]> Pileus Git - ~andy/linux/blob - security/selinux/hooks.c
selinux: sparse fix: eliminate warnings for selinuxfs
[~andy/linux] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *      Paul Moore <paul@paul-moore.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/ext2_fs.h>
32 #include <linux/sched.h>
33 #include <linux/security.h>
34 #include <linux/xattr.h>
35 #include <linux/capability.h>
36 #include <linux/unistd.h>
37 #include <linux/mm.h>
38 #include <linux/mman.h>
39 #include <linux/slab.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/swap.h>
43 #include <linux/spinlock.h>
44 #include <linux/syscalls.h>
45 #include <linux/dcache.h>
46 #include <linux/file.h>
47 #include <linux/fdtable.h>
48 #include <linux/namei.h>
49 #include <linux/mount.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <linux/netfilter_ipv6.h>
52 #include <linux/tty.h>
53 #include <net/icmp.h>
54 #include <net/ip.h>             /* for local_port_range[] */
55 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
56 #include <net/net_namespace.h>
57 #include <net/netlabel.h>
58 #include <linux/uaccess.h>
59 #include <asm/ioctls.h>
60 #include <linux/atomic.h>
61 #include <linux/bitops.h>
62 #include <linux/interrupt.h>
63 #include <linux/netdevice.h>    /* for network interface checks */
64 #include <linux/netlink.h>
65 #include <linux/tcp.h>
66 #include <linux/udp.h>
67 #include <linux/dccp.h>
68 #include <linux/quota.h>
69 #include <linux/un.h>           /* for Unix socket types */
70 #include <net/af_unix.h>        /* for Unix socket types */
71 #include <linux/parser.h>
72 #include <linux/nfs_mount.h>
73 #include <net/ipv6.h>
74 #include <linux/hugetlb.h>
75 #include <linux/personality.h>
76 #include <linux/audit.h>
77 #include <linux/string.h>
78 #include <linux/selinux.h>
79 #include <linux/mutex.h>
80 #include <linux/posix-timers.h>
81 #include <linux/syslog.h>
82 #include <linux/user_namespace.h>
83
84 #include "avc.h"
85 #include "objsec.h"
86 #include "netif.h"
87 #include "netnode.h"
88 #include "netport.h"
89 #include "xfrm.h"
90 #include "netlabel.h"
91 #include "audit.h"
92
93 #define NUM_SEL_MNT_OPTS 5
94
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern struct security_operations *security_ops;
97
98 /* SECMARK reference count */
99 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
100
101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
102 int selinux_enforcing;
103
104 static int __init enforcing_setup(char *str)
105 {
106         unsigned long enforcing;
107         if (!strict_strtoul(str, 0, &enforcing))
108                 selinux_enforcing = enforcing ? 1 : 0;
109         return 1;
110 }
111 __setup("enforcing=", enforcing_setup);
112 #endif
113
114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
116
117 static int __init selinux_enabled_setup(char *str)
118 {
119         unsigned long enabled;
120         if (!strict_strtoul(str, 0, &enabled))
121                 selinux_enabled = enabled ? 1 : 0;
122         return 1;
123 }
124 __setup("selinux=", selinux_enabled_setup);
125 #else
126 int selinux_enabled = 1;
127 #endif
128
129 static struct kmem_cache *sel_inode_cache;
130
131 /**
132  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
133  *
134  * Description:
135  * This function checks the SECMARK reference counter to see if any SECMARK
136  * targets are currently configured, if the reference counter is greater than
137  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
138  * enabled, false (0) if SECMARK is disabled.
139  *
140  */
141 static int selinux_secmark_enabled(void)
142 {
143         return (atomic_read(&selinux_secmark_refcount) > 0);
144 }
145
146 /*
147  * initialise the security for the init task
148  */
149 static void cred_init_security(void)
150 {
151         struct cred *cred = (struct cred *) current->real_cred;
152         struct task_security_struct *tsec;
153
154         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
155         if (!tsec)
156                 panic("SELinux:  Failed to initialize initial task.\n");
157
158         tsec->osid = tsec->sid = SECINITSID_KERNEL;
159         cred->security = tsec;
160 }
161
162 /*
163  * get the security ID of a set of credentials
164  */
165 static inline u32 cred_sid(const struct cred *cred)
166 {
167         const struct task_security_struct *tsec;
168
169         tsec = cred->security;
170         return tsec->sid;
171 }
172
173 /*
174  * get the objective security ID of a task
175  */
176 static inline u32 task_sid(const struct task_struct *task)
177 {
178         u32 sid;
179
180         rcu_read_lock();
181         sid = cred_sid(__task_cred(task));
182         rcu_read_unlock();
183         return sid;
184 }
185
186 /*
187  * get the subjective security ID of the current task
188  */
189 static inline u32 current_sid(void)
190 {
191         const struct task_security_struct *tsec = current_security();
192
193         return tsec->sid;
194 }
195
196 /* Allocate and free functions for each kind of security blob. */
197
198 static int inode_alloc_security(struct inode *inode)
199 {
200         struct inode_security_struct *isec;
201         u32 sid = current_sid();
202
203         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
204         if (!isec)
205                 return -ENOMEM;
206
207         mutex_init(&isec->lock);
208         INIT_LIST_HEAD(&isec->list);
209         isec->inode = inode;
210         isec->sid = SECINITSID_UNLABELED;
211         isec->sclass = SECCLASS_FILE;
212         isec->task_sid = sid;
213         inode->i_security = isec;
214
215         return 0;
216 }
217
218 static void inode_free_security(struct inode *inode)
219 {
220         struct inode_security_struct *isec = inode->i_security;
221         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
222
223         spin_lock(&sbsec->isec_lock);
224         if (!list_empty(&isec->list))
225                 list_del_init(&isec->list);
226         spin_unlock(&sbsec->isec_lock);
227
228         inode->i_security = NULL;
229         kmem_cache_free(sel_inode_cache, isec);
230 }
231
232 static int file_alloc_security(struct file *file)
233 {
234         struct file_security_struct *fsec;
235         u32 sid = current_sid();
236
237         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
238         if (!fsec)
239                 return -ENOMEM;
240
241         fsec->sid = sid;
242         fsec->fown_sid = sid;
243         file->f_security = fsec;
244
245         return 0;
246 }
247
248 static void file_free_security(struct file *file)
249 {
250         struct file_security_struct *fsec = file->f_security;
251         file->f_security = NULL;
252         kfree(fsec);
253 }
254
255 static int superblock_alloc_security(struct super_block *sb)
256 {
257         struct superblock_security_struct *sbsec;
258
259         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
260         if (!sbsec)
261                 return -ENOMEM;
262
263         mutex_init(&sbsec->lock);
264         INIT_LIST_HEAD(&sbsec->isec_head);
265         spin_lock_init(&sbsec->isec_lock);
266         sbsec->sb = sb;
267         sbsec->sid = SECINITSID_UNLABELED;
268         sbsec->def_sid = SECINITSID_FILE;
269         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
270         sb->s_security = sbsec;
271
272         return 0;
273 }
274
275 static void superblock_free_security(struct super_block *sb)
276 {
277         struct superblock_security_struct *sbsec = sb->s_security;
278         sb->s_security = NULL;
279         kfree(sbsec);
280 }
281
282 /* The security server must be initialized before
283    any labeling or access decisions can be provided. */
284 extern int ss_initialized;
285
286 /* The file system's label must be initialized prior to use. */
287
288 static const char *labeling_behaviors[6] = {
289         "uses xattr",
290         "uses transition SIDs",
291         "uses task SIDs",
292         "uses genfs_contexts",
293         "not configured for labeling",
294         "uses mountpoint labeling",
295 };
296
297 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
298
299 static inline int inode_doinit(struct inode *inode)
300 {
301         return inode_doinit_with_dentry(inode, NULL);
302 }
303
304 enum {
305         Opt_error = -1,
306         Opt_context = 1,
307         Opt_fscontext = 2,
308         Opt_defcontext = 3,
309         Opt_rootcontext = 4,
310         Opt_labelsupport = 5,
311 };
312
313 static const match_table_t tokens = {
314         {Opt_context, CONTEXT_STR "%s"},
315         {Opt_fscontext, FSCONTEXT_STR "%s"},
316         {Opt_defcontext, DEFCONTEXT_STR "%s"},
317         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
318         {Opt_labelsupport, LABELSUPP_STR},
319         {Opt_error, NULL},
320 };
321
322 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
323
324 static int may_context_mount_sb_relabel(u32 sid,
325                         struct superblock_security_struct *sbsec,
326                         const struct cred *cred)
327 {
328         const struct task_security_struct *tsec = cred->security;
329         int rc;
330
331         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
332                           FILESYSTEM__RELABELFROM, NULL);
333         if (rc)
334                 return rc;
335
336         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
337                           FILESYSTEM__RELABELTO, NULL);
338         return rc;
339 }
340
341 static int may_context_mount_inode_relabel(u32 sid,
342                         struct superblock_security_struct *sbsec,
343                         const struct cred *cred)
344 {
345         const struct task_security_struct *tsec = cred->security;
346         int rc;
347         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
348                           FILESYSTEM__RELABELFROM, NULL);
349         if (rc)
350                 return rc;
351
352         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
353                           FILESYSTEM__ASSOCIATE, NULL);
354         return rc;
355 }
356
357 static int sb_finish_set_opts(struct super_block *sb)
358 {
359         struct superblock_security_struct *sbsec = sb->s_security;
360         struct dentry *root = sb->s_root;
361         struct inode *root_inode = root->d_inode;
362         int rc = 0;
363
364         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
365                 /* Make sure that the xattr handler exists and that no
366                    error other than -ENODATA is returned by getxattr on
367                    the root directory.  -ENODATA is ok, as this may be
368                    the first boot of the SELinux kernel before we have
369                    assigned xattr values to the filesystem. */
370                 if (!root_inode->i_op->getxattr) {
371                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
372                                "xattr support\n", sb->s_id, sb->s_type->name);
373                         rc = -EOPNOTSUPP;
374                         goto out;
375                 }
376                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
377                 if (rc < 0 && rc != -ENODATA) {
378                         if (rc == -EOPNOTSUPP)
379                                 printk(KERN_WARNING "SELinux: (dev %s, type "
380                                        "%s) has no security xattr handler\n",
381                                        sb->s_id, sb->s_type->name);
382                         else
383                                 printk(KERN_WARNING "SELinux: (dev %s, type "
384                                        "%s) getxattr errno %d\n", sb->s_id,
385                                        sb->s_type->name, -rc);
386                         goto out;
387                 }
388         }
389
390         sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
391
392         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
393                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
394                        sb->s_id, sb->s_type->name);
395         else
396                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
397                        sb->s_id, sb->s_type->name,
398                        labeling_behaviors[sbsec->behavior-1]);
399
400         if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
401             sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
402             sbsec->behavior == SECURITY_FS_USE_NONE ||
403             sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
404                 sbsec->flags &= ~SE_SBLABELSUPP;
405
406         /* Special handling for sysfs. Is genfs but also has setxattr handler*/
407         if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
408                 sbsec->flags |= SE_SBLABELSUPP;
409
410         /* Initialize the root inode. */
411         rc = inode_doinit_with_dentry(root_inode, root);
412
413         /* Initialize any other inodes associated with the superblock, e.g.
414            inodes created prior to initial policy load or inodes created
415            during get_sb by a pseudo filesystem that directly
416            populates itself. */
417         spin_lock(&sbsec->isec_lock);
418 next_inode:
419         if (!list_empty(&sbsec->isec_head)) {
420                 struct inode_security_struct *isec =
421                                 list_entry(sbsec->isec_head.next,
422                                            struct inode_security_struct, list);
423                 struct inode *inode = isec->inode;
424                 spin_unlock(&sbsec->isec_lock);
425                 inode = igrab(inode);
426                 if (inode) {
427                         if (!IS_PRIVATE(inode))
428                                 inode_doinit(inode);
429                         iput(inode);
430                 }
431                 spin_lock(&sbsec->isec_lock);
432                 list_del_init(&isec->list);
433                 goto next_inode;
434         }
435         spin_unlock(&sbsec->isec_lock);
436 out:
437         return rc;
438 }
439
440 /*
441  * This function should allow an FS to ask what it's mount security
442  * options were so it can use those later for submounts, displaying
443  * mount options, or whatever.
444  */
445 static int selinux_get_mnt_opts(const struct super_block *sb,
446                                 struct security_mnt_opts *opts)
447 {
448         int rc = 0, i;
449         struct superblock_security_struct *sbsec = sb->s_security;
450         char *context = NULL;
451         u32 len;
452         char tmp;
453
454         security_init_mnt_opts(opts);
455
456         if (!(sbsec->flags & SE_SBINITIALIZED))
457                 return -EINVAL;
458
459         if (!ss_initialized)
460                 return -EINVAL;
461
462         tmp = sbsec->flags & SE_MNTMASK;
463         /* count the number of mount options for this sb */
464         for (i = 0; i < 8; i++) {
465                 if (tmp & 0x01)
466                         opts->num_mnt_opts++;
467                 tmp >>= 1;
468         }
469         /* Check if the Label support flag is set */
470         if (sbsec->flags & SE_SBLABELSUPP)
471                 opts->num_mnt_opts++;
472
473         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
474         if (!opts->mnt_opts) {
475                 rc = -ENOMEM;
476                 goto out_free;
477         }
478
479         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
480         if (!opts->mnt_opts_flags) {
481                 rc = -ENOMEM;
482                 goto out_free;
483         }
484
485         i = 0;
486         if (sbsec->flags & FSCONTEXT_MNT) {
487                 rc = security_sid_to_context(sbsec->sid, &context, &len);
488                 if (rc)
489                         goto out_free;
490                 opts->mnt_opts[i] = context;
491                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
492         }
493         if (sbsec->flags & CONTEXT_MNT) {
494                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
495                 if (rc)
496                         goto out_free;
497                 opts->mnt_opts[i] = context;
498                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
499         }
500         if (sbsec->flags & DEFCONTEXT_MNT) {
501                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
502                 if (rc)
503                         goto out_free;
504                 opts->mnt_opts[i] = context;
505                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
506         }
507         if (sbsec->flags & ROOTCONTEXT_MNT) {
508                 struct inode *root = sbsec->sb->s_root->d_inode;
509                 struct inode_security_struct *isec = root->i_security;
510
511                 rc = security_sid_to_context(isec->sid, &context, &len);
512                 if (rc)
513                         goto out_free;
514                 opts->mnt_opts[i] = context;
515                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
516         }
517         if (sbsec->flags & SE_SBLABELSUPP) {
518                 opts->mnt_opts[i] = NULL;
519                 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
520         }
521
522         BUG_ON(i != opts->num_mnt_opts);
523
524         return 0;
525
526 out_free:
527         security_free_mnt_opts(opts);
528         return rc;
529 }
530
531 static int bad_option(struct superblock_security_struct *sbsec, char flag,
532                       u32 old_sid, u32 new_sid)
533 {
534         char mnt_flags = sbsec->flags & SE_MNTMASK;
535
536         /* check if the old mount command had the same options */
537         if (sbsec->flags & SE_SBINITIALIZED)
538                 if (!(sbsec->flags & flag) ||
539                     (old_sid != new_sid))
540                         return 1;
541
542         /* check if we were passed the same options twice,
543          * aka someone passed context=a,context=b
544          */
545         if (!(sbsec->flags & SE_SBINITIALIZED))
546                 if (mnt_flags & flag)
547                         return 1;
548         return 0;
549 }
550
551 /*
552  * Allow filesystems with binary mount data to explicitly set mount point
553  * labeling information.
554  */
555 static int selinux_set_mnt_opts(struct super_block *sb,
556                                 struct security_mnt_opts *opts)
557 {
558         const struct cred *cred = current_cred();
559         int rc = 0, i;
560         struct superblock_security_struct *sbsec = sb->s_security;
561         const char *name = sb->s_type->name;
562         struct inode *inode = sbsec->sb->s_root->d_inode;
563         struct inode_security_struct *root_isec = inode->i_security;
564         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
565         u32 defcontext_sid = 0;
566         char **mount_options = opts->mnt_opts;
567         int *flags = opts->mnt_opts_flags;
568         int num_opts = opts->num_mnt_opts;
569
570         mutex_lock(&sbsec->lock);
571
572         if (!ss_initialized) {
573                 if (!num_opts) {
574                         /* Defer initialization until selinux_complete_init,
575                            after the initial policy is loaded and the security
576                            server is ready to handle calls. */
577                         goto out;
578                 }
579                 rc = -EINVAL;
580                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
581                         "before the security server is initialized\n");
582                 goto out;
583         }
584
585         /*
586          * Binary mount data FS will come through this function twice.  Once
587          * from an explicit call and once from the generic calls from the vfs.
588          * Since the generic VFS calls will not contain any security mount data
589          * we need to skip the double mount verification.
590          *
591          * This does open a hole in which we will not notice if the first
592          * mount using this sb set explict options and a second mount using
593          * this sb does not set any security options.  (The first options
594          * will be used for both mounts)
595          */
596         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
597             && (num_opts == 0))
598                 goto out;
599
600         /*
601          * parse the mount options, check if they are valid sids.
602          * also check if someone is trying to mount the same sb more
603          * than once with different security options.
604          */
605         for (i = 0; i < num_opts; i++) {
606                 u32 sid;
607
608                 if (flags[i] == SE_SBLABELSUPP)
609                         continue;
610                 rc = security_context_to_sid(mount_options[i],
611                                              strlen(mount_options[i]), &sid);
612                 if (rc) {
613                         printk(KERN_WARNING "SELinux: security_context_to_sid"
614                                "(%s) failed for (dev %s, type %s) errno=%d\n",
615                                mount_options[i], sb->s_id, name, rc);
616                         goto out;
617                 }
618                 switch (flags[i]) {
619                 case FSCONTEXT_MNT:
620                         fscontext_sid = sid;
621
622                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
623                                         fscontext_sid))
624                                 goto out_double_mount;
625
626                         sbsec->flags |= FSCONTEXT_MNT;
627                         break;
628                 case CONTEXT_MNT:
629                         context_sid = sid;
630
631                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
632                                         context_sid))
633                                 goto out_double_mount;
634
635                         sbsec->flags |= CONTEXT_MNT;
636                         break;
637                 case ROOTCONTEXT_MNT:
638                         rootcontext_sid = sid;
639
640                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
641                                         rootcontext_sid))
642                                 goto out_double_mount;
643
644                         sbsec->flags |= ROOTCONTEXT_MNT;
645
646                         break;
647                 case DEFCONTEXT_MNT:
648                         defcontext_sid = sid;
649
650                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
651                                         defcontext_sid))
652                                 goto out_double_mount;
653
654                         sbsec->flags |= DEFCONTEXT_MNT;
655
656                         break;
657                 default:
658                         rc = -EINVAL;
659                         goto out;
660                 }
661         }
662
663         if (sbsec->flags & SE_SBINITIALIZED) {
664                 /* previously mounted with options, but not on this attempt? */
665                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
666                         goto out_double_mount;
667                 rc = 0;
668                 goto out;
669         }
670
671         if (strcmp(sb->s_type->name, "proc") == 0)
672                 sbsec->flags |= SE_SBPROC;
673
674         /* Determine the labeling behavior to use for this filesystem type. */
675         rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
676         if (rc) {
677                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
678                        __func__, sb->s_type->name, rc);
679                 goto out;
680         }
681
682         /* sets the context of the superblock for the fs being mounted. */
683         if (fscontext_sid) {
684                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
685                 if (rc)
686                         goto out;
687
688                 sbsec->sid = fscontext_sid;
689         }
690
691         /*
692          * Switch to using mount point labeling behavior.
693          * sets the label used on all file below the mountpoint, and will set
694          * the superblock context if not already set.
695          */
696         if (context_sid) {
697                 if (!fscontext_sid) {
698                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
699                                                           cred);
700                         if (rc)
701                                 goto out;
702                         sbsec->sid = context_sid;
703                 } else {
704                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
705                                                              cred);
706                         if (rc)
707                                 goto out;
708                 }
709                 if (!rootcontext_sid)
710                         rootcontext_sid = context_sid;
711
712                 sbsec->mntpoint_sid = context_sid;
713                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
714         }
715
716         if (rootcontext_sid) {
717                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
718                                                      cred);
719                 if (rc)
720                         goto out;
721
722                 root_isec->sid = rootcontext_sid;
723                 root_isec->initialized = 1;
724         }
725
726         if (defcontext_sid) {
727                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
728                         rc = -EINVAL;
729                         printk(KERN_WARNING "SELinux: defcontext option is "
730                                "invalid for this filesystem type\n");
731                         goto out;
732                 }
733
734                 if (defcontext_sid != sbsec->def_sid) {
735                         rc = may_context_mount_inode_relabel(defcontext_sid,
736                                                              sbsec, cred);
737                         if (rc)
738                                 goto out;
739                 }
740
741                 sbsec->def_sid = defcontext_sid;
742         }
743
744         rc = sb_finish_set_opts(sb);
745 out:
746         mutex_unlock(&sbsec->lock);
747         return rc;
748 out_double_mount:
749         rc = -EINVAL;
750         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
751                "security settings for (dev %s, type %s)\n", sb->s_id, name);
752         goto out;
753 }
754
755 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
756                                         struct super_block *newsb)
757 {
758         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
759         struct superblock_security_struct *newsbsec = newsb->s_security;
760
761         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
762         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
763         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
764
765         /*
766          * if the parent was able to be mounted it clearly had no special lsm
767          * mount options.  thus we can safely deal with this superblock later
768          */
769         if (!ss_initialized)
770                 return;
771
772         /* how can we clone if the old one wasn't set up?? */
773         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
774
775         /* if fs is reusing a sb, just let its options stand... */
776         if (newsbsec->flags & SE_SBINITIALIZED)
777                 return;
778
779         mutex_lock(&newsbsec->lock);
780
781         newsbsec->flags = oldsbsec->flags;
782
783         newsbsec->sid = oldsbsec->sid;
784         newsbsec->def_sid = oldsbsec->def_sid;
785         newsbsec->behavior = oldsbsec->behavior;
786
787         if (set_context) {
788                 u32 sid = oldsbsec->mntpoint_sid;
789
790                 if (!set_fscontext)
791                         newsbsec->sid = sid;
792                 if (!set_rootcontext) {
793                         struct inode *newinode = newsb->s_root->d_inode;
794                         struct inode_security_struct *newisec = newinode->i_security;
795                         newisec->sid = sid;
796                 }
797                 newsbsec->mntpoint_sid = sid;
798         }
799         if (set_rootcontext) {
800                 const struct inode *oldinode = oldsb->s_root->d_inode;
801                 const struct inode_security_struct *oldisec = oldinode->i_security;
802                 struct inode *newinode = newsb->s_root->d_inode;
803                 struct inode_security_struct *newisec = newinode->i_security;
804
805                 newisec->sid = oldisec->sid;
806         }
807
808         sb_finish_set_opts(newsb);
809         mutex_unlock(&newsbsec->lock);
810 }
811
812 static int selinux_parse_opts_str(char *options,
813                                   struct security_mnt_opts *opts)
814 {
815         char *p;
816         char *context = NULL, *defcontext = NULL;
817         char *fscontext = NULL, *rootcontext = NULL;
818         int rc, num_mnt_opts = 0;
819
820         opts->num_mnt_opts = 0;
821
822         /* Standard string-based options. */
823         while ((p = strsep(&options, "|")) != NULL) {
824                 int token;
825                 substring_t args[MAX_OPT_ARGS];
826
827                 if (!*p)
828                         continue;
829
830                 token = match_token(p, tokens, args);
831
832                 switch (token) {
833                 case Opt_context:
834                         if (context || defcontext) {
835                                 rc = -EINVAL;
836                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
837                                 goto out_err;
838                         }
839                         context = match_strdup(&args[0]);
840                         if (!context) {
841                                 rc = -ENOMEM;
842                                 goto out_err;
843                         }
844                         break;
845
846                 case Opt_fscontext:
847                         if (fscontext) {
848                                 rc = -EINVAL;
849                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
850                                 goto out_err;
851                         }
852                         fscontext = match_strdup(&args[0]);
853                         if (!fscontext) {
854                                 rc = -ENOMEM;
855                                 goto out_err;
856                         }
857                         break;
858
859                 case Opt_rootcontext:
860                         if (rootcontext) {
861                                 rc = -EINVAL;
862                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
863                                 goto out_err;
864                         }
865                         rootcontext = match_strdup(&args[0]);
866                         if (!rootcontext) {
867                                 rc = -ENOMEM;
868                                 goto out_err;
869                         }
870                         break;
871
872                 case Opt_defcontext:
873                         if (context || defcontext) {
874                                 rc = -EINVAL;
875                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
876                                 goto out_err;
877                         }
878                         defcontext = match_strdup(&args[0]);
879                         if (!defcontext) {
880                                 rc = -ENOMEM;
881                                 goto out_err;
882                         }
883                         break;
884                 case Opt_labelsupport:
885                         break;
886                 default:
887                         rc = -EINVAL;
888                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
889                         goto out_err;
890
891                 }
892         }
893
894         rc = -ENOMEM;
895         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
896         if (!opts->mnt_opts)
897                 goto out_err;
898
899         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
900         if (!opts->mnt_opts_flags) {
901                 kfree(opts->mnt_opts);
902                 goto out_err;
903         }
904
905         if (fscontext) {
906                 opts->mnt_opts[num_mnt_opts] = fscontext;
907                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
908         }
909         if (context) {
910                 opts->mnt_opts[num_mnt_opts] = context;
911                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
912         }
913         if (rootcontext) {
914                 opts->mnt_opts[num_mnt_opts] = rootcontext;
915                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
916         }
917         if (defcontext) {
918                 opts->mnt_opts[num_mnt_opts] = defcontext;
919                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
920         }
921
922         opts->num_mnt_opts = num_mnt_opts;
923         return 0;
924
925 out_err:
926         kfree(context);
927         kfree(defcontext);
928         kfree(fscontext);
929         kfree(rootcontext);
930         return rc;
931 }
932 /*
933  * string mount options parsing and call set the sbsec
934  */
935 static int superblock_doinit(struct super_block *sb, void *data)
936 {
937         int rc = 0;
938         char *options = data;
939         struct security_mnt_opts opts;
940
941         security_init_mnt_opts(&opts);
942
943         if (!data)
944                 goto out;
945
946         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
947
948         rc = selinux_parse_opts_str(options, &opts);
949         if (rc)
950                 goto out_err;
951
952 out:
953         rc = selinux_set_mnt_opts(sb, &opts);
954
955 out_err:
956         security_free_mnt_opts(&opts);
957         return rc;
958 }
959
960 static void selinux_write_opts(struct seq_file *m,
961                                struct security_mnt_opts *opts)
962 {
963         int i;
964         char *prefix;
965
966         for (i = 0; i < opts->num_mnt_opts; i++) {
967                 char *has_comma;
968
969                 if (opts->mnt_opts[i])
970                         has_comma = strchr(opts->mnt_opts[i], ',');
971                 else
972                         has_comma = NULL;
973
974                 switch (opts->mnt_opts_flags[i]) {
975                 case CONTEXT_MNT:
976                         prefix = CONTEXT_STR;
977                         break;
978                 case FSCONTEXT_MNT:
979                         prefix = FSCONTEXT_STR;
980                         break;
981                 case ROOTCONTEXT_MNT:
982                         prefix = ROOTCONTEXT_STR;
983                         break;
984                 case DEFCONTEXT_MNT:
985                         prefix = DEFCONTEXT_STR;
986                         break;
987                 case SE_SBLABELSUPP:
988                         seq_putc(m, ',');
989                         seq_puts(m, LABELSUPP_STR);
990                         continue;
991                 default:
992                         BUG();
993                         return;
994                 };
995                 /* we need a comma before each option */
996                 seq_putc(m, ',');
997                 seq_puts(m, prefix);
998                 if (has_comma)
999                         seq_putc(m, '\"');
1000                 seq_puts(m, opts->mnt_opts[i]);
1001                 if (has_comma)
1002                         seq_putc(m, '\"');
1003         }
1004 }
1005
1006 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1007 {
1008         struct security_mnt_opts opts;
1009         int rc;
1010
1011         rc = selinux_get_mnt_opts(sb, &opts);
1012         if (rc) {
1013                 /* before policy load we may get EINVAL, don't show anything */
1014                 if (rc == -EINVAL)
1015                         rc = 0;
1016                 return rc;
1017         }
1018
1019         selinux_write_opts(m, &opts);
1020
1021         security_free_mnt_opts(&opts);
1022
1023         return rc;
1024 }
1025
1026 static inline u16 inode_mode_to_security_class(umode_t mode)
1027 {
1028         switch (mode & S_IFMT) {
1029         case S_IFSOCK:
1030                 return SECCLASS_SOCK_FILE;
1031         case S_IFLNK:
1032                 return SECCLASS_LNK_FILE;
1033         case S_IFREG:
1034                 return SECCLASS_FILE;
1035         case S_IFBLK:
1036                 return SECCLASS_BLK_FILE;
1037         case S_IFDIR:
1038                 return SECCLASS_DIR;
1039         case S_IFCHR:
1040                 return SECCLASS_CHR_FILE;
1041         case S_IFIFO:
1042                 return SECCLASS_FIFO_FILE;
1043
1044         }
1045
1046         return SECCLASS_FILE;
1047 }
1048
1049 static inline int default_protocol_stream(int protocol)
1050 {
1051         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1052 }
1053
1054 static inline int default_protocol_dgram(int protocol)
1055 {
1056         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1057 }
1058
1059 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1060 {
1061         switch (family) {
1062         case PF_UNIX:
1063                 switch (type) {
1064                 case SOCK_STREAM:
1065                 case SOCK_SEQPACKET:
1066                         return SECCLASS_UNIX_STREAM_SOCKET;
1067                 case SOCK_DGRAM:
1068                         return SECCLASS_UNIX_DGRAM_SOCKET;
1069                 }
1070                 break;
1071         case PF_INET:
1072         case PF_INET6:
1073                 switch (type) {
1074                 case SOCK_STREAM:
1075                         if (default_protocol_stream(protocol))
1076                                 return SECCLASS_TCP_SOCKET;
1077                         else
1078                                 return SECCLASS_RAWIP_SOCKET;
1079                 case SOCK_DGRAM:
1080                         if (default_protocol_dgram(protocol))
1081                                 return SECCLASS_UDP_SOCKET;
1082                         else
1083                                 return SECCLASS_RAWIP_SOCKET;
1084                 case SOCK_DCCP:
1085                         return SECCLASS_DCCP_SOCKET;
1086                 default:
1087                         return SECCLASS_RAWIP_SOCKET;
1088                 }
1089                 break;
1090         case PF_NETLINK:
1091                 switch (protocol) {
1092                 case NETLINK_ROUTE:
1093                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1094                 case NETLINK_FIREWALL:
1095                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1096                 case NETLINK_INET_DIAG:
1097                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1098                 case NETLINK_NFLOG:
1099                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1100                 case NETLINK_XFRM:
1101                         return SECCLASS_NETLINK_XFRM_SOCKET;
1102                 case NETLINK_SELINUX:
1103                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1104                 case NETLINK_AUDIT:
1105                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1106                 case NETLINK_IP6_FW:
1107                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1108                 case NETLINK_DNRTMSG:
1109                         return SECCLASS_NETLINK_DNRT_SOCKET;
1110                 case NETLINK_KOBJECT_UEVENT:
1111                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1112                 default:
1113                         return SECCLASS_NETLINK_SOCKET;
1114                 }
1115         case PF_PACKET:
1116                 return SECCLASS_PACKET_SOCKET;
1117         case PF_KEY:
1118                 return SECCLASS_KEY_SOCKET;
1119         case PF_APPLETALK:
1120                 return SECCLASS_APPLETALK_SOCKET;
1121         }
1122
1123         return SECCLASS_SOCKET;
1124 }
1125
1126 #ifdef CONFIG_PROC_FS
1127 static int selinux_proc_get_sid(struct dentry *dentry,
1128                                 u16 tclass,
1129                                 u32 *sid)
1130 {
1131         int rc;
1132         char *buffer, *path;
1133
1134         buffer = (char *)__get_free_page(GFP_KERNEL);
1135         if (!buffer)
1136                 return -ENOMEM;
1137
1138         path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1139         if (IS_ERR(path))
1140                 rc = PTR_ERR(path);
1141         else {
1142                 /* each process gets a /proc/PID/ entry. Strip off the
1143                  * PID part to get a valid selinux labeling.
1144                  * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1145                 while (path[1] >= '0' && path[1] <= '9') {
1146                         path[1] = '/';
1147                         path++;
1148                 }
1149                 rc = security_genfs_sid("proc", path, tclass, sid);
1150         }
1151         free_page((unsigned long)buffer);
1152         return rc;
1153 }
1154 #else
1155 static int selinux_proc_get_sid(struct dentry *dentry,
1156                                 u16 tclass,
1157                                 u32 *sid)
1158 {
1159         return -EINVAL;
1160 }
1161 #endif
1162
1163 /* The inode's security attributes must be initialized before first use. */
1164 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1165 {
1166         struct superblock_security_struct *sbsec = NULL;
1167         struct inode_security_struct *isec = inode->i_security;
1168         u32 sid;
1169         struct dentry *dentry;
1170 #define INITCONTEXTLEN 255
1171         char *context = NULL;
1172         unsigned len = 0;
1173         int rc = 0;
1174
1175         if (isec->initialized)
1176                 goto out;
1177
1178         mutex_lock(&isec->lock);
1179         if (isec->initialized)
1180                 goto out_unlock;
1181
1182         sbsec = inode->i_sb->s_security;
1183         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1184                 /* Defer initialization until selinux_complete_init,
1185                    after the initial policy is loaded and the security
1186                    server is ready to handle calls. */
1187                 spin_lock(&sbsec->isec_lock);
1188                 if (list_empty(&isec->list))
1189                         list_add(&isec->list, &sbsec->isec_head);
1190                 spin_unlock(&sbsec->isec_lock);
1191                 goto out_unlock;
1192         }
1193
1194         switch (sbsec->behavior) {
1195         case SECURITY_FS_USE_XATTR:
1196                 if (!inode->i_op->getxattr) {
1197                         isec->sid = sbsec->def_sid;
1198                         break;
1199                 }
1200
1201                 /* Need a dentry, since the xattr API requires one.
1202                    Life would be simpler if we could just pass the inode. */
1203                 if (opt_dentry) {
1204                         /* Called from d_instantiate or d_splice_alias. */
1205                         dentry = dget(opt_dentry);
1206                 } else {
1207                         /* Called from selinux_complete_init, try to find a dentry. */
1208                         dentry = d_find_alias(inode);
1209                 }
1210                 if (!dentry) {
1211                         /*
1212                          * this is can be hit on boot when a file is accessed
1213                          * before the policy is loaded.  When we load policy we
1214                          * may find inodes that have no dentry on the
1215                          * sbsec->isec_head list.  No reason to complain as these
1216                          * will get fixed up the next time we go through
1217                          * inode_doinit with a dentry, before these inodes could
1218                          * be used again by userspace.
1219                          */
1220                         goto out_unlock;
1221                 }
1222
1223                 len = INITCONTEXTLEN;
1224                 context = kmalloc(len+1, GFP_NOFS);
1225                 if (!context) {
1226                         rc = -ENOMEM;
1227                         dput(dentry);
1228                         goto out_unlock;
1229                 }
1230                 context[len] = '\0';
1231                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1232                                            context, len);
1233                 if (rc == -ERANGE) {
1234                         kfree(context);
1235
1236                         /* Need a larger buffer.  Query for the right size. */
1237                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1238                                                    NULL, 0);
1239                         if (rc < 0) {
1240                                 dput(dentry);
1241                                 goto out_unlock;
1242                         }
1243                         len = rc;
1244                         context = kmalloc(len+1, GFP_NOFS);
1245                         if (!context) {
1246                                 rc = -ENOMEM;
1247                                 dput(dentry);
1248                                 goto out_unlock;
1249                         }
1250                         context[len] = '\0';
1251                         rc = inode->i_op->getxattr(dentry,
1252                                                    XATTR_NAME_SELINUX,
1253                                                    context, len);
1254                 }
1255                 dput(dentry);
1256                 if (rc < 0) {
1257                         if (rc != -ENODATA) {
1258                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1259                                        "%d for dev=%s ino=%ld\n", __func__,
1260                                        -rc, inode->i_sb->s_id, inode->i_ino);
1261                                 kfree(context);
1262                                 goto out_unlock;
1263                         }
1264                         /* Map ENODATA to the default file SID */
1265                         sid = sbsec->def_sid;
1266                         rc = 0;
1267                 } else {
1268                         rc = security_context_to_sid_default(context, rc, &sid,
1269                                                              sbsec->def_sid,
1270                                                              GFP_NOFS);
1271                         if (rc) {
1272                                 char *dev = inode->i_sb->s_id;
1273                                 unsigned long ino = inode->i_ino;
1274
1275                                 if (rc == -EINVAL) {
1276                                         if (printk_ratelimit())
1277                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1278                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1279                                                         "filesystem in question.\n", ino, dev, context);
1280                                 } else {
1281                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1282                                                "returned %d for dev=%s ino=%ld\n",
1283                                                __func__, context, -rc, dev, ino);
1284                                 }
1285                                 kfree(context);
1286                                 /* Leave with the unlabeled SID */
1287                                 rc = 0;
1288                                 break;
1289                         }
1290                 }
1291                 kfree(context);
1292                 isec->sid = sid;
1293                 break;
1294         case SECURITY_FS_USE_TASK:
1295                 isec->sid = isec->task_sid;
1296                 break;
1297         case SECURITY_FS_USE_TRANS:
1298                 /* Default to the fs SID. */
1299                 isec->sid = sbsec->sid;
1300
1301                 /* Try to obtain a transition SID. */
1302                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1303                 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1304                                              isec->sclass, NULL, &sid);
1305                 if (rc)
1306                         goto out_unlock;
1307                 isec->sid = sid;
1308                 break;
1309         case SECURITY_FS_USE_MNTPOINT:
1310                 isec->sid = sbsec->mntpoint_sid;
1311                 break;
1312         default:
1313                 /* Default to the fs superblock SID. */
1314                 isec->sid = sbsec->sid;
1315
1316                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1317                         if (opt_dentry) {
1318                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1319                                 rc = selinux_proc_get_sid(opt_dentry,
1320                                                           isec->sclass,
1321                                                           &sid);
1322                                 if (rc)
1323                                         goto out_unlock;
1324                                 isec->sid = sid;
1325                         }
1326                 }
1327                 break;
1328         }
1329
1330         isec->initialized = 1;
1331
1332 out_unlock:
1333         mutex_unlock(&isec->lock);
1334 out:
1335         if (isec->sclass == SECCLASS_FILE)
1336                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1337         return rc;
1338 }
1339
1340 /* Convert a Linux signal to an access vector. */
1341 static inline u32 signal_to_av(int sig)
1342 {
1343         u32 perm = 0;
1344
1345         switch (sig) {
1346         case SIGCHLD:
1347                 /* Commonly granted from child to parent. */
1348                 perm = PROCESS__SIGCHLD;
1349                 break;
1350         case SIGKILL:
1351                 /* Cannot be caught or ignored */
1352                 perm = PROCESS__SIGKILL;
1353                 break;
1354         case SIGSTOP:
1355                 /* Cannot be caught or ignored */
1356                 perm = PROCESS__SIGSTOP;
1357                 break;
1358         default:
1359                 /* All other signals. */
1360                 perm = PROCESS__SIGNAL;
1361                 break;
1362         }
1363
1364         return perm;
1365 }
1366
1367 /*
1368  * Check permission between a pair of credentials
1369  * fork check, ptrace check, etc.
1370  */
1371 static int cred_has_perm(const struct cred *actor,
1372                          const struct cred *target,
1373                          u32 perms)
1374 {
1375         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1376
1377         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1378 }
1379
1380 /*
1381  * Check permission between a pair of tasks, e.g. signal checks,
1382  * fork check, ptrace check, etc.
1383  * tsk1 is the actor and tsk2 is the target
1384  * - this uses the default subjective creds of tsk1
1385  */
1386 static int task_has_perm(const struct task_struct *tsk1,
1387                          const struct task_struct *tsk2,
1388                          u32 perms)
1389 {
1390         const struct task_security_struct *__tsec1, *__tsec2;
1391         u32 sid1, sid2;
1392
1393         rcu_read_lock();
1394         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1395         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1396         rcu_read_unlock();
1397         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1398 }
1399
1400 /*
1401  * Check permission between current and another task, e.g. signal checks,
1402  * fork check, ptrace check, etc.
1403  * current is the actor and tsk2 is the target
1404  * - this uses current's subjective creds
1405  */
1406 static int current_has_perm(const struct task_struct *tsk,
1407                             u32 perms)
1408 {
1409         u32 sid, tsid;
1410
1411         sid = current_sid();
1412         tsid = task_sid(tsk);
1413         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1414 }
1415
1416 #if CAP_LAST_CAP > 63
1417 #error Fix SELinux to handle capabilities > 63.
1418 #endif
1419
1420 /* Check whether a task is allowed to use a capability. */
1421 static int task_has_capability(struct task_struct *tsk,
1422                                const struct cred *cred,
1423                                int cap, int audit)
1424 {
1425         struct common_audit_data ad;
1426         struct av_decision avd;
1427         u16 sclass;
1428         u32 sid = cred_sid(cred);
1429         u32 av = CAP_TO_MASK(cap);
1430         int rc;
1431
1432         COMMON_AUDIT_DATA_INIT(&ad, CAP);
1433         ad.tsk = tsk;
1434         ad.u.cap = cap;
1435
1436         switch (CAP_TO_INDEX(cap)) {
1437         case 0:
1438                 sclass = SECCLASS_CAPABILITY;
1439                 break;
1440         case 1:
1441                 sclass = SECCLASS_CAPABILITY2;
1442                 break;
1443         default:
1444                 printk(KERN_ERR
1445                        "SELinux:  out of range capability %d\n", cap);
1446                 BUG();
1447                 return -EINVAL;
1448         }
1449
1450         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1451         if (audit == SECURITY_CAP_AUDIT) {
1452                 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1453                 if (rc2)
1454                         return rc2;
1455         }
1456         return rc;
1457 }
1458
1459 /* Check whether a task is allowed to use a system operation. */
1460 static int task_has_system(struct task_struct *tsk,
1461                            u32 perms)
1462 {
1463         u32 sid = task_sid(tsk);
1464
1465         return avc_has_perm(sid, SECINITSID_KERNEL,
1466                             SECCLASS_SYSTEM, perms, NULL);
1467 }
1468
1469 /* Check whether a task has a particular permission to an inode.
1470    The 'adp' parameter is optional and allows other audit
1471    data to be passed (e.g. the dentry). */
1472 static int inode_has_perm(const struct cred *cred,
1473                           struct inode *inode,
1474                           u32 perms,
1475                           struct common_audit_data *adp,
1476                           unsigned flags)
1477 {
1478         struct inode_security_struct *isec;
1479         u32 sid;
1480
1481         validate_creds(cred);
1482
1483         if (unlikely(IS_PRIVATE(inode)))
1484                 return 0;
1485
1486         sid = cred_sid(cred);
1487         isec = inode->i_security;
1488
1489         return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
1490 }
1491
1492 static int inode_has_perm_noadp(const struct cred *cred,
1493                                 struct inode *inode,
1494                                 u32 perms,
1495                                 unsigned flags)
1496 {
1497         struct common_audit_data ad;
1498
1499         COMMON_AUDIT_DATA_INIT(&ad, INODE);
1500         ad.u.inode = inode;
1501         return inode_has_perm(cred, inode, perms, &ad, flags);
1502 }
1503
1504 /* Same as inode_has_perm, but pass explicit audit data containing
1505    the dentry to help the auditing code to more easily generate the
1506    pathname if needed. */
1507 static inline int dentry_has_perm(const struct cred *cred,
1508                                   struct dentry *dentry,
1509                                   u32 av)
1510 {
1511         struct inode *inode = dentry->d_inode;
1512         struct common_audit_data ad;
1513
1514         COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1515         ad.u.dentry = dentry;
1516         return inode_has_perm(cred, inode, av, &ad, 0);
1517 }
1518
1519 /* Same as inode_has_perm, but pass explicit audit data containing
1520    the path to help the auditing code to more easily generate the
1521    pathname if needed. */
1522 static inline int path_has_perm(const struct cred *cred,
1523                                 struct path *path,
1524                                 u32 av)
1525 {
1526         struct inode *inode = path->dentry->d_inode;
1527         struct common_audit_data ad;
1528
1529         COMMON_AUDIT_DATA_INIT(&ad, PATH);
1530         ad.u.path = *path;
1531         return inode_has_perm(cred, inode, av, &ad, 0);
1532 }
1533
1534 /* Check whether a task can use an open file descriptor to
1535    access an inode in a given way.  Check access to the
1536    descriptor itself, and then use dentry_has_perm to
1537    check a particular permission to the file.
1538    Access to the descriptor is implicitly granted if it
1539    has the same SID as the process.  If av is zero, then
1540    access to the file is not checked, e.g. for cases
1541    where only the descriptor is affected like seek. */
1542 static int file_has_perm(const struct cred *cred,
1543                          struct file *file,
1544                          u32 av)
1545 {
1546         struct file_security_struct *fsec = file->f_security;
1547         struct inode *inode = file->f_path.dentry->d_inode;
1548         struct common_audit_data ad;
1549         u32 sid = cred_sid(cred);
1550         int rc;
1551
1552         COMMON_AUDIT_DATA_INIT(&ad, PATH);
1553         ad.u.path = file->f_path;
1554
1555         if (sid != fsec->sid) {
1556                 rc = avc_has_perm(sid, fsec->sid,
1557                                   SECCLASS_FD,
1558                                   FD__USE,
1559                                   &ad);
1560                 if (rc)
1561                         goto out;
1562         }
1563
1564         /* av is zero if only checking access to the descriptor. */
1565         rc = 0;
1566         if (av)
1567                 rc = inode_has_perm(cred, inode, av, &ad, 0);
1568
1569 out:
1570         return rc;
1571 }
1572
1573 /* Check whether a task can create a file. */
1574 static int may_create(struct inode *dir,
1575                       struct dentry *dentry,
1576                       u16 tclass)
1577 {
1578         const struct task_security_struct *tsec = current_security();
1579         struct inode_security_struct *dsec;
1580         struct superblock_security_struct *sbsec;
1581         u32 sid, newsid;
1582         struct common_audit_data ad;
1583         int rc;
1584
1585         dsec = dir->i_security;
1586         sbsec = dir->i_sb->s_security;
1587
1588         sid = tsec->sid;
1589         newsid = tsec->create_sid;
1590
1591         COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1592         ad.u.dentry = dentry;
1593
1594         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1595                           DIR__ADD_NAME | DIR__SEARCH,
1596                           &ad);
1597         if (rc)
1598                 return rc;
1599
1600         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1601                 rc = security_transition_sid(sid, dsec->sid, tclass,
1602                                              &dentry->d_name, &newsid);
1603                 if (rc)
1604                         return rc;
1605         }
1606
1607         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1608         if (rc)
1609                 return rc;
1610
1611         return avc_has_perm(newsid, sbsec->sid,
1612                             SECCLASS_FILESYSTEM,
1613                             FILESYSTEM__ASSOCIATE, &ad);
1614 }
1615
1616 /* Check whether a task can create a key. */
1617 static int may_create_key(u32 ksid,
1618                           struct task_struct *ctx)
1619 {
1620         u32 sid = task_sid(ctx);
1621
1622         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1623 }
1624
1625 #define MAY_LINK        0
1626 #define MAY_UNLINK      1
1627 #define MAY_RMDIR       2
1628
1629 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1630 static int may_link(struct inode *dir,
1631                     struct dentry *dentry,
1632                     int kind)
1633
1634 {
1635         struct inode_security_struct *dsec, *isec;
1636         struct common_audit_data ad;
1637         u32 sid = current_sid();
1638         u32 av;
1639         int rc;
1640
1641         dsec = dir->i_security;
1642         isec = dentry->d_inode->i_security;
1643
1644         COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1645         ad.u.dentry = dentry;
1646
1647         av = DIR__SEARCH;
1648         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1649         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1650         if (rc)
1651                 return rc;
1652
1653         switch (kind) {
1654         case MAY_LINK:
1655                 av = FILE__LINK;
1656                 break;
1657         case MAY_UNLINK:
1658                 av = FILE__UNLINK;
1659                 break;
1660         case MAY_RMDIR:
1661                 av = DIR__RMDIR;
1662                 break;
1663         default:
1664                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1665                         __func__, kind);
1666                 return 0;
1667         }
1668
1669         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1670         return rc;
1671 }
1672
1673 static inline int may_rename(struct inode *old_dir,
1674                              struct dentry *old_dentry,
1675                              struct inode *new_dir,
1676                              struct dentry *new_dentry)
1677 {
1678         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1679         struct common_audit_data ad;
1680         u32 sid = current_sid();
1681         u32 av;
1682         int old_is_dir, new_is_dir;
1683         int rc;
1684
1685         old_dsec = old_dir->i_security;
1686         old_isec = old_dentry->d_inode->i_security;
1687         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1688         new_dsec = new_dir->i_security;
1689
1690         COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1691
1692         ad.u.dentry = old_dentry;
1693         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1694                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1695         if (rc)
1696                 return rc;
1697         rc = avc_has_perm(sid, old_isec->sid,
1698                           old_isec->sclass, FILE__RENAME, &ad);
1699         if (rc)
1700                 return rc;
1701         if (old_is_dir && new_dir != old_dir) {
1702                 rc = avc_has_perm(sid, old_isec->sid,
1703                                   old_isec->sclass, DIR__REPARENT, &ad);
1704                 if (rc)
1705                         return rc;
1706         }
1707
1708         ad.u.dentry = new_dentry;
1709         av = DIR__ADD_NAME | DIR__SEARCH;
1710         if (new_dentry->d_inode)
1711                 av |= DIR__REMOVE_NAME;
1712         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1713         if (rc)
1714                 return rc;
1715         if (new_dentry->d_inode) {
1716                 new_isec = new_dentry->d_inode->i_security;
1717                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1718                 rc = avc_has_perm(sid, new_isec->sid,
1719                                   new_isec->sclass,
1720                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1721                 if (rc)
1722                         return rc;
1723         }
1724
1725         return 0;
1726 }
1727
1728 /* Check whether a task can perform a filesystem operation. */
1729 static int superblock_has_perm(const struct cred *cred,
1730                                struct super_block *sb,
1731                                u32 perms,
1732                                struct common_audit_data *ad)
1733 {
1734         struct superblock_security_struct *sbsec;
1735         u32 sid = cred_sid(cred);
1736
1737         sbsec = sb->s_security;
1738         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1739 }
1740
1741 /* Convert a Linux mode and permission mask to an access vector. */
1742 static inline u32 file_mask_to_av(int mode, int mask)
1743 {
1744         u32 av = 0;
1745
1746         if ((mode & S_IFMT) != S_IFDIR) {
1747                 if (mask & MAY_EXEC)
1748                         av |= FILE__EXECUTE;
1749                 if (mask & MAY_READ)
1750                         av |= FILE__READ;
1751
1752                 if (mask & MAY_APPEND)
1753                         av |= FILE__APPEND;
1754                 else if (mask & MAY_WRITE)
1755                         av |= FILE__WRITE;
1756
1757         } else {
1758                 if (mask & MAY_EXEC)
1759                         av |= DIR__SEARCH;
1760                 if (mask & MAY_WRITE)
1761                         av |= DIR__WRITE;
1762                 if (mask & MAY_READ)
1763                         av |= DIR__READ;
1764         }
1765
1766         return av;
1767 }
1768
1769 /* Convert a Linux file to an access vector. */
1770 static inline u32 file_to_av(struct file *file)
1771 {
1772         u32 av = 0;
1773
1774         if (file->f_mode & FMODE_READ)
1775                 av |= FILE__READ;
1776         if (file->f_mode & FMODE_WRITE) {
1777                 if (file->f_flags & O_APPEND)
1778                         av |= FILE__APPEND;
1779                 else
1780                         av |= FILE__WRITE;
1781         }
1782         if (!av) {
1783                 /*
1784                  * Special file opened with flags 3 for ioctl-only use.
1785                  */
1786                 av = FILE__IOCTL;
1787         }
1788
1789         return av;
1790 }
1791
1792 /*
1793  * Convert a file to an access vector and include the correct open
1794  * open permission.
1795  */
1796 static inline u32 open_file_to_av(struct file *file)
1797 {
1798         u32 av = file_to_av(file);
1799
1800         if (selinux_policycap_openperm)
1801                 av |= FILE__OPEN;
1802
1803         return av;
1804 }
1805
1806 /* Hook functions begin here. */
1807
1808 static int selinux_ptrace_access_check(struct task_struct *child,
1809                                      unsigned int mode)
1810 {
1811         int rc;
1812
1813         rc = cap_ptrace_access_check(child, mode);
1814         if (rc)
1815                 return rc;
1816
1817         if (mode == PTRACE_MODE_READ) {
1818                 u32 sid = current_sid();
1819                 u32 csid = task_sid(child);
1820                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1821         }
1822
1823         return current_has_perm(child, PROCESS__PTRACE);
1824 }
1825
1826 static int selinux_ptrace_traceme(struct task_struct *parent)
1827 {
1828         int rc;
1829
1830         rc = cap_ptrace_traceme(parent);
1831         if (rc)
1832                 return rc;
1833
1834         return task_has_perm(parent, current, PROCESS__PTRACE);
1835 }
1836
1837 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1838                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1839 {
1840         int error;
1841
1842         error = current_has_perm(target, PROCESS__GETCAP);
1843         if (error)
1844                 return error;
1845
1846         return cap_capget(target, effective, inheritable, permitted);
1847 }
1848
1849 static int selinux_capset(struct cred *new, const struct cred *old,
1850                           const kernel_cap_t *effective,
1851                           const kernel_cap_t *inheritable,
1852                           const kernel_cap_t *permitted)
1853 {
1854         int error;
1855
1856         error = cap_capset(new, old,
1857                                       effective, inheritable, permitted);
1858         if (error)
1859                 return error;
1860
1861         return cred_has_perm(old, new, PROCESS__SETCAP);
1862 }
1863
1864 /*
1865  * (This comment used to live with the selinux_task_setuid hook,
1866  * which was removed).
1867  *
1868  * Since setuid only affects the current process, and since the SELinux
1869  * controls are not based on the Linux identity attributes, SELinux does not
1870  * need to control this operation.  However, SELinux does control the use of
1871  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1872  */
1873
1874 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1875                            struct user_namespace *ns, int cap, int audit)
1876 {
1877         int rc;
1878
1879         rc = cap_capable(tsk, cred, ns, cap, audit);
1880         if (rc)
1881                 return rc;
1882
1883         return task_has_capability(tsk, cred, cap, audit);
1884 }
1885
1886 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1887 {
1888         const struct cred *cred = current_cred();
1889         int rc = 0;
1890
1891         if (!sb)
1892                 return 0;
1893
1894         switch (cmds) {
1895         case Q_SYNC:
1896         case Q_QUOTAON:
1897         case Q_QUOTAOFF:
1898         case Q_SETINFO:
1899         case Q_SETQUOTA:
1900                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1901                 break;
1902         case Q_GETFMT:
1903         case Q_GETINFO:
1904         case Q_GETQUOTA:
1905                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1906                 break;
1907         default:
1908                 rc = 0;  /* let the kernel handle invalid cmds */
1909                 break;
1910         }
1911         return rc;
1912 }
1913
1914 static int selinux_quota_on(struct dentry *dentry)
1915 {
1916         const struct cred *cred = current_cred();
1917
1918         return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1919 }
1920
1921 static int selinux_syslog(int type)
1922 {
1923         int rc;
1924
1925         switch (type) {
1926         case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
1927         case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
1928                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1929                 break;
1930         case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
1931         case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
1932         /* Set level of messages printed to console */
1933         case SYSLOG_ACTION_CONSOLE_LEVEL:
1934                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1935                 break;
1936         case SYSLOG_ACTION_CLOSE:       /* Close log */
1937         case SYSLOG_ACTION_OPEN:        /* Open log */
1938         case SYSLOG_ACTION_READ:        /* Read from log */
1939         case SYSLOG_ACTION_READ_CLEAR:  /* Read/clear last kernel messages */
1940         case SYSLOG_ACTION_CLEAR:       /* Clear ring buffer */
1941         default:
1942                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1943                 break;
1944         }
1945         return rc;
1946 }
1947
1948 /*
1949  * Check that a process has enough memory to allocate a new virtual
1950  * mapping. 0 means there is enough memory for the allocation to
1951  * succeed and -ENOMEM implies there is not.
1952  *
1953  * Do not audit the selinux permission check, as this is applied to all
1954  * processes that allocate mappings.
1955  */
1956 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1957 {
1958         int rc, cap_sys_admin = 0;
1959
1960         rc = selinux_capable(current, current_cred(),
1961                              &init_user_ns, CAP_SYS_ADMIN,
1962                              SECURITY_CAP_NOAUDIT);
1963         if (rc == 0)
1964                 cap_sys_admin = 1;
1965
1966         return __vm_enough_memory(mm, pages, cap_sys_admin);
1967 }
1968
1969 /* binprm security operations */
1970
1971 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
1972 {
1973         const struct task_security_struct *old_tsec;
1974         struct task_security_struct *new_tsec;
1975         struct inode_security_struct *isec;
1976         struct common_audit_data ad;
1977         struct inode *inode = bprm->file->f_path.dentry->d_inode;
1978         int rc;
1979
1980         rc = cap_bprm_set_creds(bprm);
1981         if (rc)
1982                 return rc;
1983
1984         /* SELinux context only depends on initial program or script and not
1985          * the script interpreter */
1986         if (bprm->cred_prepared)
1987                 return 0;
1988
1989         old_tsec = current_security();
1990         new_tsec = bprm->cred->security;
1991         isec = inode->i_security;
1992
1993         /* Default to the current task SID. */
1994         new_tsec->sid = old_tsec->sid;
1995         new_tsec->osid = old_tsec->sid;
1996
1997         /* Reset fs, key, and sock SIDs on execve. */
1998         new_tsec->create_sid = 0;
1999         new_tsec->keycreate_sid = 0;
2000         new_tsec->sockcreate_sid = 0;
2001
2002         if (old_tsec->exec_sid) {
2003                 new_tsec->sid = old_tsec->exec_sid;
2004                 /* Reset exec SID on execve. */
2005                 new_tsec->exec_sid = 0;
2006         } else {
2007                 /* Check for a default transition on this program. */
2008                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2009                                              SECCLASS_PROCESS, NULL,
2010                                              &new_tsec->sid);
2011                 if (rc)
2012                         return rc;
2013         }
2014
2015         COMMON_AUDIT_DATA_INIT(&ad, PATH);
2016         ad.u.path = bprm->file->f_path;
2017
2018         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2019                 new_tsec->sid = old_tsec->sid;
2020
2021         if (new_tsec->sid == old_tsec->sid) {
2022                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2023                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2024                 if (rc)
2025                         return rc;
2026         } else {
2027                 /* Check permissions for the transition. */
2028                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2029                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2030                 if (rc)
2031                         return rc;
2032
2033                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2034                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2035                 if (rc)
2036                         return rc;
2037
2038                 /* Check for shared state */
2039                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2040                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2041                                           SECCLASS_PROCESS, PROCESS__SHARE,
2042                                           NULL);
2043                         if (rc)
2044                                 return -EPERM;
2045                 }
2046
2047                 /* Make sure that anyone attempting to ptrace over a task that
2048                  * changes its SID has the appropriate permit */
2049                 if (bprm->unsafe &
2050                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2051                         struct task_struct *tracer;
2052                         struct task_security_struct *sec;
2053                         u32 ptsid = 0;
2054
2055                         rcu_read_lock();
2056                         tracer = ptrace_parent(current);
2057                         if (likely(tracer != NULL)) {
2058                                 sec = __task_cred(tracer)->security;
2059                                 ptsid = sec->sid;
2060                         }
2061                         rcu_read_unlock();
2062
2063                         if (ptsid != 0) {
2064                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2065                                                   SECCLASS_PROCESS,
2066                                                   PROCESS__PTRACE, NULL);
2067                                 if (rc)
2068                                         return -EPERM;
2069                         }
2070                 }
2071
2072                 /* Clear any possibly unsafe personality bits on exec: */
2073                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2074         }
2075
2076         return 0;
2077 }
2078
2079 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2080 {
2081         const struct task_security_struct *tsec = current_security();
2082         u32 sid, osid;
2083         int atsecure = 0;
2084
2085         sid = tsec->sid;
2086         osid = tsec->osid;
2087
2088         if (osid != sid) {
2089                 /* Enable secure mode for SIDs transitions unless
2090                    the noatsecure permission is granted between
2091                    the two SIDs, i.e. ahp returns 0. */
2092                 atsecure = avc_has_perm(osid, sid,
2093                                         SECCLASS_PROCESS,
2094                                         PROCESS__NOATSECURE, NULL);
2095         }
2096
2097         return (atsecure || cap_bprm_secureexec(bprm));
2098 }
2099
2100 /* Derived from fs/exec.c:flush_old_files. */
2101 static inline void flush_unauthorized_files(const struct cred *cred,
2102                                             struct files_struct *files)
2103 {
2104         struct common_audit_data ad;
2105         struct file *file, *devnull = NULL;
2106         struct tty_struct *tty;
2107         struct fdtable *fdt;
2108         long j = -1;
2109         int drop_tty = 0;
2110
2111         tty = get_current_tty();
2112         if (tty) {
2113                 spin_lock(&tty_files_lock);
2114                 if (!list_empty(&tty->tty_files)) {
2115                         struct tty_file_private *file_priv;
2116                         struct inode *inode;
2117
2118                         /* Revalidate access to controlling tty.
2119                            Use inode_has_perm on the tty inode directly rather
2120                            than using file_has_perm, as this particular open
2121                            file may belong to another process and we are only
2122                            interested in the inode-based check here. */
2123                         file_priv = list_first_entry(&tty->tty_files,
2124                                                 struct tty_file_private, list);
2125                         file = file_priv->file;
2126                         inode = file->f_path.dentry->d_inode;
2127                         if (inode_has_perm_noadp(cred, inode,
2128                                            FILE__READ | FILE__WRITE, 0)) {
2129                                 drop_tty = 1;
2130                         }
2131                 }
2132                 spin_unlock(&tty_files_lock);
2133                 tty_kref_put(tty);
2134         }
2135         /* Reset controlling tty. */
2136         if (drop_tty)
2137                 no_tty();
2138
2139         /* Revalidate access to inherited open files. */
2140
2141         COMMON_AUDIT_DATA_INIT(&ad, INODE);
2142
2143         spin_lock(&files->file_lock);
2144         for (;;) {
2145                 unsigned long set, i;
2146                 int fd;
2147
2148                 j++;
2149                 i = j * __NFDBITS;
2150                 fdt = files_fdtable(files);
2151                 if (i >= fdt->max_fds)
2152                         break;
2153                 set = fdt->open_fds->fds_bits[j];
2154                 if (!set)
2155                         continue;
2156                 spin_unlock(&files->file_lock);
2157                 for ( ; set ; i++, set >>= 1) {
2158                         if (set & 1) {
2159                                 file = fget(i);
2160                                 if (!file)
2161                                         continue;
2162                                 if (file_has_perm(cred,
2163                                                   file,
2164                                                   file_to_av(file))) {
2165                                         sys_close(i);
2166                                         fd = get_unused_fd();
2167                                         if (fd != i) {
2168                                                 if (fd >= 0)
2169                                                         put_unused_fd(fd);
2170                                                 fput(file);
2171                                                 continue;
2172                                         }
2173                                         if (devnull) {
2174                                                 get_file(devnull);
2175                                         } else {
2176                                                 devnull = dentry_open(
2177                                                         dget(selinux_null),
2178                                                         mntget(selinuxfs_mount),
2179                                                         O_RDWR, cred);
2180                                                 if (IS_ERR(devnull)) {
2181                                                         devnull = NULL;
2182                                                         put_unused_fd(fd);
2183                                                         fput(file);
2184                                                         continue;
2185                                                 }
2186                                         }
2187                                         fd_install(fd, devnull);
2188                                 }
2189                                 fput(file);
2190                         }
2191                 }
2192                 spin_lock(&files->file_lock);
2193
2194         }
2195         spin_unlock(&files->file_lock);
2196 }
2197
2198 /*
2199  * Prepare a process for imminent new credential changes due to exec
2200  */
2201 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2202 {
2203         struct task_security_struct *new_tsec;
2204         struct rlimit *rlim, *initrlim;
2205         int rc, i;
2206
2207         new_tsec = bprm->cred->security;
2208         if (new_tsec->sid == new_tsec->osid)
2209                 return;
2210
2211         /* Close files for which the new task SID is not authorized. */
2212         flush_unauthorized_files(bprm->cred, current->files);
2213
2214         /* Always clear parent death signal on SID transitions. */
2215         current->pdeath_signal = 0;
2216
2217         /* Check whether the new SID can inherit resource limits from the old
2218          * SID.  If not, reset all soft limits to the lower of the current
2219          * task's hard limit and the init task's soft limit.
2220          *
2221          * Note that the setting of hard limits (even to lower them) can be
2222          * controlled by the setrlimit check.  The inclusion of the init task's
2223          * soft limit into the computation is to avoid resetting soft limits
2224          * higher than the default soft limit for cases where the default is
2225          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2226          */
2227         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2228                           PROCESS__RLIMITINH, NULL);
2229         if (rc) {
2230                 /* protect against do_prlimit() */
2231                 task_lock(current);
2232                 for (i = 0; i < RLIM_NLIMITS; i++) {
2233                         rlim = current->signal->rlim + i;
2234                         initrlim = init_task.signal->rlim + i;
2235                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2236                 }
2237                 task_unlock(current);
2238                 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2239         }
2240 }
2241
2242 /*
2243  * Clean up the process immediately after the installation of new credentials
2244  * due to exec
2245  */
2246 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2247 {
2248         const struct task_security_struct *tsec = current_security();
2249         struct itimerval itimer;
2250         u32 osid, sid;
2251         int rc, i;
2252
2253         osid = tsec->osid;
2254         sid = tsec->sid;
2255
2256         if (sid == osid)
2257                 return;
2258
2259         /* Check whether the new SID can inherit signal state from the old SID.
2260          * If not, clear itimers to avoid subsequent signal generation and
2261          * flush and unblock signals.
2262          *
2263          * This must occur _after_ the task SID has been updated so that any
2264          * kill done after the flush will be checked against the new SID.
2265          */
2266         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2267         if (rc) {
2268                 memset(&itimer, 0, sizeof itimer);
2269                 for (i = 0; i < 3; i++)
2270                         do_setitimer(i, &itimer, NULL);
2271                 spin_lock_irq(&current->sighand->siglock);
2272                 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2273                         __flush_signals(current);
2274                         flush_signal_handlers(current, 1);
2275                         sigemptyset(&current->blocked);
2276                 }
2277                 spin_unlock_irq(&current->sighand->siglock);
2278         }
2279
2280         /* Wake up the parent if it is waiting so that it can recheck
2281          * wait permission to the new task SID. */
2282         read_lock(&tasklist_lock);
2283         __wake_up_parent(current, current->real_parent);
2284         read_unlock(&tasklist_lock);
2285 }
2286
2287 /* superblock security operations */
2288
2289 static int selinux_sb_alloc_security(struct super_block *sb)
2290 {
2291         return superblock_alloc_security(sb);
2292 }
2293
2294 static void selinux_sb_free_security(struct super_block *sb)
2295 {
2296         superblock_free_security(sb);
2297 }
2298
2299 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2300 {
2301         if (plen > olen)
2302                 return 0;
2303
2304         return !memcmp(prefix, option, plen);
2305 }
2306
2307 static inline int selinux_option(char *option, int len)
2308 {
2309         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2310                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2311                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2312                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2313                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2314 }
2315
2316 static inline void take_option(char **to, char *from, int *first, int len)
2317 {
2318         if (!*first) {
2319                 **to = ',';
2320                 *to += 1;
2321         } else
2322                 *first = 0;
2323         memcpy(*to, from, len);
2324         *to += len;
2325 }
2326
2327 static inline void take_selinux_option(char **to, char *from, int *first,
2328                                        int len)
2329 {
2330         int current_size = 0;
2331
2332         if (!*first) {
2333                 **to = '|';
2334                 *to += 1;
2335         } else
2336                 *first = 0;
2337
2338         while (current_size < len) {
2339                 if (*from != '"') {
2340                         **to = *from;
2341                         *to += 1;
2342                 }
2343                 from += 1;
2344                 current_size += 1;
2345         }
2346 }
2347
2348 static int selinux_sb_copy_data(char *orig, char *copy)
2349 {
2350         int fnosec, fsec, rc = 0;
2351         char *in_save, *in_curr, *in_end;
2352         char *sec_curr, *nosec_save, *nosec;
2353         int open_quote = 0;
2354
2355         in_curr = orig;
2356         sec_curr = copy;
2357
2358         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2359         if (!nosec) {
2360                 rc = -ENOMEM;
2361                 goto out;
2362         }
2363
2364         nosec_save = nosec;
2365         fnosec = fsec = 1;
2366         in_save = in_end = orig;
2367
2368         do {
2369                 if (*in_end == '"')
2370                         open_quote = !open_quote;
2371                 if ((*in_end == ',' && open_quote == 0) ||
2372                                 *in_end == '\0') {
2373                         int len = in_end - in_curr;
2374
2375                         if (selinux_option(in_curr, len))
2376                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2377                         else
2378                                 take_option(&nosec, in_curr, &fnosec, len);
2379
2380                         in_curr = in_end + 1;
2381                 }
2382         } while (*in_end++);
2383
2384         strcpy(in_save, nosec_save);
2385         free_page((unsigned long)nosec_save);
2386 out:
2387         return rc;
2388 }
2389
2390 static int selinux_sb_remount(struct super_block *sb, void *data)
2391 {
2392         int rc, i, *flags;
2393         struct security_mnt_opts opts;
2394         char *secdata, **mount_options;
2395         struct superblock_security_struct *sbsec = sb->s_security;
2396
2397         if (!(sbsec->flags & SE_SBINITIALIZED))
2398                 return 0;
2399
2400         if (!data)
2401                 return 0;
2402
2403         if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2404                 return 0;
2405
2406         security_init_mnt_opts(&opts);
2407         secdata = alloc_secdata();
2408         if (!secdata)
2409                 return -ENOMEM;
2410         rc = selinux_sb_copy_data(data, secdata);
2411         if (rc)
2412                 goto out_free_secdata;
2413
2414         rc = selinux_parse_opts_str(secdata, &opts);
2415         if (rc)
2416                 goto out_free_secdata;
2417
2418         mount_options = opts.mnt_opts;
2419         flags = opts.mnt_opts_flags;
2420
2421         for (i = 0; i < opts.num_mnt_opts; i++) {
2422                 u32 sid;
2423                 size_t len;
2424
2425                 if (flags[i] == SE_SBLABELSUPP)
2426                         continue;
2427                 len = strlen(mount_options[i]);
2428                 rc = security_context_to_sid(mount_options[i], len, &sid);
2429                 if (rc) {
2430                         printk(KERN_WARNING "SELinux: security_context_to_sid"
2431                                "(%s) failed for (dev %s, type %s) errno=%d\n",
2432                                mount_options[i], sb->s_id, sb->s_type->name, rc);
2433                         goto out_free_opts;
2434                 }
2435                 rc = -EINVAL;
2436                 switch (flags[i]) {
2437                 case FSCONTEXT_MNT:
2438                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2439                                 goto out_bad_option;
2440                         break;
2441                 case CONTEXT_MNT:
2442                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2443                                 goto out_bad_option;
2444                         break;
2445                 case ROOTCONTEXT_MNT: {
2446                         struct inode_security_struct *root_isec;
2447                         root_isec = sb->s_root->d_inode->i_security;
2448
2449                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2450                                 goto out_bad_option;
2451                         break;
2452                 }
2453                 case DEFCONTEXT_MNT:
2454                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2455                                 goto out_bad_option;
2456                         break;
2457                 default:
2458                         goto out_free_opts;
2459                 }
2460         }
2461
2462         rc = 0;
2463 out_free_opts:
2464         security_free_mnt_opts(&opts);
2465 out_free_secdata:
2466         free_secdata(secdata);
2467         return rc;
2468 out_bad_option:
2469         printk(KERN_WARNING "SELinux: unable to change security options "
2470                "during remount (dev %s, type=%s)\n", sb->s_id,
2471                sb->s_type->name);
2472         goto out_free_opts;
2473 }
2474
2475 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2476 {
2477         const struct cred *cred = current_cred();
2478         struct common_audit_data ad;
2479         int rc;
2480
2481         rc = superblock_doinit(sb, data);
2482         if (rc)
2483                 return rc;
2484
2485         /* Allow all mounts performed by the kernel */
2486         if (flags & MS_KERNMOUNT)
2487                 return 0;
2488
2489         COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2490         ad.u.dentry = sb->s_root;
2491         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2492 }
2493
2494 static int selinux_sb_statfs(struct dentry *dentry)
2495 {
2496         const struct cred *cred = current_cred();
2497         struct common_audit_data ad;
2498
2499         COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2500         ad.u.dentry = dentry->d_sb->s_root;
2501         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2502 }
2503
2504 static int selinux_mount(char *dev_name,
2505                          struct path *path,
2506                          char *type,
2507                          unsigned long flags,
2508                          void *data)
2509 {
2510         const struct cred *cred = current_cred();
2511
2512         if (flags & MS_REMOUNT)
2513                 return superblock_has_perm(cred, path->mnt->mnt_sb,
2514                                            FILESYSTEM__REMOUNT, NULL);
2515         else
2516                 return path_has_perm(cred, path, FILE__MOUNTON);
2517 }
2518
2519 static int selinux_umount(struct vfsmount *mnt, int flags)
2520 {
2521         const struct cred *cred = current_cred();
2522
2523         return superblock_has_perm(cred, mnt->mnt_sb,
2524                                    FILESYSTEM__UNMOUNT, NULL);
2525 }
2526
2527 /* inode security operations */
2528
2529 static int selinux_inode_alloc_security(struct inode *inode)
2530 {
2531         return inode_alloc_security(inode);
2532 }
2533
2534 static void selinux_inode_free_security(struct inode *inode)
2535 {
2536         inode_free_security(inode);
2537 }
2538
2539 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2540                                        const struct qstr *qstr, char **name,
2541                                        void **value, size_t *len)
2542 {
2543         const struct task_security_struct *tsec = current_security();
2544         struct inode_security_struct *dsec;
2545         struct superblock_security_struct *sbsec;
2546         u32 sid, newsid, clen;
2547         int rc;
2548         char *namep = NULL, *context;
2549
2550         dsec = dir->i_security;
2551         sbsec = dir->i_sb->s_security;
2552
2553         sid = tsec->sid;
2554         newsid = tsec->create_sid;
2555
2556         if ((sbsec->flags & SE_SBINITIALIZED) &&
2557             (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2558                 newsid = sbsec->mntpoint_sid;
2559         else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2560                 rc = security_transition_sid(sid, dsec->sid,
2561                                              inode_mode_to_security_class(inode->i_mode),
2562                                              qstr, &newsid);
2563                 if (rc) {
2564                         printk(KERN_WARNING "%s:  "
2565                                "security_transition_sid failed, rc=%d (dev=%s "
2566                                "ino=%ld)\n",
2567                                __func__,
2568                                -rc, inode->i_sb->s_id, inode->i_ino);
2569                         return rc;
2570                 }
2571         }
2572
2573         /* Possibly defer initialization to selinux_complete_init. */
2574         if (sbsec->flags & SE_SBINITIALIZED) {
2575                 struct inode_security_struct *isec = inode->i_security;
2576                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2577                 isec->sid = newsid;
2578                 isec->initialized = 1;
2579         }
2580
2581         if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2582                 return -EOPNOTSUPP;
2583
2584         if (name) {
2585                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2586                 if (!namep)
2587                         return -ENOMEM;
2588                 *name = namep;
2589         }
2590
2591         if (value && len) {
2592                 rc = security_sid_to_context_force(newsid, &context, &clen);
2593                 if (rc) {
2594                         kfree(namep);
2595                         return rc;
2596                 }
2597                 *value = context;
2598                 *len = clen;
2599         }
2600
2601         return 0;
2602 }
2603
2604 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2605 {
2606         return may_create(dir, dentry, SECCLASS_FILE);
2607 }
2608
2609 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2610 {
2611         return may_link(dir, old_dentry, MAY_LINK);
2612 }
2613
2614 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2615 {
2616         return may_link(dir, dentry, MAY_UNLINK);
2617 }
2618
2619 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2620 {
2621         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2622 }
2623
2624 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2625 {
2626         return may_create(dir, dentry, SECCLASS_DIR);
2627 }
2628
2629 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2630 {
2631         return may_link(dir, dentry, MAY_RMDIR);
2632 }
2633
2634 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2635 {
2636         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2637 }
2638
2639 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2640                                 struct inode *new_inode, struct dentry *new_dentry)
2641 {
2642         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2643 }
2644
2645 static int selinux_inode_readlink(struct dentry *dentry)
2646 {
2647         const struct cred *cred = current_cred();
2648
2649         return dentry_has_perm(cred, dentry, FILE__READ);
2650 }
2651
2652 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2653 {
2654         const struct cred *cred = current_cred();
2655
2656         return dentry_has_perm(cred, dentry, FILE__READ);
2657 }
2658
2659 static int selinux_inode_permission(struct inode *inode, int mask)
2660 {
2661         const struct cred *cred = current_cred();
2662         struct common_audit_data ad;
2663         u32 perms;
2664         bool from_access;
2665         unsigned flags = mask & MAY_NOT_BLOCK;
2666
2667         from_access = mask & MAY_ACCESS;
2668         mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2669
2670         /* No permission to check.  Existence test. */
2671         if (!mask)
2672                 return 0;
2673
2674         COMMON_AUDIT_DATA_INIT(&ad, INODE);
2675         ad.u.inode = inode;
2676
2677         if (from_access)
2678                 ad.selinux_audit_data.auditdeny |= FILE__AUDIT_ACCESS;
2679
2680         perms = file_mask_to_av(inode->i_mode, mask);
2681
2682         return inode_has_perm(cred, inode, perms, &ad, flags);
2683 }
2684
2685 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2686 {
2687         const struct cred *cred = current_cred();
2688         unsigned int ia_valid = iattr->ia_valid;
2689
2690         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2691         if (ia_valid & ATTR_FORCE) {
2692                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2693                               ATTR_FORCE);
2694                 if (!ia_valid)
2695                         return 0;
2696         }
2697
2698         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2699                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2700                 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2701
2702         return dentry_has_perm(cred, dentry, FILE__WRITE);
2703 }
2704
2705 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2706 {
2707         const struct cred *cred = current_cred();
2708         struct path path;
2709
2710         path.dentry = dentry;
2711         path.mnt = mnt;
2712
2713         return path_has_perm(cred, &path, FILE__GETATTR);
2714 }
2715
2716 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2717 {
2718         const struct cred *cred = current_cred();
2719
2720         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2721                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2722                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2723                         if (!capable(CAP_SETFCAP))
2724                                 return -EPERM;
2725                 } else if (!capable(CAP_SYS_ADMIN)) {
2726                         /* A different attribute in the security namespace.
2727                            Restrict to administrator. */
2728                         return -EPERM;
2729                 }
2730         }
2731
2732         /* Not an attribute we recognize, so just check the
2733            ordinary setattr permission. */
2734         return dentry_has_perm(cred, dentry, FILE__SETATTR);
2735 }
2736
2737 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2738                                   const void *value, size_t size, int flags)
2739 {
2740         struct inode *inode = dentry->d_inode;
2741         struct inode_security_struct *isec = inode->i_security;
2742         struct superblock_security_struct *sbsec;
2743         struct common_audit_data ad;
2744         u32 newsid, sid = current_sid();
2745         int rc = 0;
2746
2747         if (strcmp(name, XATTR_NAME_SELINUX))
2748                 return selinux_inode_setotherxattr(dentry, name);
2749
2750         sbsec = inode->i_sb->s_security;
2751         if (!(sbsec->flags & SE_SBLABELSUPP))
2752                 return -EOPNOTSUPP;
2753
2754         if (!inode_owner_or_capable(inode))
2755                 return -EPERM;
2756
2757         COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2758         ad.u.dentry = dentry;
2759
2760         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2761                           FILE__RELABELFROM, &ad);
2762         if (rc)
2763                 return rc;
2764
2765         rc = security_context_to_sid(value, size, &newsid);
2766         if (rc == -EINVAL) {
2767                 if (!capable(CAP_MAC_ADMIN))
2768                         return rc;
2769                 rc = security_context_to_sid_force(value, size, &newsid);
2770         }
2771         if (rc)
2772                 return rc;
2773
2774         rc = avc_has_perm(sid, newsid, isec->sclass,
2775                           FILE__RELABELTO, &ad);
2776         if (rc)
2777                 return rc;
2778
2779         rc = security_validate_transition(isec->sid, newsid, sid,
2780                                           isec->sclass);
2781         if (rc)
2782                 return rc;
2783
2784         return avc_has_perm(newsid,
2785                             sbsec->sid,
2786                             SECCLASS_FILESYSTEM,
2787                             FILESYSTEM__ASSOCIATE,
2788                             &ad);
2789 }
2790
2791 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2792                                         const void *value, size_t size,
2793                                         int flags)
2794 {
2795         struct inode *inode = dentry->d_inode;
2796         struct inode_security_struct *isec = inode->i_security;
2797         u32 newsid;
2798         int rc;
2799
2800         if (strcmp(name, XATTR_NAME_SELINUX)) {
2801                 /* Not an attribute we recognize, so nothing to do. */
2802                 return;
2803         }
2804
2805         rc = security_context_to_sid_force(value, size, &newsid);
2806         if (rc) {
2807                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2808                        "for (%s, %lu), rc=%d\n",
2809                        inode->i_sb->s_id, inode->i_ino, -rc);
2810                 return;
2811         }
2812
2813         isec->sid = newsid;
2814         return;
2815 }
2816
2817 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2818 {
2819         const struct cred *cred = current_cred();
2820
2821         return dentry_has_perm(cred, dentry, FILE__GETATTR);
2822 }
2823
2824 static int selinux_inode_listxattr(struct dentry *dentry)
2825 {
2826         const struct cred *cred = current_cred();
2827
2828         return dentry_has_perm(cred, dentry, FILE__GETATTR);
2829 }
2830
2831 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2832 {
2833         if (strcmp(name, XATTR_NAME_SELINUX))
2834                 return selinux_inode_setotherxattr(dentry, name);
2835
2836         /* No one is allowed to remove a SELinux security label.
2837            You can change the label, but all data must be labeled. */
2838         return -EACCES;
2839 }
2840
2841 /*
2842  * Copy the inode security context value to the user.
2843  *
2844  * Permission check is handled by selinux_inode_getxattr hook.
2845  */
2846 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2847 {
2848         u32 size;
2849         int error;
2850         char *context = NULL;
2851         struct inode_security_struct *isec = inode->i_security;
2852
2853         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2854                 return -EOPNOTSUPP;
2855
2856         /*
2857          * If the caller has CAP_MAC_ADMIN, then get the raw context
2858          * value even if it is not defined by current policy; otherwise,
2859          * use the in-core value under current policy.
2860          * Use the non-auditing forms of the permission checks since
2861          * getxattr may be called by unprivileged processes commonly
2862          * and lack of permission just means that we fall back to the
2863          * in-core context value, not a denial.
2864          */
2865         error = selinux_capable(current, current_cred(),
2866                                 &init_user_ns, CAP_MAC_ADMIN,
2867                                 SECURITY_CAP_NOAUDIT);
2868         if (!error)
2869                 error = security_sid_to_context_force(isec->sid, &context,
2870                                                       &size);
2871         else
2872                 error = security_sid_to_context(isec->sid, &context, &size);
2873         if (error)
2874                 return error;
2875         error = size;
2876         if (alloc) {
2877                 *buffer = context;
2878                 goto out_nofree;
2879         }
2880         kfree(context);
2881 out_nofree:
2882         return error;
2883 }
2884
2885 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2886                                      const void *value, size_t size, int flags)
2887 {
2888         struct inode_security_struct *isec = inode->i_security;
2889         u32 newsid;
2890         int rc;
2891
2892         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2893                 return -EOPNOTSUPP;
2894
2895         if (!value || !size)
2896                 return -EACCES;
2897
2898         rc = security_context_to_sid((void *)value, size, &newsid);
2899         if (rc)
2900                 return rc;
2901
2902         isec->sid = newsid;
2903         isec->initialized = 1;
2904         return 0;
2905 }
2906
2907 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2908 {
2909         const int len = sizeof(XATTR_NAME_SELINUX);
2910         if (buffer && len <= buffer_size)
2911                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2912         return len;
2913 }
2914
2915 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2916 {
2917         struct inode_security_struct *isec = inode->i_security;
2918         *secid = isec->sid;
2919 }
2920
2921 /* file security operations */
2922
2923 static int selinux_revalidate_file_permission(struct file *file, int mask)
2924 {
2925         const struct cred *cred = current_cred();
2926         struct inode *inode = file->f_path.dentry->d_inode;
2927
2928         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2929         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2930                 mask |= MAY_APPEND;
2931
2932         return file_has_perm(cred, file,
2933                              file_mask_to_av(inode->i_mode, mask));
2934 }
2935
2936 static int selinux_file_permission(struct file *file, int mask)
2937 {
2938         struct inode *inode = file->f_path.dentry->d_inode;
2939         struct file_security_struct *fsec = file->f_security;
2940         struct inode_security_struct *isec = inode->i_security;
2941         u32 sid = current_sid();
2942
2943         if (!mask)
2944                 /* No permission to check.  Existence test. */
2945                 return 0;
2946
2947         if (sid == fsec->sid && fsec->isid == isec->sid &&
2948             fsec->pseqno == avc_policy_seqno())
2949                 /* No change since dentry_open check. */
2950                 return 0;
2951
2952         return selinux_revalidate_file_permission(file, mask);
2953 }
2954
2955 static int selinux_file_alloc_security(struct file *file)
2956 {
2957         return file_alloc_security(file);
2958 }
2959
2960 static void selinux_file_free_security(struct file *file)
2961 {
2962         file_free_security(file);
2963 }
2964
2965 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2966                               unsigned long arg)
2967 {
2968         const struct cred *cred = current_cred();
2969         int error = 0;
2970
2971         switch (cmd) {
2972         case FIONREAD:
2973         /* fall through */
2974         case FIBMAP:
2975         /* fall through */
2976         case FIGETBSZ:
2977         /* fall through */
2978         case EXT2_IOC_GETFLAGS:
2979         /* fall through */
2980         case EXT2_IOC_GETVERSION:
2981                 error = file_has_perm(cred, file, FILE__GETATTR);
2982                 break;
2983
2984         case EXT2_IOC_SETFLAGS:
2985         /* fall through */
2986         case EXT2_IOC_SETVERSION:
2987                 error = file_has_perm(cred, file, FILE__SETATTR);
2988                 break;
2989
2990         /* sys_ioctl() checks */
2991         case FIONBIO:
2992         /* fall through */
2993         case FIOASYNC:
2994                 error = file_has_perm(cred, file, 0);
2995                 break;
2996
2997         case KDSKBENT:
2998         case KDSKBSENT:
2999                 error = task_has_capability(current, cred, CAP_SYS_TTY_CONFIG,
3000                                         SECURITY_CAP_AUDIT);
3001                 break;
3002
3003         /* default case assumes that the command will go
3004          * to the file's ioctl() function.
3005          */
3006         default:
3007                 error = file_has_perm(cred, file, FILE__IOCTL);
3008         }
3009         return error;
3010 }
3011
3012 static int default_noexec;
3013
3014 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3015 {
3016         const struct cred *cred = current_cred();
3017         int rc = 0;
3018
3019         if (default_noexec &&
3020             (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3021                 /*
3022                  * We are making executable an anonymous mapping or a
3023                  * private file mapping that will also be writable.
3024                  * This has an additional check.
3025                  */
3026                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3027                 if (rc)
3028                         goto error;
3029         }
3030
3031         if (file) {
3032                 /* read access is always possible with a mapping */
3033                 u32 av = FILE__READ;
3034
3035                 /* write access only matters if the mapping is shared */
3036                 if (shared && (prot & PROT_WRITE))
3037                         av |= FILE__WRITE;
3038
3039                 if (prot & PROT_EXEC)
3040                         av |= FILE__EXECUTE;
3041
3042                 return file_has_perm(cred, file, av);
3043         }
3044
3045 error:
3046         return rc;
3047 }
3048
3049 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3050                              unsigned long prot, unsigned long flags,
3051                              unsigned long addr, unsigned long addr_only)
3052 {
3053         int rc = 0;
3054         u32 sid = current_sid();
3055
3056         /*
3057          * notice that we are intentionally putting the SELinux check before
3058          * the secondary cap_file_mmap check.  This is such a likely attempt
3059          * at bad behaviour/exploit that we always want to get the AVC, even
3060          * if DAC would have also denied the operation.
3061          */
3062         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3063                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3064                                   MEMPROTECT__MMAP_ZERO, NULL);
3065                 if (rc)
3066                         return rc;
3067         }
3068
3069         /* do DAC check on address space usage */
3070         rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3071         if (rc || addr_only)
3072                 return rc;
3073
3074         if (selinux_checkreqprot)
3075                 prot = reqprot;
3076
3077         return file_map_prot_check(file, prot,
3078                                    (flags & MAP_TYPE) == MAP_SHARED);
3079 }
3080
3081 static int selinux_file_mprotect(struct vm_area_struct *vma,
3082                                  unsigned long reqprot,
3083                                  unsigned long prot)
3084 {
3085         const struct cred *cred = current_cred();
3086
3087         if (selinux_checkreqprot)
3088                 prot = reqprot;
3089
3090         if (default_noexec &&
3091             (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3092                 int rc = 0;
3093                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3094                     vma->vm_end <= vma->vm_mm->brk) {
3095                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3096                 } else if (!vma->vm_file &&
3097                            vma->vm_start <= vma->vm_mm->start_stack &&
3098                            vma->vm_end >= vma->vm_mm->start_stack) {
3099                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3100                 } else if (vma->vm_file && vma->anon_vma) {
3101                         /*
3102                          * We are making executable a file mapping that has
3103                          * had some COW done. Since pages might have been
3104                          * written, check ability to execute the possibly
3105                          * modified content.  This typically should only
3106                          * occur for text relocations.
3107                          */
3108                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3109                 }
3110                 if (rc)
3111                         return rc;
3112         }
3113
3114         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3115 }
3116
3117 static int selinux_file_lock(struct file *file, unsigned int cmd)
3118 {
3119         const struct cred *cred = current_cred();
3120
3121         return file_has_perm(cred, file, FILE__LOCK);
3122 }
3123
3124 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3125                               unsigned long arg)
3126 {
3127         const struct cred *cred = current_cred();
3128         int err = 0;
3129
3130         switch (cmd) {
3131         case F_SETFL:
3132                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3133                         err = -EINVAL;
3134                         break;
3135                 }
3136
3137                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3138                         err = file_has_perm(cred, file, FILE__WRITE);
3139                         break;
3140                 }
3141                 /* fall through */
3142         case F_SETOWN:
3143         case F_SETSIG:
3144         case F_GETFL:
3145         case F_GETOWN:
3146         case F_GETSIG:
3147                 /* Just check FD__USE permission */
3148                 err = file_has_perm(cred, file, 0);
3149                 break;
3150         case F_GETLK:
3151         case F_SETLK:
3152         case F_SETLKW:
3153 #if BITS_PER_LONG == 32
3154         case F_GETLK64:
3155         case F_SETLK64:
3156         case F_SETLKW64:
3157 #endif
3158                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3159                         err = -EINVAL;
3160                         break;
3161                 }
3162                 err = file_has_perm(cred, file, FILE__LOCK);
3163                 break;
3164         }
3165
3166         return err;
3167 }
3168
3169 static int selinux_file_set_fowner(struct file *file)
3170 {
3171         struct file_security_struct *fsec;
3172
3173         fsec = file->f_security;
3174         fsec->fown_sid = current_sid();
3175
3176         return 0;
3177 }
3178
3179 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3180                                        struct fown_struct *fown, int signum)
3181 {
3182         struct file *file;
3183         u32 sid = task_sid(tsk);
3184         u32 perm;
3185         struct file_security_struct *fsec;
3186
3187         /* struct fown_struct is never outside the context of a struct file */
3188         file = container_of(fown, struct file, f_owner);
3189
3190         fsec = file->f_security;
3191
3192         if (!signum)
3193                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3194         else
3195                 perm = signal_to_av(signum);
3196
3197         return avc_has_perm(fsec->fown_sid, sid,
3198                             SECCLASS_PROCESS, perm, NULL);
3199 }
3200
3201 static int selinux_file_receive(struct file *file)
3202 {
3203         const struct cred *cred = current_cred();
3204
3205         return file_has_perm(cred, file, file_to_av(file));
3206 }
3207
3208 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3209 {
3210         struct file_security_struct *fsec;
3211         struct inode *inode;
3212         struct inode_security_struct *isec;
3213
3214         inode = file->f_path.dentry->d_inode;
3215         fsec = file->f_security;
3216         isec = inode->i_security;
3217         /*
3218          * Save inode label and policy sequence number
3219          * at open-time so that selinux_file_permission
3220          * can determine whether revalidation is necessary.
3221          * Task label is already saved in the file security
3222          * struct as its SID.
3223          */
3224         fsec->isid = isec->sid;
3225         fsec->pseqno = avc_policy_seqno();
3226         /*
3227          * Since the inode label or policy seqno may have changed
3228          * between the selinux_inode_permission check and the saving
3229          * of state above, recheck that access is still permitted.
3230          * Otherwise, access might never be revalidated against the
3231          * new inode label or new policy.
3232          * This check is not redundant - do not remove.
3233          */
3234         return inode_has_perm_noadp(cred, inode, open_file_to_av(file), 0);
3235 }
3236
3237 /* task security operations */
3238
3239 static int selinux_task_create(unsigned long clone_flags)
3240 {
3241         return current_has_perm(current, PROCESS__FORK);
3242 }
3243
3244 /*
3245  * allocate the SELinux part of blank credentials
3246  */
3247 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3248 {
3249         struct task_security_struct *tsec;
3250
3251         tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3252         if (!tsec)
3253                 return -ENOMEM;
3254
3255         cred->security = tsec;
3256         return 0;
3257 }
3258
3259 /*
3260  * detach and free the LSM part of a set of credentials
3261  */
3262 static void selinux_cred_free(struct cred *cred)
3263 {
3264         struct task_security_struct *tsec = cred->security;
3265
3266         /*
3267          * cred->security == NULL if security_cred_alloc_blank() or
3268          * security_prepare_creds() returned an error.
3269          */
3270         BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3271         cred->security = (void *) 0x7UL;
3272         kfree(tsec);
3273 }
3274
3275 /*
3276  * prepare a new set of credentials for modification
3277  */
3278 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3279                                 gfp_t gfp)
3280 {
3281         const struct task_security_struct *old_tsec;
3282         struct task_security_struct *tsec;
3283
3284         old_tsec = old->security;
3285
3286         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3287         if (!tsec)
3288                 return -ENOMEM;
3289
3290         new->security = tsec;
3291         return 0;
3292 }
3293
3294 /*
3295  * transfer the SELinux data to a blank set of creds
3296  */
3297 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3298 {
3299         const struct task_security_struct *old_tsec = old->security;
3300         struct task_security_struct *tsec = new->security;
3301
3302         *tsec = *old_tsec;
3303 }
3304
3305 /*
3306  * set the security data for a kernel service
3307  * - all the creation contexts are set to unlabelled
3308  */
3309 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3310 {
3311         struct task_security_struct *tsec = new->security;
3312         u32 sid = current_sid();
3313         int ret;
3314
3315         ret = avc_has_perm(sid, secid,
3316                            SECCLASS_KERNEL_SERVICE,
3317                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3318                            NULL);
3319         if (ret == 0) {
3320                 tsec->sid = secid;
3321                 tsec->create_sid = 0;
3322                 tsec->keycreate_sid = 0;
3323                 tsec->sockcreate_sid = 0;
3324         }
3325         return ret;
3326 }
3327
3328 /*
3329  * set the file creation context in a security record to the same as the
3330  * objective context of the specified inode
3331  */
3332 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3333 {
3334         struct inode_security_struct *isec = inode->i_security;
3335         struct task_security_struct *tsec = new->security;
3336         u32 sid = current_sid();
3337         int ret;
3338
3339         ret = avc_has_perm(sid, isec->sid,
3340                            SECCLASS_KERNEL_SERVICE,
3341                            KERNEL_SERVICE__CREATE_FILES_AS,
3342                            NULL);
3343
3344         if (ret == 0)
3345                 tsec->create_sid = isec->sid;
3346         return ret;
3347 }
3348
3349 static int selinux_kernel_module_request(char *kmod_name)
3350 {
3351         u32 sid;
3352         struct common_audit_data ad;
3353
3354         sid = task_sid(current);
3355
3356         COMMON_AUDIT_DATA_INIT(&ad, KMOD);
3357         ad.u.kmod_name = kmod_name;
3358
3359         return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3360                             SYSTEM__MODULE_REQUEST, &ad);
3361 }
3362
3363 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3364 {
3365         return current_has_perm(p, PROCESS__SETPGID);
3366 }
3367
3368 static int selinux_task_getpgid(struct task_struct *p)
3369 {
3370         return current_has_perm(p, PROCESS__GETPGID);
3371 }
3372
3373 static int selinux_task_getsid(struct task_struct *p)
3374 {
3375         return current_has_perm(p, PROCESS__GETSESSION);
3376 }
3377
3378 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3379 {
3380         *secid = task_sid(p);
3381 }
3382
3383 static int selinux_task_setnice(struct task_struct *p, int nice)
3384 {
3385         int rc;
3386
3387         rc = cap_task_setnice(p, nice);
3388         if (rc)
3389                 return rc;
3390
3391         return current_has_perm(p, PROCESS__SETSCHED);
3392 }
3393
3394 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3395 {
3396         int rc;
3397
3398         rc = cap_task_setioprio(p, ioprio);
3399         if (rc)
3400                 return rc;
3401
3402         return current_has_perm(p, PROCESS__SETSCHED);
3403 }
3404
3405 static int selinux_task_getioprio(struct task_struct *p)
3406 {
3407         return current_has_perm(p, PROCESS__GETSCHED);
3408 }
3409
3410 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3411                 struct rlimit *new_rlim)
3412 {
3413         struct rlimit *old_rlim = p->signal->rlim + resource;
3414
3415         /* Control the ability to change the hard limit (whether
3416            lowering or raising it), so that the hard limit can
3417            later be used as a safe reset point for the soft limit
3418            upon context transitions.  See selinux_bprm_committing_creds. */
3419         if (old_rlim->rlim_max != new_rlim->rlim_max)
3420                 return current_has_perm(p, PROCESS__SETRLIMIT);
3421
3422         return 0;
3423 }
3424
3425 static int selinux_task_setscheduler(struct task_struct *p)
3426 {
3427         int rc;
3428
3429         rc = cap_task_setscheduler(p);
3430         if (rc)
3431                 return rc;
3432
3433         return current_has_perm(p, PROCESS__SETSCHED);
3434 }
3435
3436 static int selinux_task_getscheduler(struct task_struct *p)
3437 {
3438         return current_has_perm(p, PROCESS__GETSCHED);
3439 }
3440
3441 static int selinux_task_movememory(struct task_struct *p)
3442 {
3443         return current_has_perm(p, PROCESS__SETSCHED);
3444 }
3445
3446 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3447                                 int sig, u32 secid)
3448 {
3449         u32 perm;
3450         int rc;
3451
3452         if (!sig)
3453                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3454         else
3455                 perm = signal_to_av(sig);
3456         if (secid)
3457                 rc = avc_has_perm(secid, task_sid(p),
3458                                   SECCLASS_PROCESS, perm, NULL);
3459         else
3460                 rc = current_has_perm(p, perm);
3461         return rc;
3462 }
3463
3464 static int selinux_task_wait(struct task_struct *p)
3465 {
3466         return task_has_perm(p, current, PROCESS__SIGCHLD);
3467 }
3468
3469 static void selinux_task_to_inode(struct task_struct *p,
3470                                   struct inode *inode)
3471 {
3472         struct inode_security_struct *isec = inode->i_security;
3473         u32 sid = task_sid(p);
3474
3475         isec->sid = sid;
3476         isec->initialized = 1;
3477 }
3478
3479 /* Returns error only if unable to parse addresses */
3480 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3481                         struct common_audit_data *ad, u8 *proto)
3482 {
3483         int offset, ihlen, ret = -EINVAL;
3484         struct iphdr _iph, *ih;
3485
3486         offset = skb_network_offset(skb);
3487         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3488         if (ih == NULL)
3489                 goto out;
3490
3491         ihlen = ih->ihl * 4;
3492         if (ihlen < sizeof(_iph))
3493                 goto out;
3494
3495         ad->u.net.v4info.saddr = ih->saddr;
3496         ad->u.net.v4info.daddr = ih->daddr;
3497         ret = 0;
3498
3499         if (proto)
3500                 *proto = ih->protocol;
3501
3502         switch (ih->protocol) {
3503         case IPPROTO_TCP: {
3504                 struct tcphdr _tcph, *th;
3505
3506                 if (ntohs(ih->frag_off) & IP_OFFSET)
3507                         break;
3508
3509                 offset += ihlen;
3510                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3511                 if (th == NULL)
3512                         break;
3513
3514                 ad->u.net.sport = th->source;
3515                 ad->u.net.dport = th->dest;
3516                 break;
3517         }
3518
3519         case IPPROTO_UDP: {
3520                 struct udphdr _udph, *uh;
3521
3522                 if (ntohs(ih->frag_off) & IP_OFFSET)
3523                         break;
3524
3525                 offset += ihlen;
3526                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3527                 if (uh == NULL)
3528                         break;
3529
3530                 ad->u.net.sport = uh->source;
3531                 ad->u.net.dport = uh->dest;
3532                 break;
3533         }
3534
3535         case IPPROTO_DCCP: {
3536                 struct dccp_hdr _dccph, *dh;
3537
3538                 if (ntohs(ih->frag_off) & IP_OFFSET)
3539                         break;
3540
3541                 offset += ihlen;
3542                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3543                 if (dh == NULL)
3544                         break;
3545
3546                 ad->u.net.sport = dh->dccph_sport;
3547                 ad->u.net.dport = dh->dccph_dport;
3548                 break;
3549         }
3550
3551         default:
3552                 break;
3553         }
3554 out:
3555         return ret;
3556 }
3557
3558 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3559
3560 /* Returns error only if unable to parse addresses */
3561 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3562                         struct common_audit_data *ad, u8 *proto)
3563 {
3564         u8 nexthdr;
3565         int ret = -EINVAL, offset;
3566         struct ipv6hdr _ipv6h, *ip6;
3567
3568         offset = skb_network_offset(skb);
3569         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3570         if (ip6 == NULL)
3571                 goto out;
3572
3573         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3574         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3575         ret = 0;
3576
3577         nexthdr = ip6->nexthdr;
3578         offset += sizeof(_ipv6h);
3579         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3580         if (offset < 0)
3581                 goto out;
3582
3583         if (proto)
3584                 *proto = nexthdr;
3585
3586         switch (nexthdr) {
3587         case IPPROTO_TCP: {
3588                 struct tcphdr _tcph, *th;
3589
3590                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3591                 if (th == NULL)
3592                         break;
3593
3594                 ad->u.net.sport = th->source;
3595                 ad->u.net.dport = th->dest;
3596                 break;
3597         }
3598
3599         case IPPROTO_UDP: {
3600                 struct udphdr _udph, *uh;
3601
3602                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3603                 if (uh == NULL)
3604                         break;
3605
3606                 ad->u.net.sport = uh->source;
3607                 ad->u.net.dport = uh->dest;
3608                 break;
3609         }
3610
3611         case IPPROTO_DCCP: {
3612                 struct dccp_hdr _dccph, *dh;
3613
3614                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3615                 if (dh == NULL)
3616                         break;
3617
3618                 ad->u.net.sport = dh->dccph_sport;
3619                 ad->u.net.dport = dh->dccph_dport;
3620                 break;
3621         }
3622
3623         /* includes fragments */
3624         default:
3625                 break;
3626         }
3627 out:
3628         return ret;
3629 }
3630
3631 #endif /* IPV6 */
3632
3633 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3634                              char **_addrp, int src, u8 *proto)
3635 {
3636         char *addrp;
3637         int ret;
3638
3639         switch (ad->u.net.family) {
3640         case PF_INET:
3641                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3642                 if (ret)
3643                         goto parse_error;
3644                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3645                                        &ad->u.net.v4info.daddr);
3646                 goto okay;
3647
3648 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3649         case PF_INET6:
3650                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3651                 if (ret)
3652                         goto parse_error;
3653                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3654                                        &ad->u.net.v6info.daddr);
3655                 goto okay;
3656 #endif  /* IPV6 */
3657         default:
3658                 addrp = NULL;
3659                 goto okay;
3660         }
3661
3662 parse_error:
3663         printk(KERN_WARNING
3664                "SELinux: failure in selinux_parse_skb(),"
3665                " unable to parse packet\n");
3666         return ret;
3667
3668 okay:
3669         if (_addrp)
3670                 *_addrp = addrp;
3671         return 0;
3672 }
3673
3674 /**
3675  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3676  * @skb: the packet
3677  * @family: protocol family
3678  * @sid: the packet's peer label SID
3679  *
3680  * Description:
3681  * Check the various different forms of network peer labeling and determine
3682  * the peer label/SID for the packet; most of the magic actually occurs in
3683  * the security server function security_net_peersid_cmp().  The function
3684  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3685  * or -EACCES if @sid is invalid due to inconsistencies with the different
3686  * peer labels.
3687  *
3688  */
3689 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3690 {
3691         int err;
3692         u32 xfrm_sid;
3693         u32 nlbl_sid;
3694         u32 nlbl_type;
3695
3696         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3697         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3698
3699         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3700         if (unlikely(err)) {
3701                 printk(KERN_WARNING
3702                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3703                        " unable to determine packet's peer label\n");
3704                 return -EACCES;
3705         }
3706
3707         return 0;
3708 }
3709
3710 /* socket security operations */
3711
3712 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3713                                  u16 secclass, u32 *socksid)
3714 {
3715         if (tsec->sockcreate_sid > SECSID_NULL) {
3716                 *socksid = tsec->sockcreate_sid;
3717                 return 0;
3718         }
3719
3720         return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3721                                        socksid);
3722 }
3723
3724 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3725 {
3726         struct sk_security_struct *sksec = sk->sk_security;
3727         struct common_audit_data ad;
3728         u32 tsid = task_sid(task);
3729
3730         if (sksec->sid == SECINITSID_KERNEL)
3731                 return 0;
3732
3733         COMMON_AUDIT_DATA_INIT(&ad, NET);
3734         ad.u.net.sk = sk;
3735
3736         return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3737 }
3738
3739 static int selinux_socket_create(int family, int type,
3740                                  int protocol, int kern)
3741 {
3742         const struct task_security_struct *tsec = current_security();
3743         u32 newsid;
3744         u16 secclass;
3745         int rc;
3746
3747         if (kern)
3748                 return 0;
3749
3750         secclass = socket_type_to_security_class(family, type, protocol);
3751         rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3752         if (rc)
3753                 return rc;
3754
3755         return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3756 }
3757
3758 static int selinux_socket_post_create(struct socket *sock, int family,
3759                                       int type, int protocol, int kern)
3760 {
3761         const struct task_security_struct *tsec = current_security();
3762         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3763         struct sk_security_struct *sksec;
3764         int err = 0;
3765
3766         isec->sclass = socket_type_to_security_class(family, type, protocol);
3767
3768         if (kern)
3769                 isec->sid = SECINITSID_KERNEL;
3770         else {
3771                 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3772                 if (err)
3773                         return err;
3774         }
3775
3776         isec->initialized = 1;
3777
3778         if (sock->sk) {
3779                 sksec = sock->sk->sk_security;
3780                 sksec->sid = isec->sid;
3781                 sksec->sclass = isec->sclass;
3782                 err = selinux_netlbl_socket_post_create(sock->sk, family);
3783         }
3784
3785         return err;
3786 }
3787
3788 /* Range of port numbers used to automatically bind.
3789    Need to determine whether we should perform a name_bind
3790    permission check between the socket and the port number. */
3791
3792 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3793 {
3794         struct sock *sk = sock->sk;
3795         u16 family;
3796         int err;
3797
3798         err = sock_has_perm(current, sk, SOCKET__BIND);
3799         if (err)
3800                 goto out;
3801
3802         /*
3803          * If PF_INET or PF_INET6, check name_bind permission for the port.
3804          * Multiple address binding for SCTP is not supported yet: we just
3805          * check the first address now.
3806          */
3807         family = sk->sk_family;
3808         if (family == PF_INET || family == PF_INET6) {
3809                 char *addrp;
3810                 struct sk_security_struct *sksec = sk->sk_security;
3811                 struct common_audit_data ad;
3812                 struct sockaddr_in *addr4 = NULL;
3813                 struct sockaddr_in6 *addr6 = NULL;
3814                 unsigned short snum;
3815                 u32 sid, node_perm;
3816
3817                 if (family == PF_INET) {
3818                         addr4 = (struct sockaddr_in *)address;
3819                         snum = ntohs(addr4->sin_port);
3820                         addrp = (char *)&addr4->sin_addr.s_addr;
3821                 } else {
3822                         addr6 = (struct sockaddr_in6 *)address;
3823                         snum = ntohs(addr6->sin6_port);
3824                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3825                 }
3826
3827                 if (snum) {
3828                         int low, high;
3829
3830                         inet_get_local_port_range(&low, &high);
3831
3832                         if (snum < max(PROT_SOCK, low) || snum > high) {
3833                                 err = sel_netport_sid(sk->sk_protocol,
3834                                                       snum, &sid);
3835                                 if (err)
3836                                         goto out;
3837                                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3838                                 ad.u.net.sport = htons(snum);
3839                                 ad.u.net.family = family;
3840                                 err = avc_has_perm(sksec->sid, sid,
3841                                                    sksec->sclass,
3842                                                    SOCKET__NAME_BIND, &ad);
3843                                 if (err)
3844                                         goto out;
3845                         }
3846                 }
3847
3848                 switch (sksec->sclass) {
3849                 case SECCLASS_TCP_SOCKET:
3850                         node_perm = TCP_SOCKET__NODE_BIND;
3851                         break;
3852
3853                 case SECCLASS_UDP_SOCKET:
3854                         node_perm = UDP_SOCKET__NODE_BIND;
3855                         break;
3856
3857                 case SECCLASS_DCCP_SOCKET:
3858                         node_perm = DCCP_SOCKET__NODE_BIND;
3859                         break;
3860
3861                 default:
3862                         node_perm = RAWIP_SOCKET__NODE_BIND;
3863                         break;
3864                 }
3865
3866                 err = sel_netnode_sid(addrp, family, &sid);
3867                 if (err)
3868                         goto out;
3869
3870                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3871                 ad.u.net.sport = htons(snum);
3872                 ad.u.net.family = family;
3873
3874                 if (family == PF_INET)
3875                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3876                 else
3877                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3878
3879                 err = avc_has_perm(sksec->sid, sid,
3880                                    sksec->sclass, node_perm, &ad);
3881                 if (err)
3882                         goto out;
3883         }
3884 out:
3885         return err;
3886 }
3887
3888 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3889 {
3890         struct sock *sk = sock->sk;
3891         struct sk_security_struct *sksec = sk->sk_security;
3892         int err;
3893
3894         err = sock_has_perm(current, sk, SOCKET__CONNECT);
3895         if (err)
3896                 return err;
3897
3898         /*
3899          * If a TCP or DCCP socket, check name_connect permission for the port.
3900          */
3901         if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3902             sksec->sclass == SECCLASS_DCCP_SOCKET) {
3903                 struct common_audit_data ad;
3904                 struct sockaddr_in *addr4 = NULL;
3905                 struct sockaddr_in6 *addr6 = NULL;
3906                 unsigned short snum;
3907                 u32 sid, perm;
3908
3909                 if (sk->sk_family == PF_INET) {
3910                         addr4 = (struct sockaddr_in *)address;
3911                         if (addrlen < sizeof(struct sockaddr_in))
3912                                 return -EINVAL;
3913                         snum = ntohs(addr4->sin_port);
3914                 } else {
3915                         addr6 = (struct sockaddr_in6 *)address;
3916                         if (addrlen < SIN6_LEN_RFC2133)
3917                                 return -EINVAL;
3918                         snum = ntohs(addr6->sin6_port);
3919                 }
3920
3921                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3922                 if (err)
3923                         goto out;
3924
3925                 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3926                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3927
3928                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3929                 ad.u.net.dport = htons(snum);
3930                 ad.u.net.family = sk->sk_family;
3931                 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
3932                 if (err)
3933                         goto out;
3934         }
3935
3936         err = selinux_netlbl_socket_connect(sk, address);
3937
3938 out:
3939         return err;
3940 }
3941
3942 static int selinux_socket_listen(struct socket *sock, int backlog)
3943 {
3944         return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3945 }
3946
3947 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3948 {
3949         int err;
3950         struct inode_security_struct *isec;
3951         struct inode_security_struct *newisec;
3952
3953         err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
3954         if (err)
3955                 return err;
3956
3957         newisec = SOCK_INODE(newsock)->i_security;
3958
3959         isec = SOCK_INODE(sock)->i_security;
3960         newisec->sclass = isec->sclass;
3961         newisec->sid = isec->sid;
3962         newisec->initialized = 1;
3963
3964         return 0;
3965 }
3966
3967 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3968                                   int size)
3969 {
3970         return sock_has_perm(current, sock->sk, SOCKET__WRITE);
3971 }
3972
3973 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3974                                   int size, int flags)
3975 {
3976         return sock_has_perm(current, sock->sk, SOCKET__READ);
3977 }
3978
3979 static int selinux_socket_getsockname(struct socket *sock)
3980 {
3981         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3982 }
3983
3984 static int selinux_socket_getpeername(struct socket *sock)
3985 {
3986         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3987 }
3988
3989 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3990 {
3991         int err;
3992
3993         err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
3994         if (err)
3995                 return err;
3996
3997         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3998 }
3999
4000 static int selinux_socket_getsockopt(struct socket *sock, int level,
4001                                      int optname)
4002 {
4003         return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4004 }
4005
4006 static int selinux_socket_shutdown(struct socket *sock, int how)
4007 {
4008         return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4009 }
4010
4011 static int selinux_socket_unix_stream_connect(struct sock *sock,
4012                                               struct sock *other,
4013                                               struct sock *newsk)
4014 {
4015         struct sk_security_struct *sksec_sock = sock->sk_security;
4016         struct sk_security_struct *sksec_other = other->sk_security;
4017         struct sk_security_struct *sksec_new = newsk->sk_security;
4018         struct common_audit_data ad;
4019         int err;
4020
4021         COMMON_AUDIT_DATA_INIT(&ad, NET);
4022         ad.u.net.sk = other;
4023
4024         err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4025                            sksec_other->sclass,
4026                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4027         if (err)
4028                 return err;
4029
4030         /* server child socket */
4031         sksec_new->peer_sid = sksec_sock->sid;
4032         err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4033                                     &sksec_new->sid);
4034         if (err)
4035                 return err;
4036
4037         /* connecting socket */
4038         sksec_sock->peer_sid = sksec_new->sid;
4039
4040         return 0;
4041 }
4042
4043 static int selinux_socket_unix_may_send(struct socket *sock,
4044                                         struct socket *other)
4045 {
4046         struct sk_security_struct *ssec = sock->sk->sk_security;
4047         struct sk_security_struct *osec = other->sk->sk_security;
4048         struct common_audit_data ad;
4049
4050         COMMON_AUDIT_DATA_INIT(&ad, NET);
4051         ad.u.net.sk = other->sk;
4052
4053         return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4054                             &ad);
4055 }
4056
4057 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4058                                     u32 peer_sid,
4059                                     struct common_audit_data *ad)
4060 {
4061         int err;
4062         u32 if_sid;
4063         u32 node_sid;
4064
4065         err = sel_netif_sid(ifindex, &if_sid);
4066         if (err)
4067                 return err;
4068         err = avc_has_perm(peer_sid, if_sid,
4069                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4070         if (err)
4071                 return err;
4072
4073         err = sel_netnode_sid(addrp, family, &node_sid);
4074         if (err)
4075                 return err;
4076         return avc_has_perm(peer_sid, node_sid,
4077                             SECCLASS_NODE, NODE__RECVFROM, ad);
4078 }
4079
4080 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4081                                        u16 family)
4082 {
4083         int err = 0;
4084         struct sk_security_struct *sksec = sk->sk_security;
4085         u32 sk_sid = sksec->sid;
4086         struct common_audit_data ad;
4087         char *addrp;
4088
4089         COMMON_AUDIT_DATA_INIT(&ad, NET);
4090         ad.u.net.netif = skb->skb_iif;
4091         ad.u.net.family = family;
4092         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4093         if (err)
4094                 return err;
4095
4096         if (selinux_secmark_enabled()) {
4097                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4098                                    PACKET__RECV, &ad);
4099                 if (err)
4100                         return err;
4101         }
4102
4103         err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4104         if (err)
4105                 return err;
4106         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4107
4108         return err;
4109 }
4110
4111 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4112 {
4113         int err;
4114         struct sk_security_struct *sksec = sk->sk_security;
4115         u16 family = sk->sk_family;
4116         u32 sk_sid = sksec->sid;
4117         struct common_audit_data ad;
4118         char *addrp;
4119         u8 secmark_active;
4120         u8 peerlbl_active;
4121
4122         if (family != PF_INET && family != PF_INET6)
4123                 return 0;
4124
4125         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4126         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4127                 family = PF_INET;
4128
4129         /* If any sort of compatibility mode is enabled then handoff processing
4130          * to the selinux_sock_rcv_skb_compat() function to deal with the
4131          * special handling.  We do this in an attempt to keep this function
4132          * as fast and as clean as possible. */
4133         if (!selinux_policycap_netpeer)
4134                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4135
4136         secmark_active = selinux_secmark_enabled();
4137         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4138         if (!secmark_active && !peerlbl_active)
4139                 return 0;
4140
4141         COMMON_AUDIT_DATA_INIT(&ad, NET);
4142         ad.u.net.netif = skb->skb_iif;
4143         ad.u.net.family = family;
4144         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4145         if (err)
4146                 return err;
4147
4148         if (peerlbl_active) {
4149                 u32 peer_sid;
4150
4151                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4152                 if (err)
4153                         return err;
4154                 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4155                                                peer_sid, &ad);
4156                 if (err) {
4157                         selinux_netlbl_err(skb, err, 0);
4158                         return err;
4159                 }
4160                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4161                                    PEER__RECV, &ad);
4162                 if (err)
4163                         selinux_netlbl_err(skb, err, 0);
4164         }
4165
4166         if (secmark_active) {
4167                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4168                                    PACKET__RECV, &ad);
4169                 if (err)
4170                         return err;
4171         }
4172
4173         return err;
4174 }
4175
4176 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4177                                             int __user *optlen, unsigned len)
4178 {
4179         int err = 0;
4180         char *scontext;
4181         u32 scontext_len;
4182         struct sk_security_struct *sksec = sock->sk->sk_security;
4183         u32 peer_sid = SECSID_NULL;
4184
4185         if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4186             sksec->sclass == SECCLASS_TCP_SOCKET)
4187                 peer_sid = sksec->peer_sid;
4188         if (peer_sid == SECSID_NULL)
4189                 return -ENOPROTOOPT;
4190
4191         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4192         if (err)
4193                 return err;
4194
4195         if (scontext_len > len) {
4196                 err = -ERANGE;
4197                 goto out_len;
4198         }
4199
4200         if (copy_to_user(optval, scontext, scontext_len))
4201                 err = -EFAULT;
4202
4203 out_len:
4204         if (put_user(scontext_len, optlen))
4205                 err = -EFAULT;
4206         kfree(scontext);
4207         return err;
4208 }
4209
4210 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4211 {
4212         u32 peer_secid = SECSID_NULL;
4213         u16 family;
4214
4215         if (skb && skb->protocol == htons(ETH_P_IP))
4216                 family = PF_INET;
4217         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4218                 family = PF_INET6;
4219         else if (sock)
4220                 family = sock->sk->sk_family;
4221         else
4222                 goto out;
4223
4224         if (sock && family == PF_UNIX)
4225                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4226         else if (skb)
4227                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4228
4229 out:
4230         *secid = peer_secid;
4231         if (peer_secid == SECSID_NULL)
4232                 return -EINVAL;
4233         return 0;
4234 }
4235
4236 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4237 {
4238         struct sk_security_struct *sksec;
4239
4240         sksec = kzalloc(sizeof(*sksec), priority);
4241         if (!sksec)
4242                 return -ENOMEM;
4243
4244         sksec->peer_sid = SECINITSID_UNLABELED;
4245         sksec->sid = SECINITSID_UNLABELED;
4246         selinux_netlbl_sk_security_reset(sksec);
4247         sk->sk_security = sksec;
4248
4249         return 0;
4250 }
4251
4252 static void selinux_sk_free_security(struct sock *sk)
4253 {
4254         struct sk_security_struct *sksec = sk->sk_security;
4255
4256         sk->sk_security = NULL;
4257         selinux_netlbl_sk_security_free(sksec);
4258         kfree(sksec);
4259 }
4260
4261 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4262 {
4263         struct sk_security_struct *sksec = sk->sk_security;
4264         struct sk_security_struct *newsksec = newsk->sk_security;
4265
4266         newsksec->sid = sksec->sid;
4267         newsksec->peer_sid = sksec->peer_sid;
4268         newsksec->sclass = sksec->sclass;
4269
4270         selinux_netlbl_sk_security_reset(newsksec);
4271 }
4272
4273 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4274 {
4275         if (!sk)
4276                 *secid = SECINITSID_ANY_SOCKET;
4277         else {
4278                 struct sk_security_struct *sksec = sk->sk_security;
4279
4280                 *secid = sksec->sid;
4281         }
4282 }
4283
4284 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4285 {
4286         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4287         struct sk_security_struct *sksec = sk->sk_security;
4288
4289         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4290             sk->sk_family == PF_UNIX)
4291                 isec->sid = sksec->sid;
4292         sksec->sclass = isec->sclass;
4293 }
4294
4295 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4296                                      struct request_sock *req)
4297 {
4298         struct sk_security_struct *sksec = sk->sk_security;
4299         int err;
4300         u16 family = sk->sk_family;
4301         u32 newsid;
4302         u32 peersid;
4303
4304         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4305         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4306                 family = PF_INET;
4307
4308         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4309         if (err)
4310                 return err;
4311         if (peersid == SECSID_NULL) {
4312                 req->secid = sksec->sid;
4313                 req->peer_secid = SECSID_NULL;
4314         } else {
4315                 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4316                 if (err)
4317                         return err;
4318                 req->secid = newsid;
4319                 req->peer_secid = peersid;
4320         }
4321
4322         return selinux_netlbl_inet_conn_request(req, family);
4323 }
4324
4325 static void selinux_inet_csk_clone(struct sock *newsk,
4326                                    const struct request_sock *req)
4327 {
4328         struct sk_security_struct *newsksec = newsk->sk_security;
4329
4330         newsksec->sid = req->secid;
4331         newsksec->peer_sid = req->peer_secid;
4332         /* NOTE: Ideally, we should also get the isec->sid for the
4333            new socket in sync, but we don't have the isec available yet.
4334            So we will wait until sock_graft to do it, by which
4335            time it will have been created and available. */
4336
4337         /* We don't need to take any sort of lock here as we are the only
4338          * thread with access to newsksec */
4339         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4340 }
4341
4342 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4343 {
4344         u16 family = sk->sk_family;
4345         struct sk_security_struct *sksec = sk->sk_security;
4346
4347         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4348         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4349                 family = PF_INET;
4350
4351         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4352 }
4353
4354 static int selinux_secmark_relabel_packet(u32 sid)
4355 {
4356         const struct task_security_struct *__tsec;
4357         u32 tsid;
4358
4359         __tsec = current_security();
4360         tsid = __tsec->sid;
4361
4362         return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4363 }
4364
4365 static void selinux_secmark_refcount_inc(void)
4366 {
4367         atomic_inc(&selinux_secmark_refcount);
4368 }
4369
4370 static void selinux_secmark_refcount_dec(void)
4371 {
4372         atomic_dec(&selinux_secmark_refcount);
4373 }
4374
4375 static void selinux_req_classify_flow(const struct request_sock *req,
4376                                       struct flowi *fl)
4377 {
4378         fl->flowi_secid = req->secid;
4379 }
4380
4381 static int selinux_tun_dev_create(void)
4382 {
4383         u32 sid = current_sid();
4384
4385         /* we aren't taking into account the "sockcreate" SID since the socket
4386          * that is being created here is not a socket in the traditional sense,
4387          * instead it is a private sock, accessible only to the kernel, and
4388          * representing a wide range of network traffic spanning multiple
4389          * connections unlike traditional sockets - check the TUN driver to
4390          * get a better understanding of why this socket is special */
4391
4392         return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4393                             NULL);
4394 }
4395
4396 static void selinux_tun_dev_post_create(struct sock *sk)
4397 {
4398         struct sk_security_struct *sksec = sk->sk_security;
4399
4400         /* we don't currently perform any NetLabel based labeling here and it
4401          * isn't clear that we would want to do so anyway; while we could apply
4402          * labeling without the support of the TUN user the resulting labeled
4403          * traffic from the other end of the connection would almost certainly
4404          * cause confusion to the TUN user that had no idea network labeling
4405          * protocols were being used */
4406
4407         /* see the comments in selinux_tun_dev_create() about why we don't use
4408          * the sockcreate SID here */
4409
4410         sksec->sid = current_sid();
4411         sksec->sclass = SECCLASS_TUN_SOCKET;
4412 }
4413
4414 static int selinux_tun_dev_attach(struct sock *sk)
4415 {
4416         struct sk_security_struct *sksec = sk->sk_security;
4417         u32 sid = current_sid();
4418         int err;
4419
4420         err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4421                            TUN_SOCKET__RELABELFROM, NULL);
4422         if (err)
4423                 return err;
4424         err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4425                            TUN_SOCKET__RELABELTO, NULL);
4426         if (err)
4427                 return err;
4428
4429         sksec->sid = sid;
4430
4431         return 0;
4432 }
4433
4434 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4435 {
4436         int err = 0;
4437         u32 perm;
4438         struct nlmsghdr *nlh;
4439         struct sk_security_struct *sksec = sk->sk_security;
4440
4441         if (skb->len < NLMSG_SPACE(0)) {
4442                 err = -EINVAL;
4443                 goto out;
4444         }
4445         nlh = nlmsg_hdr(skb);
4446
4447         err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4448         if (err) {
4449                 if (err == -EINVAL) {
4450                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4451                                   "SELinux:  unrecognized netlink message"
4452                                   " type=%hu for sclass=%hu\n",
4453                                   nlh->nlmsg_type, sksec->sclass);
4454                         if (!selinux_enforcing || security_get_allow_unknown())
4455                                 err = 0;
4456                 }
4457
4458                 /* Ignore */
4459                 if (err == -ENOENT)
4460                         err = 0;
4461                 goto out;
4462         }
4463
4464         err = sock_has_perm(current, sk, perm);
4465 out:
4466         return err;
4467 }
4468
4469 #ifdef CONFIG_NETFILTER
4470
4471 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4472                                        u16 family)
4473 {
4474         int err;
4475         char *addrp;
4476         u32 peer_sid;
4477         struct common_audit_data ad;
4478         u8 secmark_active;
4479         u8 netlbl_active;
4480         u8 peerlbl_active;
4481
4482         if (!selinux_policycap_netpeer)
4483                 return NF_ACCEPT;
4484
4485         secmark_active = selinux_secmark_enabled();
4486         netlbl_active = netlbl_enabled();
4487         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4488         if (!secmark_active && !peerlbl_active)
4489                 return NF_ACCEPT;
4490
4491         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4492                 return NF_DROP;
4493
4494         COMMON_AUDIT_DATA_INIT(&ad, NET);
4495         ad.u.net.netif = ifindex;
4496         ad.u.net.family = family;
4497         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4498                 return NF_DROP;
4499
4500         if (peerlbl_active) {
4501                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4502                                                peer_sid, &ad);
4503                 if (err) {
4504                         selinux_netlbl_err(skb, err, 1);
4505                         return NF_DROP;
4506                 }
4507         }
4508
4509         if (secmark_active)
4510                 if (avc_has_perm(peer_sid, skb->secmark,
4511                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4512                         return NF_DROP;
4513
4514         if (netlbl_active)
4515                 /* we do this in the FORWARD path and not the POST_ROUTING
4516                  * path because we want to make sure we apply the necessary
4517                  * labeling before IPsec is applied so we can leverage AH
4518                  * protection */
4519                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4520                         return NF_DROP;
4521
4522         return NF_ACCEPT;
4523 }
4524
4525 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4526                                          struct sk_buff *skb,
4527                                          const struct net_device *in,
4528                                          const struct net_device *out,
4529                                          int (*okfn)(struct sk_buff *))
4530 {
4531         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4532 }
4533
4534 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4535 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4536                                          struct sk_buff *skb,
4537                                          const struct net_device *in,
4538                                          const struct net_device *out,
4539                                          int (*okfn)(struct sk_buff *))
4540 {
4541         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4542 }
4543 #endif  /* IPV6 */
4544
4545 static unsigned int selinux_ip_output(struct sk_buff *skb,
4546                                       u16 family)
4547 {
4548         u32 sid;
4549
4550         if (!netlbl_enabled())
4551                 return NF_ACCEPT;
4552
4553         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4554          * because we want to make sure we apply the necessary labeling
4555          * before IPsec is applied so we can leverage AH protection */
4556         if (skb->sk) {
4557                 struct sk_security_struct *sksec = skb->sk->sk_security;
4558                 sid = sksec->sid;
4559         } else
4560                 sid = SECINITSID_KERNEL;
4561         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4562                 return NF_DROP;
4563
4564         return NF_ACCEPT;
4565 }
4566
4567 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4568                                         struct sk_buff *skb,
4569                                         const struct net_device *in,
4570                                         const struct net_device *out,
4571                                         int (*okfn)(struct sk_buff *))
4572 {
4573         return selinux_ip_output(skb, PF_INET);
4574 }
4575
4576 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4577                                                 int ifindex,
4578                                                 u16 family)
4579 {
4580         struct sock *sk = skb->sk;
4581         struct sk_security_struct *sksec;
4582         struct common_audit_data ad;
4583         char *addrp;
4584         u8 proto;
4585
4586         if (sk == NULL)
4587                 return NF_ACCEPT;
4588         sksec = sk->sk_security;
4589
4590         COMMON_AUDIT_DATA_INIT(&ad, NET);
4591         ad.u.net.netif = ifindex;
4592         ad.u.net.family = family;
4593         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4594                 return NF_DROP;
4595
4596         if (selinux_secmark_enabled())
4597                 if (avc_has_perm(sksec->sid, skb->secmark,
4598                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4599                         return NF_DROP_ERR(-ECONNREFUSED);
4600
4601         if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4602                 return NF_DROP_ERR(-ECONNREFUSED);
4603
4604         return NF_ACCEPT;
4605 }
4606
4607 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4608                                          u16 family)
4609 {
4610         u32 secmark_perm;
4611         u32 peer_sid;
4612         struct sock *sk;
4613         struct common_audit_data ad;
4614         char *addrp;
4615         u8 secmark_active;
4616         u8 peerlbl_active;
4617
4618         /* If any sort of compatibility mode is enabled then handoff processing
4619          * to the selinux_ip_postroute_compat() function to deal with the
4620          * special handling.  We do this in an attempt to keep this function
4621          * as fast and as clean as possible. */
4622         if (!selinux_policycap_netpeer)
4623                 return selinux_ip_postroute_compat(skb, ifindex, family);
4624 #ifdef CONFIG_XFRM
4625         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4626          * packet transformation so allow the packet to pass without any checks
4627          * since we'll have another chance to perform access control checks
4628          * when the packet is on it's final way out.
4629          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4630          *       is NULL, in this case go ahead and apply access control. */
4631         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4632                 return NF_ACCEPT;
4633 #endif
4634         secmark_active = selinux_secmark_enabled();
4635         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4636         if (!secmark_active && !peerlbl_active)
4637                 return NF_ACCEPT;
4638
4639         /* if the packet is being forwarded then get the peer label from the
4640          * packet itself; otherwise check to see if it is from a local
4641          * application or the kernel, if from an application get the peer label
4642          * from the sending socket, otherwise use the kernel's sid */
4643         sk = skb->sk;
4644         if (sk == NULL) {
4645                 if (skb->skb_iif) {
4646                         secmark_perm = PACKET__FORWARD_OUT;
4647                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4648                                 return NF_DROP;
4649                 } else {
4650                         secmark_perm = PACKET__SEND;
4651                         peer_sid = SECINITSID_KERNEL;
4652                 }
4653         } else {
4654                 struct sk_security_struct *sksec = sk->sk_security;
4655                 peer_sid = sksec->sid;
4656                 secmark_perm = PACKET__SEND;
4657         }
4658
4659         COMMON_AUDIT_DATA_INIT(&ad, NET);
4660         ad.u.net.netif = ifindex;
4661         ad.u.net.family = family;
4662         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4663                 return NF_DROP;
4664
4665         if (secmark_active)
4666                 if (avc_has_perm(peer_sid, skb->secmark,
4667                                  SECCLASS_PACKET, secmark_perm, &ad))
4668                         return NF_DROP_ERR(-ECONNREFUSED);
4669
4670         if (peerlbl_active) {
4671                 u32 if_sid;
4672                 u32 node_sid;
4673
4674                 if (sel_netif_sid(ifindex, &if_sid))
4675                         return NF_DROP;
4676                 if (avc_has_perm(peer_sid, if_sid,
4677                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4678                         return NF_DROP_ERR(-ECONNREFUSED);
4679
4680                 if (sel_netnode_sid(addrp, family, &node_sid))
4681                         return NF_DROP;
4682                 if (avc_has_perm(peer_sid, node_sid,
4683                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4684                         return NF_DROP_ERR(-ECONNREFUSED);
4685         }
4686
4687         return NF_ACCEPT;
4688 }
4689
4690 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4691                                            struct sk_buff *skb,
4692                                            const struct net_device *in,
4693                                            const struct net_device *out,
4694                                            int (*okfn)(struct sk_buff *))
4695 {
4696         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4697 }
4698
4699 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4700 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4701                                            struct sk_buff *skb,
4702                                            const struct net_device *in,
4703                                            const struct net_device *out,
4704                                            int (*okfn)(struct sk_buff *))
4705 {
4706         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4707 }
4708 #endif  /* IPV6 */
4709
4710 #endif  /* CONFIG_NETFILTER */
4711
4712 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4713 {
4714         int err;
4715
4716         err = cap_netlink_send(sk, skb);
4717         if (err)
4718                 return err;
4719
4720         return selinux_nlmsg_perm(sk, skb);
4721 }
4722
4723 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4724 {
4725         int err;
4726         struct common_audit_data ad;
4727         u32 sid;
4728
4729         err = cap_netlink_recv(skb, capability);
4730         if (err)
4731                 return err;
4732
4733         COMMON_AUDIT_DATA_INIT(&ad, CAP);
4734         ad.u.cap = capability;
4735
4736         security_task_getsecid(current, &sid);
4737         return avc_has_perm(sid, sid, SECCLASS_CAPABILITY,
4738                             CAP_TO_MASK(capability), &ad);
4739 }
4740
4741 static int ipc_alloc_security(struct task_struct *task,
4742                               struct kern_ipc_perm *perm,
4743                               u16 sclass)
4744 {
4745         struct ipc_security_struct *isec;
4746         u32 sid;
4747
4748         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4749         if (!isec)
4750                 return -ENOMEM;
4751
4752         sid = task_sid(task);
4753         isec->sclass = sclass;
4754         isec->sid = sid;
4755         perm->security = isec;
4756
4757         return 0;
4758 }
4759
4760 static void ipc_free_security(struct kern_ipc_perm *perm)
4761 {
4762         struct ipc_security_struct *isec = perm->security;
4763         perm->security = NULL;
4764         kfree(isec);
4765 }
4766
4767 static int msg_msg_alloc_security(struct msg_msg *msg)
4768 {
4769         struct msg_security_struct *msec;
4770
4771         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4772         if (!msec)
4773                 return -ENOMEM;
4774
4775         msec->sid = SECINITSID_UNLABELED;
4776         msg->security = msec;
4777
4778         return 0;
4779 }
4780
4781 static void msg_msg_free_security(struct msg_msg *msg)
4782 {
4783         struct msg_security_struct *msec = msg->security;
4784
4785         msg->security = NULL;
4786         kfree(msec);
4787 }
4788
4789 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4790                         u32 perms)
4791 {
4792         struct ipc_security_struct *isec;
4793         struct common_audit_data ad;
4794         u32 sid = current_sid();
4795
4796         isec = ipc_perms->security;
4797
4798         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4799         ad.u.ipc_id = ipc_perms->key;
4800
4801         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4802 }
4803
4804 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4805 {
4806         return msg_msg_alloc_security(msg);
4807 }
4808
4809 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4810 {
4811         msg_msg_free_security(msg);
4812 }
4813
4814 /* message queue security operations */
4815 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4816 {
4817         struct ipc_security_struct *isec;
4818         struct common_audit_data ad;
4819         u32 sid = current_sid();
4820         int rc;
4821
4822         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4823         if (rc)
4824                 return rc;
4825
4826         isec = msq->q_perm.security;
4827
4828         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4829         ad.u.ipc_id = msq->q_perm.key;
4830
4831         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4832                           MSGQ__CREATE, &ad);
4833         if (rc) {
4834                 ipc_free_security(&msq->q_perm);
4835                 return rc;
4836         }
4837         return 0;
4838 }
4839
4840 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4841 {
4842         ipc_free_security(&msq->q_perm);
4843 }
4844
4845 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4846 {
4847         struct ipc_security_struct *isec;
4848         struct common_audit_data ad;
4849         u32 sid = current_sid();
4850
4851         isec = msq->q_perm.security;
4852
4853         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4854         ad.u.ipc_id = msq->q_perm.key;
4855
4856         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4857                             MSGQ__ASSOCIATE, &ad);
4858 }
4859
4860 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4861 {
4862         int err;
4863         int perms;
4864
4865         switch (cmd) {
4866         case IPC_INFO:
4867         case MSG_INFO:
4868                 /* No specific object, just general system-wide information. */
4869                 return task_has_system(current, SYSTEM__IPC_INFO);
4870         case IPC_STAT:
4871         case MSG_STAT:
4872                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4873                 break;
4874         case IPC_SET:
4875                 perms = MSGQ__SETATTR;
4876                 break;
4877         case IPC_RMID:
4878                 perms = MSGQ__DESTROY;
4879                 break;
4880         default:
4881                 return 0;
4882         }
4883
4884         err = ipc_has_perm(&msq->q_perm, perms);
4885         return err;
4886 }
4887
4888 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4889 {
4890         struct ipc_security_struct *isec;
4891         struct msg_security_struct *msec;
4892         struct common_audit_data ad;
4893         u32 sid = current_sid();
4894         int rc;
4895
4896         isec = msq->q_perm.security;
4897         msec = msg->security;
4898
4899         /*
4900          * First time through, need to assign label to the message
4901          */
4902         if (msec->sid == SECINITSID_UNLABELED) {
4903                 /*
4904                  * Compute new sid based on current process and
4905                  * message queue this message will be stored in
4906                  */
4907                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4908                                              NULL, &msec->sid);
4909                 if (rc)
4910                         return rc;
4911         }
4912
4913         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4914         ad.u.ipc_id = msq->q_perm.key;
4915
4916         /* Can this process write to the queue? */
4917         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4918                           MSGQ__WRITE, &ad);
4919         if (!rc)
4920                 /* Can this process send the message */
4921                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4922                                   MSG__SEND, &ad);
4923         if (!rc)
4924                 /* Can the message be put in the queue? */
4925                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4926                                   MSGQ__ENQUEUE, &ad);
4927
4928         return rc;
4929 }
4930
4931 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4932                                     struct task_struct *target,
4933                                     long type, int mode)
4934 {
4935         struct ipc_security_struct *isec;
4936         struct msg_security_struct *msec;
4937         struct common_audit_data ad;
4938         u32 sid = task_sid(target);
4939         int rc;
4940
4941         isec = msq->q_perm.security;
4942         msec = msg->security;
4943
4944         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4945         ad.u.ipc_id = msq->q_perm.key;
4946
4947         rc = avc_has_perm(sid, isec->sid,
4948                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4949         if (!rc)
4950                 rc = avc_has_perm(sid, msec->sid,
4951                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4952         return rc;
4953 }
4954
4955 /* Shared Memory security operations */
4956 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4957 {
4958         struct ipc_security_struct *isec;
4959         struct common_audit_data ad;
4960         u32 sid = current_sid();
4961         int rc;
4962
4963         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4964         if (rc)
4965                 return rc;
4966
4967         isec = shp->shm_perm.security;
4968
4969         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4970         ad.u.ipc_id = shp->shm_perm.key;
4971
4972         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4973                           SHM__CREATE, &ad);
4974         if (rc) {
4975                 ipc_free_security(&shp->shm_perm);
4976                 return rc;
4977         }
4978         return 0;
4979 }
4980
4981 static void selinux_shm_free_security(struct shmid_kernel *shp)
4982 {
4983         ipc_free_security(&shp->shm_perm);
4984 }
4985
4986 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4987 {
4988         struct ipc_security_struct *isec;
4989         struct common_audit_data ad;
4990         u32 sid = current_sid();
4991
4992         isec = shp->shm_perm.security;
4993
4994         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4995         ad.u.ipc_id = shp->shm_perm.key;
4996
4997         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4998                             SHM__ASSOCIATE, &ad);
4999 }
5000
5001 /* Note, at this point, shp is locked down */
5002 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5003 {
5004         int perms;
5005         int err;
5006
5007         switch (cmd) {
5008         case IPC_INFO:
5009         case SHM_INFO:
5010                 /* No specific object, just general system-wide information. */
5011                 return task_has_system(current, SYSTEM__IPC_INFO);
5012         case IPC_STAT:
5013         case SHM_STAT:
5014                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5015                 break;
5016         case IPC_SET:
5017                 perms = SHM__SETATTR;
5018                 break;
5019         case SHM_LOCK:
5020         case SHM_UNLOCK:
5021                 perms = SHM__LOCK;
5022                 break;
5023         case IPC_RMID:
5024                 perms = SHM__DESTROY;
5025                 break;
5026         default:
5027                 return 0;
5028         }
5029
5030         err = ipc_has_perm(&shp->shm_perm, perms);
5031         return err;
5032 }
5033
5034 static int selinux_shm_shmat(struct shmid_kernel *shp,
5035                              char __user *shmaddr, int shmflg)
5036 {
5037         u32 perms;
5038
5039         if (shmflg & SHM_RDONLY)
5040                 perms = SHM__READ;
5041         else
5042                 perms = SHM__READ | SHM__WRITE;
5043
5044         return ipc_has_perm(&shp->shm_perm, perms);
5045 }
5046
5047 /* Semaphore security operations */
5048 static int selinux_sem_alloc_security(struct sem_array *sma)
5049 {
5050         struct ipc_security_struct *isec;
5051         struct common_audit_data ad;
5052         u32 sid = current_sid();
5053         int rc;
5054
5055         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5056         if (rc)
5057                 return rc;
5058
5059         isec = sma->sem_perm.security;
5060
5061         COMMON_AUDIT_DATA_INIT(&ad, IPC);
5062         ad.u.ipc_id = sma->sem_perm.key;
5063
5064         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5065                           SEM__CREATE, &ad);
5066         if (rc) {
5067                 ipc_free_security(&sma->sem_perm);
5068                 return rc;
5069         }
5070         return 0;
5071 }
5072
5073 static void selinux_sem_free_security(struct sem_array *sma)
5074 {
5075         ipc_free_security(&sma->sem_perm);
5076 }
5077
5078 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5079 {
5080         struct ipc_security_struct *isec;
5081         struct common_audit_data ad;
5082         u32 sid = current_sid();
5083
5084         isec = sma->sem_perm.security;
5085
5086         COMMON_AUDIT_DATA_INIT(&ad, IPC);
5087         ad.u.ipc_id = sma->sem_perm.key;
5088
5089         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5090                             SEM__ASSOCIATE, &ad);
5091 }
5092
5093 /* Note, at this point, sma is locked down */
5094 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5095 {
5096         int err;
5097         u32 perms;
5098
5099         switch (cmd) {
5100         case IPC_INFO:
5101         case SEM_INFO:
5102                 /* No specific object, just general system-wide information. */
5103                 return task_has_system(current, SYSTEM__IPC_INFO);
5104         case GETPID:
5105         case GETNCNT:
5106         case GETZCNT:
5107                 perms = SEM__GETATTR;
5108                 break;
5109         case GETVAL:
5110         case GETALL:
5111                 perms = SEM__READ;
5112                 break;
5113         case SETVAL:
5114         case SETALL:
5115                 perms = SEM__WRITE;
5116                 break;
5117         case IPC_RMID:
5118                 perms = SEM__DESTROY;
5119                 break;
5120         case IPC_SET:
5121                 perms = SEM__SETATTR;
5122                 break;
5123         case IPC_STAT:
5124         case SEM_STAT:
5125                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5126                 break;
5127         default:
5128                 return 0;
5129         }
5130
5131         err = ipc_has_perm(&sma->sem_perm, perms);
5132         return err;
5133 }
5134
5135 static int selinux_sem_semop(struct sem_array *sma,
5136                              struct sembuf *sops, unsigned nsops, int alter)
5137 {
5138         u32 perms;
5139
5140         if (alter)
5141                 perms = SEM__READ | SEM__WRITE;
5142         else
5143                 perms = SEM__READ;
5144
5145         return ipc_has_perm(&sma->sem_perm, perms);
5146 }
5147
5148 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5149 {
5150         u32 av = 0;
5151
5152         av = 0;
5153         if (flag & S_IRUGO)
5154                 av |= IPC__UNIX_READ;
5155         if (flag & S_IWUGO)
5156                 av |= IPC__UNIX_WRITE;
5157
5158         if (av == 0)
5159                 return 0;
5160
5161         return ipc_has_perm(ipcp, av);
5162 }
5163
5164 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5165 {
5166         struct ipc_security_struct *isec = ipcp->security;
5167         *secid = isec->sid;
5168 }
5169
5170 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5171 {
5172         if (inode)
5173                 inode_doinit_with_dentry(inode, dentry);
5174 }
5175
5176 static int selinux_getprocattr(struct task_struct *p,
5177                                char *name, char **value)
5178 {
5179         const struct task_security_struct *__tsec;
5180         u32 sid;
5181         int error;
5182         unsigned len;
5183
5184         if (current != p) {
5185                 error = current_has_perm(p, PROCESS__GETATTR);
5186                 if (error)
5187                         return error;
5188         }
5189
5190         rcu_read_lock();
5191         __tsec = __task_cred(p)->security;
5192
5193         if (!strcmp(name, "current"))
5194                 sid = __tsec->sid;
5195         else if (!strcmp(name, "prev"))
5196                 sid = __tsec->osid;
5197         else if (!strcmp(name, "exec"))
5198                 sid = __tsec->exec_sid;
5199         else if (!strcmp(name, "fscreate"))
5200                 sid = __tsec->create_sid;
5201         else if (!strcmp(name, "keycreate"))
5202                 sid = __tsec->keycreate_sid;
5203         else if (!strcmp(name, "sockcreate"))
5204                 sid = __tsec->sockcreate_sid;
5205         else
5206                 goto invalid;
5207         rcu_read_unlock();
5208
5209         if (!sid)
5210                 return 0;
5211
5212         error = security_sid_to_context(sid, value, &len);
5213         if (error)
5214                 return error;
5215         return len;
5216
5217 invalid:
5218         rcu_read_unlock();
5219         return -EINVAL;
5220 }
5221
5222 static int selinux_setprocattr(struct task_struct *p,
5223                                char *name, void *value, size_t size)
5224 {
5225         struct task_security_struct *tsec;
5226         struct task_struct *tracer;
5227         struct cred *new;
5228         u32 sid = 0, ptsid;
5229         int error;
5230         char *str = value;
5231
5232         if (current != p) {
5233                 /* SELinux only allows a process to change its own
5234                    security attributes. */
5235                 return -EACCES;
5236         }
5237
5238         /*
5239          * Basic control over ability to set these attributes at all.
5240          * current == p, but we'll pass them separately in case the
5241          * above restriction is ever removed.
5242          */
5243         if (!strcmp(name, "exec"))
5244                 error = current_has_perm(p, PROCESS__SETEXEC);
5245         else if (!strcmp(name, "fscreate"))
5246                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5247         else if (!strcmp(name, "keycreate"))
5248                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5249         else if (!strcmp(name, "sockcreate"))
5250                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5251         else if (!strcmp(name, "current"))
5252                 error = current_has_perm(p, PROCESS__SETCURRENT);
5253         else
5254                 error = -EINVAL;
5255         if (error)
5256                 return error;
5257
5258         /* Obtain a SID for the context, if one was specified. */
5259         if (size && str[1] && str[1] != '\n') {
5260                 if (str[size-1] == '\n') {
5261                         str[size-1] = 0;
5262                         size--;
5263                 }
5264                 error = security_context_to_sid(value, size, &sid);
5265                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5266                         if (!capable(CAP_MAC_ADMIN))
5267                                 return error;
5268                         error = security_context_to_sid_force(value, size,
5269                                                               &sid);
5270                 }
5271                 if (error)
5272                         return error;
5273         }
5274
5275         new = prepare_creds();
5276         if (!new)
5277                 return -ENOMEM;
5278
5279         /* Permission checking based on the specified context is
5280            performed during the actual operation (execve,
5281            open/mkdir/...), when we know the full context of the
5282            operation.  See selinux_bprm_set_creds for the execve
5283            checks and may_create for the file creation checks. The
5284            operation will then fail if the context is not permitted. */
5285         tsec = new->security;
5286         if (!strcmp(name, "exec")) {
5287                 tsec->exec_sid = sid;
5288         } else if (!strcmp(name, "fscreate")) {
5289                 tsec->create_sid = sid;
5290         } else if (!strcmp(name, "keycreate")) {
5291                 error = may_create_key(sid, p);
5292                 if (error)
5293                         goto abort_change;
5294                 tsec->keycreate_sid = sid;
5295         } else if (!strcmp(name, "sockcreate")) {
5296                 tsec->sockcreate_sid = sid;
5297         } else if (!strcmp(name, "current")) {
5298                 error = -EINVAL;
5299                 if (sid == 0)
5300                         goto abort_change;
5301
5302                 /* Only allow single threaded processes to change context */
5303                 error = -EPERM;
5304                 if (!current_is_single_threaded()) {
5305                         error = security_bounded_transition(tsec->sid, sid);
5306                         if (error)
5307                                 goto abort_change;
5308                 }
5309
5310                 /* Check permissions for the transition. */
5311                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5312                                      PROCESS__DYNTRANSITION, NULL);
5313                 if (error)
5314                         goto abort_change;
5315
5316                 /* Check for ptracing, and update the task SID if ok.
5317                    Otherwise, leave SID unchanged and fail. */
5318                 ptsid = 0;
5319                 task_lock(p);
5320                 tracer = ptrace_parent(p);
5321                 if (tracer)
5322                         ptsid = task_sid(tracer);
5323                 task_unlock(p);
5324
5325                 if (tracer) {
5326                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5327                                              PROCESS__PTRACE, NULL);
5328                         if (error)
5329                                 goto abort_change;
5330                 }
5331
5332                 tsec->sid = sid;
5333         } else {
5334                 error = -EINVAL;
5335                 goto abort_change;
5336         }
5337
5338         commit_creds(new);
5339         return size;
5340
5341 abort_change:
5342         abort_creds(new);
5343         return error;
5344 }
5345
5346 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5347 {
5348         return security_sid_to_context(secid, secdata, seclen);
5349 }
5350
5351 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5352 {
5353         return security_context_to_sid(secdata, seclen, secid);
5354 }
5355
5356 static void selinux_release_secctx(char *secdata, u32 seclen)
5357 {
5358         kfree(secdata);
5359 }
5360
5361 /*
5362  *      called with inode->i_mutex locked
5363  */
5364 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5365 {
5366         return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5367 }
5368
5369 /*
5370  *      called with inode->i_mutex locked
5371  */
5372 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5373 {
5374         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5375 }
5376
5377 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5378 {
5379         int len = 0;
5380         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5381                                                 ctx, true);
5382         if (len < 0)
5383                 return len;
5384         *ctxlen = len;
5385         return 0;
5386 }
5387 #ifdef CONFIG_KEYS
5388
5389 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5390                              unsigned long flags)
5391 {
5392         const struct task_security_struct *tsec;
5393         struct key_security_struct *ksec;
5394
5395         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5396         if (!ksec)
5397                 return -ENOMEM;
5398
5399         tsec = cred->security;
5400         if (tsec->keycreate_sid)
5401                 ksec->sid = tsec->keycreate_sid;
5402         else
5403                 ksec->sid = tsec->sid;
5404
5405         k->security = ksec;
5406         return 0;
5407 }
5408
5409 static void selinux_key_free(struct key *k)
5410 {
5411         struct key_security_struct *ksec = k->security;
5412
5413         k->security = NULL;
5414         kfree(ksec);
5415 }
5416
5417 static int selinux_key_permission(key_ref_t key_ref,
5418                                   const struct cred *cred,
5419                                   key_perm_t perm)
5420 {
5421         struct key *key;
5422         struct key_security_struct *ksec;
5423         u32 sid;
5424
5425         /* if no specific permissions are requested, we skip the
5426            permission check. No serious, additional covert channels
5427            appear to be created. */
5428         if (perm == 0)
5429                 return 0;
5430
5431         sid = cred_sid(cred);
5432
5433         key = key_ref_to_ptr(key_ref);
5434         ksec = key->security;
5435
5436         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5437 }
5438
5439 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5440 {
5441         struct key_security_struct *ksec = key->security;
5442         char *context = NULL;
5443         unsigned len;
5444         int rc;
5445
5446         rc = security_sid_to_context(ksec->sid, &context, &len);
5447         if (!rc)
5448                 rc = len;
5449         *_buffer = context;
5450         return rc;
5451 }
5452
5453 #endif
5454
5455 static struct security_operations selinux_ops = {
5456         .name =                         "selinux",
5457
5458         .ptrace_access_check =          selinux_ptrace_access_check,
5459         .ptrace_traceme =               selinux_ptrace_traceme,
5460         .capget =                       selinux_capget,
5461         .capset =                       selinux_capset,
5462         .capable =                      selinux_capable,
5463         .quotactl =                     selinux_quotactl,
5464         .quota_on =                     selinux_quota_on,
5465         .syslog =                       selinux_syslog,
5466         .vm_enough_memory =             selinux_vm_enough_memory,
5467
5468         .netlink_send =                 selinux_netlink_send,
5469         .netlink_recv =                 selinux_netlink_recv,
5470
5471         .bprm_set_creds =               selinux_bprm_set_creds,
5472         .bprm_committing_creds =        selinux_bprm_committing_creds,
5473         .bprm_committed_creds =         selinux_bprm_committed_creds,
5474         .bprm_secureexec =              selinux_bprm_secureexec,
5475
5476         .sb_alloc_security =            selinux_sb_alloc_security,
5477         .sb_free_security =             selinux_sb_free_security,
5478         .sb_copy_data =                 selinux_sb_copy_data,
5479         .sb_remount =                   selinux_sb_remount,
5480         .sb_kern_mount =                selinux_sb_kern_mount,
5481         .sb_show_options =              selinux_sb_show_options,
5482         .sb_statfs =                    selinux_sb_statfs,
5483         .sb_mount =                     selinux_mount,
5484         .sb_umount =                    selinux_umount,
5485         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5486         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5487         .sb_parse_opts_str =            selinux_parse_opts_str,
5488
5489
5490         .inode_alloc_security =         selinux_inode_alloc_security,
5491         .inode_free_security =          selinux_inode_free_security,
5492         .inode_init_security =          selinux_inode_init_security,
5493         .inode_create =                 selinux_inode_create,
5494         .inode_link =                   selinux_inode_link,
5495         .inode_unlink =                 selinux_inode_unlink,
5496         .inode_symlink =                selinux_inode_symlink,
5497         .inode_mkdir =                  selinux_inode_mkdir,
5498         .inode_rmdir =                  selinux_inode_rmdir,
5499         .inode_mknod =                  selinux_inode_mknod,
5500         .inode_rename =                 selinux_inode_rename,
5501         .inode_readlink =               selinux_inode_readlink,
5502         .inode_follow_link =            selinux_inode_follow_link,
5503         .inode_permission =             selinux_inode_permission,
5504         .inode_setattr =                selinux_inode_setattr,
5505         .inode_getattr =                selinux_inode_getattr,
5506         .inode_setxattr =               selinux_inode_setxattr,
5507         .inode_post_setxattr =          selinux_inode_post_setxattr,
5508         .inode_getxattr =               selinux_inode_getxattr,
5509         .inode_listxattr =              selinux_inode_listxattr,
5510         .inode_removexattr =            selinux_inode_removexattr,
5511         .inode_getsecurity =            selinux_inode_getsecurity,
5512         .inode_setsecurity =            selinux_inode_setsecurity,
5513         .inode_listsecurity =           selinux_inode_listsecurity,
5514         .inode_getsecid =               selinux_inode_getsecid,
5515
5516         .file_permission =              selinux_file_permission,
5517         .file_alloc_security =          selinux_file_alloc_security,
5518         .file_free_security =           selinux_file_free_security,
5519         .file_ioctl =                   selinux_file_ioctl,
5520         .file_mmap =                    selinux_file_mmap,
5521         .file_mprotect =                selinux_file_mprotect,
5522         .file_lock =                    selinux_file_lock,
5523         .file_fcntl =                   selinux_file_fcntl,
5524         .file_set_fowner =              selinux_file_set_fowner,
5525         .file_send_sigiotask =          selinux_file_send_sigiotask,
5526         .file_receive =                 selinux_file_receive,
5527
5528         .dentry_open =                  selinux_dentry_open,
5529
5530         .task_create =                  selinux_task_create,
5531         .cred_alloc_blank =             selinux_cred_alloc_blank,
5532         .cred_free =                    selinux_cred_free,
5533         .cred_prepare =                 selinux_cred_prepare,
5534         .cred_transfer =                selinux_cred_transfer,
5535         .kernel_act_as =                selinux_kernel_act_as,
5536         .kernel_create_files_as =       selinux_kernel_create_files_as,
5537         .kernel_module_request =        selinux_kernel_module_request,
5538         .task_setpgid =                 selinux_task_setpgid,
5539         .task_getpgid =                 selinux_task_getpgid,
5540         .task_getsid =                  selinux_task_getsid,
5541         .task_getsecid =                selinux_task_getsecid,
5542         .task_setnice =                 selinux_task_setnice,
5543         .task_setioprio =               selinux_task_setioprio,
5544         .task_getioprio =               selinux_task_getioprio,
5545         .task_setrlimit =               selinux_task_setrlimit,
5546         .task_setscheduler =            selinux_task_setscheduler,
5547         .task_getscheduler =            selinux_task_getscheduler,
5548         .task_movememory =              selinux_task_movememory,
5549         .task_kill =                    selinux_task_kill,
5550         .task_wait =                    selinux_task_wait,
5551         .task_to_inode =                selinux_task_to_inode,
5552
5553         .ipc_permission =               selinux_ipc_permission,
5554         .ipc_getsecid =                 selinux_ipc_getsecid,
5555
5556         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5557         .msg_msg_free_security =        selinux_msg_msg_free_security,
5558
5559         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5560         .msg_queue_free_security =      selinux_msg_queue_free_security,
5561         .msg_queue_associate =          selinux_msg_queue_associate,
5562         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5563         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5564         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5565
5566         .shm_alloc_security =           selinux_shm_alloc_security,
5567         .shm_free_security =            selinux_shm_free_security,
5568         .shm_associate =                selinux_shm_associate,
5569         .shm_shmctl =                   selinux_shm_shmctl,
5570         .shm_shmat =                    selinux_shm_shmat,
5571
5572         .sem_alloc_security =           selinux_sem_alloc_security,
5573         .sem_free_security =            selinux_sem_free_security,
5574         .sem_associate =                selinux_sem_associate,
5575         .sem_semctl =                   selinux_sem_semctl,
5576         .sem_semop =                    selinux_sem_semop,
5577
5578         .d_instantiate =                selinux_d_instantiate,
5579
5580         .getprocattr =                  selinux_getprocattr,
5581         .setprocattr =                  selinux_setprocattr,
5582
5583         .secid_to_secctx =              selinux_secid_to_secctx,
5584         .secctx_to_secid =              selinux_secctx_to_secid,
5585         .release_secctx =               selinux_release_secctx,
5586         .inode_notifysecctx =           selinux_inode_notifysecctx,
5587         .inode_setsecctx =              selinux_inode_setsecctx,
5588         .inode_getsecctx =              selinux_inode_getsecctx,
5589
5590         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5591         .unix_may_send =                selinux_socket_unix_may_send,
5592
5593         .socket_create =                selinux_socket_create,
5594         .socket_post_create =           selinux_socket_post_create,
5595         .socket_bind =                  selinux_socket_bind,
5596         .socket_connect =               selinux_socket_connect,
5597         .socket_listen =                selinux_socket_listen,
5598         .socket_accept =                selinux_socket_accept,
5599         .socket_sendmsg =               selinux_socket_sendmsg,
5600         .socket_recvmsg =               selinux_socket_recvmsg,
5601         .socket_getsockname =           selinux_socket_getsockname,
5602         .socket_getpeername =           selinux_socket_getpeername,
5603         .socket_getsockopt =            selinux_socket_getsockopt,
5604         .socket_setsockopt =            selinux_socket_setsockopt,
5605         .socket_shutdown =              selinux_socket_shutdown,
5606         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5607         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5608         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5609         .sk_alloc_security =            selinux_sk_alloc_security,
5610         .sk_free_security =             selinux_sk_free_security,
5611         .sk_clone_security =            selinux_sk_clone_security,
5612         .sk_getsecid =                  selinux_sk_getsecid,
5613         .sock_graft =                   selinux_sock_graft,
5614         .inet_conn_request =            selinux_inet_conn_request,
5615         .inet_csk_clone =               selinux_inet_csk_clone,
5616         .inet_conn_established =        selinux_inet_conn_established,
5617         .secmark_relabel_packet =       selinux_secmark_relabel_packet,
5618         .secmark_refcount_inc =         selinux_secmark_refcount_inc,
5619         .secmark_refcount_dec =         selinux_secmark_refcount_dec,
5620         .req_classify_flow =            selinux_req_classify_flow,
5621         .tun_dev_create =               selinux_tun_dev_create,
5622         .tun_dev_post_create =          selinux_tun_dev_post_create,
5623         .tun_dev_attach =               selinux_tun_dev_attach,
5624
5625 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5626         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5627         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5628         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5629         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5630         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5631         .xfrm_state_free_security =     selinux_xfrm_state_free,
5632         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5633         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5634         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5635         .xfrm_decode_session =          selinux_xfrm_decode_session,
5636 #endif
5637
5638 #ifdef CONFIG_KEYS
5639         .key_alloc =                    selinux_key_alloc,
5640         .key_free =                     selinux_key_free,
5641         .key_permission =               selinux_key_permission,
5642         .key_getsecurity =              selinux_key_getsecurity,
5643 #endif
5644
5645 #ifdef CONFIG_AUDIT
5646         .audit_rule_init =              selinux_audit_rule_init,
5647         .audit_rule_known =             selinux_audit_rule_known,
5648         .audit_rule_match =             selinux_audit_rule_match,
5649         .audit_rule_free =              selinux_audit_rule_free,
5650 #endif
5651 };
5652
5653 static __init int selinux_init(void)
5654 {
5655         if (!security_module_enable(&selinux_ops)) {
5656                 selinux_enabled = 0;
5657                 return 0;
5658         }
5659
5660         if (!selinux_enabled) {
5661                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5662                 return 0;
5663         }
5664
5665         printk(KERN_INFO "SELinux:  Initializing.\n");
5666
5667         /* Set the security state for the initial task. */
5668         cred_init_security();
5669
5670         default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5671
5672         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5673                                             sizeof(struct inode_security_struct),
5674                                             0, SLAB_PANIC, NULL);
5675         avc_init();
5676
5677         if (register_security(&selinux_ops))
5678                 panic("SELinux: Unable to register with kernel.\n");
5679
5680         if (selinux_enforcing)
5681                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5682         else
5683                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5684
5685         return 0;
5686 }
5687
5688 static void delayed_superblock_init(struct super_block *sb, void *unused)
5689 {
5690         superblock_doinit(sb, NULL);
5691 }
5692
5693 void selinux_complete_init(void)
5694 {
5695         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5696
5697         /* Set up any superblocks initialized prior to the policy load. */
5698         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5699         iterate_supers(delayed_superblock_init, NULL);
5700 }
5701
5702 /* SELinux requires early initialization in order to label
5703    all processes and objects when they are created. */
5704 security_initcall(selinux_init);
5705
5706 #if defined(CONFIG_NETFILTER)
5707
5708 static struct nf_hook_ops selinux_ipv4_ops[] = {
5709         {
5710                 .hook =         selinux_ipv4_postroute,
5711                 .owner =        THIS_MODULE,
5712                 .pf =           PF_INET,
5713                 .hooknum =      NF_INET_POST_ROUTING,
5714                 .priority =     NF_IP_PRI_SELINUX_LAST,
5715         },
5716         {
5717                 .hook =         selinux_ipv4_forward,
5718                 .owner =        THIS_MODULE,
5719                 .pf =           PF_INET,
5720                 .hooknum =      NF_INET_FORWARD,
5721                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5722         },
5723         {
5724                 .hook =         selinux_ipv4_output,
5725                 .owner =        THIS_MODULE,
5726                 .pf =           PF_INET,
5727                 .hooknum =      NF_INET_LOCAL_OUT,
5728                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5729         }
5730 };
5731
5732 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5733
5734 static struct nf_hook_ops selinux_ipv6_ops[] = {
5735         {
5736                 .hook =         selinux_ipv6_postroute,
5737                 .owner =        THIS_MODULE,
5738                 .pf =           PF_INET6,
5739                 .hooknum =      NF_INET_POST_ROUTING,
5740                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5741         },
5742         {
5743                 .hook =         selinux_ipv6_forward,
5744                 .owner =        THIS_MODULE,
5745                 .pf =           PF_INET6,
5746                 .hooknum =      NF_INET_FORWARD,
5747                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5748         }
5749 };
5750
5751 #endif  /* IPV6 */
5752
5753 static int __init selinux_nf_ip_init(void)
5754 {
5755         int err = 0;
5756
5757         if (!selinux_enabled)
5758                 goto out;
5759
5760         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5761
5762         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5763         if (err)
5764                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5765
5766 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5767         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5768         if (err)
5769                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5770 #endif  /* IPV6 */
5771
5772 out:
5773         return err;
5774 }
5775
5776 __initcall(selinux_nf_ip_init);
5777
5778 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5779 static void selinux_nf_ip_exit(void)
5780 {
5781         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5782
5783         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5784 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5785         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5786 #endif  /* IPV6 */
5787 }
5788 #endif
5789
5790 #else /* CONFIG_NETFILTER */
5791
5792 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5793 #define selinux_nf_ip_exit()
5794 #endif
5795
5796 #endif /* CONFIG_NETFILTER */
5797
5798 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5799 static int selinux_disabled;
5800
5801 int selinux_disable(void)
5802 {
5803         if (ss_initialized) {
5804                 /* Not permitted after initial policy load. */
5805                 return -EINVAL;
5806         }
5807
5808         if (selinux_disabled) {
5809                 /* Only do this once. */
5810                 return -EINVAL;
5811         }
5812
5813         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5814
5815         selinux_disabled = 1;
5816         selinux_enabled = 0;
5817
5818         reset_security_ops();
5819
5820         /* Try to destroy the avc node cache */
5821         avc_disable();
5822
5823         /* Unregister netfilter hooks. */
5824         selinux_nf_ip_exit();
5825
5826         /* Unregister selinuxfs. */
5827         exit_sel_fs();
5828
5829         return 0;
5830 }
5831 #endif