request) { s32 err; __le32 passive_scan; struct brcmf_scan_results *results; WL_SCAN("Enter\n"); cfg->escan_info.ndev = ndev; cfg->escan_info.wiphy = wiphy; cfg->escan_info.escan_state = WL_ESCAN_STATE_SCANNING; passive_scan = cfg->active_scan ? 0 : cpu_to_le32(1); err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_PASSIVE_SCAN, &passive_scan, sizeof(passive_scan)); if (err) { WL_ERR("error (%d)\n", err); return err; } brcmf_set_mpc(ndev, 0); results = (struct brcmf_scan_results *)cfg->escan_info.escan_buf; results->version = 0; results->count = 0; results->buflen = WL_ESCAN_RESULTS_FIXED_SIZE; err = brcmf_run_escan(cfg, ndev, request, WL_ESCAN_ACTION_START); if (err) brcmf_set_mpc(ndev, 1); return err; } static s32 brcmf_cfg80211_escan(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_scan_request *request, struct cfg80211_ssid *this_ssid) { struct brcmf_cfg80211_info *cfg = ndev_to_cfg(ndev); struct cfg80211_ssid *ssids; struct brcmf_cfg80211_scan_req *sr = cfg->scan_req_int; __le32 passive_scan; bool escan_req; bool spec_scan; s32 err; u32 SSID_len; WL_SCAN("START ESCAN\n"); if (test_bit(WL_STATUS_SCANNING, &cfg->status)) { WL_ERR("Scanning already : status (%lu)\n", cfg->status); return -EAGAIN; } if (test_bit(WL_STATUS_SCAN_ABORTING, &cfg->status)) { WL_ERR("Scanning being aborted : status (%lu)\n", cfg->status); return -EAGAIN; } if (test_bit(WL_STATUS_CONNECTING, &cfg->status)) { WL_ERR("Connecting : status (%lu)\n", cfg->status); return -EAGAIN; } /* Arm scan timeout timer */ mod_timer(&cfg->escan_timeout, jiffies + WL_ESCAN_TIMER_INTERVAL_MS * HZ / 1000); escan_req = false; if (request) { /* scan bss */ ssids = request->ssids; escan_req = true; } else { /* scan in ibss */ /* we don't do escan in ibss */ ssids = this_ssid; } cfg->scan_request = request; set_bit(WL_STATUS_SCANNING, &cfg->status); if (escan_req) { err = brcmf_do_escan(cfg, wiphy, ndev, request); if (!err) return err; else goto scan_out; } else { WL_SCAN("ssid \"%s\", ssid_len (%d)\n", ssids->ssid, ssids->ssid_len); memset(&sr->ssid_le, 0, sizeof(sr->ssid_le)); SSID_len = min_t(u8, sizeof(sr->ssid_le.SSID), ssids->ssid_len); sr->ssid_le.SSID_len = cpu_to_le32(0); spec_scan = false; if (SSID_len) { memcpy(sr->ssid_le.SSID, ssids->ssid, SSID_len); sr->ssid_le.SSID_len = cpu_to_le32(SSID_len); spec_scan = true; } else WL_SCAN("Broadcast scan\n"); passive_scan = cfg->active_scan ? 0 : cpu_to_le32(1); err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_PASSIVE_SCAN, &passive_scan, sizeof(passive_scan)); if (err) { WL_ERR("WLC_SET_PASSIVE_SCAN error (%d)\n", err); goto scan_out; } brcmf_set_mpc(ndev, 0); err = brcmf_exec_dcmd(ndev, BRCMF_C_SCAN, &sr->ssid_le, sizeof(sr->ssid_le)); if (err) { if (err == -EBUSY) WL_INFO("BUSY: scan for \"%s\" canceled\n", sr->ssid_le.SSID); else WL_ERR("WLC_SCAN error (%d)\n", err); brcmf_set_mpc(ndev, 1); goto scan_out; } } return 0; scan_out: clear_bit(WL_STATUS_SCANNING, &cfg->status); if (timer_pending(&cfg->escan_timeout)) del_timer_sync(&cfg->escan_timeout); cfg->scan_request = NULL; return err; } static s32 brcmf_cfg80211_scan(struct wiphy *wiphy, struct cfg80211_scan_request *request) { struct net_device *ndev = request->wdev->netdev; struct brcmf_cfg80211_info *cfg = ndev_to_cfg(ndev); s32 err = 0; WL_TRACE("Enter\n"); if (!check_sys_up(wiphy)) return -EIO; if (cfg->iscan_on) err = brcmf_cfg80211_iscan(wiphy, ndev, request, NULL); else if (cfg->escan_on) err = brcmf_cfg80211_escan(wiphy, ndev, request, NULL); if (err) WL_ERR("scan error (%d)\n", err); WL_TRACE("Exit\n"); return err; } static s32 brcmf_set_rts(struct net_device *ndev, u32 rts_threshold) { s32 err = 0; err = brcmf_dev_intvar_set(ndev, "rtsthresh", rts_threshold); if (err) WL_ERR("Error (%d)\n", err); return err; } static s32 brcmf_set_frag(struct net_device *ndev, u32 frag_threshold) { s32 err = 0; err = brcmf_dev_intvar_set(ndev, "fragthresh", frag_threshold); if (err) WL_ERR("Error (%d)\n", err); return err; } static s32 brcmf_set_retry(struct net_device *ndev, u32 retry, bool l) { s32 err = 0; u32 cmd = (l ? BRCM_SET_LRL : BRCM_SET_SRL); err = brcmf_exec_dcmd_u32(ndev, cmd, &retry); if (err) { WL_ERR("cmd (%d) , error (%d)\n", cmd, err); return err; } return err; } static s32 brcmf_cfg80211_set_wiphy_params(struct wiphy *wiphy, u32 changed) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct net_device *ndev = cfg_to_ndev(cfg); s32 err = 0; WL_TRACE("Enter\n"); if (!check_sys_up(wiphy)) return -EIO; if (changed & WIPHY_PARAM_RTS_THRESHOLD && (cfg->conf->rts_threshold != wiphy->rts_threshold)) { cfg->conf->rts_threshold = wiphy->rts_threshold; err = brcmf_set_rts(ndev, cfg->conf->rts_threshold); if (!err) goto done; } if (changed & WIPHY_PARAM_FRAG_THRESHOLD && (cfg->conf->frag_threshold != wiphy->frag_threshold)) { cfg->conf->frag_threshold = wiphy->frag_threshold; err = brcmf_set_frag(ndev, cfg->conf->frag_threshold); if (!err) goto done; } if (changed & WIPHY_PARAM_RETRY_LONG && (cfg->conf->retry_long != wiphy->retry_long)) { cfg->conf->retry_long = wiphy->retry_long; err = brcmf_set_retry(ndev, cfg->conf->retry_long, true); if (!err) goto done; } if (changed & WIPHY_PARAM_RETRY_SHORT && (cfg->conf->retry_short != wiphy->retry_short)) { cfg->conf->retry_short = wiphy->retry_short; err = brcmf_set_retry(ndev, cfg->conf->retry_short, false); if (!err) goto done; } done: WL_TRACE("Exit\n"); return err; } static void brcmf_init_prof(struct brcmf_cfg80211_profile *prof) { memset(prof, 0, sizeof(*prof)); } static void brcmf_ch_to_chanspec(int ch, struct brcmf_join_params *join_params, size_t *join_params_size) { u16 chanspec = 0; if (ch != 0) { if (ch <= CH_MAX_2G_CHANNEL) chanspec |= WL_CHANSPEC_BAND_2G; else chanspec |= WL_CHANSPEC_BAND_5G; chanspec |= WL_CHANSPEC_BW_20; chanspec |= WL_CHANSPEC_CTL_SB_NONE; *join_params_size += BRCMF_ASSOC_PARAMS_FIXED_SIZE + sizeof(u16); chanspec |= (ch & WL_CHANSPEC_CHAN_MASK); join_params->params_le.chanspec_list[0] = cpu_to_le16(chanspec); join_params->params_le.chanspec_num = cpu_to_le32(1); WL_CONN("join_params->params.chanspec_list[0]= %#X," "channel %d, chanspec %#X\n", chanspec, ch, chanspec); } } static void brcmf_link_down(struct brcmf_cfg80211_info *cfg) { struct net_device *ndev = NULL; s32 err = 0; WL_TRACE("Enter\n"); if (cfg->link_up) { ndev = cfg_to_ndev(cfg); WL_INFO("Call WLC_DISASSOC to stop excess roaming\n "); err = brcmf_exec_dcmd(ndev, BRCMF_C_DISASSOC, NULL, 0); if (err) WL_ERR("WLC_DISASSOC failed (%d)\n", err); cfg->link_up = false; } WL_TRACE("Exit\n"); } static s32 brcmf_cfg80211_join_ibss(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_ibss_params *params) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_cfg80211_profile *profile = cfg->profile; struct brcmf_join_params join_params; size_t join_params_size = 0; s32 err = 0; s32 wsec = 0; s32 bcnprd; WL_TRACE("Enter\n"); if (!check_sys_up(wiphy)) return -EIO; if (params->ssid) WL_CONN("SSID: %s\n", params->ssid); else { WL_CONN("SSID: NULL, Not supported\n"); return -EOPNOTSUPP; } set_bit(WL_STATUS_CONNECTING, &cfg->status); if (params->bssid) WL_CONN("BSSID: %pM\n", params->bssid); else WL_CONN("No BSSID specified\n"); if (params->channel) WL_CONN("channel: %d\n", params->channel->center_freq); else WL_CONN("no channel specified\n"); if (params->channel_fixed) WL_CONN("fixed channel required\n"); else WL_CONN("no fixed channel required\n"); if (params->ie && params->ie_len) WL_CONN("ie len: %d\n", params->ie_len); else WL_CONN("no ie specified\n"); if (params->beacon_interval) WL_CONN("beacon interval: %d\n", params->beacon_interval); else WL_CONN("no beacon interval specified\n"); if (params->basic_rates) WL_CONN("basic rates: %08X\n", params->basic_rates); else WL_CONN("no basic rates specified\n"); if (params->privacy) WL_CONN("privacy required\n"); else WL_CONN("no privacy required\n"); /* Configure Privacy for starter */ if (params->privacy) wsec |= WEP_ENABLED; err = brcmf_dev_intvar_set(ndev, "wsec", wsec); if (err) { WL_ERR("wsec failed (%d)\n", err); goto done; } /* Configure Beacon Interval for starter */ if (params->beacon_interval) bcnprd = params->beacon_interval; else bcnprd = 100; err = brcmf_exec_dcmd_u32(ndev, BRCM_SET_BCNPRD, &bcnprd); if (err) { WL_ERR("WLC_SET_BCNPRD failed (%d)\n", err); goto done; } /* Configure required join parameter */ memset(&join_params, 0, sizeof(struct brcmf_join_params)); /* SSID */ profile->ssid.SSID_len = min_t(u32, params->ssid_len, 32); memcpy(profile->ssid.SSID, params->ssid, profile->ssid.SSID_len); memcpy(join_params.ssid_le.SSID, params->ssid, profile->ssid.SSID_len); join_params.ssid_le.SSID_len = cpu_to_le32(profile->ssid.SSID_len); join_params_size = sizeof(join_params.ssid_le); /* BSSID */ if (params->bssid) { memcpy(join_params.params_le.bssid, params->bssid, ETH_ALEN); join_params_size = sizeof(join_params.ssid_le) + BRCMF_ASSOC_PARAMS_FIXED_SIZE; memcpy(profile->bssid, params->bssid, ETH_ALEN); } else { memcpy(join_params.params_le.bssid, ether_bcast, ETH_ALEN); memset(profile->bssid, 0, ETH_ALEN); } /* Channel */ if (params->channel) { u32 target_channel; cfg->channel = ieee80211_frequency_to_channel( params->channel->center_freq); if (params->channel_fixed) { /* adding chanspec */ brcmf_ch_to_chanspec(cfg->channel, &join_params, &join_params_size); } /* set channel for starter */ target_channel = cfg->channel; err = brcmf_exec_dcmd_u32(ndev, BRCM_SET_CHANNEL, &target_channel); if (err) { WL_ERR("WLC_SET_CHANNEL failed (%d)\n", err); goto done; } } else cfg->channel = 0; cfg->ibss_starter = false; err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_SSID, &join_params, join_params_size); if (err) { WL_ERR("WLC_SET_SSID failed (%d)\n", err); goto done; } done: if (err) clear_bit(WL_STATUS_CONNECTING, &cfg->status); WL_TRACE("Exit\n"); return err; } static s32 brcmf_cfg80211_leave_ibss(struct wiphy *wiphy, struct net_device *ndev) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); s32 err = 0; WL_TRACE("Enter\n"); if (!check_sys_up(wiphy)) return -EIO; brcmf_link_down(cfg); WL_TRACE("Exit\n"); return err; } static s32 brcmf_set_wpa_version(struct net_device *ndev, struct cfg80211_connect_params *sme) { struct brcmf_cfg80211_info *cfg = ndev_to_cfg(ndev); struct brcmf_cfg80211_profile *profile = cfg->profile; struct brcmf_cfg80211_security *sec; s32 val = 0; s32 err = 0; if (sme->crypto.wpa_versions & NL80211_WPA_VERSION_1) val = WPA_AUTH_PSK | WPA_AUTH_UNSPECIFIED; else if (sme->crypto.wpa_versions & NL80211_WPA_VERSION_2) val = WPA2_AUTH_PSK | WPA2_AUTH_UNSPECIFIED; else val = WPA_AUTH_DISABLED; WL_CONN("setting wpa_auth to 0x%0x\n", val); err = brcmf_dev_intvar_set(ndev, "wpa_auth", val); if (err) { WL_ERR("set wpa_auth failed (%d)\n", err); return err; } sec = &profile->sec; sec->wpa_versions = sme->crypto.wpa_versions; return err; } static s32 brcmf_set_auth_type(struct net_device *ndev, struct cfg80211_connect_params *sme) { struct brcmf_cfg80211_info *cfg = ndev_to_cfg(ndev); struct brcmf_cfg80211_profile *profile = cfg->profile; struct brcmf_cfg80211_security *sec; s32 val = 0; s32 err = 0; switch (sme->auth_type) { case NL80211_AUTHTYPE_OPEN_SYSTEM: val = 0; WL_CONN("open system\n"); break; case NL80211_AUTHTYPE_SHARED_KEY: val = 1; WL_CONN("shared key\n"); break; case NL80211_AUTHTYPE_AUTOMATIC: val = 2; WL_CONN("automatic\n"); break; case NL80211_AUTHTYPE_NETWORK_EAP: WL_CONN("network eap\n"); default: val = 2; WL_ERR("invalid auth type (%d)\n", sme->auth_type); break; } err = brcmf_dev_intvar_set(ndev, "auth", val); if (err) { WL_ERR("set auth failed (%d)\n", err); return err; } sec = &profile->sec; sec->auth_type = sme->auth_type; return err; } static s32 brcmf_set_set_cipher(struct net_device *ndev, struct cfg80211_connect_params *sme) { struct brcmf_cfg80211_info *cfg = ndev_to_cfg(ndev); struct brcmf_cfg80211_profile *profile = cfg->profile; struct brcmf_cfg80211_security *sec; s32 pval = 0; s32 gval = 0; s32 err = 0; if (sme->crypto.n_ciphers_pairwise) { switch (sme->crypto.ciphers_pairwise[0]) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: pval = WEP_ENABLED; break; case WLAN_CIPHER_SUITE_TKIP: pval = TKIP_ENABLED; break; case WLAN_CIPHER_SUITE_CCMP: pval = AES_ENABLED; break; case WLAN_CIPHER_SUITE_AES_CMAC: pval = AES_ENABLED; break; default: WL_ERR("invalid cipher pairwise (%d)\n", sme->crypto.ciphers_pairwise[0]); return -EINVAL; } } if (sme->crypto.cipher_group) { switch (sme->crypto.cipher_group) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: gval = WEP_ENABLED; break; case WLAN_CIPHER_SUITE_TKIP: gval = TKIP_ENABLED; break; case WLAN_CIPHER_SUITE_CCMP: gval = AES_ENABLED; break; case WLAN_CIPHER_SUITE_AES_CMAC: gval = AES_ENABLED; break; default: WL_ERR("invalid cipher group (%d)\n", sme->crypto.cipher_group); return -EINVAL; } } WL_CONN("pval (%d) gval (%d)\n", pval, gval); err = brcmf_dev_intvar_set(ndev, "wsec", pval | gval); if (err) { WL_ERR("error (%d)\n", err); return err; } sec = &profile->sec; sec->cipher_pairwise = sme->crypto.ciphers_pairwise[0]; sec->cipher_group = sme->crypto.cipher_group; return err; } static s32 brcmf_set_key_mgmt(struct net_device *ndev, struct cfg80211_connect_params *sme) { struct brcmf_cfg80211_info *cfg = ndev_to_cfg(ndev); struct brcmf_cfg80211_profile *profile = cfg->profile; struct brcmf_cfg80211_security *sec; s32 val = 0; s32 err = 0; if (sme->crypto.n_akm_suites) { err = brcmf_dev_intvar_get(ndev, "wpa_auth", &val); if (err) { WL_ERR("could not get wpa_auth (%d)\n", err); return err; } if (val & (WPA_AUTH_PSK | WPA_AUTH_UNSPECIFIED)) { switch (sme->crypto.akm_suites[0]) { case WLAN_AKM_SUITE_8021X: val = WPA_AUTH_UNSPECIFIED; break; case WLAN_AKM_SUITE_PSK: val = WPA_AUTH_PSK; break; default: WL_ERR("invalid cipher group (%d)\n", sme->crypto.cipher_group); return -EINVAL; } } else if (val & (WPA2_AUTH_PSK | WPA2_AUTH_UNSPECIFIED)) { switch (sme->crypto.akm_suites[0]) { case WLAN_AKM_SUITE_8021X: val = WPA2_AUTH_UNSPECIFIED; break; case WLAN_AKM_SUITE_PSK: val = WPA2_AUTH_PSK; break; default: WL_ERR("invalid cipher group (%d)\n", sme->crypto.cipher_group); return -EINVAL; } } WL_CONN("setting wpa_auth to %d\n", val); err = brcmf_dev_intvar_set(ndev, "wpa_auth", val); if (err) { WL_ERR("could not set wpa_auth (%d)\n", err); return err; } } sec = &profile->sec; sec->wpa_auth = sme->crypto.akm_suites[0]; return err; } static s32 brcmf_set_sharedkey(struct net_device *ndev, struct cfg80211_connect_params *sme) { struct brcmf_cfg80211_info *cfg = ndev_to_cfg(ndev); struct brcmf_cfg80211_profile *profile = cfg->profile; struct brcmf_cfg80211_security *sec; struct brcmf_wsec_key key; s32 val; s32 err = 0; s32 bssidx; WL_CONN("key len (%d)\n", sme->key_len); if (sme->key_len == 0) return 0; sec = &profile->sec; WL_CONN("wpa_versions 0x%x cipher_pairwise 0x%x\n", sec->wpa_versions, sec->cipher_pairwise); if (sec->wpa_versions & (NL80211_WPA_VERSION_1 | NL80211_WPA_VERSION_2)) return 0; if (!(sec->cipher_pairwise & (WLAN_CIPHER_SUITE_WEP40 | WLAN_CIPHER_SUITE_WEP104))) return 0; memset(&key, 0, sizeof(key)); key.len = (u32) sme->key_len; key.index = (u32) sme->key_idx; if (key.len > sizeof(key.data)) { WL_ERR("Too long key length (%u)\n", key.len); return -EINVAL; } memcpy(key.data, sme->key, key.len); key.flags = BRCMF_PRIMARY_KEY; switch (sec->cipher_pairwise) { case WLAN_CIPHER_SUITE_WEP40: key.algo = CRYPTO_ALGO_WEP1; break; case WLAN_CIPHER_SUITE_WEP104: key.algo = CRYPTO_ALGO_WEP128; break; default: WL_ERR("Invalid algorithm (%d)\n", sme->crypto.ciphers_pairwise[0]); return -EINVAL; } /* Set the new key/index */ WL_CONN("key length (%d) key index (%d) algo (%d)\n", key.len, key.index, key.algo); WL_CONN("key \"%s\"\n", key.data); bssidx = brcmf_find_bssidx(cfg, ndev); err = send_key_to_dongle(cfg, bssidx, ndev, &key); if (err) return err; if (sec->auth_type == NL80211_AUTHTYPE_SHARED_KEY) { WL_CONN("set auth_type to shared key\n"); val = WL_AUTH_SHARED_KEY; /* shared key */ err = brcmf_dev_intvar_set_bsscfg(ndev, "auth", val, bssidx); if (err) WL_ERR("set auth failed (%d)\n", err); } return err; } static s32 brcmf_cfg80211_connect(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_connect_params *sme) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_cfg80211_profile *profile = cfg->profile; struct ieee80211_channel *chan = sme->channel; struct brcmf_join_params join_params; size_t join_params_size; struct brcmf_ssid ssid; s32 err = 0; WL_TRACE("Enter\n"); if (!check_sys_up(wiphy)) return -EIO; if (!sme->ssid) { WL_ERR("Invalid ssid\n"); return -EOPNOTSUPP; } set_bit(WL_STATUS_CONNECTING, &cfg->status); if (chan) { cfg->channel = ieee80211_frequency_to_channel(chan->center_freq); WL_CONN("channel (%d), center_req (%d)\n", cfg->channel, chan->center_freq); } else cfg->channel = 0; WL_INFO("ie (%p), ie_len (%zd)\n", sme->ie, sme->ie_len); err = brcmf_set_wpa_version(ndev, sme); if (err) { WL_ERR("wl_set_wpa_version failed (%d)\n", err); goto done; } err = brcmf_set_auth_type(ndev, sme); if (err) { WL_ERR("wl_set_auth_type failed (%d)\n", err); goto done; } err = brcmf_set_set_cipher(ndev, sme); if (err) { WL_ERR("wl_set_set_cipher failed (%d)\n", err); goto done; } err = brcmf_set_key_mgmt(ndev, sme); if (err) { WL_ERR("wl_set_key_mgmt failed (%d)\n", err); goto done; } err = brcmf_set_sharedkey(ndev, sme); if (err) { WL_ERR("brcmf_set_sharedkey failed (%d)\n", err); goto done; } memset(&join_params, 0, sizeof(join_params)); join_params_size = sizeof(join_params.ssid_le); profile->ssid.SSID_len = min_t(u32, sizeof(ssid.SSID), (u32)sme->ssid_len); memcpy(&join_params.ssid_le.SSID, sme->ssid, profile->ssid.SSID_len); memcpy(&profile->ssid.SSID, sme->ssid, profile->ssid.SSID_len); join_params.ssid_le.SSID_len = cpu_to_le32(profile->ssid.SSID_len); memcpy(join_params.params_le.bssid, ether_bcast, ETH_ALEN); if (ssid.SSID_len < IEEE80211_MAX_SSID_LEN) WL_CONN("ssid \"%s\", len (%d)\n", ssid.SSID, ssid.SSID_len); brcmf_ch_to_chanspec(cfg->channel, &join_params, &join_params_size); err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_SSID, &join_params, join_params_size); if (err) WL_ERR("WLC_SET_SSID failed (%d)\n", err); done: if (err) clear_bit(WL_STATUS_CONNECTING, &cfg->status); WL_TRACE("Exit\n"); return err; } static s32 brcmf_cfg80211_disconnect(struct wiphy *wiphy, struct net_device *ndev, u16 reason_code) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_cfg80211_profile *profile = cfg->profile; struct brcmf_scb_val_le scbval; s32 err = 0; WL_TRACE("Enter. Reason code = %d\n", reason_code); if (!check_sys_up(wiphy)) return -EIO; clear_bit(WL_STATUS_CONNECTED, &cfg->status); memcpy(&scbval.ea, &profile->bssid, ETH_ALEN); scbval.val = cpu_to_le32(reason_code); err = brcmf_exec_dcmd(ndev, BRCMF_C_DISASSOC, &scbval, sizeof(struct brcmf_scb_val_le)); if (err) WL_ERR("error (%d)\n", err); cfg->link_up = false; WL_TRACE("Exit\n"); return err; } static s32 brcmf_cfg80211_set_tx_power(struct wiphy *wiphy, enum nl80211_tx_power_setting type, s32 mbm) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct net_device *ndev = cfg_to_ndev(cfg); u16 txpwrmw; s32 err = 0; s32 disable = 0; s32 dbm = MBM_TO_DBM(mbm); WL_TRACE("Enter\n"); if (!check_sys_up(wiphy)) return -EIO; switch (type) { case NL80211_TX_POWER_AUTOMATIC: break; case NL80211_TX_POWER_LIMITED: case NL80211_TX_POWER_FIXED: if (dbm < 0) { WL_ERR("TX_POWER_FIXED - dbm is negative\n"); err = -EINVAL; goto done; } break; } /* Make sure radio is off or on as far as software is concerned */ disable = WL_RADIO_SW_DISABLE << 16; err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_SET_RADIO, &disable); if (err) WL_ERR("WLC_SET_RADIO error (%d)\n", err); if (dbm > 0xffff) txpwrmw = 0xffff; else txpwrmw = (u16) dbm; err = brcmf_dev_intvar_set(ndev, "qtxpower", (s32) (brcmf_mw_to_qdbm(txpwrmw))); if (err) WL_ERR("qtxpower error (%d)\n", err); cfg->conf->tx_power = dbm; done: WL_TRACE("Exit\n"); return err; } static s32 brcmf_cfg80211_get_tx_power(struct wiphy *wiphy, s32 *dbm) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct net_device *ndev = cfg_to_ndev(cfg); s32 txpwrdbm; u8 result; s32 err = 0; WL_TRACE("Enter\n"); if (!check_sys_up(wiphy)) return -EIO; err = brcmf_dev_intvar_get(ndev, "qtxpower", &txpwrdbm); if (err) { WL_ERR("error (%d)\n", err); goto done; } result = (u8) (txpwrdbm & ~WL_TXPWR_OVERRIDE); *dbm = (s32) brcmf_qdbm_to_mw(result); done: WL_TRACE("Exit\n"); return err; } static s32 brcmf_cfg80211_config_default_key(struct wiphy *wiphy, struct net_device *ndev, u8 key_idx, bool unicast, bool multicast) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); u32 index; u32 wsec; s32 err = 0; s32 bssidx; WL_TRACE("Enter\n"); WL_CONN("key index (%d)\n", key_idx); if (!check_sys_up(wiphy)) return -EIO; bssidx = brcmf_find_bssidx(cfg, ndev); err = brcmf_dev_intvar_get_bsscfg(ndev, "wsec", &wsec, bssidx); if (err) { WL_ERR("WLC_GET_WSEC error (%d)\n", err); goto done; } if (wsec & WEP_ENABLED) { /* Just select a new current key */ index = key_idx; err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_SET_KEY_PRIMARY, &index); if (err) WL_ERR("error (%d)\n", err); } done: WL_TRACE("Exit\n"); return err; } static s32 brcmf_add_keyext(struct wiphy *wiphy, struct net_device *ndev, u8 key_idx, const u8 *mac_addr, struct key_params *params) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_wsec_key key; struct brcmf_wsec_key_le key_le; s32 err = 0; s32 bssidx; memset(&key, 0, sizeof(key)); key.index = (u32) key_idx; /* Instead of bcast for ea address for default wep keys, driver needs it to be Null */ if (!is_multicast_ether_addr(mac_addr)) memcpy((char *)&key.ea, (void *)mac_addr, ETH_ALEN); key.len = (u32) params->key_len; bssidx = brcmf_find_bssidx(cfg, ndev); /* check for key index change */ if (key.len == 0) { /* key delete */ err = send_key_to_dongle(cfg, bssidx, ndev, &key); if (err) WL_ERR("key delete error (%d)\n", err); } else { if (key.len > sizeof(key.data)) { WL_ERR("Invalid key length (%d)\n", key.len); return -EINVAL; } WL_CONN("Setting the key index %d\n", key.index); memcpy(key.data, params->key, key.len); if (params->cipher == WLAN_CIPHER_SUITE_TKIP) { u8 keybuf[8]; memcpy(keybuf, &key.data[24], sizeof(keybuf)); memcpy(&key.data[24], &key.data[16], sizeof(keybuf)); memcpy(&key.data[16], keybuf, sizeof(keybuf)); } /* if IW_ENCODE_EXT_RX_SEQ_VALID set */ if (params->seq && params->seq_len == 6) { /* rx iv */ u8 *ivptr; ivptr = (u8 *) params->seq; key.rxiv.hi = (ivptr[5] << 24) | (ivptr[4] << 16) | (ivptr[3] << 8) | ivptr[2]; key.rxiv.lo = (ivptr[1] << 8) | ivptr[0]; key.iv_initialized = true; } switch (params->cipher) { case WLAN_CIPHER_SUITE_WEP40: key.algo = CRYPTO_ALGO_WEP1; WL_CONN("WLAN_CIPHER_SUITE_WEP40\n"); break; case WLAN_CIPHER_SUITE_WEP104: key.algo = CRYPTO_ALGO_WEP128; WL_CONN("WLAN_CIPHER_SUITE_WEP104\n"); break; case WLAN_CIPHER_SUITE_TKIP: key.algo = CRYPTO_ALGO_TKIP; WL_CONN("WLAN_CIPHER_SUITE_TKIP\n"); break; case WLAN_CIPHER_SUITE_AES_CMAC: key.algo = CRYPTO_ALGO_AES_CCM; WL_CONN("WLAN_CIPHER_SUITE_AES_CMAC\n"); break; case WLAN_CIPHER_SUITE_CCMP: key.algo = CRYPTO_ALGO_AES_CCM; WL_CONN("WLAN_CIPHER_SUITE_CCMP\n"); break; default: WL_ERR("Invalid cipher (0x%x)\n", params->cipher); return -EINVAL; } convert_key_from_CPU(&key, &key_le); brcmf_netdev_wait_pend8021x(ndev); err = brcmf_dev_iovar_setbuf_bsscfg(ndev, "wsec_key", &key_le, sizeof(key_le), cfg->extra_buf, WL_EXTRA_BUF_MAX, bssidx); if (err) WL_ERR("wsec_key error (%d)\n", err); } return err; } static s32 brcmf_cfg80211_add_key(struct wiphy *wiphy, struct net_device *ndev, u8 key_idx, bool pairwise, const u8 *mac_addr, struct key_params *params) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_wsec_key key; s32 val; s32 wsec; s32 err = 0; u8 keybuf[8]; s32 bssidx; WL_TRACE("Enter\n"); WL_CONN("key index (%d)\n", key_idx); if (!check_sys_up(wiphy)) return -EIO; if (mac_addr) { WL_TRACE("Exit"); return brcmf_add_keyext(wiphy, ndev, key_idx, mac_addr, params); } memset(&key, 0, sizeof(key)); key.len = (u32) params->key_len; key.index = (u32) key_idx; if (key.len > sizeof(key.data)) { WL_ERR("Too long key length (%u)\n", key.len); err = -EINVAL; goto done; } memcpy(key.data, params->key, key.len); key.flags = BRCMF_PRIMARY_KEY; switch (params->cipher) { case WLAN_CIPHER_SUITE_WEP40: key.algo = CRYPTO_ALGO_WEP1; val = WEP_ENABLED; WL_CONN("WLAN_CIPHER_SUITE_WEP40\n"); break; case WLAN_CIPHER_SUITE_WEP104: key.algo = CRYPTO_ALGO_WEP128; val = WEP_ENABLED; WL_CONN("WLAN_CIPHER_SUITE_WEP104\n"); break; case WLAN_CIPHER_SUITE_TKIP: if (cfg->conf->mode != WL_MODE_AP) { WL_CONN("Swapping key\n"); memcpy(keybuf, &key.data[24], sizeof(keybuf)); memcpy(&key.data[24], &key.data[16], sizeof(keybuf)); memcpy(&key.data[16], keybuf, sizeof(keybuf)); } key.algo = CRYPTO_ALGO_TKIP; val = TKIP_ENABLED; WL_CONN("WLAN_CIPHER_SUITE_TKIP\n"); break; case WLAN_CIPHER_SUITE_AES_CMAC: key.algo = CRYPTO_ALGO_AES_CCM; val = AES_ENABLED; WL_CONN("WLAN_CIPHER_SUITE_AES_CMAC\n"); break; case WLAN_CIPHER_SUITE_CCMP: key.algo = CRYPTO_ALGO_AES_CCM; val = AES_ENABLED; WL_CONN("WLAN_CIPHER_SUITE_CCMP\n"); break; default: WL_ERR("Invalid cipher (0x%x)\n", params->cipher); err = -EINVAL; goto done; } bssidx = brcmf_find_bssidx(cfg, ndev); err = send_key_to_dongle(cfg, bssidx, ndev, &key); if (err) goto done; err = brcmf_dev_intvar_get_bsscfg(ndev, "wsec", &wsec, bssidx); if (err) { WL_ERR("get wsec error (%d)\n", err); goto done; } wsec |= val; err = brcmf_dev_intvar_set_bsscfg(ndev, "wsec", wsec, bssidx); if (err) { WL_ERR("set wsec error (%d)\n", err); goto done; } done: WL_TRACE("Exit\n"); return err; } static s32 brcmf_cfg80211_del_key(struct wiphy *wiphy, struct net_device *ndev, u8 key_idx, bool pairwise, const u8 *mac_addr) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_wsec_key key; s32 err = 0; s32 bssidx; WL_TRACE("Enter\n"); if (!check_sys_up(wiphy)) return -EIO; memset(&key, 0, sizeof(key)); key.index = (u32) key_idx; key.flags = BRCMF_PRIMARY_KEY; key.algo = CRYPTO_ALGO_OFF; WL_CONN("key index (%d)\n", key_idx); /* Set the new key/index */ bssidx = brcmf_find_bssidx(cfg, ndev); err = send_key_to_dongle(cfg, bssidx, ndev, &key); if (err) { if (err == -EINVAL) { if (key.index >= DOT11_MAX_DEFAULT_KEYS) /* we ignore this key index in this case */ WL_ERR("invalid key index (%d)\n", key_idx); } /* Ignore this error, may happen during DISASSOC */ err = -EAGAIN; } WL_TRACE("Exit\n"); return err; } static s32 brcmf_cfg80211_get_key(struct wiphy *wiphy, struct net_device *ndev, u8 key_idx, bool pairwise, const u8 *mac_addr, void *cookie, void (*callback) (void *cookie, struct key_params * params)) { struct key_params params; struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_cfg80211_profile *profile = cfg->profile; struct brcmf_cfg80211_security *sec; s32 wsec; s32 err = 0; s32 bssidx; WL_TRACE("Enter\n"); WL_CONN("key index (%d)\n", key_idx); if (!check_sys_up(wiphy)) return -EIO; memset(¶ms, 0, sizeof(params)); bssidx = brcmf_find_bssidx(cfg, ndev); err = brcmf_dev_intvar_get_bsscfg(ndev, "wsec", &wsec, bssidx); if (err) { WL_ERR("WLC_GET_WSEC error (%d)\n", err); /* Ignore this error, may happen during DISASSOC */ err = -EAGAIN; goto done; } switch (wsec & ~SES_OW_ENABLED) { case WEP_ENABLED: sec = &profile->sec; if (sec->cipher_pairwise & WLAN_CIPHER_SUITE_WEP40) { params.cipher = WLAN_CIPHER_SUITE_WEP40; WL_CONN("WLAN_CIPHER_SUITE_WEP40\n"); } else if (sec->cipher_pairwise & WLAN_CIPHER_SUITE_WEP104) { params.cipher = WLAN_CIPHER_SUITE_WEP104; WL_CONN("WLAN_CIPHER_SUITE_WEP104\n"); } break; case TKIP_ENABLED: params.cipher = WLAN_CIPHER_SUITE_TKIP; WL_CONN("WLAN_CIPHER_SUITE_TKIP\n"); break; case AES_ENABLED: params.cipher = WLAN_CIPHER_SUITE_AES_CMAC; WL_CONN("WLAN_CIPHER_SUITE_AES_CMAC\n"); break; default: WL_ERR("Invalid algo (0x%x)\n", wsec); err = -EINVAL; goto done; } callback(cookie, ¶ms); done: WL_TRACE("Exit\n"); return err; } static s32 brcmf_cfg80211_config_default_mgmt_key(struct wiphy *wiphy, struct net_device *ndev, u8 key_idx) { WL_INFO("Not supported\n"); return -EOPNOTSUPP; } static s32 brcmf_cfg80211_get_station(struct wiphy *wiphy, struct net_device *ndev, u8 *mac, struct station_info *sinfo) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_cfg80211_profile *profile = cfg->profile; struct brcmf_scb_val_le scb_val; int rssi; s32 rate; s32 err = 0; u8 *bssid = profile->bssid; struct brcmf_sta_info_le *sta_info_le; WL_TRACE("Enter, MAC %pM\n", mac); if (!check_sys_up(wiphy)) return -EIO; if (cfg->conf->mode == WL_MODE_AP) { err = brcmf_dev_iovar_getbuf(ndev, "sta_info", mac, ETH_ALEN, cfg->dcmd_buf, WL_DCMD_LEN_MAX); if (err < 0) { WL_ERR("GET STA INFO failed, %d\n", err); goto done; } sta_info_le = (struct brcmf_sta_info_le *)cfg->dcmd_buf; sinfo->filled = STATION_INFO_INACTIVE_TIME; sinfo->inactive_time = le32_to_cpu(sta_info_le->idle) * 1000; if (le32_to_cpu(sta_info_le->flags) & BRCMF_STA_ASSOC) { sinfo->filled |= STATION_INFO_CONNECTED_TIME; sinfo->connected_time = le32_to_cpu(sta_info_le->in); } WL_TRACE("STA idle time : %d ms, connected time :%d sec\n", sinfo->inactive_time, sinfo->connected_time); } else if (cfg->conf->mode == WL_MODE_BSS) { if (memcmp(mac, bssid, ETH_ALEN)) { WL_ERR("Wrong Mac address cfg_mac-%pM wl_bssid-%pM\n", mac, bssid); err = -ENOENT; goto done; } /* Report the current tx rate */ err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_GET_RATE, &rate); if (err) { WL_ERR("Could not get rate (%d)\n", err); goto done; } else { sinfo->filled |= STATION_INFO_TX_BITRATE; sinfo->txrate.legacy = rate * 5; WL_CONN("Rate %d Mbps\n", rate / 2); } if (test_bit(WL_STATUS_CONNECTED, &cfg->status)) { memset(&scb_val, 0, sizeof(scb_val)); err = brcmf_exec_dcmd(ndev, BRCMF_C_GET_RSSI, &scb_val, sizeof(scb_val)); if (err) { WL_ERR("Could not get rssi (%d)\n", err); goto done; } else { rssi = le32_to_cpu(scb_val.val); sinfo->filled |= STATION_INFO_SIGNAL; sinfo->signal = rssi; WL_CONN("RSSI %d dBm\n", rssi); } } } else err = -EPERM; done: WL_TRACE("Exit\n"); return err; } static s32 brcmf_cfg80211_set_power_mgmt(struct wiphy *wiphy, struct net_device *ndev, bool enabled, s32 timeout) { s32 pm; s32 err = 0; struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); WL_TRACE("Enter\n"); /* * Powersave enable/disable request is coming from the * cfg80211 even before the interface is up. In that * scenario, driver will be storing the power save * preference in cfg struct to apply this to * FW later while initializing the dongle */ cfg->pwr_save = enabled; if (!test_bit(WL_STATUS_READY, &cfg->status)) { WL_INFO("Device is not ready, storing the value in cfg_info struct\n"); goto done; } pm = enabled ? PM_FAST : PM_OFF; WL_INFO("power save %s\n", (pm ? "enabled" : "disabled")); err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_SET_PM, &pm); if (err) { if (err == -ENODEV) WL_ERR("net_device is not ready yet\n"); else WL_ERR("error (%d)\n", err); } done: WL_TRACE("Exit\n"); return err; } static s32 brcmf_cfg80211_set_bitrate_mask(struct wiphy *wiphy, struct net_device *ndev, const u8 *addr, const struct cfg80211_bitrate_mask *mask) { struct brcm_rateset_le rateset_le; s32 rate; s32 val; s32 err_bg; s32 err_a; u32 legacy; s32 err = 0; WL_TRACE("Enter\n"); if (!check_sys_up(wiphy)) return -EIO; /* addr param is always NULL. ignore it */ /* Get current rateset */ err = brcmf_exec_dcmd(ndev, BRCM_GET_CURR_RATESET, &rateset_le, sizeof(rateset_le)); if (err) { WL_ERR("could not get current rateset (%d)\n", err); goto done; } legacy = ffs(mask->control[IEEE80211_BAND_2GHZ].legacy & 0xFFFF); if (!legacy) legacy = ffs(mask->control[IEEE80211_BAND_5GHZ].legacy & 0xFFFF); val = wl_g_rates[legacy - 1].bitrate * 100000; if (val < le32_to_cpu(rateset_le.count)) /* Select rate by rateset index */ rate = rateset_le.rates[val] & 0x7f; else /* Specified rate in bps */ rate = val / 500000; WL_CONN("rate %d mbps\n", rate / 2); /* * * Set rate override, * Since the is a/b/g-blind, both a/bg_rate are enforced. */ err_bg = brcmf_dev_intvar_set(ndev, "bg_rate", rate); err_a = brcmf_dev_intvar_set(ndev, "a_rate", rate); if (err_bg && err_a) { WL_ERR("could not set fixed rate (%d) (%d)\n", err_bg, err_a); err = err_bg | err_a; } done: WL_TRACE("Exit\n"); return err; } static s32 brcmf_inform_single_bss(struct brcmf_cfg80211_info *cfg, struct brcmf_bss_info_le *bi) { struct wiphy *wiphy = cfg_to_wiphy(cfg); struct ieee80211_channel *notify_channel; struct cfg80211_bss *bss; struct ieee80211_supported_band *band; s32 err = 0; u16 channel; u32 freq; u16 notify_capability; u16 notify_interval; u8 *notify_ie; size_t notify_ielen; s32 notify_signal; if (le32_to_cpu(bi->length) > WL_BSS_INFO_MAX) { WL_ERR("Bss info is larger than buffer. Discarding\n"); return 0; } channel = bi->ctl_ch ? bi->ctl_ch : CHSPEC_CHANNEL(le16_to_cpu(bi->chanspec)); if (channel <= CH_MAX_2G_CHANNEL) band = wiphy->bands[IEEE80211_BAND_2GHZ]; else band = wiphy->bands[IEEE80211_BAND_5GHZ]; freq = ieee80211_channel_to_frequency(channel, band->band); notify_channel = ieee80211_get_channel(wiphy, freq); notify_capability = le16_to_cpu(bi->capability); notify_interval = le16_to_cpu(bi->beacon_period); notify_ie = (u8 *)bi + le16_to_cpu(bi->ie_offset); notify_ielen = le32_to_cpu(bi->ie_length); notify_signal = (s16)le16_to_cpu(bi->RSSI) * 100; WL_CONN("bssid: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n", bi->BSSID[0], bi->BSSID[1], bi->BSSID[2], bi->BSSID[3], bi->BSSID[4], bi->BSSID[5]); WL_CONN("Channel: %d(%d)\n", channel, freq); WL_CONN("Capability: %X\n", notify_capability); WL_CONN("Beacon interval: %d\n", notify_interval); WL_CONN("Signal: %d\n", notify_signal); bss = cfg80211_inform_bss(wiphy, notify_channel, (const u8 *)bi->BSSID, 0, notify_capability, notify_interval, notify_ie, notify_ielen, notify_signal, GFP_KERNEL); if (!bss) return -ENOMEM; cfg80211_put_bss(bss); return err; } static struct brcmf_bss_info_le * next_bss_le(struct brcmf_scan_results *list, struct brcmf_bss_info_le *bss) { if (bss == NULL) return list->bss_info_le; return (struct brcmf_bss_info_le *)((unsigned long)bss + le32_to_cpu(bss->length)); } static s32 brcmf_inform_bss(struct brcmf_cfg80211_info *cfg) { struct brcmf_scan_results *bss_list; struct brcmf_bss_info_le *bi = NULL; /* must be initialized */ s32 err = 0; int i; bss_list = cfg->bss_list; if (bss_list->version != BRCMF_BSS_INFO_VERSION) { WL_ERR("Version %d != WL_BSS_INFO_VERSION\n", bss_list->version); return -EOPNOTSUPP; } WL_SCAN("scanned AP count (%d)\n", bss_list->count); for (i = 0; i < bss_list->count && i < WL_AP_MAX; i++) { bi = next_bss_le(bss_list, bi); err = brcmf_inform_single_bss(cfg, bi); if (err) break; } return err; } static s32 wl_inform_ibss(struct brcmf_cfg80211_info *cfg, struct net_device *ndev, const u8 *bssid) { struct wiphy *wiphy = cfg_to_wiphy(cfg); struct ieee80211_channel *notify_channel; struct brcmf_bss_info_le *bi = NULL; struct ieee80211_supported_band *band; struct cfg80211_bss *bss; u8 *buf = NULL; s32 err = 0; u16 channel; u32 freq; u16 notify_capability; u16 notify_interval; u8 *notify_ie; size_t notify_ielen; s32 notify_signal; WL_TRACE("Enter\n"); buf = kzalloc(WL_BSS_INFO_MAX, GFP_KERNEL); if (buf == NULL) { err = -ENOMEM; goto CleanUp; } *(__le32 *)buf = cpu_to_le32(WL_BSS_INFO_MAX); err = brcmf_exec_dcmd(ndev, BRCMF_C_GET_BSS_INFO, buf, WL_BSS_INFO_MAX); if (err) { WL_ERR("WLC_GET_BSS_INFO failed: %d\n", err); goto CleanUp; } bi = (struct brcmf_bss_info_le *)(buf + 4); channel = bi->ctl_ch ? bi->ctl_ch : CHSPEC_CHANNEL(le16_to_cpu(bi->chanspec)); if (channel <= CH_MAX_2G_CHANNEL) band = wiphy->bands[IEEE80211_BAND_2GHZ]; else band = wiphy->bands[IEEE80211_BAND_5GHZ]; freq = ieee80211_channel_to_frequency(channel, band->band); notify_channel = ieee80211_get_channel(wiphy, freq); notify_capability = le16_to_cpu(bi->capability); notify_interval = le16_to_cpu(bi->beacon_period); notify_ie = (u8 *)bi + le16_to_cpu(bi->ie_offset); notify_ielen = le32_to_cpu(bi->ie_length); notify_signal = (s16)le16_to_cpu(bi->RSSI) * 100; WL_CONN("channel: %d(%d)\n", channel, freq); WL_CONN("capability: %X\n", notify_capability); WL_CONN("beacon interval: %d\n", notify_interval); WL_CONN("signal: %d\n", notify_signal); bss = cfg80211_inform_bss(wiphy, notify_channel, bssid, 0, notify_capability, notify_interval, notify_ie, notify_ielen, notify_signal, GFP_KERNEL); if (!bss) { err = -ENOMEM; goto CleanUp; } cfg80211_put_bss(bss); CleanUp: kfree(buf); WL_TRACE("Exit\n"); return err; } static bool brcmf_is_ibssmode(struct brcmf_cfg80211_info *cfg) { return cfg->conf->mode == WL_MODE_IBSS; } /* * Traverse a string of 1-byte tag/1-byte length/variable-length value * triples, returning a pointer to the substring whose first element * matches tag */ static struct brcmf_tlv *brcmf_parse_tlvs(void *buf, int buflen, uint key) { struct brcmf_tlv *elt; int totlen; elt = (struct brcmf_tlv *) buf; totlen = buflen; /* find tagged parameter */ while (totlen >= TLV_HDR_LEN) { int len = elt->len; /* validate remaining totlen */ if ((elt->id == key) && (totlen >= (len + TLV_HDR_LEN))) return elt; elt = (struct brcmf_tlv *) ((u8 *) elt + (len + TLV_HDR_LEN)); totlen -= (len + TLV_HDR_LEN); } return NULL; } /* Is any of the tlvs the expected entry? If * not update the tlvs buffer pointer/length. */ static bool brcmf_tlv_has_ie(u8 *ie, u8 **tlvs, u32 *tlvs_len, u8 *oui, u32 oui_len, u8 type) { /* If the contents match the OUI and the type */ if (ie[TLV_LEN_OFF] >= oui_len + 1 && !memcmp(&ie[TLV_BODY_OFF], oui, oui_len) && type == ie[TLV_BODY_OFF + oui_len]) { return true; } if (tlvs == NULL) return false; /* point to the next ie */ ie += ie[TLV_LEN_OFF] + TLV_HDR_LEN; /* calculate the length of the rest of the buffer */ *tlvs_len -= (int)(ie - *tlvs); /* update the pointer to the start of the buffer */ *tlvs = ie; return false; } struct brcmf_vs_tlv * brcmf_find_wpaie(u8 *parse, u32 len) { struct brcmf_tlv *ie; while ((ie = brcmf_parse_tlvs(parse, len, WLAN_EID_WPA))) { if (brcmf_tlv_has_ie((u8 *)ie, &parse, &len, WPA_OUI, TLV_OUI_LEN, WPA_OUI_TYPE)) return (struct brcmf_vs_tlv *)ie; } return NULL; } static s32 brcmf_update_bss_info(struct brcmf_cfg80211_info *cfg) { struct brcmf_cfg80211_profile *profile = cfg->profile; struct brcmf_bss_info_le *bi; struct brcmf_ssid *ssid; struct brcmf_tlv *tim; u16 beacon_interval; u8 dtim_period; size_t ie_len; u8 *ie; s32 err = 0; WL_TRACE("Enter\n"); if (brcmf_is_ibssmode(cfg)) return err; ssid = &profile->ssid; *(__le32 *)cfg->extra_buf = cpu_to_le32(WL_EXTRA_BUF_MAX); err = brcmf_exec_dcmd(cfg_to_ndev(cfg), BRCMF_C_GET_BSS_INFO, cfg->extra_buf, WL_EXTRA_BUF_MAX); if (err) { WL_ERR("Could not get bss info %d\n", err); goto update_bss_info_out; } bi = (struct brcmf_bss_info_le *)(cfg->extra_buf + 4); err = brcmf_inform_single_bss(cfg, bi); if (err) goto update_bss_info_out; ie = ((u8 *)bi) + le16_to_cpu(bi->ie_offset); ie_len = le32_to_cpu(bi->ie_length); beacon_interval = le16_to_cpu(bi->beacon_period); tim = brcmf_parse_tlvs(ie, ie_len, WLAN_EID_TIM); if (tim) dtim_period = tim->data[1]; else { /* * active scan was done so we could not get dtim * information out of probe response. * so we speficially query dtim information to dongle. */ u32 var; err = brcmf_dev_intvar_get(cfg_to_ndev(cfg), "dtim_assoc", &var); if (err) { WL_ERR("wl dtim_assoc failed (%d)\n", err); goto update_bss_info_out; } dtim_period = (u8)var; } profile->beacon_interval = beacon_interval; profile->dtim_period = dtim_period; update_bss_info_out: WL_TRACE("Exit"); return err; } static void brcmf_abort_scanning(struct brcmf_cfg80211_info *cfg) { struct brcmf_cfg80211_iscan_ctrl *iscan = cfg_to_iscan(cfg); struct escan_info *escan = &cfg->escan_info; struct brcmf_ssid ssid; set_bit(WL_STATUS_SCAN_ABORTING, &cfg->status); if (cfg->iscan_on) { iscan->state = WL_ISCAN_STATE_IDLE; if (iscan->timer_on) { del_timer_sync(&iscan->timer); iscan->timer_on = 0; } cancel_work_sync(&iscan->work); /* Abort iscan running in FW */ memset(&ssid, 0, sizeof(ssid)); brcmf_run_iscan(iscan, &ssid, WL_SCAN_ACTION_ABORT); if (cfg->scan_request) { /* Indidate scan abort to cfg80211 layer */ WL_INFO("Terminating scan in progress\n"); cfg80211_scan_done(cfg->scan_request, true); cfg->scan_request = NULL; } } if (cfg->escan_on && cfg->scan_request) { escan->escan_state = WL_ESCAN_STATE_IDLE; brcmf_notify_escan_complete(cfg, escan->ndev, true, true); } clear_bit(WL_STATUS_SCANNING, &cfg->status); clear_bit(WL_STATUS_SCAN_ABORTING, &cfg->status); } static void brcmf_notify_iscan_complete(struct brcmf_cfg80211_iscan_ctrl *iscan, bool aborted) { struct brcmf_cfg80211_info *cfg = iscan_to_cfg(iscan); struct net_device *ndev = cfg_to_ndev(cfg); if (!test_and_clear_bit(WL_STATUS_SCANNING, &cfg->status)) { WL_ERR("Scan complete while device not scanning\n"); return; } if (cfg->scan_request) { WL_SCAN("ISCAN Completed scan: %s\n", aborted ? "Aborted" : "Done"); cfg80211_scan_done(cfg->scan_request, aborted); brcmf_set_mpc(ndev, 1); cfg->scan_request = NULL; } cfg->iscan_kickstart = false; } static s32 brcmf_wakeup_iscan(struct brcmf_cfg80211_iscan_ctrl *iscan) { if (iscan->state != WL_ISCAN_STATE_IDLE) { WL_SCAN("wake up iscan\n"); schedule_work(&iscan->work); return 0; } return -EIO; } static s32 brcmf_get_iscan_results(struct brcmf_cfg80211_iscan_ctrl *iscan, u32 *status, struct brcmf_scan_results **bss_list) { struct brcmf_iscan_results list; struct brcmf_scan_results *results; struct brcmf_scan_results_le *results_le; struct brcmf_iscan_results *list_buf; s32 err = 0; memset(iscan->scan_buf, 0, WL_ISCAN_BUF_MAX); list_buf = (struct brcmf_iscan_results *)iscan->scan_buf; results = &list_buf->results; results_le = &list_buf->results_le; results->buflen = BRCMF_ISCAN_RESULTS_FIXED_SIZE; results->version = 0; results->count = 0; memset(&list, 0, sizeof(list)); list.results_le.buflen = cpu_to_le32(WL_ISCAN_BUF_MAX); err = brcmf_dev_iovar_getbuf(iscan->ndev, "iscanresults", &list, BRCMF_ISCAN_RESULTS_FIXED_SIZE, iscan->scan_buf, WL_ISCAN_BUF_MAX); if (err) { WL_ERR("error (%d)\n", err); return err; } results->buflen = le32_to_cpu(results_le->buflen); results->version = le32_to_cpu(results_le->version); results->count = le32_to_cpu(results_le->count); WL_SCAN("results->count = %d\n", results_le->count); WL_SCAN("results->buflen = %d\n", results_le->buflen); *status = le32_to_cpu(list_buf->status_le); WL_SCAN("status = %d\n", *status); *bss_list = results; return err; } static s32 brcmf_iscan_done(struct brcmf_cfg80211_info *cfg) { struct brcmf_cfg80211_iscan_ctrl *iscan = cfg->iscan; s32 err = 0; iscan->state = WL_ISCAN_STATE_IDLE; brcmf_inform_bss(cfg); brcmf_notify_iscan_complete(iscan, false); return err; } static s32 brcmf_iscan_pending(struct brcmf_cfg80211_info *cfg) { struct brcmf_cfg80211_iscan_ctrl *iscan = cfg->iscan; s32 err = 0; /* Reschedule the timer */ mod_timer(&iscan->timer, jiffies + iscan->timer_ms * HZ / 1000); iscan->timer_on = 1; return err; } static s32 brcmf_iscan_inprogress(struct brcmf_cfg80211_info *cfg) { struct brcmf_cfg80211_iscan_ctrl *iscan = cfg->iscan; s32 err = 0; brcmf_inform_bss(cfg); brcmf_run_iscan(iscan, NULL, BRCMF_SCAN_ACTION_CONTINUE); /* Reschedule the timer */ mod_timer(&iscan->timer, jiffies + iscan->timer_ms * HZ / 1000); iscan->timer_on = 1; return err; } static s32 brcmf_iscan_aborted(struct brcmf_cfg80211_info *cfg) { struct brcmf_cfg80211_iscan_ctrl *iscan = cfg->iscan; s32 err = 0; iscan->state = WL_ISCAN_STATE_IDLE; brcmf_notify_iscan_complete(iscan, true); return err; } static void brcmf_cfg80211_iscan_handler(struct work_struct *work) { struct brcmf_cfg80211_iscan_ctrl *iscan = container_of(work, struct brcmf_cfg80211_iscan_ctrl, work); struct brcmf_cfg80211_info *cfg = iscan_to_cfg(iscan); struct brcmf_cfg80211_iscan_eloop *el = &iscan->el; u32 status = BRCMF_SCAN_RESULTS_PARTIAL; if (iscan->timer_on) { del_timer_sync(&iscan->timer); iscan->timer_on = 0; } if (brcmf_get_iscan_results(iscan, &status, &cfg->bss_list)) { status = BRCMF_SCAN_RESULTS_ABORTED; WL_ERR("Abort iscan\n"); } el->handler[status](cfg); } static void brcmf_iscan_timer(unsigned long data) { struct brcmf_cfg80211_iscan_ctrl *iscan = (struct brcmf_cfg80211_iscan_ctrl *)data; if (iscan) { iscan->timer_on = 0; WL_SCAN("timer expired\n"); brcmf_wakeup_iscan(iscan); } } static s32 brcmf_invoke_iscan(struct brcmf_cfg80211_info *cfg) { struct brcmf_cfg80211_iscan_ctrl *iscan = cfg_to_iscan(cfg); if (cfg->iscan_on) { iscan->state = WL_ISCAN_STATE_IDLE; INIT_WORK(&iscan->work, brcmf_cfg80211_iscan_handler); } return 0; } static void brcmf_init_iscan_eloop(struct brcmf_cfg80211_iscan_eloop *el) { memset(el, 0, sizeof(*el)); el->handler[BRCMF_SCAN_RESULTS_SUCCESS] = brcmf_iscan_done; el->handler[BRCMF_SCAN_RESULTS_PARTIAL] = brcmf_iscan_inprogress; el->handler[BRCMF_SCAN_RESULTS_PENDING] = brcmf_iscan_pending; el->handler[BRCMF_SCAN_RESULTS_ABORTED] = brcmf_iscan_aborted; el->handler[BRCMF_SCAN_RESULTS_NO_MEM] = brcmf_iscan_aborted; } static s32 brcmf_init_iscan(struct brcmf_cfg80211_info *cfg) { struct brcmf_cfg80211_iscan_ctrl *iscan = cfg_to_iscan(cfg); int err = 0; if (cfg->iscan_on) { iscan->ndev = cfg_to_ndev(cfg); brcmf_init_iscan_eloop(&iscan->el); iscan->timer_ms = WL_ISCAN_TIMER_INTERVAL_MS; init_timer(&iscan->timer); iscan->timer.data = (unsigned long) iscan; iscan->timer.function = brcmf_iscan_timer; err = brcmf_invoke_iscan(cfg); if (!err) iscan->data = cfg; } return err; } static void brcmf_cfg80211_escan_timeout_worker(struct work_struct *work) { struct brcmf_cfg80211_info *cfg = container_of(work, struct brcmf_cfg80211_info, escan_timeout_work); brcmf_notify_escan_complete(cfg, cfg->escan_info.ndev, true, true); } static void brcmf_escan_timeout(unsigned long data) { struct brcmf_cfg80211_info *cfg = (struct brcmf_cfg80211_info *)data; if (cfg->scan_request) { WL_ERR("timer expired\n"); if (cfg->escan_on) schedule_work(&cfg->escan_timeout_work); } } static s32 brcmf_compare_update_same_bss(struct brcmf_bss_info_le *bss, struct brcmf_bss_info_le *bss_info_le) { if (!memcmp(&bss_info_le->BSSID, &bss->BSSID, ETH_ALEN) && (CHSPEC_BAND(le16_to_cpu(bss_info_le->chanspec)) == CHSPEC_BAND(le16_to_cpu(bss->chanspec))) && bss_info_le->SSID_len == bss->SSID_len && !memcmp(bss_info_le->SSID, bss->SSID, bss_info_le->SSID_len)) { if ((bss->flags & WLC_BSS_RSSI_ON_CHANNEL) == (bss_info_le->flags & WLC_BSS_RSSI_ON_CHANNEL)) { s16 bss_rssi = le16_to_cpu(bss->RSSI); s16 bss_info_rssi = le16_to_cpu(bss_info_le->RSSI); /* preserve max RSSI if the measurements are * both on-channel or both off-channel */ if (bss_info_rssi > bss_rssi) bss->RSSI = bss_info_le->RSSI; } else if ((bss->flags & WLC_BSS_RSSI_ON_CHANNEL) && (bss_info_le->flags & WLC_BSS_RSSI_ON_CHANNEL) == 0) { /* preserve the on-channel rssi measurement * if the new measurement is off channel */ bss->RSSI = bss_info_le->RSSI; bss->flags |= WLC_BSS_RSSI_ON_CHANNEL; } return 1; } return 0; } static s32 brcmf_cfg80211_escan_handler(struct brcmf_cfg80211_info *cfg, struct net_device *ndev, const struct brcmf_event_msg *e, void *data) { s32 status; s32 err = 0; struct brcmf_escan_result_le *escan_result_le; struct brcmf_bss_info_le *bss_info_le; struct brcmf_bss_info_le *bss = NULL; u32 bi_length; struct brcmf_scan_results *list; u32 i; bool aborted; status = be32_to_cpu(e->status); if (!ndev || !cfg->escan_on || !test_bit(WL_STATUS_SCANNING, &cfg->status)) { WL_ERR("scan not ready ndev %p wl->escan_on %d drv_status %x\n", ndev, cfg->escan_on, !test_bit(WL_STATUS_SCANNING, &cfg->status)); return -EPERM; } if (status == BRCMF_E_STATUS_PARTIAL) { WL_SCAN("ESCAN Partial result\n"); escan_result_le = (struct brcmf_escan_result_le *) data; if (!escan_result_le) { WL_ERR("Invalid escan result (NULL pointer)\n"); goto exit; } if (!cfg->scan_request) { WL_SCAN("result without cfg80211 request\n"); goto exit; } if (le16_to_cpu(escan_result_le->bss_count) != 1) { WL_ERR("Invalid bss_count %d: ignoring\n", escan_result_le->bss_count); goto exit; } bss_info_le = &escan_result_le->bss_info_le; bi_length = le32_to_cpu(bss_info_le->length); if (bi_length != (le32_to_cpu(escan_result_le->buflen) - WL_ESCAN_RESULTS_FIXED_SIZE)) { WL_ERR("Invalid bss_info length %d: ignoring\n", bi_length); goto exit; } if (!(cfg_to_wiphy(cfg)->interface_modes & BIT(NL80211_IFTYPE_ADHOC))) { if (le16_to_cpu(bss_info_le->capability) & WLAN_CAPABILITY_IBSS) { WL_ERR("Ignoring IBSS result\n"); goto exit; } } list = (struct brcmf_scan_results *) cfg->escan_info.escan_buf; if (bi_length > WL_ESCAN_BUF_SIZE - list->buflen) { WL_ERR("Buffer is too small: ignoring\n"); goto exit; } for (i = 0; i < list->count; i++) { bss = bss ? (struct brcmf_bss_info_le *) ((unsigned char *)bss + le32_to_cpu(bss->length)) : list->bss_info_le; if (brcmf_compare_update_same_bss(bss, bss_info_le)) goto exit; } memcpy(&(cfg->escan_info.escan_buf[list->buflen]), bss_info_le, bi_length); list->version = le32_to_cpu(bss_info_le->version); list->buflen += bi_length; list->count++; } else { cfg->escan_info.escan_state = WL_ESCAN_STATE_IDLE; if (cfg->scan_request) { cfg->bss_list = (struct brcmf_scan_results *) cfg->escan_info.escan_buf; brcmf_inform_bss(cfg); aborted = status != BRCMF_E_STATUS_SUCCESS; brcmf_notify_escan_complete(cfg, ndev, aborted, false); } else WL_ERR("Unexpected scan result 0x%x\n", status); } exit: return err; } static void brcmf_init_escan(struct brcmf_cfg80211_info *cfg) { if (cfg->escan_on) { cfg->el.handler[BRCMF_E_ESCAN_RESULT] = brcmf_cfg80211_escan_handler; cfg->escan_info.escan_state = WL_ESCAN_STATE_IDLE; /* Init scan_timeout timer */ init_timer(&cfg->escan_timeout); cfg->escan_timeout.data = (unsigned long) cfg; cfg->escan_timeout.function = brcmf_escan_timeout; INIT_WORK(&cfg->escan_timeout_work, brcmf_cfg80211_escan_timeout_worker); } } static __always_inline void brcmf_delay(u32 ms) { if (ms < 1000 / HZ) { cond_resched(); mdelay(ms); } else { msleep(ms); } } static s32 brcmf_cfg80211_resume(struct wiphy *wiphy) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); /* * Check for WL_STATUS_READY before any function call which * could result is bus access. Don't block the resume for * any driver error conditions */ WL_TRACE("Enter\n"); if (test_bit(WL_STATUS_READY, &cfg->status)) brcmf_invoke_iscan(wiphy_to_cfg(wiphy)); WL_TRACE("Exit\n"); return 0; } static s32 brcmf_cfg80211_suspend(struct wiphy *wiphy, struct cfg80211_wowlan *wow) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct net_device *ndev = cfg_to_ndev(cfg); WL_TRACE("Enter\n"); /* * Check for WL_STATUS_READY before any function call which * could result is bus access. Don't block the suspend for * any driver error conditions */ /* * While going to suspend if associated with AP disassociate * from AP to save power while system is in suspended state */ if ((test_bit(WL_STATUS_CONNECTED, &cfg->status) || test_bit(WL_STATUS_CONNECTING, &cfg->status)) && test_bit(WL_STATUS_READY, &cfg->status)) { WL_INFO("Disassociating from AP" " while entering suspend state\n"); brcmf_link_down(cfg); /* * Make sure WPA_Supplicant receives all the event * generated due to DISASSOC call to the fw to keep * the state fw and WPA_Supplicant state consistent */ brcmf_delay(500); } if (test_bit(WL_STATUS_READY, &cfg->status)) brcmf_abort_scanning(cfg); else clear_bit(WL_STATUS_SCANNING, &cfg->status); /* Turn off watchdog timer */ if (test_bit(WL_STATUS_READY, &cfg->status)) brcmf_set_mpc(ndev, 1); WL_TRACE("Exit\n"); return 0; } static __used s32 brcmf_dev_bufvar_set(struct net_device *ndev, s8 *name, s8 *buf, s32 len) { struct brcmf_cfg80211_info *cfg = ndev_to_cfg(ndev); u32 buflen; buflen = brcmf_c_mkiovar(name, buf, len, cfg->dcmd_buf, WL_DCMD_LEN_MAX); BUG_ON(!buflen); return brcmf_exec_dcmd(ndev, BRCMF_C_SET_VAR, cfg->dcmd_buf, buflen); } static s32 brcmf_dev_bufvar_get(struct net_device *ndev, s8 *name, s8 *buf, s32 buf_len) { struct brcmf_cfg80211_info *cfg = ndev_to_cfg(ndev); u32 len; s32 err = 0; len = brcmf_c_mkiovar(name, NULL, 0, cfg->dcmd_buf, WL_DCMD_LEN_MAX); BUG_ON(!len); err = brcmf_exec_dcmd(ndev, BRCMF_C_GET_VAR, cfg->dcmd_buf, WL_DCMD_LEN_MAX); if (err) { WL_ERR("error (%d)\n", err); return err; } memcpy(buf, cfg->dcmd_buf, buf_len); return err; } static __used s32 brcmf_update_pmklist(struct net_device *ndev, struct brcmf_cfg80211_pmk_list *pmk_list, s32 err) { int i, j; int pmkid_len; pmkid_len = le32_to_cpu(pmk_list->pmkids.npmkid); WL_CONN("No of elements %d\n", pmkid_len); for (i = 0; i < pmkid_len; i++) { WL_CONN("PMKID[%d]: %pM =\n", i, &pmk_list->pmkids.pmkid[i].BSSID); for (j = 0; j < WLAN_PMKID_LEN; j++) WL_CONN("%02x\n", pmk_list->pmkids.pmkid[i].PMKID[j]); } if (!err) brcmf_dev_bufvar_set(ndev, "pmkid_info", (char *)pmk_list, sizeof(*pmk_list)); return err; } static s32 brcmf_cfg80211_set_pmksa(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_pmksa *pmksa) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct pmkid_list *pmkids = &cfg->pmk_list->pmkids; s32 err = 0; int i; int pmkid_len; WL_TRACE("Enter\n"); if (!check_sys_up(wiphy)) return -EIO; pmkid_len = le32_to_cpu(pmkids->npmkid); for (i = 0; i < pmkid_len; i++) if (!memcmp(pmksa->bssid, pmkids->pmkid[i].BSSID, ETH_ALEN)) break; if (i < WL_NUM_PMKIDS_MAX) { memcpy(pmkids->pmkid[i].BSSID, pmksa->bssid, ETH_ALEN); memcpy(pmkids->pmkid[i].PMKID, pmksa->pmkid, WLAN_PMKID_LEN); if (i == pmkid_len) { pmkid_len++; pmkids->npmkid = cpu_to_le32(pmkid_len); } } else err = -EINVAL; WL_CONN("set_pmksa,IW_PMKSA_ADD - PMKID: %pM =\n", pmkids->pmkid[pmkid_len].BSSID); for (i = 0; i < WLAN_PMKID_LEN; i++) WL_CONN("%02x\n", pmkids->pmkid[pmkid_len].PMKID[i]); err = brcmf_update_pmklist(ndev, cfg->pmk_list, err); WL_TRACE("Exit\n"); return err; } static s32 brcmf_cfg80211_del_pmksa(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_pmksa *pmksa) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct pmkid_list pmkid; s32 err = 0; int i, pmkid_len; WL_TRACE("Enter\n"); if (!check_sys_up(wiphy)) return -EIO; memcpy(&pmkid.pmkid[0].BSSID, pmksa->bssid, ETH_ALEN); memcpy(&pmkid.pmkid[0].PMKID, pmksa->pmkid, WLAN_PMKID_LEN); WL_CONN("del_pmksa,IW_PMKSA_REMOVE - PMKID: %pM =\n", &pmkid.pmkid[0].BSSID); for (i = 0; i < WLAN_PMKID_LEN; i++) WL_CONN("%02x\n", pmkid.pmkid[0].PMKID[i]); pmkid_len = le32_to_cpu(cfg->pmk_list->pmkids.npmkid); for (i = 0; i < pmkid_len; i++) if (!memcmp (pmksa->bssid, &cfg->pmk_list->pmkids.pmkid[i].BSSID, ETH_ALEN)) break; if ((pmkid_len > 0) && (i < pmkid_len)) { memset(&cfg->pmk_list->pmkids.pmkid[i], 0, sizeof(struct pmkid)); for (; i < (pmkid_len - 1); i++) { memcpy(&cfg->pmk_list->pmkids.pmkid[i].BSSID, &cfg->pmk_list->pmkids.pmkid[i + 1].BSSID, ETH_ALEN); memcpy(&cfg->pmk_list->pmkids.pmkid[i].PMKID, &cfg->pmk_list->pmkids.pmkid[i + 1].PMKID, WLAN_PMKID_LEN); } cfg->pmk_list->pmkids.npmkid = cpu_to_le32(pmkid_len - 1); } else err = -EINVAL; err = brcmf_update_pmklist(ndev, cfg->pmk_list, err); WL_TRACE("Exit\n"); return err; } static s32 brcmf_cfg80211_flush_pmksa(struct wiphy *wiphy, struct net_device *ndev) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); s32 err = 0; WL_TRACE("Enter\n"); if (!check_sys_up(wiphy)) return -EIO; memset(cfg->pmk_list, 0, sizeof(*cfg->pmk_list)); err = brcmf_update_pmklist(ndev, cfg->pmk_list, err); WL_TRACE("Exit\n"); return err; } /* * PFN result doesn't have all the info which are * required by the supplicant * (For e.g IEs) Do a target Escan so that sched scan results are reported * via wl_inform_single_bss in the required format. Escan does require the * scan request in the form of cfg80211_scan_request. For timebeing, create * cfg80211_scan_request one out of the received PNO event. */ static s32 brcmf_notify_sched_scan_results(struct brcmf_cfg80211_info *cfg, struct net_device *ndev, const struct brcmf_event_msg *e, void *data) { struct brcmf_pno_net_info_le *netinfo, *netinfo_start; struct cfg80211_scan_request *request = NULL; struct cfg80211_ssid *ssid = NULL; struct ieee80211_channel *channel = NULL; struct wiphy *wiphy = cfg_to_wiphy(cfg); int err = 0; int channel_req = 0; int band = 0; struct brcmf_pno_scanresults_le *pfn_result; u32 result_count; u32 status; WL_SCAN("Enter\n"); if (e->event_type == cpu_to_be32(BRCMF_E_PFN_NET_LOST)) { WL_SCAN("PFN NET LOST event. Do Nothing\n"); return 0; } pfn_result = (struct brcmf_pno_scanresults_le *)data; result_count = le32_to_cpu(pfn_result->count); status = le32_to_cpu(pfn_result->status); /* * PFN event is limited to fit 512 bytes so we may get * multiple NET_FOUND events. For now place a warning here. */ WARN_ON(status != BRCMF_PNO_SCAN_COMPLETE); WL_SCAN("PFN NET FOUND event. count: %d\n", result_count); if (result_count > 0) { int i; request = kzalloc(sizeof(*request), GFP_KERNEL); ssid = kcalloc(result_count, sizeof(*ssid), GFP_KERNEL); channel = kcalloc(result_count, sizeof(*channel), GFP_KERNEL); if (!request || !ssid || !channel) { err = -ENOMEM; goto out_err; } request->wiphy = wiphy; data += sizeof(struct brcmf_pno_scanresults_le); netinfo_start = (struct brcmf_pno_net_info_le *)data; for (i = 0; i < result_count; i++) { netinfo = &netinfo_start[i]; if (!netinfo) { WL_ERR("Invalid netinfo ptr. index: %d\n", i); err = -EINVAL; goto out_err; } WL_SCAN("SSID:%s Channel:%d\n", netinfo->SSID, netinfo->channel); memcpy(ssid[i].ssid, netinfo->SSID, netinfo->SSID_len); ssid[i].ssid_len = netinfo->SSID_len; request->n_ssids++; channel_req = netinfo->channel; if (channel_req <= CH_MAX_2G_CHANNEL) band = NL80211_BAND_2GHZ; else band = NL80211_BAND_5GHZ; channel[i].center_freq = ieee80211_channel_to_frequency(channel_req, band); channel[i].band = band; channel[i].flags |= IEEE80211_CHAN_NO_HT40; request->channels[i] = &channel[i]; request->n_channels++; } /* assign parsed ssid array */ if (request->n_ssids) request->ssids = &ssid[0]; if (test_bit(WL_STATUS_SCANNING, &cfg->status)) { /* Abort any on-going scan */ brcmf_abort_scanning(cfg); } set_bit(WL_STATUS_SCANNING, &cfg->status); err = brcmf_do_escan(cfg, wiphy, ndev, request); if (err) { clear_bit(WL_STATUS_SCANNING, &cfg->status); goto out_err; } cfg->sched_escan = true; cfg->scan_request = request; } else { WL_ERR("FALSE PNO Event. (pfn_count == 0)\n"); goto out_err; } kfree(ssid); kfree(channel); kfree(request); return 0; out_err: kfree(ssid); kfree(channel); kfree(request); cfg80211_sched_scan_stopped(wiphy); return err; } #ifndef CONFIG_BRCMISCAN static int brcmf_dev_pno_clean(struct net_device *ndev) { char iovbuf[128]; int ret; /* Disable pfn */ ret = brcmf_dev_intvar_set(ndev, "pfn", 0); if (ret == 0) { /* clear pfn */ ret = brcmf_dev_iovar_setbuf(ndev, "pfnclear", NULL, 0, iovbuf, sizeof(iovbuf)); } if (ret < 0) WL_ERR("failed code %d\n", ret); return ret; } static int brcmf_dev_pno_config(struct net_device *ndev) { struct brcmf_pno_param_le pfn_param; char iovbuf[128]; memset(&pfn_param, 0, sizeof(pfn_param)); pfn_param.version = cpu_to_le32(BRCMF_PNO_VERSION); /* set extra pno params */ pfn_param.flags = cpu_to_le16(1 << BRCMF_PNO_ENABLE_ADAPTSCAN_BIT); pfn_param.repeat = BRCMF_PNO_REPEAT; pfn_param.exp = BRCMF_PNO_FREQ_EXPO_MAX; /* set up pno scan fr */ pfn_param.scan_freq = cpu_to_le32(BRCMF_PNO_TIME); return brcmf_dev_iovar_setbuf(ndev, "pfn_set", &pfn_param, sizeof(pfn_param), iovbuf, sizeof(iovbuf)); } static int brcmf_cfg80211_sched_scan_start(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_sched_scan_request *request) { char iovbuf[128]; struct brcmf_cfg80211_info *cfg = wiphy_priv(wiphy); struct brcmf_pno_net_param_le pfn; int i; int ret = 0; WL_SCAN("Enter n_match_sets:%d n_ssids:%d\n", request->n_match_sets, request->n_ssids); if (test_bit(WL_STATUS_SCANNING, &cfg->status)) { WL_ERR("Scanning already : status (%lu)\n", cfg->status); return -EAGAIN; } if (!request || !request->n_ssids || !request->n_match_sets) { WL_ERR("Invalid sched scan req!! n_ssids:%d\n", request->n_ssids); return -EINVAL; } if (request->n_ssids > 0) { for (i = 0; i < request->n_ssids; i++) { /* Active scan req for ssids */ WL_SCAN(">>> Active scan req for ssid (%s)\n", request->ssids[i].ssid); /* * match_set ssids is a supert set of n_ssid list, * so we need not add these set seperately. */ } } if (request->n_match_sets > 0) { /* clean up everything */ ret = brcmf_dev_pno_clean(ndev); if (ret < 0) { WL_ERR("failed error=%d\n", ret); return ret; } /* configure pno */ ret = brcmf_dev_pno_config(ndev); if (ret < 0) { WL_ERR("PNO setup failed!! ret=%d\n", ret); return -EINVAL; } /* configure each match set */ for (i = 0; i < request->n_match_sets; i++) { struct cfg80211_ssid *ssid; u32 ssid_len; ssid = &request->match_sets[i].ssid; ssid_len = ssid->ssid_len; if (!ssid_len) { WL_ERR("skip broadcast ssid\n"); continue; } pfn.auth = cpu_to_le32(WLAN_AUTH_OPEN); pfn.wpa_auth = cpu_to_le32(BRCMF_PNO_WPA_AUTH_ANY); pfn.wsec = cpu_to_le32(0); pfn.infra = cpu_to_le32(1); pfn.flags = cpu_to_le32(1 << BRCMF_PNO_HIDDEN_BIT); pfn.ssid.SSID_len = cpu_to_le32(ssid_len); memcpy(pfn.ssid.SSID, ssid->ssid, ssid_len); ret = brcmf_dev_iovar_setbuf(ndev, "pfn_add", &pfn, sizeof(pfn), iovbuf, sizeof(iovbuf)); WL_SCAN(">>> PNO filter %s for ssid (%s)\n", ret == 0 ? "set" : "failed", ssid->ssid); } /* Enable the PNO */ if (brcmf_dev_intvar_set(ndev, "pfn", 1) < 0) { WL_ERR("PNO enable failed!! ret=%d\n", ret); return -EINVAL; } } else { return -EINVAL; } return 0; } static int brcmf_cfg80211_sched_scan_stop(struct wiphy *wiphy, struct net_device *ndev) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); WL_SCAN("enter\n"); brcmf_dev_pno_clean(ndev); if (cfg->sched_escan) brcmf_notify_escan_complete(cfg, ndev, true, true); return 0; } #endif /* CONFIG_BRCMISCAN */ #ifdef CONFIG_NL80211_TESTMODE static int brcmf_cfg80211_testmode(struct wiphy *wiphy, void *data, int len) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct net_device *ndev = cfg->wdev->netdev; struct brcmf_dcmd *dcmd = data; struct sk_buff *reply; int ret; ret = brcmf_netlink_dcmd(ndev, dcmd); if (ret == 0) { reply = cfg80211_testmode_alloc_reply_skb(wiphy, sizeof(*dcmd)); nla_put(reply, NL80211_ATTR_TESTDATA, sizeof(*dcmd), dcmd); ret = cfg80211_testmode_reply(reply); } return ret; } #endif static s32 brcmf_configure_opensecurity(struct net_device *ndev, s32 bssidx) { s32 err; /* set auth */ err = brcmf_dev_intvar_set_bsscfg(ndev, "auth", 0, bssidx); if (err < 0) { WL_ERR("auth error %d\n", err); return err; } /* set wsec */ err = brcmf_dev_intvar_set_bsscfg(ndev, "wsec", 0, bssidx); if (err < 0) { WL_ERR("wsec error %d\n", err); return err; } /* set upper-layer auth */ err = brcmf_dev_intvar_set_bsscfg(ndev, "wpa_auth", WPA_AUTH_NONE, bssidx); if (err < 0) { WL_ERR("wpa_auth error %d\n", err); return err; } return 0; } static bool brcmf_valid_wpa_oui(u8 *oui, bool is_rsn_ie) { if (is_rsn_ie) return (memcmp(oui, RSN_OUI, TLV_OUI_LEN) == 0); return (memcmp(oui, WPA_OUI, TLV_OUI_LEN) == 0); } static s32 brcmf_configure_wpaie(struct net_device *ndev, struct brcmf_vs_tlv *wpa_ie, bool is_rsn_ie, s32 bssidx) { u32 auth = 0; /* d11 open authentication */ u16 count; s32 err = 0; s32 len = 0; u32 i; u32 wsec; u32 pval = 0; u32 gval = 0; u32 wpa_auth = 0; u32 offset; u8 *data; u16 rsn_cap; u32 wme_bss_disable; WL_TRACE("Enter\n"); if (wpa_ie == NULL) goto exit; len = wpa_ie->len + TLV_HDR_LEN; data = (u8 *)wpa_ie; offset = 0; if (!is_rsn_ie) offset += VS_IE_FIXED_HDR_LEN; offset += WPA_IE_VERSION_LEN; /* check for multicast cipher suite */ if (offset + WPA_IE_MIN_OUI_LEN > len) { err = -EINVAL; WL_ERR("no multicast cipher suite\n"); goto exit; } if (!brcmf_valid_wpa_oui(&data[offset], is_rsn_ie)) { err = -EINVAL; WL_ERR("ivalid OUI\n"); goto exit; } offset += TLV_OUI_LEN; /* pick up multicast cipher */ switch (data[offset]) { case WPA_CIPHER_NONE: gval = 0; break; case WPA_CIPHER_WEP_40: case WPA_CIPHER_WEP_104: gval = WEP_ENABLED; break; case WPA_CIPHER_TKIP: gval = TKIP_ENABLED; break; case WPA_CIPHER_AES_CCM: gval = AES_ENABLED; break; default: err = -EINVAL; WL_ERR("Invalid multi cast cipher info\n"); goto exit; } offset++; /* walk thru unicast cipher list and pick up what we recognize */ count = data[offset] + (data[offset + 1] << 8); offset += WPA_IE_SUITE_COUNT_LEN; /* Check for unicast suite(s) */ if (offset + (WPA_IE_MIN_OUI_LEN * count) > len) { err = -EINVAL; WL_ERR("no unicast cipher suite\n"); goto exit; } for (i = 0; i < count; i++) { if (!brcmf_valid_wpa_oui(&data[offset], is_rsn_ie)) { err = -EINVAL; WL_ERR("ivalid OUI\n"); goto exit; } offset += TLV_OUI_LEN; switch (data[offset]) { case WPA_CIPHER_NONE: break; case WPA_CIPHER_WEP_40: case WPA_CIPHER_WEP_104: pval |= WEP_ENABLED; break; case WPA_CIPHER_TKIP: pval |= TKIP_ENABLED; break; case WPA_CIPHER_AES_CCM: pval |= AES_ENABLED; break; default: WL_ERR("Ivalid unicast security info\n"); } offset++; } /* walk thru auth management suite list and pick up what we recognize */ count = data[offset] + (data[offset + 1] << 8); offset += WPA_IE_SUITE_COUNT_LEN; /* Check for auth key management suite(s) */ if (offset + (WPA_IE_MIN_OUI_LEN * count) > len) { err = -EINVAL; WL_ERR("no auth key mgmt suite\n"); goto exit; } for (i = 0; i < count; i++) { if (!brcmf_valid_wpa_oui(&data[offset], is_rsn_ie)) { err = -EINVAL; WL_ERR("ivalid OUI\n"); goto exit; } offset += TLV_OUI_LEN; switch (data[offset]) { case RSN_AKM_NONE: WL_TRACE("RSN_AKM_NONE\n"); wpa_auth |= WPA_AUTH_NONE; break; case RSN_AKM_UNSPECIFIED: WL_TRACE("RSN_AKM_UNSPECIFIED\n"); is_rsn_ie ? (wpa_auth |= WPA2_AUTH_UNSPECIFIED) : (wpa_auth |= WPA_AUTH_UNSPECIFIED); break; case RSN_AKM_PSK: WL_TRACE("RSN_AKM_PSK\n"); is_rsn_ie ? (wpa_auth |= WPA2_AUTH_PSK) : (wpa_auth |= WPA_AUTH_PSK); break; default: WL_ERR("Ivalid key mgmt info\n"); } offset++; } if (is_rsn_ie) { wme_bss_disable = 1; if ((offset + RSN_CAP_LEN) <= len) { rsn_cap = data[offset] + (data[offset + 1] << 8); if (rsn_cap & RSN_CAP_PTK_REPLAY_CNTR_MASK) wme_bss_disable = 0; } /* set wme_bss_disable to sync RSN Capabilities */ err = brcmf_dev_intvar_set_bsscfg(ndev, "wme_bss_disable", wme_bss_disable, bssidx); if (err < 0) { WL_ERR("wme_bss_disable error %d\n", err); goto exit; } } /* FOR WPS , set SES_OW_ENABLED */ wsec = (pval | gval | SES_OW_ENABLED); /* set auth */ err = brcmf_dev_intvar_set_bsscfg(ndev, "auth", auth, bssidx); if (err < 0) { WL_ERR("auth error %d\n", err); goto exit; } /* set wsec */ err = brcmf_dev_intvar_set_bsscfg(ndev, "wsec", wsec, bssidx); if (err < 0) { WL_ERR("wsec error %d\n", err); goto exit; } /* set upper-layer auth */ err = brcmf_dev_intvar_set_bsscfg(ndev, "wpa_auth", wpa_auth, bssidx); if (err < 0) { WL_ERR("wpa_auth error %d\n", err); goto exit; } exit: return err; } static s32 brcmf_parse_vndr_ies(u8 *vndr_ie_buf, u32 vndr_ie_len, struct parsed_vndr_ies *vndr_ies) { s32 err = 0; struct brcmf_vs_tlv *vndrie; struct brcmf_tlv *ie; struct parsed_vndr_ie_info *parsed_info; s32 remaining_len; remaining_len = (s32)vndr_ie_len; memset(vndr_ies, 0, sizeof(*vndr_ies)); ie = (struct brcmf_tlv *)vndr_ie_buf; while (ie) { if (ie->id != WLAN_EID_VENDOR_SPECIFIC) goto next; vndrie = (struct brcmf_vs_tlv *)ie; /* len should be bigger than OUI length + one */ if (vndrie->len < (VS_IE_FIXED_HDR_LEN - TLV_HDR_LEN + 1)) { WL_ERR("invalid vndr ie. length is too small %d\n", vndrie->len); goto next; } /* if wpa or wme ie, do not add ie */ if (!memcmp(vndrie->oui, (u8 *)WPA_OUI, TLV_OUI_LEN) && ((vndrie->oui_type == WPA_OUI_TYPE) || (vndrie->oui_type == WME_OUI_TYPE))) { WL_TRACE("Found WPA/WME oui. Do not add it\n"); goto next; } parsed_info = &vndr_ies->ie_info[vndr_ies->count]; /* save vndr ie information */ parsed_info->ie_ptr = (char *)vndrie; parsed_info->ie_len = vndrie->len + TLV_HDR_LEN; memcpy(&parsed_info->vndrie, vndrie, sizeof(*vndrie)); vndr_ies->count++; WL_TRACE("** OUI %02x %02x %02x, type 0x%02x\n", parsed_info->vndrie.oui[0], parsed_info->vndrie.oui[1], parsed_info->vndrie.oui[2], parsed_info->vndrie.oui_type); if (vndr_ies->count >= MAX_VNDR_IE_NUMBER) break; next: remaining_len -= ie->len; if (remaining_len <= 2) ie = NULL; else ie = (struct brcmf_tlv *)(((u8 *)ie) + ie->len); } return err; } static u32 brcmf_vndr_ie(u8 *iebuf, s32 pktflag, u8 *ie_ptr, u32 ie_len, s8 *add_del_cmd) { __le32 iecount_le; __le32 pktflag_le; strncpy(iebuf, add_del_cmd, VNDR_IE_CMD_LEN - 1); iebuf[VNDR_IE_CMD_LEN - 1] = '\0'; iecount_le = cpu_to_le32(1); memcpy(&iebuf[VNDR_IE_COUNT_OFFSET], &iecount_le, sizeof(iecount_le)); pktflag_le = cpu_to_le32(pktflag); memcpy(&iebuf[VNDR_IE_PKTFLAG_OFFSET], &pktflag_le, sizeof(pktflag_le)); memcpy(&iebuf[VNDR_IE_VSIE_OFFSET], ie_ptr, ie_len); return ie_len + VNDR_IE_HDR_SIZE; } s32 brcmf_set_management_ie(struct brcmf_cfg80211_info *cfg, struct net_device *ndev, s32 bssidx, s32 pktflag, u8 *vndr_ie_buf, u32 vndr_ie_len) { s32 err = 0; u8 *iovar_ie_buf; u8 *curr_ie_buf; u8 *mgmt_ie_buf = NULL; u32 mgmt_ie_buf_len = 0; u32 *mgmt_ie_len = 0; u32 del_add_ie_buf_len = 0; u32 total_ie_buf_len = 0; u32 parsed_ie_buf_len = 0; struct parsed_vndr_ies old_vndr_ies; struct parsed_vndr_ies new_vndr_ies; struct parsed_vndr_ie_info *vndrie_info; s32 i; u8 *ptr; u32 remained_buf_len; WL_TRACE("bssidx %d, pktflag : 0x%02X\n", bssidx, pktflag); iovar_ie_buf = kzalloc(WL_EXTRA_BUF_MAX, GFP_KERNEL); if (!iovar_ie_buf) return -ENOMEM; curr_ie_buf = iovar_ie_buf; if (test_bit(WL_STATUS_AP_CREATING, &cfg->status) || test_bit(WL_STATUS_AP_CREATED, &cfg->status)) { switch (pktflag) { case VNDR_IE_PRBRSP_FLAG: mgmt_ie_buf = cfg->ap_info->probe_res_ie; mgmt_ie_len = &cfg->ap_info->probe_res_ie_len; mgmt_ie_buf_len = sizeof(cfg->ap_info->probe_res_ie); break; case VNDR_IE_BEACON_FLAG: mgmt_ie_buf = cfg->ap_info->beacon_ie; mgmt_ie_len = &cfg->ap_info->beacon_ie_len; mgmt_ie_buf_len = sizeof(cfg->ap_info->beacon_ie); break; default: err = -EPERM; WL_ERR("not suitable type\n"); goto exit; } bssidx = 0; } else { err = -EPERM; WL_ERR("not suitable type\n"); goto exit; } if (vndr_ie_len > mgmt_ie_buf_len) { err = -ENOMEM; WL_ERR("extra IE size too big\n"); goto exit; } /* parse and save new vndr_ie in curr_ie_buff before comparing it */ if (vndr_ie_buf && vndr_ie_len && curr_ie_buf) { ptr = curr_ie_buf; brcmf_parse_vndr_ies(vndr_ie_buf, vndr_ie_len, &new_vndr_ies); for (i = 0; i < new_vndr_ies.count; i++) { vndrie_info = &new_vndr_ies.ie_info[i]; memcpy(ptr + parsed_ie_buf_len, vndrie_info->ie_ptr, vndrie_info->ie_len); parsed_ie_buf_len += vndrie_info->ie_len; } } if (mgmt_ie_buf != NULL) { if (parsed_ie_buf_len && (parsed_ie_buf_len == *mgmt_ie_len) && (memcmp(mgmt_ie_buf, curr_ie_buf, parsed_ie_buf_len) == 0)) { WL_TRACE("Previous mgmt IE is equals to current IE"); goto exit; } /* parse old vndr_ie */ brcmf_parse_vndr_ies(mgmt_ie_buf, *mgmt_ie_len, &old_vndr_ies); /* make a command to delete old ie */ for (i = 0; i < old_vndr_ies.count; i++) { vndrie_info = &old_vndr_ies.ie_info[i]; WL_TRACE("DEL ID : %d, Len: %d , OUI:%02x:%02x:%02x\n", vndrie_info->vndrie.id, vndrie_info->vndrie.len, vndrie_info->vndrie.oui[0], vndrie_info->vndrie.oui[1], vndrie_info->vndrie.oui[2]); del_add_ie_buf_len = brcmf_vndr_ie(curr_ie_buf, pktflag, vndrie_info->ie_ptr, vndrie_info->ie_len, "del"); curr_ie_buf += del_add_ie_buf_len; total_ie_buf_len += del_add_ie_buf_len; } } *mgmt_ie_len = 0; /* Add if there is any extra IE */ if (mgmt_ie_buf && parsed_ie_buf_len) { ptr = mgmt_ie_buf; remained_buf_len = mgmt_ie_buf_len; /* make a command to add new ie */ for (i = 0; i < new_vndr_ies.count; i++) { vndrie_info = &new_vndr_ies.ie_info[i]; WL_TRACE("ADDED ID : %d, Len: %d, OUI:%02x:%02x:%02x\n", vndrie_info->vndrie.id, vndrie_info->vndrie.len, vndrie_info->vndrie.oui[0], vndrie_info->vndrie.oui[1], vndrie_info->vndrie.oui[2]); del_add_ie_buf_len = brcmf_vndr_ie(curr_ie_buf, pktflag, vndrie_info->ie_ptr, vndrie_info->ie_len, "add"); /* verify remained buf size before copy data */ remained_buf_len -= vndrie_info->ie_len; if (remained_buf_len < 0) { WL_ERR("no space in mgmt_ie_buf: len left %d", remained_buf_len); break; } /* save the parsed IE in wl struct */ memcpy(ptr + (*mgmt_ie_len), vndrie_info->ie_ptr, vndrie_info->ie_len); *mgmt_ie_len += vndrie_info->ie_len; curr_ie_buf += del_add_ie_buf_len; total_ie_buf_len += del_add_ie_buf_len; } } if (total_ie_buf_len) { err = brcmf_dev_iovar_setbuf_bsscfg(ndev, "vndr_ie", iovar_ie_buf, total_ie_buf_len, cfg->extra_buf, WL_EXTRA_BUF_MAX, bssidx); if (err) WL_ERR("vndr ie set error : %d\n", err); } exit: kfree(iovar_ie_buf); return err; } static s32 brcmf_cfg80211_start_ap(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_ap_settings *settings) { s32 ie_offset; struct brcmf_tlv *ssid_ie; struct brcmf_ssid_le ssid_le; s32 ioctl_value; s32 err = -EPERM; struct brcmf_tlv *rsn_ie; struct brcmf_vs_tlv *wpa_ie; struct brcmf_join_params join_params; struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); s32 bssidx = 0; WL_TRACE("channel_type=%d, beacon_interval=%d, dtim_period=%d,\n", settings->channel_type, settings->beacon_interval, settings->dtim_period); WL_TRACE("ssid=%s(%d), auth_type=%d, inactivity_timeout=%d\n", settings->ssid, settings->ssid_len, settings->auth_type, settings->inactivity_timeout); if (!test_bit(WL_STATUS_AP_CREATING, &cfg->status)) { WL_ERR("Not in AP creation mode\n"); return -EPERM; } memset(&ssid_le, 0, sizeof(ssid_le)); if (settings->ssid == NULL || settings->ssid_len == 0) { ie_offset = DOT11_MGMT_HDR_LEN + DOT11_BCN_PRB_FIXED_LEN; ssid_ie = brcmf_parse_tlvs( (u8 *)&settings->beacon.head[ie_offset], settings->beacon.head_len - ie_offset, WLAN_EID_SSID); if (!ssid_ie) return -EINVAL; memcpy(ssid_le.SSID, ssid_ie->data, ssid_ie->len); ssid_le.SSID_len = cpu_to_le32(ssid_ie->len); WL_TRACE("SSID is (%s) in Head\n", ssid_le.SSID); } else { memcpy(ssid_le.SSID, settings->ssid, settings->ssid_len); ssid_le.SSID_len = cpu_to_le32((u32)settings->ssid_len); } brcmf_set_mpc(ndev, 0); ioctl_value = 1; err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_DOWN, &ioctl_value); if (err < 0) { WL_ERR("BRCMF_C_DOWN error %d\n", err); goto exit; } ioctl_value = 1; err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_SET_INFRA, &ioctl_value); if (err < 0) { WL_ERR("SET INFRA error %d\n", err); goto exit; } ioctl_value = 1; err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_SET_AP, &ioctl_value); if (err < 0) { WL_ERR("setting AP mode failed %d\n", err); goto exit; } /* find the RSN_IE */ rsn_ie = brcmf_parse_tlvs((u8 *)settings->beacon.tail, settings->beacon.tail_len, WLAN_EID_RSN); /* find the WPA_IE */ wpa_ie = brcmf_find_wpaie((u8 *)settings->beacon.tail, settings->beacon.tail_len); kfree(cfg->ap_info->rsn_ie); cfg->ap_info->rsn_ie = NULL; kfree(cfg->ap_info->wpa_ie); cfg->ap_info->wpa_ie = NULL; if ((wpa_ie != NULL || rsn_ie != NULL)) { WL_TRACE("WPA(2) IE is found\n"); if (wpa_ie != NULL) { /* WPA IE */ err = brcmf_configure_wpaie(ndev, wpa_ie, false, bssidx); if (err < 0) goto exit; cfg->ap_info->wpa_ie = kmemdup(wpa_ie, wpa_ie->len + TLV_HDR_LEN, GFP_KERNEL); } else { /* RSN IE */ err = brcmf_configure_wpaie(ndev, (struct brcmf_vs_tlv *)rsn_ie, true, bssidx); if (err < 0) goto exit; cfg->ap_info->rsn_ie = kmemdup(rsn_ie, rsn_ie->len + TLV_HDR_LEN, GFP_KERNEL); } cfg->ap_info->security_mode = true; } else { WL_TRACE("No WPA(2) IEs found\n"); brcmf_configure_opensecurity(ndev, bssidx); cfg->ap_info->security_mode = false; } /* Set Beacon IEs to FW */ err = brcmf_set_management_ie(cfg, ndev, bssidx, VNDR_IE_BEACON_FLAG, (u8 *)settings->beacon.tail, settings->beacon.tail_len); if (err) WL_ERR("Set Beacon IE Failed\n"); else WL_TRACE("Applied Vndr IEs for Beacon\n"); /* Set Probe Response IEs to FW */ err = brcmf_set_management_ie(cfg, ndev, bssidx, VNDR_IE_PRBRSP_FLAG, (u8 *)settings->beacon.proberesp_ies, settings->beacon.proberesp_ies_len); if (err) WL_ERR("Set Probe Resp IE Failed\n"); else WL_TRACE("Applied Vndr IEs for Probe Resp\n"); if (settings->beacon_interval) { ioctl_value = settings->beacon_interval; err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_SET_BCNPRD, &ioctl_value); if (err < 0) { WL_ERR("Beacon Interval Set Error, %d\n", err); goto exit; } } if (settings->dtim_period) { ioctl_value = settings->dtim_period; err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_SET_DTIMPRD, &ioctl_value); if (err < 0) { WL_ERR("DTIM Interval Set Error, %d\n", err); goto exit; } } ioctl_value = 1; err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_UP, &ioctl_value); if (err < 0) { WL_ERR("BRCMF_C_UP error (%d)\n", err); goto exit; } memset(&join_params, 0, sizeof(join_params)); /* join parameters starts with ssid */ memcpy(&join_params.ssid_le, &ssid_le, sizeof(ssid_le)); /* create softap */ err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_SSID, &join_params, sizeof(join_params)); if (err < 0) { WL_ERR("SET SSID error (%d)\n", err); goto exit; } clear_bit(WL_STATUS_AP_CREATING, &cfg->status); set_bit(WL_STATUS_AP_CREATED, &cfg->status); exit: if (err) brcmf_set_mpc(ndev, 1); return err; } static int brcmf_cfg80211_stop_ap(struct wiphy *wiphy, struct net_device *ndev) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); s32 ioctl_value; s32 err = -EPERM; WL_TRACE("Enter\n"); if (cfg->conf->mode == WL_MODE_AP) { /* Due to most likely deauths outstanding we sleep */ /* first to make sure they get processed by fw. */ msleep(400); ioctl_value = 0; err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_SET_AP, &ioctl_value); if (err < 0) { WL_ERR("setting AP mode failed %d\n", err); goto exit; } ioctl_value = 0; err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_UP, &ioctl_value); if (err < 0) { WL_ERR("BRCMF_C_UP error %d\n", err); goto exit; } brcmf_set_mpc(ndev, 1); clear_bit(WL_STATUS_AP_CREATING, &cfg->status); clear_bit(WL_STATUS_AP_CREATED, &cfg->status); } exit: return err; } static int brcmf_cfg80211_del_station(struct wiphy *wiphy, struct net_device *ndev, u8 *mac) { struct brcmf_scb_val_le scbval; s32 err; if (!mac) return -EFAULT; WL_TRACE("Enter %pM\n", mac); if (!check_sys_up(wiphy)) return -EIO; memcpy(&scbval.ea, mac, ETH_ALEN); scbval.val = cpu_to_le32(WLAN_REASON_DEAUTH_LEAVING); err = brcmf_exec_dcmd(ndev, BRCMF_C_SCB_DEAUTHENTICATE_FOR_REASON, &scbval, sizeof(scbval)); if (err) WL_ERR("SCB_DEAUTHENTICATE_FOR_REASON failed %d\n", err); WL_TRACE("Exit\n"); return err; } static struct cfg80211_ops wl_cfg80211_ops = { .change_virtual_intf = brcmf_cfg80211_change_iface, .scan = brcmf_cfg80211_scan, .set_wiphy_params = brcmf_cfg80211_set_wiphy_params, .join_ibss = brcmf_cfg80211_join_ibss, .leave_ibss = brcmf_cfg80211_leave_ibss, .get_station = brcmf_cfg80211_get_station, .set_tx_power = brcmf_cfg80211_set_tx_power, .get_tx_power = brcmf_cfg80211_get_tx_power, .add_key = brcmf_cfg80211_add_key, .del_key = brcmf_cfg80211_del_key, .get_key = brcmf_cfg80211_get_key, .set_default_key = brcmf_cfg80211_config_default_key, .set_default_mgmt_key = brcmf_cfg80211_config_default_mgmt_key, .set_power_mgmt = brcmf_cfg80211_set_power_mgmt, .set_bitrate_mask = brcmf_cfg80211_set_bitrate_mask, .connect = brcmf_cfg80211_connect, .disconnect = brcmf_cfg80211_disconnect, .suspend = brcmf_cfg80211_suspend, .resume = brcmf_cfg80211_resume, .set_pmksa = brcmf_cfg80211_set_pmksa, .del_pmksa = brcmf_cfg80211_del_pmksa, .flush_pmksa = brcmf_cfg80211_flush_pmksa, .start_ap = brcmf_cfg80211_start_ap, .stop_ap = brcmf_cfg80211_stop_ap, .del_station = brcmf_cfg80211_del_station, #ifndef CONFIG_BRCMISCAN /* scheduled scan need e-scan, which is mutual exclusive with i-scan */ .sched_scan_start = brcmf_cfg80211_sched_scan_start, .sched_scan_stop = brcmf_cfg80211_sched_scan_stop, #endif #ifdef CONFIG_NL80211_TESTMODE .testmode_cmd = brcmf_cfg80211_testmode #endif }; static s32 brcmf_mode_to_nl80211_iftype(s32 mode) { s32 err = 0; switch (mode) { case WL_MODE_BSS: return NL80211_IFTYPE_STATION; case WL_MODE_IBSS: return NL80211_IFTYPE_ADHOC; default: return NL80211_IFTYPE_UNSPECIFIED; } return err; } static void brcmf_wiphy_pno_params(struct wiphy *wiphy) { #ifndef CONFIG_BRCMFISCAN /* scheduled scan settings */ wiphy->max_sched_scan_ssids = BRCMF_PNO_MAX_PFN_COUNT; wiphy->max_match_sets = BRCMF_PNO_MAX_PFN_COUNT; wiphy->max_sched_scan_ie_len = BRCMF_SCAN_IE_LEN_MAX; wiphy->flags |= WIPHY_FLAG_SUPPORTS_SCHED_SCAN; #endif } static struct wireless_dev *brcmf_alloc_wdev(struct device *ndev) { struct wireless_dev *wdev; s32 err = 0; wdev = kzalloc(sizeof(*wdev), GFP_KERNEL); if (!wdev) return ERR_PTR(-ENOMEM); wdev->wiphy = wiphy_new(&wl_cfg80211_ops, sizeof(struct brcmf_cfg80211_info)); if (!wdev->wiphy) { WL_ERR("Could not allocate wiphy device\n"); err = -ENOMEM; goto wiphy_new_out; } set_wiphy_dev(wdev->wiphy, ndev); wdev->wiphy->max_scan_ssids = WL_NUM_SCAN_MAX; wdev->wiphy->max_num_pmkids = WL_NUM_PMKIDS_MAX; wdev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_ADHOC) | BIT(NL80211_IFTYPE_AP); wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = &__wl_band_2ghz; wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = &__wl_band_5ghz_a; /* Set * it as 11a by default. * This will be updated with * 11n phy tables in * "ifconfig up" * if phy has 11n capability */ wdev->wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM; wdev->wiphy->cipher_suites = __wl_cipher_suites; wdev->wiphy->n_cipher_suites = ARRAY_SIZE(__wl_cipher_suites); wdev->wiphy->flags |= WIPHY_FLAG_PS_ON_BY_DEFAULT; /* enable power * save mode * by default */ brcmf_wiphy_pno_params(wdev->wiphy); err = wiphy_register(wdev->wiphy); if (err < 0) { WL_ERR("Could not register wiphy device (%d)\n", err); goto wiphy_register_out; } return wdev; wiphy_register_out: wiphy_free(wdev->wiphy); wiphy_new_out: kfree(wdev); return ERR_PTR(err); } static void brcmf_free_wdev(struct brcmf_cfg80211_info *cfg) { struct wireless_dev *wdev = cfg->wdev; if (!wdev) { WL_ERR("wdev is invalid\n"); return; } wiphy_unregister(wdev->wiphy); wiphy_free(wdev->wiphy); kfree(wdev); cfg->wdev = NULL; } static bool brcmf_is_linkup(struct brcmf_cfg80211_info *cfg, const struct brcmf_event_msg *e) { u32 event = be32_to_cpu(e->event_type); u32 status = be32_to_cpu(e->status); if (event == BRCMF_E_SET_SSID && status == BRCMF_E_STATUS_SUCCESS) { WL_CONN("Processing set ssid\n"); cfg->link_up = true; return true; } return false; } static bool brcmf_is_linkdown(struct brcmf_cfg80211_info *cfg, const struct brcmf_event_msg *e) { u32 event = be32_to_cpu(e->event_type); u16 flags = be16_to_cpu(e->flags); if (event == BRCMF_E_LINK && (!(flags & BRCMF_EVENT_MSG_LINK))) { WL_CONN("Processing link down\n"); return true; } return false; } static bool brcmf_is_nonetwork(struct brcmf_cfg80211_info *cfg, const struct brcmf_event_msg *e) { u32 event = be32_to_cpu(e->event_type); u32 status = be32_to_cpu(e->status); if (event == BRCMF_E_LINK && status == BRCMF_E_STATUS_NO_NETWORKS) { WL_CONN("Processing Link %s & no network found\n", be16_to_cpu(e->flags) & BRCMF_EVENT_MSG_LINK ? "up" : "down"); return true; } if (event == BRCMF_E_SET_SSID && status != BRCMF_E_STATUS_SUCCESS) { WL_CONN("Processing connecting & no network found\n"); return true; } return false; } static void brcmf_clear_assoc_ies(struct brcmf_cfg80211_info *cfg) { struct brcmf_cfg80211_connect_info *conn_info = cfg_to_conn(cfg); kfree(conn_info->req_ie); conn_info->req_ie = NULL; conn_info->req_ie_len = 0; kfree(conn_info->resp_ie); conn_info->resp_ie = NULL; conn_info->resp_ie_len = 0; } static s32 brcmf_get_assoc_ies(struct brcmf_cfg80211_info *cfg) { struct net_device *ndev = cfg_to_ndev(cfg); struct brcmf_cfg80211_assoc_ielen_le *assoc_info; struct brcmf_cfg80211_connect_info *conn_info = cfg_to_conn(cfg); u32 req_len; u32 resp_len; s32 err = 0; brcmf_clear_assoc_ies(cfg); err = brcmf_dev_bufvar_get(ndev, "assoc_info", cfg->extra_buf, WL_ASSOC_INFO_MAX); if (err) { WL_ERR("could not get assoc info (%d)\n", err); return err; } assoc_info = (struct brcmf_cfg80211_assoc_ielen_le *)cfg->extra_buf; req_len = le32_to_cpu(assoc_info->req_len); resp_len = le32_to_cpu(assoc_info->resp_len); if (req_len) { err = brcmf_dev_bufvar_get(ndev, "assoc_req_ies", cfg->extra_buf, WL_ASSOC_INFO_MAX); if (err) { WL_ERR("could not get assoc req (%d)\n", err); return err; } conn_info->req_ie_len = req_len; conn_info->req_ie = kmemdup(cfg->extra_buf, conn_info->req_ie_len, GFP_KERNEL); } else { conn_info->req_ie_len = 0; conn_info->req_ie = NULL; } if (resp_len) { err = brcmf_dev_bufvar_get(ndev, "assoc_resp_ies", cfg->extra_buf, WL_ASSOC_INFO_MAX); if (err) { WL_ERR("could not get assoc resp (%d)\n", err); return err; } conn_info->resp_ie_len = resp_len; conn_info->resp_ie = kmemdup(cfg->extra_buf, conn_info->resp_ie_len, GFP_KERNEL); } else { conn_info->resp_ie_len = 0; conn_info->resp_ie = NULL; } WL_CONN("req len (%d) resp len (%d)\n", conn_info->req_ie_len, conn_info->resp_ie_len); return err; } static s32 brcmf_bss_roaming_done(struct brcmf_cfg80211_info *cfg, struct net_device *ndev, const struct brcmf_event_msg *e) { struct brcmf_cfg80211_profile *profile = cfg->profile; struct brcmf_cfg80211_connect_info *conn_info = cfg_to_conn(cfg); struct wiphy *wiphy = cfg_to_wiphy(cfg); struct brcmf_channel_info_le channel_le; struct ieee80211_channel *notify_channel; struct ieee80211_supported_band *band; u32 freq; s32 err = 0; u32 target_channel; WL_TRACE("Enter\n"); brcmf_get_assoc_ies(cfg); memcpy(profile->bssid, e->addr, ETH_ALEN); brcmf_update_bss_info(cfg); brcmf_exec_dcmd(ndev, BRCMF_C_GET_CHANNEL, &channel_le, sizeof(channel_le)); target_channel = le32_to_cpu(channel_le.target_channel); WL_CONN("Roamed to channel %d\n", target_channel); if (target_channel <= CH_MAX_2G_CHANNEL) band = wiphy->bands[IEEE80211_BAND_2GHZ]; else band = wiphy->bands[IEEE80211_BAND_5GHZ]; freq = ieee80211_channel_to_frequency(target_channel, band->band); notify_channel = ieee80211_get_channel(wiphy, freq); cfg80211_roamed(ndev, notify_channel, (u8 *)profile->bssid, conn_info->req_ie, conn_info->req_ie_len, conn_info->resp_ie, conn_info->resp_ie_len, GFP_KERNEL); WL_CONN("Report roaming result\n"); set_bit(WL_STATUS_CONNECTED, &cfg->status); WL_TRACE("Exit\n"); return err; } static s32 brcmf_bss_connect_done(struct brcmf_cfg80211_info *cfg, struct net_device *ndev, const struct brcmf_event_msg *e, bool completed) { struct brcmf_cfg80211_profile *profile = cfg->profile; struct brcmf_cfg80211_connect_info *conn_info = cfg_to_conn(cfg); s32 err = 0; WL_TRACE("Enter\n"); if (test_and_clear_bit(WL_STATUS_CONNECTING, &cfg->status)) { if (completed) { brcmf_get_assoc_ies(cfg); memcpy(profile->bssid, e->addr, ETH_ALEN); brcmf_update_bss_info(cfg); } cfg80211_connect_result(ndev, (u8 *)profile->bssid, conn_info->req_ie, conn_info->req_ie_len, conn_info->resp_ie, conn_info->resp_ie_len, completed ? WLAN_STATUS_SUCCESS : WLAN_STATUS_AUTH_TIMEOUT, GFP_KERNEL); if (completed) set_bit(WL_STATUS_CONNECTED, &cfg->status); WL_CONN("Report connect result - connection %s\n", completed ? "succeeded" : "failed"); } WL_TRACE("Exit\n"); return err; } static s32 brcmf_notify_connect_status_ap(struct brcmf_cfg80211_info *cfg, struct net_device *ndev, const struct brcmf_event_msg *e, void *data) { s32 err = 0; u32 event = be32_to_cpu(e->event_type); u32 reason = be32_to_cpu(e->reason); u32 len = be32_to_cpu(e->datalen); static int generation; struct station_info sinfo; WL_CONN("event %d, reason %d\n", event, reason); memset(&sinfo, 0, sizeof(sinfo)); sinfo.filled = 0; if (((event == BRCMF_E_ASSOC_IND) || (event == BRCMF_E_REASSOC_IND)) && reason == BRCMF_E_STATUS_SUCCESS) { sinfo.filled = STATION_INFO_ASSOC_REQ_IES; if (!data) { WL_ERR("No IEs present in ASSOC/REASSOC_IND"); return -EINVAL; } sinfo.assoc_req_ies = data; sinfo.assoc_req_ies_len = len; generation++; sinfo.generation = generation; cfg80211_new_sta(ndev, e->addr, &sinfo, GFP_ATOMIC); } else if ((event == BRCMF_E_DISASSOC_IND) || (event == BRCMF_E_DEAUTH_IND) || (event == BRCMF_E_DEAUTH)) { generation++; sinfo.generation = generation; cfg80211_del_sta(ndev, e->addr, GFP_ATOMIC); } return err; } static s32 brcmf_notify_connect_status(struct brcmf_cfg80211_info *cfg, struct net_device *ndev, const struct brcmf_event_msg *e, void *data) { struct brcmf_cfg80211_profile *profile = cfg->profile; s32 err = 0; if (cfg->conf->mode == WL_MODE_AP) { err = brcmf_notify_connect_status_ap(cfg, ndev, e, data); } else if (brcmf_is_linkup(cfg, e)) { WL_CONN("Linkup\n"); if (brcmf_is_ibssmode(cfg)) { memcpy(profile->bssid, e->addr, ETH_ALEN); wl_inform_ibss(cfg, ndev, e->addr); cfg80211_ibss_joined(ndev, e->addr, GFP_KERNEL); clear_bit(WL_STATUS_CONNECTING, &cfg->status); set_bit(WL_STATUS_CONNECTED, &cfg->status); } else brcmf_bss_connect_done(cfg, ndev, e, true); } else if (brcmf_is_linkdown(cfg, e)) { WL_CONN("Linkdown\n"); if (brcmf_is_ibssmode(cfg)) { clear_bit(WL_STATUS_CONNECTING, &cfg->status); if (test_and_clear_bit(WL_STATUS_CONNECTED, &cfg->status)) brcmf_link_down(cfg); } else { brcmf_bss_connect_done(cfg, ndev, e, false); if (test_and_clear_bit(WL_STATUS_CONNECTED, &cfg->status)) { cfg80211_disconnected(ndev, 0, NULL, 0, GFP_KERNEL); brcmf_link_down(cfg); } } brcmf_init_prof(cfg->profile); } else if (brcmf_is_nonetwork(cfg, e)) { if (brcmf_is_ibssmode(cfg)) clear_bit(WL_STATUS_CONNECTING, &cfg->status); else brcmf_bss_connect_done(cfg, ndev, e, false); } return err; } static s32 brcmf_notify_roaming_status(struct brcmf_cfg80211_info *cfg, struct net_device *ndev, const struct brcmf_event_msg *e, void *data) { s32 err = 0; u32 event = be32_to_cpu(e->event_type); u32 status = be32_to_cpu(e->status); if (event == BRCMF_E_ROAM && status == BRCMF_E_STATUS_SUCCESS) { if (test_bit(WL_STATUS_CONNECTED, &cfg->status)) brcmf_bss_roaming_done(cfg, ndev, e); else brcmf_bss_connect_done(cfg, ndev, e, true); } return err; } static s32 brcmf_notify_mic_status(struct brcmf_cfg80211_info *cfg, struct net_device *ndev, const struct brcmf_event_msg *e, void *data) { u16 flags = be16_to_cpu(e->flags); enum nl80211_key_type key_type; if (flags & BRCMF_EVENT_MSG_GROUP) key_type = NL80211_KEYTYPE_GROUP; else key_type = NL80211_KEYTYPE_PAIRWISE; cfg80211_michael_mic_failure(ndev, (u8 *)&e->addr, key_type, -1, NULL, GFP_KERNEL); return 0; } static s32 brcmf_notify_scan_status(struct brcmf_cfg80211_info *cfg, struct net_device *ndev, const struct brcmf_event_msg *e, void *data) { struct brcmf_channel_info_le channel_inform_le; struct brcmf_scan_results_le *bss_list_le; u32 len = WL_SCAN_BUF_MAX; s32 err = 0; bool scan_abort = false; u32 scan_channel; WL_TRACE("Enter\n"); if (cfg->iscan_on && cfg->iscan_kickstart) { WL_TRACE("Exit\n"); return brcmf_wakeup_iscan(cfg_to_iscan(cfg)); } if (!test_and_clear_bit(WL_STATUS_SCANNING, &cfg->status)) { WL_ERR("Scan complete while device not scanning\n"); scan_abort = true; err = -EINVAL; goto scan_done_out; } err = brcmf_exec_dcmd(ndev, BRCMF_C_GET_CHANNEL, &channel_inform_le, sizeof(channel_inform_le)); if (err) { WL_ERR("scan busy (%d)\n", err); scan_abort = true; goto scan_done_out; } scan_channel = le32_to_cpu(channel_inform_le.scan_channel); if (scan_channel) WL_CONN("channel_inform.scan_channel (%d)\n", scan_channel); cfg->bss_list = cfg->scan_results; bss_list_le = (struct brcmf_scan_results_le *) cfg->bss_list; memset(cfg->scan_results, 0, len); bss_list_le->buflen = cpu_to_le32(len); err = brcmf_exec_dcmd(ndev, BRCMF_C_SCAN_RESULTS, cfg->scan_results, len); if (err) { WL_ERR("%s Scan_results error (%d)\n", ndev->name, err); err = -EINVAL; scan_abort = true; goto scan_done_out; } cfg->scan_results->buflen = le32_to_cpu(bss_list_le->buflen); cfg->scan_results->version = le32_to_cpu(bss_list_le->version); cfg->scan_results->count = le32_to_cpu(bss_list_le->count); err = brcmf_inform_bss(cfg); if (err) scan_abort = true; scan_done_out: if (cfg->scan_request) { WL_SCAN("calling cfg80211_scan_done\n"); cfg80211_scan_done(cfg->scan_request, scan_abort); brcmf_set_mpc(ndev, 1); cfg->scan_request = NULL; } WL_TRACE("Exit\n"); return err; } static void brcmf_init_conf(struct brcmf_cfg80211_conf *conf) { conf->mode = (u32)-1; conf->frag_threshold = (u32)-1; conf->rts_threshold = (u32)-1; conf->retry_short = (u32)-1; conf->retry_long = (u32)-1; conf->tx_power = -1; } static void brcmf_init_eloop_handler(struct brcmf_cfg80211_event_loop *el) { memset(el, 0, sizeof(*el)); el->handler[BRCMF_E_SCAN_COMPLETE] = brcmf_notify_scan_status; el->handler[BRCMF_E_LINK] = brcmf_notify_connect_status; el->handler[BRCMF_E_DEAUTH_IND] = brcmf_notify_connect_status; el->handler[BRCMF_E_DEAUTH] = brcmf_notify_connect_status; el->handler[BRCMF_E_DISASSOC_IND] = brcmf_notify_connect_status; el->handler[BRCMF_E_ASSOC_IND] = brcmf_notify_connect_status; el->handler[BRCMF_E_REASSOC_IND] = brcmf_notify_connect_status; el->handler[BRCMF_E_ROAM] = brcmf_notify_roaming_status; el->handler[BRCMF_E_MIC_ERROR] = brcmf_notify_mic_status; el->handler[BRCMF_E_SET_SSID] = brcmf_notify_connect_status; el->handler[BRCMF_E_PFN_NET_FOUND] = brcmf_notify_sched_scan_results; } static void brcmf_deinit_priv_mem(struct brcmf_cfg80211_info *cfg) { kfree(cfg->scan_results); cfg->scan_results = NULL; kfree(cfg->bss_info); cfg->bss_info = NULL; kfree(cfg->conf); cfg->conf = NULL; kfree(cfg->profile); cfg->profile = NULL; kfree(cfg->scan_req_int); cfg->scan_req_int = NULL; kfree(cfg->escan_ioctl_buf); cfg->escan_ioctl_buf = NULL; kfree(cfg->dcmd_buf); cfg->dcmd_buf = NULL; kfree(cfg->extra_buf); cfg->extra_buf = NULL; kfree(cfg->iscan); cfg->iscan = NULL; kfree(cfg->pmk_list); cfg->pmk_list = NULL; if (cfg->ap_info) { kfree(cfg->ap_info->wpa_ie); kfree(cfg->ap_info->rsn_ie); kfree(cfg->ap_info); cfg->ap_info = NULL; } } static s32 brcmf_init_priv_mem(struct brcmf_cfg80211_info *cfg) { cfg->scan_results = kzalloc(WL_SCAN_BUF_MAX, GFP_KERNEL); if (!cfg->scan_results) goto init_priv_mem_out; cfg->conf = kzalloc(sizeof(*cfg->conf), GFP_KERNEL); if (!cfg->conf) goto init_priv_mem_out; cfg->profile = kzalloc(sizeof(*cfg->profile), GFP_KERNEL); if (!cfg->profile) goto init_priv_mem_out; cfg->bss_info = kzalloc(WL_BSS_INFO_MAX, GFP_KERNEL); if (!cfg->bss_info) goto init_priv_mem_out; cfg->scan_req_int = kzalloc(sizeof(*cfg->scan_req_int), GFP_KERNEL); if (!cfg->scan_req_int) goto init_priv_mem_out; cfg->escan_ioctl_buf = kzalloc(BRCMF_DCMD_MEDLEN, GFP_KERNEL); if (!cfg->escan_ioctl_buf) goto init_priv_mem_out; cfg->dcmd_buf = kzalloc(WL_DCMD_LEN_MAX, GFP_KERNEL); if (!cfg->dcmd_buf) goto init_priv_mem_out; cfg->extra_buf = kzalloc(WL_EXTRA_BUF_MAX, GFP_KERNEL); if (!cfg->extra_buf) goto init_priv_mem_out; cfg->iscan = kzalloc(sizeof(*cfg->iscan), GFP_KERNEL); if (!cfg->iscan) goto init_priv_mem_out; cfg->pmk_list = kzalloc(sizeof(*cfg->pmk_list), GFP_KERNEL); if (!cfg->pmk_list) goto init_priv_mem_out; return 0; init_priv_mem_out: brcmf_deinit_priv_mem(cfg); return -ENOMEM; } /* * retrieve first queued event from head */ static struct brcmf_cfg80211_event_q *brcmf_deq_event( struct brcmf_cfg80211_info *cfg) { struct brcmf_cfg80211_event_q *e = NULL; spin_lock_irq(&cfg->evt_q_lock); if (!list_empty(&cfg->evt_q_list)) { e = list_first_entry(&cfg->evt_q_list, struct brcmf_cfg80211_event_q, evt_q_list); list_del(&e->evt_q_list); } spin_unlock_irq(&cfg->evt_q_lock); return e; } /* * push event to tail of the queue * * remark: this function may not sleep as it is called in atomic context. */ static s32 brcmf_enq_event(struct brcmf_cfg80211_info *cfg, u32 event, const struct brcmf_event_msg *msg, void *data) { struct brcmf_cfg80211_event_q *e; s32 err = 0; ulong flags; u32 data_len; u32 total_len; total_len = sizeof(struct brcmf_cfg80211_event_q); if (data) data_len = be32_to_cpu(msg->datalen); else data_len = 0; total_len += data_len; e = kzalloc(total_len, GFP_ATOMIC); if (!e) return -ENOMEM; e->etype = event; memcpy(&e->emsg, msg, sizeof(struct brcmf_event_msg)); if (data) memcpy(&e->edata, data, data_len); spin_lock_irqsave(&cfg->evt_q_lock, flags); list_add_tail(&e->evt_q_list, &cfg->evt_q_list); spin_unlock_irqrestore(&cfg->evt_q_lock, flags); return err; } static void brcmf_put_event(struct brcmf_cfg80211_event_q *e) { kfree(e); } static void brcmf_cfg80211_event_handler(struct work_struct *work) { struct brcmf_cfg80211_info *cfg = container_of(work, struct brcmf_cfg80211_info, event_work); struct brcmf_cfg80211_event_q *e; e = brcmf_deq_event(cfg); if (unlikely(!e)) { WL_ERR("event queue empty...\n"); return; } do { WL_INFO("event type (%d)\n", e->etype); if (cfg->el.handler[e->etype]) cfg->el.handler[e->etype](cfg, cfg_to_ndev(cfg), &e->emsg, e->edata); else WL_INFO("Unknown Event (%d): ignoring\n", e->etype); brcmf_put_event(e); } while ((e = brcmf_deq_event(cfg))); } static void brcmf_init_eq(struct brcmf_cfg80211_info *cfg) { spin_lock_init(&cfg->evt_q_lock); INIT_LIST_HEAD(&cfg->evt_q_list); } static void brcmf_flush_eq(struct brcmf_cfg80211_info *cfg) { struct brcmf_cfg80211_event_q *e; spin_lock_irq(&cfg->evt_q_lock); while (!list_empty(&cfg->evt_q_list)) { e = list_first_entry(&cfg->evt_q_list, struct brcmf_cfg80211_event_q, evt_q_list); list_del(&e->evt_q_list); kfree(e); } spin_unlock_irq(&cfg->evt_q_lock); } static s32 wl_init_priv(struct brcmf_cfg80211_info *cfg) { s32 err = 0; cfg->scan_request = NULL; cfg->pwr_save = true; #ifdef CONFIG_BRCMISCAN cfg->iscan_on = true; /* iscan on & off switch. we enable iscan per default */ cfg->escan_on = false; /* escan on & off switch. we disable escan per default */ #else cfg->iscan_on = false; /* iscan on & off switch. we disable iscan per default */ cfg->escan_on = true; /* escan on & off switch. we enable escan per default */ #endif cfg->roam_on = true; /* roam on & off switch. we enable roam per default */ cfg->iscan_kickstart = false; cfg->active_scan = true; /* we do active scan for specific scan per default */ cfg->dongle_up = false; /* dongle is not up yet */ brcmf_init_eq(cfg); err = brcmf_init_priv_mem(cfg); if (err) return err; INIT_WORK(&cfg->event_work, brcmf_cfg80211_event_handler); brcmf_init_eloop_handler(&cfg->el); mutex_init(&cfg->usr_sync); err = brcmf_init_iscan(cfg); if (err) return err; brcmf_init_escan(cfg); brcmf_init_conf(cfg->conf); brcmf_init_prof(cfg->profile); brcmf_link_down(cfg); return err; } static void wl_deinit_priv(struct brcmf_cfg80211_info *cfg) { cancel_work_sync(&cfg->event_work); cfg->dongle_up = false; /* dongle down */ brcmf_flush_eq(cfg); brcmf_link_down(cfg); brcmf_abort_scanning(cfg); brcmf_deinit_priv_mem(cfg); } struct brcmf_cfg80211_info *brcmf_cfg80211_attach(struct net_device *ndev, struct device *busdev, struct brcmf_pub *drvr) { struct wireless_dev *wdev; struct brcmf_cfg80211_info *cfg; s32 err = 0; if (!ndev) { WL_ERR("ndev is invalid\n"); return NULL; } wdev = brcmf_alloc_wdev(busdev); if (IS_ERR(wdev)) { return NULL; } wdev->iftype = brcmf_mode_to_nl80211_iftype(WL_MODE_BSS); cfg = wdev_to_cfg(wdev); cfg->wdev = wdev; cfg->pub = drvr; ndev->ieee80211_ptr = wdev; SET_NETDEV_DEV(ndev, wiphy_dev(wdev->wiphy)); wdev->netdev = ndev; err = wl_init_priv(cfg); if (err) { WL_ERR("Failed to init iwm_priv (%d)\n", err); goto cfg80211_attach_out; } return cfg; cfg80211_attach_out: brcmf_free_wdev(cfg); return NULL; } void brcmf_cfg80211_detach(struct brcmf_cfg80211_info *cfg) { wl_deinit_priv(cfg); brcmf_free_wdev(cfg); } void brcmf_cfg80211_event(struct net_device *ndev, const struct brcmf_event_msg *e, void *data) { u32 event_type = be32_to_cpu(e->event_type); struct brcmf_cfg80211_info *cfg = ndev_to_cfg(ndev); if (!brcmf_enq_event(cfg, event_type, e, data)) schedule_work(&cfg->event_work); } static s32 brcmf_dongle_mode(struct net_device *ndev, s32 iftype) { s32 infra = 0; s32 err = 0; switch (iftype) { case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_WDS: WL_ERR("type (%d) : currently we do not support this mode\n", iftype); err = -EINVAL; return err; case NL80211_IFTYPE_ADHOC: infra = 0; break; case NL80211_IFTYPE_STATION: infra = 1; break; case NL80211_IFTYPE_AP: infra = 1; break; default: err = -EINVAL; WL_ERR("invalid type (%d)\n", iftype); return err; } err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_SET_INFRA, &infra); if (err) { WL_ERR("WLC_SET_INFRA error (%d)\n", err); return err; } return 0; } static s32 brcmf_dongle_eventmsg(struct net_device *ndev) { /* Room for "event_msgs" + '\0' + bitvec */ s8 iovbuf[BRCMF_EVENTING_MASK_LEN + 12]; s8 eventmask[BRCMF_EVENTING_MASK_LEN]; s32 err = 0; WL_TRACE("Enter\n"); /* Setup event_msgs */ brcmf_c_mkiovar("event_msgs", eventmask, BRCMF_EVENTING_MASK_LEN, iovbuf, sizeof(iovbuf)); err = brcmf_exec_dcmd(ndev, BRCMF_C_GET_VAR, iovbuf, sizeof(iovbuf)); if (err) { WL_ERR("Get event_msgs error (%d)\n", err); goto dongle_eventmsg_out; } memcpy(eventmask, iovbuf, BRCMF_EVENTING_MASK_LEN); setbit(eventmask, BRCMF_E_SET_SSID); setbit(eventmask, BRCMF_E_ROAM); setbit(eventmask, BRCMF_E_PRUNE); setbit(eventmask, BRCMF_E_AUTH); setbit(eventmask, BRCMF_E_REASSOC); setbit(eventmask, BRCMF_E_REASSOC_IND); setbit(eventmask, BRCMF_E_DEAUTH_IND); setbit(eventmask, BRCMF_E_DISASSOC_IND); setbit(eventmask, BRCMF_E_DISASSOC); setbit(eventmask, BRCMF_E_JOIN); setbit(eventmask, BRCMF_E_ASSOC_IND); setbit(eventmask, BRCMF_E_PSK_SUP); setbit(eventmask, BRCMF_E_LINK); setbit(eventmask, BRCMF_E_NDIS_LINK); setbit(eventmask, BRCMF_E_MIC_ERROR); setbit(eventmask, BRCMF_E_PMKID_CACHE); setbit(eventmask, BRCMF_E_TXFAIL); setbit(eventmask, BRCMF_E_JOIN_START); setbit(eventmask, BRCMF_E_SCAN_COMPLETE); setbit(eventmask, BRCMF_E_ESCAN_RESULT); setbit(eventmask, BRCMF_E_PFN_NET_FOUND); brcmf_c_mkiovar("event_msgs", eventmask, BRCMF_EVENTING_MASK_LEN, iovbuf, sizeof(iovbuf)); err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_VAR, iovbuf, sizeof(iovbuf)); if (err) { WL_ERR("Set event_msgs error (%d)\n", err); goto dongle_eventmsg_out; } dongle_eventmsg_out: WL_TRACE("Exit\n"); return err; } static s32 brcmf_dongle_roam(struct net_device *ndev, u32 roamvar, u32 bcn_timeout) { s8 iovbuf[32]; s32 err = 0; __le32 roamtrigger[2]; __le32 roam_delta[2]; __le32 bcn_to_le; __le32 roamvar_le; /* * Setup timeout if Beacons are lost and roam is * off to report link down */ if (roamvar) { bcn_to_le = cpu_to_le32(bcn_timeout); brcmf_c_mkiovar("bcn_timeout", (char *)&bcn_to_le, sizeof(bcn_to_le), iovbuf, sizeof(iovbuf)); err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_VAR, iovbuf, sizeof(iovbuf)); if (err) { WL_ERR("bcn_timeout error (%d)\n", err); goto dongle_rom_out; } } /* * Enable/Disable built-in roaming to allow supplicant * to take care of roaming */ WL_INFO("Internal Roaming = %s\n", roamvar ? "Off" : "On"); roamvar_le = cpu_to_le32(roamvar); brcmf_c_mkiovar("roam_off", (char *)&roamvar_le, sizeof(roamvar_le), iovbuf, sizeof(iovbuf)); err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_VAR, iovbuf, sizeof(iovbuf)); if (err) { WL_ERR("roam_off error (%d)\n", err); goto dongle_rom_out; } roamtrigger[0] = cpu_to_le32(WL_ROAM_TRIGGER_LEVEL); roamtrigger[1] = cpu_to_le32(BRCM_BAND_ALL); err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_ROAM_TRIGGER, (void *)roamtrigger, sizeof(roamtrigger)); if (err) { WL_ERR("WLC_SET_ROAM_TRIGGER error (%d)\n", err); goto dongle_rom_out; } roam_delta[0] = cpu_to_le32(WL_ROAM_DELTA); roam_delta[1] = cpu_to_le32(BRCM_BAND_ALL); err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_ROAM_DELTA, (void *)roam_delta, sizeof(roam_delta)); if (err) { WL_ERR("WLC_SET_ROAM_DELTA error (%d)\n", err); goto dongle_rom_out; } dongle_rom_out: return err; } static s32 brcmf_dongle_scantime(struct net_device *ndev, s32 scan_assoc_time, s32 scan_unassoc_time, s32 scan_passive_time) { s32 err = 0; __le32 scan_assoc_tm_le = cpu_to_le32(scan_assoc_time); __le32 scan_unassoc_tm_le = cpu_to_le32(scan_unassoc_time); __le32 scan_passive_tm_le = cpu_to_le32(scan_passive_time); err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_SCAN_CHANNEL_TIME, &scan_assoc_tm_le, sizeof(scan_assoc_tm_le)); if (err) { if (err == -EOPNOTSUPP) WL_INFO("Scan assoc time is not supported\n"); else WL_ERR("Scan assoc time error (%d)\n", err); goto dongle_scantime_out; } err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_SCAN_UNASSOC_TIME, &scan_unassoc_tm_le, sizeof(scan_unassoc_tm_le)); if (err) { if (err == -EOPNOTSUPP) WL_INFO("Scan unassoc time is not supported\n"); else WL_ERR("Scan unassoc time error (%d)\n", err); goto dongle_scantime_out; } err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_SCAN_PASSIVE_TIME, &scan_passive_tm_le, sizeof(scan_passive_tm_le)); if (err) { if (err == -EOPNOTSUPP) WL_INFO("Scan passive time is not supported\n"); else WL_ERR("Scan passive time error (%d)\n", err); goto dongle_scantime_out; } dongle_scantime_out: return err; } static s32 wl_update_wiphybands(struct brcmf_cfg80211_info *cfg) { struct wiphy *wiphy; s32 phy_list; s8 phy; s32 err = 0; err = brcmf_exec_dcmd(cfg_to_ndev(cfg), BRCM_GET_PHYLIST, &phy_list, sizeof(phy_list)); if (err) { WL_ERR("error (%d)\n", err); return err; } phy = ((char *)&phy_list)[0]; WL_INFO("%c phy\n", phy); if (phy == 'n' || phy == 'a') { wiphy = cfg_to_wiphy(cfg); wiphy->bands[IEEE80211_BAND_5GHZ] = &__wl_band_5ghz_n; } return err; } static s32 brcmf_dongle_probecap(struct brcmf_cfg80211_info *cfg) { return wl_update_wiphybands(cfg); } static s32 brcmf_config_dongle(struct brcmf_cfg80211_info *cfg) { struct net_device *ndev; struct wireless_dev *wdev; s32 power_mode; s32 err = 0; if (cfg->dongle_up) return err; ndev = cfg_to_ndev(cfg); wdev = ndev->ieee80211_ptr; brcmf_dongle_scantime(ndev, WL_SCAN_CHANNEL_TIME, WL_SCAN_UNASSOC_TIME, WL_SCAN_PASSIVE_TIME); err = brcmf_dongle_eventmsg(ndev); if (err) goto default_conf_out; power_mode = cfg->pwr_save ? PM_FAST : PM_OFF; err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_SET_PM, &power_mode); if (err) goto default_conf_out; WL_INFO("power save set to %s\n", (power_mode ? "enabled" : "disabled")); err = brcmf_dongle_roam(ndev, (cfg->roam_on ? 0 : 1), WL_BEACON_TIMEOUT); if (err) goto default_conf_out; err = brcmf_dongle_mode(ndev, wdev->iftype); if (err && err != -EINPROGRESS) goto default_conf_out; err = brcmf_dongle_probecap(cfg); if (err) goto default_conf_out; /* -EINPROGRESS: Call commit handler */ default_conf_out: cfg->dongle_up = true; return err; } static int brcmf_debugfs_add_netdev_params(struct brcmf_cfg80211_info *cfg) { char buf[10+IFNAMSIZ]; struct dentry *fd; s32 err = 0; sprintf(buf, "netdev:%s", cfg_to_ndev(cfg)->name); cfg->debugfsdir = debugfs_create_dir(buf, cfg_to_wiphy(cfg)->debugfsdir); fd = debugfs_create_u16("beacon_int", S_IRUGO, cfg->debugfsdir, (u16 *)&cfg->profile->beacon_interval); if (!fd) { err = -ENOMEM; goto err_out; } fd = debugfs_create_u8("dtim_period", S_IRUGO, cfg->debugfsdir, (u8 *)&cfg->profile->dtim_period); if (!fd) { err = -ENOMEM; goto err_out; } err_out: return err; } static void brcmf_debugfs_remove_netdev(struct brcmf_cfg80211_info *cfg) { debugfs_remove_recursive(cfg->debugfsdir); cfg->debugfsdir = NULL; } static s32 __brcmf_cfg80211_up(struct brcmf_cfg80211_info *cfg) { s32 err = 0; set_bit(WL_STATUS_READY, &cfg->status); brcmf_debugfs_add_netdev_params(cfg); err = brcmf_config_dongle(cfg); if (err) return err; brcmf_invoke_iscan(cfg); return err; } static s32 __brcmf_cfg80211_down(struct brcmf_cfg80211_info *cfg) { /* * While going down, if associated with AP disassociate * from AP to save power */ if ((test_bit(WL_STATUS_CONNECTED, &cfg->status) || test_bit(WL_STATUS_CONNECTING, &cfg->status)) && test_bit(WL_STATUS_READY, &cfg->status)) { WL_INFO("Disassociating from AP"); brcmf_link_down(cfg); /* Make sure WPA_Supplicant receives all the event generated due to DISASSOC call to the fw to keep the state fw and WPA_Supplicant state consistent */ brcmf_delay(500); } brcmf_abort_scanning(cfg); clear_bit(WL_STATUS_READY, &cfg->status); brcmf_debugfs_remove_netdev(cfg); return 0; } s32 brcmf_cfg80211_up(struct brcmf_cfg80211_info *cfg) { s32 err = 0; mutex_lock(&cfg->usr_sync); err = __brcmf_cfg80211_up(cfg); mutex_unlock(&cfg->usr_sync); return err; } s32 brcmf_cfg80211_down(struct brcmf_cfg80211_info *cfg) { s32 err = 0; mutex_lock(&cfg->usr_sync); err = __brcmf_cfg80211_down(cfg); mutex_unlock(&cfg->usr_sync); return err; }