]> Pileus Git - ~andy/linux/blob - tools/perf/builtin-sched.c
perf sched: Fix for getting task's execution time
[~andy/linux] / tools / perf / builtin-sched.c
1 #include "builtin.h"
2 #include "perf.h"
3
4 #include "util/util.h"
5 #include "util/cache.h"
6 #include "util/symbol.h"
7 #include "util/thread.h"
8 #include "util/header.h"
9
10 #include "util/parse-options.h"
11 #include "util/trace-event.h"
12
13 #include "util/debug.h"
14 #include "util/data_map.h"
15
16 #include <sys/prctl.h>
17
18 #include <semaphore.h>
19 #include <pthread.h>
20 #include <math.h>
21
22 static char                     const *input_name = "perf.data";
23
24 static struct perf_header       *header;
25 static u64                      sample_type;
26
27 static char                     default_sort_order[] = "avg, max, switch, runtime";
28 static char                     *sort_order = default_sort_order;
29
30 static int                      profile_cpu = -1;
31
32 #define PR_SET_NAME             15               /* Set process name */
33 #define MAX_CPUS                4096
34
35 static u64                      run_measurement_overhead;
36 static u64                      sleep_measurement_overhead;
37
38 #define COMM_LEN                20
39 #define SYM_LEN                 129
40
41 #define MAX_PID                 65536
42
43 static unsigned long            nr_tasks;
44
45 struct sched_atom;
46
47 struct task_desc {
48         unsigned long           nr;
49         unsigned long           pid;
50         char                    comm[COMM_LEN];
51
52         unsigned long           nr_events;
53         unsigned long           curr_event;
54         struct sched_atom       **atoms;
55
56         pthread_t               thread;
57         sem_t                   sleep_sem;
58
59         sem_t                   ready_for_work;
60         sem_t                   work_done_sem;
61
62         u64                     cpu_usage;
63 };
64
65 enum sched_event_type {
66         SCHED_EVENT_RUN,
67         SCHED_EVENT_SLEEP,
68         SCHED_EVENT_WAKEUP,
69         SCHED_EVENT_MIGRATION,
70 };
71
72 struct sched_atom {
73         enum sched_event_type   type;
74         u64                     timestamp;
75         u64                     duration;
76         unsigned long           nr;
77         int                     specific_wait;
78         sem_t                   *wait_sem;
79         struct task_desc        *wakee;
80 };
81
82 static struct task_desc         *pid_to_task[MAX_PID];
83
84 static struct task_desc         **tasks;
85
86 static pthread_mutex_t          start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
87 static u64                      start_time;
88
89 static pthread_mutex_t          work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
90
91 static unsigned long            nr_run_events;
92 static unsigned long            nr_sleep_events;
93 static unsigned long            nr_wakeup_events;
94
95 static unsigned long            nr_sleep_corrections;
96 static unsigned long            nr_run_events_optimized;
97
98 static unsigned long            targetless_wakeups;
99 static unsigned long            multitarget_wakeups;
100
101 static u64                      cpu_usage;
102 static u64                      runavg_cpu_usage;
103 static u64                      parent_cpu_usage;
104 static u64                      runavg_parent_cpu_usage;
105
106 static unsigned long            nr_runs;
107 static u64                      sum_runtime;
108 static u64                      sum_fluct;
109 static u64                      run_avg;
110
111 static unsigned long            replay_repeat = 10;
112 static unsigned long            nr_timestamps;
113 static unsigned long            nr_unordered_timestamps;
114 static unsigned long            nr_state_machine_bugs;
115 static unsigned long            nr_context_switch_bugs;
116 static unsigned long            nr_events;
117 static unsigned long            nr_lost_chunks;
118 static unsigned long            nr_lost_events;
119
120 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
121
122 enum thread_state {
123         THREAD_SLEEPING = 0,
124         THREAD_WAIT_CPU,
125         THREAD_SCHED_IN,
126         THREAD_IGNORE
127 };
128
129 struct work_atom {
130         struct list_head        list;
131         enum thread_state       state;
132         u64                     sched_out_time;
133         u64                     wake_up_time;
134         u64                     sched_in_time;
135         u64                     runtime;
136 };
137
138 struct work_atoms {
139         struct list_head        work_list;
140         struct thread           *thread;
141         struct rb_node          node;
142         u64                     max_lat;
143         u64                     total_lat;
144         u64                     nb_atoms;
145         u64                     total_runtime;
146 };
147
148 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
149
150 static struct rb_root           atom_root, sorted_atom_root;
151
152 static u64                      all_runtime;
153 static u64                      all_count;
154
155
156 static u64 get_nsecs(void)
157 {
158         struct timespec ts;
159
160         clock_gettime(CLOCK_MONOTONIC, &ts);
161
162         return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
163 }
164
165 static void burn_nsecs(u64 nsecs)
166 {
167         u64 T0 = get_nsecs(), T1;
168
169         do {
170                 T1 = get_nsecs();
171         } while (T1 + run_measurement_overhead < T0 + nsecs);
172 }
173
174 static void sleep_nsecs(u64 nsecs)
175 {
176         struct timespec ts;
177
178         ts.tv_nsec = nsecs % 999999999;
179         ts.tv_sec = nsecs / 999999999;
180
181         nanosleep(&ts, NULL);
182 }
183
184 static void calibrate_run_measurement_overhead(void)
185 {
186         u64 T0, T1, delta, min_delta = 1000000000ULL;
187         int i;
188
189         for (i = 0; i < 10; i++) {
190                 T0 = get_nsecs();
191                 burn_nsecs(0);
192                 T1 = get_nsecs();
193                 delta = T1-T0;
194                 min_delta = min(min_delta, delta);
195         }
196         run_measurement_overhead = min_delta;
197
198         printf("run measurement overhead: %Ld nsecs\n", min_delta);
199 }
200
201 static void calibrate_sleep_measurement_overhead(void)
202 {
203         u64 T0, T1, delta, min_delta = 1000000000ULL;
204         int i;
205
206         for (i = 0; i < 10; i++) {
207                 T0 = get_nsecs();
208                 sleep_nsecs(10000);
209                 T1 = get_nsecs();
210                 delta = T1-T0;
211                 min_delta = min(min_delta, delta);
212         }
213         min_delta -= 10000;
214         sleep_measurement_overhead = min_delta;
215
216         printf("sleep measurement overhead: %Ld nsecs\n", min_delta);
217 }
218
219 static struct sched_atom *
220 get_new_event(struct task_desc *task, u64 timestamp)
221 {
222         struct sched_atom *event = zalloc(sizeof(*event));
223         unsigned long idx = task->nr_events;
224         size_t size;
225
226         event->timestamp = timestamp;
227         event->nr = idx;
228
229         task->nr_events++;
230         size = sizeof(struct sched_atom *) * task->nr_events;
231         task->atoms = realloc(task->atoms, size);
232         BUG_ON(!task->atoms);
233
234         task->atoms[idx] = event;
235
236         return event;
237 }
238
239 static struct sched_atom *last_event(struct task_desc *task)
240 {
241         if (!task->nr_events)
242                 return NULL;
243
244         return task->atoms[task->nr_events - 1];
245 }
246
247 static void
248 add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
249 {
250         struct sched_atom *event, *curr_event = last_event(task);
251
252         /*
253          * optimize an existing RUN event by merging this one
254          * to it:
255          */
256         if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
257                 nr_run_events_optimized++;
258                 curr_event->duration += duration;
259                 return;
260         }
261
262         event = get_new_event(task, timestamp);
263
264         event->type = SCHED_EVENT_RUN;
265         event->duration = duration;
266
267         nr_run_events++;
268 }
269
270 static void
271 add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
272                        struct task_desc *wakee)
273 {
274         struct sched_atom *event, *wakee_event;
275
276         event = get_new_event(task, timestamp);
277         event->type = SCHED_EVENT_WAKEUP;
278         event->wakee = wakee;
279
280         wakee_event = last_event(wakee);
281         if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
282                 targetless_wakeups++;
283                 return;
284         }
285         if (wakee_event->wait_sem) {
286                 multitarget_wakeups++;
287                 return;
288         }
289
290         wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
291         sem_init(wakee_event->wait_sem, 0, 0);
292         wakee_event->specific_wait = 1;
293         event->wait_sem = wakee_event->wait_sem;
294
295         nr_wakeup_events++;
296 }
297
298 static void
299 add_sched_event_sleep(struct task_desc *task, u64 timestamp,
300                       u64 task_state __used)
301 {
302         struct sched_atom *event = get_new_event(task, timestamp);
303
304         event->type = SCHED_EVENT_SLEEP;
305
306         nr_sleep_events++;
307 }
308
309 static struct task_desc *register_pid(unsigned long pid, const char *comm)
310 {
311         struct task_desc *task;
312
313         BUG_ON(pid >= MAX_PID);
314
315         task = pid_to_task[pid];
316
317         if (task)
318                 return task;
319
320         task = zalloc(sizeof(*task));
321         task->pid = pid;
322         task->nr = nr_tasks;
323         strcpy(task->comm, comm);
324         /*
325          * every task starts in sleeping state - this gets ignored
326          * if there's no wakeup pointing to this sleep state:
327          */
328         add_sched_event_sleep(task, 0, 0);
329
330         pid_to_task[pid] = task;
331         nr_tasks++;
332         tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
333         BUG_ON(!tasks);
334         tasks[task->nr] = task;
335
336         if (verbose)
337                 printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
338
339         return task;
340 }
341
342
343 static void print_task_traces(void)
344 {
345         struct task_desc *task;
346         unsigned long i;
347
348         for (i = 0; i < nr_tasks; i++) {
349                 task = tasks[i];
350                 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
351                         task->nr, task->comm, task->pid, task->nr_events);
352         }
353 }
354
355 static void add_cross_task_wakeups(void)
356 {
357         struct task_desc *task1, *task2;
358         unsigned long i, j;
359
360         for (i = 0; i < nr_tasks; i++) {
361                 task1 = tasks[i];
362                 j = i + 1;
363                 if (j == nr_tasks)
364                         j = 0;
365                 task2 = tasks[j];
366                 add_sched_event_wakeup(task1, 0, task2);
367         }
368 }
369
370 static void
371 process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
372 {
373         int ret = 0;
374         u64 now;
375         long long delta;
376
377         now = get_nsecs();
378         delta = start_time + atom->timestamp - now;
379
380         switch (atom->type) {
381                 case SCHED_EVENT_RUN:
382                         burn_nsecs(atom->duration);
383                         break;
384                 case SCHED_EVENT_SLEEP:
385                         if (atom->wait_sem)
386                                 ret = sem_wait(atom->wait_sem);
387                         BUG_ON(ret);
388                         break;
389                 case SCHED_EVENT_WAKEUP:
390                         if (atom->wait_sem)
391                                 ret = sem_post(atom->wait_sem);
392                         BUG_ON(ret);
393                         break;
394                 case SCHED_EVENT_MIGRATION:
395                         break;
396                 default:
397                         BUG_ON(1);
398         }
399 }
400
401 static u64 get_cpu_usage_nsec_parent(void)
402 {
403         struct rusage ru;
404         u64 sum;
405         int err;
406
407         err = getrusage(RUSAGE_SELF, &ru);
408         BUG_ON(err);
409
410         sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
411         sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
412
413         return sum;
414 }
415
416 static int self_open_counters(void)
417 {
418         struct perf_event_attr attr;
419         int fd;
420
421         memset(&attr, 0, sizeof(attr));
422
423         attr.type = PERF_TYPE_SOFTWARE;
424         attr.config = PERF_COUNT_SW_TASK_CLOCK;
425
426         fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
427
428         if (fd < 0)
429                 die("Error: sys_perf_event_open() syscall returned"
430                     "with %d (%s)\n", fd, strerror(errno));
431         return fd;
432 }
433
434 static u64 get_cpu_usage_nsec_self(int fd)
435 {
436         u64 runtime;
437         int ret;
438
439         ret = read(fd, &runtime, sizeof(runtime));
440         BUG_ON(ret != sizeof(runtime));
441
442         return runtime;
443 }
444
445 static void *thread_func(void *ctx)
446 {
447         struct task_desc *this_task = ctx;
448         u64 cpu_usage_0, cpu_usage_1;
449         unsigned long i, ret;
450         char comm2[22];
451         int fd;
452
453         sprintf(comm2, ":%s", this_task->comm);
454         prctl(PR_SET_NAME, comm2);
455         fd = self_open_counters();
456
457 again:
458         ret = sem_post(&this_task->ready_for_work);
459         BUG_ON(ret);
460         ret = pthread_mutex_lock(&start_work_mutex);
461         BUG_ON(ret);
462         ret = pthread_mutex_unlock(&start_work_mutex);
463         BUG_ON(ret);
464
465         cpu_usage_0 = get_cpu_usage_nsec_self(fd);
466
467         for (i = 0; i < this_task->nr_events; i++) {
468                 this_task->curr_event = i;
469                 process_sched_event(this_task, this_task->atoms[i]);
470         }
471
472         cpu_usage_1 = get_cpu_usage_nsec_self(fd);
473         this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
474         ret = sem_post(&this_task->work_done_sem);
475         BUG_ON(ret);
476
477         ret = pthread_mutex_lock(&work_done_wait_mutex);
478         BUG_ON(ret);
479         ret = pthread_mutex_unlock(&work_done_wait_mutex);
480         BUG_ON(ret);
481
482         goto again;
483 }
484
485 static void create_tasks(void)
486 {
487         struct task_desc *task;
488         pthread_attr_t attr;
489         unsigned long i;
490         int err;
491
492         err = pthread_attr_init(&attr);
493         BUG_ON(err);
494         err = pthread_attr_setstacksize(&attr, (size_t)(16*1024));
495         BUG_ON(err);
496         err = pthread_mutex_lock(&start_work_mutex);
497         BUG_ON(err);
498         err = pthread_mutex_lock(&work_done_wait_mutex);
499         BUG_ON(err);
500         for (i = 0; i < nr_tasks; i++) {
501                 task = tasks[i];
502                 sem_init(&task->sleep_sem, 0, 0);
503                 sem_init(&task->ready_for_work, 0, 0);
504                 sem_init(&task->work_done_sem, 0, 0);
505                 task->curr_event = 0;
506                 err = pthread_create(&task->thread, &attr, thread_func, task);
507                 BUG_ON(err);
508         }
509 }
510
511 static void wait_for_tasks(void)
512 {
513         u64 cpu_usage_0, cpu_usage_1;
514         struct task_desc *task;
515         unsigned long i, ret;
516
517         start_time = get_nsecs();
518         cpu_usage = 0;
519         pthread_mutex_unlock(&work_done_wait_mutex);
520
521         for (i = 0; i < nr_tasks; i++) {
522                 task = tasks[i];
523                 ret = sem_wait(&task->ready_for_work);
524                 BUG_ON(ret);
525                 sem_init(&task->ready_for_work, 0, 0);
526         }
527         ret = pthread_mutex_lock(&work_done_wait_mutex);
528         BUG_ON(ret);
529
530         cpu_usage_0 = get_cpu_usage_nsec_parent();
531
532         pthread_mutex_unlock(&start_work_mutex);
533
534         for (i = 0; i < nr_tasks; i++) {
535                 task = tasks[i];
536                 ret = sem_wait(&task->work_done_sem);
537                 BUG_ON(ret);
538                 sem_init(&task->work_done_sem, 0, 0);
539                 cpu_usage += task->cpu_usage;
540                 task->cpu_usage = 0;
541         }
542
543         cpu_usage_1 = get_cpu_usage_nsec_parent();
544         if (!runavg_cpu_usage)
545                 runavg_cpu_usage = cpu_usage;
546         runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
547
548         parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
549         if (!runavg_parent_cpu_usage)
550                 runavg_parent_cpu_usage = parent_cpu_usage;
551         runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
552                                    parent_cpu_usage)/10;
553
554         ret = pthread_mutex_lock(&start_work_mutex);
555         BUG_ON(ret);
556
557         for (i = 0; i < nr_tasks; i++) {
558                 task = tasks[i];
559                 sem_init(&task->sleep_sem, 0, 0);
560                 task->curr_event = 0;
561         }
562 }
563
564 static void run_one_test(void)
565 {
566         u64 T0, T1, delta, avg_delta, fluct, std_dev;
567
568         T0 = get_nsecs();
569         wait_for_tasks();
570         T1 = get_nsecs();
571
572         delta = T1 - T0;
573         sum_runtime += delta;
574         nr_runs++;
575
576         avg_delta = sum_runtime / nr_runs;
577         if (delta < avg_delta)
578                 fluct = avg_delta - delta;
579         else
580                 fluct = delta - avg_delta;
581         sum_fluct += fluct;
582         std_dev = sum_fluct / nr_runs / sqrt(nr_runs);
583         if (!run_avg)
584                 run_avg = delta;
585         run_avg = (run_avg*9 + delta)/10;
586
587         printf("#%-3ld: %0.3f, ",
588                 nr_runs, (double)delta/1000000.0);
589
590         printf("ravg: %0.2f, ",
591                 (double)run_avg/1e6);
592
593         printf("cpu: %0.2f / %0.2f",
594                 (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
595
596 #if 0
597         /*
598          * rusage statistics done by the parent, these are less
599          * accurate than the sum_exec_runtime based statistics:
600          */
601         printf(" [%0.2f / %0.2f]",
602                 (double)parent_cpu_usage/1e6,
603                 (double)runavg_parent_cpu_usage/1e6);
604 #endif
605
606         printf("\n");
607
608         if (nr_sleep_corrections)
609                 printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
610         nr_sleep_corrections = 0;
611 }
612
613 static void test_calibrations(void)
614 {
615         u64 T0, T1;
616
617         T0 = get_nsecs();
618         burn_nsecs(1e6);
619         T1 = get_nsecs();
620
621         printf("the run test took %Ld nsecs\n", T1-T0);
622
623         T0 = get_nsecs();
624         sleep_nsecs(1e6);
625         T1 = get_nsecs();
626
627         printf("the sleep test took %Ld nsecs\n", T1-T0);
628 }
629
630 #define FILL_FIELD(ptr, field, event, data)     \
631         ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
632
633 #define FILL_ARRAY(ptr, array, event, data)                     \
634 do {                                                            \
635         void *__array = raw_field_ptr(event, #array, data);     \
636         memcpy(ptr.array, __array, sizeof(ptr.array));  \
637 } while(0)
638
639 #define FILL_COMMON_FIELDS(ptr, event, data)                    \
640 do {                                                            \
641         FILL_FIELD(ptr, common_type, event, data);              \
642         FILL_FIELD(ptr, common_flags, event, data);             \
643         FILL_FIELD(ptr, common_preempt_count, event, data);     \
644         FILL_FIELD(ptr, common_pid, event, data);               \
645         FILL_FIELD(ptr, common_tgid, event, data);              \
646 } while (0)
647
648
649
650 struct trace_switch_event {
651         u32 size;
652
653         u16 common_type;
654         u8 common_flags;
655         u8 common_preempt_count;
656         u32 common_pid;
657         u32 common_tgid;
658
659         char prev_comm[16];
660         u32 prev_pid;
661         u32 prev_prio;
662         u64 prev_state;
663         char next_comm[16];
664         u32 next_pid;
665         u32 next_prio;
666 };
667
668 struct trace_runtime_event {
669         u32 size;
670
671         u16 common_type;
672         u8 common_flags;
673         u8 common_preempt_count;
674         u32 common_pid;
675         u32 common_tgid;
676
677         char comm[16];
678         u32 pid;
679         u64 runtime;
680         u64 vruntime;
681 };
682
683 struct trace_wakeup_event {
684         u32 size;
685
686         u16 common_type;
687         u8 common_flags;
688         u8 common_preempt_count;
689         u32 common_pid;
690         u32 common_tgid;
691
692         char comm[16];
693         u32 pid;
694
695         u32 prio;
696         u32 success;
697         u32 cpu;
698 };
699
700 struct trace_fork_event {
701         u32 size;
702
703         u16 common_type;
704         u8 common_flags;
705         u8 common_preempt_count;
706         u32 common_pid;
707         u32 common_tgid;
708
709         char parent_comm[16];
710         u32 parent_pid;
711         char child_comm[16];
712         u32 child_pid;
713 };
714
715 struct trace_migrate_task_event {
716         u32 size;
717
718         u16 common_type;
719         u8 common_flags;
720         u8 common_preempt_count;
721         u32 common_pid;
722         u32 common_tgid;
723
724         char comm[16];
725         u32 pid;
726
727         u32 prio;
728         u32 cpu;
729 };
730
731 struct trace_sched_handler {
732         void (*switch_event)(struct trace_switch_event *,
733                              struct event *,
734                              int cpu,
735                              u64 timestamp,
736                              struct thread *thread);
737
738         void (*runtime_event)(struct trace_runtime_event *,
739                               struct event *,
740                               int cpu,
741                               u64 timestamp,
742                               struct thread *thread);
743
744         void (*wakeup_event)(struct trace_wakeup_event *,
745                              struct event *,
746                              int cpu,
747                              u64 timestamp,
748                              struct thread *thread);
749
750         void (*fork_event)(struct trace_fork_event *,
751                            struct event *,
752                            int cpu,
753                            u64 timestamp,
754                            struct thread *thread);
755
756         void (*migrate_task_event)(struct trace_migrate_task_event *,
757                            struct event *,
758                            int cpu,
759                            u64 timestamp,
760                            struct thread *thread);
761 };
762
763
764 static void
765 replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
766                     struct event *event,
767                     int cpu __used,
768                     u64 timestamp __used,
769                     struct thread *thread __used)
770 {
771         struct task_desc *waker, *wakee;
772
773         if (verbose) {
774                 printf("sched_wakeup event %p\n", event);
775
776                 printf(" ... pid %d woke up %s/%d\n",
777                         wakeup_event->common_pid,
778                         wakeup_event->comm,
779                         wakeup_event->pid);
780         }
781
782         waker = register_pid(wakeup_event->common_pid, "<unknown>");
783         wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
784
785         add_sched_event_wakeup(waker, timestamp, wakee);
786 }
787
788 static u64 cpu_last_switched[MAX_CPUS];
789
790 static void
791 replay_switch_event(struct trace_switch_event *switch_event,
792                     struct event *event,
793                     int cpu,
794                     u64 timestamp,
795                     struct thread *thread __used)
796 {
797         struct task_desc *prev, *next;
798         u64 timestamp0;
799         s64 delta;
800
801         if (verbose)
802                 printf("sched_switch event %p\n", event);
803
804         if (cpu >= MAX_CPUS || cpu < 0)
805                 return;
806
807         timestamp0 = cpu_last_switched[cpu];
808         if (timestamp0)
809                 delta = timestamp - timestamp0;
810         else
811                 delta = 0;
812
813         if (delta < 0)
814                 die("hm, delta: %Ld < 0 ?\n", delta);
815
816         if (verbose) {
817                 printf(" ... switch from %s/%d to %s/%d [ran %Ld nsecs]\n",
818                         switch_event->prev_comm, switch_event->prev_pid,
819                         switch_event->next_comm, switch_event->next_pid,
820                         delta);
821         }
822
823         prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
824         next = register_pid(switch_event->next_pid, switch_event->next_comm);
825
826         cpu_last_switched[cpu] = timestamp;
827
828         add_sched_event_run(prev, timestamp, delta);
829         add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
830 }
831
832
833 static void
834 replay_fork_event(struct trace_fork_event *fork_event,
835                   struct event *event,
836                   int cpu __used,
837                   u64 timestamp __used,
838                   struct thread *thread __used)
839 {
840         if (verbose) {
841                 printf("sched_fork event %p\n", event);
842                 printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
843                 printf("...  child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
844         }
845         register_pid(fork_event->parent_pid, fork_event->parent_comm);
846         register_pid(fork_event->child_pid, fork_event->child_comm);
847 }
848
849 static struct trace_sched_handler replay_ops  = {
850         .wakeup_event           = replay_wakeup_event,
851         .switch_event           = replay_switch_event,
852         .fork_event             = replay_fork_event,
853 };
854
855 struct sort_dimension {
856         const char              *name;
857         sort_fn_t               cmp;
858         struct list_head        list;
859 };
860
861 static LIST_HEAD(cmp_pid);
862
863 static int
864 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
865 {
866         struct sort_dimension *sort;
867         int ret = 0;
868
869         BUG_ON(list_empty(list));
870
871         list_for_each_entry(sort, list, list) {
872                 ret = sort->cmp(l, r);
873                 if (ret)
874                         return ret;
875         }
876
877         return ret;
878 }
879
880 static struct work_atoms *
881 thread_atoms_search(struct rb_root *root, struct thread *thread,
882                          struct list_head *sort_list)
883 {
884         struct rb_node *node = root->rb_node;
885         struct work_atoms key = { .thread = thread };
886
887         while (node) {
888                 struct work_atoms *atoms;
889                 int cmp;
890
891                 atoms = container_of(node, struct work_atoms, node);
892
893                 cmp = thread_lat_cmp(sort_list, &key, atoms);
894                 if (cmp > 0)
895                         node = node->rb_left;
896                 else if (cmp < 0)
897                         node = node->rb_right;
898                 else {
899                         BUG_ON(thread != atoms->thread);
900                         return atoms;
901                 }
902         }
903         return NULL;
904 }
905
906 static void
907 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
908                          struct list_head *sort_list)
909 {
910         struct rb_node **new = &(root->rb_node), *parent = NULL;
911
912         while (*new) {
913                 struct work_atoms *this;
914                 int cmp;
915
916                 this = container_of(*new, struct work_atoms, node);
917                 parent = *new;
918
919                 cmp = thread_lat_cmp(sort_list, data, this);
920
921                 if (cmp > 0)
922                         new = &((*new)->rb_left);
923                 else
924                         new = &((*new)->rb_right);
925         }
926
927         rb_link_node(&data->node, parent, new);
928         rb_insert_color(&data->node, root);
929 }
930
931 static void thread_atoms_insert(struct thread *thread)
932 {
933         struct work_atoms *atoms = zalloc(sizeof(*atoms));
934         if (!atoms)
935                 die("No memory");
936
937         atoms->thread = thread;
938         INIT_LIST_HEAD(&atoms->work_list);
939         __thread_latency_insert(&atom_root, atoms, &cmp_pid);
940 }
941
942 static void
943 latency_fork_event(struct trace_fork_event *fork_event __used,
944                    struct event *event __used,
945                    int cpu __used,
946                    u64 timestamp __used,
947                    struct thread *thread __used)
948 {
949         /* should insert the newcomer */
950 }
951
952 __used
953 static char sched_out_state(struct trace_switch_event *switch_event)
954 {
955         const char *str = TASK_STATE_TO_CHAR_STR;
956
957         return str[switch_event->prev_state];
958 }
959
960 static void
961 add_sched_out_event(struct work_atoms *atoms,
962                     char run_state,
963                     u64 timestamp)
964 {
965         struct work_atom *atom = zalloc(sizeof(*atom));
966         if (!atom)
967                 die("Non memory");
968
969         atom->sched_out_time = timestamp;
970
971         if (run_state == 'R') {
972                 atom->state = THREAD_WAIT_CPU;
973                 atom->wake_up_time = atom->sched_out_time;
974         }
975
976         list_add_tail(&atom->list, &atoms->work_list);
977 }
978
979 static void
980 add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
981 {
982         struct work_atom *atom;
983
984         BUG_ON(list_empty(&atoms->work_list));
985
986         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
987
988         atom->runtime += delta;
989         atoms->total_runtime += delta;
990 }
991
992 static void
993 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
994 {
995         struct work_atom *atom;
996         u64 delta;
997
998         if (list_empty(&atoms->work_list))
999                 return;
1000
1001         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1002
1003         if (atom->state != THREAD_WAIT_CPU)
1004                 return;
1005
1006         if (timestamp < atom->wake_up_time) {
1007                 atom->state = THREAD_IGNORE;
1008                 return;
1009         }
1010
1011         atom->state = THREAD_SCHED_IN;
1012         atom->sched_in_time = timestamp;
1013
1014         delta = atom->sched_in_time - atom->wake_up_time;
1015         atoms->total_lat += delta;
1016         if (delta > atoms->max_lat)
1017                 atoms->max_lat = delta;
1018         atoms->nb_atoms++;
1019 }
1020
1021 static void
1022 latency_switch_event(struct trace_switch_event *switch_event,
1023                      struct event *event __used,
1024                      int cpu,
1025                      u64 timestamp,
1026                      struct thread *thread __used)
1027 {
1028         struct work_atoms *out_events, *in_events;
1029         struct thread *sched_out, *sched_in;
1030         u64 timestamp0;
1031         s64 delta;
1032
1033         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1034
1035         timestamp0 = cpu_last_switched[cpu];
1036         cpu_last_switched[cpu] = timestamp;
1037         if (timestamp0)
1038                 delta = timestamp - timestamp0;
1039         else
1040                 delta = 0;
1041
1042         if (delta < 0)
1043                 die("hm, delta: %Ld < 0 ?\n", delta);
1044
1045
1046         sched_out = threads__findnew(switch_event->prev_pid);
1047         sched_in = threads__findnew(switch_event->next_pid);
1048
1049         out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1050         if (!out_events) {
1051                 thread_atoms_insert(sched_out);
1052                 out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1053                 if (!out_events)
1054                         die("out-event: Internal tree error");
1055         }
1056         add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
1057
1058         in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1059         if (!in_events) {
1060                 thread_atoms_insert(sched_in);
1061                 in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1062                 if (!in_events)
1063                         die("in-event: Internal tree error");
1064                 /*
1065                  * Take came in we have not heard about yet,
1066                  * add in an initial atom in runnable state:
1067                  */
1068                 add_sched_out_event(in_events, 'R', timestamp);
1069         }
1070         add_sched_in_event(in_events, timestamp);
1071 }
1072
1073 static void
1074 latency_runtime_event(struct trace_runtime_event *runtime_event,
1075                      struct event *event __used,
1076                      int cpu,
1077                      u64 timestamp,
1078                      struct thread *this_thread __used)
1079 {
1080         struct thread *thread = threads__findnew(runtime_event->pid);
1081         struct work_atoms *atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1082
1083         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1084         if (!atoms) {
1085                 thread_atoms_insert(thread);
1086                 atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1087                 if (!atoms)
1088                         die("in-event: Internal tree error");
1089                 add_sched_out_event(atoms, 'R', timestamp);
1090         }
1091
1092         add_runtime_event(atoms, runtime_event->runtime, timestamp);
1093 }
1094
1095 static void
1096 latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
1097                      struct event *__event __used,
1098                      int cpu __used,
1099                      u64 timestamp,
1100                      struct thread *thread __used)
1101 {
1102         struct work_atoms *atoms;
1103         struct work_atom *atom;
1104         struct thread *wakee;
1105
1106         /* Note for later, it may be interesting to observe the failing cases */
1107         if (!wakeup_event->success)
1108                 return;
1109
1110         wakee = threads__findnew(wakeup_event->pid);
1111         atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1112         if (!atoms) {
1113                 thread_atoms_insert(wakee);
1114                 atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1115                 if (!atoms)
1116                         die("wakeup-event: Internal tree error");
1117                 add_sched_out_event(atoms, 'S', timestamp);
1118         }
1119
1120         BUG_ON(list_empty(&atoms->work_list));
1121
1122         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1123
1124         /*
1125          * You WILL be missing events if you've recorded only
1126          * one CPU, or are only looking at only one, so don't
1127          * make useless noise.
1128          */
1129         if (profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1130                 nr_state_machine_bugs++;
1131
1132         nr_timestamps++;
1133         if (atom->sched_out_time > timestamp) {
1134                 nr_unordered_timestamps++;
1135                 return;
1136         }
1137
1138         atom->state = THREAD_WAIT_CPU;
1139         atom->wake_up_time = timestamp;
1140 }
1141
1142 static void
1143 latency_migrate_task_event(struct trace_migrate_task_event *migrate_task_event,
1144                      struct event *__event __used,
1145                      int cpu __used,
1146                      u64 timestamp,
1147                      struct thread *thread __used)
1148 {
1149         struct work_atoms *atoms;
1150         struct work_atom *atom;
1151         struct thread *migrant;
1152
1153         /*
1154          * Only need to worry about migration when profiling one CPU.
1155          */
1156         if (profile_cpu == -1)
1157                 return;
1158
1159         migrant = threads__findnew(migrate_task_event->pid);
1160         atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1161         if (!atoms) {
1162                 thread_atoms_insert(migrant);
1163                 register_pid(migrant->pid, migrant->comm);
1164                 atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1165                 if (!atoms)
1166                         die("migration-event: Internal tree error");
1167                 add_sched_out_event(atoms, 'R', timestamp);
1168         }
1169
1170         BUG_ON(list_empty(&atoms->work_list));
1171
1172         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1173         atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1174
1175         nr_timestamps++;
1176
1177         if (atom->sched_out_time > timestamp)
1178                 nr_unordered_timestamps++;
1179 }
1180
1181 static struct trace_sched_handler lat_ops  = {
1182         .wakeup_event           = latency_wakeup_event,
1183         .switch_event           = latency_switch_event,
1184         .runtime_event          = latency_runtime_event,
1185         .fork_event             = latency_fork_event,
1186         .migrate_task_event     = latency_migrate_task_event,
1187 };
1188
1189 static void output_lat_thread(struct work_atoms *work_list)
1190 {
1191         int i;
1192         int ret;
1193         u64 avg;
1194
1195         if (!work_list->nb_atoms)
1196                 return;
1197         /*
1198          * Ignore idle threads:
1199          */
1200         if (!strcmp(work_list->thread->comm, "swapper"))
1201                 return;
1202
1203         all_runtime += work_list->total_runtime;
1204         all_count += work_list->nb_atoms;
1205
1206         ret = printf("  %s:%d ", work_list->thread->comm, work_list->thread->pid);
1207
1208         for (i = 0; i < 24 - ret; i++)
1209                 printf(" ");
1210
1211         avg = work_list->total_lat / work_list->nb_atoms;
1212
1213         printf("|%11.3f ms |%9llu | avg:%9.3f ms | max:%9.3f ms |\n",
1214               (double)work_list->total_runtime / 1e6,
1215                  work_list->nb_atoms, (double)avg / 1e6,
1216                  (double)work_list->max_lat / 1e6);
1217 }
1218
1219 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1220 {
1221         if (l->thread->pid < r->thread->pid)
1222                 return -1;
1223         if (l->thread->pid > r->thread->pid)
1224                 return 1;
1225
1226         return 0;
1227 }
1228
1229 static struct sort_dimension pid_sort_dimension = {
1230         .name                   = "pid",
1231         .cmp                    = pid_cmp,
1232 };
1233
1234 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1235 {
1236         u64 avgl, avgr;
1237
1238         if (!l->nb_atoms)
1239                 return -1;
1240
1241         if (!r->nb_atoms)
1242                 return 1;
1243
1244         avgl = l->total_lat / l->nb_atoms;
1245         avgr = r->total_lat / r->nb_atoms;
1246
1247         if (avgl < avgr)
1248                 return -1;
1249         if (avgl > avgr)
1250                 return 1;
1251
1252         return 0;
1253 }
1254
1255 static struct sort_dimension avg_sort_dimension = {
1256         .name                   = "avg",
1257         .cmp                    = avg_cmp,
1258 };
1259
1260 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1261 {
1262         if (l->max_lat < r->max_lat)
1263                 return -1;
1264         if (l->max_lat > r->max_lat)
1265                 return 1;
1266
1267         return 0;
1268 }
1269
1270 static struct sort_dimension max_sort_dimension = {
1271         .name                   = "max",
1272         .cmp                    = max_cmp,
1273 };
1274
1275 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1276 {
1277         if (l->nb_atoms < r->nb_atoms)
1278                 return -1;
1279         if (l->nb_atoms > r->nb_atoms)
1280                 return 1;
1281
1282         return 0;
1283 }
1284
1285 static struct sort_dimension switch_sort_dimension = {
1286         .name                   = "switch",
1287         .cmp                    = switch_cmp,
1288 };
1289
1290 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1291 {
1292         if (l->total_runtime < r->total_runtime)
1293                 return -1;
1294         if (l->total_runtime > r->total_runtime)
1295                 return 1;
1296
1297         return 0;
1298 }
1299
1300 static struct sort_dimension runtime_sort_dimension = {
1301         .name                   = "runtime",
1302         .cmp                    = runtime_cmp,
1303 };
1304
1305 static struct sort_dimension *available_sorts[] = {
1306         &pid_sort_dimension,
1307         &avg_sort_dimension,
1308         &max_sort_dimension,
1309         &switch_sort_dimension,
1310         &runtime_sort_dimension,
1311 };
1312
1313 #define NB_AVAILABLE_SORTS      (int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
1314
1315 static LIST_HEAD(sort_list);
1316
1317 static int sort_dimension__add(const char *tok, struct list_head *list)
1318 {
1319         int i;
1320
1321         for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
1322                 if (!strcmp(available_sorts[i]->name, tok)) {
1323                         list_add_tail(&available_sorts[i]->list, list);
1324
1325                         return 0;
1326                 }
1327         }
1328
1329         return -1;
1330 }
1331
1332 static void setup_sorting(void);
1333
1334 static void sort_lat(void)
1335 {
1336         struct rb_node *node;
1337
1338         for (;;) {
1339                 struct work_atoms *data;
1340                 node = rb_first(&atom_root);
1341                 if (!node)
1342                         break;
1343
1344                 rb_erase(node, &atom_root);
1345                 data = rb_entry(node, struct work_atoms, node);
1346                 __thread_latency_insert(&sorted_atom_root, data, &sort_list);
1347         }
1348 }
1349
1350 static struct trace_sched_handler *trace_handler;
1351
1352 static void
1353 process_sched_wakeup_event(void *data,
1354                            struct event *event,
1355                            int cpu __used,
1356                            u64 timestamp __used,
1357                            struct thread *thread __used)
1358 {
1359         struct trace_wakeup_event wakeup_event;
1360
1361         FILL_COMMON_FIELDS(wakeup_event, event, data);
1362
1363         FILL_ARRAY(wakeup_event, comm, event, data);
1364         FILL_FIELD(wakeup_event, pid, event, data);
1365         FILL_FIELD(wakeup_event, prio, event, data);
1366         FILL_FIELD(wakeup_event, success, event, data);
1367         FILL_FIELD(wakeup_event, cpu, event, data);
1368
1369         if (trace_handler->wakeup_event)
1370                 trace_handler->wakeup_event(&wakeup_event, event, cpu, timestamp, thread);
1371 }
1372
1373 /*
1374  * Track the current task - that way we can know whether there's any
1375  * weird events, such as a task being switched away that is not current.
1376  */
1377 static int max_cpu;
1378
1379 static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 };
1380
1381 static struct thread *curr_thread[MAX_CPUS];
1382
1383 static char next_shortname1 = 'A';
1384 static char next_shortname2 = '0';
1385
1386 static void
1387 map_switch_event(struct trace_switch_event *switch_event,
1388                  struct event *event __used,
1389                  int this_cpu,
1390                  u64 timestamp,
1391                  struct thread *thread __used)
1392 {
1393         struct thread *sched_out, *sched_in;
1394         int new_shortname;
1395         u64 timestamp0;
1396         s64 delta;
1397         int cpu;
1398
1399         BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1400
1401         if (this_cpu > max_cpu)
1402                 max_cpu = this_cpu;
1403
1404         timestamp0 = cpu_last_switched[this_cpu];
1405         cpu_last_switched[this_cpu] = timestamp;
1406         if (timestamp0)
1407                 delta = timestamp - timestamp0;
1408         else
1409                 delta = 0;
1410
1411         if (delta < 0)
1412                 die("hm, delta: %Ld < 0 ?\n", delta);
1413
1414
1415         sched_out = threads__findnew(switch_event->prev_pid);
1416         sched_in = threads__findnew(switch_event->next_pid);
1417
1418         curr_thread[this_cpu] = sched_in;
1419
1420         printf("  ");
1421
1422         new_shortname = 0;
1423         if (!sched_in->shortname[0]) {
1424                 sched_in->shortname[0] = next_shortname1;
1425                 sched_in->shortname[1] = next_shortname2;
1426
1427                 if (next_shortname1 < 'Z') {
1428                         next_shortname1++;
1429                 } else {
1430                         next_shortname1='A';
1431                         if (next_shortname2 < '9') {
1432                                 next_shortname2++;
1433                         } else {
1434                                 next_shortname2='0';
1435                         }
1436                 }
1437                 new_shortname = 1;
1438         }
1439
1440         for (cpu = 0; cpu <= max_cpu; cpu++) {
1441                 if (cpu != this_cpu)
1442                         printf(" ");
1443                 else
1444                         printf("*");
1445
1446                 if (curr_thread[cpu]) {
1447                         if (curr_thread[cpu]->pid)
1448                                 printf("%2s ", curr_thread[cpu]->shortname);
1449                         else
1450                                 printf(".  ");
1451                 } else
1452                         printf("   ");
1453         }
1454
1455         printf("  %12.6f secs ", (double)timestamp/1e9);
1456         if (new_shortname) {
1457                 printf("%s => %s:%d\n",
1458                         sched_in->shortname, sched_in->comm, sched_in->pid);
1459         } else {
1460                 printf("\n");
1461         }
1462 }
1463
1464
1465 static void
1466 process_sched_switch_event(void *data,
1467                            struct event *event,
1468                            int this_cpu,
1469                            u64 timestamp __used,
1470                            struct thread *thread __used)
1471 {
1472         struct trace_switch_event switch_event;
1473
1474         FILL_COMMON_FIELDS(switch_event, event, data);
1475
1476         FILL_ARRAY(switch_event, prev_comm, event, data);
1477         FILL_FIELD(switch_event, prev_pid, event, data);
1478         FILL_FIELD(switch_event, prev_prio, event, data);
1479         FILL_FIELD(switch_event, prev_state, event, data);
1480         FILL_ARRAY(switch_event, next_comm, event, data);
1481         FILL_FIELD(switch_event, next_pid, event, data);
1482         FILL_FIELD(switch_event, next_prio, event, data);
1483
1484         if (curr_pid[this_cpu] != (u32)-1) {
1485                 /*
1486                  * Are we trying to switch away a PID that is
1487                  * not current?
1488                  */
1489                 if (curr_pid[this_cpu] != switch_event.prev_pid)
1490                         nr_context_switch_bugs++;
1491         }
1492         if (trace_handler->switch_event)
1493                 trace_handler->switch_event(&switch_event, event, this_cpu, timestamp, thread);
1494
1495         curr_pid[this_cpu] = switch_event.next_pid;
1496 }
1497
1498 static void
1499 process_sched_runtime_event(void *data,
1500                            struct event *event,
1501                            int cpu __used,
1502                            u64 timestamp __used,
1503                            struct thread *thread __used)
1504 {
1505         struct trace_runtime_event runtime_event;
1506
1507         FILL_ARRAY(runtime_event, comm, event, data);
1508         FILL_FIELD(runtime_event, pid, event, data);
1509         FILL_FIELD(runtime_event, runtime, event, data);
1510         FILL_FIELD(runtime_event, vruntime, event, data);
1511
1512         if (trace_handler->runtime_event)
1513                 trace_handler->runtime_event(&runtime_event, event, cpu, timestamp, thread);
1514 }
1515
1516 static void
1517 process_sched_fork_event(void *data,
1518                          struct event *event,
1519                          int cpu __used,
1520                          u64 timestamp __used,
1521                          struct thread *thread __used)
1522 {
1523         struct trace_fork_event fork_event;
1524
1525         FILL_COMMON_FIELDS(fork_event, event, data);
1526
1527         FILL_ARRAY(fork_event, parent_comm, event, data);
1528         FILL_FIELD(fork_event, parent_pid, event, data);
1529         FILL_ARRAY(fork_event, child_comm, event, data);
1530         FILL_FIELD(fork_event, child_pid, event, data);
1531
1532         if (trace_handler->fork_event)
1533                 trace_handler->fork_event(&fork_event, event, cpu, timestamp, thread);
1534 }
1535
1536 static void
1537 process_sched_exit_event(struct event *event,
1538                          int cpu __used,
1539                          u64 timestamp __used,
1540                          struct thread *thread __used)
1541 {
1542         if (verbose)
1543                 printf("sched_exit event %p\n", event);
1544 }
1545
1546 static void
1547 process_sched_migrate_task_event(void *data,
1548                            struct event *event,
1549                            int cpu __used,
1550                            u64 timestamp __used,
1551                            struct thread *thread __used)
1552 {
1553         struct trace_migrate_task_event migrate_task_event;
1554
1555         FILL_COMMON_FIELDS(migrate_task_event, event, data);
1556
1557         FILL_ARRAY(migrate_task_event, comm, event, data);
1558         FILL_FIELD(migrate_task_event, pid, event, data);
1559         FILL_FIELD(migrate_task_event, prio, event, data);
1560         FILL_FIELD(migrate_task_event, cpu, event, data);
1561
1562         if (trace_handler->migrate_task_event)
1563                 trace_handler->migrate_task_event(&migrate_task_event, event, cpu, timestamp, thread);
1564 }
1565
1566 static void
1567 process_raw_event(event_t *raw_event __used, void *data,
1568                   int cpu, u64 timestamp, struct thread *thread)
1569 {
1570         struct event *event;
1571         int type;
1572
1573
1574         type = trace_parse_common_type(data);
1575         event = trace_find_event(type);
1576
1577         if (!strcmp(event->name, "sched_switch"))
1578                 process_sched_switch_event(data, event, cpu, timestamp, thread);
1579         if (!strcmp(event->name, "sched_stat_runtime"))
1580                 process_sched_runtime_event(data, event, cpu, timestamp, thread);
1581         if (!strcmp(event->name, "sched_wakeup"))
1582                 process_sched_wakeup_event(data, event, cpu, timestamp, thread);
1583         if (!strcmp(event->name, "sched_wakeup_new"))
1584                 process_sched_wakeup_event(data, event, cpu, timestamp, thread);
1585         if (!strcmp(event->name, "sched_process_fork"))
1586                 process_sched_fork_event(data, event, cpu, timestamp, thread);
1587         if (!strcmp(event->name, "sched_process_exit"))
1588                 process_sched_exit_event(event, cpu, timestamp, thread);
1589         if (!strcmp(event->name, "sched_migrate_task"))
1590                 process_sched_migrate_task_event(data, event, cpu, timestamp, thread);
1591 }
1592
1593 static int process_sample_event(event_t *event)
1594 {
1595         struct sample_data data;
1596         struct thread *thread;
1597
1598         if (!(sample_type & PERF_SAMPLE_RAW))
1599                 return 0;
1600
1601         memset(&data, 0, sizeof(data));
1602         data.time = -1;
1603         data.cpu = -1;
1604         data.period = -1;
1605
1606         event__parse_sample(event, sample_type, &data);
1607
1608         dump_printf("(IP, %d): %d/%d: %p period: %Ld\n",
1609                 event->header.misc,
1610                 data.pid, data.tid,
1611                 (void *)(long)data.ip,
1612                 (long long)data.period);
1613
1614         thread = threads__findnew(data.pid);
1615         if (thread == NULL) {
1616                 pr_debug("problem processing %d event, skipping it.\n",
1617                          event->header.type);
1618                 return -1;
1619         }
1620
1621         dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
1622
1623         if (profile_cpu != -1 && profile_cpu != (int)data.cpu)
1624                 return 0;
1625
1626         process_raw_event(event, data.raw_data, data.cpu, data.time, thread);
1627
1628         return 0;
1629 }
1630
1631 static int process_lost_event(event_t *event __used)
1632 {
1633         nr_lost_chunks++;
1634         nr_lost_events += event->lost.lost;
1635
1636         return 0;
1637 }
1638
1639 static int sample_type_check(u64 type)
1640 {
1641         sample_type = type;
1642
1643         if (!(sample_type & PERF_SAMPLE_RAW)) {
1644                 fprintf(stderr,
1645                         "No trace sample to read. Did you call perf record "
1646                         "without -R?");
1647                 return -1;
1648         }
1649
1650         return 0;
1651 }
1652
1653 static struct perf_file_handler file_handler = {
1654         .process_sample_event   = process_sample_event,
1655         .process_comm_event     = event__process_comm,
1656         .process_lost_event     = process_lost_event,
1657         .sample_type_check      = sample_type_check,
1658 };
1659
1660 static int read_events(void)
1661 {
1662         register_idle_thread();
1663         register_perf_file_handler(&file_handler);
1664
1665         return mmap_dispatch_perf_file(&header, input_name, 0, 0,
1666                                        &event__cwdlen, &event__cwd);
1667 }
1668
1669 static void print_bad_events(void)
1670 {
1671         if (nr_unordered_timestamps && nr_timestamps) {
1672                 printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1673                         (double)nr_unordered_timestamps/(double)nr_timestamps*100.0,
1674                         nr_unordered_timestamps, nr_timestamps);
1675         }
1676         if (nr_lost_events && nr_events) {
1677                 printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1678                         (double)nr_lost_events/(double)nr_events*100.0,
1679                         nr_lost_events, nr_events, nr_lost_chunks);
1680         }
1681         if (nr_state_machine_bugs && nr_timestamps) {
1682                 printf("  INFO: %.3f%% state machine bugs (%ld out of %ld)",
1683                         (double)nr_state_machine_bugs/(double)nr_timestamps*100.0,
1684                         nr_state_machine_bugs, nr_timestamps);
1685                 if (nr_lost_events)
1686                         printf(" (due to lost events?)");
1687                 printf("\n");
1688         }
1689         if (nr_context_switch_bugs && nr_timestamps) {
1690                 printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1691                         (double)nr_context_switch_bugs/(double)nr_timestamps*100.0,
1692                         nr_context_switch_bugs, nr_timestamps);
1693                 if (nr_lost_events)
1694                         printf(" (due to lost events?)");
1695                 printf("\n");
1696         }
1697 }
1698
1699 static void __cmd_lat(void)
1700 {
1701         struct rb_node *next;
1702
1703         setup_pager();
1704         read_events();
1705         sort_lat();
1706
1707         printf("\n -----------------------------------------------------------------------------------------\n");
1708         printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms |\n");
1709         printf(" -----------------------------------------------------------------------------------------\n");
1710
1711         next = rb_first(&sorted_atom_root);
1712
1713         while (next) {
1714                 struct work_atoms *work_list;
1715
1716                 work_list = rb_entry(next, struct work_atoms, node);
1717                 output_lat_thread(work_list);
1718                 next = rb_next(next);
1719         }
1720
1721         printf(" -----------------------------------------------------------------------------------------\n");
1722         printf("  TOTAL:                |%11.3f ms |%9Ld |\n",
1723                 (double)all_runtime/1e6, all_count);
1724
1725         printf(" ---------------------------------------------------\n");
1726
1727         print_bad_events();
1728         printf("\n");
1729
1730 }
1731
1732 static struct trace_sched_handler map_ops  = {
1733         .wakeup_event           = NULL,
1734         .switch_event           = map_switch_event,
1735         .runtime_event          = NULL,
1736         .fork_event             = NULL,
1737 };
1738
1739 static void __cmd_map(void)
1740 {
1741         max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1742
1743         setup_pager();
1744         read_events();
1745         print_bad_events();
1746 }
1747
1748 static void __cmd_replay(void)
1749 {
1750         unsigned long i;
1751
1752         calibrate_run_measurement_overhead();
1753         calibrate_sleep_measurement_overhead();
1754
1755         test_calibrations();
1756
1757         read_events();
1758
1759         printf("nr_run_events:        %ld\n", nr_run_events);
1760         printf("nr_sleep_events:      %ld\n", nr_sleep_events);
1761         printf("nr_wakeup_events:     %ld\n", nr_wakeup_events);
1762
1763         if (targetless_wakeups)
1764                 printf("target-less wakeups:  %ld\n", targetless_wakeups);
1765         if (multitarget_wakeups)
1766                 printf("multi-target wakeups: %ld\n", multitarget_wakeups);
1767         if (nr_run_events_optimized)
1768                 printf("run atoms optimized: %ld\n",
1769                         nr_run_events_optimized);
1770
1771         print_task_traces();
1772         add_cross_task_wakeups();
1773
1774         create_tasks();
1775         printf("------------------------------------------------------------\n");
1776         for (i = 0; i < replay_repeat; i++)
1777                 run_one_test();
1778 }
1779
1780
1781 static const char * const sched_usage[] = {
1782         "perf sched [<options>] {record|latency|map|replay|trace}",
1783         NULL
1784 };
1785
1786 static const struct option sched_options[] = {
1787         OPT_STRING('i', "input", &input_name, "file",
1788                     "input file name"),
1789         OPT_BOOLEAN('v', "verbose", &verbose,
1790                     "be more verbose (show symbol address, etc)"),
1791         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1792                     "dump raw trace in ASCII"),
1793         OPT_END()
1794 };
1795
1796 static const char * const latency_usage[] = {
1797         "perf sched latency [<options>]",
1798         NULL
1799 };
1800
1801 static const struct option latency_options[] = {
1802         OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
1803                    "sort by key(s): runtime, switch, avg, max"),
1804         OPT_BOOLEAN('v', "verbose", &verbose,
1805                     "be more verbose (show symbol address, etc)"),
1806         OPT_INTEGER('C', "CPU", &profile_cpu,
1807                     "CPU to profile on"),
1808         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1809                     "dump raw trace in ASCII"),
1810         OPT_END()
1811 };
1812
1813 static const char * const replay_usage[] = {
1814         "perf sched replay [<options>]",
1815         NULL
1816 };
1817
1818 static const struct option replay_options[] = {
1819         OPT_INTEGER('r', "repeat", &replay_repeat,
1820                     "repeat the workload replay N times (-1: infinite)"),
1821         OPT_BOOLEAN('v', "verbose", &verbose,
1822                     "be more verbose (show symbol address, etc)"),
1823         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1824                     "dump raw trace in ASCII"),
1825         OPT_END()
1826 };
1827
1828 static void setup_sorting(void)
1829 {
1830         char *tmp, *tok, *str = strdup(sort_order);
1831
1832         for (tok = strtok_r(str, ", ", &tmp);
1833                         tok; tok = strtok_r(NULL, ", ", &tmp)) {
1834                 if (sort_dimension__add(tok, &sort_list) < 0) {
1835                         error("Unknown --sort key: `%s'", tok);
1836                         usage_with_options(latency_usage, latency_options);
1837                 }
1838         }
1839
1840         free(str);
1841
1842         sort_dimension__add("pid", &cmp_pid);
1843 }
1844
1845 static const char *record_args[] = {
1846         "record",
1847         "-a",
1848         "-R",
1849         "-M",
1850         "-f",
1851         "-m", "1024",
1852         "-c", "1",
1853         "-e", "sched:sched_switch:r",
1854         "-e", "sched:sched_stat_wait:r",
1855         "-e", "sched:sched_stat_sleep:r",
1856         "-e", "sched:sched_stat_iowait:r",
1857         "-e", "sched:sched_stat_runtime:r",
1858         "-e", "sched:sched_process_exit:r",
1859         "-e", "sched:sched_process_fork:r",
1860         "-e", "sched:sched_wakeup:r",
1861         "-e", "sched:sched_migrate_task:r",
1862 };
1863
1864 static int __cmd_record(int argc, const char **argv)
1865 {
1866         unsigned int rec_argc, i, j;
1867         const char **rec_argv;
1868
1869         rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1870         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1871
1872         for (i = 0; i < ARRAY_SIZE(record_args); i++)
1873                 rec_argv[i] = strdup(record_args[i]);
1874
1875         for (j = 1; j < (unsigned int)argc; j++, i++)
1876                 rec_argv[i] = argv[j];
1877
1878         BUG_ON(i != rec_argc);
1879
1880         return cmd_record(i, rec_argv, NULL);
1881 }
1882
1883 int cmd_sched(int argc, const char **argv, const char *prefix __used)
1884 {
1885         argc = parse_options(argc, argv, sched_options, sched_usage,
1886                              PARSE_OPT_STOP_AT_NON_OPTION);
1887         if (!argc)
1888                 usage_with_options(sched_usage, sched_options);
1889
1890         /*
1891          * Aliased to 'perf trace' for now:
1892          */
1893         if (!strcmp(argv[0], "trace"))
1894                 return cmd_trace(argc, argv, prefix);
1895
1896         symbol__init(0);
1897         if (!strncmp(argv[0], "rec", 3)) {
1898                 return __cmd_record(argc, argv);
1899         } else if (!strncmp(argv[0], "lat", 3)) {
1900                 trace_handler = &lat_ops;
1901                 if (argc > 1) {
1902                         argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1903                         if (argc)
1904                                 usage_with_options(latency_usage, latency_options);
1905                 }
1906                 setup_sorting();
1907                 __cmd_lat();
1908         } else if (!strcmp(argv[0], "map")) {
1909                 trace_handler = &map_ops;
1910                 setup_sorting();
1911                 __cmd_map();
1912         } else if (!strncmp(argv[0], "rep", 3)) {
1913                 trace_handler = &replay_ops;
1914                 if (argc) {
1915                         argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1916                         if (argc)
1917                                 usage_with_options(replay_usage, replay_options);
1918                 }
1919                 __cmd_replay();
1920         } else {
1921                 usage_with_options(sched_usage, sched_options);
1922         }
1923
1924         return 0;
1925 }