]> Pileus Git - ~andy/linux/blob - sound/soc/soc-core.c
ASoC: Move soc-core module init next to functon definition
[~andy/linux] / sound / soc / soc-core.c
1 /*
2  * soc-core.c  --  ALSA SoC Audio Layer
3  *
4  * Copyright 2005 Wolfson Microelectronics PLC.
5  * Copyright 2005 Openedhand Ltd.
6  * Copyright (C) 2010 Slimlogic Ltd.
7  * Copyright (C) 2010 Texas Instruments Inc.
8  *
9  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10  *         with code, comments and ideas from :-
11  *         Richard Purdie <richard@openedhand.com>
12  *
13  *  This program is free software; you can redistribute  it and/or modify it
14  *  under  the terms of  the GNU General  Public License as published by the
15  *  Free Software Foundation;  either version 2 of the  License, or (at your
16  *  option) any later version.
17  *
18  *  TODO:
19  *   o Add hw rules to enforce rates, etc.
20  *   o More testing with other codecs/machines.
21  *   o Add more codecs and platforms to ensure good API coverage.
22  *   o Support TDM on PCM and I2S
23  */
24
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <sound/ac97_codec.h>
35 #include <sound/core.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h>
38 #include <sound/soc.h>
39 #include <sound/soc-dapm.h>
40 #include <sound/initval.h>
41
42 #define NAME_SIZE       32
43
44 static DEFINE_MUTEX(pcm_mutex);
45 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
46
47 #ifdef CONFIG_DEBUG_FS
48 static struct dentry *debugfs_root;
49 #endif
50
51 static DEFINE_MUTEX(client_mutex);
52 static LIST_HEAD(card_list);
53 static LIST_HEAD(dai_list);
54 static LIST_HEAD(platform_list);
55 static LIST_HEAD(codec_list);
56
57 static int snd_soc_register_card(struct snd_soc_card *card);
58 static int snd_soc_unregister_card(struct snd_soc_card *card);
59 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num);
60
61 /*
62  * This is a timeout to do a DAPM powerdown after a stream is closed().
63  * It can be used to eliminate pops between different playback streams, e.g.
64  * between two audio tracks.
65  */
66 static int pmdown_time = 5000;
67 module_param(pmdown_time, int, 0);
68 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
69
70 /*
71  * This function forces any delayed work to be queued and run.
72  */
73 static int run_delayed_work(struct delayed_work *dwork)
74 {
75         int ret;
76
77         /* cancel any work waiting to be queued. */
78         ret = cancel_delayed_work(dwork);
79
80         /* if there was any work waiting then we run it now and
81          * wait for it's completion */
82         if (ret) {
83                 schedule_delayed_work(dwork, 0);
84                 flush_scheduled_work();
85         }
86         return ret;
87 }
88
89 /* codec register dump */
90 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
91 {
92         int ret, i, step = 1, count = 0;
93
94         if (!codec->driver->reg_cache_size)
95                 return 0;
96
97         if (codec->driver->reg_cache_step)
98                 step = codec->driver->reg_cache_step;
99
100         count += sprintf(buf, "%s registers\n", codec->name);
101         for (i = 0; i < codec->driver->reg_cache_size; i += step) {
102                 if (codec->driver->readable_register && !codec->driver->readable_register(i))
103                         continue;
104
105                 count += sprintf(buf + count, "%2x: ", i);
106                 if (count >= PAGE_SIZE - 1)
107                         break;
108
109                 if (codec->driver->display_register) {
110                         count += codec->driver->display_register(codec, buf + count,
111                                                          PAGE_SIZE - count, i);
112                 } else {
113                         /* If the read fails it's almost certainly due to
114                          * the register being volatile and the device being
115                          * powered off.
116                          */
117                         ret = codec->driver->read(codec, i);
118                         if (ret >= 0)
119                                 count += snprintf(buf + count,
120                                                   PAGE_SIZE - count,
121                                                   "%4x", ret);
122                         else
123                                 count += snprintf(buf + count,
124                                                   PAGE_SIZE - count,
125                                                   "<no data: %d>", ret);
126                 }
127
128                 if (count >= PAGE_SIZE - 1)
129                         break;
130
131                 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
132                 if (count >= PAGE_SIZE - 1)
133                         break;
134         }
135
136         /* Truncate count; min() would cause a warning */
137         if (count >= PAGE_SIZE)
138                 count = PAGE_SIZE - 1;
139
140         return count;
141 }
142 static ssize_t codec_reg_show(struct device *dev,
143         struct device_attribute *attr, char *buf)
144 {
145         struct snd_soc_pcm_runtime *rtd =
146                         container_of(dev, struct snd_soc_pcm_runtime, dev);
147
148         return soc_codec_reg_show(rtd->codec, buf);
149 }
150
151 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
152
153 static ssize_t pmdown_time_show(struct device *dev,
154                                 struct device_attribute *attr, char *buf)
155 {
156         struct snd_soc_pcm_runtime *rtd =
157                         container_of(dev, struct snd_soc_pcm_runtime, dev);
158
159         return sprintf(buf, "%ld\n", rtd->pmdown_time);
160 }
161
162 static ssize_t pmdown_time_set(struct device *dev,
163                                struct device_attribute *attr,
164                                const char *buf, size_t count)
165 {
166         struct snd_soc_pcm_runtime *rtd =
167                         container_of(dev, struct snd_soc_pcm_runtime, dev);
168
169         strict_strtol(buf, 10, &rtd->pmdown_time);
170
171         return count;
172 }
173
174 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
175
176 #ifdef CONFIG_DEBUG_FS
177 static int codec_reg_open_file(struct inode *inode, struct file *file)
178 {
179         file->private_data = inode->i_private;
180         return 0;
181 }
182
183 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
184                                size_t count, loff_t *ppos)
185 {
186         ssize_t ret;
187         struct snd_soc_codec *codec = file->private_data;
188         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
189         if (!buf)
190                 return -ENOMEM;
191         ret = soc_codec_reg_show(codec, buf);
192         if (ret >= 0)
193                 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
194         kfree(buf);
195         return ret;
196 }
197
198 static ssize_t codec_reg_write_file(struct file *file,
199                 const char __user *user_buf, size_t count, loff_t *ppos)
200 {
201         char buf[32];
202         int buf_size;
203         char *start = buf;
204         unsigned long reg, value;
205         int step = 1;
206         struct snd_soc_codec *codec = file->private_data;
207
208         buf_size = min(count, (sizeof(buf)-1));
209         if (copy_from_user(buf, user_buf, buf_size))
210                 return -EFAULT;
211         buf[buf_size] = 0;
212
213         if (codec->driver->reg_cache_step)
214                 step = codec->driver->reg_cache_step;
215
216         while (*start == ' ')
217                 start++;
218         reg = simple_strtoul(start, &start, 16);
219         if ((reg >= codec->driver->reg_cache_size) || (reg % step))
220                 return -EINVAL;
221         while (*start == ' ')
222                 start++;
223         if (strict_strtoul(start, 16, &value))
224                 return -EINVAL;
225         codec->driver->write(codec, reg, value);
226         return buf_size;
227 }
228
229 static const struct file_operations codec_reg_fops = {
230         .open = codec_reg_open_file,
231         .read = codec_reg_read_file,
232         .write = codec_reg_write_file,
233 };
234
235 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
236 {
237         codec->debugfs_codec_root = debugfs_create_dir(codec->name ,
238                                                        debugfs_root);
239         if (!codec->debugfs_codec_root) {
240                 printk(KERN_WARNING
241                        "ASoC: Failed to create codec debugfs directory\n");
242                 return;
243         }
244
245         codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
246                                                  codec->debugfs_codec_root,
247                                                  codec, &codec_reg_fops);
248         if (!codec->debugfs_reg)
249                 printk(KERN_WARNING
250                        "ASoC: Failed to create codec register debugfs file\n");
251
252         codec->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
253                                                      codec->debugfs_codec_root,
254                                                      &codec->pop_time);
255         if (!codec->debugfs_pop_time)
256                 printk(KERN_WARNING
257                        "Failed to create pop time debugfs file\n");
258
259         codec->debugfs_dapm = debugfs_create_dir("dapm",
260                                                  codec->debugfs_codec_root);
261         if (!codec->debugfs_dapm)
262                 printk(KERN_WARNING
263                        "Failed to create DAPM debugfs directory\n");
264
265         snd_soc_dapm_debugfs_init(codec);
266 }
267
268 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
269 {
270         debugfs_remove_recursive(codec->debugfs_codec_root);
271 }
272
273 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
274                                     size_t count, loff_t *ppos)
275 {
276         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
277         ssize_t ret = 0;
278         struct snd_soc_codec *codec;
279
280         if (!buf)
281                 return -ENOMEM;
282
283         list_for_each_entry(codec, &codec_list, list)
284                 ret += snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
285                                 codec->name);
286
287         if (ret >= 0)
288                 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
289
290         kfree(buf);
291
292         return ret;
293 }
294
295 static const struct file_operations codec_list_fops = {
296         .read = codec_list_read_file,
297         .llseek = default_llseek,/* read accesses f_pos */
298 };
299
300 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
301                                   size_t count, loff_t *ppos)
302 {
303         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
304         ssize_t ret = 0;
305         struct snd_soc_dai *dai;
306
307         if (!buf)
308                 return -ENOMEM;
309
310         list_for_each_entry(dai, &dai_list, list)
311                 ret += snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name);
312
313         if (ret >= 0)
314                 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
315
316         kfree(buf);
317
318         return ret;
319 }
320
321 static const struct file_operations dai_list_fops = {
322         .read = dai_list_read_file,
323         .llseek = default_llseek,/* read accesses f_pos */
324 };
325
326 static ssize_t platform_list_read_file(struct file *file,
327                                        char __user *user_buf,
328                                        size_t count, loff_t *ppos)
329 {
330         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
331         ssize_t ret = 0;
332         struct snd_soc_platform *platform;
333
334         if (!buf)
335                 return -ENOMEM;
336
337         list_for_each_entry(platform, &platform_list, list)
338                 ret += snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
339                                 platform->name);
340
341         if (ret >= 0)
342                 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
343
344         kfree(buf);
345
346         return ret;
347 }
348
349 static const struct file_operations platform_list_fops = {
350         .read = platform_list_read_file,
351         .llseek = default_llseek,/* read accesses f_pos */
352 };
353
354 #else
355
356 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
357 {
358 }
359
360 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
361 {
362 }
363 #endif
364
365 #ifdef CONFIG_SND_SOC_AC97_BUS
366 /* unregister ac97 codec */
367 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
368 {
369         if (codec->ac97->dev.bus)
370                 device_unregister(&codec->ac97->dev);
371         return 0;
372 }
373
374 /* stop no dev release warning */
375 static void soc_ac97_device_release(struct device *dev){}
376
377 /* register ac97 codec to bus */
378 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
379 {
380         int err;
381
382         codec->ac97->dev.bus = &ac97_bus_type;
383         codec->ac97->dev.parent = codec->card->dev;
384         codec->ac97->dev.release = soc_ac97_device_release;
385
386         dev_set_name(&codec->ac97->dev, "%d-%d:%s",
387                      codec->card->snd_card->number, 0, codec->name);
388         err = device_register(&codec->ac97->dev);
389         if (err < 0) {
390                 snd_printk(KERN_ERR "Can't register ac97 bus\n");
391                 codec->ac97->dev.bus = NULL;
392                 return err;
393         }
394         return 0;
395 }
396 #endif
397
398 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
399 {
400         struct snd_soc_pcm_runtime *rtd = substream->private_data;
401         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
402         struct snd_soc_dai *codec_dai = rtd->codec_dai;
403         int ret;
404
405         if (codec_dai->driver->symmetric_rates || cpu_dai->driver->symmetric_rates ||
406                         rtd->dai_link->symmetric_rates) {
407                 dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n",
408                                 rtd->rate);
409
410                 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
411                                                    SNDRV_PCM_HW_PARAM_RATE,
412                                                    rtd->rate,
413                                                    rtd->rate);
414                 if (ret < 0) {
415                         dev_err(&rtd->dev,
416                                 "Unable to apply rate symmetry constraint: %d\n", ret);
417                         return ret;
418                 }
419         }
420
421         return 0;
422 }
423
424 /*
425  * Called by ALSA when a PCM substream is opened, the runtime->hw record is
426  * then initialized and any private data can be allocated. This also calls
427  * startup for the cpu DAI, platform, machine and codec DAI.
428  */
429 static int soc_pcm_open(struct snd_pcm_substream *substream)
430 {
431         struct snd_soc_pcm_runtime *rtd = substream->private_data;
432         struct snd_pcm_runtime *runtime = substream->runtime;
433         struct snd_soc_platform *platform = rtd->platform;
434         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
435         struct snd_soc_dai *codec_dai = rtd->codec_dai;
436         struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver;
437         struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver;
438         int ret = 0;
439
440         mutex_lock(&pcm_mutex);
441
442         /* startup the audio subsystem */
443         if (cpu_dai->driver->ops->startup) {
444                 ret = cpu_dai->driver->ops->startup(substream, cpu_dai);
445                 if (ret < 0) {
446                         printk(KERN_ERR "asoc: can't open interface %s\n",
447                                 cpu_dai->name);
448                         goto out;
449                 }
450         }
451
452         if (platform->driver->ops->open) {
453                 ret = platform->driver->ops->open(substream);
454                 if (ret < 0) {
455                         printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
456                         goto platform_err;
457                 }
458         }
459
460         if (codec_dai->driver->ops->startup) {
461                 ret = codec_dai->driver->ops->startup(substream, codec_dai);
462                 if (ret < 0) {
463                         printk(KERN_ERR "asoc: can't open codec %s\n",
464                                 codec_dai->name);
465                         goto codec_dai_err;
466                 }
467         }
468
469         if (rtd->dai_link->ops && rtd->dai_link->ops->startup) {
470                 ret = rtd->dai_link->ops->startup(substream);
471                 if (ret < 0) {
472                         printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name);
473                         goto machine_err;
474                 }
475         }
476
477         /* Check that the codec and cpu DAI's are compatible */
478         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
479                 runtime->hw.rate_min =
480                         max(codec_dai_drv->playback.rate_min,
481                             cpu_dai_drv->playback.rate_min);
482                 runtime->hw.rate_max =
483                         min(codec_dai_drv->playback.rate_max,
484                             cpu_dai_drv->playback.rate_max);
485                 runtime->hw.channels_min =
486                         max(codec_dai_drv->playback.channels_min,
487                                 cpu_dai_drv->playback.channels_min);
488                 runtime->hw.channels_max =
489                         min(codec_dai_drv->playback.channels_max,
490                                 cpu_dai_drv->playback.channels_max);
491                 runtime->hw.formats =
492                         codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats;
493                 runtime->hw.rates =
494                         codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates;
495                 if (codec_dai_drv->playback.rates
496                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
497                         runtime->hw.rates |= cpu_dai_drv->playback.rates;
498                 if (cpu_dai_drv->playback.rates
499                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
500                         runtime->hw.rates |= codec_dai_drv->playback.rates;
501         } else {
502                 runtime->hw.rate_min =
503                         max(codec_dai_drv->capture.rate_min,
504                             cpu_dai_drv->capture.rate_min);
505                 runtime->hw.rate_max =
506                         min(codec_dai_drv->capture.rate_max,
507                             cpu_dai_drv->capture.rate_max);
508                 runtime->hw.channels_min =
509                         max(codec_dai_drv->capture.channels_min,
510                                 cpu_dai_drv->capture.channels_min);
511                 runtime->hw.channels_max =
512                         min(codec_dai_drv->capture.channels_max,
513                                 cpu_dai_drv->capture.channels_max);
514                 runtime->hw.formats =
515                         codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats;
516                 runtime->hw.rates =
517                         codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates;
518                 if (codec_dai_drv->capture.rates
519                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
520                         runtime->hw.rates |= cpu_dai_drv->capture.rates;
521                 if (cpu_dai_drv->capture.rates
522                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
523                         runtime->hw.rates |= codec_dai_drv->capture.rates;
524         }
525
526         snd_pcm_limit_hw_rates(runtime);
527         if (!runtime->hw.rates) {
528                 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
529                         codec_dai->name, cpu_dai->name);
530                 goto config_err;
531         }
532         if (!runtime->hw.formats) {
533                 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
534                         codec_dai->name, cpu_dai->name);
535                 goto config_err;
536         }
537         if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
538                 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
539                                 codec_dai->name, cpu_dai->name);
540                 goto config_err;
541         }
542
543         /* Symmetry only applies if we've already got an active stream. */
544         if (cpu_dai->active || codec_dai->active) {
545                 ret = soc_pcm_apply_symmetry(substream);
546                 if (ret != 0)
547                         goto config_err;
548         }
549
550         pr_debug("asoc: %s <-> %s info:\n",
551                         codec_dai->name, cpu_dai->name);
552         pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
553         pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
554                  runtime->hw.channels_max);
555         pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
556                  runtime->hw.rate_max);
557
558         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
559                 cpu_dai->playback_active++;
560                 codec_dai->playback_active++;
561         } else {
562                 cpu_dai->capture_active++;
563                 codec_dai->capture_active++;
564         }
565         cpu_dai->active++;
566         codec_dai->active++;
567         rtd->codec->active++;
568         mutex_unlock(&pcm_mutex);
569         return 0;
570
571 config_err:
572         if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
573                 rtd->dai_link->ops->shutdown(substream);
574
575 machine_err:
576         if (codec_dai->driver->ops->shutdown)
577                 codec_dai->driver->ops->shutdown(substream, codec_dai);
578
579 codec_dai_err:
580         if (platform->driver->ops->close)
581                 platform->driver->ops->close(substream);
582
583 platform_err:
584         if (cpu_dai->driver->ops->shutdown)
585                 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
586 out:
587         mutex_unlock(&pcm_mutex);
588         return ret;
589 }
590
591 /*
592  * Power down the audio subsystem pmdown_time msecs after close is called.
593  * This is to ensure there are no pops or clicks in between any music tracks
594  * due to DAPM power cycling.
595  */
596 static void close_delayed_work(struct work_struct *work)
597 {
598         struct snd_soc_pcm_runtime *rtd =
599                         container_of(work, struct snd_soc_pcm_runtime, delayed_work.work);
600         struct snd_soc_dai *codec_dai = rtd->codec_dai;
601
602         mutex_lock(&pcm_mutex);
603
604         pr_debug("pop wq checking: %s status: %s waiting: %s\n",
605                  codec_dai->driver->playback.stream_name,
606                  codec_dai->playback_active ? "active" : "inactive",
607                  codec_dai->pop_wait ? "yes" : "no");
608
609         /* are we waiting on this codec DAI stream */
610         if (codec_dai->pop_wait == 1) {
611                 codec_dai->pop_wait = 0;
612                 snd_soc_dapm_stream_event(rtd,
613                         codec_dai->driver->playback.stream_name,
614                         SND_SOC_DAPM_STREAM_STOP);
615         }
616
617         mutex_unlock(&pcm_mutex);
618 }
619
620 /*
621  * Called by ALSA when a PCM substream is closed. Private data can be
622  * freed here. The cpu DAI, codec DAI, machine and platform are also
623  * shutdown.
624  */
625 static int soc_codec_close(struct snd_pcm_substream *substream)
626 {
627         struct snd_soc_pcm_runtime *rtd = substream->private_data;
628         struct snd_soc_platform *platform = rtd->platform;
629         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
630         struct snd_soc_dai *codec_dai = rtd->codec_dai;
631         struct snd_soc_codec *codec = rtd->codec;
632
633         mutex_lock(&pcm_mutex);
634
635         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
636                 cpu_dai->playback_active--;
637                 codec_dai->playback_active--;
638         } else {
639                 cpu_dai->capture_active--;
640                 codec_dai->capture_active--;
641         }
642
643         cpu_dai->active--;
644         codec_dai->active--;
645         codec->active--;
646
647         /* Muting the DAC suppresses artifacts caused during digital
648          * shutdown, for example from stopping clocks.
649          */
650         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
651                 snd_soc_dai_digital_mute(codec_dai, 1);
652
653         if (cpu_dai->driver->ops->shutdown)
654                 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
655
656         if (codec_dai->driver->ops->shutdown)
657                 codec_dai->driver->ops->shutdown(substream, codec_dai);
658
659         if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
660                 rtd->dai_link->ops->shutdown(substream);
661
662         if (platform->driver->ops->close)
663                 platform->driver->ops->close(substream);
664         cpu_dai->runtime = NULL;
665
666         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
667                 /* start delayed pop wq here for playback streams */
668                 codec_dai->pop_wait = 1;
669                 schedule_delayed_work(&rtd->delayed_work,
670                         msecs_to_jiffies(rtd->pmdown_time));
671         } else {
672                 /* capture streams can be powered down now */
673                 snd_soc_dapm_stream_event(rtd,
674                         codec_dai->driver->capture.stream_name,
675                         SND_SOC_DAPM_STREAM_STOP);
676         }
677
678         mutex_unlock(&pcm_mutex);
679         return 0;
680 }
681
682 /*
683  * Called by ALSA when the PCM substream is prepared, can set format, sample
684  * rate, etc.  This function is non atomic and can be called multiple times,
685  * it can refer to the runtime info.
686  */
687 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
688 {
689         struct snd_soc_pcm_runtime *rtd = substream->private_data;
690         struct snd_soc_platform *platform = rtd->platform;
691         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
692         struct snd_soc_dai *codec_dai = rtd->codec_dai;
693         int ret = 0;
694
695         mutex_lock(&pcm_mutex);
696
697         if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) {
698                 ret = rtd->dai_link->ops->prepare(substream);
699                 if (ret < 0) {
700                         printk(KERN_ERR "asoc: machine prepare error\n");
701                         goto out;
702                 }
703         }
704
705         if (platform->driver->ops->prepare) {
706                 ret = platform->driver->ops->prepare(substream);
707                 if (ret < 0) {
708                         printk(KERN_ERR "asoc: platform prepare error\n");
709                         goto out;
710                 }
711         }
712
713         if (codec_dai->driver->ops->prepare) {
714                 ret = codec_dai->driver->ops->prepare(substream, codec_dai);
715                 if (ret < 0) {
716                         printk(KERN_ERR "asoc: codec DAI prepare error\n");
717                         goto out;
718                 }
719         }
720
721         if (cpu_dai->driver->ops->prepare) {
722                 ret = cpu_dai->driver->ops->prepare(substream, cpu_dai);
723                 if (ret < 0) {
724                         printk(KERN_ERR "asoc: cpu DAI prepare error\n");
725                         goto out;
726                 }
727         }
728
729         /* cancel any delayed stream shutdown that is pending */
730         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
731             codec_dai->pop_wait) {
732                 codec_dai->pop_wait = 0;
733                 cancel_delayed_work(&rtd->delayed_work);
734         }
735
736         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
737                 snd_soc_dapm_stream_event(rtd,
738                                           codec_dai->driver->playback.stream_name,
739                                           SND_SOC_DAPM_STREAM_START);
740         else
741                 snd_soc_dapm_stream_event(rtd,
742                                           codec_dai->driver->capture.stream_name,
743                                           SND_SOC_DAPM_STREAM_START);
744
745         snd_soc_dai_digital_mute(codec_dai, 0);
746
747 out:
748         mutex_unlock(&pcm_mutex);
749         return ret;
750 }
751
752 /*
753  * Called by ALSA when the hardware params are set by application. This
754  * function can also be called multiple times and can allocate buffers
755  * (using snd_pcm_lib_* ). It's non-atomic.
756  */
757 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
758                                 struct snd_pcm_hw_params *params)
759 {
760         struct snd_soc_pcm_runtime *rtd = substream->private_data;
761         struct snd_soc_platform *platform = rtd->platform;
762         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
763         struct snd_soc_dai *codec_dai = rtd->codec_dai;
764         int ret = 0;
765
766         mutex_lock(&pcm_mutex);
767
768         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) {
769                 ret = rtd->dai_link->ops->hw_params(substream, params);
770                 if (ret < 0) {
771                         printk(KERN_ERR "asoc: machine hw_params failed\n");
772                         goto out;
773                 }
774         }
775
776         if (codec_dai->driver->ops->hw_params) {
777                 ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai);
778                 if (ret < 0) {
779                         printk(KERN_ERR "asoc: can't set codec %s hw params\n",
780                                 codec_dai->name);
781                         goto codec_err;
782                 }
783         }
784
785         if (cpu_dai->driver->ops->hw_params) {
786                 ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai);
787                 if (ret < 0) {
788                         printk(KERN_ERR "asoc: interface %s hw params failed\n",
789                                 cpu_dai->name);
790                         goto interface_err;
791                 }
792         }
793
794         if (platform->driver->ops->hw_params) {
795                 ret = platform->driver->ops->hw_params(substream, params);
796                 if (ret < 0) {
797                         printk(KERN_ERR "asoc: platform %s hw params failed\n",
798                                 platform->name);
799                         goto platform_err;
800                 }
801         }
802
803         rtd->rate = params_rate(params);
804
805 out:
806         mutex_unlock(&pcm_mutex);
807         return ret;
808
809 platform_err:
810         if (cpu_dai->driver->ops->hw_free)
811                 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
812
813 interface_err:
814         if (codec_dai->driver->ops->hw_free)
815                 codec_dai->driver->ops->hw_free(substream, codec_dai);
816
817 codec_err:
818         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
819                 rtd->dai_link->ops->hw_free(substream);
820
821         mutex_unlock(&pcm_mutex);
822         return ret;
823 }
824
825 /*
826  * Free's resources allocated by hw_params, can be called multiple times
827  */
828 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
829 {
830         struct snd_soc_pcm_runtime *rtd = substream->private_data;
831         struct snd_soc_platform *platform = rtd->platform;
832         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
833         struct snd_soc_dai *codec_dai = rtd->codec_dai;
834         struct snd_soc_codec *codec = rtd->codec;
835
836         mutex_lock(&pcm_mutex);
837
838         /* apply codec digital mute */
839         if (!codec->active)
840                 snd_soc_dai_digital_mute(codec_dai, 1);
841
842         /* free any machine hw params */
843         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
844                 rtd->dai_link->ops->hw_free(substream);
845
846         /* free any DMA resources */
847         if (platform->driver->ops->hw_free)
848                 platform->driver->ops->hw_free(substream);
849
850         /* now free hw params for the DAI's  */
851         if (codec_dai->driver->ops->hw_free)
852                 codec_dai->driver->ops->hw_free(substream, codec_dai);
853
854         if (cpu_dai->driver->ops->hw_free)
855                 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
856
857         mutex_unlock(&pcm_mutex);
858         return 0;
859 }
860
861 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
862 {
863         struct snd_soc_pcm_runtime *rtd = substream->private_data;
864         struct snd_soc_platform *platform = rtd->platform;
865         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
866         struct snd_soc_dai *codec_dai = rtd->codec_dai;
867         int ret;
868
869         if (codec_dai->driver->ops->trigger) {
870                 ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai);
871                 if (ret < 0)
872                         return ret;
873         }
874
875         if (platform->driver->ops->trigger) {
876                 ret = platform->driver->ops->trigger(substream, cmd);
877                 if (ret < 0)
878                         return ret;
879         }
880
881         if (cpu_dai->driver->ops->trigger) {
882                 ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai);
883                 if (ret < 0)
884                         return ret;
885         }
886         return 0;
887 }
888
889 /*
890  * soc level wrapper for pointer callback
891  * If cpu_dai, codec_dai, platform driver has the delay callback, than
892  * the runtime->delay will be updated accordingly.
893  */
894 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream)
895 {
896         struct snd_soc_pcm_runtime *rtd = substream->private_data;
897         struct snd_soc_platform *platform = rtd->platform;
898         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
899         struct snd_soc_dai *codec_dai = rtd->codec_dai;
900         struct snd_pcm_runtime *runtime = substream->runtime;
901         snd_pcm_uframes_t offset = 0;
902         snd_pcm_sframes_t delay = 0;
903
904         if (platform->driver->ops->pointer)
905                 offset = platform->driver->ops->pointer(substream);
906
907         if (cpu_dai->driver->ops->delay)
908                 delay += cpu_dai->driver->ops->delay(substream, cpu_dai);
909
910         if (codec_dai->driver->ops->delay)
911                 delay += codec_dai->driver->ops->delay(substream, codec_dai);
912
913         if (platform->driver->delay)
914                 delay += platform->driver->delay(substream, codec_dai);
915
916         runtime->delay = delay;
917
918         return offset;
919 }
920
921 /* ASoC PCM operations */
922 static struct snd_pcm_ops soc_pcm_ops = {
923         .open           = soc_pcm_open,
924         .close          = soc_codec_close,
925         .hw_params      = soc_pcm_hw_params,
926         .hw_free        = soc_pcm_hw_free,
927         .prepare        = soc_pcm_prepare,
928         .trigger        = soc_pcm_trigger,
929         .pointer        = soc_pcm_pointer,
930 };
931
932 #ifdef CONFIG_PM
933 /* powers down audio subsystem for suspend */
934 static int soc_suspend(struct device *dev)
935 {
936         struct platform_device *pdev = to_platform_device(dev);
937         struct snd_soc_card *card = platform_get_drvdata(pdev);
938         int i;
939
940         /* If the initialization of this soc device failed, there is no codec
941          * associated with it. Just bail out in this case.
942          */
943         if (list_empty(&card->codec_dev_list))
944                 return 0;
945
946         /* Due to the resume being scheduled into a workqueue we could
947         * suspend before that's finished - wait for it to complete.
948          */
949         snd_power_lock(card->snd_card);
950         snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
951         snd_power_unlock(card->snd_card);
952
953         /* we're going to block userspace touching us until resume completes */
954         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
955
956         /* mute any active DAC's */
957         for (i = 0; i < card->num_rtd; i++) {
958                 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
959                 struct snd_soc_dai_driver *drv = dai->driver;
960
961                 if (card->rtd[i].dai_link->ignore_suspend)
962                         continue;
963
964                 if (drv->ops->digital_mute && dai->playback_active)
965                         drv->ops->digital_mute(dai, 1);
966         }
967
968         /* suspend all pcms */
969         for (i = 0; i < card->num_rtd; i++) {
970                 if (card->rtd[i].dai_link->ignore_suspend)
971                         continue;
972
973                 snd_pcm_suspend_all(card->rtd[i].pcm);
974         }
975
976         if (card->suspend_pre)
977                 card->suspend_pre(pdev, PMSG_SUSPEND);
978
979         for (i = 0; i < card->num_rtd; i++) {
980                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
981                 struct snd_soc_platform *platform = card->rtd[i].platform;
982
983                 if (card->rtd[i].dai_link->ignore_suspend)
984                         continue;
985
986                 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
987                         cpu_dai->driver->suspend(cpu_dai);
988                 if (platform->driver->suspend && !platform->suspended) {
989                         platform->driver->suspend(cpu_dai);
990                         platform->suspended = 1;
991                 }
992         }
993
994         /* close any waiting streams and save state */
995         for (i = 0; i < card->num_rtd; i++) {
996                 run_delayed_work(&card->rtd[i].delayed_work);
997                 card->rtd[i].codec->suspend_bias_level = card->rtd[i].codec->bias_level;
998         }
999
1000         for (i = 0; i < card->num_rtd; i++) {
1001                 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1002
1003                 if (card->rtd[i].dai_link->ignore_suspend)
1004                         continue;
1005
1006                 if (driver->playback.stream_name != NULL)
1007                         snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1008                                 SND_SOC_DAPM_STREAM_SUSPEND);
1009
1010                 if (driver->capture.stream_name != NULL)
1011                         snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1012                                 SND_SOC_DAPM_STREAM_SUSPEND);
1013         }
1014
1015         /* suspend all CODECs */
1016         for (i = 0; i < card->num_rtd; i++) {
1017                 struct snd_soc_codec *codec = card->rtd[i].codec;
1018                 /* If there are paths active then the CODEC will be held with
1019                  * bias _ON and should not be suspended. */
1020                 if (!codec->suspended && codec->driver->suspend) {
1021                         switch (codec->bias_level) {
1022                         case SND_SOC_BIAS_STANDBY:
1023                         case SND_SOC_BIAS_OFF:
1024                                 codec->driver->suspend(codec, PMSG_SUSPEND);
1025                                 codec->suspended = 1;
1026                                 break;
1027                         default:
1028                                 dev_dbg(codec->dev, "CODEC is on over suspend\n");
1029                                 break;
1030                         }
1031                 }
1032         }
1033
1034         for (i = 0; i < card->num_rtd; i++) {
1035                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1036
1037                 if (card->rtd[i].dai_link->ignore_suspend)
1038                         continue;
1039
1040                 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
1041                         cpu_dai->driver->suspend(cpu_dai);
1042         }
1043
1044         if (card->suspend_post)
1045                 card->suspend_post(pdev, PMSG_SUSPEND);
1046
1047         return 0;
1048 }
1049
1050 /* deferred resume work, so resume can complete before we finished
1051  * setting our codec back up, which can be very slow on I2C
1052  */
1053 static void soc_resume_deferred(struct work_struct *work)
1054 {
1055         struct snd_soc_card *card =
1056                         container_of(work, struct snd_soc_card, deferred_resume_work);
1057         struct platform_device *pdev = to_platform_device(card->dev);
1058         int i;
1059
1060         /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
1061          * so userspace apps are blocked from touching us
1062          */
1063
1064         dev_dbg(card->dev, "starting resume work\n");
1065
1066         /* Bring us up into D2 so that DAPM starts enabling things */
1067         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
1068
1069         if (card->resume_pre)
1070                 card->resume_pre(pdev);
1071
1072         /* resume AC97 DAIs */
1073         for (i = 0; i < card->num_rtd; i++) {
1074                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1075
1076                 if (card->rtd[i].dai_link->ignore_suspend)
1077                         continue;
1078
1079                 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
1080                         cpu_dai->driver->resume(cpu_dai);
1081         }
1082
1083         for (i = 0; i < card->num_rtd; i++) {
1084                 struct snd_soc_codec *codec = card->rtd[i].codec;
1085                 /* If the CODEC was idle over suspend then it will have been
1086                  * left with bias OFF or STANDBY and suspended so we must now
1087                  * resume.  Otherwise the suspend was suppressed.
1088                  */
1089                 if (codec->driver->resume && codec->suspended) {
1090                         switch (codec->bias_level) {
1091                         case SND_SOC_BIAS_STANDBY:
1092                         case SND_SOC_BIAS_OFF:
1093                                 codec->driver->resume(codec);
1094                                 codec->suspended = 0;
1095                                 break;
1096                         default:
1097                                 dev_dbg(codec->dev, "CODEC was on over suspend\n");
1098                                 break;
1099                         }
1100                 }
1101         }
1102
1103         for (i = 0; i < card->num_rtd; i++) {
1104                 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1105
1106                 if (card->rtd[i].dai_link->ignore_suspend)
1107                         continue;
1108
1109                 if (driver->playback.stream_name != NULL)
1110                         snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1111                                 SND_SOC_DAPM_STREAM_RESUME);
1112
1113                 if (driver->capture.stream_name != NULL)
1114                         snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1115                                 SND_SOC_DAPM_STREAM_RESUME);
1116         }
1117
1118         /* unmute any active DACs */
1119         for (i = 0; i < card->num_rtd; i++) {
1120                 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1121                 struct snd_soc_dai_driver *drv = dai->driver;
1122
1123                 if (card->rtd[i].dai_link->ignore_suspend)
1124                         continue;
1125
1126                 if (drv->ops->digital_mute && dai->playback_active)
1127                         drv->ops->digital_mute(dai, 0);
1128         }
1129
1130         for (i = 0; i < card->num_rtd; i++) {
1131                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1132                 struct snd_soc_platform *platform = card->rtd[i].platform;
1133
1134                 if (card->rtd[i].dai_link->ignore_suspend)
1135                         continue;
1136
1137                 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
1138                         cpu_dai->driver->resume(cpu_dai);
1139                 if (platform->driver->resume && platform->suspended) {
1140                         platform->driver->resume(cpu_dai);
1141                         platform->suspended = 0;
1142                 }
1143         }
1144
1145         if (card->resume_post)
1146                 card->resume_post(pdev);
1147
1148         dev_dbg(card->dev, "resume work completed\n");
1149
1150         /* userspace can access us now we are back as we were before */
1151         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
1152 }
1153
1154 /* powers up audio subsystem after a suspend */
1155 static int soc_resume(struct device *dev)
1156 {
1157         struct platform_device *pdev = to_platform_device(dev);
1158         struct snd_soc_card *card = platform_get_drvdata(pdev);
1159         int i;
1160
1161         /* AC97 devices might have other drivers hanging off them so
1162          * need to resume immediately.  Other drivers don't have that
1163          * problem and may take a substantial amount of time to resume
1164          * due to I/O costs and anti-pop so handle them out of line.
1165          */
1166         for (i = 0; i < card->num_rtd; i++) {
1167                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1168                 if (cpu_dai->driver->ac97_control) {
1169                         dev_dbg(dev, "Resuming AC97 immediately\n");
1170                         soc_resume_deferred(&card->deferred_resume_work);
1171                 } else {
1172                         dev_dbg(dev, "Scheduling resume work\n");
1173                         if (!schedule_work(&card->deferred_resume_work))
1174                                 dev_err(dev, "resume work item may be lost\n");
1175                 }
1176         }
1177
1178         return 0;
1179 }
1180 #else
1181 #define soc_suspend     NULL
1182 #define soc_resume      NULL
1183 #endif
1184
1185 static struct snd_soc_dai_ops null_dai_ops = {
1186 };
1187
1188 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
1189 {
1190         struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1191         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1192         struct snd_soc_codec *codec;
1193         struct snd_soc_platform *platform;
1194         struct snd_soc_dai *codec_dai, *cpu_dai;
1195
1196         if (rtd->complete)
1197                 return 1;
1198         dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num);
1199
1200         /* do we already have the CPU DAI for this link ? */
1201         if (rtd->cpu_dai) {
1202                 goto find_codec;
1203         }
1204         /* no, then find CPU DAI from registered DAIs*/
1205         list_for_each_entry(cpu_dai, &dai_list, list) {
1206                 if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) {
1207
1208                         if (!try_module_get(cpu_dai->dev->driver->owner))
1209                                 return -ENODEV;
1210
1211                         rtd->cpu_dai = cpu_dai;
1212                         goto find_codec;
1213                 }
1214         }
1215         dev_dbg(card->dev, "CPU DAI %s not registered\n",
1216                         dai_link->cpu_dai_name);
1217
1218 find_codec:
1219         /* do we already have the CODEC for this link ? */
1220         if (rtd->codec) {
1221                 goto find_platform;
1222         }
1223
1224         /* no, then find CODEC from registered CODECs*/
1225         list_for_each_entry(codec, &codec_list, list) {
1226                 if (!strcmp(codec->name, dai_link->codec_name)) {
1227                         rtd->codec = codec;
1228
1229                         if (!try_module_get(codec->dev->driver->owner))
1230                                 return -ENODEV;
1231
1232                         /* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/
1233                         list_for_each_entry(codec_dai, &dai_list, list) {
1234                                 if (codec->dev == codec_dai->dev &&
1235                                                 !strcmp(codec_dai->name, dai_link->codec_dai_name)) {
1236                                         rtd->codec_dai = codec_dai;
1237                                         goto find_platform;
1238                                 }
1239                         }
1240                         dev_dbg(card->dev, "CODEC DAI %s not registered\n",
1241                                         dai_link->codec_dai_name);
1242
1243                         goto find_platform;
1244                 }
1245         }
1246         dev_dbg(card->dev, "CODEC %s not registered\n",
1247                         dai_link->codec_name);
1248
1249 find_platform:
1250         /* do we already have the CODEC DAI for this link ? */
1251         if (rtd->platform) {
1252                 goto out;
1253         }
1254         /* no, then find CPU DAI from registered DAIs*/
1255         list_for_each_entry(platform, &platform_list, list) {
1256                 if (!strcmp(platform->name, dai_link->platform_name)) {
1257
1258                         if (!try_module_get(platform->dev->driver->owner))
1259                                 return -ENODEV;
1260
1261                         rtd->platform = platform;
1262                         goto out;
1263                 }
1264         }
1265
1266         dev_dbg(card->dev, "platform %s not registered\n",
1267                         dai_link->platform_name);
1268         return 0;
1269
1270 out:
1271         /* mark rtd as complete if we found all 4 of our client devices */
1272         if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) {
1273                 rtd->complete = 1;
1274                 card->num_rtd++;
1275         }
1276         return 1;
1277 }
1278
1279 static void soc_remove_dai_link(struct snd_soc_card *card, int num)
1280 {
1281         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1282         struct snd_soc_codec *codec = rtd->codec;
1283         struct snd_soc_platform *platform = rtd->platform;
1284         struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1285         int err;
1286
1287         /* unregister the rtd device */
1288         if (rtd->dev_registered) {
1289                 device_remove_file(&rtd->dev, &dev_attr_pmdown_time);
1290                 device_unregister(&rtd->dev);
1291                 rtd->dev_registered = 0;
1292         }
1293
1294         /* remove the CODEC DAI */
1295         if (codec_dai && codec_dai->probed) {
1296                 if (codec_dai->driver->remove) {
1297                         err = codec_dai->driver->remove(codec_dai);
1298                         if (err < 0)
1299                                 printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name);
1300                 }
1301                 codec_dai->probed = 0;
1302                 list_del(&codec_dai->card_list);
1303         }
1304
1305         /* remove the platform */
1306         if (platform && platform->probed) {
1307                 if (platform->driver->remove) {
1308                         err = platform->driver->remove(platform);
1309                         if (err < 0)
1310                                 printk(KERN_ERR "asoc: failed to remove %s\n", platform->name);
1311                 }
1312                 platform->probed = 0;
1313                 list_del(&platform->card_list);
1314                 module_put(platform->dev->driver->owner);
1315         }
1316
1317         /* remove the CODEC */
1318         if (codec && codec->probed) {
1319                 if (codec->driver->remove) {
1320                         err = codec->driver->remove(codec);
1321                         if (err < 0)
1322                                 printk(KERN_ERR "asoc: failed to remove %s\n", codec->name);
1323                 }
1324
1325                 /* Make sure all DAPM widgets are freed */
1326                 snd_soc_dapm_free(codec);
1327
1328                 soc_cleanup_codec_debugfs(codec);
1329                 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1330                 codec->probed = 0;
1331                 list_del(&codec->card_list);
1332                 module_put(codec->dev->driver->owner);
1333         }
1334
1335         /* remove the cpu_dai */
1336         if (cpu_dai && cpu_dai->probed) {
1337                 if (cpu_dai->driver->remove) {
1338                         err = cpu_dai->driver->remove(cpu_dai);
1339                         if (err < 0)
1340                                 printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name);
1341                 }
1342                 cpu_dai->probed = 0;
1343                 list_del(&cpu_dai->card_list);
1344                 module_put(cpu_dai->dev->driver->owner);
1345         }
1346 }
1347
1348 static void rtd_release(struct device *dev) {}
1349
1350 static int soc_probe_dai_link(struct snd_soc_card *card, int num)
1351 {
1352         struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1353         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1354         struct snd_soc_codec *codec = rtd->codec;
1355         struct snd_soc_platform *platform = rtd->platform;
1356         struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1357         int ret;
1358
1359         dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num);
1360
1361         /* config components */
1362         codec_dai->codec = codec;
1363         codec->card = card;
1364         cpu_dai->platform = platform;
1365         rtd->card = card;
1366         rtd->dev.parent = card->dev;
1367         codec_dai->card = card;
1368         cpu_dai->card = card;
1369
1370         /* set default power off timeout */
1371         rtd->pmdown_time = pmdown_time;
1372
1373         /* probe the cpu_dai */
1374         if (!cpu_dai->probed) {
1375                 if (cpu_dai->driver->probe) {
1376                         ret = cpu_dai->driver->probe(cpu_dai);
1377                         if (ret < 0) {
1378                                 printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n",
1379                                                 cpu_dai->name);
1380                                 return ret;
1381                         }
1382                 }
1383                 cpu_dai->probed = 1;
1384                 /* mark cpu_dai as probed and add to card cpu_dai list */
1385                 list_add(&cpu_dai->card_list, &card->dai_dev_list);
1386         }
1387
1388         /* probe the CODEC */
1389         if (!codec->probed) {
1390                 if (codec->driver->probe) {
1391                         ret = codec->driver->probe(codec);
1392                         if (ret < 0) {
1393                                 printk(KERN_ERR "asoc: failed to probe CODEC %s\n",
1394                                                 codec->name);
1395                                 return ret;
1396                         }
1397                 }
1398
1399                 soc_init_codec_debugfs(codec);
1400
1401                 /* mark codec as probed and add to card codec list */
1402                 codec->probed = 1;
1403                 list_add(&codec->card_list, &card->codec_dev_list);
1404         }
1405
1406         /* probe the platform */
1407         if (!platform->probed) {
1408                 if (platform->driver->probe) {
1409                         ret = platform->driver->probe(platform);
1410                         if (ret < 0) {
1411                                 printk(KERN_ERR "asoc: failed to probe platform %s\n",
1412                                                 platform->name);
1413                                 return ret;
1414                         }
1415                 }
1416                 /* mark platform as probed and add to card platform list */
1417                 platform->probed = 1;
1418                 list_add(&platform->card_list, &card->platform_dev_list);
1419         }
1420
1421         /* probe the CODEC DAI */
1422         if (!codec_dai->probed) {
1423                 if (codec_dai->driver->probe) {
1424                         ret = codec_dai->driver->probe(codec_dai);
1425                         if (ret < 0) {
1426                                 printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n",
1427                                                 codec_dai->name);
1428                                 return ret;
1429                         }
1430                 }
1431
1432                 /* mark cpu_dai as probed and add to card cpu_dai list */
1433                 codec_dai->probed = 1;
1434                 list_add(&codec_dai->card_list, &card->dai_dev_list);
1435         }
1436
1437         /* DAPM dai link stream work */
1438         INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work);
1439
1440         /* now that all clients have probed, initialise the DAI link */
1441         if (dai_link->init) {
1442                 ret = dai_link->init(rtd);
1443                 if (ret < 0) {
1444                         printk(KERN_ERR "asoc: failed to init %s\n", dai_link->stream_name);
1445                         return ret;
1446                 }
1447         }
1448
1449         /* Make sure all DAPM widgets are instantiated */
1450         snd_soc_dapm_new_widgets(codec);
1451         snd_soc_dapm_sync(codec);
1452
1453         /* register the rtd device */
1454         rtd->dev.release = rtd_release;
1455         rtd->dev.init_name = dai_link->name;
1456         ret = device_register(&rtd->dev);
1457         if (ret < 0) {
1458                 printk(KERN_ERR "asoc: failed to register DAI runtime device %d\n", ret);
1459                 return ret;
1460         }
1461
1462         rtd->dev_registered = 1;
1463         ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time);
1464         if (ret < 0)
1465                 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1466
1467         /* add DAPM sysfs entries for this codec */
1468         ret = snd_soc_dapm_sys_add(&rtd->dev);
1469         if (ret < 0)
1470                 printk(KERN_WARNING "asoc: failed to add codec dapm sysfs entries\n");
1471
1472         /* add codec sysfs entries */
1473         ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
1474         if (ret < 0)
1475                 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1476
1477         /* create the pcm */
1478         ret = soc_new_pcm(rtd, num);
1479         if (ret < 0) {
1480                 printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name);
1481                 return ret;
1482         }
1483
1484         /* add platform data for AC97 devices */
1485         if (rtd->codec_dai->driver->ac97_control)
1486                 snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);
1487
1488         return 0;
1489 }
1490
1491 #ifdef CONFIG_SND_SOC_AC97_BUS
1492 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1493 {
1494         int ret;
1495
1496         /* Only instantiate AC97 if not already done by the adaptor
1497          * for the generic AC97 subsystem.
1498          */
1499         if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
1500                 /*
1501                  * It is possible that the AC97 device is already registered to
1502                  * the device subsystem. This happens when the device is created
1503                  * via snd_ac97_mixer(). Currently only SoC codec that does so
1504                  * is the generic AC97 glue but others migh emerge.
1505                  *
1506                  * In those cases we don't try to register the device again.
1507                  */
1508                 if (!rtd->codec->ac97_created)
1509                         return 0;
1510
1511                 ret = soc_ac97_dev_register(rtd->codec);
1512                 if (ret < 0) {
1513                         printk(KERN_ERR "asoc: AC97 device register failed\n");
1514                         return ret;
1515                 }
1516
1517                 rtd->codec->ac97_registered = 1;
1518         }
1519         return 0;
1520 }
1521
1522 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
1523 {
1524         if (codec->ac97_registered) {
1525                 soc_ac97_dev_unregister(codec);
1526                 codec->ac97_registered = 0;
1527         }
1528 }
1529 #endif
1530
1531 static void snd_soc_instantiate_card(struct snd_soc_card *card)
1532 {
1533         struct platform_device *pdev = to_platform_device(card->dev);
1534         int ret, i;
1535
1536         mutex_lock(&card->mutex);
1537
1538         if (card->instantiated) {
1539                 mutex_unlock(&card->mutex);
1540                 return;
1541         }
1542
1543         /* bind DAIs */
1544         for (i = 0; i < card->num_links; i++)
1545                 soc_bind_dai_link(card, i);
1546
1547         /* bind completed ? */
1548         if (card->num_rtd != card->num_links) {
1549                 mutex_unlock(&card->mutex);
1550                 return;
1551         }
1552
1553         /* card bind complete so register a sound card */
1554         ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1555                         card->owner, 0, &card->snd_card);
1556         if (ret < 0) {
1557                 printk(KERN_ERR "asoc: can't create sound card for card %s\n",
1558                         card->name);
1559                 mutex_unlock(&card->mutex);
1560                 return;
1561         }
1562         card->snd_card->dev = card->dev;
1563
1564 #ifdef CONFIG_PM
1565         /* deferred resume work */
1566         INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1567 #endif
1568
1569         /* initialise the sound card only once */
1570         if (card->probe) {
1571                 ret = card->probe(pdev);
1572                 if (ret < 0)
1573                         goto card_probe_error;
1574         }
1575
1576         for (i = 0; i < card->num_links; i++) {
1577                 ret = soc_probe_dai_link(card, i);
1578                 if (ret < 0) {
1579                         pr_err("asoc: failed to instantiate card %s: %d\n",
1580                                card->name, ret);
1581                         goto probe_dai_err;
1582                 }
1583         }
1584
1585         snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1586                  "%s",  card->name);
1587         snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1588                  "%s", card->name);
1589
1590         ret = snd_card_register(card->snd_card);
1591         if (ret < 0) {
1592                 printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name);
1593                 goto probe_dai_err;
1594         }
1595
1596 #ifdef CONFIG_SND_SOC_AC97_BUS
1597         /* register any AC97 codecs */
1598         for (i = 0; i < card->num_rtd; i++) {
1599                         ret = soc_register_ac97_dai_link(&card->rtd[i]);
1600                         if (ret < 0) {
1601                                 printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name);
1602                                 goto probe_dai_err;
1603                         }
1604                 }
1605 #endif
1606
1607         card->instantiated = 1;
1608         mutex_unlock(&card->mutex);
1609         return;
1610
1611 probe_dai_err:
1612         for (i = 0; i < card->num_links; i++)
1613                 soc_remove_dai_link(card, i);
1614
1615 card_probe_error:
1616         if (card->remove)
1617                 card->remove(pdev);
1618
1619         snd_card_free(card->snd_card);
1620
1621         mutex_unlock(&card->mutex);
1622 }
1623
1624 /*
1625  * Attempt to initialise any uninitialised cards.  Must be called with
1626  * client_mutex.
1627  */
1628 static void snd_soc_instantiate_cards(void)
1629 {
1630         struct snd_soc_card *card;
1631         list_for_each_entry(card, &card_list, list)
1632                 snd_soc_instantiate_card(card);
1633 }
1634
1635 /* probes a new socdev */
1636 static int soc_probe(struct platform_device *pdev)
1637 {
1638         struct snd_soc_card *card = platform_get_drvdata(pdev);
1639         int ret = 0;
1640
1641         /* Bodge while we unpick instantiation */
1642         card->dev = &pdev->dev;
1643         INIT_LIST_HEAD(&card->dai_dev_list);
1644         INIT_LIST_HEAD(&card->codec_dev_list);
1645         INIT_LIST_HEAD(&card->platform_dev_list);
1646
1647         ret = snd_soc_register_card(card);
1648         if (ret != 0) {
1649                 dev_err(&pdev->dev, "Failed to register card\n");
1650                 return ret;
1651         }
1652
1653         return 0;
1654 }
1655
1656 /* removes a socdev */
1657 static int soc_remove(struct platform_device *pdev)
1658 {
1659         struct snd_soc_card *card = platform_get_drvdata(pdev);
1660         int i;
1661
1662                 if (card->instantiated) {
1663
1664                 /* make sure any delayed work runs */
1665                 for (i = 0; i < card->num_rtd; i++) {
1666                         struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1667                         run_delayed_work(&rtd->delayed_work);
1668                 }
1669
1670                 /* remove and free each DAI */
1671                 for (i = 0; i < card->num_rtd; i++)
1672                         soc_remove_dai_link(card, i);
1673
1674                 /* remove the card */
1675                 if (card->remove)
1676                         card->remove(pdev);
1677
1678                 kfree(card->rtd);
1679                 snd_card_free(card->snd_card);
1680         }
1681         snd_soc_unregister_card(card);
1682         return 0;
1683 }
1684
1685 static int soc_poweroff(struct device *dev)
1686 {
1687         struct platform_device *pdev = to_platform_device(dev);
1688         struct snd_soc_card *card = platform_get_drvdata(pdev);
1689         int i;
1690
1691         if (!card->instantiated)
1692                 return 0;
1693
1694         /* Flush out pmdown_time work - we actually do want to run it
1695          * now, we're shutting down so no imminent restart. */
1696         for (i = 0; i < card->num_rtd; i++) {
1697                 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1698                 run_delayed_work(&rtd->delayed_work);
1699         }
1700
1701         snd_soc_dapm_shutdown(card);
1702
1703         return 0;
1704 }
1705
1706 static const struct dev_pm_ops soc_pm_ops = {
1707         .suspend = soc_suspend,
1708         .resume = soc_resume,
1709         .poweroff = soc_poweroff,
1710 };
1711
1712 /* ASoC platform driver */
1713 static struct platform_driver soc_driver = {
1714         .driver         = {
1715                 .name           = "soc-audio",
1716                 .owner          = THIS_MODULE,
1717                 .pm             = &soc_pm_ops,
1718         },
1719         .probe          = soc_probe,
1720         .remove         = soc_remove,
1721 };
1722
1723 /* create a new pcm */
1724 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num)
1725 {
1726         struct snd_soc_codec *codec = rtd->codec;
1727         struct snd_soc_platform *platform = rtd->platform;
1728         struct snd_soc_dai *codec_dai = rtd->codec_dai;
1729         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1730         struct snd_pcm *pcm;
1731         char new_name[64];
1732         int ret = 0, playback = 0, capture = 0;
1733
1734         /* check client and interface hw capabilities */
1735         snprintf(new_name, sizeof(new_name), "%s %s-%d",
1736                         rtd->dai_link->stream_name, codec_dai->name, num);
1737
1738         if (codec_dai->driver->playback.channels_min)
1739                 playback = 1;
1740         if (codec_dai->driver->capture.channels_min)
1741                 capture = 1;
1742
1743         dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name);
1744         ret = snd_pcm_new(rtd->card->snd_card, new_name,
1745                         num, playback, capture, &pcm);
1746         if (ret < 0) {
1747                 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
1748                 return ret;
1749         }
1750
1751         rtd->pcm = pcm;
1752         pcm->private_data = rtd;
1753         soc_pcm_ops.mmap = platform->driver->ops->mmap;
1754         soc_pcm_ops.pointer = platform->driver->ops->pointer;
1755         soc_pcm_ops.ioctl = platform->driver->ops->ioctl;
1756         soc_pcm_ops.copy = platform->driver->ops->copy;
1757         soc_pcm_ops.silence = platform->driver->ops->silence;
1758         soc_pcm_ops.ack = platform->driver->ops->ack;
1759         soc_pcm_ops.page = platform->driver->ops->page;
1760
1761         if (playback)
1762                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1763
1764         if (capture)
1765                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1766
1767         ret = platform->driver->pcm_new(rtd->card->snd_card, codec_dai, pcm);
1768         if (ret < 0) {
1769                 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1770                 return ret;
1771         }
1772
1773         pcm->private_free = platform->driver->pcm_free;
1774         printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1775                 cpu_dai->name);
1776         return ret;
1777 }
1778
1779 /**
1780  * snd_soc_codec_volatile_register: Report if a register is volatile.
1781  *
1782  * @codec: CODEC to query.
1783  * @reg: Register to query.
1784  *
1785  * Boolean function indiciating if a CODEC register is volatile.
1786  */
1787 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
1788 {
1789         if (codec->driver->volatile_register)
1790                 return codec->driver->volatile_register(reg);
1791         else
1792                 return 0;
1793 }
1794 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
1795
1796 /**
1797  * snd_soc_new_ac97_codec - initailise AC97 device
1798  * @codec: audio codec
1799  * @ops: AC97 bus operations
1800  * @num: AC97 codec number
1801  *
1802  * Initialises AC97 codec resources for use by ad-hoc devices only.
1803  */
1804 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1805         struct snd_ac97_bus_ops *ops, int num)
1806 {
1807         mutex_lock(&codec->mutex);
1808
1809         codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1810         if (codec->ac97 == NULL) {
1811                 mutex_unlock(&codec->mutex);
1812                 return -ENOMEM;
1813         }
1814
1815         codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1816         if (codec->ac97->bus == NULL) {
1817                 kfree(codec->ac97);
1818                 codec->ac97 = NULL;
1819                 mutex_unlock(&codec->mutex);
1820                 return -ENOMEM;
1821         }
1822
1823         codec->ac97->bus->ops = ops;
1824         codec->ac97->num = num;
1825
1826         /*
1827          * Mark the AC97 device to be created by us. This way we ensure that the
1828          * device will be registered with the device subsystem later on.
1829          */
1830         codec->ac97_created = 1;
1831
1832         mutex_unlock(&codec->mutex);
1833         return 0;
1834 }
1835 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1836
1837 /**
1838  * snd_soc_free_ac97_codec - free AC97 codec device
1839  * @codec: audio codec
1840  *
1841  * Frees AC97 codec device resources.
1842  */
1843 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1844 {
1845         mutex_lock(&codec->mutex);
1846 #ifdef CONFIG_SND_SOC_AC97_BUS
1847         soc_unregister_ac97_dai_link(codec);
1848 #endif
1849         kfree(codec->ac97->bus);
1850         kfree(codec->ac97);
1851         codec->ac97 = NULL;
1852         codec->ac97_created = 0;
1853         mutex_unlock(&codec->mutex);
1854 }
1855 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1856
1857 /**
1858  * snd_soc_update_bits - update codec register bits
1859  * @codec: audio codec
1860  * @reg: codec register
1861  * @mask: register mask
1862  * @value: new value
1863  *
1864  * Writes new register value.
1865  *
1866  * Returns 1 for change else 0.
1867  */
1868 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1869                                 unsigned int mask, unsigned int value)
1870 {
1871         int change;
1872         unsigned int old, new;
1873
1874         old = snd_soc_read(codec, reg);
1875         new = (old & ~mask) | value;
1876         change = old != new;
1877         if (change)
1878                 snd_soc_write(codec, reg, new);
1879
1880         return change;
1881 }
1882 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1883
1884 /**
1885  * snd_soc_update_bits_locked - update codec register bits
1886  * @codec: audio codec
1887  * @reg: codec register
1888  * @mask: register mask
1889  * @value: new value
1890  *
1891  * Writes new register value, and takes the codec mutex.
1892  *
1893  * Returns 1 for change else 0.
1894  */
1895 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
1896                                unsigned short reg, unsigned int mask,
1897                                unsigned int value)
1898 {
1899         int change;
1900
1901         mutex_lock(&codec->mutex);
1902         change = snd_soc_update_bits(codec, reg, mask, value);
1903         mutex_unlock(&codec->mutex);
1904
1905         return change;
1906 }
1907 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
1908
1909 /**
1910  * snd_soc_test_bits - test register for change
1911  * @codec: audio codec
1912  * @reg: codec register
1913  * @mask: register mask
1914  * @value: new value
1915  *
1916  * Tests a register with a new value and checks if the new value is
1917  * different from the old value.
1918  *
1919  * Returns 1 for change else 0.
1920  */
1921 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1922                                 unsigned int mask, unsigned int value)
1923 {
1924         int change;
1925         unsigned int old, new;
1926
1927         old = snd_soc_read(codec, reg);
1928         new = (old & ~mask) | value;
1929         change = old != new;
1930
1931         return change;
1932 }
1933 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1934
1935 /**
1936  * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1937  * @substream: the pcm substream
1938  * @hw: the hardware parameters
1939  *
1940  * Sets the substream runtime hardware parameters.
1941  */
1942 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1943         const struct snd_pcm_hardware *hw)
1944 {
1945         struct snd_pcm_runtime *runtime = substream->runtime;
1946         runtime->hw.info = hw->info;
1947         runtime->hw.formats = hw->formats;
1948         runtime->hw.period_bytes_min = hw->period_bytes_min;
1949         runtime->hw.period_bytes_max = hw->period_bytes_max;
1950         runtime->hw.periods_min = hw->periods_min;
1951         runtime->hw.periods_max = hw->periods_max;
1952         runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1953         runtime->hw.fifo_size = hw->fifo_size;
1954         return 0;
1955 }
1956 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1957
1958 /**
1959  * snd_soc_cnew - create new control
1960  * @_template: control template
1961  * @data: control private data
1962  * @long_name: control long name
1963  *
1964  * Create a new mixer control from a template control.
1965  *
1966  * Returns 0 for success, else error.
1967  */
1968 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1969         void *data, char *long_name)
1970 {
1971         struct snd_kcontrol_new template;
1972
1973         memcpy(&template, _template, sizeof(template));
1974         if (long_name)
1975                 template.name = long_name;
1976         template.index = 0;
1977
1978         return snd_ctl_new1(&template, data);
1979 }
1980 EXPORT_SYMBOL_GPL(snd_soc_cnew);
1981
1982 /**
1983  * snd_soc_add_controls - add an array of controls to a codec.
1984  * Convienience function to add a list of controls. Many codecs were
1985  * duplicating this code.
1986  *
1987  * @codec: codec to add controls to
1988  * @controls: array of controls to add
1989  * @num_controls: number of elements in the array
1990  *
1991  * Return 0 for success, else error.
1992  */
1993 int snd_soc_add_controls(struct snd_soc_codec *codec,
1994         const struct snd_kcontrol_new *controls, int num_controls)
1995 {
1996         struct snd_card *card = codec->card->snd_card;
1997         int err, i;
1998
1999         for (i = 0; i < num_controls; i++) {
2000                 const struct snd_kcontrol_new *control = &controls[i];
2001                 err = snd_ctl_add(card, snd_soc_cnew(control, codec, NULL));
2002                 if (err < 0) {
2003                         dev_err(codec->dev, "%s: Failed to add %s: %d\n",
2004                                 codec->name, control->name, err);
2005                         return err;
2006                 }
2007         }
2008
2009         return 0;
2010 }
2011 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
2012
2013 /**
2014  * snd_soc_info_enum_double - enumerated double mixer info callback
2015  * @kcontrol: mixer control
2016  * @uinfo: control element information
2017  *
2018  * Callback to provide information about a double enumerated
2019  * mixer control.
2020  *
2021  * Returns 0 for success.
2022  */
2023 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2024         struct snd_ctl_elem_info *uinfo)
2025 {
2026         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2027
2028         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2029         uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2030         uinfo->value.enumerated.items = e->max;
2031
2032         if (uinfo->value.enumerated.item > e->max - 1)
2033                 uinfo->value.enumerated.item = e->max - 1;
2034         strcpy(uinfo->value.enumerated.name,
2035                 e->texts[uinfo->value.enumerated.item]);
2036         return 0;
2037 }
2038 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2039
2040 /**
2041  * snd_soc_get_enum_double - enumerated double mixer get callback
2042  * @kcontrol: mixer control
2043  * @ucontrol: control element information
2044  *
2045  * Callback to get the value of a double enumerated mixer.
2046  *
2047  * Returns 0 for success.
2048  */
2049 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2050         struct snd_ctl_elem_value *ucontrol)
2051 {
2052         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2053         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2054         unsigned int val, bitmask;
2055
2056         for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2057                 ;
2058         val = snd_soc_read(codec, e->reg);
2059         ucontrol->value.enumerated.item[0]
2060                 = (val >> e->shift_l) & (bitmask - 1);
2061         if (e->shift_l != e->shift_r)
2062                 ucontrol->value.enumerated.item[1] =
2063                         (val >> e->shift_r) & (bitmask - 1);
2064
2065         return 0;
2066 }
2067 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2068
2069 /**
2070  * snd_soc_put_enum_double - enumerated double mixer put callback
2071  * @kcontrol: mixer control
2072  * @ucontrol: control element information
2073  *
2074  * Callback to set the value of a double enumerated mixer.
2075  *
2076  * Returns 0 for success.
2077  */
2078 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2079         struct snd_ctl_elem_value *ucontrol)
2080 {
2081         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2082         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2083         unsigned int val;
2084         unsigned int mask, bitmask;
2085
2086         for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2087                 ;
2088         if (ucontrol->value.enumerated.item[0] > e->max - 1)
2089                 return -EINVAL;
2090         val = ucontrol->value.enumerated.item[0] << e->shift_l;
2091         mask = (bitmask - 1) << e->shift_l;
2092         if (e->shift_l != e->shift_r) {
2093                 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2094                         return -EINVAL;
2095                 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
2096                 mask |= (bitmask - 1) << e->shift_r;
2097         }
2098
2099         return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2100 }
2101 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2102
2103 /**
2104  * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
2105  * @kcontrol: mixer control
2106  * @ucontrol: control element information
2107  *
2108  * Callback to get the value of a double semi enumerated mixer.
2109  *
2110  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2111  * used for handling bitfield coded enumeration for example.
2112  *
2113  * Returns 0 for success.
2114  */
2115 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
2116         struct snd_ctl_elem_value *ucontrol)
2117 {
2118         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2119         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2120         unsigned int reg_val, val, mux;
2121
2122         reg_val = snd_soc_read(codec, e->reg);
2123         val = (reg_val >> e->shift_l) & e->mask;
2124         for (mux = 0; mux < e->max; mux++) {
2125                 if (val == e->values[mux])
2126                         break;
2127         }
2128         ucontrol->value.enumerated.item[0] = mux;
2129         if (e->shift_l != e->shift_r) {
2130                 val = (reg_val >> e->shift_r) & e->mask;
2131                 for (mux = 0; mux < e->max; mux++) {
2132                         if (val == e->values[mux])
2133                                 break;
2134                 }
2135                 ucontrol->value.enumerated.item[1] = mux;
2136         }
2137
2138         return 0;
2139 }
2140 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
2141
2142 /**
2143  * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
2144  * @kcontrol: mixer control
2145  * @ucontrol: control element information
2146  *
2147  * Callback to set the value of a double semi enumerated mixer.
2148  *
2149  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2150  * used for handling bitfield coded enumeration for example.
2151  *
2152  * Returns 0 for success.
2153  */
2154 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
2155         struct snd_ctl_elem_value *ucontrol)
2156 {
2157         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2158         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2159         unsigned int val;
2160         unsigned int mask;
2161
2162         if (ucontrol->value.enumerated.item[0] > e->max - 1)
2163                 return -EINVAL;
2164         val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
2165         mask = e->mask << e->shift_l;
2166         if (e->shift_l != e->shift_r) {
2167                 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2168                         return -EINVAL;
2169                 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
2170                 mask |= e->mask << e->shift_r;
2171         }
2172
2173         return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2174 }
2175 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
2176
2177 /**
2178  * snd_soc_info_enum_ext - external enumerated single mixer info callback
2179  * @kcontrol: mixer control
2180  * @uinfo: control element information
2181  *
2182  * Callback to provide information about an external enumerated
2183  * single mixer.
2184  *
2185  * Returns 0 for success.
2186  */
2187 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
2188         struct snd_ctl_elem_info *uinfo)
2189 {
2190         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2191
2192         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2193         uinfo->count = 1;
2194         uinfo->value.enumerated.items = e->max;
2195
2196         if (uinfo->value.enumerated.item > e->max - 1)
2197                 uinfo->value.enumerated.item = e->max - 1;
2198         strcpy(uinfo->value.enumerated.name,
2199                 e->texts[uinfo->value.enumerated.item]);
2200         return 0;
2201 }
2202 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
2203
2204 /**
2205  * snd_soc_info_volsw_ext - external single mixer info callback
2206  * @kcontrol: mixer control
2207  * @uinfo: control element information
2208  *
2209  * Callback to provide information about a single external mixer control.
2210  *
2211  * Returns 0 for success.
2212  */
2213 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
2214         struct snd_ctl_elem_info *uinfo)
2215 {
2216         int max = kcontrol->private_value;
2217
2218         if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2219                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2220         else
2221                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2222
2223         uinfo->count = 1;
2224         uinfo->value.integer.min = 0;
2225         uinfo->value.integer.max = max;
2226         return 0;
2227 }
2228 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
2229
2230 /**
2231  * snd_soc_info_volsw - single mixer info callback
2232  * @kcontrol: mixer control
2233  * @uinfo: control element information
2234  *
2235  * Callback to provide information about a single mixer control.
2236  *
2237  * Returns 0 for success.
2238  */
2239 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2240         struct snd_ctl_elem_info *uinfo)
2241 {
2242         struct soc_mixer_control *mc =
2243                 (struct soc_mixer_control *)kcontrol->private_value;
2244         int platform_max;
2245         unsigned int shift = mc->shift;
2246         unsigned int rshift = mc->rshift;
2247
2248         if (!mc->platform_max)
2249                 mc->platform_max = mc->max;
2250         platform_max = mc->platform_max;
2251
2252         if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2253                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2254         else
2255                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2256
2257         uinfo->count = shift == rshift ? 1 : 2;
2258         uinfo->value.integer.min = 0;
2259         uinfo->value.integer.max = platform_max;
2260         return 0;
2261 }
2262 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2263
2264 /**
2265  * snd_soc_get_volsw - single mixer get callback
2266  * @kcontrol: mixer control
2267  * @ucontrol: control element information
2268  *
2269  * Callback to get the value of a single mixer control.
2270  *
2271  * Returns 0 for success.
2272  */
2273 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2274         struct snd_ctl_elem_value *ucontrol)
2275 {
2276         struct soc_mixer_control *mc =
2277                 (struct soc_mixer_control *)kcontrol->private_value;
2278         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2279         unsigned int reg = mc->reg;
2280         unsigned int shift = mc->shift;
2281         unsigned int rshift = mc->rshift;
2282         int max = mc->max;
2283         unsigned int mask = (1 << fls(max)) - 1;
2284         unsigned int invert = mc->invert;
2285
2286         ucontrol->value.integer.value[0] =
2287                 (snd_soc_read(codec, reg) >> shift) & mask;
2288         if (shift != rshift)
2289                 ucontrol->value.integer.value[1] =
2290                         (snd_soc_read(codec, reg) >> rshift) & mask;
2291         if (invert) {
2292                 ucontrol->value.integer.value[0] =
2293                         max - ucontrol->value.integer.value[0];
2294                 if (shift != rshift)
2295                         ucontrol->value.integer.value[1] =
2296                                 max - ucontrol->value.integer.value[1];
2297         }
2298
2299         return 0;
2300 }
2301 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2302
2303 /**
2304  * snd_soc_put_volsw - single mixer put callback
2305  * @kcontrol: mixer control
2306  * @ucontrol: control element information
2307  *
2308  * Callback to set the value of a single mixer control.
2309  *
2310  * Returns 0 for success.
2311  */
2312 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2313         struct snd_ctl_elem_value *ucontrol)
2314 {
2315         struct soc_mixer_control *mc =
2316                 (struct soc_mixer_control *)kcontrol->private_value;
2317         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2318         unsigned int reg = mc->reg;
2319         unsigned int shift = mc->shift;
2320         unsigned int rshift = mc->rshift;
2321         int max = mc->max;
2322         unsigned int mask = (1 << fls(max)) - 1;
2323         unsigned int invert = mc->invert;
2324         unsigned int val, val2, val_mask;
2325
2326         val = (ucontrol->value.integer.value[0] & mask);
2327         if (invert)
2328                 val = max - val;
2329         val_mask = mask << shift;
2330         val = val << shift;
2331         if (shift != rshift) {
2332                 val2 = (ucontrol->value.integer.value[1] & mask);
2333                 if (invert)
2334                         val2 = max - val2;
2335                 val_mask |= mask << rshift;
2336                 val |= val2 << rshift;
2337         }
2338         return snd_soc_update_bits_locked(codec, reg, val_mask, val);
2339 }
2340 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2341
2342 /**
2343  * snd_soc_info_volsw_2r - double mixer info callback
2344  * @kcontrol: mixer control
2345  * @uinfo: control element information
2346  *
2347  * Callback to provide information about a double mixer control that
2348  * spans 2 codec registers.
2349  *
2350  * Returns 0 for success.
2351  */
2352 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2353         struct snd_ctl_elem_info *uinfo)
2354 {
2355         struct soc_mixer_control *mc =
2356                 (struct soc_mixer_control *)kcontrol->private_value;
2357         int platform_max;
2358
2359         if (!mc->platform_max)
2360                 mc->platform_max = mc->max;
2361         platform_max = mc->platform_max;
2362
2363         if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2364                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2365         else
2366                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2367
2368         uinfo->count = 2;
2369         uinfo->value.integer.min = 0;
2370         uinfo->value.integer.max = platform_max;
2371         return 0;
2372 }
2373 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2374
2375 /**
2376  * snd_soc_get_volsw_2r - double mixer get callback
2377  * @kcontrol: mixer control
2378  * @ucontrol: control element information
2379  *
2380  * Callback to get the value of a double mixer control that spans 2 registers.
2381  *
2382  * Returns 0 for success.
2383  */
2384 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2385         struct snd_ctl_elem_value *ucontrol)
2386 {
2387         struct soc_mixer_control *mc =
2388                 (struct soc_mixer_control *)kcontrol->private_value;
2389         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2390         unsigned int reg = mc->reg;
2391         unsigned int reg2 = mc->rreg;
2392         unsigned int shift = mc->shift;
2393         int max = mc->max;
2394         unsigned int mask = (1 << fls(max)) - 1;
2395         unsigned int invert = mc->invert;
2396
2397         ucontrol->value.integer.value[0] =
2398                 (snd_soc_read(codec, reg) >> shift) & mask;
2399         ucontrol->value.integer.value[1] =
2400                 (snd_soc_read(codec, reg2) >> shift) & mask;
2401         if (invert) {
2402                 ucontrol->value.integer.value[0] =
2403                         max - ucontrol->value.integer.value[0];
2404                 ucontrol->value.integer.value[1] =
2405                         max - ucontrol->value.integer.value[1];
2406         }
2407
2408         return 0;
2409 }
2410 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2411
2412 /**
2413  * snd_soc_put_volsw_2r - double mixer set callback
2414  * @kcontrol: mixer control
2415  * @ucontrol: control element information
2416  *
2417  * Callback to set the value of a double mixer control that spans 2 registers.
2418  *
2419  * Returns 0 for success.
2420  */
2421 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2422         struct snd_ctl_elem_value *ucontrol)
2423 {
2424         struct soc_mixer_control *mc =
2425                 (struct soc_mixer_control *)kcontrol->private_value;
2426         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2427         unsigned int reg = mc->reg;
2428         unsigned int reg2 = mc->rreg;
2429         unsigned int shift = mc->shift;
2430         int max = mc->max;
2431         unsigned int mask = (1 << fls(max)) - 1;
2432         unsigned int invert = mc->invert;
2433         int err;
2434         unsigned int val, val2, val_mask;
2435
2436         val_mask = mask << shift;
2437         val = (ucontrol->value.integer.value[0] & mask);
2438         val2 = (ucontrol->value.integer.value[1] & mask);
2439
2440         if (invert) {
2441                 val = max - val;
2442                 val2 = max - val2;
2443         }
2444
2445         val = val << shift;
2446         val2 = val2 << shift;
2447
2448         err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2449         if (err < 0)
2450                 return err;
2451
2452         err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2453         return err;
2454 }
2455 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2456
2457 /**
2458  * snd_soc_info_volsw_s8 - signed mixer info callback
2459  * @kcontrol: mixer control
2460  * @uinfo: control element information
2461  *
2462  * Callback to provide information about a signed mixer control.
2463  *
2464  * Returns 0 for success.
2465  */
2466 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2467         struct snd_ctl_elem_info *uinfo)
2468 {
2469         struct soc_mixer_control *mc =
2470                 (struct soc_mixer_control *)kcontrol->private_value;
2471         int platform_max;
2472         int min = mc->min;
2473
2474         if (!mc->platform_max)
2475                 mc->platform_max = mc->max;
2476         platform_max = mc->platform_max;
2477
2478         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2479         uinfo->count = 2;
2480         uinfo->value.integer.min = 0;
2481         uinfo->value.integer.max = platform_max - min;
2482         return 0;
2483 }
2484 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2485
2486 /**
2487  * snd_soc_get_volsw_s8 - signed mixer get callback
2488  * @kcontrol: mixer control
2489  * @ucontrol: control element information
2490  *
2491  * Callback to get the value of a signed mixer control.
2492  *
2493  * Returns 0 for success.
2494  */
2495 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2496         struct snd_ctl_elem_value *ucontrol)
2497 {
2498         struct soc_mixer_control *mc =
2499                 (struct soc_mixer_control *)kcontrol->private_value;
2500         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2501         unsigned int reg = mc->reg;
2502         int min = mc->min;
2503         int val = snd_soc_read(codec, reg);
2504
2505         ucontrol->value.integer.value[0] =
2506                 ((signed char)(val & 0xff))-min;
2507         ucontrol->value.integer.value[1] =
2508                 ((signed char)((val >> 8) & 0xff))-min;
2509         return 0;
2510 }
2511 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2512
2513 /**
2514  * snd_soc_put_volsw_sgn - signed mixer put callback
2515  * @kcontrol: mixer control
2516  * @ucontrol: control element information
2517  *
2518  * Callback to set the value of a signed mixer control.
2519  *
2520  * Returns 0 for success.
2521  */
2522 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2523         struct snd_ctl_elem_value *ucontrol)
2524 {
2525         struct soc_mixer_control *mc =
2526                 (struct soc_mixer_control *)kcontrol->private_value;
2527         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2528         unsigned int reg = mc->reg;
2529         int min = mc->min;
2530         unsigned int val;
2531
2532         val = (ucontrol->value.integer.value[0]+min) & 0xff;
2533         val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2534
2535         return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2536 }
2537 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2538
2539 /**
2540  * snd_soc_limit_volume - Set new limit to an existing volume control.
2541  *
2542  * @codec: where to look for the control
2543  * @name: Name of the control
2544  * @max: new maximum limit
2545  *
2546  * Return 0 for success, else error.
2547  */
2548 int snd_soc_limit_volume(struct snd_soc_codec *codec,
2549         const char *name, int max)
2550 {
2551         struct snd_card *card = codec->card->snd_card;
2552         struct snd_kcontrol *kctl;
2553         struct soc_mixer_control *mc;
2554         int found = 0;
2555         int ret = -EINVAL;
2556
2557         /* Sanity check for name and max */
2558         if (unlikely(!name || max <= 0))
2559                 return -EINVAL;
2560
2561         list_for_each_entry(kctl, &card->controls, list) {
2562                 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
2563                         found = 1;
2564                         break;
2565                 }
2566         }
2567         if (found) {
2568                 mc = (struct soc_mixer_control *)kctl->private_value;
2569                 if (max <= mc->max) {
2570                         mc->platform_max = max;
2571                         ret = 0;
2572                 }
2573         }
2574         return ret;
2575 }
2576 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
2577
2578 /**
2579  * snd_soc_info_volsw_2r_sx - double with tlv and variable data size
2580  *  mixer info callback
2581  * @kcontrol: mixer control
2582  * @uinfo: control element information
2583  *
2584  * Returns 0 for success.
2585  */
2586 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2587                         struct snd_ctl_elem_info *uinfo)
2588 {
2589         struct soc_mixer_control *mc =
2590                 (struct soc_mixer_control *)kcontrol->private_value;
2591         int max = mc->max;
2592         int min = mc->min;
2593
2594         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2595         uinfo->count = 2;
2596         uinfo->value.integer.min = 0;
2597         uinfo->value.integer.max = max-min;
2598
2599         return 0;
2600 }
2601 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx);
2602
2603 /**
2604  * snd_soc_get_volsw_2r_sx - double with tlv and variable data size
2605  *  mixer get callback
2606  * @kcontrol: mixer control
2607  * @uinfo: control element information
2608  *
2609  * Returns 0 for success.
2610  */
2611 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2612                         struct snd_ctl_elem_value *ucontrol)
2613 {
2614         struct soc_mixer_control *mc =
2615                 (struct soc_mixer_control *)kcontrol->private_value;
2616         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2617         unsigned int mask = (1<<mc->shift)-1;
2618         int min = mc->min;
2619         int val = snd_soc_read(codec, mc->reg) & mask;
2620         int valr = snd_soc_read(codec, mc->rreg) & mask;
2621
2622         ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask;
2623         ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask;
2624         return 0;
2625 }
2626 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx);
2627
2628 /**
2629  * snd_soc_put_volsw_2r_sx - double with tlv and variable data size
2630  *  mixer put callback
2631  * @kcontrol: mixer control
2632  * @uinfo: control element information
2633  *
2634  * Returns 0 for success.
2635  */
2636 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2637                         struct snd_ctl_elem_value *ucontrol)
2638 {
2639         struct soc_mixer_control *mc =
2640                 (struct soc_mixer_control *)kcontrol->private_value;
2641         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2642         unsigned int mask = (1<<mc->shift)-1;
2643         int min = mc->min;
2644         int ret;
2645         unsigned int val, valr, oval, ovalr;
2646
2647         val = ((ucontrol->value.integer.value[0]+min) & 0xff);
2648         val &= mask;
2649         valr = ((ucontrol->value.integer.value[1]+min) & 0xff);
2650         valr &= mask;
2651
2652         oval = snd_soc_read(codec, mc->reg) & mask;
2653         ovalr = snd_soc_read(codec, mc->rreg) & mask;
2654
2655         ret = 0;
2656         if (oval != val) {
2657                 ret = snd_soc_write(codec, mc->reg, val);
2658                 if (ret < 0)
2659                         return ret;
2660         }
2661         if (ovalr != valr) {
2662                 ret = snd_soc_write(codec, mc->rreg, valr);
2663                 if (ret < 0)
2664                         return ret;
2665         }
2666
2667         return 0;
2668 }
2669 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx);
2670
2671 /**
2672  * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2673  * @dai: DAI
2674  * @clk_id: DAI specific clock ID
2675  * @freq: new clock frequency in Hz
2676  * @dir: new clock direction - input/output.
2677  *
2678  * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2679  */
2680 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2681         unsigned int freq, int dir)
2682 {
2683         if (dai->driver && dai->driver->ops->set_sysclk)
2684                 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
2685         else
2686                 return -EINVAL;
2687 }
2688 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2689
2690 /**
2691  * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2692  * @dai: DAI
2693  * @div_id: DAI specific clock divider ID
2694  * @div: new clock divisor.
2695  *
2696  * Configures the clock dividers. This is used to derive the best DAI bit and
2697  * frame clocks from the system or master clock. It's best to set the DAI bit
2698  * and frame clocks as low as possible to save system power.
2699  */
2700 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2701         int div_id, int div)
2702 {
2703         if (dai->driver && dai->driver->ops->set_clkdiv)
2704                 return dai->driver->ops->set_clkdiv(dai, div_id, div);
2705         else
2706                 return -EINVAL;
2707 }
2708 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2709
2710 /**
2711  * snd_soc_dai_set_pll - configure DAI PLL.
2712  * @dai: DAI
2713  * @pll_id: DAI specific PLL ID
2714  * @source: DAI specific source for the PLL
2715  * @freq_in: PLL input clock frequency in Hz
2716  * @freq_out: requested PLL output clock frequency in Hz
2717  *
2718  * Configures and enables PLL to generate output clock based on input clock.
2719  */
2720 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
2721         unsigned int freq_in, unsigned int freq_out)
2722 {
2723         if (dai->driver && dai->driver->ops->set_pll)
2724                 return dai->driver->ops->set_pll(dai, pll_id, source,
2725                                          freq_in, freq_out);
2726         else
2727                 return -EINVAL;
2728 }
2729 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2730
2731 /**
2732  * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2733  * @dai: DAI
2734  * @fmt: SND_SOC_DAIFMT_ format value.
2735  *
2736  * Configures the DAI hardware format and clocking.
2737  */
2738 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2739 {
2740         if (dai->driver && dai->driver->ops->set_fmt)
2741                 return dai->driver->ops->set_fmt(dai, fmt);
2742         else
2743                 return -EINVAL;
2744 }
2745 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2746
2747 /**
2748  * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2749  * @dai: DAI
2750  * @tx_mask: bitmask representing active TX slots.
2751  * @rx_mask: bitmask representing active RX slots.
2752  * @slots: Number of slots in use.
2753  * @slot_width: Width in bits for each slot.
2754  *
2755  * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
2756  * specific.
2757  */
2758 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
2759         unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
2760 {
2761         if (dai->driver && dai->driver->ops->set_tdm_slot)
2762                 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
2763                                 slots, slot_width);
2764         else
2765                 return -EINVAL;
2766 }
2767 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
2768
2769 /**
2770  * snd_soc_dai_set_channel_map - configure DAI audio channel map
2771  * @dai: DAI
2772  * @tx_num: how many TX channels
2773  * @tx_slot: pointer to an array which imply the TX slot number channel
2774  *           0~num-1 uses
2775  * @rx_num: how many RX channels
2776  * @rx_slot: pointer to an array which imply the RX slot number channel
2777  *           0~num-1 uses
2778  *
2779  * configure the relationship between channel number and TDM slot number.
2780  */
2781 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
2782         unsigned int tx_num, unsigned int *tx_slot,
2783         unsigned int rx_num, unsigned int *rx_slot)
2784 {
2785         if (dai->driver && dai->driver->ops->set_channel_map)
2786                 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
2787                         rx_num, rx_slot);
2788         else
2789                 return -EINVAL;
2790 }
2791 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
2792
2793 /**
2794  * snd_soc_dai_set_tristate - configure DAI system or master clock.
2795  * @dai: DAI
2796  * @tristate: tristate enable
2797  *
2798  * Tristates the DAI so that others can use it.
2799  */
2800 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
2801 {
2802         if (dai->driver && dai->driver->ops->set_tristate)
2803                 return dai->driver->ops->set_tristate(dai, tristate);
2804         else
2805                 return -EINVAL;
2806 }
2807 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
2808
2809 /**
2810  * snd_soc_dai_digital_mute - configure DAI system or master clock.
2811  * @dai: DAI
2812  * @mute: mute enable
2813  *
2814  * Mutes the DAI DAC.
2815  */
2816 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
2817 {
2818         if (dai->driver && dai->driver->ops->digital_mute)
2819                 return dai->driver->ops->digital_mute(dai, mute);
2820         else
2821                 return -EINVAL;
2822 }
2823 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
2824
2825 /**
2826  * snd_soc_register_card - Register a card with the ASoC core
2827  *
2828  * @card: Card to register
2829  *
2830  * Note that currently this is an internal only function: it will be
2831  * exposed to machine drivers after further backporting of ASoC v2
2832  * registration APIs.
2833  */
2834 static int snd_soc_register_card(struct snd_soc_card *card)
2835 {
2836         int i;
2837
2838         if (!card->name || !card->dev)
2839                 return -EINVAL;
2840
2841         card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) * card->num_links,
2842                         GFP_KERNEL);
2843         if (card->rtd == NULL)
2844                 return -ENOMEM;
2845
2846         for (i = 0; i < card->num_links; i++)
2847                 card->rtd[i].dai_link = &card->dai_link[i];
2848
2849         INIT_LIST_HEAD(&card->list);
2850         card->instantiated = 0;
2851         mutex_init(&card->mutex);
2852
2853         mutex_lock(&client_mutex);
2854         list_add(&card->list, &card_list);
2855         snd_soc_instantiate_cards();
2856         mutex_unlock(&client_mutex);
2857
2858         dev_dbg(card->dev, "Registered card '%s'\n", card->name);
2859
2860         return 0;
2861 }
2862
2863 /**
2864  * snd_soc_unregister_card - Unregister a card with the ASoC core
2865  *
2866  * @card: Card to unregister
2867  *
2868  * Note that currently this is an internal only function: it will be
2869  * exposed to machine drivers after further backporting of ASoC v2
2870  * registration APIs.
2871  */
2872 static int snd_soc_unregister_card(struct snd_soc_card *card)
2873 {
2874         mutex_lock(&client_mutex);
2875         list_del(&card->list);
2876         mutex_unlock(&client_mutex);
2877         dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
2878
2879         return 0;
2880 }
2881
2882 /*
2883  * Simplify DAI link configuration by removing ".-1" from device names
2884  * and sanitizing names.
2885  */
2886 static inline char *fmt_single_name(struct device *dev, int *id)
2887 {
2888         char *found, name[NAME_SIZE];
2889         int id1, id2;
2890
2891         if (dev_name(dev) == NULL)
2892                 return NULL;
2893
2894         strncpy(name, dev_name(dev), NAME_SIZE);
2895
2896         /* are we a "%s.%d" name (platform and SPI components) */
2897         found = strstr(name, dev->driver->name);
2898         if (found) {
2899                 /* get ID */
2900                 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
2901
2902                         /* discard ID from name if ID == -1 */
2903                         if (*id == -1)
2904                                 found[strlen(dev->driver->name)] = '\0';
2905                 }
2906
2907         } else {
2908                 /* I2C component devices are named "bus-addr"  */
2909                 if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
2910                         char tmp[NAME_SIZE];
2911
2912                         /* create unique ID number from I2C addr and bus */
2913                         *id = ((id1 && 0xffff) << 16) + id2;
2914
2915                         /* sanitize component name for DAI link creation */
2916                         snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
2917                         strncpy(name, tmp, NAME_SIZE);
2918                 } else
2919                         *id = 0;
2920         }
2921
2922         return kstrdup(name, GFP_KERNEL);
2923 }
2924
2925 /*
2926  * Simplify DAI link naming for single devices with multiple DAIs by removing
2927  * any ".-1" and using the DAI name (instead of device name).
2928  */
2929 static inline char *fmt_multiple_name(struct device *dev,
2930                 struct snd_soc_dai_driver *dai_drv)
2931 {
2932         if (dai_drv->name == NULL) {
2933                 printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n",
2934                                 dev_name(dev));
2935                 return NULL;
2936         }
2937
2938         return kstrdup(dai_drv->name, GFP_KERNEL);
2939 }
2940
2941 /**
2942  * snd_soc_register_dai - Register a DAI with the ASoC core
2943  *
2944  * @dai: DAI to register
2945  */
2946 int snd_soc_register_dai(struct device *dev,
2947                 struct snd_soc_dai_driver *dai_drv)
2948 {
2949         struct snd_soc_dai *dai;
2950
2951         dev_dbg(dev, "dai register %s\n", dev_name(dev));
2952
2953         dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
2954         if (dai == NULL)
2955                         return -ENOMEM;
2956
2957         /* create DAI component name */
2958         dai->name = fmt_single_name(dev, &dai->id);
2959         if (dai->name == NULL) {
2960                 kfree(dai);
2961                 return -ENOMEM;
2962         }
2963
2964         dai->dev = dev;
2965         dai->driver = dai_drv;
2966         if (!dai->driver->ops)
2967                 dai->driver->ops = &null_dai_ops;
2968
2969         mutex_lock(&client_mutex);
2970         list_add(&dai->list, &dai_list);
2971         snd_soc_instantiate_cards();
2972         mutex_unlock(&client_mutex);
2973
2974         pr_debug("Registered DAI '%s'\n", dai->name);
2975
2976         return 0;
2977 }
2978 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
2979
2980 /**
2981  * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
2982  *
2983  * @dai: DAI to unregister
2984  */
2985 void snd_soc_unregister_dai(struct device *dev)
2986 {
2987         struct snd_soc_dai *dai;
2988
2989         list_for_each_entry(dai, &dai_list, list) {
2990                 if (dev == dai->dev)
2991                         goto found;
2992         }
2993         return;
2994
2995 found:
2996         mutex_lock(&client_mutex);
2997         list_del(&dai->list);
2998         mutex_unlock(&client_mutex);
2999
3000         pr_debug("Unregistered DAI '%s'\n", dai->name);
3001         kfree(dai->name);
3002         kfree(dai);
3003 }
3004 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
3005
3006 /**
3007  * snd_soc_register_dais - Register multiple DAIs with the ASoC core
3008  *
3009  * @dai: Array of DAIs to register
3010  * @count: Number of DAIs
3011  */
3012 int snd_soc_register_dais(struct device *dev,
3013                 struct snd_soc_dai_driver *dai_drv, size_t count)
3014 {
3015         struct snd_soc_dai *dai;
3016         int i, ret = 0;
3017
3018         dev_dbg(dev, "dai register %s #%Zu\n", dev_name(dev), count);
3019
3020         for (i = 0; i < count; i++) {
3021
3022                 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3023                 if (dai == NULL)
3024                         return -ENOMEM;
3025
3026                 /* create DAI component name */
3027                 dai->name = fmt_multiple_name(dev, &dai_drv[i]);
3028                 if (dai->name == NULL) {
3029                         kfree(dai);
3030                         ret = -EINVAL;
3031                         goto err;
3032                 }
3033
3034                 dai->dev = dev;
3035                 dai->id = i;
3036                 dai->driver = &dai_drv[i];
3037                 if (!dai->driver->ops)
3038                         dai->driver->ops = &null_dai_ops;
3039
3040                 mutex_lock(&client_mutex);
3041                 list_add(&dai->list, &dai_list);
3042                 mutex_unlock(&client_mutex);
3043
3044                 pr_debug("Registered DAI '%s'\n", dai->name);
3045         }
3046
3047         snd_soc_instantiate_cards();
3048         return 0;
3049
3050 err:
3051         for (i--; i >= 0; i--)
3052                 snd_soc_unregister_dai(dev);
3053
3054         return ret;
3055 }
3056 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
3057
3058 /**
3059  * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
3060  *
3061  * @dai: Array of DAIs to unregister
3062  * @count: Number of DAIs
3063  */
3064 void snd_soc_unregister_dais(struct device *dev, size_t count)
3065 {
3066         int i;
3067
3068         for (i = 0; i < count; i++)
3069                 snd_soc_unregister_dai(dev);
3070 }
3071 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
3072
3073 /**
3074  * snd_soc_register_platform - Register a platform with the ASoC core
3075  *
3076  * @platform: platform to register
3077  */
3078 int snd_soc_register_platform(struct device *dev,
3079                 struct snd_soc_platform_driver *platform_drv)
3080 {
3081         struct snd_soc_platform *platform;
3082
3083         dev_dbg(dev, "platform register %s\n", dev_name(dev));
3084
3085         platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
3086         if (platform == NULL)
3087                         return -ENOMEM;
3088
3089         /* create platform component name */
3090         platform->name = fmt_single_name(dev, &platform->id);
3091         if (platform->name == NULL) {
3092                 kfree(platform);
3093                 return -ENOMEM;
3094         }
3095
3096         platform->dev = dev;
3097         platform->driver = platform_drv;
3098
3099         mutex_lock(&client_mutex);
3100         list_add(&platform->list, &platform_list);
3101         snd_soc_instantiate_cards();
3102         mutex_unlock(&client_mutex);
3103
3104         pr_debug("Registered platform '%s'\n", platform->name);
3105
3106         return 0;
3107 }
3108 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
3109
3110 /**
3111  * snd_soc_unregister_platform - Unregister a platform from the ASoC core
3112  *
3113  * @platform: platform to unregister
3114  */
3115 void snd_soc_unregister_platform(struct device *dev)
3116 {
3117         struct snd_soc_platform *platform;
3118
3119         list_for_each_entry(platform, &platform_list, list) {
3120                 if (dev == platform->dev)
3121                         goto found;
3122         }
3123         return;
3124
3125 found:
3126         mutex_lock(&client_mutex);
3127         list_del(&platform->list);
3128         mutex_unlock(&client_mutex);
3129
3130         pr_debug("Unregistered platform '%s'\n", platform->name);
3131         kfree(platform->name);
3132         kfree(platform);
3133 }
3134 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
3135
3136 static u64 codec_format_map[] = {
3137         SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
3138         SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
3139         SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
3140         SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
3141         SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
3142         SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
3143         SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3144         SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3145         SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
3146         SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
3147         SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
3148         SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
3149         SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
3150         SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
3151         SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
3152         | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
3153 };
3154
3155 /* Fix up the DAI formats for endianness: codecs don't actually see
3156  * the endianness of the data but we're using the CPU format
3157  * definitions which do need to include endianness so we ensure that
3158  * codec DAIs always have both big and little endian variants set.
3159  */
3160 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
3161 {
3162         int i;
3163
3164         for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
3165                 if (stream->formats & codec_format_map[i])
3166                         stream->formats |= codec_format_map[i];
3167 }
3168
3169 /**
3170  * snd_soc_register_codec - Register a codec with the ASoC core
3171  *
3172  * @codec: codec to register
3173  */
3174 int snd_soc_register_codec(struct device *dev,
3175                 struct snd_soc_codec_driver *codec_drv,
3176                 struct snd_soc_dai_driver *dai_drv, int num_dai)
3177 {
3178         struct snd_soc_codec *codec;
3179         int ret, i;
3180
3181         dev_dbg(dev, "codec register %s\n", dev_name(dev));
3182
3183         codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
3184         if (codec == NULL)
3185                 return -ENOMEM;
3186
3187         /* create CODEC component name */
3188         codec->name = fmt_single_name(dev, &codec->id);
3189         if (codec->name == NULL) {
3190                 kfree(codec);
3191                 return -ENOMEM;
3192         }
3193
3194         /* allocate CODEC register cache */
3195         if (codec_drv->reg_cache_size && codec_drv->reg_word_size) {
3196
3197                 if (codec_drv->reg_cache_default)
3198                         codec->reg_cache = kmemdup(codec_drv->reg_cache_default,
3199                                 codec_drv->reg_cache_size * codec_drv->reg_word_size, GFP_KERNEL);
3200                 else
3201                         codec->reg_cache = kzalloc(codec_drv->reg_cache_size *
3202                                 codec_drv->reg_word_size, GFP_KERNEL);
3203
3204                 if (codec->reg_cache == NULL) {
3205                         kfree(codec->name);
3206                         kfree(codec);
3207                         return -ENOMEM;
3208                 }
3209         }
3210
3211         codec->dev = dev;
3212         codec->driver = codec_drv;
3213         codec->bias_level = SND_SOC_BIAS_OFF;
3214         codec->num_dai = num_dai;
3215         mutex_init(&codec->mutex);
3216         INIT_LIST_HEAD(&codec->dapm_widgets);
3217         INIT_LIST_HEAD(&codec->dapm_paths);
3218
3219         for (i = 0; i < num_dai; i++) {
3220                 fixup_codec_formats(&dai_drv[i].playback);
3221                 fixup_codec_formats(&dai_drv[i].capture);
3222         }
3223
3224         /* register any DAIs */
3225         if (num_dai) {
3226                 ret = snd_soc_register_dais(dev, dai_drv, num_dai);
3227                 if (ret < 0)
3228                         goto error;
3229         }
3230
3231         mutex_lock(&client_mutex);
3232         list_add(&codec->list, &codec_list);
3233         snd_soc_instantiate_cards();
3234         mutex_unlock(&client_mutex);
3235
3236         pr_debug("Registered codec '%s'\n", codec->name);
3237         return 0;
3238
3239 error:
3240         for (i--; i >= 0; i--)
3241                 snd_soc_unregister_dai(dev);
3242
3243         if (codec->reg_cache)
3244                 kfree(codec->reg_cache);
3245         kfree(codec->name);
3246         kfree(codec);
3247         return ret;
3248 }
3249 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
3250
3251 /**
3252  * snd_soc_unregister_codec - Unregister a codec from the ASoC core
3253  *
3254  * @codec: codec to unregister
3255  */
3256 void snd_soc_unregister_codec(struct device *dev)
3257 {
3258         struct snd_soc_codec *codec;
3259         int i;
3260
3261         list_for_each_entry(codec, &codec_list, list) {
3262                 if (dev == codec->dev)
3263                         goto found;
3264         }
3265         return;
3266
3267 found:
3268         if (codec->num_dai)
3269                 for (i = 0; i < codec->num_dai; i++)
3270                         snd_soc_unregister_dai(dev);
3271
3272         mutex_lock(&client_mutex);
3273         list_del(&codec->list);
3274         mutex_unlock(&client_mutex);
3275
3276         pr_debug("Unregistered codec '%s'\n", codec->name);
3277
3278         if (codec->reg_cache)
3279                 kfree(codec->reg_cache);
3280         kfree(codec);
3281 }
3282 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
3283
3284 static int __init snd_soc_init(void)
3285 {
3286 #ifdef CONFIG_DEBUG_FS
3287         debugfs_root = debugfs_create_dir("asoc", NULL);
3288         if (IS_ERR(debugfs_root) || !debugfs_root) {
3289                 printk(KERN_WARNING
3290                        "ASoC: Failed to create debugfs directory\n");
3291                 debugfs_root = NULL;
3292         }
3293
3294         if (!debugfs_create_file("codecs", 0444, debugfs_root, NULL,
3295                                  &codec_list_fops))
3296                 pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
3297
3298         if (!debugfs_create_file("dais", 0444, debugfs_root, NULL,
3299                                  &dai_list_fops))
3300                 pr_warn("ASoC: Failed to create DAI list debugfs file\n");
3301
3302         if (!debugfs_create_file("platforms", 0444, debugfs_root, NULL,
3303                                  &platform_list_fops))
3304                 pr_warn("ASoC: Failed to create platform list debugfs file\n");
3305 #endif
3306
3307         return platform_driver_register(&soc_driver);
3308 }
3309 module_init(snd_soc_init);
3310
3311 static void __exit snd_soc_exit(void)
3312 {
3313 #ifdef CONFIG_DEBUG_FS
3314         debugfs_remove_recursive(debugfs_root);
3315 #endif
3316         platform_driver_unregister(&soc_driver);
3317 }
3318 module_exit(snd_soc_exit);
3319
3320 /* Module information */
3321 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
3322 MODULE_DESCRIPTION("ALSA SoC Core");
3323 MODULE_LICENSE("GPL");
3324 MODULE_ALIAS("platform:soc-audio");