]> Pileus Git - ~andy/linux/blob - virt/kvm/kvm_main.c
Merge branch 'for-3.8/drivers' of git://git.kernel.dk/linux-block
[~andy/linux] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68  * Ordering of locks:
69  *
70  *              kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71  */
72
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84
85 struct dentry *kvm_debugfs_dir;
86
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88                            unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91                                   unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100
101 static bool largepages_enabled = true;
102
103 bool kvm_is_mmio_pfn(pfn_t pfn)
104 {
105         if (pfn_valid(pfn)) {
106                 int reserved;
107                 struct page *tail = pfn_to_page(pfn);
108                 struct page *head = compound_trans_head(tail);
109                 reserved = PageReserved(head);
110                 if (head != tail) {
111                         /*
112                          * "head" is not a dangling pointer
113                          * (compound_trans_head takes care of that)
114                          * but the hugepage may have been splitted
115                          * from under us (and we may not hold a
116                          * reference count on the head page so it can
117                          * be reused before we run PageReferenced), so
118                          * we've to check PageTail before returning
119                          * what we just read.
120                          */
121                         smp_rmb();
122                         if (PageTail(tail))
123                                 return reserved;
124                 }
125                 return PageReserved(tail);
126         }
127
128         return true;
129 }
130
131 /*
132  * Switches to specified vcpu, until a matching vcpu_put()
133  */
134 int vcpu_load(struct kvm_vcpu *vcpu)
135 {
136         int cpu;
137
138         if (mutex_lock_killable(&vcpu->mutex))
139                 return -EINTR;
140         if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
141                 /* The thread running this VCPU changed. */
142                 struct pid *oldpid = vcpu->pid;
143                 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
144                 rcu_assign_pointer(vcpu->pid, newpid);
145                 synchronize_rcu();
146                 put_pid(oldpid);
147         }
148         cpu = get_cpu();
149         preempt_notifier_register(&vcpu->preempt_notifier);
150         kvm_arch_vcpu_load(vcpu, cpu);
151         put_cpu();
152         return 0;
153 }
154
155 void vcpu_put(struct kvm_vcpu *vcpu)
156 {
157         preempt_disable();
158         kvm_arch_vcpu_put(vcpu);
159         preempt_notifier_unregister(&vcpu->preempt_notifier);
160         preempt_enable();
161         mutex_unlock(&vcpu->mutex);
162 }
163
164 static void ack_flush(void *_completed)
165 {
166 }
167
168 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
169 {
170         int i, cpu, me;
171         cpumask_var_t cpus;
172         bool called = true;
173         struct kvm_vcpu *vcpu;
174
175         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
176
177         me = get_cpu();
178         kvm_for_each_vcpu(i, vcpu, kvm) {
179                 kvm_make_request(req, vcpu);
180                 cpu = vcpu->cpu;
181
182                 /* Set ->requests bit before we read ->mode */
183                 smp_mb();
184
185                 if (cpus != NULL && cpu != -1 && cpu != me &&
186                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
187                         cpumask_set_cpu(cpu, cpus);
188         }
189         if (unlikely(cpus == NULL))
190                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
191         else if (!cpumask_empty(cpus))
192                 smp_call_function_many(cpus, ack_flush, NULL, 1);
193         else
194                 called = false;
195         put_cpu();
196         free_cpumask_var(cpus);
197         return called;
198 }
199
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202         long dirty_count = kvm->tlbs_dirty;
203
204         smp_mb();
205         if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
206                 ++kvm->stat.remote_tlb_flush;
207         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
208 }
209
210 void kvm_reload_remote_mmus(struct kvm *kvm)
211 {
212         make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
213 }
214
215 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
216 {
217         make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
218 }
219
220 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
221 {
222         struct page *page;
223         int r;
224
225         mutex_init(&vcpu->mutex);
226         vcpu->cpu = -1;
227         vcpu->kvm = kvm;
228         vcpu->vcpu_id = id;
229         vcpu->pid = NULL;
230         init_waitqueue_head(&vcpu->wq);
231         kvm_async_pf_vcpu_init(vcpu);
232
233         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
234         if (!page) {
235                 r = -ENOMEM;
236                 goto fail;
237         }
238         vcpu->run = page_address(page);
239
240         kvm_vcpu_set_in_spin_loop(vcpu, false);
241         kvm_vcpu_set_dy_eligible(vcpu, false);
242
243         r = kvm_arch_vcpu_init(vcpu);
244         if (r < 0)
245                 goto fail_free_run;
246         return 0;
247
248 fail_free_run:
249         free_page((unsigned long)vcpu->run);
250 fail:
251         return r;
252 }
253 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
254
255 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
256 {
257         put_pid(vcpu->pid);
258         kvm_arch_vcpu_uninit(vcpu);
259         free_page((unsigned long)vcpu->run);
260 }
261 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
262
263 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
264 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
265 {
266         return container_of(mn, struct kvm, mmu_notifier);
267 }
268
269 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
270                                              struct mm_struct *mm,
271                                              unsigned long address)
272 {
273         struct kvm *kvm = mmu_notifier_to_kvm(mn);
274         int need_tlb_flush, idx;
275
276         /*
277          * When ->invalidate_page runs, the linux pte has been zapped
278          * already but the page is still allocated until
279          * ->invalidate_page returns. So if we increase the sequence
280          * here the kvm page fault will notice if the spte can't be
281          * established because the page is going to be freed. If
282          * instead the kvm page fault establishes the spte before
283          * ->invalidate_page runs, kvm_unmap_hva will release it
284          * before returning.
285          *
286          * The sequence increase only need to be seen at spin_unlock
287          * time, and not at spin_lock time.
288          *
289          * Increasing the sequence after the spin_unlock would be
290          * unsafe because the kvm page fault could then establish the
291          * pte after kvm_unmap_hva returned, without noticing the page
292          * is going to be freed.
293          */
294         idx = srcu_read_lock(&kvm->srcu);
295         spin_lock(&kvm->mmu_lock);
296
297         kvm->mmu_notifier_seq++;
298         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
299         /* we've to flush the tlb before the pages can be freed */
300         if (need_tlb_flush)
301                 kvm_flush_remote_tlbs(kvm);
302
303         spin_unlock(&kvm->mmu_lock);
304         srcu_read_unlock(&kvm->srcu, idx);
305 }
306
307 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
308                                         struct mm_struct *mm,
309                                         unsigned long address,
310                                         pte_t pte)
311 {
312         struct kvm *kvm = mmu_notifier_to_kvm(mn);
313         int idx;
314
315         idx = srcu_read_lock(&kvm->srcu);
316         spin_lock(&kvm->mmu_lock);
317         kvm->mmu_notifier_seq++;
318         kvm_set_spte_hva(kvm, address, pte);
319         spin_unlock(&kvm->mmu_lock);
320         srcu_read_unlock(&kvm->srcu, idx);
321 }
322
323 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
324                                                     struct mm_struct *mm,
325                                                     unsigned long start,
326                                                     unsigned long end)
327 {
328         struct kvm *kvm = mmu_notifier_to_kvm(mn);
329         int need_tlb_flush = 0, idx;
330
331         idx = srcu_read_lock(&kvm->srcu);
332         spin_lock(&kvm->mmu_lock);
333         /*
334          * The count increase must become visible at unlock time as no
335          * spte can be established without taking the mmu_lock and
336          * count is also read inside the mmu_lock critical section.
337          */
338         kvm->mmu_notifier_count++;
339         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
340         need_tlb_flush |= kvm->tlbs_dirty;
341         /* we've to flush the tlb before the pages can be freed */
342         if (need_tlb_flush)
343                 kvm_flush_remote_tlbs(kvm);
344
345         spin_unlock(&kvm->mmu_lock);
346         srcu_read_unlock(&kvm->srcu, idx);
347 }
348
349 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
350                                                   struct mm_struct *mm,
351                                                   unsigned long start,
352                                                   unsigned long end)
353 {
354         struct kvm *kvm = mmu_notifier_to_kvm(mn);
355
356         spin_lock(&kvm->mmu_lock);
357         /*
358          * This sequence increase will notify the kvm page fault that
359          * the page that is going to be mapped in the spte could have
360          * been freed.
361          */
362         kvm->mmu_notifier_seq++;
363         smp_wmb();
364         /*
365          * The above sequence increase must be visible before the
366          * below count decrease, which is ensured by the smp_wmb above
367          * in conjunction with the smp_rmb in mmu_notifier_retry().
368          */
369         kvm->mmu_notifier_count--;
370         spin_unlock(&kvm->mmu_lock);
371
372         BUG_ON(kvm->mmu_notifier_count < 0);
373 }
374
375 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
376                                               struct mm_struct *mm,
377                                               unsigned long address)
378 {
379         struct kvm *kvm = mmu_notifier_to_kvm(mn);
380         int young, idx;
381
382         idx = srcu_read_lock(&kvm->srcu);
383         spin_lock(&kvm->mmu_lock);
384
385         young = kvm_age_hva(kvm, address);
386         if (young)
387                 kvm_flush_remote_tlbs(kvm);
388
389         spin_unlock(&kvm->mmu_lock);
390         srcu_read_unlock(&kvm->srcu, idx);
391
392         return young;
393 }
394
395 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
396                                        struct mm_struct *mm,
397                                        unsigned long address)
398 {
399         struct kvm *kvm = mmu_notifier_to_kvm(mn);
400         int young, idx;
401
402         idx = srcu_read_lock(&kvm->srcu);
403         spin_lock(&kvm->mmu_lock);
404         young = kvm_test_age_hva(kvm, address);
405         spin_unlock(&kvm->mmu_lock);
406         srcu_read_unlock(&kvm->srcu, idx);
407
408         return young;
409 }
410
411 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
412                                      struct mm_struct *mm)
413 {
414         struct kvm *kvm = mmu_notifier_to_kvm(mn);
415         int idx;
416
417         idx = srcu_read_lock(&kvm->srcu);
418         kvm_arch_flush_shadow_all(kvm);
419         srcu_read_unlock(&kvm->srcu, idx);
420 }
421
422 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
423         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
424         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
425         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
426         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
427         .test_young             = kvm_mmu_notifier_test_young,
428         .change_pte             = kvm_mmu_notifier_change_pte,
429         .release                = kvm_mmu_notifier_release,
430 };
431
432 static int kvm_init_mmu_notifier(struct kvm *kvm)
433 {
434         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
435         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
436 }
437
438 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
439
440 static int kvm_init_mmu_notifier(struct kvm *kvm)
441 {
442         return 0;
443 }
444
445 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
446
447 static void kvm_init_memslots_id(struct kvm *kvm)
448 {
449         int i;
450         struct kvm_memslots *slots = kvm->memslots;
451
452         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
453                 slots->id_to_index[i] = slots->memslots[i].id = i;
454 }
455
456 static struct kvm *kvm_create_vm(unsigned long type)
457 {
458         int r, i;
459         struct kvm *kvm = kvm_arch_alloc_vm();
460
461         if (!kvm)
462                 return ERR_PTR(-ENOMEM);
463
464         r = kvm_arch_init_vm(kvm, type);
465         if (r)
466                 goto out_err_nodisable;
467
468         r = hardware_enable_all();
469         if (r)
470                 goto out_err_nodisable;
471
472 #ifdef CONFIG_HAVE_KVM_IRQCHIP
473         INIT_HLIST_HEAD(&kvm->mask_notifier_list);
474         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
475 #endif
476
477         r = -ENOMEM;
478         kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
479         if (!kvm->memslots)
480                 goto out_err_nosrcu;
481         kvm_init_memslots_id(kvm);
482         if (init_srcu_struct(&kvm->srcu))
483                 goto out_err_nosrcu;
484         for (i = 0; i < KVM_NR_BUSES; i++) {
485                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
486                                         GFP_KERNEL);
487                 if (!kvm->buses[i])
488                         goto out_err;
489         }
490
491         spin_lock_init(&kvm->mmu_lock);
492         kvm->mm = current->mm;
493         atomic_inc(&kvm->mm->mm_count);
494         kvm_eventfd_init(kvm);
495         mutex_init(&kvm->lock);
496         mutex_init(&kvm->irq_lock);
497         mutex_init(&kvm->slots_lock);
498         atomic_set(&kvm->users_count, 1);
499
500         r = kvm_init_mmu_notifier(kvm);
501         if (r)
502                 goto out_err;
503
504         raw_spin_lock(&kvm_lock);
505         list_add(&kvm->vm_list, &vm_list);
506         raw_spin_unlock(&kvm_lock);
507
508         return kvm;
509
510 out_err:
511         cleanup_srcu_struct(&kvm->srcu);
512 out_err_nosrcu:
513         hardware_disable_all();
514 out_err_nodisable:
515         for (i = 0; i < KVM_NR_BUSES; i++)
516                 kfree(kvm->buses[i]);
517         kfree(kvm->memslots);
518         kvm_arch_free_vm(kvm);
519         return ERR_PTR(r);
520 }
521
522 /*
523  * Avoid using vmalloc for a small buffer.
524  * Should not be used when the size is statically known.
525  */
526 void *kvm_kvzalloc(unsigned long size)
527 {
528         if (size > PAGE_SIZE)
529                 return vzalloc(size);
530         else
531                 return kzalloc(size, GFP_KERNEL);
532 }
533
534 void kvm_kvfree(const void *addr)
535 {
536         if (is_vmalloc_addr(addr))
537                 vfree(addr);
538         else
539                 kfree(addr);
540 }
541
542 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
543 {
544         if (!memslot->dirty_bitmap)
545                 return;
546
547         kvm_kvfree(memslot->dirty_bitmap);
548         memslot->dirty_bitmap = NULL;
549 }
550
551 /*
552  * Free any memory in @free but not in @dont.
553  */
554 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
555                                   struct kvm_memory_slot *dont)
556 {
557         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
558                 kvm_destroy_dirty_bitmap(free);
559
560         kvm_arch_free_memslot(free, dont);
561
562         free->npages = 0;
563 }
564
565 void kvm_free_physmem(struct kvm *kvm)
566 {
567         struct kvm_memslots *slots = kvm->memslots;
568         struct kvm_memory_slot *memslot;
569
570         kvm_for_each_memslot(memslot, slots)
571                 kvm_free_physmem_slot(memslot, NULL);
572
573         kfree(kvm->memslots);
574 }
575
576 static void kvm_destroy_vm(struct kvm *kvm)
577 {
578         int i;
579         struct mm_struct *mm = kvm->mm;
580
581         kvm_arch_sync_events(kvm);
582         raw_spin_lock(&kvm_lock);
583         list_del(&kvm->vm_list);
584         raw_spin_unlock(&kvm_lock);
585         kvm_free_irq_routing(kvm);
586         for (i = 0; i < KVM_NR_BUSES; i++)
587                 kvm_io_bus_destroy(kvm->buses[i]);
588         kvm_coalesced_mmio_free(kvm);
589 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
590         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
591 #else
592         kvm_arch_flush_shadow_all(kvm);
593 #endif
594         kvm_arch_destroy_vm(kvm);
595         kvm_free_physmem(kvm);
596         cleanup_srcu_struct(&kvm->srcu);
597         kvm_arch_free_vm(kvm);
598         hardware_disable_all();
599         mmdrop(mm);
600 }
601
602 void kvm_get_kvm(struct kvm *kvm)
603 {
604         atomic_inc(&kvm->users_count);
605 }
606 EXPORT_SYMBOL_GPL(kvm_get_kvm);
607
608 void kvm_put_kvm(struct kvm *kvm)
609 {
610         if (atomic_dec_and_test(&kvm->users_count))
611                 kvm_destroy_vm(kvm);
612 }
613 EXPORT_SYMBOL_GPL(kvm_put_kvm);
614
615
616 static int kvm_vm_release(struct inode *inode, struct file *filp)
617 {
618         struct kvm *kvm = filp->private_data;
619
620         kvm_irqfd_release(kvm);
621
622         kvm_put_kvm(kvm);
623         return 0;
624 }
625
626 /*
627  * Allocation size is twice as large as the actual dirty bitmap size.
628  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
629  */
630 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
631 {
632 #ifndef CONFIG_S390
633         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
634
635         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
636         if (!memslot->dirty_bitmap)
637                 return -ENOMEM;
638
639 #endif /* !CONFIG_S390 */
640         return 0;
641 }
642
643 static int cmp_memslot(const void *slot1, const void *slot2)
644 {
645         struct kvm_memory_slot *s1, *s2;
646
647         s1 = (struct kvm_memory_slot *)slot1;
648         s2 = (struct kvm_memory_slot *)slot2;
649
650         if (s1->npages < s2->npages)
651                 return 1;
652         if (s1->npages > s2->npages)
653                 return -1;
654
655         return 0;
656 }
657
658 /*
659  * Sort the memslots base on its size, so the larger slots
660  * will get better fit.
661  */
662 static void sort_memslots(struct kvm_memslots *slots)
663 {
664         int i;
665
666         sort(slots->memslots, KVM_MEM_SLOTS_NUM,
667               sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
668
669         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
670                 slots->id_to_index[slots->memslots[i].id] = i;
671 }
672
673 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
674 {
675         if (new) {
676                 int id = new->id;
677                 struct kvm_memory_slot *old = id_to_memslot(slots, id);
678                 unsigned long npages = old->npages;
679
680                 *old = *new;
681                 if (new->npages != npages)
682                         sort_memslots(slots);
683         }
684
685         slots->generation++;
686 }
687
688 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
689 {
690         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
691
692 #ifdef KVM_CAP_READONLY_MEM
693         valid_flags |= KVM_MEM_READONLY;
694 #endif
695
696         if (mem->flags & ~valid_flags)
697                 return -EINVAL;
698
699         return 0;
700 }
701
702 /*
703  * Allocate some memory and give it an address in the guest physical address
704  * space.
705  *
706  * Discontiguous memory is allowed, mostly for framebuffers.
707  *
708  * Must be called holding mmap_sem for write.
709  */
710 int __kvm_set_memory_region(struct kvm *kvm,
711                             struct kvm_userspace_memory_region *mem,
712                             int user_alloc)
713 {
714         int r;
715         gfn_t base_gfn;
716         unsigned long npages;
717         struct kvm_memory_slot *memslot, *slot;
718         struct kvm_memory_slot old, new;
719         struct kvm_memslots *slots, *old_memslots;
720
721         r = check_memory_region_flags(mem);
722         if (r)
723                 goto out;
724
725         r = -EINVAL;
726         /* General sanity checks */
727         if (mem->memory_size & (PAGE_SIZE - 1))
728                 goto out;
729         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
730                 goto out;
731         /* We can read the guest memory with __xxx_user() later on. */
732         if (user_alloc &&
733             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
734              !access_ok(VERIFY_WRITE,
735                         (void __user *)(unsigned long)mem->userspace_addr,
736                         mem->memory_size)))
737                 goto out;
738         if (mem->slot >= KVM_MEM_SLOTS_NUM)
739                 goto out;
740         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
741                 goto out;
742
743         memslot = id_to_memslot(kvm->memslots, mem->slot);
744         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
745         npages = mem->memory_size >> PAGE_SHIFT;
746
747         r = -EINVAL;
748         if (npages > KVM_MEM_MAX_NR_PAGES)
749                 goto out;
750
751         if (!npages)
752                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
753
754         new = old = *memslot;
755
756         new.id = mem->slot;
757         new.base_gfn = base_gfn;
758         new.npages = npages;
759         new.flags = mem->flags;
760
761         /* Disallow changing a memory slot's size. */
762         r = -EINVAL;
763         if (npages && old.npages && npages != old.npages)
764                 goto out_free;
765
766         /* Check for overlaps */
767         r = -EEXIST;
768         kvm_for_each_memslot(slot, kvm->memslots) {
769                 if (slot->id >= KVM_MEMORY_SLOTS || slot == memslot)
770                         continue;
771                 if (!((base_gfn + npages <= slot->base_gfn) ||
772                       (base_gfn >= slot->base_gfn + slot->npages)))
773                         goto out_free;
774         }
775
776         /* Free page dirty bitmap if unneeded */
777         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
778                 new.dirty_bitmap = NULL;
779
780         r = -ENOMEM;
781
782         /* Allocate if a slot is being created */
783         if (npages && !old.npages) {
784                 new.user_alloc = user_alloc;
785                 new.userspace_addr = mem->userspace_addr;
786
787                 if (kvm_arch_create_memslot(&new, npages))
788                         goto out_free;
789         }
790
791         /* Allocate page dirty bitmap if needed */
792         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
793                 if (kvm_create_dirty_bitmap(&new) < 0)
794                         goto out_free;
795                 /* destroy any largepage mappings for dirty tracking */
796         }
797
798         if (!npages || base_gfn != old.base_gfn) {
799                 struct kvm_memory_slot *slot;
800
801                 r = -ENOMEM;
802                 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
803                                 GFP_KERNEL);
804                 if (!slots)
805                         goto out_free;
806                 slot = id_to_memslot(slots, mem->slot);
807                 slot->flags |= KVM_MEMSLOT_INVALID;
808
809                 update_memslots(slots, NULL);
810
811                 old_memslots = kvm->memslots;
812                 rcu_assign_pointer(kvm->memslots, slots);
813                 synchronize_srcu_expedited(&kvm->srcu);
814                 /* From this point no new shadow pages pointing to a deleted,
815                  * or moved, memslot will be created.
816                  *
817                  * validation of sp->gfn happens in:
818                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
819                  *      - kvm_is_visible_gfn (mmu_check_roots)
820                  */
821                 kvm_arch_flush_shadow_memslot(kvm, slot);
822                 kfree(old_memslots);
823         }
824
825         r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
826         if (r)
827                 goto out_free;
828
829         /* map/unmap the pages in iommu page table */
830         if (npages) {
831                 r = kvm_iommu_map_pages(kvm, &new);
832                 if (r)
833                         goto out_free;
834         } else
835                 kvm_iommu_unmap_pages(kvm, &old);
836
837         r = -ENOMEM;
838         slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
839                         GFP_KERNEL);
840         if (!slots)
841                 goto out_free;
842
843         /* actual memory is freed via old in kvm_free_physmem_slot below */
844         if (!npages) {
845                 new.dirty_bitmap = NULL;
846                 memset(&new.arch, 0, sizeof(new.arch));
847         }
848
849         update_memslots(slots, &new);
850         old_memslots = kvm->memslots;
851         rcu_assign_pointer(kvm->memslots, slots);
852         synchronize_srcu_expedited(&kvm->srcu);
853
854         kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
855
856         kvm_free_physmem_slot(&old, &new);
857         kfree(old_memslots);
858
859         return 0;
860
861 out_free:
862         kvm_free_physmem_slot(&new, &old);
863 out:
864         return r;
865
866 }
867 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
868
869 int kvm_set_memory_region(struct kvm *kvm,
870                           struct kvm_userspace_memory_region *mem,
871                           int user_alloc)
872 {
873         int r;
874
875         mutex_lock(&kvm->slots_lock);
876         r = __kvm_set_memory_region(kvm, mem, user_alloc);
877         mutex_unlock(&kvm->slots_lock);
878         return r;
879 }
880 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
881
882 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
883                                    struct
884                                    kvm_userspace_memory_region *mem,
885                                    int user_alloc)
886 {
887         if (mem->slot >= KVM_MEMORY_SLOTS)
888                 return -EINVAL;
889         return kvm_set_memory_region(kvm, mem, user_alloc);
890 }
891
892 int kvm_get_dirty_log(struct kvm *kvm,
893                         struct kvm_dirty_log *log, int *is_dirty)
894 {
895         struct kvm_memory_slot *memslot;
896         int r, i;
897         unsigned long n;
898         unsigned long any = 0;
899
900         r = -EINVAL;
901         if (log->slot >= KVM_MEMORY_SLOTS)
902                 goto out;
903
904         memslot = id_to_memslot(kvm->memslots, log->slot);
905         r = -ENOENT;
906         if (!memslot->dirty_bitmap)
907                 goto out;
908
909         n = kvm_dirty_bitmap_bytes(memslot);
910
911         for (i = 0; !any && i < n/sizeof(long); ++i)
912                 any = memslot->dirty_bitmap[i];
913
914         r = -EFAULT;
915         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
916                 goto out;
917
918         if (any)
919                 *is_dirty = 1;
920
921         r = 0;
922 out:
923         return r;
924 }
925
926 bool kvm_largepages_enabled(void)
927 {
928         return largepages_enabled;
929 }
930
931 void kvm_disable_largepages(void)
932 {
933         largepages_enabled = false;
934 }
935 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
936
937 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
938 {
939         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
940 }
941 EXPORT_SYMBOL_GPL(gfn_to_memslot);
942
943 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
944 {
945         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
946
947         if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
948               memslot->flags & KVM_MEMSLOT_INVALID)
949                 return 0;
950
951         return 1;
952 }
953 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
954
955 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
956 {
957         struct vm_area_struct *vma;
958         unsigned long addr, size;
959
960         size = PAGE_SIZE;
961
962         addr = gfn_to_hva(kvm, gfn);
963         if (kvm_is_error_hva(addr))
964                 return PAGE_SIZE;
965
966         down_read(&current->mm->mmap_sem);
967         vma = find_vma(current->mm, addr);
968         if (!vma)
969                 goto out;
970
971         size = vma_kernel_pagesize(vma);
972
973 out:
974         up_read(&current->mm->mmap_sem);
975
976         return size;
977 }
978
979 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
980 {
981         return slot->flags & KVM_MEM_READONLY;
982 }
983
984 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
985                                        gfn_t *nr_pages, bool write)
986 {
987         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
988                 return KVM_HVA_ERR_BAD;
989
990         if (memslot_is_readonly(slot) && write)
991                 return KVM_HVA_ERR_RO_BAD;
992
993         if (nr_pages)
994                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
995
996         return __gfn_to_hva_memslot(slot, gfn);
997 }
998
999 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1000                                      gfn_t *nr_pages)
1001 {
1002         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1003 }
1004
1005 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1006                                  gfn_t gfn)
1007 {
1008         return gfn_to_hva_many(slot, gfn, NULL);
1009 }
1010 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1011
1012 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1013 {
1014         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1015 }
1016 EXPORT_SYMBOL_GPL(gfn_to_hva);
1017
1018 /*
1019  * The hva returned by this function is only allowed to be read.
1020  * It should pair with kvm_read_hva() or kvm_read_hva_atomic().
1021  */
1022 static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn)
1023 {
1024         return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false);
1025 }
1026
1027 static int kvm_read_hva(void *data, void __user *hva, int len)
1028 {
1029         return __copy_from_user(data, hva, len);
1030 }
1031
1032 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1033 {
1034         return __copy_from_user_inatomic(data, hva, len);
1035 }
1036
1037 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1038         unsigned long start, int write, struct page **page)
1039 {
1040         int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1041
1042         if (write)
1043                 flags |= FOLL_WRITE;
1044
1045         return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1046 }
1047
1048 static inline int check_user_page_hwpoison(unsigned long addr)
1049 {
1050         int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1051
1052         rc = __get_user_pages(current, current->mm, addr, 1,
1053                               flags, NULL, NULL, NULL);
1054         return rc == -EHWPOISON;
1055 }
1056
1057 /*
1058  * The atomic path to get the writable pfn which will be stored in @pfn,
1059  * true indicates success, otherwise false is returned.
1060  */
1061 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1062                             bool write_fault, bool *writable, pfn_t *pfn)
1063 {
1064         struct page *page[1];
1065         int npages;
1066
1067         if (!(async || atomic))
1068                 return false;
1069
1070         /*
1071          * Fast pin a writable pfn only if it is a write fault request
1072          * or the caller allows to map a writable pfn for a read fault
1073          * request.
1074          */
1075         if (!(write_fault || writable))
1076                 return false;
1077
1078         npages = __get_user_pages_fast(addr, 1, 1, page);
1079         if (npages == 1) {
1080                 *pfn = page_to_pfn(page[0]);
1081
1082                 if (writable)
1083                         *writable = true;
1084                 return true;
1085         }
1086
1087         return false;
1088 }
1089
1090 /*
1091  * The slow path to get the pfn of the specified host virtual address,
1092  * 1 indicates success, -errno is returned if error is detected.
1093  */
1094 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1095                            bool *writable, pfn_t *pfn)
1096 {
1097         struct page *page[1];
1098         int npages = 0;
1099
1100         might_sleep();
1101
1102         if (writable)
1103                 *writable = write_fault;
1104
1105         if (async) {
1106                 down_read(&current->mm->mmap_sem);
1107                 npages = get_user_page_nowait(current, current->mm,
1108                                               addr, write_fault, page);
1109                 up_read(&current->mm->mmap_sem);
1110         } else
1111                 npages = get_user_pages_fast(addr, 1, write_fault,
1112                                              page);
1113         if (npages != 1)
1114                 return npages;
1115
1116         /* map read fault as writable if possible */
1117         if (unlikely(!write_fault) && writable) {
1118                 struct page *wpage[1];
1119
1120                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1121                 if (npages == 1) {
1122                         *writable = true;
1123                         put_page(page[0]);
1124                         page[0] = wpage[0];
1125                 }
1126
1127                 npages = 1;
1128         }
1129         *pfn = page_to_pfn(page[0]);
1130         return npages;
1131 }
1132
1133 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1134 {
1135         if (unlikely(!(vma->vm_flags & VM_READ)))
1136                 return false;
1137
1138         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1139                 return false;
1140
1141         return true;
1142 }
1143
1144 /*
1145  * Pin guest page in memory and return its pfn.
1146  * @addr: host virtual address which maps memory to the guest
1147  * @atomic: whether this function can sleep
1148  * @async: whether this function need to wait IO complete if the
1149  *         host page is not in the memory
1150  * @write_fault: whether we should get a writable host page
1151  * @writable: whether it allows to map a writable host page for !@write_fault
1152  *
1153  * The function will map a writable host page for these two cases:
1154  * 1): @write_fault = true
1155  * 2): @write_fault = false && @writable, @writable will tell the caller
1156  *     whether the mapping is writable.
1157  */
1158 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1159                         bool write_fault, bool *writable)
1160 {
1161         struct vm_area_struct *vma;
1162         pfn_t pfn = 0;
1163         int npages;
1164
1165         /* we can do it either atomically or asynchronously, not both */
1166         BUG_ON(atomic && async);
1167
1168         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1169                 return pfn;
1170
1171         if (atomic)
1172                 return KVM_PFN_ERR_FAULT;
1173
1174         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1175         if (npages == 1)
1176                 return pfn;
1177
1178         down_read(&current->mm->mmap_sem);
1179         if (npages == -EHWPOISON ||
1180               (!async && check_user_page_hwpoison(addr))) {
1181                 pfn = KVM_PFN_ERR_HWPOISON;
1182                 goto exit;
1183         }
1184
1185         vma = find_vma_intersection(current->mm, addr, addr + 1);
1186
1187         if (vma == NULL)
1188                 pfn = KVM_PFN_ERR_FAULT;
1189         else if ((vma->vm_flags & VM_PFNMAP)) {
1190                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1191                         vma->vm_pgoff;
1192                 BUG_ON(!kvm_is_mmio_pfn(pfn));
1193         } else {
1194                 if (async && vma_is_valid(vma, write_fault))
1195                         *async = true;
1196                 pfn = KVM_PFN_ERR_FAULT;
1197         }
1198 exit:
1199         up_read(&current->mm->mmap_sem);
1200         return pfn;
1201 }
1202
1203 static pfn_t
1204 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1205                      bool *async, bool write_fault, bool *writable)
1206 {
1207         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1208
1209         if (addr == KVM_HVA_ERR_RO_BAD)
1210                 return KVM_PFN_ERR_RO_FAULT;
1211
1212         if (kvm_is_error_hva(addr))
1213                 return KVM_PFN_NOSLOT;
1214
1215         /* Do not map writable pfn in the readonly memslot. */
1216         if (writable && memslot_is_readonly(slot)) {
1217                 *writable = false;
1218                 writable = NULL;
1219         }
1220
1221         return hva_to_pfn(addr, atomic, async, write_fault,
1222                           writable);
1223 }
1224
1225 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1226                           bool write_fault, bool *writable)
1227 {
1228         struct kvm_memory_slot *slot;
1229
1230         if (async)
1231                 *async = false;
1232
1233         slot = gfn_to_memslot(kvm, gfn);
1234
1235         return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1236                                     writable);
1237 }
1238
1239 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1240 {
1241         return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1242 }
1243 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1244
1245 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1246                        bool write_fault, bool *writable)
1247 {
1248         return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1249 }
1250 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1251
1252 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1253 {
1254         return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1255 }
1256 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1257
1258 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1259                       bool *writable)
1260 {
1261         return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1262 }
1263 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1264
1265 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1266 {
1267         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1268 }
1269
1270 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1271 {
1272         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1273 }
1274 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1275
1276 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1277                                                                   int nr_pages)
1278 {
1279         unsigned long addr;
1280         gfn_t entry;
1281
1282         addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1283         if (kvm_is_error_hva(addr))
1284                 return -1;
1285
1286         if (entry < nr_pages)
1287                 return 0;
1288
1289         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1290 }
1291 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1292
1293 static struct page *kvm_pfn_to_page(pfn_t pfn)
1294 {
1295         if (is_error_noslot_pfn(pfn))
1296                 return KVM_ERR_PTR_BAD_PAGE;
1297
1298         if (kvm_is_mmio_pfn(pfn)) {
1299                 WARN_ON(1);
1300                 return KVM_ERR_PTR_BAD_PAGE;
1301         }
1302
1303         return pfn_to_page(pfn);
1304 }
1305
1306 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1307 {
1308         pfn_t pfn;
1309
1310         pfn = gfn_to_pfn(kvm, gfn);
1311
1312         return kvm_pfn_to_page(pfn);
1313 }
1314
1315 EXPORT_SYMBOL_GPL(gfn_to_page);
1316
1317 void kvm_release_page_clean(struct page *page)
1318 {
1319         WARN_ON(is_error_page(page));
1320
1321         kvm_release_pfn_clean(page_to_pfn(page));
1322 }
1323 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1324
1325 void kvm_release_pfn_clean(pfn_t pfn)
1326 {
1327         if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1328                 put_page(pfn_to_page(pfn));
1329 }
1330 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1331
1332 void kvm_release_page_dirty(struct page *page)
1333 {
1334         WARN_ON(is_error_page(page));
1335
1336         kvm_release_pfn_dirty(page_to_pfn(page));
1337 }
1338 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1339
1340 void kvm_release_pfn_dirty(pfn_t pfn)
1341 {
1342         kvm_set_pfn_dirty(pfn);
1343         kvm_release_pfn_clean(pfn);
1344 }
1345 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1346
1347 void kvm_set_page_dirty(struct page *page)
1348 {
1349         kvm_set_pfn_dirty(page_to_pfn(page));
1350 }
1351 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1352
1353 void kvm_set_pfn_dirty(pfn_t pfn)
1354 {
1355         if (!kvm_is_mmio_pfn(pfn)) {
1356                 struct page *page = pfn_to_page(pfn);
1357                 if (!PageReserved(page))
1358                         SetPageDirty(page);
1359         }
1360 }
1361 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1362
1363 void kvm_set_pfn_accessed(pfn_t pfn)
1364 {
1365         if (!kvm_is_mmio_pfn(pfn))
1366                 mark_page_accessed(pfn_to_page(pfn));
1367 }
1368 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1369
1370 void kvm_get_pfn(pfn_t pfn)
1371 {
1372         if (!kvm_is_mmio_pfn(pfn))
1373                 get_page(pfn_to_page(pfn));
1374 }
1375 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1376
1377 static int next_segment(unsigned long len, int offset)
1378 {
1379         if (len > PAGE_SIZE - offset)
1380                 return PAGE_SIZE - offset;
1381         else
1382                 return len;
1383 }
1384
1385 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1386                         int len)
1387 {
1388         int r;
1389         unsigned long addr;
1390
1391         addr = gfn_to_hva_read(kvm, gfn);
1392         if (kvm_is_error_hva(addr))
1393                 return -EFAULT;
1394         r = kvm_read_hva(data, (void __user *)addr + offset, len);
1395         if (r)
1396                 return -EFAULT;
1397         return 0;
1398 }
1399 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1400
1401 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1402 {
1403         gfn_t gfn = gpa >> PAGE_SHIFT;
1404         int seg;
1405         int offset = offset_in_page(gpa);
1406         int ret;
1407
1408         while ((seg = next_segment(len, offset)) != 0) {
1409                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1410                 if (ret < 0)
1411                         return ret;
1412                 offset = 0;
1413                 len -= seg;
1414                 data += seg;
1415                 ++gfn;
1416         }
1417         return 0;
1418 }
1419 EXPORT_SYMBOL_GPL(kvm_read_guest);
1420
1421 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1422                           unsigned long len)
1423 {
1424         int r;
1425         unsigned long addr;
1426         gfn_t gfn = gpa >> PAGE_SHIFT;
1427         int offset = offset_in_page(gpa);
1428
1429         addr = gfn_to_hva_read(kvm, gfn);
1430         if (kvm_is_error_hva(addr))
1431                 return -EFAULT;
1432         pagefault_disable();
1433         r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1434         pagefault_enable();
1435         if (r)
1436                 return -EFAULT;
1437         return 0;
1438 }
1439 EXPORT_SYMBOL(kvm_read_guest_atomic);
1440
1441 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1442                          int offset, int len)
1443 {
1444         int r;
1445         unsigned long addr;
1446
1447         addr = gfn_to_hva(kvm, gfn);
1448         if (kvm_is_error_hva(addr))
1449                 return -EFAULT;
1450         r = __copy_to_user((void __user *)addr + offset, data, len);
1451         if (r)
1452                 return -EFAULT;
1453         mark_page_dirty(kvm, gfn);
1454         return 0;
1455 }
1456 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1457
1458 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1459                     unsigned long len)
1460 {
1461         gfn_t gfn = gpa >> PAGE_SHIFT;
1462         int seg;
1463         int offset = offset_in_page(gpa);
1464         int ret;
1465
1466         while ((seg = next_segment(len, offset)) != 0) {
1467                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1468                 if (ret < 0)
1469                         return ret;
1470                 offset = 0;
1471                 len -= seg;
1472                 data += seg;
1473                 ++gfn;
1474         }
1475         return 0;
1476 }
1477
1478 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1479                               gpa_t gpa)
1480 {
1481         struct kvm_memslots *slots = kvm_memslots(kvm);
1482         int offset = offset_in_page(gpa);
1483         gfn_t gfn = gpa >> PAGE_SHIFT;
1484
1485         ghc->gpa = gpa;
1486         ghc->generation = slots->generation;
1487         ghc->memslot = gfn_to_memslot(kvm, gfn);
1488         ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1489         if (!kvm_is_error_hva(ghc->hva))
1490                 ghc->hva += offset;
1491         else
1492                 return -EFAULT;
1493
1494         return 0;
1495 }
1496 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1497
1498 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1499                            void *data, unsigned long len)
1500 {
1501         struct kvm_memslots *slots = kvm_memslots(kvm);
1502         int r;
1503
1504         if (slots->generation != ghc->generation)
1505                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1506
1507         if (kvm_is_error_hva(ghc->hva))
1508                 return -EFAULT;
1509
1510         r = __copy_to_user((void __user *)ghc->hva, data, len);
1511         if (r)
1512                 return -EFAULT;
1513         mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1514
1515         return 0;
1516 }
1517 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1518
1519 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1520                            void *data, unsigned long len)
1521 {
1522         struct kvm_memslots *slots = kvm_memslots(kvm);
1523         int r;
1524
1525         if (slots->generation != ghc->generation)
1526                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1527
1528         if (kvm_is_error_hva(ghc->hva))
1529                 return -EFAULT;
1530
1531         r = __copy_from_user(data, (void __user *)ghc->hva, len);
1532         if (r)
1533                 return -EFAULT;
1534
1535         return 0;
1536 }
1537 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1538
1539 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1540 {
1541         return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1542                                     offset, len);
1543 }
1544 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1545
1546 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1547 {
1548         gfn_t gfn = gpa >> PAGE_SHIFT;
1549         int seg;
1550         int offset = offset_in_page(gpa);
1551         int ret;
1552
1553         while ((seg = next_segment(len, offset)) != 0) {
1554                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1555                 if (ret < 0)
1556                         return ret;
1557                 offset = 0;
1558                 len -= seg;
1559                 ++gfn;
1560         }
1561         return 0;
1562 }
1563 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1564
1565 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1566                              gfn_t gfn)
1567 {
1568         if (memslot && memslot->dirty_bitmap) {
1569                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1570
1571                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1572         }
1573 }
1574
1575 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1576 {
1577         struct kvm_memory_slot *memslot;
1578
1579         memslot = gfn_to_memslot(kvm, gfn);
1580         mark_page_dirty_in_slot(kvm, memslot, gfn);
1581 }
1582
1583 /*
1584  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1585  */
1586 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1587 {
1588         DEFINE_WAIT(wait);
1589
1590         for (;;) {
1591                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1592
1593                 if (kvm_arch_vcpu_runnable(vcpu)) {
1594                         kvm_make_request(KVM_REQ_UNHALT, vcpu);
1595                         break;
1596                 }
1597                 if (kvm_cpu_has_pending_timer(vcpu))
1598                         break;
1599                 if (signal_pending(current))
1600                         break;
1601
1602                 schedule();
1603         }
1604
1605         finish_wait(&vcpu->wq, &wait);
1606 }
1607
1608 #ifndef CONFIG_S390
1609 /*
1610  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1611  */
1612 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1613 {
1614         int me;
1615         int cpu = vcpu->cpu;
1616         wait_queue_head_t *wqp;
1617
1618         wqp = kvm_arch_vcpu_wq(vcpu);
1619         if (waitqueue_active(wqp)) {
1620                 wake_up_interruptible(wqp);
1621                 ++vcpu->stat.halt_wakeup;
1622         }
1623
1624         me = get_cpu();
1625         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1626                 if (kvm_arch_vcpu_should_kick(vcpu))
1627                         smp_send_reschedule(cpu);
1628         put_cpu();
1629 }
1630 #endif /* !CONFIG_S390 */
1631
1632 void kvm_resched(struct kvm_vcpu *vcpu)
1633 {
1634         if (!need_resched())
1635                 return;
1636         cond_resched();
1637 }
1638 EXPORT_SYMBOL_GPL(kvm_resched);
1639
1640 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1641 {
1642         struct pid *pid;
1643         struct task_struct *task = NULL;
1644
1645         rcu_read_lock();
1646         pid = rcu_dereference(target->pid);
1647         if (pid)
1648                 task = get_pid_task(target->pid, PIDTYPE_PID);
1649         rcu_read_unlock();
1650         if (!task)
1651                 return false;
1652         if (task->flags & PF_VCPU) {
1653                 put_task_struct(task);
1654                 return false;
1655         }
1656         if (yield_to(task, 1)) {
1657                 put_task_struct(task);
1658                 return true;
1659         }
1660         put_task_struct(task);
1661         return false;
1662 }
1663 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1664
1665 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1666 /*
1667  * Helper that checks whether a VCPU is eligible for directed yield.
1668  * Most eligible candidate to yield is decided by following heuristics:
1669  *
1670  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1671  *  (preempted lock holder), indicated by @in_spin_loop.
1672  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1673  *
1674  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1675  *  chance last time (mostly it has become eligible now since we have probably
1676  *  yielded to lockholder in last iteration. This is done by toggling
1677  *  @dy_eligible each time a VCPU checked for eligibility.)
1678  *
1679  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1680  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1681  *  burning. Giving priority for a potential lock-holder increases lock
1682  *  progress.
1683  *
1684  *  Since algorithm is based on heuristics, accessing another VCPU data without
1685  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1686  *  and continue with next VCPU and so on.
1687  */
1688 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1689 {
1690         bool eligible;
1691
1692         eligible = !vcpu->spin_loop.in_spin_loop ||
1693                         (vcpu->spin_loop.in_spin_loop &&
1694                          vcpu->spin_loop.dy_eligible);
1695
1696         if (vcpu->spin_loop.in_spin_loop)
1697                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1698
1699         return eligible;
1700 }
1701 #endif
1702 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1703 {
1704         struct kvm *kvm = me->kvm;
1705         struct kvm_vcpu *vcpu;
1706         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1707         int yielded = 0;
1708         int pass;
1709         int i;
1710
1711         kvm_vcpu_set_in_spin_loop(me, true);
1712         /*
1713          * We boost the priority of a VCPU that is runnable but not
1714          * currently running, because it got preempted by something
1715          * else and called schedule in __vcpu_run.  Hopefully that
1716          * VCPU is holding the lock that we need and will release it.
1717          * We approximate round-robin by starting at the last boosted VCPU.
1718          */
1719         for (pass = 0; pass < 2 && !yielded; pass++) {
1720                 kvm_for_each_vcpu(i, vcpu, kvm) {
1721                         if (!pass && i <= last_boosted_vcpu) {
1722                                 i = last_boosted_vcpu;
1723                                 continue;
1724                         } else if (pass && i > last_boosted_vcpu)
1725                                 break;
1726                         if (vcpu == me)
1727                                 continue;
1728                         if (waitqueue_active(&vcpu->wq))
1729                                 continue;
1730                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1731                                 continue;
1732                         if (kvm_vcpu_yield_to(vcpu)) {
1733                                 kvm->last_boosted_vcpu = i;
1734                                 yielded = 1;
1735                                 break;
1736                         }
1737                 }
1738         }
1739         kvm_vcpu_set_in_spin_loop(me, false);
1740
1741         /* Ensure vcpu is not eligible during next spinloop */
1742         kvm_vcpu_set_dy_eligible(me, false);
1743 }
1744 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1745
1746 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1747 {
1748         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1749         struct page *page;
1750
1751         if (vmf->pgoff == 0)
1752                 page = virt_to_page(vcpu->run);
1753 #ifdef CONFIG_X86
1754         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1755                 page = virt_to_page(vcpu->arch.pio_data);
1756 #endif
1757 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1758         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1759                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1760 #endif
1761         else
1762                 return kvm_arch_vcpu_fault(vcpu, vmf);
1763         get_page(page);
1764         vmf->page = page;
1765         return 0;
1766 }
1767
1768 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1769         .fault = kvm_vcpu_fault,
1770 };
1771
1772 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1773 {
1774         vma->vm_ops = &kvm_vcpu_vm_ops;
1775         return 0;
1776 }
1777
1778 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1779 {
1780         struct kvm_vcpu *vcpu = filp->private_data;
1781
1782         kvm_put_kvm(vcpu->kvm);
1783         return 0;
1784 }
1785
1786 static struct file_operations kvm_vcpu_fops = {
1787         .release        = kvm_vcpu_release,
1788         .unlocked_ioctl = kvm_vcpu_ioctl,
1789 #ifdef CONFIG_COMPAT
1790         .compat_ioctl   = kvm_vcpu_compat_ioctl,
1791 #endif
1792         .mmap           = kvm_vcpu_mmap,
1793         .llseek         = noop_llseek,
1794 };
1795
1796 /*
1797  * Allocates an inode for the vcpu.
1798  */
1799 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1800 {
1801         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1802 }
1803
1804 /*
1805  * Creates some virtual cpus.  Good luck creating more than one.
1806  */
1807 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1808 {
1809         int r;
1810         struct kvm_vcpu *vcpu, *v;
1811
1812         vcpu = kvm_arch_vcpu_create(kvm, id);
1813         if (IS_ERR(vcpu))
1814                 return PTR_ERR(vcpu);
1815
1816         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1817
1818         r = kvm_arch_vcpu_setup(vcpu);
1819         if (r)
1820                 goto vcpu_destroy;
1821
1822         mutex_lock(&kvm->lock);
1823         if (!kvm_vcpu_compatible(vcpu)) {
1824                 r = -EINVAL;
1825                 goto unlock_vcpu_destroy;
1826         }
1827         if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1828                 r = -EINVAL;
1829                 goto unlock_vcpu_destroy;
1830         }
1831
1832         kvm_for_each_vcpu(r, v, kvm)
1833                 if (v->vcpu_id == id) {
1834                         r = -EEXIST;
1835                         goto unlock_vcpu_destroy;
1836                 }
1837
1838         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1839
1840         /* Now it's all set up, let userspace reach it */
1841         kvm_get_kvm(kvm);
1842         r = create_vcpu_fd(vcpu);
1843         if (r < 0) {
1844                 kvm_put_kvm(kvm);
1845                 goto unlock_vcpu_destroy;
1846         }
1847
1848         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1849         smp_wmb();
1850         atomic_inc(&kvm->online_vcpus);
1851
1852         mutex_unlock(&kvm->lock);
1853         kvm_arch_vcpu_postcreate(vcpu);
1854         return r;
1855
1856 unlock_vcpu_destroy:
1857         mutex_unlock(&kvm->lock);
1858 vcpu_destroy:
1859         kvm_arch_vcpu_destroy(vcpu);
1860         return r;
1861 }
1862
1863 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1864 {
1865         if (sigset) {
1866                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1867                 vcpu->sigset_active = 1;
1868                 vcpu->sigset = *sigset;
1869         } else
1870                 vcpu->sigset_active = 0;
1871         return 0;
1872 }
1873
1874 static long kvm_vcpu_ioctl(struct file *filp,
1875                            unsigned int ioctl, unsigned long arg)
1876 {
1877         struct kvm_vcpu *vcpu = filp->private_data;
1878         void __user *argp = (void __user *)arg;
1879         int r;
1880         struct kvm_fpu *fpu = NULL;
1881         struct kvm_sregs *kvm_sregs = NULL;
1882
1883         if (vcpu->kvm->mm != current->mm)
1884                 return -EIO;
1885
1886 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1887         /*
1888          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1889          * so vcpu_load() would break it.
1890          */
1891         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1892                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1893 #endif
1894
1895
1896         r = vcpu_load(vcpu);
1897         if (r)
1898                 return r;
1899         switch (ioctl) {
1900         case KVM_RUN:
1901                 r = -EINVAL;
1902                 if (arg)
1903                         goto out;
1904                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1905                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1906                 break;
1907         case KVM_GET_REGS: {
1908                 struct kvm_regs *kvm_regs;
1909
1910                 r = -ENOMEM;
1911                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1912                 if (!kvm_regs)
1913                         goto out;
1914                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1915                 if (r)
1916                         goto out_free1;
1917                 r = -EFAULT;
1918                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1919                         goto out_free1;
1920                 r = 0;
1921 out_free1:
1922                 kfree(kvm_regs);
1923                 break;
1924         }
1925         case KVM_SET_REGS: {
1926                 struct kvm_regs *kvm_regs;
1927
1928                 r = -ENOMEM;
1929                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
1930                 if (IS_ERR(kvm_regs)) {
1931                         r = PTR_ERR(kvm_regs);
1932                         goto out;
1933                 }
1934                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1935                 kfree(kvm_regs);
1936                 break;
1937         }
1938         case KVM_GET_SREGS: {
1939                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1940                 r = -ENOMEM;
1941                 if (!kvm_sregs)
1942                         goto out;
1943                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1944                 if (r)
1945                         goto out;
1946                 r = -EFAULT;
1947                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1948                         goto out;
1949                 r = 0;
1950                 break;
1951         }
1952         case KVM_SET_SREGS: {
1953                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
1954                 if (IS_ERR(kvm_sregs)) {
1955                         r = PTR_ERR(kvm_sregs);
1956                         kvm_sregs = NULL;
1957                         goto out;
1958                 }
1959                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1960                 break;
1961         }
1962         case KVM_GET_MP_STATE: {
1963                 struct kvm_mp_state mp_state;
1964
1965                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1966                 if (r)
1967                         goto out;
1968                 r = -EFAULT;
1969                 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1970                         goto out;
1971                 r = 0;
1972                 break;
1973         }
1974         case KVM_SET_MP_STATE: {
1975                 struct kvm_mp_state mp_state;
1976
1977                 r = -EFAULT;
1978                 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1979                         goto out;
1980                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1981                 break;
1982         }
1983         case KVM_TRANSLATE: {
1984                 struct kvm_translation tr;
1985
1986                 r = -EFAULT;
1987                 if (copy_from_user(&tr, argp, sizeof tr))
1988                         goto out;
1989                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1990                 if (r)
1991                         goto out;
1992                 r = -EFAULT;
1993                 if (copy_to_user(argp, &tr, sizeof tr))
1994                         goto out;
1995                 r = 0;
1996                 break;
1997         }
1998         case KVM_SET_GUEST_DEBUG: {
1999                 struct kvm_guest_debug dbg;
2000
2001                 r = -EFAULT;
2002                 if (copy_from_user(&dbg, argp, sizeof dbg))
2003                         goto out;
2004                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2005                 break;
2006         }
2007         case KVM_SET_SIGNAL_MASK: {
2008                 struct kvm_signal_mask __user *sigmask_arg = argp;
2009                 struct kvm_signal_mask kvm_sigmask;
2010                 sigset_t sigset, *p;
2011
2012                 p = NULL;
2013                 if (argp) {
2014                         r = -EFAULT;
2015                         if (copy_from_user(&kvm_sigmask, argp,
2016                                            sizeof kvm_sigmask))
2017                                 goto out;
2018                         r = -EINVAL;
2019                         if (kvm_sigmask.len != sizeof sigset)
2020                                 goto out;
2021                         r = -EFAULT;
2022                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2023                                            sizeof sigset))
2024                                 goto out;
2025                         p = &sigset;
2026                 }
2027                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2028                 break;
2029         }
2030         case KVM_GET_FPU: {
2031                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2032                 r = -ENOMEM;
2033                 if (!fpu)
2034                         goto out;
2035                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2036                 if (r)
2037                         goto out;
2038                 r = -EFAULT;
2039                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2040                         goto out;
2041                 r = 0;
2042                 break;
2043         }
2044         case KVM_SET_FPU: {
2045                 fpu = memdup_user(argp, sizeof(*fpu));
2046                 if (IS_ERR(fpu)) {
2047                         r = PTR_ERR(fpu);
2048                         fpu = NULL;
2049                         goto out;
2050                 }
2051                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2052                 break;
2053         }
2054         default:
2055                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2056         }
2057 out:
2058         vcpu_put(vcpu);
2059         kfree(fpu);
2060         kfree(kvm_sregs);
2061         return r;
2062 }
2063
2064 #ifdef CONFIG_COMPAT
2065 static long kvm_vcpu_compat_ioctl(struct file *filp,
2066                                   unsigned int ioctl, unsigned long arg)
2067 {
2068         struct kvm_vcpu *vcpu = filp->private_data;
2069         void __user *argp = compat_ptr(arg);
2070         int r;
2071
2072         if (vcpu->kvm->mm != current->mm)
2073                 return -EIO;
2074
2075         switch (ioctl) {
2076         case KVM_SET_SIGNAL_MASK: {
2077                 struct kvm_signal_mask __user *sigmask_arg = argp;
2078                 struct kvm_signal_mask kvm_sigmask;
2079                 compat_sigset_t csigset;
2080                 sigset_t sigset;
2081
2082                 if (argp) {
2083                         r = -EFAULT;
2084                         if (copy_from_user(&kvm_sigmask, argp,
2085                                            sizeof kvm_sigmask))
2086                                 goto out;
2087                         r = -EINVAL;
2088                         if (kvm_sigmask.len != sizeof csigset)
2089                                 goto out;
2090                         r = -EFAULT;
2091                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2092                                            sizeof csigset))
2093                                 goto out;
2094                         sigset_from_compat(&sigset, &csigset);
2095                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2096                 } else
2097                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2098                 break;
2099         }
2100         default:
2101                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2102         }
2103
2104 out:
2105         return r;
2106 }
2107 #endif
2108
2109 static long kvm_vm_ioctl(struct file *filp,
2110                            unsigned int ioctl, unsigned long arg)
2111 {
2112         struct kvm *kvm = filp->private_data;
2113         void __user *argp = (void __user *)arg;
2114         int r;
2115
2116         if (kvm->mm != current->mm)
2117                 return -EIO;
2118         switch (ioctl) {
2119         case KVM_CREATE_VCPU:
2120                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2121                 break;
2122         case KVM_SET_USER_MEMORY_REGION: {
2123                 struct kvm_userspace_memory_region kvm_userspace_mem;
2124
2125                 r = -EFAULT;
2126                 if (copy_from_user(&kvm_userspace_mem, argp,
2127                                                 sizeof kvm_userspace_mem))
2128                         goto out;
2129
2130                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2131                 break;
2132         }
2133         case KVM_GET_DIRTY_LOG: {
2134                 struct kvm_dirty_log log;
2135
2136                 r = -EFAULT;
2137                 if (copy_from_user(&log, argp, sizeof log))
2138                         goto out;
2139                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2140                 break;
2141         }
2142 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2143         case KVM_REGISTER_COALESCED_MMIO: {
2144                 struct kvm_coalesced_mmio_zone zone;
2145                 r = -EFAULT;
2146                 if (copy_from_user(&zone, argp, sizeof zone))
2147                         goto out;
2148                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2149                 break;
2150         }
2151         case KVM_UNREGISTER_COALESCED_MMIO: {
2152                 struct kvm_coalesced_mmio_zone zone;
2153                 r = -EFAULT;
2154                 if (copy_from_user(&zone, argp, sizeof zone))
2155                         goto out;
2156                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2157                 break;
2158         }
2159 #endif
2160         case KVM_IRQFD: {
2161                 struct kvm_irqfd data;
2162
2163                 r = -EFAULT;
2164                 if (copy_from_user(&data, argp, sizeof data))
2165                         goto out;
2166                 r = kvm_irqfd(kvm, &data);
2167                 break;
2168         }
2169         case KVM_IOEVENTFD: {
2170                 struct kvm_ioeventfd data;
2171
2172                 r = -EFAULT;
2173                 if (copy_from_user(&data, argp, sizeof data))
2174                         goto out;
2175                 r = kvm_ioeventfd(kvm, &data);
2176                 break;
2177         }
2178 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2179         case KVM_SET_BOOT_CPU_ID:
2180                 r = 0;
2181                 mutex_lock(&kvm->lock);
2182                 if (atomic_read(&kvm->online_vcpus) != 0)
2183                         r = -EBUSY;
2184                 else
2185                         kvm->bsp_vcpu_id = arg;
2186                 mutex_unlock(&kvm->lock);
2187                 break;
2188 #endif
2189 #ifdef CONFIG_HAVE_KVM_MSI
2190         case KVM_SIGNAL_MSI: {
2191                 struct kvm_msi msi;
2192
2193                 r = -EFAULT;
2194                 if (copy_from_user(&msi, argp, sizeof msi))
2195                         goto out;
2196                 r = kvm_send_userspace_msi(kvm, &msi);
2197                 break;
2198         }
2199 #endif
2200 #ifdef __KVM_HAVE_IRQ_LINE
2201         case KVM_IRQ_LINE_STATUS:
2202         case KVM_IRQ_LINE: {
2203                 struct kvm_irq_level irq_event;
2204
2205                 r = -EFAULT;
2206                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2207                         goto out;
2208
2209                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event);
2210                 if (r)
2211                         goto out;
2212
2213                 r = -EFAULT;
2214                 if (ioctl == KVM_IRQ_LINE_STATUS) {
2215                         if (copy_to_user(argp, &irq_event, sizeof irq_event))
2216                                 goto out;
2217                 }
2218
2219                 r = 0;
2220                 break;
2221         }
2222 #endif
2223         default:
2224                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2225                 if (r == -ENOTTY)
2226                         r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2227         }
2228 out:
2229         return r;
2230 }
2231
2232 #ifdef CONFIG_COMPAT
2233 struct compat_kvm_dirty_log {
2234         __u32 slot;
2235         __u32 padding1;
2236         union {
2237                 compat_uptr_t dirty_bitmap; /* one bit per page */
2238                 __u64 padding2;
2239         };
2240 };
2241
2242 static long kvm_vm_compat_ioctl(struct file *filp,
2243                            unsigned int ioctl, unsigned long arg)
2244 {
2245         struct kvm *kvm = filp->private_data;
2246         int r;
2247
2248         if (kvm->mm != current->mm)
2249                 return -EIO;
2250         switch (ioctl) {
2251         case KVM_GET_DIRTY_LOG: {
2252                 struct compat_kvm_dirty_log compat_log;
2253                 struct kvm_dirty_log log;
2254
2255                 r = -EFAULT;
2256                 if (copy_from_user(&compat_log, (void __user *)arg,
2257                                    sizeof(compat_log)))
2258                         goto out;
2259                 log.slot         = compat_log.slot;
2260                 log.padding1     = compat_log.padding1;
2261                 log.padding2     = compat_log.padding2;
2262                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2263
2264                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2265                 break;
2266         }
2267         default:
2268                 r = kvm_vm_ioctl(filp, ioctl, arg);
2269         }
2270
2271 out:
2272         return r;
2273 }
2274 #endif
2275
2276 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2277 {
2278         struct page *page[1];
2279         unsigned long addr;
2280         int npages;
2281         gfn_t gfn = vmf->pgoff;
2282         struct kvm *kvm = vma->vm_file->private_data;
2283
2284         addr = gfn_to_hva(kvm, gfn);
2285         if (kvm_is_error_hva(addr))
2286                 return VM_FAULT_SIGBUS;
2287
2288         npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2289                                 NULL);
2290         if (unlikely(npages != 1))
2291                 return VM_FAULT_SIGBUS;
2292
2293         vmf->page = page[0];
2294         return 0;
2295 }
2296
2297 static const struct vm_operations_struct kvm_vm_vm_ops = {
2298         .fault = kvm_vm_fault,
2299 };
2300
2301 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2302 {
2303         vma->vm_ops = &kvm_vm_vm_ops;
2304         return 0;
2305 }
2306
2307 static struct file_operations kvm_vm_fops = {
2308         .release        = kvm_vm_release,
2309         .unlocked_ioctl = kvm_vm_ioctl,
2310 #ifdef CONFIG_COMPAT
2311         .compat_ioctl   = kvm_vm_compat_ioctl,
2312 #endif
2313         .mmap           = kvm_vm_mmap,
2314         .llseek         = noop_llseek,
2315 };
2316
2317 static int kvm_dev_ioctl_create_vm(unsigned long type)
2318 {
2319         int r;
2320         struct kvm *kvm;
2321
2322         kvm = kvm_create_vm(type);
2323         if (IS_ERR(kvm))
2324                 return PTR_ERR(kvm);
2325 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2326         r = kvm_coalesced_mmio_init(kvm);
2327         if (r < 0) {
2328                 kvm_put_kvm(kvm);
2329                 return r;
2330         }
2331 #endif
2332         r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2333         if (r < 0)
2334                 kvm_put_kvm(kvm);
2335
2336         return r;
2337 }
2338
2339 static long kvm_dev_ioctl_check_extension_generic(long arg)
2340 {
2341         switch (arg) {
2342         case KVM_CAP_USER_MEMORY:
2343         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2344         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2345 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2346         case KVM_CAP_SET_BOOT_CPU_ID:
2347 #endif
2348         case KVM_CAP_INTERNAL_ERROR_DATA:
2349 #ifdef CONFIG_HAVE_KVM_MSI
2350         case KVM_CAP_SIGNAL_MSI:
2351 #endif
2352                 return 1;
2353 #ifdef KVM_CAP_IRQ_ROUTING
2354         case KVM_CAP_IRQ_ROUTING:
2355                 return KVM_MAX_IRQ_ROUTES;
2356 #endif
2357         default:
2358                 break;
2359         }
2360         return kvm_dev_ioctl_check_extension(arg);
2361 }
2362
2363 static long kvm_dev_ioctl(struct file *filp,
2364                           unsigned int ioctl, unsigned long arg)
2365 {
2366         long r = -EINVAL;
2367
2368         switch (ioctl) {
2369         case KVM_GET_API_VERSION:
2370                 r = -EINVAL;
2371                 if (arg)
2372                         goto out;
2373                 r = KVM_API_VERSION;
2374                 break;
2375         case KVM_CREATE_VM:
2376                 r = kvm_dev_ioctl_create_vm(arg);
2377                 break;
2378         case KVM_CHECK_EXTENSION:
2379                 r = kvm_dev_ioctl_check_extension_generic(arg);
2380                 break;
2381         case KVM_GET_VCPU_MMAP_SIZE:
2382                 r = -EINVAL;
2383                 if (arg)
2384                         goto out;
2385                 r = PAGE_SIZE;     /* struct kvm_run */
2386 #ifdef CONFIG_X86
2387                 r += PAGE_SIZE;    /* pio data page */
2388 #endif
2389 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2390                 r += PAGE_SIZE;    /* coalesced mmio ring page */
2391 #endif
2392                 break;
2393         case KVM_TRACE_ENABLE:
2394         case KVM_TRACE_PAUSE:
2395         case KVM_TRACE_DISABLE:
2396                 r = -EOPNOTSUPP;
2397                 break;
2398         default:
2399                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2400         }
2401 out:
2402         return r;
2403 }
2404
2405 static struct file_operations kvm_chardev_ops = {
2406         .unlocked_ioctl = kvm_dev_ioctl,
2407         .compat_ioctl   = kvm_dev_ioctl,
2408         .llseek         = noop_llseek,
2409 };
2410
2411 static struct miscdevice kvm_dev = {
2412         KVM_MINOR,
2413         "kvm",
2414         &kvm_chardev_ops,
2415 };
2416
2417 static void hardware_enable_nolock(void *junk)
2418 {
2419         int cpu = raw_smp_processor_id();
2420         int r;
2421
2422         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2423                 return;
2424
2425         cpumask_set_cpu(cpu, cpus_hardware_enabled);
2426
2427         r = kvm_arch_hardware_enable(NULL);
2428
2429         if (r) {
2430                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2431                 atomic_inc(&hardware_enable_failed);
2432                 printk(KERN_INFO "kvm: enabling virtualization on "
2433                                  "CPU%d failed\n", cpu);
2434         }
2435 }
2436
2437 static void hardware_enable(void *junk)
2438 {
2439         raw_spin_lock(&kvm_lock);
2440         hardware_enable_nolock(junk);
2441         raw_spin_unlock(&kvm_lock);
2442 }
2443
2444 static void hardware_disable_nolock(void *junk)
2445 {
2446         int cpu = raw_smp_processor_id();
2447
2448         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2449                 return;
2450         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2451         kvm_arch_hardware_disable(NULL);
2452 }
2453
2454 static void hardware_disable(void *junk)
2455 {
2456         raw_spin_lock(&kvm_lock);
2457         hardware_disable_nolock(junk);
2458         raw_spin_unlock(&kvm_lock);
2459 }
2460
2461 static void hardware_disable_all_nolock(void)
2462 {
2463         BUG_ON(!kvm_usage_count);
2464
2465         kvm_usage_count--;
2466         if (!kvm_usage_count)
2467                 on_each_cpu(hardware_disable_nolock, NULL, 1);
2468 }
2469
2470 static void hardware_disable_all(void)
2471 {
2472         raw_spin_lock(&kvm_lock);
2473         hardware_disable_all_nolock();
2474         raw_spin_unlock(&kvm_lock);
2475 }
2476
2477 static int hardware_enable_all(void)
2478 {
2479         int r = 0;
2480
2481         raw_spin_lock(&kvm_lock);
2482
2483         kvm_usage_count++;
2484         if (kvm_usage_count == 1) {
2485                 atomic_set(&hardware_enable_failed, 0);
2486                 on_each_cpu(hardware_enable_nolock, NULL, 1);
2487
2488                 if (atomic_read(&hardware_enable_failed)) {
2489                         hardware_disable_all_nolock();
2490                         r = -EBUSY;
2491                 }
2492         }
2493
2494         raw_spin_unlock(&kvm_lock);
2495
2496         return r;
2497 }
2498
2499 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2500                            void *v)
2501 {
2502         int cpu = (long)v;
2503
2504         if (!kvm_usage_count)
2505                 return NOTIFY_OK;
2506
2507         val &= ~CPU_TASKS_FROZEN;
2508         switch (val) {
2509         case CPU_DYING:
2510                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2511                        cpu);
2512                 hardware_disable(NULL);
2513                 break;
2514         case CPU_STARTING:
2515                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2516                        cpu);
2517                 hardware_enable(NULL);
2518                 break;
2519         }
2520         return NOTIFY_OK;
2521 }
2522
2523
2524 asmlinkage void kvm_spurious_fault(void)
2525 {
2526         /* Fault while not rebooting.  We want the trace. */
2527         BUG();
2528 }
2529 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2530
2531 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2532                       void *v)
2533 {
2534         /*
2535          * Some (well, at least mine) BIOSes hang on reboot if
2536          * in vmx root mode.
2537          *
2538          * And Intel TXT required VMX off for all cpu when system shutdown.
2539          */
2540         printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2541         kvm_rebooting = true;
2542         on_each_cpu(hardware_disable_nolock, NULL, 1);
2543         return NOTIFY_OK;
2544 }
2545
2546 static struct notifier_block kvm_reboot_notifier = {
2547         .notifier_call = kvm_reboot,
2548         .priority = 0,
2549 };
2550
2551 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2552 {
2553         int i;
2554
2555         for (i = 0; i < bus->dev_count; i++) {
2556                 struct kvm_io_device *pos = bus->range[i].dev;
2557
2558                 kvm_iodevice_destructor(pos);
2559         }
2560         kfree(bus);
2561 }
2562
2563 int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2564 {
2565         const struct kvm_io_range *r1 = p1;
2566         const struct kvm_io_range *r2 = p2;
2567
2568         if (r1->addr < r2->addr)
2569                 return -1;
2570         if (r1->addr + r1->len > r2->addr + r2->len)
2571                 return 1;
2572         return 0;
2573 }
2574
2575 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2576                           gpa_t addr, int len)
2577 {
2578         bus->range[bus->dev_count++] = (struct kvm_io_range) {
2579                 .addr = addr,
2580                 .len = len,
2581                 .dev = dev,
2582         };
2583
2584         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2585                 kvm_io_bus_sort_cmp, NULL);
2586
2587         return 0;
2588 }
2589
2590 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2591                              gpa_t addr, int len)
2592 {
2593         struct kvm_io_range *range, key;
2594         int off;
2595
2596         key = (struct kvm_io_range) {
2597                 .addr = addr,
2598                 .len = len,
2599         };
2600
2601         range = bsearch(&key, bus->range, bus->dev_count,
2602                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2603         if (range == NULL)
2604                 return -ENOENT;
2605
2606         off = range - bus->range;
2607
2608         while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2609                 off--;
2610
2611         return off;
2612 }
2613
2614 /* kvm_io_bus_write - called under kvm->slots_lock */
2615 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2616                      int len, const void *val)
2617 {
2618         int idx;
2619         struct kvm_io_bus *bus;
2620         struct kvm_io_range range;
2621
2622         range = (struct kvm_io_range) {
2623                 .addr = addr,
2624                 .len = len,
2625         };
2626
2627         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2628         idx = kvm_io_bus_get_first_dev(bus, addr, len);
2629         if (idx < 0)
2630                 return -EOPNOTSUPP;
2631
2632         while (idx < bus->dev_count &&
2633                 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2634                 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2635                         return 0;
2636                 idx++;
2637         }
2638
2639         return -EOPNOTSUPP;
2640 }
2641
2642 /* kvm_io_bus_read - called under kvm->slots_lock */
2643 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2644                     int len, void *val)
2645 {
2646         int idx;
2647         struct kvm_io_bus *bus;
2648         struct kvm_io_range range;
2649
2650         range = (struct kvm_io_range) {
2651                 .addr = addr,
2652                 .len = len,
2653         };
2654
2655         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2656         idx = kvm_io_bus_get_first_dev(bus, addr, len);
2657         if (idx < 0)
2658                 return -EOPNOTSUPP;
2659
2660         while (idx < bus->dev_count &&
2661                 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2662                 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2663                         return 0;
2664                 idx++;
2665         }
2666
2667         return -EOPNOTSUPP;
2668 }
2669
2670 /* Caller must hold slots_lock. */
2671 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2672                             int len, struct kvm_io_device *dev)
2673 {
2674         struct kvm_io_bus *new_bus, *bus;
2675
2676         bus = kvm->buses[bus_idx];
2677         if (bus->dev_count > NR_IOBUS_DEVS - 1)
2678                 return -ENOSPC;
2679
2680         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2681                           sizeof(struct kvm_io_range)), GFP_KERNEL);
2682         if (!new_bus)
2683                 return -ENOMEM;
2684         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2685                sizeof(struct kvm_io_range)));
2686         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2687         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2688         synchronize_srcu_expedited(&kvm->srcu);
2689         kfree(bus);
2690
2691         return 0;
2692 }
2693
2694 /* Caller must hold slots_lock. */
2695 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2696                               struct kvm_io_device *dev)
2697 {
2698         int i, r;
2699         struct kvm_io_bus *new_bus, *bus;
2700
2701         bus = kvm->buses[bus_idx];
2702         r = -ENOENT;
2703         for (i = 0; i < bus->dev_count; i++)
2704                 if (bus->range[i].dev == dev) {
2705                         r = 0;
2706                         break;
2707                 }
2708
2709         if (r)
2710                 return r;
2711
2712         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2713                           sizeof(struct kvm_io_range)), GFP_KERNEL);
2714         if (!new_bus)
2715                 return -ENOMEM;
2716
2717         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2718         new_bus->dev_count--;
2719         memcpy(new_bus->range + i, bus->range + i + 1,
2720                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2721
2722         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2723         synchronize_srcu_expedited(&kvm->srcu);
2724         kfree(bus);
2725         return r;
2726 }
2727
2728 static struct notifier_block kvm_cpu_notifier = {
2729         .notifier_call = kvm_cpu_hotplug,
2730 };
2731
2732 static int vm_stat_get(void *_offset, u64 *val)
2733 {
2734         unsigned offset = (long)_offset;
2735         struct kvm *kvm;
2736
2737         *val = 0;
2738         raw_spin_lock(&kvm_lock);
2739         list_for_each_entry(kvm, &vm_list, vm_list)
2740                 *val += *(u32 *)((void *)kvm + offset);
2741         raw_spin_unlock(&kvm_lock);
2742         return 0;
2743 }
2744
2745 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2746
2747 static int vcpu_stat_get(void *_offset, u64 *val)
2748 {
2749         unsigned offset = (long)_offset;
2750         struct kvm *kvm;
2751         struct kvm_vcpu *vcpu;
2752         int i;
2753
2754         *val = 0;
2755         raw_spin_lock(&kvm_lock);
2756         list_for_each_entry(kvm, &vm_list, vm_list)
2757                 kvm_for_each_vcpu(i, vcpu, kvm)
2758                         *val += *(u32 *)((void *)vcpu + offset);
2759
2760         raw_spin_unlock(&kvm_lock);
2761         return 0;
2762 }
2763
2764 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2765
2766 static const struct file_operations *stat_fops[] = {
2767         [KVM_STAT_VCPU] = &vcpu_stat_fops,
2768         [KVM_STAT_VM]   = &vm_stat_fops,
2769 };
2770
2771 static int kvm_init_debug(void)
2772 {
2773         int r = -EFAULT;
2774         struct kvm_stats_debugfs_item *p;
2775
2776         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2777         if (kvm_debugfs_dir == NULL)
2778                 goto out;
2779
2780         for (p = debugfs_entries; p->name; ++p) {
2781                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2782                                                 (void *)(long)p->offset,
2783                                                 stat_fops[p->kind]);
2784                 if (p->dentry == NULL)
2785                         goto out_dir;
2786         }
2787
2788         return 0;
2789
2790 out_dir:
2791         debugfs_remove_recursive(kvm_debugfs_dir);
2792 out:
2793         return r;
2794 }
2795
2796 static void kvm_exit_debug(void)
2797 {
2798         struct kvm_stats_debugfs_item *p;
2799
2800         for (p = debugfs_entries; p->name; ++p)
2801                 debugfs_remove(p->dentry);
2802         debugfs_remove(kvm_debugfs_dir);
2803 }
2804
2805 static int kvm_suspend(void)
2806 {
2807         if (kvm_usage_count)
2808                 hardware_disable_nolock(NULL);
2809         return 0;
2810 }
2811
2812 static void kvm_resume(void)
2813 {
2814         if (kvm_usage_count) {
2815                 WARN_ON(raw_spin_is_locked(&kvm_lock));
2816                 hardware_enable_nolock(NULL);
2817         }
2818 }
2819
2820 static struct syscore_ops kvm_syscore_ops = {
2821         .suspend = kvm_suspend,
2822         .resume = kvm_resume,
2823 };
2824
2825 static inline
2826 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2827 {
2828         return container_of(pn, struct kvm_vcpu, preempt_notifier);
2829 }
2830
2831 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2832 {
2833         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2834
2835         kvm_arch_vcpu_load(vcpu, cpu);
2836 }
2837
2838 static void kvm_sched_out(struct preempt_notifier *pn,
2839                           struct task_struct *next)
2840 {
2841         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2842
2843         kvm_arch_vcpu_put(vcpu);
2844 }
2845
2846 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2847                   struct module *module)
2848 {
2849         int r;
2850         int cpu;
2851
2852         r = kvm_arch_init(opaque);
2853         if (r)
2854                 goto out_fail;
2855
2856         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2857                 r = -ENOMEM;
2858                 goto out_free_0;
2859         }
2860
2861         r = kvm_arch_hardware_setup();
2862         if (r < 0)
2863                 goto out_free_0a;
2864
2865         for_each_online_cpu(cpu) {
2866                 smp_call_function_single(cpu,
2867                                 kvm_arch_check_processor_compat,
2868                                 &r, 1);
2869                 if (r < 0)
2870                         goto out_free_1;
2871         }
2872
2873         r = register_cpu_notifier(&kvm_cpu_notifier);
2874         if (r)
2875                 goto out_free_2;
2876         register_reboot_notifier(&kvm_reboot_notifier);
2877
2878         /* A kmem cache lets us meet the alignment requirements of fx_save. */
2879         if (!vcpu_align)
2880                 vcpu_align = __alignof__(struct kvm_vcpu);
2881         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2882                                            0, NULL);
2883         if (!kvm_vcpu_cache) {
2884                 r = -ENOMEM;
2885                 goto out_free_3;
2886         }
2887
2888         r = kvm_async_pf_init();
2889         if (r)
2890                 goto out_free;
2891
2892         kvm_chardev_ops.owner = module;
2893         kvm_vm_fops.owner = module;
2894         kvm_vcpu_fops.owner = module;
2895
2896         r = misc_register(&kvm_dev);
2897         if (r) {
2898                 printk(KERN_ERR "kvm: misc device register failed\n");
2899                 goto out_unreg;
2900         }
2901
2902         register_syscore_ops(&kvm_syscore_ops);
2903
2904         kvm_preempt_ops.sched_in = kvm_sched_in;
2905         kvm_preempt_ops.sched_out = kvm_sched_out;
2906
2907         r = kvm_init_debug();
2908         if (r) {
2909                 printk(KERN_ERR "kvm: create debugfs files failed\n");
2910                 goto out_undebugfs;
2911         }
2912
2913         return 0;
2914
2915 out_undebugfs:
2916         unregister_syscore_ops(&kvm_syscore_ops);
2917 out_unreg:
2918         kvm_async_pf_deinit();
2919 out_free:
2920         kmem_cache_destroy(kvm_vcpu_cache);
2921 out_free_3:
2922         unregister_reboot_notifier(&kvm_reboot_notifier);
2923         unregister_cpu_notifier(&kvm_cpu_notifier);
2924 out_free_2:
2925 out_free_1:
2926         kvm_arch_hardware_unsetup();
2927 out_free_0a:
2928         free_cpumask_var(cpus_hardware_enabled);
2929 out_free_0:
2930         kvm_arch_exit();
2931 out_fail:
2932         return r;
2933 }
2934 EXPORT_SYMBOL_GPL(kvm_init);
2935
2936 void kvm_exit(void)
2937 {
2938         kvm_exit_debug();
2939         misc_deregister(&kvm_dev);
2940         kmem_cache_destroy(kvm_vcpu_cache);
2941         kvm_async_pf_deinit();
2942         unregister_syscore_ops(&kvm_syscore_ops);
2943         unregister_reboot_notifier(&kvm_reboot_notifier);
2944         unregister_cpu_notifier(&kvm_cpu_notifier);
2945         on_each_cpu(hardware_disable_nolock, NULL, 1);
2946         kvm_arch_hardware_unsetup();
2947         kvm_arch_exit();
2948         free_cpumask_var(cpus_hardware_enabled);
2949 }
2950 EXPORT_SYMBOL_GPL(kvm_exit);