]> Pileus Git - ~andy/linux/blob - tools/perf/util/evsel.c
perf tools: Introduce zfree
[~andy/linux] / tools / perf / util / evsel.c
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <api/fs/debugfs.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <sys/resource.h>
17 #include "asm/bug.h"
18 #include "evsel.h"
19 #include "evlist.h"
20 #include "util.h"
21 #include "cpumap.h"
22 #include "thread_map.h"
23 #include "target.h"
24 #include "perf_regs.h"
25 #include "debug.h"
26 #include "trace-event.h"
27
28 static struct {
29         bool sample_id_all;
30         bool exclude_guest;
31         bool mmap2;
32 } perf_missing_features;
33
34 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
35
36 int __perf_evsel__sample_size(u64 sample_type)
37 {
38         u64 mask = sample_type & PERF_SAMPLE_MASK;
39         int size = 0;
40         int i;
41
42         for (i = 0; i < 64; i++) {
43                 if (mask & (1ULL << i))
44                         size++;
45         }
46
47         size *= sizeof(u64);
48
49         return size;
50 }
51
52 /**
53  * __perf_evsel__calc_id_pos - calculate id_pos.
54  * @sample_type: sample type
55  *
56  * This function returns the position of the event id (PERF_SAMPLE_ID or
57  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
58  * sample_event.
59  */
60 static int __perf_evsel__calc_id_pos(u64 sample_type)
61 {
62         int idx = 0;
63
64         if (sample_type & PERF_SAMPLE_IDENTIFIER)
65                 return 0;
66
67         if (!(sample_type & PERF_SAMPLE_ID))
68                 return -1;
69
70         if (sample_type & PERF_SAMPLE_IP)
71                 idx += 1;
72
73         if (sample_type & PERF_SAMPLE_TID)
74                 idx += 1;
75
76         if (sample_type & PERF_SAMPLE_TIME)
77                 idx += 1;
78
79         if (sample_type & PERF_SAMPLE_ADDR)
80                 idx += 1;
81
82         return idx;
83 }
84
85 /**
86  * __perf_evsel__calc_is_pos - calculate is_pos.
87  * @sample_type: sample type
88  *
89  * This function returns the position (counting backwards) of the event id
90  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
91  * sample_id_all is used there is an id sample appended to non-sample events.
92  */
93 static int __perf_evsel__calc_is_pos(u64 sample_type)
94 {
95         int idx = 1;
96
97         if (sample_type & PERF_SAMPLE_IDENTIFIER)
98                 return 1;
99
100         if (!(sample_type & PERF_SAMPLE_ID))
101                 return -1;
102
103         if (sample_type & PERF_SAMPLE_CPU)
104                 idx += 1;
105
106         if (sample_type & PERF_SAMPLE_STREAM_ID)
107                 idx += 1;
108
109         return idx;
110 }
111
112 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
113 {
114         evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
115         evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
116 }
117
118 void hists__init(struct hists *hists)
119 {
120         memset(hists, 0, sizeof(*hists));
121         hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
122         hists->entries_in = &hists->entries_in_array[0];
123         hists->entries_collapsed = RB_ROOT;
124         hists->entries = RB_ROOT;
125         pthread_mutex_init(&hists->lock, NULL);
126 }
127
128 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
129                                   enum perf_event_sample_format bit)
130 {
131         if (!(evsel->attr.sample_type & bit)) {
132                 evsel->attr.sample_type |= bit;
133                 evsel->sample_size += sizeof(u64);
134                 perf_evsel__calc_id_pos(evsel);
135         }
136 }
137
138 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
139                                     enum perf_event_sample_format bit)
140 {
141         if (evsel->attr.sample_type & bit) {
142                 evsel->attr.sample_type &= ~bit;
143                 evsel->sample_size -= sizeof(u64);
144                 perf_evsel__calc_id_pos(evsel);
145         }
146 }
147
148 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
149                                bool can_sample_identifier)
150 {
151         if (can_sample_identifier) {
152                 perf_evsel__reset_sample_bit(evsel, ID);
153                 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
154         } else {
155                 perf_evsel__set_sample_bit(evsel, ID);
156         }
157         evsel->attr.read_format |= PERF_FORMAT_ID;
158 }
159
160 void perf_evsel__init(struct perf_evsel *evsel,
161                       struct perf_event_attr *attr, int idx)
162 {
163         evsel->idx         = idx;
164         evsel->attr        = *attr;
165         evsel->leader      = evsel;
166         evsel->unit        = "";
167         evsel->scale       = 1.0;
168         INIT_LIST_HEAD(&evsel->node);
169         hists__init(&evsel->hists);
170         evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
171         perf_evsel__calc_id_pos(evsel);
172 }
173
174 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
175 {
176         struct perf_evsel *evsel = zalloc(sizeof(*evsel));
177
178         if (evsel != NULL)
179                 perf_evsel__init(evsel, attr, idx);
180
181         return evsel;
182 }
183
184 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
185 {
186         struct perf_evsel *evsel = zalloc(sizeof(*evsel));
187
188         if (evsel != NULL) {
189                 struct perf_event_attr attr = {
190                         .type          = PERF_TYPE_TRACEPOINT,
191                         .sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
192                                           PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
193                 };
194
195                 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
196                         goto out_free;
197
198                 evsel->tp_format = trace_event__tp_format(sys, name);
199                 if (evsel->tp_format == NULL)
200                         goto out_free;
201
202                 event_attr_init(&attr);
203                 attr.config = evsel->tp_format->id;
204                 attr.sample_period = 1;
205                 perf_evsel__init(evsel, &attr, idx);
206         }
207
208         return evsel;
209
210 out_free:
211         free(evsel->name);
212         free(evsel);
213         return NULL;
214 }
215
216 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
217         "cycles",
218         "instructions",
219         "cache-references",
220         "cache-misses",
221         "branches",
222         "branch-misses",
223         "bus-cycles",
224         "stalled-cycles-frontend",
225         "stalled-cycles-backend",
226         "ref-cycles",
227 };
228
229 static const char *__perf_evsel__hw_name(u64 config)
230 {
231         if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
232                 return perf_evsel__hw_names[config];
233
234         return "unknown-hardware";
235 }
236
237 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
238 {
239         int colon = 0, r = 0;
240         struct perf_event_attr *attr = &evsel->attr;
241         bool exclude_guest_default = false;
242
243 #define MOD_PRINT(context, mod) do {                                    \
244                 if (!attr->exclude_##context) {                         \
245                         if (!colon) colon = ++r;                        \
246                         r += scnprintf(bf + r, size - r, "%c", mod);    \
247                 } } while(0)
248
249         if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
250                 MOD_PRINT(kernel, 'k');
251                 MOD_PRINT(user, 'u');
252                 MOD_PRINT(hv, 'h');
253                 exclude_guest_default = true;
254         }
255
256         if (attr->precise_ip) {
257                 if (!colon)
258                         colon = ++r;
259                 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
260                 exclude_guest_default = true;
261         }
262
263         if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
264                 MOD_PRINT(host, 'H');
265                 MOD_PRINT(guest, 'G');
266         }
267 #undef MOD_PRINT
268         if (colon)
269                 bf[colon - 1] = ':';
270         return r;
271 }
272
273 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
274 {
275         int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
276         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
277 }
278
279 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
280         "cpu-clock",
281         "task-clock",
282         "page-faults",
283         "context-switches",
284         "cpu-migrations",
285         "minor-faults",
286         "major-faults",
287         "alignment-faults",
288         "emulation-faults",
289         "dummy",
290 };
291
292 static const char *__perf_evsel__sw_name(u64 config)
293 {
294         if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
295                 return perf_evsel__sw_names[config];
296         return "unknown-software";
297 }
298
299 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
300 {
301         int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
302         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
303 }
304
305 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
306 {
307         int r;
308
309         r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
310
311         if (type & HW_BREAKPOINT_R)
312                 r += scnprintf(bf + r, size - r, "r");
313
314         if (type & HW_BREAKPOINT_W)
315                 r += scnprintf(bf + r, size - r, "w");
316
317         if (type & HW_BREAKPOINT_X)
318                 r += scnprintf(bf + r, size - r, "x");
319
320         return r;
321 }
322
323 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
324 {
325         struct perf_event_attr *attr = &evsel->attr;
326         int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
327         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
328 }
329
330 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
331                                 [PERF_EVSEL__MAX_ALIASES] = {
332  { "L1-dcache", "l1-d",         "l1d",          "L1-data",              },
333  { "L1-icache", "l1-i",         "l1i",          "L1-instruction",       },
334  { "LLC",       "L2",                                                   },
335  { "dTLB",      "d-tlb",        "Data-TLB",                             },
336  { "iTLB",      "i-tlb",        "Instruction-TLB",                      },
337  { "branch",    "branches",     "bpu",          "btb",          "bpc",  },
338  { "node",                                                              },
339 };
340
341 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
342                                    [PERF_EVSEL__MAX_ALIASES] = {
343  { "load",      "loads",        "read",                                 },
344  { "store",     "stores",       "write",                                },
345  { "prefetch",  "prefetches",   "speculative-read", "speculative-load", },
346 };
347
348 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
349                                        [PERF_EVSEL__MAX_ALIASES] = {
350  { "refs",      "Reference",    "ops",          "access",               },
351  { "misses",    "miss",                                                 },
352 };
353
354 #define C(x)            PERF_COUNT_HW_CACHE_##x
355 #define CACHE_READ      (1 << C(OP_READ))
356 #define CACHE_WRITE     (1 << C(OP_WRITE))
357 #define CACHE_PREFETCH  (1 << C(OP_PREFETCH))
358 #define COP(x)          (1 << x)
359
360 /*
361  * cache operartion stat
362  * L1I : Read and prefetch only
363  * ITLB and BPU : Read-only
364  */
365 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
366  [C(L1D)]       = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
367  [C(L1I)]       = (CACHE_READ | CACHE_PREFETCH),
368  [C(LL)]        = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
369  [C(DTLB)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
370  [C(ITLB)]      = (CACHE_READ),
371  [C(BPU)]       = (CACHE_READ),
372  [C(NODE)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
373 };
374
375 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
376 {
377         if (perf_evsel__hw_cache_stat[type] & COP(op))
378                 return true;    /* valid */
379         else
380                 return false;   /* invalid */
381 }
382
383 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
384                                             char *bf, size_t size)
385 {
386         if (result) {
387                 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
388                                  perf_evsel__hw_cache_op[op][0],
389                                  perf_evsel__hw_cache_result[result][0]);
390         }
391
392         return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
393                          perf_evsel__hw_cache_op[op][1]);
394 }
395
396 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
397 {
398         u8 op, result, type = (config >>  0) & 0xff;
399         const char *err = "unknown-ext-hardware-cache-type";
400
401         if (type > PERF_COUNT_HW_CACHE_MAX)
402                 goto out_err;
403
404         op = (config >>  8) & 0xff;
405         err = "unknown-ext-hardware-cache-op";
406         if (op > PERF_COUNT_HW_CACHE_OP_MAX)
407                 goto out_err;
408
409         result = (config >> 16) & 0xff;
410         err = "unknown-ext-hardware-cache-result";
411         if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
412                 goto out_err;
413
414         err = "invalid-cache";
415         if (!perf_evsel__is_cache_op_valid(type, op))
416                 goto out_err;
417
418         return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
419 out_err:
420         return scnprintf(bf, size, "%s", err);
421 }
422
423 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
424 {
425         int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
426         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
427 }
428
429 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
430 {
431         int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
432         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
433 }
434
435 const char *perf_evsel__name(struct perf_evsel *evsel)
436 {
437         char bf[128];
438
439         if (evsel->name)
440                 return evsel->name;
441
442         switch (evsel->attr.type) {
443         case PERF_TYPE_RAW:
444                 perf_evsel__raw_name(evsel, bf, sizeof(bf));
445                 break;
446
447         case PERF_TYPE_HARDWARE:
448                 perf_evsel__hw_name(evsel, bf, sizeof(bf));
449                 break;
450
451         case PERF_TYPE_HW_CACHE:
452                 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
453                 break;
454
455         case PERF_TYPE_SOFTWARE:
456                 perf_evsel__sw_name(evsel, bf, sizeof(bf));
457                 break;
458
459         case PERF_TYPE_TRACEPOINT:
460                 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
461                 break;
462
463         case PERF_TYPE_BREAKPOINT:
464                 perf_evsel__bp_name(evsel, bf, sizeof(bf));
465                 break;
466
467         default:
468                 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
469                           evsel->attr.type);
470                 break;
471         }
472
473         evsel->name = strdup(bf);
474
475         return evsel->name ?: "unknown";
476 }
477
478 const char *perf_evsel__group_name(struct perf_evsel *evsel)
479 {
480         return evsel->group_name ?: "anon group";
481 }
482
483 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
484 {
485         int ret;
486         struct perf_evsel *pos;
487         const char *group_name = perf_evsel__group_name(evsel);
488
489         ret = scnprintf(buf, size, "%s", group_name);
490
491         ret += scnprintf(buf + ret, size - ret, " { %s",
492                          perf_evsel__name(evsel));
493
494         for_each_group_member(pos, evsel)
495                 ret += scnprintf(buf + ret, size - ret, ", %s",
496                                  perf_evsel__name(pos));
497
498         ret += scnprintf(buf + ret, size - ret, " }");
499
500         return ret;
501 }
502
503 /*
504  * The enable_on_exec/disabled value strategy:
505  *
506  *  1) For any type of traced program:
507  *    - all independent events and group leaders are disabled
508  *    - all group members are enabled
509  *
510  *     Group members are ruled by group leaders. They need to
511  *     be enabled, because the group scheduling relies on that.
512  *
513  *  2) For traced programs executed by perf:
514  *     - all independent events and group leaders have
515  *       enable_on_exec set
516  *     - we don't specifically enable or disable any event during
517  *       the record command
518  *
519  *     Independent events and group leaders are initially disabled
520  *     and get enabled by exec. Group members are ruled by group
521  *     leaders as stated in 1).
522  *
523  *  3) For traced programs attached by perf (pid/tid):
524  *     - we specifically enable or disable all events during
525  *       the record command
526  *
527  *     When attaching events to already running traced we
528  *     enable/disable events specifically, as there's no
529  *     initial traced exec call.
530  */
531 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts)
532 {
533         struct perf_evsel *leader = evsel->leader;
534         struct perf_event_attr *attr = &evsel->attr;
535         int track = !evsel->idx; /* only the first counter needs these */
536         bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
537
538         attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
539         attr->inherit       = !opts->no_inherit;
540
541         perf_evsel__set_sample_bit(evsel, IP);
542         perf_evsel__set_sample_bit(evsel, TID);
543
544         if (evsel->sample_read) {
545                 perf_evsel__set_sample_bit(evsel, READ);
546
547                 /*
548                  * We need ID even in case of single event, because
549                  * PERF_SAMPLE_READ process ID specific data.
550                  */
551                 perf_evsel__set_sample_id(evsel, false);
552
553                 /*
554                  * Apply group format only if we belong to group
555                  * with more than one members.
556                  */
557                 if (leader->nr_members > 1) {
558                         attr->read_format |= PERF_FORMAT_GROUP;
559                         attr->inherit = 0;
560                 }
561         }
562
563         /*
564          * We default some events to a 1 default interval. But keep
565          * it a weak assumption overridable by the user.
566          */
567         if (!attr->sample_period || (opts->user_freq != UINT_MAX &&
568                                      opts->user_interval != ULLONG_MAX)) {
569                 if (opts->freq) {
570                         perf_evsel__set_sample_bit(evsel, PERIOD);
571                         attr->freq              = 1;
572                         attr->sample_freq       = opts->freq;
573                 } else {
574                         attr->sample_period = opts->default_interval;
575                 }
576         }
577
578         /*
579          * Disable sampling for all group members other
580          * than leader in case leader 'leads' the sampling.
581          */
582         if ((leader != evsel) && leader->sample_read) {
583                 attr->sample_freq   = 0;
584                 attr->sample_period = 0;
585         }
586
587         if (opts->no_samples)
588                 attr->sample_freq = 0;
589
590         if (opts->inherit_stat)
591                 attr->inherit_stat = 1;
592
593         if (opts->sample_address) {
594                 perf_evsel__set_sample_bit(evsel, ADDR);
595                 attr->mmap_data = track;
596         }
597
598         if (opts->call_graph) {
599                 perf_evsel__set_sample_bit(evsel, CALLCHAIN);
600
601                 if (opts->call_graph == CALLCHAIN_DWARF) {
602                         perf_evsel__set_sample_bit(evsel, REGS_USER);
603                         perf_evsel__set_sample_bit(evsel, STACK_USER);
604                         attr->sample_regs_user = PERF_REGS_MASK;
605                         attr->sample_stack_user = opts->stack_dump_size;
606                         attr->exclude_callchain_user = 1;
607                 }
608         }
609
610         if (target__has_cpu(&opts->target))
611                 perf_evsel__set_sample_bit(evsel, CPU);
612
613         if (opts->period)
614                 perf_evsel__set_sample_bit(evsel, PERIOD);
615
616         if (!perf_missing_features.sample_id_all &&
617             (opts->sample_time || !opts->no_inherit ||
618              target__has_cpu(&opts->target) || per_cpu))
619                 perf_evsel__set_sample_bit(evsel, TIME);
620
621         if (opts->raw_samples) {
622                 perf_evsel__set_sample_bit(evsel, TIME);
623                 perf_evsel__set_sample_bit(evsel, RAW);
624                 perf_evsel__set_sample_bit(evsel, CPU);
625         }
626
627         if (opts->sample_address)
628                 perf_evsel__set_sample_bit(evsel, DATA_SRC);
629
630         if (opts->no_delay) {
631                 attr->watermark = 0;
632                 attr->wakeup_events = 1;
633         }
634         if (opts->branch_stack) {
635                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
636                 attr->branch_sample_type = opts->branch_stack;
637         }
638
639         if (opts->sample_weight)
640                 perf_evsel__set_sample_bit(evsel, WEIGHT);
641
642         attr->mmap  = track;
643         attr->comm  = track;
644
645         if (opts->sample_transaction)
646                 perf_evsel__set_sample_bit(evsel, TRANSACTION);
647
648         /*
649          * XXX see the function comment above
650          *
651          * Disabling only independent events or group leaders,
652          * keeping group members enabled.
653          */
654         if (perf_evsel__is_group_leader(evsel))
655                 attr->disabled = 1;
656
657         /*
658          * Setting enable_on_exec for independent events and
659          * group leaders for traced executed by perf.
660          */
661         if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel))
662                 attr->enable_on_exec = 1;
663 }
664
665 int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
666 {
667         int cpu, thread;
668         evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
669
670         if (evsel->fd) {
671                 for (cpu = 0; cpu < ncpus; cpu++) {
672                         for (thread = 0; thread < nthreads; thread++) {
673                                 FD(evsel, cpu, thread) = -1;
674                         }
675                 }
676         }
677
678         return evsel->fd != NULL ? 0 : -ENOMEM;
679 }
680
681 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
682                           int ioc,  void *arg)
683 {
684         int cpu, thread;
685
686         for (cpu = 0; cpu < ncpus; cpu++) {
687                 for (thread = 0; thread < nthreads; thread++) {
688                         int fd = FD(evsel, cpu, thread),
689                             err = ioctl(fd, ioc, arg);
690
691                         if (err)
692                                 return err;
693                 }
694         }
695
696         return 0;
697 }
698
699 int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
700                            const char *filter)
701 {
702         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
703                                      PERF_EVENT_IOC_SET_FILTER,
704                                      (void *)filter);
705 }
706
707 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads)
708 {
709         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
710                                      PERF_EVENT_IOC_ENABLE,
711                                      0);
712 }
713
714 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
715 {
716         evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
717         if (evsel->sample_id == NULL)
718                 return -ENOMEM;
719
720         evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
721         if (evsel->id == NULL) {
722                 xyarray__delete(evsel->sample_id);
723                 evsel->sample_id = NULL;
724                 return -ENOMEM;
725         }
726
727         return 0;
728 }
729
730 void perf_evsel__reset_counts(struct perf_evsel *evsel, int ncpus)
731 {
732         memset(evsel->counts, 0, (sizeof(*evsel->counts) +
733                                  (ncpus * sizeof(struct perf_counts_values))));
734 }
735
736 int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus)
737 {
738         evsel->counts = zalloc((sizeof(*evsel->counts) +
739                                 (ncpus * sizeof(struct perf_counts_values))));
740         return evsel->counts != NULL ? 0 : -ENOMEM;
741 }
742
743 void perf_evsel__free_fd(struct perf_evsel *evsel)
744 {
745         xyarray__delete(evsel->fd);
746         evsel->fd = NULL;
747 }
748
749 void perf_evsel__free_id(struct perf_evsel *evsel)
750 {
751         xyarray__delete(evsel->sample_id);
752         evsel->sample_id = NULL;
753         zfree(&evsel->id);
754 }
755
756 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
757 {
758         int cpu, thread;
759
760         for (cpu = 0; cpu < ncpus; cpu++)
761                 for (thread = 0; thread < nthreads; ++thread) {
762                         close(FD(evsel, cpu, thread));
763                         FD(evsel, cpu, thread) = -1;
764                 }
765 }
766
767 void perf_evsel__free_counts(struct perf_evsel *evsel)
768 {
769         free(evsel->counts);
770 }
771
772 void perf_evsel__exit(struct perf_evsel *evsel)
773 {
774         assert(list_empty(&evsel->node));
775         perf_evsel__free_fd(evsel);
776         perf_evsel__free_id(evsel);
777 }
778
779 void perf_evsel__delete(struct perf_evsel *evsel)
780 {
781         perf_evsel__exit(evsel);
782         close_cgroup(evsel->cgrp);
783         free(evsel->group_name);
784         if (evsel->tp_format)
785                 pevent_free_format(evsel->tp_format);
786         free(evsel->name);
787         free(evsel);
788 }
789
790 static inline void compute_deltas(struct perf_evsel *evsel,
791                                   int cpu,
792                                   struct perf_counts_values *count)
793 {
794         struct perf_counts_values tmp;
795
796         if (!evsel->prev_raw_counts)
797                 return;
798
799         if (cpu == -1) {
800                 tmp = evsel->prev_raw_counts->aggr;
801                 evsel->prev_raw_counts->aggr = *count;
802         } else {
803                 tmp = evsel->prev_raw_counts->cpu[cpu];
804                 evsel->prev_raw_counts->cpu[cpu] = *count;
805         }
806
807         count->val = count->val - tmp.val;
808         count->ena = count->ena - tmp.ena;
809         count->run = count->run - tmp.run;
810 }
811
812 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
813                               int cpu, int thread, bool scale)
814 {
815         struct perf_counts_values count;
816         size_t nv = scale ? 3 : 1;
817
818         if (FD(evsel, cpu, thread) < 0)
819                 return -EINVAL;
820
821         if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0)
822                 return -ENOMEM;
823
824         if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
825                 return -errno;
826
827         compute_deltas(evsel, cpu, &count);
828
829         if (scale) {
830                 if (count.run == 0)
831                         count.val = 0;
832                 else if (count.run < count.ena)
833                         count.val = (u64)((double)count.val * count.ena / count.run + 0.5);
834         } else
835                 count.ena = count.run = 0;
836
837         evsel->counts->cpu[cpu] = count;
838         return 0;
839 }
840
841 int __perf_evsel__read(struct perf_evsel *evsel,
842                        int ncpus, int nthreads, bool scale)
843 {
844         size_t nv = scale ? 3 : 1;
845         int cpu, thread;
846         struct perf_counts_values *aggr = &evsel->counts->aggr, count;
847
848         aggr->val = aggr->ena = aggr->run = 0;
849
850         for (cpu = 0; cpu < ncpus; cpu++) {
851                 for (thread = 0; thread < nthreads; thread++) {
852                         if (FD(evsel, cpu, thread) < 0)
853                                 continue;
854
855                         if (readn(FD(evsel, cpu, thread),
856                                   &count, nv * sizeof(u64)) < 0)
857                                 return -errno;
858
859                         aggr->val += count.val;
860                         if (scale) {
861                                 aggr->ena += count.ena;
862                                 aggr->run += count.run;
863                         }
864                 }
865         }
866
867         compute_deltas(evsel, -1, aggr);
868
869         evsel->counts->scaled = 0;
870         if (scale) {
871                 if (aggr->run == 0) {
872                         evsel->counts->scaled = -1;
873                         aggr->val = 0;
874                         return 0;
875                 }
876
877                 if (aggr->run < aggr->ena) {
878                         evsel->counts->scaled = 1;
879                         aggr->val = (u64)((double)aggr->val * aggr->ena / aggr->run + 0.5);
880                 }
881         } else
882                 aggr->ena = aggr->run = 0;
883
884         return 0;
885 }
886
887 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
888 {
889         struct perf_evsel *leader = evsel->leader;
890         int fd;
891
892         if (perf_evsel__is_group_leader(evsel))
893                 return -1;
894
895         /*
896          * Leader must be already processed/open,
897          * if not it's a bug.
898          */
899         BUG_ON(!leader->fd);
900
901         fd = FD(leader, cpu, thread);
902         BUG_ON(fd == -1);
903
904         return fd;
905 }
906
907 #define __PRINT_ATTR(fmt, cast, field)  \
908         fprintf(fp, "  %-19s "fmt"\n", #field, cast attr->field)
909
910 #define PRINT_ATTR_U32(field)  __PRINT_ATTR("%u" , , field)
911 #define PRINT_ATTR_X32(field)  __PRINT_ATTR("%#x", , field)
912 #define PRINT_ATTR_U64(field)  __PRINT_ATTR("%" PRIu64, (uint64_t), field)
913 #define PRINT_ATTR_X64(field)  __PRINT_ATTR("%#"PRIx64, (uint64_t), field)
914
915 #define PRINT_ATTR2N(name1, field1, name2, field2)      \
916         fprintf(fp, "  %-19s %u    %-19s %u\n",         \
917         name1, attr->field1, name2, attr->field2)
918
919 #define PRINT_ATTR2(field1, field2) \
920         PRINT_ATTR2N(#field1, field1, #field2, field2)
921
922 static size_t perf_event_attr__fprintf(struct perf_event_attr *attr, FILE *fp)
923 {
924         size_t ret = 0;
925
926         ret += fprintf(fp, "%.60s\n", graph_dotted_line);
927         ret += fprintf(fp, "perf_event_attr:\n");
928
929         ret += PRINT_ATTR_U32(type);
930         ret += PRINT_ATTR_U32(size);
931         ret += PRINT_ATTR_X64(config);
932         ret += PRINT_ATTR_U64(sample_period);
933         ret += PRINT_ATTR_U64(sample_freq);
934         ret += PRINT_ATTR_X64(sample_type);
935         ret += PRINT_ATTR_X64(read_format);
936
937         ret += PRINT_ATTR2(disabled, inherit);
938         ret += PRINT_ATTR2(pinned, exclusive);
939         ret += PRINT_ATTR2(exclude_user, exclude_kernel);
940         ret += PRINT_ATTR2(exclude_hv, exclude_idle);
941         ret += PRINT_ATTR2(mmap, comm);
942         ret += PRINT_ATTR2(freq, inherit_stat);
943         ret += PRINT_ATTR2(enable_on_exec, task);
944         ret += PRINT_ATTR2(watermark, precise_ip);
945         ret += PRINT_ATTR2(mmap_data, sample_id_all);
946         ret += PRINT_ATTR2(exclude_host, exclude_guest);
947         ret += PRINT_ATTR2N("excl.callchain_kern", exclude_callchain_kernel,
948                             "excl.callchain_user", exclude_callchain_user);
949         ret += PRINT_ATTR_U32(mmap2);
950
951         ret += PRINT_ATTR_U32(wakeup_events);
952         ret += PRINT_ATTR_U32(wakeup_watermark);
953         ret += PRINT_ATTR_X32(bp_type);
954         ret += PRINT_ATTR_X64(bp_addr);
955         ret += PRINT_ATTR_X64(config1);
956         ret += PRINT_ATTR_U64(bp_len);
957         ret += PRINT_ATTR_X64(config2);
958         ret += PRINT_ATTR_X64(branch_sample_type);
959         ret += PRINT_ATTR_X64(sample_regs_user);
960         ret += PRINT_ATTR_U32(sample_stack_user);
961
962         ret += fprintf(fp, "%.60s\n", graph_dotted_line);
963
964         return ret;
965 }
966
967 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
968                               struct thread_map *threads)
969 {
970         int cpu, thread;
971         unsigned long flags = 0;
972         int pid = -1, err;
973         enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
974
975         if (evsel->fd == NULL &&
976             perf_evsel__alloc_fd(evsel, cpus->nr, threads->nr) < 0)
977                 return -ENOMEM;
978
979         if (evsel->cgrp) {
980                 flags = PERF_FLAG_PID_CGROUP;
981                 pid = evsel->cgrp->fd;
982         }
983
984 fallback_missing_features:
985         if (perf_missing_features.mmap2)
986                 evsel->attr.mmap2 = 0;
987         if (perf_missing_features.exclude_guest)
988                 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
989 retry_sample_id:
990         if (perf_missing_features.sample_id_all)
991                 evsel->attr.sample_id_all = 0;
992
993         if (verbose >= 2)
994                 perf_event_attr__fprintf(&evsel->attr, stderr);
995
996         for (cpu = 0; cpu < cpus->nr; cpu++) {
997
998                 for (thread = 0; thread < threads->nr; thread++) {
999                         int group_fd;
1000
1001                         if (!evsel->cgrp)
1002                                 pid = threads->map[thread];
1003
1004                         group_fd = get_group_fd(evsel, cpu, thread);
1005 retry_open:
1006                         pr_debug2("perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
1007                                   pid, cpus->map[cpu], group_fd, flags);
1008
1009                         FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1010                                                                      pid,
1011                                                                      cpus->map[cpu],
1012                                                                      group_fd, flags);
1013                         if (FD(evsel, cpu, thread) < 0) {
1014                                 err = -errno;
1015                                 pr_debug2("perf_event_open failed, error %d\n",
1016                                           err);
1017                                 goto try_fallback;
1018                         }
1019                         set_rlimit = NO_CHANGE;
1020                 }
1021         }
1022
1023         return 0;
1024
1025 try_fallback:
1026         /*
1027          * perf stat needs between 5 and 22 fds per CPU. When we run out
1028          * of them try to increase the limits.
1029          */
1030         if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1031                 struct rlimit l;
1032                 int old_errno = errno;
1033
1034                 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1035                         if (set_rlimit == NO_CHANGE)
1036                                 l.rlim_cur = l.rlim_max;
1037                         else {
1038                                 l.rlim_cur = l.rlim_max + 1000;
1039                                 l.rlim_max = l.rlim_cur;
1040                         }
1041                         if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1042                                 set_rlimit++;
1043                                 errno = old_errno;
1044                                 goto retry_open;
1045                         }
1046                 }
1047                 errno = old_errno;
1048         }
1049
1050         if (err != -EINVAL || cpu > 0 || thread > 0)
1051                 goto out_close;
1052
1053         if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1054                 perf_missing_features.mmap2 = true;
1055                 goto fallback_missing_features;
1056         } else if (!perf_missing_features.exclude_guest &&
1057                    (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1058                 perf_missing_features.exclude_guest = true;
1059                 goto fallback_missing_features;
1060         } else if (!perf_missing_features.sample_id_all) {
1061                 perf_missing_features.sample_id_all = true;
1062                 goto retry_sample_id;
1063         }
1064
1065 out_close:
1066         do {
1067                 while (--thread >= 0) {
1068                         close(FD(evsel, cpu, thread));
1069                         FD(evsel, cpu, thread) = -1;
1070                 }
1071                 thread = threads->nr;
1072         } while (--cpu >= 0);
1073         return err;
1074 }
1075
1076 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1077 {
1078         if (evsel->fd == NULL)
1079                 return;
1080
1081         perf_evsel__close_fd(evsel, ncpus, nthreads);
1082         perf_evsel__free_fd(evsel);
1083         evsel->fd = NULL;
1084 }
1085
1086 static struct {
1087         struct cpu_map map;
1088         int cpus[1];
1089 } empty_cpu_map = {
1090         .map.nr = 1,
1091         .cpus   = { -1, },
1092 };
1093
1094 static struct {
1095         struct thread_map map;
1096         int threads[1];
1097 } empty_thread_map = {
1098         .map.nr  = 1,
1099         .threads = { -1, },
1100 };
1101
1102 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1103                      struct thread_map *threads)
1104 {
1105         if (cpus == NULL) {
1106                 /* Work around old compiler warnings about strict aliasing */
1107                 cpus = &empty_cpu_map.map;
1108         }
1109
1110         if (threads == NULL)
1111                 threads = &empty_thread_map.map;
1112
1113         return __perf_evsel__open(evsel, cpus, threads);
1114 }
1115
1116 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1117                              struct cpu_map *cpus)
1118 {
1119         return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1120 }
1121
1122 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1123                                 struct thread_map *threads)
1124 {
1125         return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1126 }
1127
1128 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1129                                        const union perf_event *event,
1130                                        struct perf_sample *sample)
1131 {
1132         u64 type = evsel->attr.sample_type;
1133         const u64 *array = event->sample.array;
1134         bool swapped = evsel->needs_swap;
1135         union u64_swap u;
1136
1137         array += ((event->header.size -
1138                    sizeof(event->header)) / sizeof(u64)) - 1;
1139
1140         if (type & PERF_SAMPLE_IDENTIFIER) {
1141                 sample->id = *array;
1142                 array--;
1143         }
1144
1145         if (type & PERF_SAMPLE_CPU) {
1146                 u.val64 = *array;
1147                 if (swapped) {
1148                         /* undo swap of u64, then swap on individual u32s */
1149                         u.val64 = bswap_64(u.val64);
1150                         u.val32[0] = bswap_32(u.val32[0]);
1151                 }
1152
1153                 sample->cpu = u.val32[0];
1154                 array--;
1155         }
1156
1157         if (type & PERF_SAMPLE_STREAM_ID) {
1158                 sample->stream_id = *array;
1159                 array--;
1160         }
1161
1162         if (type & PERF_SAMPLE_ID) {
1163                 sample->id = *array;
1164                 array--;
1165         }
1166
1167         if (type & PERF_SAMPLE_TIME) {
1168                 sample->time = *array;
1169                 array--;
1170         }
1171
1172         if (type & PERF_SAMPLE_TID) {
1173                 u.val64 = *array;
1174                 if (swapped) {
1175                         /* undo swap of u64, then swap on individual u32s */
1176                         u.val64 = bswap_64(u.val64);
1177                         u.val32[0] = bswap_32(u.val32[0]);
1178                         u.val32[1] = bswap_32(u.val32[1]);
1179                 }
1180
1181                 sample->pid = u.val32[0];
1182                 sample->tid = u.val32[1];
1183                 array--;
1184         }
1185
1186         return 0;
1187 }
1188
1189 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1190                             u64 size)
1191 {
1192         return size > max_size || offset + size > endp;
1193 }
1194
1195 #define OVERFLOW_CHECK(offset, size, max_size)                          \
1196         do {                                                            \
1197                 if (overflow(endp, (max_size), (offset), (size)))       \
1198                         return -EFAULT;                                 \
1199         } while (0)
1200
1201 #define OVERFLOW_CHECK_u64(offset) \
1202         OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1203
1204 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1205                              struct perf_sample *data)
1206 {
1207         u64 type = evsel->attr.sample_type;
1208         bool swapped = evsel->needs_swap;
1209         const u64 *array;
1210         u16 max_size = event->header.size;
1211         const void *endp = (void *)event + max_size;
1212         u64 sz;
1213
1214         /*
1215          * used for cross-endian analysis. See git commit 65014ab3
1216          * for why this goofiness is needed.
1217          */
1218         union u64_swap u;
1219
1220         memset(data, 0, sizeof(*data));
1221         data->cpu = data->pid = data->tid = -1;
1222         data->stream_id = data->id = data->time = -1ULL;
1223         data->period = 1;
1224         data->weight = 0;
1225
1226         if (event->header.type != PERF_RECORD_SAMPLE) {
1227                 if (!evsel->attr.sample_id_all)
1228                         return 0;
1229                 return perf_evsel__parse_id_sample(evsel, event, data);
1230         }
1231
1232         array = event->sample.array;
1233
1234         /*
1235          * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1236          * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1237          * check the format does not go past the end of the event.
1238          */
1239         if (evsel->sample_size + sizeof(event->header) > event->header.size)
1240                 return -EFAULT;
1241
1242         data->id = -1ULL;
1243         if (type & PERF_SAMPLE_IDENTIFIER) {
1244                 data->id = *array;
1245                 array++;
1246         }
1247
1248         if (type & PERF_SAMPLE_IP) {
1249                 data->ip = *array;
1250                 array++;
1251         }
1252
1253         if (type & PERF_SAMPLE_TID) {
1254                 u.val64 = *array;
1255                 if (swapped) {
1256                         /* undo swap of u64, then swap on individual u32s */
1257                         u.val64 = bswap_64(u.val64);
1258                         u.val32[0] = bswap_32(u.val32[0]);
1259                         u.val32[1] = bswap_32(u.val32[1]);
1260                 }
1261
1262                 data->pid = u.val32[0];
1263                 data->tid = u.val32[1];
1264                 array++;
1265         }
1266
1267         if (type & PERF_SAMPLE_TIME) {
1268                 data->time = *array;
1269                 array++;
1270         }
1271
1272         data->addr = 0;
1273         if (type & PERF_SAMPLE_ADDR) {
1274                 data->addr = *array;
1275                 array++;
1276         }
1277
1278         if (type & PERF_SAMPLE_ID) {
1279                 data->id = *array;
1280                 array++;
1281         }
1282
1283         if (type & PERF_SAMPLE_STREAM_ID) {
1284                 data->stream_id = *array;
1285                 array++;
1286         }
1287
1288         if (type & PERF_SAMPLE_CPU) {
1289
1290                 u.val64 = *array;
1291                 if (swapped) {
1292                         /* undo swap of u64, then swap on individual u32s */
1293                         u.val64 = bswap_64(u.val64);
1294                         u.val32[0] = bswap_32(u.val32[0]);
1295                 }
1296
1297                 data->cpu = u.val32[0];
1298                 array++;
1299         }
1300
1301         if (type & PERF_SAMPLE_PERIOD) {
1302                 data->period = *array;
1303                 array++;
1304         }
1305
1306         if (type & PERF_SAMPLE_READ) {
1307                 u64 read_format = evsel->attr.read_format;
1308
1309                 OVERFLOW_CHECK_u64(array);
1310                 if (read_format & PERF_FORMAT_GROUP)
1311                         data->read.group.nr = *array;
1312                 else
1313                         data->read.one.value = *array;
1314
1315                 array++;
1316
1317                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1318                         OVERFLOW_CHECK_u64(array);
1319                         data->read.time_enabled = *array;
1320                         array++;
1321                 }
1322
1323                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1324                         OVERFLOW_CHECK_u64(array);
1325                         data->read.time_running = *array;
1326                         array++;
1327                 }
1328
1329                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1330                 if (read_format & PERF_FORMAT_GROUP) {
1331                         const u64 max_group_nr = UINT64_MAX /
1332                                         sizeof(struct sample_read_value);
1333
1334                         if (data->read.group.nr > max_group_nr)
1335                                 return -EFAULT;
1336                         sz = data->read.group.nr *
1337                              sizeof(struct sample_read_value);
1338                         OVERFLOW_CHECK(array, sz, max_size);
1339                         data->read.group.values =
1340                                         (struct sample_read_value *)array;
1341                         array = (void *)array + sz;
1342                 } else {
1343                         OVERFLOW_CHECK_u64(array);
1344                         data->read.one.id = *array;
1345                         array++;
1346                 }
1347         }
1348
1349         if (type & PERF_SAMPLE_CALLCHAIN) {
1350                 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1351
1352                 OVERFLOW_CHECK_u64(array);
1353                 data->callchain = (struct ip_callchain *)array++;
1354                 if (data->callchain->nr > max_callchain_nr)
1355                         return -EFAULT;
1356                 sz = data->callchain->nr * sizeof(u64);
1357                 OVERFLOW_CHECK(array, sz, max_size);
1358                 array = (void *)array + sz;
1359         }
1360
1361         if (type & PERF_SAMPLE_RAW) {
1362                 OVERFLOW_CHECK_u64(array);
1363                 u.val64 = *array;
1364                 if (WARN_ONCE(swapped,
1365                               "Endianness of raw data not corrected!\n")) {
1366                         /* undo swap of u64, then swap on individual u32s */
1367                         u.val64 = bswap_64(u.val64);
1368                         u.val32[0] = bswap_32(u.val32[0]);
1369                         u.val32[1] = bswap_32(u.val32[1]);
1370                 }
1371                 data->raw_size = u.val32[0];
1372                 array = (void *)array + sizeof(u32);
1373
1374                 OVERFLOW_CHECK(array, data->raw_size, max_size);
1375                 data->raw_data = (void *)array;
1376                 array = (void *)array + data->raw_size;
1377         }
1378
1379         if (type & PERF_SAMPLE_BRANCH_STACK) {
1380                 const u64 max_branch_nr = UINT64_MAX /
1381                                           sizeof(struct branch_entry);
1382
1383                 OVERFLOW_CHECK_u64(array);
1384                 data->branch_stack = (struct branch_stack *)array++;
1385
1386                 if (data->branch_stack->nr > max_branch_nr)
1387                         return -EFAULT;
1388                 sz = data->branch_stack->nr * sizeof(struct branch_entry);
1389                 OVERFLOW_CHECK(array, sz, max_size);
1390                 array = (void *)array + sz;
1391         }
1392
1393         if (type & PERF_SAMPLE_REGS_USER) {
1394                 OVERFLOW_CHECK_u64(array);
1395                 data->user_regs.abi = *array;
1396                 array++;
1397
1398                 if (data->user_regs.abi) {
1399                         u64 regs_user = evsel->attr.sample_regs_user;
1400
1401                         sz = hweight_long(regs_user) * sizeof(u64);
1402                         OVERFLOW_CHECK(array, sz, max_size);
1403                         data->user_regs.regs = (u64 *)array;
1404                         array = (void *)array + sz;
1405                 }
1406         }
1407
1408         if (type & PERF_SAMPLE_STACK_USER) {
1409                 OVERFLOW_CHECK_u64(array);
1410                 sz = *array++;
1411
1412                 data->user_stack.offset = ((char *)(array - 1)
1413                                           - (char *) event);
1414
1415                 if (!sz) {
1416                         data->user_stack.size = 0;
1417                 } else {
1418                         OVERFLOW_CHECK(array, sz, max_size);
1419                         data->user_stack.data = (char *)array;
1420                         array = (void *)array + sz;
1421                         OVERFLOW_CHECK_u64(array);
1422                         data->user_stack.size = *array++;
1423                         if (WARN_ONCE(data->user_stack.size > sz,
1424                                       "user stack dump failure\n"))
1425                                 return -EFAULT;
1426                 }
1427         }
1428
1429         data->weight = 0;
1430         if (type & PERF_SAMPLE_WEIGHT) {
1431                 OVERFLOW_CHECK_u64(array);
1432                 data->weight = *array;
1433                 array++;
1434         }
1435
1436         data->data_src = PERF_MEM_DATA_SRC_NONE;
1437         if (type & PERF_SAMPLE_DATA_SRC) {
1438                 OVERFLOW_CHECK_u64(array);
1439                 data->data_src = *array;
1440                 array++;
1441         }
1442
1443         data->transaction = 0;
1444         if (type & PERF_SAMPLE_TRANSACTION) {
1445                 OVERFLOW_CHECK_u64(array);
1446                 data->transaction = *array;
1447                 array++;
1448         }
1449
1450         return 0;
1451 }
1452
1453 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1454                                      u64 sample_regs_user, u64 read_format)
1455 {
1456         size_t sz, result = sizeof(struct sample_event);
1457
1458         if (type & PERF_SAMPLE_IDENTIFIER)
1459                 result += sizeof(u64);
1460
1461         if (type & PERF_SAMPLE_IP)
1462                 result += sizeof(u64);
1463
1464         if (type & PERF_SAMPLE_TID)
1465                 result += sizeof(u64);
1466
1467         if (type & PERF_SAMPLE_TIME)
1468                 result += sizeof(u64);
1469
1470         if (type & PERF_SAMPLE_ADDR)
1471                 result += sizeof(u64);
1472
1473         if (type & PERF_SAMPLE_ID)
1474                 result += sizeof(u64);
1475
1476         if (type & PERF_SAMPLE_STREAM_ID)
1477                 result += sizeof(u64);
1478
1479         if (type & PERF_SAMPLE_CPU)
1480                 result += sizeof(u64);
1481
1482         if (type & PERF_SAMPLE_PERIOD)
1483                 result += sizeof(u64);
1484
1485         if (type & PERF_SAMPLE_READ) {
1486                 result += sizeof(u64);
1487                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1488                         result += sizeof(u64);
1489                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1490                         result += sizeof(u64);
1491                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1492                 if (read_format & PERF_FORMAT_GROUP) {
1493                         sz = sample->read.group.nr *
1494                              sizeof(struct sample_read_value);
1495                         result += sz;
1496                 } else {
1497                         result += sizeof(u64);
1498                 }
1499         }
1500
1501         if (type & PERF_SAMPLE_CALLCHAIN) {
1502                 sz = (sample->callchain->nr + 1) * sizeof(u64);
1503                 result += sz;
1504         }
1505
1506         if (type & PERF_SAMPLE_RAW) {
1507                 result += sizeof(u32);
1508                 result += sample->raw_size;
1509         }
1510
1511         if (type & PERF_SAMPLE_BRANCH_STACK) {
1512                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1513                 sz += sizeof(u64);
1514                 result += sz;
1515         }
1516
1517         if (type & PERF_SAMPLE_REGS_USER) {
1518                 if (sample->user_regs.abi) {
1519                         result += sizeof(u64);
1520                         sz = hweight_long(sample_regs_user) * sizeof(u64);
1521                         result += sz;
1522                 } else {
1523                         result += sizeof(u64);
1524                 }
1525         }
1526
1527         if (type & PERF_SAMPLE_STACK_USER) {
1528                 sz = sample->user_stack.size;
1529                 result += sizeof(u64);
1530                 if (sz) {
1531                         result += sz;
1532                         result += sizeof(u64);
1533                 }
1534         }
1535
1536         if (type & PERF_SAMPLE_WEIGHT)
1537                 result += sizeof(u64);
1538
1539         if (type & PERF_SAMPLE_DATA_SRC)
1540                 result += sizeof(u64);
1541
1542         if (type & PERF_SAMPLE_TRANSACTION)
1543                 result += sizeof(u64);
1544
1545         return result;
1546 }
1547
1548 int perf_event__synthesize_sample(union perf_event *event, u64 type,
1549                                   u64 sample_regs_user, u64 read_format,
1550                                   const struct perf_sample *sample,
1551                                   bool swapped)
1552 {
1553         u64 *array;
1554         size_t sz;
1555         /*
1556          * used for cross-endian analysis. See git commit 65014ab3
1557          * for why this goofiness is needed.
1558          */
1559         union u64_swap u;
1560
1561         array = event->sample.array;
1562
1563         if (type & PERF_SAMPLE_IDENTIFIER) {
1564                 *array = sample->id;
1565                 array++;
1566         }
1567
1568         if (type & PERF_SAMPLE_IP) {
1569                 *array = sample->ip;
1570                 array++;
1571         }
1572
1573         if (type & PERF_SAMPLE_TID) {
1574                 u.val32[0] = sample->pid;
1575                 u.val32[1] = sample->tid;
1576                 if (swapped) {
1577                         /*
1578                          * Inverse of what is done in perf_evsel__parse_sample
1579                          */
1580                         u.val32[0] = bswap_32(u.val32[0]);
1581                         u.val32[1] = bswap_32(u.val32[1]);
1582                         u.val64 = bswap_64(u.val64);
1583                 }
1584
1585                 *array = u.val64;
1586                 array++;
1587         }
1588
1589         if (type & PERF_SAMPLE_TIME) {
1590                 *array = sample->time;
1591                 array++;
1592         }
1593
1594         if (type & PERF_SAMPLE_ADDR) {
1595                 *array = sample->addr;
1596                 array++;
1597         }
1598
1599         if (type & PERF_SAMPLE_ID) {
1600                 *array = sample->id;
1601                 array++;
1602         }
1603
1604         if (type & PERF_SAMPLE_STREAM_ID) {
1605                 *array = sample->stream_id;
1606                 array++;
1607         }
1608
1609         if (type & PERF_SAMPLE_CPU) {
1610                 u.val32[0] = sample->cpu;
1611                 if (swapped) {
1612                         /*
1613                          * Inverse of what is done in perf_evsel__parse_sample
1614                          */
1615                         u.val32[0] = bswap_32(u.val32[0]);
1616                         u.val64 = bswap_64(u.val64);
1617                 }
1618                 *array = u.val64;
1619                 array++;
1620         }
1621
1622         if (type & PERF_SAMPLE_PERIOD) {
1623                 *array = sample->period;
1624                 array++;
1625         }
1626
1627         if (type & PERF_SAMPLE_READ) {
1628                 if (read_format & PERF_FORMAT_GROUP)
1629                         *array = sample->read.group.nr;
1630                 else
1631                         *array = sample->read.one.value;
1632                 array++;
1633
1634                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1635                         *array = sample->read.time_enabled;
1636                         array++;
1637                 }
1638
1639                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1640                         *array = sample->read.time_running;
1641                         array++;
1642                 }
1643
1644                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1645                 if (read_format & PERF_FORMAT_GROUP) {
1646                         sz = sample->read.group.nr *
1647                              sizeof(struct sample_read_value);
1648                         memcpy(array, sample->read.group.values, sz);
1649                         array = (void *)array + sz;
1650                 } else {
1651                         *array = sample->read.one.id;
1652                         array++;
1653                 }
1654         }
1655
1656         if (type & PERF_SAMPLE_CALLCHAIN) {
1657                 sz = (sample->callchain->nr + 1) * sizeof(u64);
1658                 memcpy(array, sample->callchain, sz);
1659                 array = (void *)array + sz;
1660         }
1661
1662         if (type & PERF_SAMPLE_RAW) {
1663                 u.val32[0] = sample->raw_size;
1664                 if (WARN_ONCE(swapped,
1665                               "Endianness of raw data not corrected!\n")) {
1666                         /*
1667                          * Inverse of what is done in perf_evsel__parse_sample
1668                          */
1669                         u.val32[0] = bswap_32(u.val32[0]);
1670                         u.val32[1] = bswap_32(u.val32[1]);
1671                         u.val64 = bswap_64(u.val64);
1672                 }
1673                 *array = u.val64;
1674                 array = (void *)array + sizeof(u32);
1675
1676                 memcpy(array, sample->raw_data, sample->raw_size);
1677                 array = (void *)array + sample->raw_size;
1678         }
1679
1680         if (type & PERF_SAMPLE_BRANCH_STACK) {
1681                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1682                 sz += sizeof(u64);
1683                 memcpy(array, sample->branch_stack, sz);
1684                 array = (void *)array + sz;
1685         }
1686
1687         if (type & PERF_SAMPLE_REGS_USER) {
1688                 if (sample->user_regs.abi) {
1689                         *array++ = sample->user_regs.abi;
1690                         sz = hweight_long(sample_regs_user) * sizeof(u64);
1691                         memcpy(array, sample->user_regs.regs, sz);
1692                         array = (void *)array + sz;
1693                 } else {
1694                         *array++ = 0;
1695                 }
1696         }
1697
1698         if (type & PERF_SAMPLE_STACK_USER) {
1699                 sz = sample->user_stack.size;
1700                 *array++ = sz;
1701                 if (sz) {
1702                         memcpy(array, sample->user_stack.data, sz);
1703                         array = (void *)array + sz;
1704                         *array++ = sz;
1705                 }
1706         }
1707
1708         if (type & PERF_SAMPLE_WEIGHT) {
1709                 *array = sample->weight;
1710                 array++;
1711         }
1712
1713         if (type & PERF_SAMPLE_DATA_SRC) {
1714                 *array = sample->data_src;
1715                 array++;
1716         }
1717
1718         if (type & PERF_SAMPLE_TRANSACTION) {
1719                 *array = sample->transaction;
1720                 array++;
1721         }
1722
1723         return 0;
1724 }
1725
1726 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
1727 {
1728         return pevent_find_field(evsel->tp_format, name);
1729 }
1730
1731 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
1732                          const char *name)
1733 {
1734         struct format_field *field = perf_evsel__field(evsel, name);
1735         int offset;
1736
1737         if (!field)
1738                 return NULL;
1739
1740         offset = field->offset;
1741
1742         if (field->flags & FIELD_IS_DYNAMIC) {
1743                 offset = *(int *)(sample->raw_data + field->offset);
1744                 offset &= 0xffff;
1745         }
1746
1747         return sample->raw_data + offset;
1748 }
1749
1750 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
1751                        const char *name)
1752 {
1753         struct format_field *field = perf_evsel__field(evsel, name);
1754         void *ptr;
1755         u64 value;
1756
1757         if (!field)
1758                 return 0;
1759
1760         ptr = sample->raw_data + field->offset;
1761
1762         switch (field->size) {
1763         case 1:
1764                 return *(u8 *)ptr;
1765         case 2:
1766                 value = *(u16 *)ptr;
1767                 break;
1768         case 4:
1769                 value = *(u32 *)ptr;
1770                 break;
1771         case 8:
1772                 value = *(u64 *)ptr;
1773                 break;
1774         default:
1775                 return 0;
1776         }
1777
1778         if (!evsel->needs_swap)
1779                 return value;
1780
1781         switch (field->size) {
1782         case 2:
1783                 return bswap_16(value);
1784         case 4:
1785                 return bswap_32(value);
1786         case 8:
1787                 return bswap_64(value);
1788         default:
1789                 return 0;
1790         }
1791
1792         return 0;
1793 }
1794
1795 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
1796 {
1797         va_list args;
1798         int ret = 0;
1799
1800         if (!*first) {
1801                 ret += fprintf(fp, ",");
1802         } else {
1803                 ret += fprintf(fp, ":");
1804                 *first = false;
1805         }
1806
1807         va_start(args, fmt);
1808         ret += vfprintf(fp, fmt, args);
1809         va_end(args);
1810         return ret;
1811 }
1812
1813 static int __if_fprintf(FILE *fp, bool *first, const char *field, u64 value)
1814 {
1815         if (value == 0)
1816                 return 0;
1817
1818         return comma_fprintf(fp, first, " %s: %" PRIu64, field, value);
1819 }
1820
1821 #define if_print(field) printed += __if_fprintf(fp, &first, #field, evsel->attr.field)
1822
1823 struct bit_names {
1824         int bit;
1825         const char *name;
1826 };
1827
1828 static int bits__fprintf(FILE *fp, const char *field, u64 value,
1829                          struct bit_names *bits, bool *first)
1830 {
1831         int i = 0, printed = comma_fprintf(fp, first, " %s: ", field);
1832         bool first_bit = true;
1833
1834         do {
1835                 if (value & bits[i].bit) {
1836                         printed += fprintf(fp, "%s%s", first_bit ? "" : "|", bits[i].name);
1837                         first_bit = false;
1838                 }
1839         } while (bits[++i].name != NULL);
1840
1841         return printed;
1842 }
1843
1844 static int sample_type__fprintf(FILE *fp, bool *first, u64 value)
1845 {
1846 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1847         struct bit_names bits[] = {
1848                 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1849                 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1850                 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1851                 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1852                 bit_name(IDENTIFIER),
1853                 { .name = NULL, }
1854         };
1855 #undef bit_name
1856         return bits__fprintf(fp, "sample_type", value, bits, first);
1857 }
1858
1859 static int read_format__fprintf(FILE *fp, bool *first, u64 value)
1860 {
1861 #define bit_name(n) { PERF_FORMAT_##n, #n }
1862         struct bit_names bits[] = {
1863                 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1864                 bit_name(ID), bit_name(GROUP),
1865                 { .name = NULL, }
1866         };
1867 #undef bit_name
1868         return bits__fprintf(fp, "read_format", value, bits, first);
1869 }
1870
1871 int perf_evsel__fprintf(struct perf_evsel *evsel,
1872                         struct perf_attr_details *details, FILE *fp)
1873 {
1874         bool first = true;
1875         int printed = 0;
1876
1877         if (details->event_group) {
1878                 struct perf_evsel *pos;
1879
1880                 if (!perf_evsel__is_group_leader(evsel))
1881                         return 0;
1882
1883                 if (evsel->nr_members > 1)
1884                         printed += fprintf(fp, "%s{", evsel->group_name ?: "");
1885
1886                 printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1887                 for_each_group_member(pos, evsel)
1888                         printed += fprintf(fp, ",%s", perf_evsel__name(pos));
1889
1890                 if (evsel->nr_members > 1)
1891                         printed += fprintf(fp, "}");
1892                 goto out;
1893         }
1894
1895         printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1896
1897         if (details->verbose || details->freq) {
1898                 printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64,
1899                                          (u64)evsel->attr.sample_freq);
1900         }
1901
1902         if (details->verbose) {
1903                 if_print(type);
1904                 if_print(config);
1905                 if_print(config1);
1906                 if_print(config2);
1907                 if_print(size);
1908                 printed += sample_type__fprintf(fp, &first, evsel->attr.sample_type);
1909                 if (evsel->attr.read_format)
1910                         printed += read_format__fprintf(fp, &first, evsel->attr.read_format);
1911                 if_print(disabled);
1912                 if_print(inherit);
1913                 if_print(pinned);
1914                 if_print(exclusive);
1915                 if_print(exclude_user);
1916                 if_print(exclude_kernel);
1917                 if_print(exclude_hv);
1918                 if_print(exclude_idle);
1919                 if_print(mmap);
1920                 if_print(mmap2);
1921                 if_print(comm);
1922                 if_print(freq);
1923                 if_print(inherit_stat);
1924                 if_print(enable_on_exec);
1925                 if_print(task);
1926                 if_print(watermark);
1927                 if_print(precise_ip);
1928                 if_print(mmap_data);
1929                 if_print(sample_id_all);
1930                 if_print(exclude_host);
1931                 if_print(exclude_guest);
1932                 if_print(__reserved_1);
1933                 if_print(wakeup_events);
1934                 if_print(bp_type);
1935                 if_print(branch_sample_type);
1936         }
1937 out:
1938         fputc('\n', fp);
1939         return ++printed;
1940 }
1941
1942 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
1943                           char *msg, size_t msgsize)
1944 {
1945         if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
1946             evsel->attr.type   == PERF_TYPE_HARDWARE &&
1947             evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
1948                 /*
1949                  * If it's cycles then fall back to hrtimer based
1950                  * cpu-clock-tick sw counter, which is always available even if
1951                  * no PMU support.
1952                  *
1953                  * PPC returns ENXIO until 2.6.37 (behavior changed with commit
1954                  * b0a873e).
1955                  */
1956                 scnprintf(msg, msgsize, "%s",
1957 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
1958
1959                 evsel->attr.type   = PERF_TYPE_SOFTWARE;
1960                 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
1961
1962                 zfree(&evsel->name);
1963                 return true;
1964         }
1965
1966         return false;
1967 }
1968
1969 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
1970                               int err, char *msg, size_t size)
1971 {
1972         switch (err) {
1973         case EPERM:
1974         case EACCES:
1975                 return scnprintf(msg, size,
1976                  "You may not have permission to collect %sstats.\n"
1977                  "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
1978                  " -1 - Not paranoid at all\n"
1979                  "  0 - Disallow raw tracepoint access for unpriv\n"
1980                  "  1 - Disallow cpu events for unpriv\n"
1981                  "  2 - Disallow kernel profiling for unpriv",
1982                                  target->system_wide ? "system-wide " : "");
1983         case ENOENT:
1984                 return scnprintf(msg, size, "The %s event is not supported.",
1985                                  perf_evsel__name(evsel));
1986         case EMFILE:
1987                 return scnprintf(msg, size, "%s",
1988                          "Too many events are opened.\n"
1989                          "Try again after reducing the number of events.");
1990         case ENODEV:
1991                 if (target->cpu_list)
1992                         return scnprintf(msg, size, "%s",
1993          "No such device - did you specify an out-of-range profile CPU?\n");
1994                 break;
1995         case EOPNOTSUPP:
1996                 if (evsel->attr.precise_ip)
1997                         return scnprintf(msg, size, "%s",
1998         "\'precise\' request may not be supported. Try removing 'p' modifier.");
1999 #if defined(__i386__) || defined(__x86_64__)
2000                 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2001                         return scnprintf(msg, size, "%s",
2002         "No hardware sampling interrupt available.\n"
2003         "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2004 #endif
2005                 break;
2006         default:
2007                 break;
2008         }
2009
2010         return scnprintf(msg, size,
2011         "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).  \n"
2012         "/bin/dmesg may provide additional information.\n"
2013         "No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2014                          err, strerror(err), perf_evsel__name(evsel));
2015 }