]> Pileus Git - ~andy/linux/blob - tools/perf/bench/numa.c
Merge tag 'ktest-v3.9' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux...
[~andy/linux] / tools / perf / bench / numa.c
1 /*
2  * numa.c
3  *
4  * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
5  */
6
7 #include "../perf.h"
8 #include "../builtin.h"
9 #include "../util/util.h"
10 #include "../util/parse-options.h"
11
12 #include "bench.h"
13
14 #include <errno.h>
15 #include <sched.h>
16 #include <stdio.h>
17 #include <assert.h>
18 #include <malloc.h>
19 #include <signal.h>
20 #include <stdlib.h>
21 #include <string.h>
22 #include <unistd.h>
23 #include <pthread.h>
24 #include <sys/mman.h>
25 #include <sys/time.h>
26 #include <sys/wait.h>
27 #include <sys/prctl.h>
28 #include <sys/types.h>
29
30 #include <numa.h>
31 #include <numaif.h>
32
33 /*
34  * Regular printout to the terminal, supressed if -q is specified:
35  */
36 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
37
38 /*
39  * Debug printf:
40  */
41 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
42
43 struct thread_data {
44         int                     curr_cpu;
45         cpu_set_t               bind_cpumask;
46         int                     bind_node;
47         u8                      *process_data;
48         int                     process_nr;
49         int                     thread_nr;
50         int                     task_nr;
51         unsigned int            loops_done;
52         u64                     val;
53         u64                     runtime_ns;
54         pthread_mutex_t         *process_lock;
55 };
56
57 /* Parameters set by options: */
58
59 struct params {
60         /* Startup synchronization: */
61         bool                    serialize_startup;
62
63         /* Task hierarchy: */
64         int                     nr_proc;
65         int                     nr_threads;
66
67         /* Working set sizes: */
68         const char              *mb_global_str;
69         const char              *mb_proc_str;
70         const char              *mb_proc_locked_str;
71         const char              *mb_thread_str;
72
73         double                  mb_global;
74         double                  mb_proc;
75         double                  mb_proc_locked;
76         double                  mb_thread;
77
78         /* Access patterns to the working set: */
79         bool                    data_reads;
80         bool                    data_writes;
81         bool                    data_backwards;
82         bool                    data_zero_memset;
83         bool                    data_rand_walk;
84         u32                     nr_loops;
85         u32                     nr_secs;
86         u32                     sleep_usecs;
87
88         /* Working set initialization: */
89         bool                    init_zero;
90         bool                    init_random;
91         bool                    init_cpu0;
92
93         /* Misc options: */
94         int                     show_details;
95         int                     run_all;
96         int                     thp;
97
98         long                    bytes_global;
99         long                    bytes_process;
100         long                    bytes_process_locked;
101         long                    bytes_thread;
102
103         int                     nr_tasks;
104         bool                    show_quiet;
105
106         bool                    show_convergence;
107         bool                    measure_convergence;
108
109         int                     perturb_secs;
110         int                     nr_cpus;
111         int                     nr_nodes;
112
113         /* Affinity options -C and -N: */
114         char                    *cpu_list_str;
115         char                    *node_list_str;
116 };
117
118
119 /* Global, read-writable area, accessible to all processes and threads: */
120
121 struct global_info {
122         u8                      *data;
123
124         pthread_mutex_t         startup_mutex;
125         int                     nr_tasks_started;
126
127         pthread_mutex_t         startup_done_mutex;
128
129         pthread_mutex_t         start_work_mutex;
130         int                     nr_tasks_working;
131
132         pthread_mutex_t         stop_work_mutex;
133         u64                     bytes_done;
134
135         struct thread_data      *threads;
136
137         /* Convergence latency measurement: */
138         bool                    all_converged;
139         bool                    stop_work;
140
141         int                     print_once;
142
143         struct params           p;
144 };
145
146 static struct global_info       *g = NULL;
147
148 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
149 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
150
151 struct params p0;
152
153 static const struct option options[] = {
154         OPT_INTEGER('p', "nr_proc"      , &p0.nr_proc,          "number of processes"),
155         OPT_INTEGER('t', "nr_threads"   , &p0.nr_threads,       "number of threads per process"),
156
157         OPT_STRING('G', "mb_global"     , &p0.mb_global_str,    "MB", "global  memory (MBs)"),
158         OPT_STRING('P', "mb_proc"       , &p0.mb_proc_str,      "MB", "process memory (MBs)"),
159         OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
160         OPT_STRING('T', "mb_thread"     , &p0.mb_thread_str,    "MB", "thread  memory (MBs)"),
161
162         OPT_UINTEGER('l', "nr_loops"    , &p0.nr_loops,         "max number of loops to run"),
163         OPT_UINTEGER('s', "nr_secs"     , &p0.nr_secs,          "max number of seconds to run"),
164         OPT_UINTEGER('u', "usleep"      , &p0.sleep_usecs,      "usecs to sleep per loop iteration"),
165
166         OPT_BOOLEAN('R', "data_reads"   , &p0.data_reads,       "access the data via writes (can be mixed with -W)"),
167         OPT_BOOLEAN('W', "data_writes"  , &p0.data_writes,      "access the data via writes (can be mixed with -R)"),
168         OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,  "access the data backwards as well"),
169         OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
170         OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,  "access the data with random (32bit LFSR) walk"),
171
172
173         OPT_BOOLEAN('z', "init_zero"    , &p0.init_zero,        "bzero the initial allocations"),
174         OPT_BOOLEAN('I', "init_random"  , &p0.init_random,      "randomize the contents of the initial allocations"),
175         OPT_BOOLEAN('0', "init_cpu0"    , &p0.init_cpu0,        "do the initial allocations on CPU#0"),
176         OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,      "perturb thread 0/0 every X secs, to test convergence stability"),
177
178         OPT_INCR   ('d', "show_details" , &p0.show_details,     "Show details"),
179         OPT_INCR   ('a', "all"          , &p0.run_all,          "Run all tests in the suite"),
180         OPT_INTEGER('H', "thp"          , &p0.thp,              "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
181         OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"),
182         OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
183         OPT_BOOLEAN('q', "quiet"        , &p0.show_quiet,       "bzero the initial allocations"),
184         OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
185
186         /* Special option string parsing callbacks: */
187         OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
188                         "bind the first N tasks to these specific cpus (the rest is unbound)",
189                         parse_cpus_opt),
190         OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
191                         "bind the first N tasks to these specific memory nodes (the rest is unbound)",
192                         parse_nodes_opt),
193         OPT_END()
194 };
195
196 static const char * const bench_numa_usage[] = {
197         "perf bench numa <options>",
198         NULL
199 };
200
201 static const char * const numa_usage[] = {
202         "perf bench numa mem [<options>]",
203         NULL
204 };
205
206 static cpu_set_t bind_to_cpu(int target_cpu)
207 {
208         cpu_set_t orig_mask, mask;
209         int ret;
210
211         ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
212         BUG_ON(ret);
213
214         CPU_ZERO(&mask);
215
216         if (target_cpu == -1) {
217                 int cpu;
218
219                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
220                         CPU_SET(cpu, &mask);
221         } else {
222                 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
223                 CPU_SET(target_cpu, &mask);
224         }
225
226         ret = sched_setaffinity(0, sizeof(mask), &mask);
227         BUG_ON(ret);
228
229         return orig_mask;
230 }
231
232 static cpu_set_t bind_to_node(int target_node)
233 {
234         int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
235         cpu_set_t orig_mask, mask;
236         int cpu;
237         int ret;
238
239         BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
240         BUG_ON(!cpus_per_node);
241
242         ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
243         BUG_ON(ret);
244
245         CPU_ZERO(&mask);
246
247         if (target_node == -1) {
248                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
249                         CPU_SET(cpu, &mask);
250         } else {
251                 int cpu_start = (target_node + 0) * cpus_per_node;
252                 int cpu_stop  = (target_node + 1) * cpus_per_node;
253
254                 BUG_ON(cpu_stop > g->p.nr_cpus);
255
256                 for (cpu = cpu_start; cpu < cpu_stop; cpu++)
257                         CPU_SET(cpu, &mask);
258         }
259
260         ret = sched_setaffinity(0, sizeof(mask), &mask);
261         BUG_ON(ret);
262
263         return orig_mask;
264 }
265
266 static void bind_to_cpumask(cpu_set_t mask)
267 {
268         int ret;
269
270         ret = sched_setaffinity(0, sizeof(mask), &mask);
271         BUG_ON(ret);
272 }
273
274 static void mempol_restore(void)
275 {
276         int ret;
277
278         ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
279
280         BUG_ON(ret);
281 }
282
283 static void bind_to_memnode(int node)
284 {
285         unsigned long nodemask;
286         int ret;
287
288         if (node == -1)
289                 return;
290
291         BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask));
292         nodemask = 1L << node;
293
294         ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
295         dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
296
297         BUG_ON(ret);
298 }
299
300 #define HPSIZE (2*1024*1024)
301
302 #define set_taskname(fmt...)                            \
303 do {                                                    \
304         char name[20];                                  \
305                                                         \
306         snprintf(name, 20, fmt);                        \
307         prctl(PR_SET_NAME, name);                       \
308 } while (0)
309
310 static u8 *alloc_data(ssize_t bytes0, int map_flags,
311                       int init_zero, int init_cpu0, int thp, int init_random)
312 {
313         cpu_set_t orig_mask;
314         ssize_t bytes;
315         u8 *buf;
316         int ret;
317
318         if (!bytes0)
319                 return NULL;
320
321         /* Allocate and initialize all memory on CPU#0: */
322         if (init_cpu0) {
323                 orig_mask = bind_to_node(0);
324                 bind_to_memnode(0);
325         }
326
327         bytes = bytes0 + HPSIZE;
328
329         buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
330         BUG_ON(buf == (void *)-1);
331
332         if (map_flags == MAP_PRIVATE) {
333                 if (thp > 0) {
334                         ret = madvise(buf, bytes, MADV_HUGEPAGE);
335                         if (ret && !g->print_once) {
336                                 g->print_once = 1;
337                                 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
338                         }
339                 }
340                 if (thp < 0) {
341                         ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
342                         if (ret && !g->print_once) {
343                                 g->print_once = 1;
344                                 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
345                         }
346                 }
347         }
348
349         if (init_zero) {
350                 bzero(buf, bytes);
351         } else {
352                 /* Initialize random contents, different in each word: */
353                 if (init_random) {
354                         u64 *wbuf = (void *)buf;
355                         long off = rand();
356                         long i;
357
358                         for (i = 0; i < bytes/8; i++)
359                                 wbuf[i] = i + off;
360                 }
361         }
362
363         /* Align to 2MB boundary: */
364         buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
365
366         /* Restore affinity: */
367         if (init_cpu0) {
368                 bind_to_cpumask(orig_mask);
369                 mempol_restore();
370         }
371
372         return buf;
373 }
374
375 static void free_data(void *data, ssize_t bytes)
376 {
377         int ret;
378
379         if (!data)
380                 return;
381
382         ret = munmap(data, bytes);
383         BUG_ON(ret);
384 }
385
386 /*
387  * Create a shared memory buffer that can be shared between processes, zeroed:
388  */
389 static void * zalloc_shared_data(ssize_t bytes)
390 {
391         return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
392 }
393
394 /*
395  * Create a shared memory buffer that can be shared between processes:
396  */
397 static void * setup_shared_data(ssize_t bytes)
398 {
399         return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
400 }
401
402 /*
403  * Allocate process-local memory - this will either be shared between
404  * threads of this process, or only be accessed by this thread:
405  */
406 static void * setup_private_data(ssize_t bytes)
407 {
408         return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
409 }
410
411 /*
412  * Return a process-shared (global) mutex:
413  */
414 static void init_global_mutex(pthread_mutex_t *mutex)
415 {
416         pthread_mutexattr_t attr;
417
418         pthread_mutexattr_init(&attr);
419         pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
420         pthread_mutex_init(mutex, &attr);
421 }
422
423 static int parse_cpu_list(const char *arg)
424 {
425         p0.cpu_list_str = strdup(arg);
426
427         dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
428
429         return 0;
430 }
431
432 static void parse_setup_cpu_list(void)
433 {
434         struct thread_data *td;
435         char *str0, *str;
436         int t;
437
438         if (!g->p.cpu_list_str)
439                 return;
440
441         dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
442
443         str0 = str = strdup(g->p.cpu_list_str);
444         t = 0;
445
446         BUG_ON(!str);
447
448         tprintf("# binding tasks to CPUs:\n");
449         tprintf("#  ");
450
451         while (true) {
452                 int bind_cpu, bind_cpu_0, bind_cpu_1;
453                 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
454                 int bind_len;
455                 int step;
456                 int mul;
457
458                 tok = strsep(&str, ",");
459                 if (!tok)
460                         break;
461
462                 tok_end = strstr(tok, "-");
463
464                 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
465                 if (!tok_end) {
466                         /* Single CPU specified: */
467                         bind_cpu_0 = bind_cpu_1 = atol(tok);
468                 } else {
469                         /* CPU range specified (for example: "5-11"): */
470                         bind_cpu_0 = atol(tok);
471                         bind_cpu_1 = atol(tok_end + 1);
472                 }
473
474                 step = 1;
475                 tok_step = strstr(tok, "#");
476                 if (tok_step) {
477                         step = atol(tok_step + 1);
478                         BUG_ON(step <= 0 || step >= g->p.nr_cpus);
479                 }
480
481                 /*
482                  * Mask length.
483                  * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
484                  * where the _4 means the next 4 CPUs are allowed.
485                  */
486                 bind_len = 1;
487                 tok_len = strstr(tok, "_");
488                 if (tok_len) {
489                         bind_len = atol(tok_len + 1);
490                         BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
491                 }
492
493                 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
494                 mul = 1;
495                 tok_mul = strstr(tok, "x");
496                 if (tok_mul) {
497                         mul = atol(tok_mul + 1);
498                         BUG_ON(mul <= 0);
499                 }
500
501                 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
502
503                 BUG_ON(bind_cpu_0 < 0 || bind_cpu_0 >= g->p.nr_cpus);
504                 BUG_ON(bind_cpu_1 < 0 || bind_cpu_1 >= g->p.nr_cpus);
505                 BUG_ON(bind_cpu_0 > bind_cpu_1);
506
507                 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
508                         int i;
509
510                         for (i = 0; i < mul; i++) {
511                                 int cpu;
512
513                                 if (t >= g->p.nr_tasks) {
514                                         printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
515                                         goto out;
516                                 }
517                                 td = g->threads + t;
518
519                                 if (t)
520                                         tprintf(",");
521                                 if (bind_len > 1) {
522                                         tprintf("%2d/%d", bind_cpu, bind_len);
523                                 } else {
524                                         tprintf("%2d", bind_cpu);
525                                 }
526
527                                 CPU_ZERO(&td->bind_cpumask);
528                                 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
529                                         BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
530                                         CPU_SET(cpu, &td->bind_cpumask);
531                                 }
532                                 t++;
533                         }
534                 }
535         }
536 out:
537
538         tprintf("\n");
539
540         if (t < g->p.nr_tasks)
541                 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
542
543         free(str0);
544 }
545
546 static int parse_cpus_opt(const struct option *opt __maybe_unused,
547                           const char *arg, int unset __maybe_unused)
548 {
549         if (!arg)
550                 return -1;
551
552         return parse_cpu_list(arg);
553 }
554
555 static int parse_node_list(const char *arg)
556 {
557         p0.node_list_str = strdup(arg);
558
559         dprintf("got NODE list: {%s}\n", p0.node_list_str);
560
561         return 0;
562 }
563
564 static void parse_setup_node_list(void)
565 {
566         struct thread_data *td;
567         char *str0, *str;
568         int t;
569
570         if (!g->p.node_list_str)
571                 return;
572
573         dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
574
575         str0 = str = strdup(g->p.node_list_str);
576         t = 0;
577
578         BUG_ON(!str);
579
580         tprintf("# binding tasks to NODEs:\n");
581         tprintf("# ");
582
583         while (true) {
584                 int bind_node, bind_node_0, bind_node_1;
585                 char *tok, *tok_end, *tok_step, *tok_mul;
586                 int step;
587                 int mul;
588
589                 tok = strsep(&str, ",");
590                 if (!tok)
591                         break;
592
593                 tok_end = strstr(tok, "-");
594
595                 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
596                 if (!tok_end) {
597                         /* Single NODE specified: */
598                         bind_node_0 = bind_node_1 = atol(tok);
599                 } else {
600                         /* NODE range specified (for example: "5-11"): */
601                         bind_node_0 = atol(tok);
602                         bind_node_1 = atol(tok_end + 1);
603                 }
604
605                 step = 1;
606                 tok_step = strstr(tok, "#");
607                 if (tok_step) {
608                         step = atol(tok_step + 1);
609                         BUG_ON(step <= 0 || step >= g->p.nr_nodes);
610                 }
611
612                 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
613                 mul = 1;
614                 tok_mul = strstr(tok, "x");
615                 if (tok_mul) {
616                         mul = atol(tok_mul + 1);
617                         BUG_ON(mul <= 0);
618                 }
619
620                 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
621
622                 BUG_ON(bind_node_0 < 0 || bind_node_0 >= g->p.nr_nodes);
623                 BUG_ON(bind_node_1 < 0 || bind_node_1 >= g->p.nr_nodes);
624                 BUG_ON(bind_node_0 > bind_node_1);
625
626                 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
627                         int i;
628
629                         for (i = 0; i < mul; i++) {
630                                 if (t >= g->p.nr_tasks) {
631                                         printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
632                                         goto out;
633                                 }
634                                 td = g->threads + t;
635
636                                 if (!t)
637                                         tprintf(" %2d", bind_node);
638                                 else
639                                         tprintf(",%2d", bind_node);
640
641                                 td->bind_node = bind_node;
642                                 t++;
643                         }
644                 }
645         }
646 out:
647
648         tprintf("\n");
649
650         if (t < g->p.nr_tasks)
651                 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
652
653         free(str0);
654 }
655
656 static int parse_nodes_opt(const struct option *opt __maybe_unused,
657                           const char *arg, int unset __maybe_unused)
658 {
659         if (!arg)
660                 return -1;
661
662         return parse_node_list(arg);
663
664         return 0;
665 }
666
667 #define BIT(x) (1ul << x)
668
669 static inline uint32_t lfsr_32(uint32_t lfsr)
670 {
671         const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
672         return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
673 }
674
675 /*
676  * Make sure there's real data dependency to RAM (when read
677  * accesses are enabled), so the compiler, the CPU and the
678  * kernel (KSM, zero page, etc.) cannot optimize away RAM
679  * accesses:
680  */
681 static inline u64 access_data(u64 *data __attribute__((unused)), u64 val)
682 {
683         if (g->p.data_reads)
684                 val += *data;
685         if (g->p.data_writes)
686                 *data = val + 1;
687         return val;
688 }
689
690 /*
691  * The worker process does two types of work, a forwards going
692  * loop and a backwards going loop.
693  *
694  * We do this so that on multiprocessor systems we do not create
695  * a 'train' of processing, with highly synchronized processes,
696  * skewing the whole benchmark.
697  */
698 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
699 {
700         long words = bytes/sizeof(u64);
701         u64 *data = (void *)__data;
702         long chunk_0, chunk_1;
703         u64 *d0, *d, *d1;
704         long off;
705         long i;
706
707         BUG_ON(!data && words);
708         BUG_ON(data && !words);
709
710         if (!data)
711                 return val;
712
713         /* Very simple memset() work variant: */
714         if (g->p.data_zero_memset && !g->p.data_rand_walk) {
715                 bzero(data, bytes);
716                 return val;
717         }
718
719         /* Spread out by PID/TID nr and by loop nr: */
720         chunk_0 = words/nr_max;
721         chunk_1 = words/g->p.nr_loops;
722         off = nr*chunk_0 + loop*chunk_1;
723
724         while (off >= words)
725                 off -= words;
726
727         if (g->p.data_rand_walk) {
728                 u32 lfsr = nr + loop + val;
729                 int j;
730
731                 for (i = 0; i < words/1024; i++) {
732                         long start, end;
733
734                         lfsr = lfsr_32(lfsr);
735
736                         start = lfsr % words;
737                         end = min(start + 1024, words-1);
738
739                         if (g->p.data_zero_memset) {
740                                 bzero(data + start, (end-start) * sizeof(u64));
741                         } else {
742                                 for (j = start; j < end; j++)
743                                         val = access_data(data + j, val);
744                         }
745                 }
746         } else if (!g->p.data_backwards || (nr + loop) & 1) {
747
748                 d0 = data + off;
749                 d  = data + off + 1;
750                 d1 = data + words;
751
752                 /* Process data forwards: */
753                 for (;;) {
754                         if (unlikely(d >= d1))
755                                 d = data;
756                         if (unlikely(d == d0))
757                                 break;
758
759                         val = access_data(d, val);
760
761                         d++;
762                 }
763         } else {
764                 /* Process data backwards: */
765
766                 d0 = data + off;
767                 d  = data + off - 1;
768                 d1 = data + words;
769
770                 /* Process data forwards: */
771                 for (;;) {
772                         if (unlikely(d < data))
773                                 d = data + words-1;
774                         if (unlikely(d == d0))
775                                 break;
776
777                         val = access_data(d, val);
778
779                         d--;
780                 }
781         }
782
783         return val;
784 }
785
786 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
787 {
788         unsigned int cpu;
789
790         cpu = sched_getcpu();
791
792         g->threads[task_nr].curr_cpu = cpu;
793         prctl(0, bytes_worked);
794 }
795
796 #define MAX_NR_NODES    64
797
798 /*
799  * Count the number of nodes a process's threads
800  * are spread out on.
801  *
802  * A count of 1 means that the process is compressed
803  * to a single node. A count of g->p.nr_nodes means it's
804  * spread out on the whole system.
805  */
806 static int count_process_nodes(int process_nr)
807 {
808         char node_present[MAX_NR_NODES] = { 0, };
809         int nodes;
810         int n, t;
811
812         for (t = 0; t < g->p.nr_threads; t++) {
813                 struct thread_data *td;
814                 int task_nr;
815                 int node;
816
817                 task_nr = process_nr*g->p.nr_threads + t;
818                 td = g->threads + task_nr;
819
820                 node = numa_node_of_cpu(td->curr_cpu);
821                 node_present[node] = 1;
822         }
823
824         nodes = 0;
825
826         for (n = 0; n < MAX_NR_NODES; n++)
827                 nodes += node_present[n];
828
829         return nodes;
830 }
831
832 /*
833  * Count the number of distinct process-threads a node contains.
834  *
835  * A count of 1 means that the node contains only a single
836  * process. If all nodes on the system contain at most one
837  * process then we are well-converged.
838  */
839 static int count_node_processes(int node)
840 {
841         int processes = 0;
842         int t, p;
843
844         for (p = 0; p < g->p.nr_proc; p++) {
845                 for (t = 0; t < g->p.nr_threads; t++) {
846                         struct thread_data *td;
847                         int task_nr;
848                         int n;
849
850                         task_nr = p*g->p.nr_threads + t;
851                         td = g->threads + task_nr;
852
853                         n = numa_node_of_cpu(td->curr_cpu);
854                         if (n == node) {
855                                 processes++;
856                                 break;
857                         }
858                 }
859         }
860
861         return processes;
862 }
863
864 static void calc_convergence_compression(int *strong)
865 {
866         unsigned int nodes_min, nodes_max;
867         int p;
868
869         nodes_min = -1;
870         nodes_max =  0;
871
872         for (p = 0; p < g->p.nr_proc; p++) {
873                 unsigned int nodes = count_process_nodes(p);
874
875                 nodes_min = min(nodes, nodes_min);
876                 nodes_max = max(nodes, nodes_max);
877         }
878
879         /* Strong convergence: all threads compress on a single node: */
880         if (nodes_min == 1 && nodes_max == 1) {
881                 *strong = 1;
882         } else {
883                 *strong = 0;
884                 tprintf(" {%d-%d}", nodes_min, nodes_max);
885         }
886 }
887
888 static void calc_convergence(double runtime_ns_max, double *convergence)
889 {
890         unsigned int loops_done_min, loops_done_max;
891         int process_groups;
892         int nodes[MAX_NR_NODES];
893         int distance;
894         int nr_min;
895         int nr_max;
896         int strong;
897         int sum;
898         int nr;
899         int node;
900         int cpu;
901         int t;
902
903         if (!g->p.show_convergence && !g->p.measure_convergence)
904                 return;
905
906         for (node = 0; node < g->p.nr_nodes; node++)
907                 nodes[node] = 0;
908
909         loops_done_min = -1;
910         loops_done_max = 0;
911
912         for (t = 0; t < g->p.nr_tasks; t++) {
913                 struct thread_data *td = g->threads + t;
914                 unsigned int loops_done;
915
916                 cpu = td->curr_cpu;
917
918                 /* Not all threads have written it yet: */
919                 if (cpu < 0)
920                         continue;
921
922                 node = numa_node_of_cpu(cpu);
923
924                 nodes[node]++;
925
926                 loops_done = td->loops_done;
927                 loops_done_min = min(loops_done, loops_done_min);
928                 loops_done_max = max(loops_done, loops_done_max);
929         }
930
931         nr_max = 0;
932         nr_min = g->p.nr_tasks;
933         sum = 0;
934
935         for (node = 0; node < g->p.nr_nodes; node++) {
936                 nr = nodes[node];
937                 nr_min = min(nr, nr_min);
938                 nr_max = max(nr, nr_max);
939                 sum += nr;
940         }
941         BUG_ON(nr_min > nr_max);
942
943         BUG_ON(sum > g->p.nr_tasks);
944
945         if (0 && (sum < g->p.nr_tasks))
946                 return;
947
948         /*
949          * Count the number of distinct process groups present
950          * on nodes - when we are converged this will decrease
951          * to g->p.nr_proc:
952          */
953         process_groups = 0;
954
955         for (node = 0; node < g->p.nr_nodes; node++) {
956                 int processes = count_node_processes(node);
957
958                 nr = nodes[node];
959                 tprintf(" %2d/%-2d", nr, processes);
960
961                 process_groups += processes;
962         }
963
964         distance = nr_max - nr_min;
965
966         tprintf(" [%2d/%-2d]", distance, process_groups);
967
968         tprintf(" l:%3d-%-3d (%3d)",
969                 loops_done_min, loops_done_max, loops_done_max-loops_done_min);
970
971         if (loops_done_min && loops_done_max) {
972                 double skew = 1.0 - (double)loops_done_min/loops_done_max;
973
974                 tprintf(" [%4.1f%%]", skew * 100.0);
975         }
976
977         calc_convergence_compression(&strong);
978
979         if (strong && process_groups == g->p.nr_proc) {
980                 if (!*convergence) {
981                         *convergence = runtime_ns_max;
982                         tprintf(" (%6.1fs converged)\n", *convergence/1e9);
983                         if (g->p.measure_convergence) {
984                                 g->all_converged = true;
985                                 g->stop_work = true;
986                         }
987                 }
988         } else {
989                 if (*convergence) {
990                         tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9);
991                         *convergence = 0;
992                 }
993                 tprintf("\n");
994         }
995 }
996
997 static void show_summary(double runtime_ns_max, int l, double *convergence)
998 {
999         tprintf("\r #  %5.1f%%  [%.1f mins]",
1000                 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0);
1001
1002         calc_convergence(runtime_ns_max, convergence);
1003
1004         if (g->p.show_details >= 0)
1005                 fflush(stdout);
1006 }
1007
1008 static void *worker_thread(void *__tdata)
1009 {
1010         struct thread_data *td = __tdata;
1011         struct timeval start0, start, stop, diff;
1012         int process_nr = td->process_nr;
1013         int thread_nr = td->thread_nr;
1014         unsigned long last_perturbance;
1015         int task_nr = td->task_nr;
1016         int details = g->p.show_details;
1017         int first_task, last_task;
1018         double convergence = 0;
1019         u64 val = td->val;
1020         double runtime_ns_max;
1021         u8 *global_data;
1022         u8 *process_data;
1023         u8 *thread_data;
1024         u64 bytes_done;
1025         long work_done;
1026         u32 l;
1027
1028         bind_to_cpumask(td->bind_cpumask);
1029         bind_to_memnode(td->bind_node);
1030
1031         set_taskname("thread %d/%d", process_nr, thread_nr);
1032
1033         global_data = g->data;
1034         process_data = td->process_data;
1035         thread_data = setup_private_data(g->p.bytes_thread);
1036
1037         bytes_done = 0;
1038
1039         last_task = 0;
1040         if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1041                 last_task = 1;
1042
1043         first_task = 0;
1044         if (process_nr == 0 && thread_nr == 0)
1045                 first_task = 1;
1046
1047         if (details >= 2) {
1048                 printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1049                         process_nr, thread_nr, global_data, process_data, thread_data);
1050         }
1051
1052         if (g->p.serialize_startup) {
1053                 pthread_mutex_lock(&g->startup_mutex);
1054                 g->nr_tasks_started++;
1055                 pthread_mutex_unlock(&g->startup_mutex);
1056
1057                 /* Here we will wait for the main process to start us all at once: */
1058                 pthread_mutex_lock(&g->start_work_mutex);
1059                 g->nr_tasks_working++;
1060
1061                 /* Last one wake the main process: */
1062                 if (g->nr_tasks_working == g->p.nr_tasks)
1063                         pthread_mutex_unlock(&g->startup_done_mutex);
1064
1065                 pthread_mutex_unlock(&g->start_work_mutex);
1066         }
1067
1068         gettimeofday(&start0, NULL);
1069
1070         start = stop = start0;
1071         last_perturbance = start.tv_sec;
1072
1073         for (l = 0; l < g->p.nr_loops; l++) {
1074                 start = stop;
1075
1076                 if (g->stop_work)
1077                         break;
1078
1079                 val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,      l, val);
1080                 val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,   l, val);
1081                 val += do_work(thread_data,  g->p.bytes_thread,  0,          1,         l, val);
1082
1083                 if (g->p.sleep_usecs) {
1084                         pthread_mutex_lock(td->process_lock);
1085                         usleep(g->p.sleep_usecs);
1086                         pthread_mutex_unlock(td->process_lock);
1087                 }
1088                 /*
1089                  * Amount of work to be done under a process-global lock:
1090                  */
1091                 if (g->p.bytes_process_locked) {
1092                         pthread_mutex_lock(td->process_lock);
1093                         val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,    l, val);
1094                         pthread_mutex_unlock(td->process_lock);
1095                 }
1096
1097                 work_done = g->p.bytes_global + g->p.bytes_process +
1098                             g->p.bytes_process_locked + g->p.bytes_thread;
1099
1100                 update_curr_cpu(task_nr, work_done);
1101                 bytes_done += work_done;
1102
1103                 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1104                         continue;
1105
1106                 td->loops_done = l;
1107
1108                 gettimeofday(&stop, NULL);
1109
1110                 /* Check whether our max runtime timed out: */
1111                 if (g->p.nr_secs) {
1112                         timersub(&stop, &start0, &diff);
1113                         if (diff.tv_sec >= g->p.nr_secs) {
1114                                 g->stop_work = true;
1115                                 break;
1116                         }
1117                 }
1118
1119                 /* Update the summary at most once per second: */
1120                 if (start.tv_sec == stop.tv_sec)
1121                         continue;
1122
1123                 /*
1124                  * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1125                  * by migrating to CPU#0:
1126                  */
1127                 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1128                         cpu_set_t orig_mask;
1129                         int target_cpu;
1130                         int this_cpu;
1131
1132                         last_perturbance = stop.tv_sec;
1133
1134                         /*
1135                          * Depending on where we are running, move into
1136                          * the other half of the system, to create some
1137                          * real disturbance:
1138                          */
1139                         this_cpu = g->threads[task_nr].curr_cpu;
1140                         if (this_cpu < g->p.nr_cpus/2)
1141                                 target_cpu = g->p.nr_cpus-1;
1142                         else
1143                                 target_cpu = 0;
1144
1145                         orig_mask = bind_to_cpu(target_cpu);
1146
1147                         /* Here we are running on the target CPU already */
1148                         if (details >= 1)
1149                                 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1150
1151                         bind_to_cpumask(orig_mask);
1152                 }
1153
1154                 if (details >= 3) {
1155                         timersub(&stop, &start, &diff);
1156                         runtime_ns_max = diff.tv_sec * 1000000000;
1157                         runtime_ns_max += diff.tv_usec * 1000;
1158
1159                         if (details >= 0) {
1160                                 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016lx]\n",
1161                                         process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1162                         }
1163                         fflush(stdout);
1164                 }
1165                 if (!last_task)
1166                         continue;
1167
1168                 timersub(&stop, &start0, &diff);
1169                 runtime_ns_max = diff.tv_sec * 1000000000ULL;
1170                 runtime_ns_max += diff.tv_usec * 1000ULL;
1171
1172                 show_summary(runtime_ns_max, l, &convergence);
1173         }
1174
1175         gettimeofday(&stop, NULL);
1176         timersub(&stop, &start0, &diff);
1177         td->runtime_ns = diff.tv_sec * 1000000000ULL;
1178         td->runtime_ns += diff.tv_usec * 1000ULL;
1179
1180         free_data(thread_data, g->p.bytes_thread);
1181
1182         pthread_mutex_lock(&g->stop_work_mutex);
1183         g->bytes_done += bytes_done;
1184         pthread_mutex_unlock(&g->stop_work_mutex);
1185
1186         return NULL;
1187 }
1188
1189 /*
1190  * A worker process starts a couple of threads:
1191  */
1192 static void worker_process(int process_nr)
1193 {
1194         pthread_mutex_t process_lock;
1195         struct thread_data *td;
1196         pthread_t *pthreads;
1197         u8 *process_data;
1198         int task_nr;
1199         int ret;
1200         int t;
1201
1202         pthread_mutex_init(&process_lock, NULL);
1203         set_taskname("process %d", process_nr);
1204
1205         /*
1206          * Pick up the memory policy and the CPU binding of our first thread,
1207          * so that we initialize memory accordingly:
1208          */
1209         task_nr = process_nr*g->p.nr_threads;
1210         td = g->threads + task_nr;
1211
1212         bind_to_memnode(td->bind_node);
1213         bind_to_cpumask(td->bind_cpumask);
1214
1215         pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1216         process_data = setup_private_data(g->p.bytes_process);
1217
1218         if (g->p.show_details >= 3) {
1219                 printf(" # process %2d global mem: %p, process mem: %p\n",
1220                         process_nr, g->data, process_data);
1221         }
1222
1223         for (t = 0; t < g->p.nr_threads; t++) {
1224                 task_nr = process_nr*g->p.nr_threads + t;
1225                 td = g->threads + task_nr;
1226
1227                 td->process_data = process_data;
1228                 td->process_nr   = process_nr;
1229                 td->thread_nr    = t;
1230                 td->task_nr      = task_nr;
1231                 td->val          = rand();
1232                 td->curr_cpu     = -1;
1233                 td->process_lock = &process_lock;
1234
1235                 ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1236                 BUG_ON(ret);
1237         }
1238
1239         for (t = 0; t < g->p.nr_threads; t++) {
1240                 ret = pthread_join(pthreads[t], NULL);
1241                 BUG_ON(ret);
1242         }
1243
1244         free_data(process_data, g->p.bytes_process);
1245         free(pthreads);
1246 }
1247
1248 static void print_summary(void)
1249 {
1250         if (g->p.show_details < 0)
1251                 return;
1252
1253         printf("\n ###\n");
1254         printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1255                 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
1256         printf(" #      %5dx %5ldMB global  shared mem operations\n",
1257                         g->p.nr_loops, g->p.bytes_global/1024/1024);
1258         printf(" #      %5dx %5ldMB process shared mem operations\n",
1259                         g->p.nr_loops, g->p.bytes_process/1024/1024);
1260         printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1261                         g->p.nr_loops, g->p.bytes_thread/1024/1024);
1262
1263         printf(" ###\n");
1264
1265         printf("\n ###\n"); fflush(stdout);
1266 }
1267
1268 static void init_thread_data(void)
1269 {
1270         ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1271         int t;
1272
1273         g->threads = zalloc_shared_data(size);
1274
1275         for (t = 0; t < g->p.nr_tasks; t++) {
1276                 struct thread_data *td = g->threads + t;
1277                 int cpu;
1278
1279                 /* Allow all nodes by default: */
1280                 td->bind_node = -1;
1281
1282                 /* Allow all CPUs by default: */
1283                 CPU_ZERO(&td->bind_cpumask);
1284                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1285                         CPU_SET(cpu, &td->bind_cpumask);
1286         }
1287 }
1288
1289 static void deinit_thread_data(void)
1290 {
1291         ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1292
1293         free_data(g->threads, size);
1294 }
1295
1296 static int init(void)
1297 {
1298         g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1299
1300         /* Copy over options: */
1301         g->p = p0;
1302
1303         g->p.nr_cpus = numa_num_configured_cpus();
1304
1305         g->p.nr_nodes = numa_max_node() + 1;
1306
1307         /* char array in count_process_nodes(): */
1308         BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1309
1310         if (g->p.show_quiet && !g->p.show_details)
1311                 g->p.show_details = -1;
1312
1313         /* Some memory should be specified: */
1314         if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1315                 return -1;
1316
1317         if (g->p.mb_global_str) {
1318                 g->p.mb_global = atof(g->p.mb_global_str);
1319                 BUG_ON(g->p.mb_global < 0);
1320         }
1321
1322         if (g->p.mb_proc_str) {
1323                 g->p.mb_proc = atof(g->p.mb_proc_str);
1324                 BUG_ON(g->p.mb_proc < 0);
1325         }
1326
1327         if (g->p.mb_proc_locked_str) {
1328                 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1329                 BUG_ON(g->p.mb_proc_locked < 0);
1330                 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1331         }
1332
1333         if (g->p.mb_thread_str) {
1334                 g->p.mb_thread = atof(g->p.mb_thread_str);
1335                 BUG_ON(g->p.mb_thread < 0);
1336         }
1337
1338         BUG_ON(g->p.nr_threads <= 0);
1339         BUG_ON(g->p.nr_proc <= 0);
1340
1341         g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1342
1343         g->p.bytes_global               = g->p.mb_global        *1024L*1024L;
1344         g->p.bytes_process              = g->p.mb_proc          *1024L*1024L;
1345         g->p.bytes_process_locked       = g->p.mb_proc_locked   *1024L*1024L;
1346         g->p.bytes_thread               = g->p.mb_thread        *1024L*1024L;
1347
1348         g->data = setup_shared_data(g->p.bytes_global);
1349
1350         /* Startup serialization: */
1351         init_global_mutex(&g->start_work_mutex);
1352         init_global_mutex(&g->startup_mutex);
1353         init_global_mutex(&g->startup_done_mutex);
1354         init_global_mutex(&g->stop_work_mutex);
1355
1356         init_thread_data();
1357
1358         tprintf("#\n");
1359         parse_setup_cpu_list();
1360         parse_setup_node_list();
1361         tprintf("#\n");
1362
1363         print_summary();
1364
1365         return 0;
1366 }
1367
1368 static void deinit(void)
1369 {
1370         free_data(g->data, g->p.bytes_global);
1371         g->data = NULL;
1372
1373         deinit_thread_data();
1374
1375         free_data(g, sizeof(*g));
1376         g = NULL;
1377 }
1378
1379 /*
1380  * Print a short or long result, depending on the verbosity setting:
1381  */
1382 static void print_res(const char *name, double val,
1383                       const char *txt_unit, const char *txt_short, const char *txt_long)
1384 {
1385         if (!name)
1386                 name = "main,";
1387
1388         if (g->p.show_quiet)
1389                 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1390         else
1391                 printf(" %14.3f %s\n", val, txt_long);
1392 }
1393
1394 static int __bench_numa(const char *name)
1395 {
1396         struct timeval start, stop, diff;
1397         u64 runtime_ns_min, runtime_ns_sum;
1398         pid_t *pids, pid, wpid;
1399         double delta_runtime;
1400         double runtime_avg;
1401         double runtime_sec_max;
1402         double runtime_sec_min;
1403         int wait_stat;
1404         double bytes;
1405         int i, t;
1406
1407         if (init())
1408                 return -1;
1409
1410         pids = zalloc(g->p.nr_proc * sizeof(*pids));
1411         pid = -1;
1412
1413         /* All threads try to acquire it, this way we can wait for them to start up: */
1414         pthread_mutex_lock(&g->start_work_mutex);
1415
1416         if (g->p.serialize_startup) {
1417                 tprintf(" #\n");
1418                 tprintf(" # Startup synchronization: ..."); fflush(stdout);
1419         }
1420
1421         gettimeofday(&start, NULL);
1422
1423         for (i = 0; i < g->p.nr_proc; i++) {
1424                 pid = fork();
1425                 dprintf(" # process %2d: PID %d\n", i, pid);
1426
1427                 BUG_ON(pid < 0);
1428                 if (!pid) {
1429                         /* Child process: */
1430                         worker_process(i);
1431
1432                         exit(0);
1433                 }
1434                 pids[i] = pid;
1435
1436         }
1437         /* Wait for all the threads to start up: */
1438         while (g->nr_tasks_started != g->p.nr_tasks)
1439                 usleep(1000);
1440
1441         BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1442
1443         if (g->p.serialize_startup) {
1444                 double startup_sec;
1445
1446                 pthread_mutex_lock(&g->startup_done_mutex);
1447
1448                 /* This will start all threads: */
1449                 pthread_mutex_unlock(&g->start_work_mutex);
1450
1451                 /* This mutex is locked - the last started thread will wake us: */
1452                 pthread_mutex_lock(&g->startup_done_mutex);
1453
1454                 gettimeofday(&stop, NULL);
1455
1456                 timersub(&stop, &start, &diff);
1457
1458                 startup_sec = diff.tv_sec * 1000000000.0;
1459                 startup_sec += diff.tv_usec * 1000.0;
1460                 startup_sec /= 1e9;
1461
1462                 tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1463                 tprintf(" #\n");
1464
1465                 start = stop;
1466                 pthread_mutex_unlock(&g->startup_done_mutex);
1467         } else {
1468                 gettimeofday(&start, NULL);
1469         }
1470
1471         /* Parent process: */
1472
1473
1474         for (i = 0; i < g->p.nr_proc; i++) {
1475                 wpid = waitpid(pids[i], &wait_stat, 0);
1476                 BUG_ON(wpid < 0);
1477                 BUG_ON(!WIFEXITED(wait_stat));
1478
1479         }
1480
1481         runtime_ns_sum = 0;
1482         runtime_ns_min = -1LL;
1483
1484         for (t = 0; t < g->p.nr_tasks; t++) {
1485                 u64 thread_runtime_ns = g->threads[t].runtime_ns;
1486
1487                 runtime_ns_sum += thread_runtime_ns;
1488                 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1489         }
1490
1491         gettimeofday(&stop, NULL);
1492         timersub(&stop, &start, &diff);
1493
1494         BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1495
1496         tprintf("\n ###\n");
1497         tprintf("\n");
1498
1499         runtime_sec_max = diff.tv_sec * 1000000000.0;
1500         runtime_sec_max += diff.tv_usec * 1000.0;
1501         runtime_sec_max /= 1e9;
1502
1503         runtime_sec_min = runtime_ns_min/1e9;
1504
1505         bytes = g->bytes_done;
1506         runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9;
1507
1508         if (g->p.measure_convergence) {
1509                 print_res(name, runtime_sec_max,
1510                         "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1511         }
1512
1513         print_res(name, runtime_sec_max,
1514                 "secs,", "runtime-max/thread",  "secs slowest (max) thread-runtime");
1515
1516         print_res(name, runtime_sec_min,
1517                 "secs,", "runtime-min/thread",  "secs fastest (min) thread-runtime");
1518
1519         print_res(name, runtime_avg,
1520                 "secs,", "runtime-avg/thread",  "secs average thread-runtime");
1521
1522         delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1523         print_res(name, delta_runtime / runtime_sec_max * 100.0,
1524                 "%,", "spread-runtime/thread",  "% difference between max/avg runtime");
1525
1526         print_res(name, bytes / g->p.nr_tasks / 1e9,
1527                 "GB,", "data/thread",           "GB data processed, per thread");
1528
1529         print_res(name, bytes / 1e9,
1530                 "GB,", "data-total",            "GB data processed, total");
1531
1532         print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks),
1533                 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1534
1535         print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1536                 "GB/sec,", "thread-speed",      "GB/sec/thread speed");
1537
1538         print_res(name, bytes / runtime_sec_max / 1e9,
1539                 "GB/sec,", "total-speed",       "GB/sec total speed");
1540
1541         free(pids);
1542
1543         deinit();
1544
1545         return 0;
1546 }
1547
1548 #define MAX_ARGS 50
1549
1550 static int command_size(const char **argv)
1551 {
1552         int size = 0;
1553
1554         while (*argv) {
1555                 size++;
1556                 argv++;
1557         }
1558
1559         BUG_ON(size >= MAX_ARGS);
1560
1561         return size;
1562 }
1563
1564 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1565 {
1566         int i;
1567
1568         printf("\n # Running %s \"perf bench numa", name);
1569
1570         for (i = 0; i < argc; i++)
1571                 printf(" %s", argv[i]);
1572
1573         printf("\"\n");
1574
1575         memset(p, 0, sizeof(*p));
1576
1577         /* Initialize nonzero defaults: */
1578
1579         p->serialize_startup            = 1;
1580         p->data_reads                   = true;
1581         p->data_writes                  = true;
1582         p->data_backwards               = true;
1583         p->data_rand_walk               = true;
1584         p->nr_loops                     = -1;
1585         p->init_random                  = true;
1586 }
1587
1588 static int run_bench_numa(const char *name, const char **argv)
1589 {
1590         int argc = command_size(argv);
1591
1592         init_params(&p0, name, argc, argv);
1593         argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1594         if (argc)
1595                 goto err;
1596
1597         if (__bench_numa(name))
1598                 goto err;
1599
1600         return 0;
1601
1602 err:
1603         usage_with_options(numa_usage, options);
1604         return -1;
1605 }
1606
1607 #define OPT_BW_RAM              "-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1608 #define OPT_BW_RAM_NOTHP        OPT_BW_RAM,             "--thp", "-1"
1609
1610 #define OPT_CONV                "-s", "100", "-zZ0qcm", "--thp", " 1"
1611 #define OPT_CONV_NOTHP          OPT_CONV,               "--thp", "-1"
1612
1613 #define OPT_BW                  "-s",  "20", "-zZ0q",   "--thp", " 1"
1614 #define OPT_BW_NOTHP            OPT_BW,                 "--thp", "-1"
1615
1616 /*
1617  * The built-in test-suite executed by "perf bench numa -a".
1618  *
1619  * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1620  */
1621 static const char *tests[][MAX_ARGS] = {
1622    /* Basic single-stream NUMA bandwidth measurements: */
1623    { "RAM-bw-local,",     "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1624                           "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1625    { "RAM-bw-local-NOTHP,",
1626                           "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1627                           "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1628    { "RAM-bw-remote,",    "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1629                           "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1630
1631    /* 2-stream NUMA bandwidth measurements: */
1632    { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1633                            "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1634    { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1635                            "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1636
1637    /* Cross-stream NUMA bandwidth measurement: */
1638    { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1639                            "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1640
1641    /* Convergence latency measurements: */
1642    { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1643    { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1644    { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1645    { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1646    { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1647    { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1648    { " 4x4-convergence-NOTHP,",
1649                           "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1650    { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1651    { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1652    { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1653    { " 8x4-convergence-NOTHP,",
1654                           "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1655    { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1656    { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1657    { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1658    { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1659    { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1660
1661    /* Various NUMA process/thread layout bandwidth measurements: */
1662    { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1663    { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1664    { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1665    { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1666    { " 8x1-bw-process-NOTHP,",
1667                           "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1668    { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1669
1670    { " 4x1-bw-thread,",   "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1671    { " 8x1-bw-thread,",   "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1672    { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1673    { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1674
1675    { " 2x3-bw-thread,",   "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1676    { " 4x4-bw-thread,",   "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1677    { " 4x6-bw-thread,",   "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1678    { " 4x8-bw-thread,",   "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1679    { " 4x8-bw-thread-NOTHP,",
1680                           "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1681    { " 3x3-bw-thread,",   "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1682    { " 5x5-bw-thread,",   "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1683
1684    { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1685    { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1686
1687    { "numa02-bw,",        "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1688    { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1689    { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1690    { "numa01-bw-thread-NOTHP,",
1691                           "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1692 };
1693
1694 static int bench_all(void)
1695 {
1696         int nr = ARRAY_SIZE(tests);
1697         int ret;
1698         int i;
1699
1700         ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1701         BUG_ON(ret < 0);
1702
1703         for (i = 0; i < nr; i++) {
1704                 if (run_bench_numa(tests[i][0], tests[i] + 1))
1705                         return -1;
1706         }
1707
1708         printf("\n");
1709
1710         return 0;
1711 }
1712
1713 int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused)
1714 {
1715         init_params(&p0, "main,", argc, argv);
1716         argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1717         if (argc)
1718                 goto err;
1719
1720         if (p0.run_all)
1721                 return bench_all();
1722
1723         if (__bench_numa(NULL))
1724                 goto err;
1725
1726         return 0;
1727
1728 err:
1729         usage_with_options(numa_usage, options);
1730         return -1;
1731 }