]> Pileus Git - ~andy/linux/blob - security/selinux/hooks.c
Merge tag 'common-clk-api' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[~andy/linux] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *      Paul Moore <paul@paul-moore.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/ext2_fs.h>
32 #include <linux/sched.h>
33 #include <linux/security.h>
34 #include <linux/xattr.h>
35 #include <linux/capability.h>
36 #include <linux/unistd.h>
37 #include <linux/mm.h>
38 #include <linux/mman.h>
39 #include <linux/slab.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/swap.h>
43 #include <linux/spinlock.h>
44 #include <linux/syscalls.h>
45 #include <linux/dcache.h>
46 #include <linux/file.h>
47 #include <linux/fdtable.h>
48 #include <linux/namei.h>
49 #include <linux/mount.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <linux/netfilter_ipv6.h>
52 #include <linux/tty.h>
53 #include <net/icmp.h>
54 #include <net/ip.h>             /* for local_port_range[] */
55 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
56 #include <net/net_namespace.h>
57 #include <net/netlabel.h>
58 #include <linux/uaccess.h>
59 #include <asm/ioctls.h>
60 #include <linux/atomic.h>
61 #include <linux/bitops.h>
62 #include <linux/interrupt.h>
63 #include <linux/netdevice.h>    /* for network interface checks */
64 #include <linux/netlink.h>
65 #include <linux/tcp.h>
66 #include <linux/udp.h>
67 #include <linux/dccp.h>
68 #include <linux/quota.h>
69 #include <linux/un.h>           /* for Unix socket types */
70 #include <net/af_unix.h>        /* for Unix socket types */
71 #include <linux/parser.h>
72 #include <linux/nfs_mount.h>
73 #include <net/ipv6.h>
74 #include <linux/hugetlb.h>
75 #include <linux/personality.h>
76 #include <linux/audit.h>
77 #include <linux/string.h>
78 #include <linux/selinux.h>
79 #include <linux/mutex.h>
80 #include <linux/posix-timers.h>
81 #include <linux/syslog.h>
82 #include <linux/user_namespace.h>
83 #include <linux/export.h>
84 #include <linux/msg.h>
85 #include <linux/shm.h>
86
87 #include "avc.h"
88 #include "objsec.h"
89 #include "netif.h"
90 #include "netnode.h"
91 #include "netport.h"
92 #include "xfrm.h"
93 #include "netlabel.h"
94 #include "audit.h"
95 #include "avc_ss.h"
96
97 #define NUM_SEL_MNT_OPTS 5
98
99 extern struct security_operations *security_ops;
100
101 /* SECMARK reference count */
102 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
103
104 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
105 int selinux_enforcing;
106
107 static int __init enforcing_setup(char *str)
108 {
109         unsigned long enforcing;
110         if (!strict_strtoul(str, 0, &enforcing))
111                 selinux_enforcing = enforcing ? 1 : 0;
112         return 1;
113 }
114 __setup("enforcing=", enforcing_setup);
115 #endif
116
117 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
118 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
119
120 static int __init selinux_enabled_setup(char *str)
121 {
122         unsigned long enabled;
123         if (!strict_strtoul(str, 0, &enabled))
124                 selinux_enabled = enabled ? 1 : 0;
125         return 1;
126 }
127 __setup("selinux=", selinux_enabled_setup);
128 #else
129 int selinux_enabled = 1;
130 #endif
131
132 static struct kmem_cache *sel_inode_cache;
133
134 /**
135  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
136  *
137  * Description:
138  * This function checks the SECMARK reference counter to see if any SECMARK
139  * targets are currently configured, if the reference counter is greater than
140  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
141  * enabled, false (0) if SECMARK is disabled.
142  *
143  */
144 static int selinux_secmark_enabled(void)
145 {
146         return (atomic_read(&selinux_secmark_refcount) > 0);
147 }
148
149 /*
150  * initialise the security for the init task
151  */
152 static void cred_init_security(void)
153 {
154         struct cred *cred = (struct cred *) current->real_cred;
155         struct task_security_struct *tsec;
156
157         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
158         if (!tsec)
159                 panic("SELinux:  Failed to initialize initial task.\n");
160
161         tsec->osid = tsec->sid = SECINITSID_KERNEL;
162         cred->security = tsec;
163 }
164
165 /*
166  * get the security ID of a set of credentials
167  */
168 static inline u32 cred_sid(const struct cred *cred)
169 {
170         const struct task_security_struct *tsec;
171
172         tsec = cred->security;
173         return tsec->sid;
174 }
175
176 /*
177  * get the objective security ID of a task
178  */
179 static inline u32 task_sid(const struct task_struct *task)
180 {
181         u32 sid;
182
183         rcu_read_lock();
184         sid = cred_sid(__task_cred(task));
185         rcu_read_unlock();
186         return sid;
187 }
188
189 /*
190  * get the subjective security ID of the current task
191  */
192 static inline u32 current_sid(void)
193 {
194         const struct task_security_struct *tsec = current_security();
195
196         return tsec->sid;
197 }
198
199 /* Allocate and free functions for each kind of security blob. */
200
201 static int inode_alloc_security(struct inode *inode)
202 {
203         struct inode_security_struct *isec;
204         u32 sid = current_sid();
205
206         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
207         if (!isec)
208                 return -ENOMEM;
209
210         mutex_init(&isec->lock);
211         INIT_LIST_HEAD(&isec->list);
212         isec->inode = inode;
213         isec->sid = SECINITSID_UNLABELED;
214         isec->sclass = SECCLASS_FILE;
215         isec->task_sid = sid;
216         inode->i_security = isec;
217
218         return 0;
219 }
220
221 static void inode_free_security(struct inode *inode)
222 {
223         struct inode_security_struct *isec = inode->i_security;
224         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
225
226         spin_lock(&sbsec->isec_lock);
227         if (!list_empty(&isec->list))
228                 list_del_init(&isec->list);
229         spin_unlock(&sbsec->isec_lock);
230
231         inode->i_security = NULL;
232         kmem_cache_free(sel_inode_cache, isec);
233 }
234
235 static int file_alloc_security(struct file *file)
236 {
237         struct file_security_struct *fsec;
238         u32 sid = current_sid();
239
240         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
241         if (!fsec)
242                 return -ENOMEM;
243
244         fsec->sid = sid;
245         fsec->fown_sid = sid;
246         file->f_security = fsec;
247
248         return 0;
249 }
250
251 static void file_free_security(struct file *file)
252 {
253         struct file_security_struct *fsec = file->f_security;
254         file->f_security = NULL;
255         kfree(fsec);
256 }
257
258 static int superblock_alloc_security(struct super_block *sb)
259 {
260         struct superblock_security_struct *sbsec;
261
262         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
263         if (!sbsec)
264                 return -ENOMEM;
265
266         mutex_init(&sbsec->lock);
267         INIT_LIST_HEAD(&sbsec->isec_head);
268         spin_lock_init(&sbsec->isec_lock);
269         sbsec->sb = sb;
270         sbsec->sid = SECINITSID_UNLABELED;
271         sbsec->def_sid = SECINITSID_FILE;
272         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
273         sb->s_security = sbsec;
274
275         return 0;
276 }
277
278 static void superblock_free_security(struct super_block *sb)
279 {
280         struct superblock_security_struct *sbsec = sb->s_security;
281         sb->s_security = NULL;
282         kfree(sbsec);
283 }
284
285 /* The file system's label must be initialized prior to use. */
286
287 static const char *labeling_behaviors[6] = {
288         "uses xattr",
289         "uses transition SIDs",
290         "uses task SIDs",
291         "uses genfs_contexts",
292         "not configured for labeling",
293         "uses mountpoint labeling",
294 };
295
296 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
297
298 static inline int inode_doinit(struct inode *inode)
299 {
300         return inode_doinit_with_dentry(inode, NULL);
301 }
302
303 enum {
304         Opt_error = -1,
305         Opt_context = 1,
306         Opt_fscontext = 2,
307         Opt_defcontext = 3,
308         Opt_rootcontext = 4,
309         Opt_labelsupport = 5,
310 };
311
312 static const match_table_t tokens = {
313         {Opt_context, CONTEXT_STR "%s"},
314         {Opt_fscontext, FSCONTEXT_STR "%s"},
315         {Opt_defcontext, DEFCONTEXT_STR "%s"},
316         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
317         {Opt_labelsupport, LABELSUPP_STR},
318         {Opt_error, NULL},
319 };
320
321 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
322
323 static int may_context_mount_sb_relabel(u32 sid,
324                         struct superblock_security_struct *sbsec,
325                         const struct cred *cred)
326 {
327         const struct task_security_struct *tsec = cred->security;
328         int rc;
329
330         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
331                           FILESYSTEM__RELABELFROM, NULL);
332         if (rc)
333                 return rc;
334
335         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
336                           FILESYSTEM__RELABELTO, NULL);
337         return rc;
338 }
339
340 static int may_context_mount_inode_relabel(u32 sid,
341                         struct superblock_security_struct *sbsec,
342                         const struct cred *cred)
343 {
344         const struct task_security_struct *tsec = cred->security;
345         int rc;
346         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
347                           FILESYSTEM__RELABELFROM, NULL);
348         if (rc)
349                 return rc;
350
351         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
352                           FILESYSTEM__ASSOCIATE, NULL);
353         return rc;
354 }
355
356 static int sb_finish_set_opts(struct super_block *sb)
357 {
358         struct superblock_security_struct *sbsec = sb->s_security;
359         struct dentry *root = sb->s_root;
360         struct inode *root_inode = root->d_inode;
361         int rc = 0;
362
363         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
364                 /* Make sure that the xattr handler exists and that no
365                    error other than -ENODATA is returned by getxattr on
366                    the root directory.  -ENODATA is ok, as this may be
367                    the first boot of the SELinux kernel before we have
368                    assigned xattr values to the filesystem. */
369                 if (!root_inode->i_op->getxattr) {
370                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
371                                "xattr support\n", sb->s_id, sb->s_type->name);
372                         rc = -EOPNOTSUPP;
373                         goto out;
374                 }
375                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
376                 if (rc < 0 && rc != -ENODATA) {
377                         if (rc == -EOPNOTSUPP)
378                                 printk(KERN_WARNING "SELinux: (dev %s, type "
379                                        "%s) has no security xattr handler\n",
380                                        sb->s_id, sb->s_type->name);
381                         else
382                                 printk(KERN_WARNING "SELinux: (dev %s, type "
383                                        "%s) getxattr errno %d\n", sb->s_id,
384                                        sb->s_type->name, -rc);
385                         goto out;
386                 }
387         }
388
389         sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
390
391         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
392                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
393                        sb->s_id, sb->s_type->name);
394         else
395                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
396                        sb->s_id, sb->s_type->name,
397                        labeling_behaviors[sbsec->behavior-1]);
398
399         if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
400             sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
401             sbsec->behavior == SECURITY_FS_USE_NONE ||
402             sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
403                 sbsec->flags &= ~SE_SBLABELSUPP;
404
405         /* Special handling for sysfs. Is genfs but also has setxattr handler*/
406         if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
407                 sbsec->flags |= SE_SBLABELSUPP;
408
409         /* Initialize the root inode. */
410         rc = inode_doinit_with_dentry(root_inode, root);
411
412         /* Initialize any other inodes associated with the superblock, e.g.
413            inodes created prior to initial policy load or inodes created
414            during get_sb by a pseudo filesystem that directly
415            populates itself. */
416         spin_lock(&sbsec->isec_lock);
417 next_inode:
418         if (!list_empty(&sbsec->isec_head)) {
419                 struct inode_security_struct *isec =
420                                 list_entry(sbsec->isec_head.next,
421                                            struct inode_security_struct, list);
422                 struct inode *inode = isec->inode;
423                 spin_unlock(&sbsec->isec_lock);
424                 inode = igrab(inode);
425                 if (inode) {
426                         if (!IS_PRIVATE(inode))
427                                 inode_doinit(inode);
428                         iput(inode);
429                 }
430                 spin_lock(&sbsec->isec_lock);
431                 list_del_init(&isec->list);
432                 goto next_inode;
433         }
434         spin_unlock(&sbsec->isec_lock);
435 out:
436         return rc;
437 }
438
439 /*
440  * This function should allow an FS to ask what it's mount security
441  * options were so it can use those later for submounts, displaying
442  * mount options, or whatever.
443  */
444 static int selinux_get_mnt_opts(const struct super_block *sb,
445                                 struct security_mnt_opts *opts)
446 {
447         int rc = 0, i;
448         struct superblock_security_struct *sbsec = sb->s_security;
449         char *context = NULL;
450         u32 len;
451         char tmp;
452
453         security_init_mnt_opts(opts);
454
455         if (!(sbsec->flags & SE_SBINITIALIZED))
456                 return -EINVAL;
457
458         if (!ss_initialized)
459                 return -EINVAL;
460
461         tmp = sbsec->flags & SE_MNTMASK;
462         /* count the number of mount options for this sb */
463         for (i = 0; i < 8; i++) {
464                 if (tmp & 0x01)
465                         opts->num_mnt_opts++;
466                 tmp >>= 1;
467         }
468         /* Check if the Label support flag is set */
469         if (sbsec->flags & SE_SBLABELSUPP)
470                 opts->num_mnt_opts++;
471
472         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
473         if (!opts->mnt_opts) {
474                 rc = -ENOMEM;
475                 goto out_free;
476         }
477
478         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
479         if (!opts->mnt_opts_flags) {
480                 rc = -ENOMEM;
481                 goto out_free;
482         }
483
484         i = 0;
485         if (sbsec->flags & FSCONTEXT_MNT) {
486                 rc = security_sid_to_context(sbsec->sid, &context, &len);
487                 if (rc)
488                         goto out_free;
489                 opts->mnt_opts[i] = context;
490                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
491         }
492         if (sbsec->flags & CONTEXT_MNT) {
493                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
494                 if (rc)
495                         goto out_free;
496                 opts->mnt_opts[i] = context;
497                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
498         }
499         if (sbsec->flags & DEFCONTEXT_MNT) {
500                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
501                 if (rc)
502                         goto out_free;
503                 opts->mnt_opts[i] = context;
504                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
505         }
506         if (sbsec->flags & ROOTCONTEXT_MNT) {
507                 struct inode *root = sbsec->sb->s_root->d_inode;
508                 struct inode_security_struct *isec = root->i_security;
509
510                 rc = security_sid_to_context(isec->sid, &context, &len);
511                 if (rc)
512                         goto out_free;
513                 opts->mnt_opts[i] = context;
514                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
515         }
516         if (sbsec->flags & SE_SBLABELSUPP) {
517                 opts->mnt_opts[i] = NULL;
518                 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
519         }
520
521         BUG_ON(i != opts->num_mnt_opts);
522
523         return 0;
524
525 out_free:
526         security_free_mnt_opts(opts);
527         return rc;
528 }
529
530 static int bad_option(struct superblock_security_struct *sbsec, char flag,
531                       u32 old_sid, u32 new_sid)
532 {
533         char mnt_flags = sbsec->flags & SE_MNTMASK;
534
535         /* check if the old mount command had the same options */
536         if (sbsec->flags & SE_SBINITIALIZED)
537                 if (!(sbsec->flags & flag) ||
538                     (old_sid != new_sid))
539                         return 1;
540
541         /* check if we were passed the same options twice,
542          * aka someone passed context=a,context=b
543          */
544         if (!(sbsec->flags & SE_SBINITIALIZED))
545                 if (mnt_flags & flag)
546                         return 1;
547         return 0;
548 }
549
550 /*
551  * Allow filesystems with binary mount data to explicitly set mount point
552  * labeling information.
553  */
554 static int selinux_set_mnt_opts(struct super_block *sb,
555                                 struct security_mnt_opts *opts)
556 {
557         const struct cred *cred = current_cred();
558         int rc = 0, i;
559         struct superblock_security_struct *sbsec = sb->s_security;
560         const char *name = sb->s_type->name;
561         struct inode *inode = sbsec->sb->s_root->d_inode;
562         struct inode_security_struct *root_isec = inode->i_security;
563         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
564         u32 defcontext_sid = 0;
565         char **mount_options = opts->mnt_opts;
566         int *flags = opts->mnt_opts_flags;
567         int num_opts = opts->num_mnt_opts;
568
569         mutex_lock(&sbsec->lock);
570
571         if (!ss_initialized) {
572                 if (!num_opts) {
573                         /* Defer initialization until selinux_complete_init,
574                            after the initial policy is loaded and the security
575                            server is ready to handle calls. */
576                         goto out;
577                 }
578                 rc = -EINVAL;
579                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
580                         "before the security server is initialized\n");
581                 goto out;
582         }
583
584         /*
585          * Binary mount data FS will come through this function twice.  Once
586          * from an explicit call and once from the generic calls from the vfs.
587          * Since the generic VFS calls will not contain any security mount data
588          * we need to skip the double mount verification.
589          *
590          * This does open a hole in which we will not notice if the first
591          * mount using this sb set explict options and a second mount using
592          * this sb does not set any security options.  (The first options
593          * will be used for both mounts)
594          */
595         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
596             && (num_opts == 0))
597                 goto out;
598
599         /*
600          * parse the mount options, check if they are valid sids.
601          * also check if someone is trying to mount the same sb more
602          * than once with different security options.
603          */
604         for (i = 0; i < num_opts; i++) {
605                 u32 sid;
606
607                 if (flags[i] == SE_SBLABELSUPP)
608                         continue;
609                 rc = security_context_to_sid(mount_options[i],
610                                              strlen(mount_options[i]), &sid);
611                 if (rc) {
612                         printk(KERN_WARNING "SELinux: security_context_to_sid"
613                                "(%s) failed for (dev %s, type %s) errno=%d\n",
614                                mount_options[i], sb->s_id, name, rc);
615                         goto out;
616                 }
617                 switch (flags[i]) {
618                 case FSCONTEXT_MNT:
619                         fscontext_sid = sid;
620
621                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
622                                         fscontext_sid))
623                                 goto out_double_mount;
624
625                         sbsec->flags |= FSCONTEXT_MNT;
626                         break;
627                 case CONTEXT_MNT:
628                         context_sid = sid;
629
630                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
631                                         context_sid))
632                                 goto out_double_mount;
633
634                         sbsec->flags |= CONTEXT_MNT;
635                         break;
636                 case ROOTCONTEXT_MNT:
637                         rootcontext_sid = sid;
638
639                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
640                                         rootcontext_sid))
641                                 goto out_double_mount;
642
643                         sbsec->flags |= ROOTCONTEXT_MNT;
644
645                         break;
646                 case DEFCONTEXT_MNT:
647                         defcontext_sid = sid;
648
649                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
650                                         defcontext_sid))
651                                 goto out_double_mount;
652
653                         sbsec->flags |= DEFCONTEXT_MNT;
654
655                         break;
656                 default:
657                         rc = -EINVAL;
658                         goto out;
659                 }
660         }
661
662         if (sbsec->flags & SE_SBINITIALIZED) {
663                 /* previously mounted with options, but not on this attempt? */
664                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
665                         goto out_double_mount;
666                 rc = 0;
667                 goto out;
668         }
669
670         if (strcmp(sb->s_type->name, "proc") == 0)
671                 sbsec->flags |= SE_SBPROC;
672
673         /* Determine the labeling behavior to use for this filesystem type. */
674         rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
675         if (rc) {
676                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
677                        __func__, sb->s_type->name, rc);
678                 goto out;
679         }
680
681         /* sets the context of the superblock for the fs being mounted. */
682         if (fscontext_sid) {
683                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
684                 if (rc)
685                         goto out;
686
687                 sbsec->sid = fscontext_sid;
688         }
689
690         /*
691          * Switch to using mount point labeling behavior.
692          * sets the label used on all file below the mountpoint, and will set
693          * the superblock context if not already set.
694          */
695         if (context_sid) {
696                 if (!fscontext_sid) {
697                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
698                                                           cred);
699                         if (rc)
700                                 goto out;
701                         sbsec->sid = context_sid;
702                 } else {
703                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
704                                                              cred);
705                         if (rc)
706                                 goto out;
707                 }
708                 if (!rootcontext_sid)
709                         rootcontext_sid = context_sid;
710
711                 sbsec->mntpoint_sid = context_sid;
712                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
713         }
714
715         if (rootcontext_sid) {
716                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
717                                                      cred);
718                 if (rc)
719                         goto out;
720
721                 root_isec->sid = rootcontext_sid;
722                 root_isec->initialized = 1;
723         }
724
725         if (defcontext_sid) {
726                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
727                         rc = -EINVAL;
728                         printk(KERN_WARNING "SELinux: defcontext option is "
729                                "invalid for this filesystem type\n");
730                         goto out;
731                 }
732
733                 if (defcontext_sid != sbsec->def_sid) {
734                         rc = may_context_mount_inode_relabel(defcontext_sid,
735                                                              sbsec, cred);
736                         if (rc)
737                                 goto out;
738                 }
739
740                 sbsec->def_sid = defcontext_sid;
741         }
742
743         rc = sb_finish_set_opts(sb);
744 out:
745         mutex_unlock(&sbsec->lock);
746         return rc;
747 out_double_mount:
748         rc = -EINVAL;
749         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
750                "security settings for (dev %s, type %s)\n", sb->s_id, name);
751         goto out;
752 }
753
754 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
755                                         struct super_block *newsb)
756 {
757         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
758         struct superblock_security_struct *newsbsec = newsb->s_security;
759
760         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
761         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
762         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
763
764         /*
765          * if the parent was able to be mounted it clearly had no special lsm
766          * mount options.  thus we can safely deal with this superblock later
767          */
768         if (!ss_initialized)
769                 return;
770
771         /* how can we clone if the old one wasn't set up?? */
772         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
773
774         /* if fs is reusing a sb, just let its options stand... */
775         if (newsbsec->flags & SE_SBINITIALIZED)
776                 return;
777
778         mutex_lock(&newsbsec->lock);
779
780         newsbsec->flags = oldsbsec->flags;
781
782         newsbsec->sid = oldsbsec->sid;
783         newsbsec->def_sid = oldsbsec->def_sid;
784         newsbsec->behavior = oldsbsec->behavior;
785
786         if (set_context) {
787                 u32 sid = oldsbsec->mntpoint_sid;
788
789                 if (!set_fscontext)
790                         newsbsec->sid = sid;
791                 if (!set_rootcontext) {
792                         struct inode *newinode = newsb->s_root->d_inode;
793                         struct inode_security_struct *newisec = newinode->i_security;
794                         newisec->sid = sid;
795                 }
796                 newsbsec->mntpoint_sid = sid;
797         }
798         if (set_rootcontext) {
799                 const struct inode *oldinode = oldsb->s_root->d_inode;
800                 const struct inode_security_struct *oldisec = oldinode->i_security;
801                 struct inode *newinode = newsb->s_root->d_inode;
802                 struct inode_security_struct *newisec = newinode->i_security;
803
804                 newisec->sid = oldisec->sid;
805         }
806
807         sb_finish_set_opts(newsb);
808         mutex_unlock(&newsbsec->lock);
809 }
810
811 static int selinux_parse_opts_str(char *options,
812                                   struct security_mnt_opts *opts)
813 {
814         char *p;
815         char *context = NULL, *defcontext = NULL;
816         char *fscontext = NULL, *rootcontext = NULL;
817         int rc, num_mnt_opts = 0;
818
819         opts->num_mnt_opts = 0;
820
821         /* Standard string-based options. */
822         while ((p = strsep(&options, "|")) != NULL) {
823                 int token;
824                 substring_t args[MAX_OPT_ARGS];
825
826                 if (!*p)
827                         continue;
828
829                 token = match_token(p, tokens, args);
830
831                 switch (token) {
832                 case Opt_context:
833                         if (context || defcontext) {
834                                 rc = -EINVAL;
835                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
836                                 goto out_err;
837                         }
838                         context = match_strdup(&args[0]);
839                         if (!context) {
840                                 rc = -ENOMEM;
841                                 goto out_err;
842                         }
843                         break;
844
845                 case Opt_fscontext:
846                         if (fscontext) {
847                                 rc = -EINVAL;
848                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
849                                 goto out_err;
850                         }
851                         fscontext = match_strdup(&args[0]);
852                         if (!fscontext) {
853                                 rc = -ENOMEM;
854                                 goto out_err;
855                         }
856                         break;
857
858                 case Opt_rootcontext:
859                         if (rootcontext) {
860                                 rc = -EINVAL;
861                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
862                                 goto out_err;
863                         }
864                         rootcontext = match_strdup(&args[0]);
865                         if (!rootcontext) {
866                                 rc = -ENOMEM;
867                                 goto out_err;
868                         }
869                         break;
870
871                 case Opt_defcontext:
872                         if (context || defcontext) {
873                                 rc = -EINVAL;
874                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
875                                 goto out_err;
876                         }
877                         defcontext = match_strdup(&args[0]);
878                         if (!defcontext) {
879                                 rc = -ENOMEM;
880                                 goto out_err;
881                         }
882                         break;
883                 case Opt_labelsupport:
884                         break;
885                 default:
886                         rc = -EINVAL;
887                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
888                         goto out_err;
889
890                 }
891         }
892
893         rc = -ENOMEM;
894         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
895         if (!opts->mnt_opts)
896                 goto out_err;
897
898         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
899         if (!opts->mnt_opts_flags) {
900                 kfree(opts->mnt_opts);
901                 goto out_err;
902         }
903
904         if (fscontext) {
905                 opts->mnt_opts[num_mnt_opts] = fscontext;
906                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
907         }
908         if (context) {
909                 opts->mnt_opts[num_mnt_opts] = context;
910                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
911         }
912         if (rootcontext) {
913                 opts->mnt_opts[num_mnt_opts] = rootcontext;
914                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
915         }
916         if (defcontext) {
917                 opts->mnt_opts[num_mnt_opts] = defcontext;
918                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
919         }
920
921         opts->num_mnt_opts = num_mnt_opts;
922         return 0;
923
924 out_err:
925         kfree(context);
926         kfree(defcontext);
927         kfree(fscontext);
928         kfree(rootcontext);
929         return rc;
930 }
931 /*
932  * string mount options parsing and call set the sbsec
933  */
934 static int superblock_doinit(struct super_block *sb, void *data)
935 {
936         int rc = 0;
937         char *options = data;
938         struct security_mnt_opts opts;
939
940         security_init_mnt_opts(&opts);
941
942         if (!data)
943                 goto out;
944
945         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
946
947         rc = selinux_parse_opts_str(options, &opts);
948         if (rc)
949                 goto out_err;
950
951 out:
952         rc = selinux_set_mnt_opts(sb, &opts);
953
954 out_err:
955         security_free_mnt_opts(&opts);
956         return rc;
957 }
958
959 static void selinux_write_opts(struct seq_file *m,
960                                struct security_mnt_opts *opts)
961 {
962         int i;
963         char *prefix;
964
965         for (i = 0; i < opts->num_mnt_opts; i++) {
966                 char *has_comma;
967
968                 if (opts->mnt_opts[i])
969                         has_comma = strchr(opts->mnt_opts[i], ',');
970                 else
971                         has_comma = NULL;
972
973                 switch (opts->mnt_opts_flags[i]) {
974                 case CONTEXT_MNT:
975                         prefix = CONTEXT_STR;
976                         break;
977                 case FSCONTEXT_MNT:
978                         prefix = FSCONTEXT_STR;
979                         break;
980                 case ROOTCONTEXT_MNT:
981                         prefix = ROOTCONTEXT_STR;
982                         break;
983                 case DEFCONTEXT_MNT:
984                         prefix = DEFCONTEXT_STR;
985                         break;
986                 case SE_SBLABELSUPP:
987                         seq_putc(m, ',');
988                         seq_puts(m, LABELSUPP_STR);
989                         continue;
990                 default:
991                         BUG();
992                         return;
993                 };
994                 /* we need a comma before each option */
995                 seq_putc(m, ',');
996                 seq_puts(m, prefix);
997                 if (has_comma)
998                         seq_putc(m, '\"');
999                 seq_puts(m, opts->mnt_opts[i]);
1000                 if (has_comma)
1001                         seq_putc(m, '\"');
1002         }
1003 }
1004
1005 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1006 {
1007         struct security_mnt_opts opts;
1008         int rc;
1009
1010         rc = selinux_get_mnt_opts(sb, &opts);
1011         if (rc) {
1012                 /* before policy load we may get EINVAL, don't show anything */
1013                 if (rc == -EINVAL)
1014                         rc = 0;
1015                 return rc;
1016         }
1017
1018         selinux_write_opts(m, &opts);
1019
1020         security_free_mnt_opts(&opts);
1021
1022         return rc;
1023 }
1024
1025 static inline u16 inode_mode_to_security_class(umode_t mode)
1026 {
1027         switch (mode & S_IFMT) {
1028         case S_IFSOCK:
1029                 return SECCLASS_SOCK_FILE;
1030         case S_IFLNK:
1031                 return SECCLASS_LNK_FILE;
1032         case S_IFREG:
1033                 return SECCLASS_FILE;
1034         case S_IFBLK:
1035                 return SECCLASS_BLK_FILE;
1036         case S_IFDIR:
1037                 return SECCLASS_DIR;
1038         case S_IFCHR:
1039                 return SECCLASS_CHR_FILE;
1040         case S_IFIFO:
1041                 return SECCLASS_FIFO_FILE;
1042
1043         }
1044
1045         return SECCLASS_FILE;
1046 }
1047
1048 static inline int default_protocol_stream(int protocol)
1049 {
1050         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1051 }
1052
1053 static inline int default_protocol_dgram(int protocol)
1054 {
1055         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1056 }
1057
1058 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1059 {
1060         switch (family) {
1061         case PF_UNIX:
1062                 switch (type) {
1063                 case SOCK_STREAM:
1064                 case SOCK_SEQPACKET:
1065                         return SECCLASS_UNIX_STREAM_SOCKET;
1066                 case SOCK_DGRAM:
1067                         return SECCLASS_UNIX_DGRAM_SOCKET;
1068                 }
1069                 break;
1070         case PF_INET:
1071         case PF_INET6:
1072                 switch (type) {
1073                 case SOCK_STREAM:
1074                         if (default_protocol_stream(protocol))
1075                                 return SECCLASS_TCP_SOCKET;
1076                         else
1077                                 return SECCLASS_RAWIP_SOCKET;
1078                 case SOCK_DGRAM:
1079                         if (default_protocol_dgram(protocol))
1080                                 return SECCLASS_UDP_SOCKET;
1081                         else
1082                                 return SECCLASS_RAWIP_SOCKET;
1083                 case SOCK_DCCP:
1084                         return SECCLASS_DCCP_SOCKET;
1085                 default:
1086                         return SECCLASS_RAWIP_SOCKET;
1087                 }
1088                 break;
1089         case PF_NETLINK:
1090                 switch (protocol) {
1091                 case NETLINK_ROUTE:
1092                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1093                 case NETLINK_FIREWALL:
1094                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1095                 case NETLINK_SOCK_DIAG:
1096                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1097                 case NETLINK_NFLOG:
1098                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1099                 case NETLINK_XFRM:
1100                         return SECCLASS_NETLINK_XFRM_SOCKET;
1101                 case NETLINK_SELINUX:
1102                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1103                 case NETLINK_AUDIT:
1104                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1105                 case NETLINK_IP6_FW:
1106                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1107                 case NETLINK_DNRTMSG:
1108                         return SECCLASS_NETLINK_DNRT_SOCKET;
1109                 case NETLINK_KOBJECT_UEVENT:
1110                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1111                 default:
1112                         return SECCLASS_NETLINK_SOCKET;
1113                 }
1114         case PF_PACKET:
1115                 return SECCLASS_PACKET_SOCKET;
1116         case PF_KEY:
1117                 return SECCLASS_KEY_SOCKET;
1118         case PF_APPLETALK:
1119                 return SECCLASS_APPLETALK_SOCKET;
1120         }
1121
1122         return SECCLASS_SOCKET;
1123 }
1124
1125 #ifdef CONFIG_PROC_FS
1126 static int selinux_proc_get_sid(struct dentry *dentry,
1127                                 u16 tclass,
1128                                 u32 *sid)
1129 {
1130         int rc;
1131         char *buffer, *path;
1132
1133         buffer = (char *)__get_free_page(GFP_KERNEL);
1134         if (!buffer)
1135                 return -ENOMEM;
1136
1137         path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1138         if (IS_ERR(path))
1139                 rc = PTR_ERR(path);
1140         else {
1141                 /* each process gets a /proc/PID/ entry. Strip off the
1142                  * PID part to get a valid selinux labeling.
1143                  * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1144                 while (path[1] >= '0' && path[1] <= '9') {
1145                         path[1] = '/';
1146                         path++;
1147                 }
1148                 rc = security_genfs_sid("proc", path, tclass, sid);
1149         }
1150         free_page((unsigned long)buffer);
1151         return rc;
1152 }
1153 #else
1154 static int selinux_proc_get_sid(struct dentry *dentry,
1155                                 u16 tclass,
1156                                 u32 *sid)
1157 {
1158         return -EINVAL;
1159 }
1160 #endif
1161
1162 /* The inode's security attributes must be initialized before first use. */
1163 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1164 {
1165         struct superblock_security_struct *sbsec = NULL;
1166         struct inode_security_struct *isec = inode->i_security;
1167         u32 sid;
1168         struct dentry *dentry;
1169 #define INITCONTEXTLEN 255
1170         char *context = NULL;
1171         unsigned len = 0;
1172         int rc = 0;
1173
1174         if (isec->initialized)
1175                 goto out;
1176
1177         mutex_lock(&isec->lock);
1178         if (isec->initialized)
1179                 goto out_unlock;
1180
1181         sbsec = inode->i_sb->s_security;
1182         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1183                 /* Defer initialization until selinux_complete_init,
1184                    after the initial policy is loaded and the security
1185                    server is ready to handle calls. */
1186                 spin_lock(&sbsec->isec_lock);
1187                 if (list_empty(&isec->list))
1188                         list_add(&isec->list, &sbsec->isec_head);
1189                 spin_unlock(&sbsec->isec_lock);
1190                 goto out_unlock;
1191         }
1192
1193         switch (sbsec->behavior) {
1194         case SECURITY_FS_USE_XATTR:
1195                 if (!inode->i_op->getxattr) {
1196                         isec->sid = sbsec->def_sid;
1197                         break;
1198                 }
1199
1200                 /* Need a dentry, since the xattr API requires one.
1201                    Life would be simpler if we could just pass the inode. */
1202                 if (opt_dentry) {
1203                         /* Called from d_instantiate or d_splice_alias. */
1204                         dentry = dget(opt_dentry);
1205                 } else {
1206                         /* Called from selinux_complete_init, try to find a dentry. */
1207                         dentry = d_find_alias(inode);
1208                 }
1209                 if (!dentry) {
1210                         /*
1211                          * this is can be hit on boot when a file is accessed
1212                          * before the policy is loaded.  When we load policy we
1213                          * may find inodes that have no dentry on the
1214                          * sbsec->isec_head list.  No reason to complain as these
1215                          * will get fixed up the next time we go through
1216                          * inode_doinit with a dentry, before these inodes could
1217                          * be used again by userspace.
1218                          */
1219                         goto out_unlock;
1220                 }
1221
1222                 len = INITCONTEXTLEN;
1223                 context = kmalloc(len+1, GFP_NOFS);
1224                 if (!context) {
1225                         rc = -ENOMEM;
1226                         dput(dentry);
1227                         goto out_unlock;
1228                 }
1229                 context[len] = '\0';
1230                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1231                                            context, len);
1232                 if (rc == -ERANGE) {
1233                         kfree(context);
1234
1235                         /* Need a larger buffer.  Query for the right size. */
1236                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1237                                                    NULL, 0);
1238                         if (rc < 0) {
1239                                 dput(dentry);
1240                                 goto out_unlock;
1241                         }
1242                         len = rc;
1243                         context = kmalloc(len+1, GFP_NOFS);
1244                         if (!context) {
1245                                 rc = -ENOMEM;
1246                                 dput(dentry);
1247                                 goto out_unlock;
1248                         }
1249                         context[len] = '\0';
1250                         rc = inode->i_op->getxattr(dentry,
1251                                                    XATTR_NAME_SELINUX,
1252                                                    context, len);
1253                 }
1254                 dput(dentry);
1255                 if (rc < 0) {
1256                         if (rc != -ENODATA) {
1257                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1258                                        "%d for dev=%s ino=%ld\n", __func__,
1259                                        -rc, inode->i_sb->s_id, inode->i_ino);
1260                                 kfree(context);
1261                                 goto out_unlock;
1262                         }
1263                         /* Map ENODATA to the default file SID */
1264                         sid = sbsec->def_sid;
1265                         rc = 0;
1266                 } else {
1267                         rc = security_context_to_sid_default(context, rc, &sid,
1268                                                              sbsec->def_sid,
1269                                                              GFP_NOFS);
1270                         if (rc) {
1271                                 char *dev = inode->i_sb->s_id;
1272                                 unsigned long ino = inode->i_ino;
1273
1274                                 if (rc == -EINVAL) {
1275                                         if (printk_ratelimit())
1276                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1277                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1278                                                         "filesystem in question.\n", ino, dev, context);
1279                                 } else {
1280                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1281                                                "returned %d for dev=%s ino=%ld\n",
1282                                                __func__, context, -rc, dev, ino);
1283                                 }
1284                                 kfree(context);
1285                                 /* Leave with the unlabeled SID */
1286                                 rc = 0;
1287                                 break;
1288                         }
1289                 }
1290                 kfree(context);
1291                 isec->sid = sid;
1292                 break;
1293         case SECURITY_FS_USE_TASK:
1294                 isec->sid = isec->task_sid;
1295                 break;
1296         case SECURITY_FS_USE_TRANS:
1297                 /* Default to the fs SID. */
1298                 isec->sid = sbsec->sid;
1299
1300                 /* Try to obtain a transition SID. */
1301                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1302                 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1303                                              isec->sclass, NULL, &sid);
1304                 if (rc)
1305                         goto out_unlock;
1306                 isec->sid = sid;
1307                 break;
1308         case SECURITY_FS_USE_MNTPOINT:
1309                 isec->sid = sbsec->mntpoint_sid;
1310                 break;
1311         default:
1312                 /* Default to the fs superblock SID. */
1313                 isec->sid = sbsec->sid;
1314
1315                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1316                         if (opt_dentry) {
1317                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1318                                 rc = selinux_proc_get_sid(opt_dentry,
1319                                                           isec->sclass,
1320                                                           &sid);
1321                                 if (rc)
1322                                         goto out_unlock;
1323                                 isec->sid = sid;
1324                         }
1325                 }
1326                 break;
1327         }
1328
1329         isec->initialized = 1;
1330
1331 out_unlock:
1332         mutex_unlock(&isec->lock);
1333 out:
1334         if (isec->sclass == SECCLASS_FILE)
1335                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1336         return rc;
1337 }
1338
1339 /* Convert a Linux signal to an access vector. */
1340 static inline u32 signal_to_av(int sig)
1341 {
1342         u32 perm = 0;
1343
1344         switch (sig) {
1345         case SIGCHLD:
1346                 /* Commonly granted from child to parent. */
1347                 perm = PROCESS__SIGCHLD;
1348                 break;
1349         case SIGKILL:
1350                 /* Cannot be caught or ignored */
1351                 perm = PROCESS__SIGKILL;
1352                 break;
1353         case SIGSTOP:
1354                 /* Cannot be caught or ignored */
1355                 perm = PROCESS__SIGSTOP;
1356                 break;
1357         default:
1358                 /* All other signals. */
1359                 perm = PROCESS__SIGNAL;
1360                 break;
1361         }
1362
1363         return perm;
1364 }
1365
1366 /*
1367  * Check permission between a pair of credentials
1368  * fork check, ptrace check, etc.
1369  */
1370 static int cred_has_perm(const struct cred *actor,
1371                          const struct cred *target,
1372                          u32 perms)
1373 {
1374         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1375
1376         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1377 }
1378
1379 /*
1380  * Check permission between a pair of tasks, e.g. signal checks,
1381  * fork check, ptrace check, etc.
1382  * tsk1 is the actor and tsk2 is the target
1383  * - this uses the default subjective creds of tsk1
1384  */
1385 static int task_has_perm(const struct task_struct *tsk1,
1386                          const struct task_struct *tsk2,
1387                          u32 perms)
1388 {
1389         const struct task_security_struct *__tsec1, *__tsec2;
1390         u32 sid1, sid2;
1391
1392         rcu_read_lock();
1393         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1394         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1395         rcu_read_unlock();
1396         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1397 }
1398
1399 /*
1400  * Check permission between current and another task, e.g. signal checks,
1401  * fork check, ptrace check, etc.
1402  * current is the actor and tsk2 is the target
1403  * - this uses current's subjective creds
1404  */
1405 static int current_has_perm(const struct task_struct *tsk,
1406                             u32 perms)
1407 {
1408         u32 sid, tsid;
1409
1410         sid = current_sid();
1411         tsid = task_sid(tsk);
1412         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1413 }
1414
1415 #if CAP_LAST_CAP > 63
1416 #error Fix SELinux to handle capabilities > 63.
1417 #endif
1418
1419 /* Check whether a task is allowed to use a capability. */
1420 static int cred_has_capability(const struct cred *cred,
1421                                int cap, int audit)
1422 {
1423         struct common_audit_data ad;
1424         struct av_decision avd;
1425         u16 sclass;
1426         u32 sid = cred_sid(cred);
1427         u32 av = CAP_TO_MASK(cap);
1428         int rc;
1429
1430         COMMON_AUDIT_DATA_INIT(&ad, CAP);
1431         ad.tsk = current;
1432         ad.u.cap = cap;
1433
1434         switch (CAP_TO_INDEX(cap)) {
1435         case 0:
1436                 sclass = SECCLASS_CAPABILITY;
1437                 break;
1438         case 1:
1439                 sclass = SECCLASS_CAPABILITY2;
1440                 break;
1441         default:
1442                 printk(KERN_ERR
1443                        "SELinux:  out of range capability %d\n", cap);
1444                 BUG();
1445                 return -EINVAL;
1446         }
1447
1448         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1449         if (audit == SECURITY_CAP_AUDIT) {
1450                 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1451                 if (rc2)
1452                         return rc2;
1453         }
1454         return rc;
1455 }
1456
1457 /* Check whether a task is allowed to use a system operation. */
1458 static int task_has_system(struct task_struct *tsk,
1459                            u32 perms)
1460 {
1461         u32 sid = task_sid(tsk);
1462
1463         return avc_has_perm(sid, SECINITSID_KERNEL,
1464                             SECCLASS_SYSTEM, perms, NULL);
1465 }
1466
1467 /* Check whether a task has a particular permission to an inode.
1468    The 'adp' parameter is optional and allows other audit
1469    data to be passed (e.g. the dentry). */
1470 static int inode_has_perm(const struct cred *cred,
1471                           struct inode *inode,
1472                           u32 perms,
1473                           struct common_audit_data *adp,
1474                           unsigned flags)
1475 {
1476         struct inode_security_struct *isec;
1477         u32 sid;
1478
1479         validate_creds(cred);
1480
1481         if (unlikely(IS_PRIVATE(inode)))
1482                 return 0;
1483
1484         sid = cred_sid(cred);
1485         isec = inode->i_security;
1486
1487         return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
1488 }
1489
1490 static int inode_has_perm_noadp(const struct cred *cred,
1491                                 struct inode *inode,
1492                                 u32 perms,
1493                                 unsigned flags)
1494 {
1495         struct common_audit_data ad;
1496
1497         COMMON_AUDIT_DATA_INIT(&ad, INODE);
1498         ad.u.inode = inode;
1499         return inode_has_perm(cred, inode, perms, &ad, flags);
1500 }
1501
1502 /* Same as inode_has_perm, but pass explicit audit data containing
1503    the dentry to help the auditing code to more easily generate the
1504    pathname if needed. */
1505 static inline int dentry_has_perm(const struct cred *cred,
1506                                   struct dentry *dentry,
1507                                   u32 av)
1508 {
1509         struct inode *inode = dentry->d_inode;
1510         struct common_audit_data ad;
1511
1512         COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1513         ad.u.dentry = dentry;
1514         return inode_has_perm(cred, inode, av, &ad, 0);
1515 }
1516
1517 /* Same as inode_has_perm, but pass explicit audit data containing
1518    the path to help the auditing code to more easily generate the
1519    pathname if needed. */
1520 static inline int path_has_perm(const struct cred *cred,
1521                                 struct path *path,
1522                                 u32 av)
1523 {
1524         struct inode *inode = path->dentry->d_inode;
1525         struct common_audit_data ad;
1526
1527         COMMON_AUDIT_DATA_INIT(&ad, PATH);
1528         ad.u.path = *path;
1529         return inode_has_perm(cred, inode, av, &ad, 0);
1530 }
1531
1532 /* Check whether a task can use an open file descriptor to
1533    access an inode in a given way.  Check access to the
1534    descriptor itself, and then use dentry_has_perm to
1535    check a particular permission to the file.
1536    Access to the descriptor is implicitly granted if it
1537    has the same SID as the process.  If av is zero, then
1538    access to the file is not checked, e.g. for cases
1539    where only the descriptor is affected like seek. */
1540 static int file_has_perm(const struct cred *cred,
1541                          struct file *file,
1542                          u32 av)
1543 {
1544         struct file_security_struct *fsec = file->f_security;
1545         struct inode *inode = file->f_path.dentry->d_inode;
1546         struct common_audit_data ad;
1547         u32 sid = cred_sid(cred);
1548         int rc;
1549
1550         COMMON_AUDIT_DATA_INIT(&ad, PATH);
1551         ad.u.path = file->f_path;
1552
1553         if (sid != fsec->sid) {
1554                 rc = avc_has_perm(sid, fsec->sid,
1555                                   SECCLASS_FD,
1556                                   FD__USE,
1557                                   &ad);
1558                 if (rc)
1559                         goto out;
1560         }
1561
1562         /* av is zero if only checking access to the descriptor. */
1563         rc = 0;
1564         if (av)
1565                 rc = inode_has_perm(cred, inode, av, &ad, 0);
1566
1567 out:
1568         return rc;
1569 }
1570
1571 /* Check whether a task can create a file. */
1572 static int may_create(struct inode *dir,
1573                       struct dentry *dentry,
1574                       u16 tclass)
1575 {
1576         const struct task_security_struct *tsec = current_security();
1577         struct inode_security_struct *dsec;
1578         struct superblock_security_struct *sbsec;
1579         u32 sid, newsid;
1580         struct common_audit_data ad;
1581         int rc;
1582
1583         dsec = dir->i_security;
1584         sbsec = dir->i_sb->s_security;
1585
1586         sid = tsec->sid;
1587         newsid = tsec->create_sid;
1588
1589         COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1590         ad.u.dentry = dentry;
1591
1592         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1593                           DIR__ADD_NAME | DIR__SEARCH,
1594                           &ad);
1595         if (rc)
1596                 return rc;
1597
1598         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1599                 rc = security_transition_sid(sid, dsec->sid, tclass,
1600                                              &dentry->d_name, &newsid);
1601                 if (rc)
1602                         return rc;
1603         }
1604
1605         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1606         if (rc)
1607                 return rc;
1608
1609         return avc_has_perm(newsid, sbsec->sid,
1610                             SECCLASS_FILESYSTEM,
1611                             FILESYSTEM__ASSOCIATE, &ad);
1612 }
1613
1614 /* Check whether a task can create a key. */
1615 static int may_create_key(u32 ksid,
1616                           struct task_struct *ctx)
1617 {
1618         u32 sid = task_sid(ctx);
1619
1620         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1621 }
1622
1623 #define MAY_LINK        0
1624 #define MAY_UNLINK      1
1625 #define MAY_RMDIR       2
1626
1627 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1628 static int may_link(struct inode *dir,
1629                     struct dentry *dentry,
1630                     int kind)
1631
1632 {
1633         struct inode_security_struct *dsec, *isec;
1634         struct common_audit_data ad;
1635         u32 sid = current_sid();
1636         u32 av;
1637         int rc;
1638
1639         dsec = dir->i_security;
1640         isec = dentry->d_inode->i_security;
1641
1642         COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1643         ad.u.dentry = dentry;
1644
1645         av = DIR__SEARCH;
1646         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1647         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1648         if (rc)
1649                 return rc;
1650
1651         switch (kind) {
1652         case MAY_LINK:
1653                 av = FILE__LINK;
1654                 break;
1655         case MAY_UNLINK:
1656                 av = FILE__UNLINK;
1657                 break;
1658         case MAY_RMDIR:
1659                 av = DIR__RMDIR;
1660                 break;
1661         default:
1662                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1663                         __func__, kind);
1664                 return 0;
1665         }
1666
1667         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1668         return rc;
1669 }
1670
1671 static inline int may_rename(struct inode *old_dir,
1672                              struct dentry *old_dentry,
1673                              struct inode *new_dir,
1674                              struct dentry *new_dentry)
1675 {
1676         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1677         struct common_audit_data ad;
1678         u32 sid = current_sid();
1679         u32 av;
1680         int old_is_dir, new_is_dir;
1681         int rc;
1682
1683         old_dsec = old_dir->i_security;
1684         old_isec = old_dentry->d_inode->i_security;
1685         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1686         new_dsec = new_dir->i_security;
1687
1688         COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1689
1690         ad.u.dentry = old_dentry;
1691         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1692                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1693         if (rc)
1694                 return rc;
1695         rc = avc_has_perm(sid, old_isec->sid,
1696                           old_isec->sclass, FILE__RENAME, &ad);
1697         if (rc)
1698                 return rc;
1699         if (old_is_dir && new_dir != old_dir) {
1700                 rc = avc_has_perm(sid, old_isec->sid,
1701                                   old_isec->sclass, DIR__REPARENT, &ad);
1702                 if (rc)
1703                         return rc;
1704         }
1705
1706         ad.u.dentry = new_dentry;
1707         av = DIR__ADD_NAME | DIR__SEARCH;
1708         if (new_dentry->d_inode)
1709                 av |= DIR__REMOVE_NAME;
1710         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1711         if (rc)
1712                 return rc;
1713         if (new_dentry->d_inode) {
1714                 new_isec = new_dentry->d_inode->i_security;
1715                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1716                 rc = avc_has_perm(sid, new_isec->sid,
1717                                   new_isec->sclass,
1718                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1719                 if (rc)
1720                         return rc;
1721         }
1722
1723         return 0;
1724 }
1725
1726 /* Check whether a task can perform a filesystem operation. */
1727 static int superblock_has_perm(const struct cred *cred,
1728                                struct super_block *sb,
1729                                u32 perms,
1730                                struct common_audit_data *ad)
1731 {
1732         struct superblock_security_struct *sbsec;
1733         u32 sid = cred_sid(cred);
1734
1735         sbsec = sb->s_security;
1736         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1737 }
1738
1739 /* Convert a Linux mode and permission mask to an access vector. */
1740 static inline u32 file_mask_to_av(int mode, int mask)
1741 {
1742         u32 av = 0;
1743
1744         if (!S_ISDIR(mode)) {
1745                 if (mask & MAY_EXEC)
1746                         av |= FILE__EXECUTE;
1747                 if (mask & MAY_READ)
1748                         av |= FILE__READ;
1749
1750                 if (mask & MAY_APPEND)
1751                         av |= FILE__APPEND;
1752                 else if (mask & MAY_WRITE)
1753                         av |= FILE__WRITE;
1754
1755         } else {
1756                 if (mask & MAY_EXEC)
1757                         av |= DIR__SEARCH;
1758                 if (mask & MAY_WRITE)
1759                         av |= DIR__WRITE;
1760                 if (mask & MAY_READ)
1761                         av |= DIR__READ;
1762         }
1763
1764         return av;
1765 }
1766
1767 /* Convert a Linux file to an access vector. */
1768 static inline u32 file_to_av(struct file *file)
1769 {
1770         u32 av = 0;
1771
1772         if (file->f_mode & FMODE_READ)
1773                 av |= FILE__READ;
1774         if (file->f_mode & FMODE_WRITE) {
1775                 if (file->f_flags & O_APPEND)
1776                         av |= FILE__APPEND;
1777                 else
1778                         av |= FILE__WRITE;
1779         }
1780         if (!av) {
1781                 /*
1782                  * Special file opened with flags 3 for ioctl-only use.
1783                  */
1784                 av = FILE__IOCTL;
1785         }
1786
1787         return av;
1788 }
1789
1790 /*
1791  * Convert a file to an access vector and include the correct open
1792  * open permission.
1793  */
1794 static inline u32 open_file_to_av(struct file *file)
1795 {
1796         u32 av = file_to_av(file);
1797
1798         if (selinux_policycap_openperm)
1799                 av |= FILE__OPEN;
1800
1801         return av;
1802 }
1803
1804 /* Hook functions begin here. */
1805
1806 static int selinux_ptrace_access_check(struct task_struct *child,
1807                                      unsigned int mode)
1808 {
1809         int rc;
1810
1811         rc = cap_ptrace_access_check(child, mode);
1812         if (rc)
1813                 return rc;
1814
1815         if (mode & PTRACE_MODE_READ) {
1816                 u32 sid = current_sid();
1817                 u32 csid = task_sid(child);
1818                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1819         }
1820
1821         return current_has_perm(child, PROCESS__PTRACE);
1822 }
1823
1824 static int selinux_ptrace_traceme(struct task_struct *parent)
1825 {
1826         int rc;
1827
1828         rc = cap_ptrace_traceme(parent);
1829         if (rc)
1830                 return rc;
1831
1832         return task_has_perm(parent, current, PROCESS__PTRACE);
1833 }
1834
1835 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1836                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1837 {
1838         int error;
1839
1840         error = current_has_perm(target, PROCESS__GETCAP);
1841         if (error)
1842                 return error;
1843
1844         return cap_capget(target, effective, inheritable, permitted);
1845 }
1846
1847 static int selinux_capset(struct cred *new, const struct cred *old,
1848                           const kernel_cap_t *effective,
1849                           const kernel_cap_t *inheritable,
1850                           const kernel_cap_t *permitted)
1851 {
1852         int error;
1853
1854         error = cap_capset(new, old,
1855                                       effective, inheritable, permitted);
1856         if (error)
1857                 return error;
1858
1859         return cred_has_perm(old, new, PROCESS__SETCAP);
1860 }
1861
1862 /*
1863  * (This comment used to live with the selinux_task_setuid hook,
1864  * which was removed).
1865  *
1866  * Since setuid only affects the current process, and since the SELinux
1867  * controls are not based on the Linux identity attributes, SELinux does not
1868  * need to control this operation.  However, SELinux does control the use of
1869  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1870  */
1871
1872 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1873                            int cap, int audit)
1874 {
1875         int rc;
1876
1877         rc = cap_capable(cred, ns, cap, audit);
1878         if (rc)
1879                 return rc;
1880
1881         return cred_has_capability(cred, cap, audit);
1882 }
1883
1884 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1885 {
1886         const struct cred *cred = current_cred();
1887         int rc = 0;
1888
1889         if (!sb)
1890                 return 0;
1891
1892         switch (cmds) {
1893         case Q_SYNC:
1894         case Q_QUOTAON:
1895         case Q_QUOTAOFF:
1896         case Q_SETINFO:
1897         case Q_SETQUOTA:
1898                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1899                 break;
1900         case Q_GETFMT:
1901         case Q_GETINFO:
1902         case Q_GETQUOTA:
1903                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1904                 break;
1905         default:
1906                 rc = 0;  /* let the kernel handle invalid cmds */
1907                 break;
1908         }
1909         return rc;
1910 }
1911
1912 static int selinux_quota_on(struct dentry *dentry)
1913 {
1914         const struct cred *cred = current_cred();
1915
1916         return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1917 }
1918
1919 static int selinux_syslog(int type)
1920 {
1921         int rc;
1922
1923         switch (type) {
1924         case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
1925         case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
1926                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1927                 break;
1928         case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
1929         case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
1930         /* Set level of messages printed to console */
1931         case SYSLOG_ACTION_CONSOLE_LEVEL:
1932                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1933                 break;
1934         case SYSLOG_ACTION_CLOSE:       /* Close log */
1935         case SYSLOG_ACTION_OPEN:        /* Open log */
1936         case SYSLOG_ACTION_READ:        /* Read from log */
1937         case SYSLOG_ACTION_READ_CLEAR:  /* Read/clear last kernel messages */
1938         case SYSLOG_ACTION_CLEAR:       /* Clear ring buffer */
1939         default:
1940                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1941                 break;
1942         }
1943         return rc;
1944 }
1945
1946 /*
1947  * Check that a process has enough memory to allocate a new virtual
1948  * mapping. 0 means there is enough memory for the allocation to
1949  * succeed and -ENOMEM implies there is not.
1950  *
1951  * Do not audit the selinux permission check, as this is applied to all
1952  * processes that allocate mappings.
1953  */
1954 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1955 {
1956         int rc, cap_sys_admin = 0;
1957
1958         rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
1959                              SECURITY_CAP_NOAUDIT);
1960         if (rc == 0)
1961                 cap_sys_admin = 1;
1962
1963         return __vm_enough_memory(mm, pages, cap_sys_admin);
1964 }
1965
1966 /* binprm security operations */
1967
1968 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
1969 {
1970         const struct task_security_struct *old_tsec;
1971         struct task_security_struct *new_tsec;
1972         struct inode_security_struct *isec;
1973         struct common_audit_data ad;
1974         struct inode *inode = bprm->file->f_path.dentry->d_inode;
1975         int rc;
1976
1977         rc = cap_bprm_set_creds(bprm);
1978         if (rc)
1979                 return rc;
1980
1981         /* SELinux context only depends on initial program or script and not
1982          * the script interpreter */
1983         if (bprm->cred_prepared)
1984                 return 0;
1985
1986         old_tsec = current_security();
1987         new_tsec = bprm->cred->security;
1988         isec = inode->i_security;
1989
1990         /* Default to the current task SID. */
1991         new_tsec->sid = old_tsec->sid;
1992         new_tsec->osid = old_tsec->sid;
1993
1994         /* Reset fs, key, and sock SIDs on execve. */
1995         new_tsec->create_sid = 0;
1996         new_tsec->keycreate_sid = 0;
1997         new_tsec->sockcreate_sid = 0;
1998
1999         if (old_tsec->exec_sid) {
2000                 new_tsec->sid = old_tsec->exec_sid;
2001                 /* Reset exec SID on execve. */
2002                 new_tsec->exec_sid = 0;
2003         } else {
2004                 /* Check for a default transition on this program. */
2005                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2006                                              SECCLASS_PROCESS, NULL,
2007                                              &new_tsec->sid);
2008                 if (rc)
2009                         return rc;
2010         }
2011
2012         COMMON_AUDIT_DATA_INIT(&ad, PATH);
2013         ad.u.path = bprm->file->f_path;
2014
2015         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2016                 new_tsec->sid = old_tsec->sid;
2017
2018         if (new_tsec->sid == old_tsec->sid) {
2019                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2020                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2021                 if (rc)
2022                         return rc;
2023         } else {
2024                 /* Check permissions for the transition. */
2025                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2026                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2027                 if (rc)
2028                         return rc;
2029
2030                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2031                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2032                 if (rc)
2033                         return rc;
2034
2035                 /* Check for shared state */
2036                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2037                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2038                                           SECCLASS_PROCESS, PROCESS__SHARE,
2039                                           NULL);
2040                         if (rc)
2041                                 return -EPERM;
2042                 }
2043
2044                 /* Make sure that anyone attempting to ptrace over a task that
2045                  * changes its SID has the appropriate permit */
2046                 if (bprm->unsafe &
2047                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2048                         struct task_struct *tracer;
2049                         struct task_security_struct *sec;
2050                         u32 ptsid = 0;
2051
2052                         rcu_read_lock();
2053                         tracer = ptrace_parent(current);
2054                         if (likely(tracer != NULL)) {
2055                                 sec = __task_cred(tracer)->security;
2056                                 ptsid = sec->sid;
2057                         }
2058                         rcu_read_unlock();
2059
2060                         if (ptsid != 0) {
2061                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2062                                                   SECCLASS_PROCESS,
2063                                                   PROCESS__PTRACE, NULL);
2064                                 if (rc)
2065                                         return -EPERM;
2066                         }
2067                 }
2068
2069                 /* Clear any possibly unsafe personality bits on exec: */
2070                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2071         }
2072
2073         return 0;
2074 }
2075
2076 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2077 {
2078         const struct task_security_struct *tsec = current_security();
2079         u32 sid, osid;
2080         int atsecure = 0;
2081
2082         sid = tsec->sid;
2083         osid = tsec->osid;
2084
2085         if (osid != sid) {
2086                 /* Enable secure mode for SIDs transitions unless
2087                    the noatsecure permission is granted between
2088                    the two SIDs, i.e. ahp returns 0. */
2089                 atsecure = avc_has_perm(osid, sid,
2090                                         SECCLASS_PROCESS,
2091                                         PROCESS__NOATSECURE, NULL);
2092         }
2093
2094         return (atsecure || cap_bprm_secureexec(bprm));
2095 }
2096
2097 /* Derived from fs/exec.c:flush_old_files. */
2098 static inline void flush_unauthorized_files(const struct cred *cred,
2099                                             struct files_struct *files)
2100 {
2101         struct common_audit_data ad;
2102         struct file *file, *devnull = NULL;
2103         struct tty_struct *tty;
2104         struct fdtable *fdt;
2105         long j = -1;
2106         int drop_tty = 0;
2107
2108         tty = get_current_tty();
2109         if (tty) {
2110                 spin_lock(&tty_files_lock);
2111                 if (!list_empty(&tty->tty_files)) {
2112                         struct tty_file_private *file_priv;
2113                         struct inode *inode;
2114
2115                         /* Revalidate access to controlling tty.
2116                            Use inode_has_perm on the tty inode directly rather
2117                            than using file_has_perm, as this particular open
2118                            file may belong to another process and we are only
2119                            interested in the inode-based check here. */
2120                         file_priv = list_first_entry(&tty->tty_files,
2121                                                 struct tty_file_private, list);
2122                         file = file_priv->file;
2123                         inode = file->f_path.dentry->d_inode;
2124                         if (inode_has_perm_noadp(cred, inode,
2125                                            FILE__READ | FILE__WRITE, 0)) {
2126                                 drop_tty = 1;
2127                         }
2128                 }
2129                 spin_unlock(&tty_files_lock);
2130                 tty_kref_put(tty);
2131         }
2132         /* Reset controlling tty. */
2133         if (drop_tty)
2134                 no_tty();
2135
2136         /* Revalidate access to inherited open files. */
2137
2138         COMMON_AUDIT_DATA_INIT(&ad, INODE);
2139
2140         spin_lock(&files->file_lock);
2141         for (;;) {
2142                 unsigned long set, i;
2143                 int fd;
2144
2145                 j++;
2146                 i = j * __NFDBITS;
2147                 fdt = files_fdtable(files);
2148                 if (i >= fdt->max_fds)
2149                         break;
2150                 set = fdt->open_fds->fds_bits[j];
2151                 if (!set)
2152                         continue;
2153                 spin_unlock(&files->file_lock);
2154                 for ( ; set ; i++, set >>= 1) {
2155                         if (set & 1) {
2156                                 file = fget(i);
2157                                 if (!file)
2158                                         continue;
2159                                 if (file_has_perm(cred,
2160                                                   file,
2161                                                   file_to_av(file))) {
2162                                         sys_close(i);
2163                                         fd = get_unused_fd();
2164                                         if (fd != i) {
2165                                                 if (fd >= 0)
2166                                                         put_unused_fd(fd);
2167                                                 fput(file);
2168                                                 continue;
2169                                         }
2170                                         if (devnull) {
2171                                                 get_file(devnull);
2172                                         } else {
2173                                                 devnull = dentry_open(
2174                                                         dget(selinux_null),
2175                                                         mntget(selinuxfs_mount),
2176                                                         O_RDWR, cred);
2177                                                 if (IS_ERR(devnull)) {
2178                                                         devnull = NULL;
2179                                                         put_unused_fd(fd);
2180                                                         fput(file);
2181                                                         continue;
2182                                                 }
2183                                         }
2184                                         fd_install(fd, devnull);
2185                                 }
2186                                 fput(file);
2187                         }
2188                 }
2189                 spin_lock(&files->file_lock);
2190
2191         }
2192         spin_unlock(&files->file_lock);
2193 }
2194
2195 /*
2196  * Prepare a process for imminent new credential changes due to exec
2197  */
2198 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2199 {
2200         struct task_security_struct *new_tsec;
2201         struct rlimit *rlim, *initrlim;
2202         int rc, i;
2203
2204         new_tsec = bprm->cred->security;
2205         if (new_tsec->sid == new_tsec->osid)
2206                 return;
2207
2208         /* Close files for which the new task SID is not authorized. */
2209         flush_unauthorized_files(bprm->cred, current->files);
2210
2211         /* Always clear parent death signal on SID transitions. */
2212         current->pdeath_signal = 0;
2213
2214         /* Check whether the new SID can inherit resource limits from the old
2215          * SID.  If not, reset all soft limits to the lower of the current
2216          * task's hard limit and the init task's soft limit.
2217          *
2218          * Note that the setting of hard limits (even to lower them) can be
2219          * controlled by the setrlimit check.  The inclusion of the init task's
2220          * soft limit into the computation is to avoid resetting soft limits
2221          * higher than the default soft limit for cases where the default is
2222          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2223          */
2224         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2225                           PROCESS__RLIMITINH, NULL);
2226         if (rc) {
2227                 /* protect against do_prlimit() */
2228                 task_lock(current);
2229                 for (i = 0; i < RLIM_NLIMITS; i++) {
2230                         rlim = current->signal->rlim + i;
2231                         initrlim = init_task.signal->rlim + i;
2232                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2233                 }
2234                 task_unlock(current);
2235                 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2236         }
2237 }
2238
2239 /*
2240  * Clean up the process immediately after the installation of new credentials
2241  * due to exec
2242  */
2243 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2244 {
2245         const struct task_security_struct *tsec = current_security();
2246         struct itimerval itimer;
2247         u32 osid, sid;
2248         int rc, i;
2249
2250         osid = tsec->osid;
2251         sid = tsec->sid;
2252
2253         if (sid == osid)
2254                 return;
2255
2256         /* Check whether the new SID can inherit signal state from the old SID.
2257          * If not, clear itimers to avoid subsequent signal generation and
2258          * flush and unblock signals.
2259          *
2260          * This must occur _after_ the task SID has been updated so that any
2261          * kill done after the flush will be checked against the new SID.
2262          */
2263         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2264         if (rc) {
2265                 memset(&itimer, 0, sizeof itimer);
2266                 for (i = 0; i < 3; i++)
2267                         do_setitimer(i, &itimer, NULL);
2268                 spin_lock_irq(&current->sighand->siglock);
2269                 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2270                         __flush_signals(current);
2271                         flush_signal_handlers(current, 1);
2272                         sigemptyset(&current->blocked);
2273                 }
2274                 spin_unlock_irq(&current->sighand->siglock);
2275         }
2276
2277         /* Wake up the parent if it is waiting so that it can recheck
2278          * wait permission to the new task SID. */
2279         read_lock(&tasklist_lock);
2280         __wake_up_parent(current, current->real_parent);
2281         read_unlock(&tasklist_lock);
2282 }
2283
2284 /* superblock security operations */
2285
2286 static int selinux_sb_alloc_security(struct super_block *sb)
2287 {
2288         return superblock_alloc_security(sb);
2289 }
2290
2291 static void selinux_sb_free_security(struct super_block *sb)
2292 {
2293         superblock_free_security(sb);
2294 }
2295
2296 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2297 {
2298         if (plen > olen)
2299                 return 0;
2300
2301         return !memcmp(prefix, option, plen);
2302 }
2303
2304 static inline int selinux_option(char *option, int len)
2305 {
2306         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2307                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2308                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2309                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2310                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2311 }
2312
2313 static inline void take_option(char **to, char *from, int *first, int len)
2314 {
2315         if (!*first) {
2316                 **to = ',';
2317                 *to += 1;
2318         } else
2319                 *first = 0;
2320         memcpy(*to, from, len);
2321         *to += len;
2322 }
2323
2324 static inline void take_selinux_option(char **to, char *from, int *first,
2325                                        int len)
2326 {
2327         int current_size = 0;
2328
2329         if (!*first) {
2330                 **to = '|';
2331                 *to += 1;
2332         } else
2333                 *first = 0;
2334
2335         while (current_size < len) {
2336                 if (*from != '"') {
2337                         **to = *from;
2338                         *to += 1;
2339                 }
2340                 from += 1;
2341                 current_size += 1;
2342         }
2343 }
2344
2345 static int selinux_sb_copy_data(char *orig, char *copy)
2346 {
2347         int fnosec, fsec, rc = 0;
2348         char *in_save, *in_curr, *in_end;
2349         char *sec_curr, *nosec_save, *nosec;
2350         int open_quote = 0;
2351
2352         in_curr = orig;
2353         sec_curr = copy;
2354
2355         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2356         if (!nosec) {
2357                 rc = -ENOMEM;
2358                 goto out;
2359         }
2360
2361         nosec_save = nosec;
2362         fnosec = fsec = 1;
2363         in_save = in_end = orig;
2364
2365         do {
2366                 if (*in_end == '"')
2367                         open_quote = !open_quote;
2368                 if ((*in_end == ',' && open_quote == 0) ||
2369                                 *in_end == '\0') {
2370                         int len = in_end - in_curr;
2371
2372                         if (selinux_option(in_curr, len))
2373                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2374                         else
2375                                 take_option(&nosec, in_curr, &fnosec, len);
2376
2377                         in_curr = in_end + 1;
2378                 }
2379         } while (*in_end++);
2380
2381         strcpy(in_save, nosec_save);
2382         free_page((unsigned long)nosec_save);
2383 out:
2384         return rc;
2385 }
2386
2387 static int selinux_sb_remount(struct super_block *sb, void *data)
2388 {
2389         int rc, i, *flags;
2390         struct security_mnt_opts opts;
2391         char *secdata, **mount_options;
2392         struct superblock_security_struct *sbsec = sb->s_security;
2393
2394         if (!(sbsec->flags & SE_SBINITIALIZED))
2395                 return 0;
2396
2397         if (!data)
2398                 return 0;
2399
2400         if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2401                 return 0;
2402
2403         security_init_mnt_opts(&opts);
2404         secdata = alloc_secdata();
2405         if (!secdata)
2406                 return -ENOMEM;
2407         rc = selinux_sb_copy_data(data, secdata);
2408         if (rc)
2409                 goto out_free_secdata;
2410
2411         rc = selinux_parse_opts_str(secdata, &opts);
2412         if (rc)
2413                 goto out_free_secdata;
2414
2415         mount_options = opts.mnt_opts;
2416         flags = opts.mnt_opts_flags;
2417
2418         for (i = 0; i < opts.num_mnt_opts; i++) {
2419                 u32 sid;
2420                 size_t len;
2421
2422                 if (flags[i] == SE_SBLABELSUPP)
2423                         continue;
2424                 len = strlen(mount_options[i]);
2425                 rc = security_context_to_sid(mount_options[i], len, &sid);
2426                 if (rc) {
2427                         printk(KERN_WARNING "SELinux: security_context_to_sid"
2428                                "(%s) failed for (dev %s, type %s) errno=%d\n",
2429                                mount_options[i], sb->s_id, sb->s_type->name, rc);
2430                         goto out_free_opts;
2431                 }
2432                 rc = -EINVAL;
2433                 switch (flags[i]) {
2434                 case FSCONTEXT_MNT:
2435                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2436                                 goto out_bad_option;
2437                         break;
2438                 case CONTEXT_MNT:
2439                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2440                                 goto out_bad_option;
2441                         break;
2442                 case ROOTCONTEXT_MNT: {
2443                         struct inode_security_struct *root_isec;
2444                         root_isec = sb->s_root->d_inode->i_security;
2445
2446                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2447                                 goto out_bad_option;
2448                         break;
2449                 }
2450                 case DEFCONTEXT_MNT:
2451                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2452                                 goto out_bad_option;
2453                         break;
2454                 default:
2455                         goto out_free_opts;
2456                 }
2457         }
2458
2459         rc = 0;
2460 out_free_opts:
2461         security_free_mnt_opts(&opts);
2462 out_free_secdata:
2463         free_secdata(secdata);
2464         return rc;
2465 out_bad_option:
2466         printk(KERN_WARNING "SELinux: unable to change security options "
2467                "during remount (dev %s, type=%s)\n", sb->s_id,
2468                sb->s_type->name);
2469         goto out_free_opts;
2470 }
2471
2472 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2473 {
2474         const struct cred *cred = current_cred();
2475         struct common_audit_data ad;
2476         int rc;
2477
2478         rc = superblock_doinit(sb, data);
2479         if (rc)
2480                 return rc;
2481
2482         /* Allow all mounts performed by the kernel */
2483         if (flags & MS_KERNMOUNT)
2484                 return 0;
2485
2486         COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2487         ad.u.dentry = sb->s_root;
2488         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2489 }
2490
2491 static int selinux_sb_statfs(struct dentry *dentry)
2492 {
2493         const struct cred *cred = current_cred();
2494         struct common_audit_data ad;
2495
2496         COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2497         ad.u.dentry = dentry->d_sb->s_root;
2498         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2499 }
2500
2501 static int selinux_mount(char *dev_name,
2502                          struct path *path,
2503                          char *type,
2504                          unsigned long flags,
2505                          void *data)
2506 {
2507         const struct cred *cred = current_cred();
2508
2509         if (flags & MS_REMOUNT)
2510                 return superblock_has_perm(cred, path->dentry->d_sb,
2511                                            FILESYSTEM__REMOUNT, NULL);
2512         else
2513                 return path_has_perm(cred, path, FILE__MOUNTON);
2514 }
2515
2516 static int selinux_umount(struct vfsmount *mnt, int flags)
2517 {
2518         const struct cred *cred = current_cred();
2519
2520         return superblock_has_perm(cred, mnt->mnt_sb,
2521                                    FILESYSTEM__UNMOUNT, NULL);
2522 }
2523
2524 /* inode security operations */
2525
2526 static int selinux_inode_alloc_security(struct inode *inode)
2527 {
2528         return inode_alloc_security(inode);
2529 }
2530
2531 static void selinux_inode_free_security(struct inode *inode)
2532 {
2533         inode_free_security(inode);
2534 }
2535
2536 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2537                                        const struct qstr *qstr, char **name,
2538                                        void **value, size_t *len)
2539 {
2540         const struct task_security_struct *tsec = current_security();
2541         struct inode_security_struct *dsec;
2542         struct superblock_security_struct *sbsec;
2543         u32 sid, newsid, clen;
2544         int rc;
2545         char *namep = NULL, *context;
2546
2547         dsec = dir->i_security;
2548         sbsec = dir->i_sb->s_security;
2549
2550         sid = tsec->sid;
2551         newsid = tsec->create_sid;
2552
2553         if ((sbsec->flags & SE_SBINITIALIZED) &&
2554             (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2555                 newsid = sbsec->mntpoint_sid;
2556         else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2557                 rc = security_transition_sid(sid, dsec->sid,
2558                                              inode_mode_to_security_class(inode->i_mode),
2559                                              qstr, &newsid);
2560                 if (rc) {
2561                         printk(KERN_WARNING "%s:  "
2562                                "security_transition_sid failed, rc=%d (dev=%s "
2563                                "ino=%ld)\n",
2564                                __func__,
2565                                -rc, inode->i_sb->s_id, inode->i_ino);
2566                         return rc;
2567                 }
2568         }
2569
2570         /* Possibly defer initialization to selinux_complete_init. */
2571         if (sbsec->flags & SE_SBINITIALIZED) {
2572                 struct inode_security_struct *isec = inode->i_security;
2573                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2574                 isec->sid = newsid;
2575                 isec->initialized = 1;
2576         }
2577
2578         if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2579                 return -EOPNOTSUPP;
2580
2581         if (name) {
2582                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2583                 if (!namep)
2584                         return -ENOMEM;
2585                 *name = namep;
2586         }
2587
2588         if (value && len) {
2589                 rc = security_sid_to_context_force(newsid, &context, &clen);
2590                 if (rc) {
2591                         kfree(namep);
2592                         return rc;
2593                 }
2594                 *value = context;
2595                 *len = clen;
2596         }
2597
2598         return 0;
2599 }
2600
2601 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2602 {
2603         return may_create(dir, dentry, SECCLASS_FILE);
2604 }
2605
2606 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2607 {
2608         return may_link(dir, old_dentry, MAY_LINK);
2609 }
2610
2611 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2612 {
2613         return may_link(dir, dentry, MAY_UNLINK);
2614 }
2615
2616 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2617 {
2618         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2619 }
2620
2621 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2622 {
2623         return may_create(dir, dentry, SECCLASS_DIR);
2624 }
2625
2626 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2627 {
2628         return may_link(dir, dentry, MAY_RMDIR);
2629 }
2630
2631 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2632 {
2633         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2634 }
2635
2636 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2637                                 struct inode *new_inode, struct dentry *new_dentry)
2638 {
2639         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2640 }
2641
2642 static int selinux_inode_readlink(struct dentry *dentry)
2643 {
2644         const struct cred *cred = current_cred();
2645
2646         return dentry_has_perm(cred, dentry, FILE__READ);
2647 }
2648
2649 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2650 {
2651         const struct cred *cred = current_cred();
2652
2653         return dentry_has_perm(cred, dentry, FILE__READ);
2654 }
2655
2656 static int selinux_inode_permission(struct inode *inode, int mask)
2657 {
2658         const struct cred *cred = current_cred();
2659         struct common_audit_data ad;
2660         u32 perms;
2661         bool from_access;
2662         unsigned flags = mask & MAY_NOT_BLOCK;
2663
2664         from_access = mask & MAY_ACCESS;
2665         mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2666
2667         /* No permission to check.  Existence test. */
2668         if (!mask)
2669                 return 0;
2670
2671         COMMON_AUDIT_DATA_INIT(&ad, INODE);
2672         ad.u.inode = inode;
2673
2674         if (from_access)
2675                 ad.selinux_audit_data.auditdeny |= FILE__AUDIT_ACCESS;
2676
2677         perms = file_mask_to_av(inode->i_mode, mask);
2678
2679         return inode_has_perm(cred, inode, perms, &ad, flags);
2680 }
2681
2682 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2683 {
2684         const struct cred *cred = current_cred();
2685         unsigned int ia_valid = iattr->ia_valid;
2686
2687         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2688         if (ia_valid & ATTR_FORCE) {
2689                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2690                               ATTR_FORCE);
2691                 if (!ia_valid)
2692                         return 0;
2693         }
2694
2695         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2696                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2697                 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2698
2699         return dentry_has_perm(cred, dentry, FILE__WRITE);
2700 }
2701
2702 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2703 {
2704         const struct cred *cred = current_cred();
2705         struct path path;
2706
2707         path.dentry = dentry;
2708         path.mnt = mnt;
2709
2710         return path_has_perm(cred, &path, FILE__GETATTR);
2711 }
2712
2713 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2714 {
2715         const struct cred *cred = current_cred();
2716
2717         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2718                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2719                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2720                         if (!capable(CAP_SETFCAP))
2721                                 return -EPERM;
2722                 } else if (!capable(CAP_SYS_ADMIN)) {
2723                         /* A different attribute in the security namespace.
2724                            Restrict to administrator. */
2725                         return -EPERM;
2726                 }
2727         }
2728
2729         /* Not an attribute we recognize, so just check the
2730            ordinary setattr permission. */
2731         return dentry_has_perm(cred, dentry, FILE__SETATTR);
2732 }
2733
2734 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2735                                   const void *value, size_t size, int flags)
2736 {
2737         struct inode *inode = dentry->d_inode;
2738         struct inode_security_struct *isec = inode->i_security;
2739         struct superblock_security_struct *sbsec;
2740         struct common_audit_data ad;
2741         u32 newsid, sid = current_sid();
2742         int rc = 0;
2743
2744         if (strcmp(name, XATTR_NAME_SELINUX))
2745                 return selinux_inode_setotherxattr(dentry, name);
2746
2747         sbsec = inode->i_sb->s_security;
2748         if (!(sbsec->flags & SE_SBLABELSUPP))
2749                 return -EOPNOTSUPP;
2750
2751         if (!inode_owner_or_capable(inode))
2752                 return -EPERM;
2753
2754         COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2755         ad.u.dentry = dentry;
2756
2757         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2758                           FILE__RELABELFROM, &ad);
2759         if (rc)
2760                 return rc;
2761
2762         rc = security_context_to_sid(value, size, &newsid);
2763         if (rc == -EINVAL) {
2764                 if (!capable(CAP_MAC_ADMIN))
2765                         return rc;
2766                 rc = security_context_to_sid_force(value, size, &newsid);
2767         }
2768         if (rc)
2769                 return rc;
2770
2771         rc = avc_has_perm(sid, newsid, isec->sclass,
2772                           FILE__RELABELTO, &ad);
2773         if (rc)
2774                 return rc;
2775
2776         rc = security_validate_transition(isec->sid, newsid, sid,
2777                                           isec->sclass);
2778         if (rc)
2779                 return rc;
2780
2781         return avc_has_perm(newsid,
2782                             sbsec->sid,
2783                             SECCLASS_FILESYSTEM,
2784                             FILESYSTEM__ASSOCIATE,
2785                             &ad);
2786 }
2787
2788 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2789                                         const void *value, size_t size,
2790                                         int flags)
2791 {
2792         struct inode *inode = dentry->d_inode;
2793         struct inode_security_struct *isec = inode->i_security;
2794         u32 newsid;
2795         int rc;
2796
2797         if (strcmp(name, XATTR_NAME_SELINUX)) {
2798                 /* Not an attribute we recognize, so nothing to do. */
2799                 return;
2800         }
2801
2802         rc = security_context_to_sid_force(value, size, &newsid);
2803         if (rc) {
2804                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2805                        "for (%s, %lu), rc=%d\n",
2806                        inode->i_sb->s_id, inode->i_ino, -rc);
2807                 return;
2808         }
2809
2810         isec->sid = newsid;
2811         return;
2812 }
2813
2814 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2815 {
2816         const struct cred *cred = current_cred();
2817
2818         return dentry_has_perm(cred, dentry, FILE__GETATTR);
2819 }
2820
2821 static int selinux_inode_listxattr(struct dentry *dentry)
2822 {
2823         const struct cred *cred = current_cred();
2824
2825         return dentry_has_perm(cred, dentry, FILE__GETATTR);
2826 }
2827
2828 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2829 {
2830         if (strcmp(name, XATTR_NAME_SELINUX))
2831                 return selinux_inode_setotherxattr(dentry, name);
2832
2833         /* No one is allowed to remove a SELinux security label.
2834            You can change the label, but all data must be labeled. */
2835         return -EACCES;
2836 }
2837
2838 /*
2839  * Copy the inode security context value to the user.
2840  *
2841  * Permission check is handled by selinux_inode_getxattr hook.
2842  */
2843 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2844 {
2845         u32 size;
2846         int error;
2847         char *context = NULL;
2848         struct inode_security_struct *isec = inode->i_security;
2849
2850         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2851                 return -EOPNOTSUPP;
2852
2853         /*
2854          * If the caller has CAP_MAC_ADMIN, then get the raw context
2855          * value even if it is not defined by current policy; otherwise,
2856          * use the in-core value under current policy.
2857          * Use the non-auditing forms of the permission checks since
2858          * getxattr may be called by unprivileged processes commonly
2859          * and lack of permission just means that we fall back to the
2860          * in-core context value, not a denial.
2861          */
2862         error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
2863                                 SECURITY_CAP_NOAUDIT);
2864         if (!error)
2865                 error = security_sid_to_context_force(isec->sid, &context,
2866                                                       &size);
2867         else
2868                 error = security_sid_to_context(isec->sid, &context, &size);
2869         if (error)
2870                 return error;
2871         error = size;
2872         if (alloc) {
2873                 *buffer = context;
2874                 goto out_nofree;
2875         }
2876         kfree(context);
2877 out_nofree:
2878         return error;
2879 }
2880
2881 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2882                                      const void *value, size_t size, int flags)
2883 {
2884         struct inode_security_struct *isec = inode->i_security;
2885         u32 newsid;
2886         int rc;
2887
2888         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2889                 return -EOPNOTSUPP;
2890
2891         if (!value || !size)
2892                 return -EACCES;
2893
2894         rc = security_context_to_sid((void *)value, size, &newsid);
2895         if (rc)
2896                 return rc;
2897
2898         isec->sid = newsid;
2899         isec->initialized = 1;
2900         return 0;
2901 }
2902
2903 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2904 {
2905         const int len = sizeof(XATTR_NAME_SELINUX);
2906         if (buffer && len <= buffer_size)
2907                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2908         return len;
2909 }
2910
2911 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2912 {
2913         struct inode_security_struct *isec = inode->i_security;
2914         *secid = isec->sid;
2915 }
2916
2917 /* file security operations */
2918
2919 static int selinux_revalidate_file_permission(struct file *file, int mask)
2920 {
2921         const struct cred *cred = current_cred();
2922         struct inode *inode = file->f_path.dentry->d_inode;
2923
2924         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2925         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2926                 mask |= MAY_APPEND;
2927
2928         return file_has_perm(cred, file,
2929                              file_mask_to_av(inode->i_mode, mask));
2930 }
2931
2932 static int selinux_file_permission(struct file *file, int mask)
2933 {
2934         struct inode *inode = file->f_path.dentry->d_inode;
2935         struct file_security_struct *fsec = file->f_security;
2936         struct inode_security_struct *isec = inode->i_security;
2937         u32 sid = current_sid();
2938
2939         if (!mask)
2940                 /* No permission to check.  Existence test. */
2941                 return 0;
2942
2943         if (sid == fsec->sid && fsec->isid == isec->sid &&
2944             fsec->pseqno == avc_policy_seqno())
2945                 /* No change since dentry_open check. */
2946                 return 0;
2947
2948         return selinux_revalidate_file_permission(file, mask);
2949 }
2950
2951 static int selinux_file_alloc_security(struct file *file)
2952 {
2953         return file_alloc_security(file);
2954 }
2955
2956 static void selinux_file_free_security(struct file *file)
2957 {
2958         file_free_security(file);
2959 }
2960
2961 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2962                               unsigned long arg)
2963 {
2964         const struct cred *cred = current_cred();
2965         int error = 0;
2966
2967         switch (cmd) {
2968         case FIONREAD:
2969         /* fall through */
2970         case FIBMAP:
2971         /* fall through */
2972         case FIGETBSZ:
2973         /* fall through */
2974         case EXT2_IOC_GETFLAGS:
2975         /* fall through */
2976         case EXT2_IOC_GETVERSION:
2977                 error = file_has_perm(cred, file, FILE__GETATTR);
2978                 break;
2979
2980         case EXT2_IOC_SETFLAGS:
2981         /* fall through */
2982         case EXT2_IOC_SETVERSION:
2983                 error = file_has_perm(cred, file, FILE__SETATTR);
2984                 break;
2985
2986         /* sys_ioctl() checks */
2987         case FIONBIO:
2988         /* fall through */
2989         case FIOASYNC:
2990                 error = file_has_perm(cred, file, 0);
2991                 break;
2992
2993         case KDSKBENT:
2994         case KDSKBSENT:
2995                 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
2996                                             SECURITY_CAP_AUDIT);
2997                 break;
2998
2999         /* default case assumes that the command will go
3000          * to the file's ioctl() function.
3001          */
3002         default:
3003                 error = file_has_perm(cred, file, FILE__IOCTL);
3004         }
3005         return error;
3006 }
3007
3008 static int default_noexec;
3009
3010 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3011 {
3012         const struct cred *cred = current_cred();
3013         int rc = 0;
3014
3015         if (default_noexec &&
3016             (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3017                 /*
3018                  * We are making executable an anonymous mapping or a
3019                  * private file mapping that will also be writable.
3020                  * This has an additional check.
3021                  */
3022                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3023                 if (rc)
3024                         goto error;
3025         }
3026
3027         if (file) {
3028                 /* read access is always possible with a mapping */
3029                 u32 av = FILE__READ;
3030
3031                 /* write access only matters if the mapping is shared */
3032                 if (shared && (prot & PROT_WRITE))
3033                         av |= FILE__WRITE;
3034
3035                 if (prot & PROT_EXEC)
3036                         av |= FILE__EXECUTE;
3037
3038                 return file_has_perm(cred, file, av);
3039         }
3040
3041 error:
3042         return rc;
3043 }
3044
3045 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3046                              unsigned long prot, unsigned long flags,
3047                              unsigned long addr, unsigned long addr_only)
3048 {
3049         int rc = 0;
3050         u32 sid = current_sid();
3051
3052         /*
3053          * notice that we are intentionally putting the SELinux check before
3054          * the secondary cap_file_mmap check.  This is such a likely attempt
3055          * at bad behaviour/exploit that we always want to get the AVC, even
3056          * if DAC would have also denied the operation.
3057          */
3058         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3059                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3060                                   MEMPROTECT__MMAP_ZERO, NULL);
3061                 if (rc)
3062                         return rc;
3063         }
3064
3065         /* do DAC check on address space usage */
3066         rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3067         if (rc || addr_only)
3068                 return rc;
3069
3070         if (selinux_checkreqprot)
3071                 prot = reqprot;
3072
3073         return file_map_prot_check(file, prot,
3074                                    (flags & MAP_TYPE) == MAP_SHARED);
3075 }
3076
3077 static int selinux_file_mprotect(struct vm_area_struct *vma,
3078                                  unsigned long reqprot,
3079                                  unsigned long prot)
3080 {
3081         const struct cred *cred = current_cred();
3082
3083         if (selinux_checkreqprot)
3084                 prot = reqprot;
3085
3086         if (default_noexec &&
3087             (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3088                 int rc = 0;
3089                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3090                     vma->vm_end <= vma->vm_mm->brk) {
3091                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3092                 } else if (!vma->vm_file &&
3093                            vma->vm_start <= vma->vm_mm->start_stack &&
3094                            vma->vm_end >= vma->vm_mm->start_stack) {
3095                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3096                 } else if (vma->vm_file && vma->anon_vma) {
3097                         /*
3098                          * We are making executable a file mapping that has
3099                          * had some COW done. Since pages might have been
3100                          * written, check ability to execute the possibly
3101                          * modified content.  This typically should only
3102                          * occur for text relocations.
3103                          */
3104                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3105                 }
3106                 if (rc)
3107                         return rc;
3108         }
3109
3110         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3111 }
3112
3113 static int selinux_file_lock(struct file *file, unsigned int cmd)
3114 {
3115         const struct cred *cred = current_cred();
3116
3117         return file_has_perm(cred, file, FILE__LOCK);
3118 }
3119
3120 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3121                               unsigned long arg)
3122 {
3123         const struct cred *cred = current_cred();
3124         int err = 0;
3125
3126         switch (cmd) {
3127         case F_SETFL:
3128                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3129                         err = -EINVAL;
3130                         break;
3131                 }
3132
3133                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3134                         err = file_has_perm(cred, file, FILE__WRITE);
3135                         break;
3136                 }
3137                 /* fall through */
3138         case F_SETOWN:
3139         case F_SETSIG:
3140         case F_GETFL:
3141         case F_GETOWN:
3142         case F_GETSIG:
3143                 /* Just check FD__USE permission */
3144                 err = file_has_perm(cred, file, 0);
3145                 break;
3146         case F_GETLK:
3147         case F_SETLK:
3148         case F_SETLKW:
3149 #if BITS_PER_LONG == 32
3150         case F_GETLK64:
3151         case F_SETLK64:
3152         case F_SETLKW64:
3153 #endif
3154                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3155                         err = -EINVAL;
3156                         break;
3157                 }
3158                 err = file_has_perm(cred, file, FILE__LOCK);
3159                 break;
3160         }
3161
3162         return err;
3163 }
3164
3165 static int selinux_file_set_fowner(struct file *file)
3166 {
3167         struct file_security_struct *fsec;
3168
3169         fsec = file->f_security;
3170         fsec->fown_sid = current_sid();
3171
3172         return 0;
3173 }
3174
3175 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3176                                        struct fown_struct *fown, int signum)
3177 {
3178         struct file *file;
3179         u32 sid = task_sid(tsk);
3180         u32 perm;
3181         struct file_security_struct *fsec;
3182
3183         /* struct fown_struct is never outside the context of a struct file */
3184         file = container_of(fown, struct file, f_owner);
3185
3186         fsec = file->f_security;
3187
3188         if (!signum)
3189                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3190         else
3191                 perm = signal_to_av(signum);
3192
3193         return avc_has_perm(fsec->fown_sid, sid,
3194                             SECCLASS_PROCESS, perm, NULL);
3195 }
3196
3197 static int selinux_file_receive(struct file *file)
3198 {
3199         const struct cred *cred = current_cred();
3200
3201         return file_has_perm(cred, file, file_to_av(file));
3202 }
3203
3204 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3205 {
3206         struct file_security_struct *fsec;
3207         struct inode *inode;
3208         struct inode_security_struct *isec;
3209
3210         inode = file->f_path.dentry->d_inode;
3211         fsec = file->f_security;
3212         isec = inode->i_security;
3213         /*
3214          * Save inode label and policy sequence number
3215          * at open-time so that selinux_file_permission
3216          * can determine whether revalidation is necessary.
3217          * Task label is already saved in the file security
3218          * struct as its SID.
3219          */
3220         fsec->isid = isec->sid;
3221         fsec->pseqno = avc_policy_seqno();
3222         /*
3223          * Since the inode label or policy seqno may have changed
3224          * between the selinux_inode_permission check and the saving
3225          * of state above, recheck that access is still permitted.
3226          * Otherwise, access might never be revalidated against the
3227          * new inode label or new policy.
3228          * This check is not redundant - do not remove.
3229          */
3230         return inode_has_perm_noadp(cred, inode, open_file_to_av(file), 0);
3231 }
3232
3233 /* task security operations */
3234
3235 static int selinux_task_create(unsigned long clone_flags)
3236 {
3237         return current_has_perm(current, PROCESS__FORK);
3238 }
3239
3240 /*
3241  * allocate the SELinux part of blank credentials
3242  */
3243 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3244 {
3245         struct task_security_struct *tsec;
3246
3247         tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3248         if (!tsec)
3249                 return -ENOMEM;
3250
3251         cred->security = tsec;
3252         return 0;
3253 }
3254
3255 /*
3256  * detach and free the LSM part of a set of credentials
3257  */
3258 static void selinux_cred_free(struct cred *cred)
3259 {
3260         struct task_security_struct *tsec = cred->security;
3261
3262         /*
3263          * cred->security == NULL if security_cred_alloc_blank() or
3264          * security_prepare_creds() returned an error.
3265          */
3266         BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3267         cred->security = (void *) 0x7UL;
3268         kfree(tsec);
3269 }
3270
3271 /*
3272  * prepare a new set of credentials for modification
3273  */
3274 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3275                                 gfp_t gfp)
3276 {
3277         const struct task_security_struct *old_tsec;
3278         struct task_security_struct *tsec;
3279
3280         old_tsec = old->security;
3281
3282         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3283         if (!tsec)
3284                 return -ENOMEM;
3285
3286         new->security = tsec;
3287         return 0;
3288 }
3289
3290 /*
3291  * transfer the SELinux data to a blank set of creds
3292  */
3293 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3294 {
3295         const struct task_security_struct *old_tsec = old->security;
3296         struct task_security_struct *tsec = new->security;
3297
3298         *tsec = *old_tsec;
3299 }
3300
3301 /*
3302  * set the security data for a kernel service
3303  * - all the creation contexts are set to unlabelled
3304  */
3305 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3306 {
3307         struct task_security_struct *tsec = new->security;
3308         u32 sid = current_sid();
3309         int ret;
3310
3311         ret = avc_has_perm(sid, secid,
3312                            SECCLASS_KERNEL_SERVICE,
3313                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3314                            NULL);
3315         if (ret == 0) {
3316                 tsec->sid = secid;
3317                 tsec->create_sid = 0;
3318                 tsec->keycreate_sid = 0;
3319                 tsec->sockcreate_sid = 0;
3320         }
3321         return ret;
3322 }
3323
3324 /*
3325  * set the file creation context in a security record to the same as the
3326  * objective context of the specified inode
3327  */
3328 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3329 {
3330         struct inode_security_struct *isec = inode->i_security;
3331         struct task_security_struct *tsec = new->security;
3332         u32 sid = current_sid();
3333         int ret;
3334
3335         ret = avc_has_perm(sid, isec->sid,
3336                            SECCLASS_KERNEL_SERVICE,
3337                            KERNEL_SERVICE__CREATE_FILES_AS,
3338                            NULL);
3339
3340         if (ret == 0)
3341                 tsec->create_sid = isec->sid;
3342         return ret;
3343 }
3344
3345 static int selinux_kernel_module_request(char *kmod_name)
3346 {
3347         u32 sid;
3348         struct common_audit_data ad;
3349
3350         sid = task_sid(current);
3351
3352         COMMON_AUDIT_DATA_INIT(&ad, KMOD);
3353         ad.u.kmod_name = kmod_name;
3354
3355         return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3356                             SYSTEM__MODULE_REQUEST, &ad);
3357 }
3358
3359 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3360 {
3361         return current_has_perm(p, PROCESS__SETPGID);
3362 }
3363
3364 static int selinux_task_getpgid(struct task_struct *p)
3365 {
3366         return current_has_perm(p, PROCESS__GETPGID);
3367 }
3368
3369 static int selinux_task_getsid(struct task_struct *p)
3370 {
3371         return current_has_perm(p, PROCESS__GETSESSION);
3372 }
3373
3374 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3375 {
3376         *secid = task_sid(p);
3377 }
3378
3379 static int selinux_task_setnice(struct task_struct *p, int nice)
3380 {
3381         int rc;
3382
3383         rc = cap_task_setnice(p, nice);
3384         if (rc)
3385                 return rc;
3386
3387         return current_has_perm(p, PROCESS__SETSCHED);
3388 }
3389
3390 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3391 {
3392         int rc;
3393
3394         rc = cap_task_setioprio(p, ioprio);
3395         if (rc)
3396                 return rc;
3397
3398         return current_has_perm(p, PROCESS__SETSCHED);
3399 }
3400
3401 static int selinux_task_getioprio(struct task_struct *p)
3402 {
3403         return current_has_perm(p, PROCESS__GETSCHED);
3404 }
3405
3406 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3407                 struct rlimit *new_rlim)
3408 {
3409         struct rlimit *old_rlim = p->signal->rlim + resource;
3410
3411         /* Control the ability to change the hard limit (whether
3412            lowering or raising it), so that the hard limit can
3413            later be used as a safe reset point for the soft limit
3414            upon context transitions.  See selinux_bprm_committing_creds. */
3415         if (old_rlim->rlim_max != new_rlim->rlim_max)
3416                 return current_has_perm(p, PROCESS__SETRLIMIT);
3417
3418         return 0;
3419 }
3420
3421 static int selinux_task_setscheduler(struct task_struct *p)
3422 {
3423         int rc;
3424
3425         rc = cap_task_setscheduler(p);
3426         if (rc)
3427                 return rc;
3428
3429         return current_has_perm(p, PROCESS__SETSCHED);
3430 }
3431
3432 static int selinux_task_getscheduler(struct task_struct *p)
3433 {
3434         return current_has_perm(p, PROCESS__GETSCHED);
3435 }
3436
3437 static int selinux_task_movememory(struct task_struct *p)
3438 {
3439         return current_has_perm(p, PROCESS__SETSCHED);
3440 }
3441
3442 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3443                                 int sig, u32 secid)
3444 {
3445         u32 perm;
3446         int rc;
3447
3448         if (!sig)
3449                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3450         else
3451                 perm = signal_to_av(sig);
3452         if (secid)
3453                 rc = avc_has_perm(secid, task_sid(p),
3454                                   SECCLASS_PROCESS, perm, NULL);
3455         else
3456                 rc = current_has_perm(p, perm);
3457         return rc;
3458 }
3459
3460 static int selinux_task_wait(struct task_struct *p)
3461 {
3462         return task_has_perm(p, current, PROCESS__SIGCHLD);
3463 }
3464
3465 static void selinux_task_to_inode(struct task_struct *p,
3466                                   struct inode *inode)
3467 {
3468         struct inode_security_struct *isec = inode->i_security;
3469         u32 sid = task_sid(p);
3470
3471         isec->sid = sid;
3472         isec->initialized = 1;
3473 }
3474
3475 /* Returns error only if unable to parse addresses */
3476 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3477                         struct common_audit_data *ad, u8 *proto)
3478 {
3479         int offset, ihlen, ret = -EINVAL;
3480         struct iphdr _iph, *ih;
3481
3482         offset = skb_network_offset(skb);
3483         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3484         if (ih == NULL)
3485                 goto out;
3486
3487         ihlen = ih->ihl * 4;
3488         if (ihlen < sizeof(_iph))
3489                 goto out;
3490
3491         ad->u.net.v4info.saddr = ih->saddr;
3492         ad->u.net.v4info.daddr = ih->daddr;
3493         ret = 0;
3494
3495         if (proto)
3496                 *proto = ih->protocol;
3497
3498         switch (ih->protocol) {
3499         case IPPROTO_TCP: {
3500                 struct tcphdr _tcph, *th;
3501
3502                 if (ntohs(ih->frag_off) & IP_OFFSET)
3503                         break;
3504
3505                 offset += ihlen;
3506                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3507                 if (th == NULL)
3508                         break;
3509
3510                 ad->u.net.sport = th->source;
3511                 ad->u.net.dport = th->dest;
3512                 break;
3513         }
3514
3515         case IPPROTO_UDP: {
3516                 struct udphdr _udph, *uh;
3517
3518                 if (ntohs(ih->frag_off) & IP_OFFSET)
3519                         break;
3520
3521                 offset += ihlen;
3522                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3523                 if (uh == NULL)
3524                         break;
3525
3526                 ad->u.net.sport = uh->source;
3527                 ad->u.net.dport = uh->dest;
3528                 break;
3529         }
3530
3531         case IPPROTO_DCCP: {
3532                 struct dccp_hdr _dccph, *dh;
3533
3534                 if (ntohs(ih->frag_off) & IP_OFFSET)
3535                         break;
3536
3537                 offset += ihlen;
3538                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3539                 if (dh == NULL)
3540                         break;
3541
3542                 ad->u.net.sport = dh->dccph_sport;
3543                 ad->u.net.dport = dh->dccph_dport;
3544                 break;
3545         }
3546
3547         default:
3548                 break;
3549         }
3550 out:
3551         return ret;
3552 }
3553
3554 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3555
3556 /* Returns error only if unable to parse addresses */
3557 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3558                         struct common_audit_data *ad, u8 *proto)
3559 {
3560         u8 nexthdr;
3561         int ret = -EINVAL, offset;
3562         struct ipv6hdr _ipv6h, *ip6;
3563         __be16 frag_off;
3564
3565         offset = skb_network_offset(skb);
3566         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3567         if (ip6 == NULL)
3568                 goto out;
3569
3570         ad->u.net.v6info.saddr = ip6->saddr;
3571         ad->u.net.v6info.daddr = ip6->daddr;
3572         ret = 0;
3573
3574         nexthdr = ip6->nexthdr;
3575         offset += sizeof(_ipv6h);
3576         offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3577         if (offset < 0)
3578                 goto out;
3579
3580         if (proto)
3581                 *proto = nexthdr;
3582
3583         switch (nexthdr) {
3584         case IPPROTO_TCP: {
3585                 struct tcphdr _tcph, *th;
3586
3587                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3588                 if (th == NULL)
3589                         break;
3590
3591                 ad->u.net.sport = th->source;
3592                 ad->u.net.dport = th->dest;
3593                 break;
3594         }
3595
3596         case IPPROTO_UDP: {
3597                 struct udphdr _udph, *uh;
3598
3599                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3600                 if (uh == NULL)
3601                         break;
3602
3603                 ad->u.net.sport = uh->source;
3604                 ad->u.net.dport = uh->dest;
3605                 break;
3606         }
3607
3608         case IPPROTO_DCCP: {
3609                 struct dccp_hdr _dccph, *dh;
3610
3611                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3612                 if (dh == NULL)
3613                         break;
3614
3615                 ad->u.net.sport = dh->dccph_sport;
3616                 ad->u.net.dport = dh->dccph_dport;
3617                 break;
3618         }
3619
3620         /* includes fragments */
3621         default:
3622                 break;
3623         }
3624 out:
3625         return ret;
3626 }
3627
3628 #endif /* IPV6 */
3629
3630 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3631                              char **_addrp, int src, u8 *proto)
3632 {
3633         char *addrp;
3634         int ret;
3635
3636         switch (ad->u.net.family) {
3637         case PF_INET:
3638                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3639                 if (ret)
3640                         goto parse_error;
3641                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3642                                        &ad->u.net.v4info.daddr);
3643                 goto okay;
3644
3645 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3646         case PF_INET6:
3647                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3648                 if (ret)
3649                         goto parse_error;
3650                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3651                                        &ad->u.net.v6info.daddr);
3652                 goto okay;
3653 #endif  /* IPV6 */
3654         default:
3655                 addrp = NULL;
3656                 goto okay;
3657         }
3658
3659 parse_error:
3660         printk(KERN_WARNING
3661                "SELinux: failure in selinux_parse_skb(),"
3662                " unable to parse packet\n");
3663         return ret;
3664
3665 okay:
3666         if (_addrp)
3667                 *_addrp = addrp;
3668         return 0;
3669 }
3670
3671 /**
3672  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3673  * @skb: the packet
3674  * @family: protocol family
3675  * @sid: the packet's peer label SID
3676  *
3677  * Description:
3678  * Check the various different forms of network peer labeling and determine
3679  * the peer label/SID for the packet; most of the magic actually occurs in
3680  * the security server function security_net_peersid_cmp().  The function
3681  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3682  * or -EACCES if @sid is invalid due to inconsistencies with the different
3683  * peer labels.
3684  *
3685  */
3686 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3687 {
3688         int err;
3689         u32 xfrm_sid;
3690         u32 nlbl_sid;
3691         u32 nlbl_type;
3692
3693         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3694         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3695
3696         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3697         if (unlikely(err)) {
3698                 printk(KERN_WARNING
3699                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3700                        " unable to determine packet's peer label\n");
3701                 return -EACCES;
3702         }
3703
3704         return 0;
3705 }
3706
3707 /* socket security operations */
3708
3709 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3710                                  u16 secclass, u32 *socksid)
3711 {
3712         if (tsec->sockcreate_sid > SECSID_NULL) {
3713                 *socksid = tsec->sockcreate_sid;
3714                 return 0;
3715         }
3716
3717         return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3718                                        socksid);
3719 }
3720
3721 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3722 {
3723         struct sk_security_struct *sksec = sk->sk_security;
3724         struct common_audit_data ad;
3725         u32 tsid = task_sid(task);
3726
3727         if (sksec->sid == SECINITSID_KERNEL)
3728                 return 0;
3729
3730         COMMON_AUDIT_DATA_INIT(&ad, NET);
3731         ad.u.net.sk = sk;
3732
3733         return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3734 }
3735
3736 static int selinux_socket_create(int family, int type,
3737                                  int protocol, int kern)
3738 {
3739         const struct task_security_struct *tsec = current_security();
3740         u32 newsid;
3741         u16 secclass;
3742         int rc;
3743
3744         if (kern)
3745                 return 0;
3746
3747         secclass = socket_type_to_security_class(family, type, protocol);
3748         rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3749         if (rc)
3750                 return rc;
3751
3752         return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3753 }
3754
3755 static int selinux_socket_post_create(struct socket *sock, int family,
3756                                       int type, int protocol, int kern)
3757 {
3758         const struct task_security_struct *tsec = current_security();
3759         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3760         struct sk_security_struct *sksec;
3761         int err = 0;
3762
3763         isec->sclass = socket_type_to_security_class(family, type, protocol);
3764
3765         if (kern)
3766                 isec->sid = SECINITSID_KERNEL;
3767         else {
3768                 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3769                 if (err)
3770                         return err;
3771         }
3772
3773         isec->initialized = 1;
3774
3775         if (sock->sk) {
3776                 sksec = sock->sk->sk_security;
3777                 sksec->sid = isec->sid;
3778                 sksec->sclass = isec->sclass;
3779                 err = selinux_netlbl_socket_post_create(sock->sk, family);
3780         }
3781
3782         return err;
3783 }
3784
3785 /* Range of port numbers used to automatically bind.
3786    Need to determine whether we should perform a name_bind
3787    permission check between the socket and the port number. */
3788
3789 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3790 {
3791         struct sock *sk = sock->sk;
3792         u16 family;
3793         int err;
3794
3795         err = sock_has_perm(current, sk, SOCKET__BIND);
3796         if (err)
3797                 goto out;
3798
3799         /*
3800          * If PF_INET or PF_INET6, check name_bind permission for the port.
3801          * Multiple address binding for SCTP is not supported yet: we just
3802          * check the first address now.
3803          */
3804         family = sk->sk_family;
3805         if (family == PF_INET || family == PF_INET6) {
3806                 char *addrp;
3807                 struct sk_security_struct *sksec = sk->sk_security;
3808                 struct common_audit_data ad;
3809                 struct sockaddr_in *addr4 = NULL;
3810                 struct sockaddr_in6 *addr6 = NULL;
3811                 unsigned short snum;
3812                 u32 sid, node_perm;
3813
3814                 if (family == PF_INET) {
3815                         addr4 = (struct sockaddr_in *)address;
3816                         snum = ntohs(addr4->sin_port);
3817                         addrp = (char *)&addr4->sin_addr.s_addr;
3818                 } else {
3819                         addr6 = (struct sockaddr_in6 *)address;
3820                         snum = ntohs(addr6->sin6_port);
3821                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3822                 }
3823
3824                 if (snum) {
3825                         int low, high;
3826
3827                         inet_get_local_port_range(&low, &high);
3828
3829                         if (snum < max(PROT_SOCK, low) || snum > high) {
3830                                 err = sel_netport_sid(sk->sk_protocol,
3831                                                       snum, &sid);
3832                                 if (err)
3833                                         goto out;
3834                                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3835                                 ad.u.net.sport = htons(snum);
3836                                 ad.u.net.family = family;
3837                                 err = avc_has_perm(sksec->sid, sid,
3838                                                    sksec->sclass,
3839                                                    SOCKET__NAME_BIND, &ad);
3840                                 if (err)
3841                                         goto out;
3842                         }
3843                 }
3844
3845                 switch (sksec->sclass) {
3846                 case SECCLASS_TCP_SOCKET:
3847                         node_perm = TCP_SOCKET__NODE_BIND;
3848                         break;
3849
3850                 case SECCLASS_UDP_SOCKET:
3851                         node_perm = UDP_SOCKET__NODE_BIND;
3852                         break;
3853
3854                 case SECCLASS_DCCP_SOCKET:
3855                         node_perm = DCCP_SOCKET__NODE_BIND;
3856                         break;
3857
3858                 default:
3859                         node_perm = RAWIP_SOCKET__NODE_BIND;
3860                         break;
3861                 }
3862
3863                 err = sel_netnode_sid(addrp, family, &sid);
3864                 if (err)
3865                         goto out;
3866
3867                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3868                 ad.u.net.sport = htons(snum);
3869                 ad.u.net.family = family;
3870
3871                 if (family == PF_INET)
3872                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3873                 else
3874                         ad.u.net.v6info.saddr = addr6->sin6_addr;
3875
3876                 err = avc_has_perm(sksec->sid, sid,
3877                                    sksec->sclass, node_perm, &ad);
3878                 if (err)
3879                         goto out;
3880         }
3881 out:
3882         return err;
3883 }
3884
3885 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3886 {
3887         struct sock *sk = sock->sk;
3888         struct sk_security_struct *sksec = sk->sk_security;
3889         int err;
3890
3891         err = sock_has_perm(current, sk, SOCKET__CONNECT);
3892         if (err)
3893                 return err;
3894
3895         /*
3896          * If a TCP or DCCP socket, check name_connect permission for the port.
3897          */
3898         if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3899             sksec->sclass == SECCLASS_DCCP_SOCKET) {
3900                 struct common_audit_data ad;
3901                 struct sockaddr_in *addr4 = NULL;
3902                 struct sockaddr_in6 *addr6 = NULL;
3903                 unsigned short snum;
3904                 u32 sid, perm;
3905
3906                 if (sk->sk_family == PF_INET) {
3907                         addr4 = (struct sockaddr_in *)address;
3908                         if (addrlen < sizeof(struct sockaddr_in))
3909                                 return -EINVAL;
3910                         snum = ntohs(addr4->sin_port);
3911                 } else {
3912                         addr6 = (struct sockaddr_in6 *)address;
3913                         if (addrlen < SIN6_LEN_RFC2133)
3914                                 return -EINVAL;
3915                         snum = ntohs(addr6->sin6_port);
3916                 }
3917
3918                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3919                 if (err)
3920                         goto out;
3921
3922                 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3923                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3924
3925                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3926                 ad.u.net.dport = htons(snum);
3927                 ad.u.net.family = sk->sk_family;
3928                 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
3929                 if (err)
3930                         goto out;
3931         }
3932
3933         err = selinux_netlbl_socket_connect(sk, address);
3934
3935 out:
3936         return err;
3937 }
3938
3939 static int selinux_socket_listen(struct socket *sock, int backlog)
3940 {
3941         return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3942 }
3943
3944 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3945 {
3946         int err;
3947         struct inode_security_struct *isec;
3948         struct inode_security_struct *newisec;
3949
3950         err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
3951         if (err)
3952                 return err;
3953
3954         newisec = SOCK_INODE(newsock)->i_security;
3955
3956         isec = SOCK_INODE(sock)->i_security;
3957         newisec->sclass = isec->sclass;
3958         newisec->sid = isec->sid;
3959         newisec->initialized = 1;
3960
3961         return 0;
3962 }
3963
3964 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3965                                   int size)
3966 {
3967         return sock_has_perm(current, sock->sk, SOCKET__WRITE);
3968 }
3969
3970 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3971                                   int size, int flags)
3972 {
3973         return sock_has_perm(current, sock->sk, SOCKET__READ);
3974 }
3975
3976 static int selinux_socket_getsockname(struct socket *sock)
3977 {
3978         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3979 }
3980
3981 static int selinux_socket_getpeername(struct socket *sock)
3982 {
3983         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3984 }
3985
3986 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3987 {
3988         int err;
3989
3990         err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
3991         if (err)
3992                 return err;
3993
3994         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3995 }
3996
3997 static int selinux_socket_getsockopt(struct socket *sock, int level,
3998                                      int optname)
3999 {
4000         return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4001 }
4002
4003 static int selinux_socket_shutdown(struct socket *sock, int how)
4004 {
4005         return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4006 }
4007
4008 static int selinux_socket_unix_stream_connect(struct sock *sock,
4009                                               struct sock *other,
4010                                               struct sock *newsk)
4011 {
4012         struct sk_security_struct *sksec_sock = sock->sk_security;
4013         struct sk_security_struct *sksec_other = other->sk_security;
4014         struct sk_security_struct *sksec_new = newsk->sk_security;
4015         struct common_audit_data ad;
4016         int err;
4017
4018         COMMON_AUDIT_DATA_INIT(&ad, NET);
4019         ad.u.net.sk = other;
4020
4021         err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4022                            sksec_other->sclass,
4023                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4024         if (err)
4025                 return err;
4026
4027         /* server child socket */
4028         sksec_new->peer_sid = sksec_sock->sid;
4029         err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4030                                     &sksec_new->sid);
4031         if (err)
4032                 return err;
4033
4034         /* connecting socket */
4035         sksec_sock->peer_sid = sksec_new->sid;
4036
4037         return 0;
4038 }
4039
4040 static int selinux_socket_unix_may_send(struct socket *sock,
4041                                         struct socket *other)
4042 {
4043         struct sk_security_struct *ssec = sock->sk->sk_security;
4044         struct sk_security_struct *osec = other->sk->sk_security;
4045         struct common_audit_data ad;
4046
4047         COMMON_AUDIT_DATA_INIT(&ad, NET);
4048         ad.u.net.sk = other->sk;
4049
4050         return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4051                             &ad);
4052 }
4053
4054 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4055                                     u32 peer_sid,
4056                                     struct common_audit_data *ad)
4057 {
4058         int err;
4059         u32 if_sid;
4060         u32 node_sid;
4061
4062         err = sel_netif_sid(ifindex, &if_sid);
4063         if (err)
4064                 return err;
4065         err = avc_has_perm(peer_sid, if_sid,
4066                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4067         if (err)
4068                 return err;
4069
4070         err = sel_netnode_sid(addrp, family, &node_sid);
4071         if (err)
4072                 return err;
4073         return avc_has_perm(peer_sid, node_sid,
4074                             SECCLASS_NODE, NODE__RECVFROM, ad);
4075 }
4076
4077 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4078                                        u16 family)
4079 {
4080         int err = 0;
4081         struct sk_security_struct *sksec = sk->sk_security;
4082         u32 sk_sid = sksec->sid;
4083         struct common_audit_data ad;
4084         char *addrp;
4085
4086         COMMON_AUDIT_DATA_INIT(&ad, NET);
4087         ad.u.net.netif = skb->skb_iif;
4088         ad.u.net.family = family;
4089         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4090         if (err)
4091                 return err;
4092
4093         if (selinux_secmark_enabled()) {
4094                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4095                                    PACKET__RECV, &ad);
4096                 if (err)
4097                         return err;
4098         }
4099
4100         err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4101         if (err)
4102                 return err;
4103         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4104
4105         return err;
4106 }
4107
4108 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4109 {
4110         int err;
4111         struct sk_security_struct *sksec = sk->sk_security;
4112         u16 family = sk->sk_family;
4113         u32 sk_sid = sksec->sid;
4114         struct common_audit_data ad;
4115         char *addrp;
4116         u8 secmark_active;
4117         u8 peerlbl_active;
4118
4119         if (family != PF_INET && family != PF_INET6)
4120                 return 0;
4121
4122         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4123         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4124                 family = PF_INET;
4125
4126         /* If any sort of compatibility mode is enabled then handoff processing
4127          * to the selinux_sock_rcv_skb_compat() function to deal with the
4128          * special handling.  We do this in an attempt to keep this function
4129          * as fast and as clean as possible. */
4130         if (!selinux_policycap_netpeer)
4131                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4132
4133         secmark_active = selinux_secmark_enabled();
4134         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4135         if (!secmark_active && !peerlbl_active)
4136                 return 0;
4137
4138         COMMON_AUDIT_DATA_INIT(&ad, NET);
4139         ad.u.net.netif = skb->skb_iif;
4140         ad.u.net.family = family;
4141         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4142         if (err)
4143                 return err;
4144
4145         if (peerlbl_active) {
4146                 u32 peer_sid;
4147
4148                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4149                 if (err)
4150                         return err;
4151                 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4152                                                peer_sid, &ad);
4153                 if (err) {
4154                         selinux_netlbl_err(skb, err, 0);
4155                         return err;
4156                 }
4157                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4158                                    PEER__RECV, &ad);
4159                 if (err)
4160                         selinux_netlbl_err(skb, err, 0);
4161         }
4162
4163         if (secmark_active) {
4164                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4165                                    PACKET__RECV, &ad);
4166                 if (err)
4167                         return err;
4168         }
4169
4170         return err;
4171 }
4172
4173 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4174                                             int __user *optlen, unsigned len)
4175 {
4176         int err = 0;
4177         char *scontext;
4178         u32 scontext_len;
4179         struct sk_security_struct *sksec = sock->sk->sk_security;
4180         u32 peer_sid = SECSID_NULL;
4181
4182         if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4183             sksec->sclass == SECCLASS_TCP_SOCKET)
4184                 peer_sid = sksec->peer_sid;
4185         if (peer_sid == SECSID_NULL)
4186                 return -ENOPROTOOPT;
4187
4188         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4189         if (err)
4190                 return err;
4191
4192         if (scontext_len > len) {
4193                 err = -ERANGE;
4194                 goto out_len;
4195         }
4196
4197         if (copy_to_user(optval, scontext, scontext_len))
4198                 err = -EFAULT;
4199
4200 out_len:
4201         if (put_user(scontext_len, optlen))
4202                 err = -EFAULT;
4203         kfree(scontext);
4204         return err;
4205 }
4206
4207 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4208 {
4209         u32 peer_secid = SECSID_NULL;
4210         u16 family;
4211
4212         if (skb && skb->protocol == htons(ETH_P_IP))
4213                 family = PF_INET;
4214         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4215                 family = PF_INET6;
4216         else if (sock)
4217                 family = sock->sk->sk_family;
4218         else
4219                 goto out;
4220
4221         if (sock && family == PF_UNIX)
4222                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4223         else if (skb)
4224                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4225
4226 out:
4227         *secid = peer_secid;
4228         if (peer_secid == SECSID_NULL)
4229                 return -EINVAL;
4230         return 0;
4231 }
4232
4233 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4234 {
4235         struct sk_security_struct *sksec;
4236
4237         sksec = kzalloc(sizeof(*sksec), priority);
4238         if (!sksec)
4239                 return -ENOMEM;
4240
4241         sksec->peer_sid = SECINITSID_UNLABELED;
4242         sksec->sid = SECINITSID_UNLABELED;
4243         selinux_netlbl_sk_security_reset(sksec);
4244         sk->sk_security = sksec;
4245
4246         return 0;
4247 }
4248
4249 static void selinux_sk_free_security(struct sock *sk)
4250 {
4251         struct sk_security_struct *sksec = sk->sk_security;
4252
4253         sk->sk_security = NULL;
4254         selinux_netlbl_sk_security_free(sksec);
4255         kfree(sksec);
4256 }
4257
4258 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4259 {
4260         struct sk_security_struct *sksec = sk->sk_security;
4261         struct sk_security_struct *newsksec = newsk->sk_security;
4262
4263         newsksec->sid = sksec->sid;
4264         newsksec->peer_sid = sksec->peer_sid;
4265         newsksec->sclass = sksec->sclass;
4266
4267         selinux_netlbl_sk_security_reset(newsksec);
4268 }
4269
4270 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4271 {
4272         if (!sk)
4273                 *secid = SECINITSID_ANY_SOCKET;
4274         else {
4275                 struct sk_security_struct *sksec = sk->sk_security;
4276
4277                 *secid = sksec->sid;
4278         }
4279 }
4280
4281 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4282 {
4283         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4284         struct sk_security_struct *sksec = sk->sk_security;
4285
4286         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4287             sk->sk_family == PF_UNIX)
4288                 isec->sid = sksec->sid;
4289         sksec->sclass = isec->sclass;
4290 }
4291
4292 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4293                                      struct request_sock *req)
4294 {
4295         struct sk_security_struct *sksec = sk->sk_security;
4296         int err;
4297         u16 family = sk->sk_family;
4298         u32 newsid;
4299         u32 peersid;
4300
4301         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4302         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4303                 family = PF_INET;
4304
4305         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4306         if (err)
4307                 return err;
4308         if (peersid == SECSID_NULL) {
4309                 req->secid = sksec->sid;
4310                 req->peer_secid = SECSID_NULL;
4311         } else {
4312                 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4313                 if (err)
4314                         return err;
4315                 req->secid = newsid;
4316                 req->peer_secid = peersid;
4317         }
4318
4319         return selinux_netlbl_inet_conn_request(req, family);
4320 }
4321
4322 static void selinux_inet_csk_clone(struct sock *newsk,
4323                                    const struct request_sock *req)
4324 {
4325         struct sk_security_struct *newsksec = newsk->sk_security;
4326
4327         newsksec->sid = req->secid;
4328         newsksec->peer_sid = req->peer_secid;
4329         /* NOTE: Ideally, we should also get the isec->sid for the
4330            new socket in sync, but we don't have the isec available yet.
4331            So we will wait until sock_graft to do it, by which
4332            time it will have been created and available. */
4333
4334         /* We don't need to take any sort of lock here as we are the only
4335          * thread with access to newsksec */
4336         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4337 }
4338
4339 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4340 {
4341         u16 family = sk->sk_family;
4342         struct sk_security_struct *sksec = sk->sk_security;
4343
4344         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4345         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4346                 family = PF_INET;
4347
4348         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4349 }
4350
4351 static int selinux_secmark_relabel_packet(u32 sid)
4352 {
4353         const struct task_security_struct *__tsec;
4354         u32 tsid;
4355
4356         __tsec = current_security();
4357         tsid = __tsec->sid;
4358
4359         return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4360 }
4361
4362 static void selinux_secmark_refcount_inc(void)
4363 {
4364         atomic_inc(&selinux_secmark_refcount);
4365 }
4366
4367 static void selinux_secmark_refcount_dec(void)
4368 {
4369         atomic_dec(&selinux_secmark_refcount);
4370 }
4371
4372 static void selinux_req_classify_flow(const struct request_sock *req,
4373                                       struct flowi *fl)
4374 {
4375         fl->flowi_secid = req->secid;
4376 }
4377
4378 static int selinux_tun_dev_create(void)
4379 {
4380         u32 sid = current_sid();
4381
4382         /* we aren't taking into account the "sockcreate" SID since the socket
4383          * that is being created here is not a socket in the traditional sense,
4384          * instead it is a private sock, accessible only to the kernel, and
4385          * representing a wide range of network traffic spanning multiple
4386          * connections unlike traditional sockets - check the TUN driver to
4387          * get a better understanding of why this socket is special */
4388
4389         return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4390                             NULL);
4391 }
4392
4393 static void selinux_tun_dev_post_create(struct sock *sk)
4394 {
4395         struct sk_security_struct *sksec = sk->sk_security;
4396
4397         /* we don't currently perform any NetLabel based labeling here and it
4398          * isn't clear that we would want to do so anyway; while we could apply
4399          * labeling without the support of the TUN user the resulting labeled
4400          * traffic from the other end of the connection would almost certainly
4401          * cause confusion to the TUN user that had no idea network labeling
4402          * protocols were being used */
4403
4404         /* see the comments in selinux_tun_dev_create() about why we don't use
4405          * the sockcreate SID here */
4406
4407         sksec->sid = current_sid();
4408         sksec->sclass = SECCLASS_TUN_SOCKET;
4409 }
4410
4411 static int selinux_tun_dev_attach(struct sock *sk)
4412 {
4413         struct sk_security_struct *sksec = sk->sk_security;
4414         u32 sid = current_sid();
4415         int err;
4416
4417         err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4418                            TUN_SOCKET__RELABELFROM, NULL);
4419         if (err)
4420                 return err;
4421         err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4422                            TUN_SOCKET__RELABELTO, NULL);
4423         if (err)
4424                 return err;
4425
4426         sksec->sid = sid;
4427
4428         return 0;
4429 }
4430
4431 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4432 {
4433         int err = 0;
4434         u32 perm;
4435         struct nlmsghdr *nlh;
4436         struct sk_security_struct *sksec = sk->sk_security;
4437
4438         if (skb->len < NLMSG_SPACE(0)) {
4439                 err = -EINVAL;
4440                 goto out;
4441         }
4442         nlh = nlmsg_hdr(skb);
4443
4444         err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4445         if (err) {
4446                 if (err == -EINVAL) {
4447                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4448                                   "SELinux:  unrecognized netlink message"
4449                                   " type=%hu for sclass=%hu\n",
4450                                   nlh->nlmsg_type, sksec->sclass);
4451                         if (!selinux_enforcing || security_get_allow_unknown())
4452                                 err = 0;
4453                 }
4454
4455                 /* Ignore */
4456                 if (err == -ENOENT)
4457                         err = 0;
4458                 goto out;
4459         }
4460
4461         err = sock_has_perm(current, sk, perm);
4462 out:
4463         return err;
4464 }
4465
4466 #ifdef CONFIG_NETFILTER
4467
4468 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4469                                        u16 family)
4470 {
4471         int err;
4472         char *addrp;
4473         u32 peer_sid;
4474         struct common_audit_data ad;
4475         u8 secmark_active;
4476         u8 netlbl_active;
4477         u8 peerlbl_active;
4478
4479         if (!selinux_policycap_netpeer)
4480                 return NF_ACCEPT;
4481
4482         secmark_active = selinux_secmark_enabled();
4483         netlbl_active = netlbl_enabled();
4484         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4485         if (!secmark_active && !peerlbl_active)
4486                 return NF_ACCEPT;
4487
4488         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4489                 return NF_DROP;
4490
4491         COMMON_AUDIT_DATA_INIT(&ad, NET);
4492         ad.u.net.netif = ifindex;
4493         ad.u.net.family = family;
4494         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4495                 return NF_DROP;
4496
4497         if (peerlbl_active) {
4498                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4499                                                peer_sid, &ad);
4500                 if (err) {
4501                         selinux_netlbl_err(skb, err, 1);
4502                         return NF_DROP;
4503                 }
4504         }
4505
4506         if (secmark_active)
4507                 if (avc_has_perm(peer_sid, skb->secmark,
4508                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4509                         return NF_DROP;
4510
4511         if (netlbl_active)
4512                 /* we do this in the FORWARD path and not the POST_ROUTING
4513                  * path because we want to make sure we apply the necessary
4514                  * labeling before IPsec is applied so we can leverage AH
4515                  * protection */
4516                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4517                         return NF_DROP;
4518
4519         return NF_ACCEPT;
4520 }
4521
4522 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4523                                          struct sk_buff *skb,
4524                                          const struct net_device *in,
4525                                          const struct net_device *out,
4526                                          int (*okfn)(struct sk_buff *))
4527 {
4528         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4529 }
4530
4531 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4532 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4533                                          struct sk_buff *skb,
4534                                          const struct net_device *in,
4535                                          const struct net_device *out,
4536                                          int (*okfn)(struct sk_buff *))
4537 {
4538         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4539 }
4540 #endif  /* IPV6 */
4541
4542 static unsigned int selinux_ip_output(struct sk_buff *skb,
4543                                       u16 family)
4544 {
4545         u32 sid;
4546
4547         if (!netlbl_enabled())
4548                 return NF_ACCEPT;
4549
4550         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4551          * because we want to make sure we apply the necessary labeling
4552          * before IPsec is applied so we can leverage AH protection */
4553         if (skb->sk) {
4554                 struct sk_security_struct *sksec = skb->sk->sk_security;
4555                 sid = sksec->sid;
4556         } else
4557                 sid = SECINITSID_KERNEL;
4558         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4559                 return NF_DROP;
4560
4561         return NF_ACCEPT;
4562 }
4563
4564 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4565                                         struct sk_buff *skb,
4566                                         const struct net_device *in,
4567                                         const struct net_device *out,
4568                                         int (*okfn)(struct sk_buff *))
4569 {
4570         return selinux_ip_output(skb, PF_INET);
4571 }
4572
4573 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4574                                                 int ifindex,
4575                                                 u16 family)
4576 {
4577         struct sock *sk = skb->sk;
4578         struct sk_security_struct *sksec;
4579         struct common_audit_data ad;
4580         char *addrp;
4581         u8 proto;
4582
4583         if (sk == NULL)
4584                 return NF_ACCEPT;
4585         sksec = sk->sk_security;
4586
4587         COMMON_AUDIT_DATA_INIT(&ad, NET);
4588         ad.u.net.netif = ifindex;
4589         ad.u.net.family = family;
4590         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4591                 return NF_DROP;
4592
4593         if (selinux_secmark_enabled())
4594                 if (avc_has_perm(sksec->sid, skb->secmark,
4595                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4596                         return NF_DROP_ERR(-ECONNREFUSED);
4597
4598         if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4599                 return NF_DROP_ERR(-ECONNREFUSED);
4600
4601         return NF_ACCEPT;
4602 }
4603
4604 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4605                                          u16 family)
4606 {
4607         u32 secmark_perm;
4608         u32 peer_sid;
4609         struct sock *sk;
4610         struct common_audit_data ad;
4611         char *addrp;
4612         u8 secmark_active;
4613         u8 peerlbl_active;
4614
4615         /* If any sort of compatibility mode is enabled then handoff processing
4616          * to the selinux_ip_postroute_compat() function to deal with the
4617          * special handling.  We do this in an attempt to keep this function
4618          * as fast and as clean as possible. */
4619         if (!selinux_policycap_netpeer)
4620                 return selinux_ip_postroute_compat(skb, ifindex, family);
4621 #ifdef CONFIG_XFRM
4622         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4623          * packet transformation so allow the packet to pass without any checks
4624          * since we'll have another chance to perform access control checks
4625          * when the packet is on it's final way out.
4626          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4627          *       is NULL, in this case go ahead and apply access control. */
4628         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4629                 return NF_ACCEPT;
4630 #endif
4631         secmark_active = selinux_secmark_enabled();
4632         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4633         if (!secmark_active && !peerlbl_active)
4634                 return NF_ACCEPT;
4635
4636         /* if the packet is being forwarded then get the peer label from the
4637          * packet itself; otherwise check to see if it is from a local
4638          * application or the kernel, if from an application get the peer label
4639          * from the sending socket, otherwise use the kernel's sid */
4640         sk = skb->sk;
4641         if (sk == NULL) {
4642                 if (skb->skb_iif) {
4643                         secmark_perm = PACKET__FORWARD_OUT;
4644                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4645                                 return NF_DROP;
4646                 } else {
4647                         secmark_perm = PACKET__SEND;
4648                         peer_sid = SECINITSID_KERNEL;
4649                 }
4650         } else {
4651                 struct sk_security_struct *sksec = sk->sk_security;
4652                 peer_sid = sksec->sid;
4653                 secmark_perm = PACKET__SEND;
4654         }
4655
4656         COMMON_AUDIT_DATA_INIT(&ad, NET);
4657         ad.u.net.netif = ifindex;
4658         ad.u.net.family = family;
4659         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4660                 return NF_DROP;
4661
4662         if (secmark_active)
4663                 if (avc_has_perm(peer_sid, skb->secmark,
4664                                  SECCLASS_PACKET, secmark_perm, &ad))
4665                         return NF_DROP_ERR(-ECONNREFUSED);
4666
4667         if (peerlbl_active) {
4668                 u32 if_sid;
4669                 u32 node_sid;
4670
4671                 if (sel_netif_sid(ifindex, &if_sid))
4672                         return NF_DROP;
4673                 if (avc_has_perm(peer_sid, if_sid,
4674                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4675                         return NF_DROP_ERR(-ECONNREFUSED);
4676
4677                 if (sel_netnode_sid(addrp, family, &node_sid))
4678                         return NF_DROP;
4679                 if (avc_has_perm(peer_sid, node_sid,
4680                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4681                         return NF_DROP_ERR(-ECONNREFUSED);
4682         }
4683
4684         return NF_ACCEPT;
4685 }
4686
4687 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4688                                            struct sk_buff *skb,
4689                                            const struct net_device *in,
4690                                            const struct net_device *out,
4691                                            int (*okfn)(struct sk_buff *))
4692 {
4693         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4694 }
4695
4696 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4697 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4698                                            struct sk_buff *skb,
4699                                            const struct net_device *in,
4700                                            const struct net_device *out,
4701                                            int (*okfn)(struct sk_buff *))
4702 {
4703         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4704 }
4705 #endif  /* IPV6 */
4706
4707 #endif  /* CONFIG_NETFILTER */
4708
4709 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4710 {
4711         int err;
4712
4713         err = cap_netlink_send(sk, skb);
4714         if (err)
4715                 return err;
4716
4717         return selinux_nlmsg_perm(sk, skb);
4718 }
4719
4720 static int ipc_alloc_security(struct task_struct *task,
4721                               struct kern_ipc_perm *perm,
4722                               u16 sclass)
4723 {
4724         struct ipc_security_struct *isec;
4725         u32 sid;
4726
4727         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4728         if (!isec)
4729                 return -ENOMEM;
4730
4731         sid = task_sid(task);
4732         isec->sclass = sclass;
4733         isec->sid = sid;
4734         perm->security = isec;
4735
4736         return 0;
4737 }
4738
4739 static void ipc_free_security(struct kern_ipc_perm *perm)
4740 {
4741         struct ipc_security_struct *isec = perm->security;
4742         perm->security = NULL;
4743         kfree(isec);
4744 }
4745
4746 static int msg_msg_alloc_security(struct msg_msg *msg)
4747 {
4748         struct msg_security_struct *msec;
4749
4750         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4751         if (!msec)
4752                 return -ENOMEM;
4753
4754         msec->sid = SECINITSID_UNLABELED;
4755         msg->security = msec;
4756
4757         return 0;
4758 }
4759
4760 static void msg_msg_free_security(struct msg_msg *msg)
4761 {
4762         struct msg_security_struct *msec = msg->security;
4763
4764         msg->security = NULL;
4765         kfree(msec);
4766 }
4767
4768 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4769                         u32 perms)
4770 {
4771         struct ipc_security_struct *isec;
4772         struct common_audit_data ad;
4773         u32 sid = current_sid();
4774
4775         isec = ipc_perms->security;
4776
4777         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4778         ad.u.ipc_id = ipc_perms->key;
4779
4780         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4781 }
4782
4783 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4784 {
4785         return msg_msg_alloc_security(msg);
4786 }
4787
4788 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4789 {
4790         msg_msg_free_security(msg);
4791 }
4792
4793 /* message queue security operations */
4794 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4795 {
4796         struct ipc_security_struct *isec;
4797         struct common_audit_data ad;
4798         u32 sid = current_sid();
4799         int rc;
4800
4801         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4802         if (rc)
4803                 return rc;
4804
4805         isec = msq->q_perm.security;
4806
4807         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4808         ad.u.ipc_id = msq->q_perm.key;
4809
4810         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4811                           MSGQ__CREATE, &ad);
4812         if (rc) {
4813                 ipc_free_security(&msq->q_perm);
4814                 return rc;
4815         }
4816         return 0;
4817 }
4818
4819 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4820 {
4821         ipc_free_security(&msq->q_perm);
4822 }
4823
4824 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4825 {
4826         struct ipc_security_struct *isec;
4827         struct common_audit_data ad;
4828         u32 sid = current_sid();
4829
4830         isec = msq->q_perm.security;
4831
4832         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4833         ad.u.ipc_id = msq->q_perm.key;
4834
4835         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4836                             MSGQ__ASSOCIATE, &ad);
4837 }
4838
4839 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4840 {
4841         int err;
4842         int perms;
4843
4844         switch (cmd) {
4845         case IPC_INFO:
4846         case MSG_INFO:
4847                 /* No specific object, just general system-wide information. */
4848                 return task_has_system(current, SYSTEM__IPC_INFO);
4849         case IPC_STAT:
4850         case MSG_STAT:
4851                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4852                 break;
4853         case IPC_SET:
4854                 perms = MSGQ__SETATTR;
4855                 break;
4856         case IPC_RMID:
4857                 perms = MSGQ__DESTROY;
4858                 break;
4859         default:
4860                 return 0;
4861         }
4862
4863         err = ipc_has_perm(&msq->q_perm, perms);
4864         return err;
4865 }
4866
4867 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4868 {
4869         struct ipc_security_struct *isec;
4870         struct msg_security_struct *msec;
4871         struct common_audit_data ad;
4872         u32 sid = current_sid();
4873         int rc;
4874
4875         isec = msq->q_perm.security;
4876         msec = msg->security;
4877
4878         /*
4879          * First time through, need to assign label to the message
4880          */
4881         if (msec->sid == SECINITSID_UNLABELED) {
4882                 /*
4883                  * Compute new sid based on current process and
4884                  * message queue this message will be stored in
4885                  */
4886                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4887                                              NULL, &msec->sid);
4888                 if (rc)
4889                         return rc;
4890         }
4891
4892         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4893         ad.u.ipc_id = msq->q_perm.key;
4894
4895         /* Can this process write to the queue? */
4896         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4897                           MSGQ__WRITE, &ad);
4898         if (!rc)
4899                 /* Can this process send the message */
4900                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4901                                   MSG__SEND, &ad);
4902         if (!rc)
4903                 /* Can the message be put in the queue? */
4904                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4905                                   MSGQ__ENQUEUE, &ad);
4906
4907         return rc;
4908 }
4909
4910 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4911                                     struct task_struct *target,
4912                                     long type, int mode)
4913 {
4914         struct ipc_security_struct *isec;
4915         struct msg_security_struct *msec;
4916         struct common_audit_data ad;
4917         u32 sid = task_sid(target);
4918         int rc;
4919
4920         isec = msq->q_perm.security;
4921         msec = msg->security;
4922
4923         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4924         ad.u.ipc_id = msq->q_perm.key;
4925
4926         rc = avc_has_perm(sid, isec->sid,
4927                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4928         if (!rc)
4929                 rc = avc_has_perm(sid, msec->sid,
4930                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4931         return rc;
4932 }
4933
4934 /* Shared Memory security operations */
4935 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4936 {
4937         struct ipc_security_struct *isec;
4938         struct common_audit_data ad;
4939         u32 sid = current_sid();
4940         int rc;
4941
4942         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4943         if (rc)
4944                 return rc;
4945
4946         isec = shp->shm_perm.security;
4947
4948         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4949         ad.u.ipc_id = shp->shm_perm.key;
4950
4951         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4952                           SHM__CREATE, &ad);
4953         if (rc) {
4954                 ipc_free_security(&shp->shm_perm);
4955                 return rc;
4956         }
4957         return 0;
4958 }
4959
4960 static void selinux_shm_free_security(struct shmid_kernel *shp)
4961 {
4962         ipc_free_security(&shp->shm_perm);
4963 }
4964
4965 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4966 {
4967         struct ipc_security_struct *isec;
4968         struct common_audit_data ad;
4969         u32 sid = current_sid();
4970
4971         isec = shp->shm_perm.security;
4972
4973         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4974         ad.u.ipc_id = shp->shm_perm.key;
4975
4976         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4977                             SHM__ASSOCIATE, &ad);
4978 }
4979
4980 /* Note, at this point, shp is locked down */
4981 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4982 {
4983         int perms;
4984         int err;
4985
4986         switch (cmd) {
4987         case IPC_INFO:
4988         case SHM_INFO:
4989                 /* No specific object, just general system-wide information. */
4990                 return task_has_system(current, SYSTEM__IPC_INFO);
4991         case IPC_STAT:
4992         case SHM_STAT:
4993                 perms = SHM__GETATTR | SHM__ASSOCIATE;
4994                 break;
4995         case IPC_SET:
4996                 perms = SHM__SETATTR;
4997                 break;
4998         case SHM_LOCK:
4999         case SHM_UNLOCK:
5000                 perms = SHM__LOCK;
5001                 break;
5002         case IPC_RMID:
5003                 perms = SHM__DESTROY;
5004                 break;
5005         default:
5006                 return 0;
5007         }
5008
5009         err = ipc_has_perm(&shp->shm_perm, perms);
5010         return err;
5011 }
5012
5013 static int selinux_shm_shmat(struct shmid_kernel *shp,
5014                              char __user *shmaddr, int shmflg)
5015 {
5016         u32 perms;
5017
5018         if (shmflg & SHM_RDONLY)
5019                 perms = SHM__READ;
5020         else
5021                 perms = SHM__READ | SHM__WRITE;
5022
5023         return ipc_has_perm(&shp->shm_perm, perms);
5024 }
5025
5026 /* Semaphore security operations */
5027 static int selinux_sem_alloc_security(struct sem_array *sma)
5028 {
5029         struct ipc_security_struct *isec;
5030         struct common_audit_data ad;
5031         u32 sid = current_sid();
5032         int rc;
5033
5034         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5035         if (rc)
5036                 return rc;
5037
5038         isec = sma->sem_perm.security;
5039
5040         COMMON_AUDIT_DATA_INIT(&ad, IPC);
5041         ad.u.ipc_id = sma->sem_perm.key;
5042
5043         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5044                           SEM__CREATE, &ad);
5045         if (rc) {
5046                 ipc_free_security(&sma->sem_perm);
5047                 return rc;
5048         }
5049         return 0;
5050 }
5051
5052 static void selinux_sem_free_security(struct sem_array *sma)
5053 {
5054         ipc_free_security(&sma->sem_perm);
5055 }
5056
5057 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5058 {
5059         struct ipc_security_struct *isec;
5060         struct common_audit_data ad;
5061         u32 sid = current_sid();
5062
5063         isec = sma->sem_perm.security;
5064
5065         COMMON_AUDIT_DATA_INIT(&ad, IPC);
5066         ad.u.ipc_id = sma->sem_perm.key;
5067
5068         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5069                             SEM__ASSOCIATE, &ad);
5070 }
5071
5072 /* Note, at this point, sma is locked down */
5073 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5074 {
5075         int err;
5076         u32 perms;
5077
5078         switch (cmd) {
5079         case IPC_INFO:
5080         case SEM_INFO:
5081                 /* No specific object, just general system-wide information. */
5082                 return task_has_system(current, SYSTEM__IPC_INFO);
5083         case GETPID:
5084         case GETNCNT:
5085         case GETZCNT:
5086                 perms = SEM__GETATTR;
5087                 break;
5088         case GETVAL:
5089         case GETALL:
5090                 perms = SEM__READ;
5091                 break;
5092         case SETVAL:
5093         case SETALL:
5094                 perms = SEM__WRITE;
5095                 break;
5096         case IPC_RMID:
5097                 perms = SEM__DESTROY;
5098                 break;
5099         case IPC_SET:
5100                 perms = SEM__SETATTR;
5101                 break;
5102         case IPC_STAT:
5103         case SEM_STAT:
5104                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5105                 break;
5106         default:
5107                 return 0;
5108         }
5109
5110         err = ipc_has_perm(&sma->sem_perm, perms);
5111         return err;
5112 }
5113
5114 static int selinux_sem_semop(struct sem_array *sma,
5115                              struct sembuf *sops, unsigned nsops, int alter)
5116 {
5117         u32 perms;
5118
5119         if (alter)
5120                 perms = SEM__READ | SEM__WRITE;
5121         else
5122                 perms = SEM__READ;
5123
5124         return ipc_has_perm(&sma->sem_perm, perms);
5125 }
5126
5127 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5128 {
5129         u32 av = 0;
5130
5131         av = 0;
5132         if (flag & S_IRUGO)
5133                 av |= IPC__UNIX_READ;
5134         if (flag & S_IWUGO)
5135                 av |= IPC__UNIX_WRITE;
5136
5137         if (av == 0)
5138                 return 0;
5139
5140         return ipc_has_perm(ipcp, av);
5141 }
5142
5143 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5144 {
5145         struct ipc_security_struct *isec = ipcp->security;
5146         *secid = isec->sid;
5147 }
5148
5149 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5150 {
5151         if (inode)
5152                 inode_doinit_with_dentry(inode, dentry);
5153 }
5154
5155 static int selinux_getprocattr(struct task_struct *p,
5156                                char *name, char **value)
5157 {
5158         const struct task_security_struct *__tsec;
5159         u32 sid;
5160         int error;
5161         unsigned len;
5162
5163         if (current != p) {
5164                 error = current_has_perm(p, PROCESS__GETATTR);
5165                 if (error)
5166                         return error;
5167         }
5168
5169         rcu_read_lock();
5170         __tsec = __task_cred(p)->security;
5171
5172         if (!strcmp(name, "current"))
5173                 sid = __tsec->sid;
5174         else if (!strcmp(name, "prev"))
5175                 sid = __tsec->osid;
5176         else if (!strcmp(name, "exec"))
5177                 sid = __tsec->exec_sid;
5178         else if (!strcmp(name, "fscreate"))
5179                 sid = __tsec->create_sid;
5180         else if (!strcmp(name, "keycreate"))
5181                 sid = __tsec->keycreate_sid;
5182         else if (!strcmp(name, "sockcreate"))
5183                 sid = __tsec->sockcreate_sid;
5184         else
5185                 goto invalid;
5186         rcu_read_unlock();
5187
5188         if (!sid)
5189                 return 0;
5190
5191         error = security_sid_to_context(sid, value, &len);
5192         if (error)
5193                 return error;
5194         return len;
5195
5196 invalid:
5197         rcu_read_unlock();
5198         return -EINVAL;
5199 }
5200
5201 static int selinux_setprocattr(struct task_struct *p,
5202                                char *name, void *value, size_t size)
5203 {
5204         struct task_security_struct *tsec;
5205         struct task_struct *tracer;
5206         struct cred *new;
5207         u32 sid = 0, ptsid;
5208         int error;
5209         char *str = value;
5210
5211         if (current != p) {
5212                 /* SELinux only allows a process to change its own
5213                    security attributes. */
5214                 return -EACCES;
5215         }
5216
5217         /*
5218          * Basic control over ability to set these attributes at all.
5219          * current == p, but we'll pass them separately in case the
5220          * above restriction is ever removed.
5221          */
5222         if (!strcmp(name, "exec"))
5223                 error = current_has_perm(p, PROCESS__SETEXEC);
5224         else if (!strcmp(name, "fscreate"))
5225                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5226         else if (!strcmp(name, "keycreate"))
5227                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5228         else if (!strcmp(name, "sockcreate"))
5229                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5230         else if (!strcmp(name, "current"))
5231                 error = current_has_perm(p, PROCESS__SETCURRENT);
5232         else
5233                 error = -EINVAL;
5234         if (error)
5235                 return error;
5236
5237         /* Obtain a SID for the context, if one was specified. */
5238         if (size && str[1] && str[1] != '\n') {
5239                 if (str[size-1] == '\n') {
5240                         str[size-1] = 0;
5241                         size--;
5242                 }
5243                 error = security_context_to_sid(value, size, &sid);
5244                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5245                         if (!capable(CAP_MAC_ADMIN))
5246                                 return error;
5247                         error = security_context_to_sid_force(value, size,
5248                                                               &sid);
5249                 }
5250                 if (error)
5251                         return error;
5252         }
5253
5254         new = prepare_creds();
5255         if (!new)
5256                 return -ENOMEM;
5257
5258         /* Permission checking based on the specified context is
5259            performed during the actual operation (execve,
5260            open/mkdir/...), when we know the full context of the
5261            operation.  See selinux_bprm_set_creds for the execve
5262            checks and may_create for the file creation checks. The
5263            operation will then fail if the context is not permitted. */
5264         tsec = new->security;
5265         if (!strcmp(name, "exec")) {
5266                 tsec->exec_sid = sid;
5267         } else if (!strcmp(name, "fscreate")) {
5268                 tsec->create_sid = sid;
5269         } else if (!strcmp(name, "keycreate")) {
5270                 error = may_create_key(sid, p);
5271                 if (error)
5272                         goto abort_change;
5273                 tsec->keycreate_sid = sid;
5274         } else if (!strcmp(name, "sockcreate")) {
5275                 tsec->sockcreate_sid = sid;
5276         } else if (!strcmp(name, "current")) {
5277                 error = -EINVAL;
5278                 if (sid == 0)
5279                         goto abort_change;
5280
5281                 /* Only allow single threaded processes to change context */
5282                 error = -EPERM;
5283                 if (!current_is_single_threaded()) {
5284                         error = security_bounded_transition(tsec->sid, sid);
5285                         if (error)
5286                                 goto abort_change;
5287                 }
5288
5289                 /* Check permissions for the transition. */
5290                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5291                                      PROCESS__DYNTRANSITION, NULL);
5292                 if (error)
5293                         goto abort_change;
5294
5295                 /* Check for ptracing, and update the task SID if ok.
5296                    Otherwise, leave SID unchanged and fail. */
5297                 ptsid = 0;
5298                 task_lock(p);
5299                 tracer = ptrace_parent(p);
5300                 if (tracer)
5301                         ptsid = task_sid(tracer);
5302                 task_unlock(p);
5303
5304                 if (tracer) {
5305                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5306                                              PROCESS__PTRACE, NULL);
5307                         if (error)
5308                                 goto abort_change;
5309                 }
5310
5311                 tsec->sid = sid;
5312         } else {
5313                 error = -EINVAL;
5314                 goto abort_change;
5315         }
5316
5317         commit_creds(new);
5318         return size;
5319
5320 abort_change:
5321         abort_creds(new);
5322         return error;
5323 }
5324
5325 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5326 {
5327         return security_sid_to_context(secid, secdata, seclen);
5328 }
5329
5330 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5331 {
5332         return security_context_to_sid(secdata, seclen, secid);
5333 }
5334
5335 static void selinux_release_secctx(char *secdata, u32 seclen)
5336 {
5337         kfree(secdata);
5338 }
5339
5340 /*
5341  *      called with inode->i_mutex locked
5342  */
5343 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5344 {
5345         return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5346 }
5347
5348 /*
5349  *      called with inode->i_mutex locked
5350  */
5351 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5352 {
5353         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5354 }
5355
5356 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5357 {
5358         int len = 0;
5359         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5360                                                 ctx, true);
5361         if (len < 0)
5362                 return len;
5363         *ctxlen = len;
5364         return 0;
5365 }
5366 #ifdef CONFIG_KEYS
5367
5368 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5369                              unsigned long flags)
5370 {
5371         const struct task_security_struct *tsec;
5372         struct key_security_struct *ksec;
5373
5374         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5375         if (!ksec)
5376                 return -ENOMEM;
5377
5378         tsec = cred->security;
5379         if (tsec->keycreate_sid)
5380                 ksec->sid = tsec->keycreate_sid;
5381         else
5382                 ksec->sid = tsec->sid;
5383
5384         k->security = ksec;
5385         return 0;
5386 }
5387
5388 static void selinux_key_free(struct key *k)
5389 {
5390         struct key_security_struct *ksec = k->security;
5391
5392         k->security = NULL;
5393         kfree(ksec);
5394 }
5395
5396 static int selinux_key_permission(key_ref_t key_ref,
5397                                   const struct cred *cred,
5398                                   key_perm_t perm)
5399 {
5400         struct key *key;
5401         struct key_security_struct *ksec;
5402         u32 sid;
5403
5404         /* if no specific permissions are requested, we skip the
5405            permission check. No serious, additional covert channels
5406            appear to be created. */
5407         if (perm == 0)
5408                 return 0;
5409
5410         sid = cred_sid(cred);
5411
5412         key = key_ref_to_ptr(key_ref);
5413         ksec = key->security;
5414
5415         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5416 }
5417
5418 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5419 {
5420         struct key_security_struct *ksec = key->security;
5421         char *context = NULL;
5422         unsigned len;
5423         int rc;
5424
5425         rc = security_sid_to_context(ksec->sid, &context, &len);
5426         if (!rc)
5427                 rc = len;
5428         *_buffer = context;
5429         return rc;
5430 }
5431
5432 #endif
5433
5434 static struct security_operations selinux_ops = {
5435         .name =                         "selinux",
5436
5437         .ptrace_access_check =          selinux_ptrace_access_check,
5438         .ptrace_traceme =               selinux_ptrace_traceme,
5439         .capget =                       selinux_capget,
5440         .capset =                       selinux_capset,
5441         .capable =                      selinux_capable,
5442         .quotactl =                     selinux_quotactl,
5443         .quota_on =                     selinux_quota_on,
5444         .syslog =                       selinux_syslog,
5445         .vm_enough_memory =             selinux_vm_enough_memory,
5446
5447         .netlink_send =                 selinux_netlink_send,
5448
5449         .bprm_set_creds =               selinux_bprm_set_creds,
5450         .bprm_committing_creds =        selinux_bprm_committing_creds,
5451         .bprm_committed_creds =         selinux_bprm_committed_creds,
5452         .bprm_secureexec =              selinux_bprm_secureexec,
5453
5454         .sb_alloc_security =            selinux_sb_alloc_security,
5455         .sb_free_security =             selinux_sb_free_security,
5456         .sb_copy_data =                 selinux_sb_copy_data,
5457         .sb_remount =                   selinux_sb_remount,
5458         .sb_kern_mount =                selinux_sb_kern_mount,
5459         .sb_show_options =              selinux_sb_show_options,
5460         .sb_statfs =                    selinux_sb_statfs,
5461         .sb_mount =                     selinux_mount,
5462         .sb_umount =                    selinux_umount,
5463         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5464         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5465         .sb_parse_opts_str =            selinux_parse_opts_str,
5466
5467
5468         .inode_alloc_security =         selinux_inode_alloc_security,
5469         .inode_free_security =          selinux_inode_free_security,
5470         .inode_init_security =          selinux_inode_init_security,
5471         .inode_create =                 selinux_inode_create,
5472         .inode_link =                   selinux_inode_link,
5473         .inode_unlink =                 selinux_inode_unlink,
5474         .inode_symlink =                selinux_inode_symlink,
5475         .inode_mkdir =                  selinux_inode_mkdir,
5476         .inode_rmdir =                  selinux_inode_rmdir,
5477         .inode_mknod =                  selinux_inode_mknod,
5478         .inode_rename =                 selinux_inode_rename,
5479         .inode_readlink =               selinux_inode_readlink,
5480         .inode_follow_link =            selinux_inode_follow_link,
5481         .inode_permission =             selinux_inode_permission,
5482         .inode_setattr =                selinux_inode_setattr,
5483         .inode_getattr =                selinux_inode_getattr,
5484         .inode_setxattr =               selinux_inode_setxattr,
5485         .inode_post_setxattr =          selinux_inode_post_setxattr,
5486         .inode_getxattr =               selinux_inode_getxattr,
5487         .inode_listxattr =              selinux_inode_listxattr,
5488         .inode_removexattr =            selinux_inode_removexattr,
5489         .inode_getsecurity =            selinux_inode_getsecurity,
5490         .inode_setsecurity =            selinux_inode_setsecurity,
5491         .inode_listsecurity =           selinux_inode_listsecurity,
5492         .inode_getsecid =               selinux_inode_getsecid,
5493
5494         .file_permission =              selinux_file_permission,
5495         .file_alloc_security =          selinux_file_alloc_security,
5496         .file_free_security =           selinux_file_free_security,
5497         .file_ioctl =                   selinux_file_ioctl,
5498         .file_mmap =                    selinux_file_mmap,
5499         .file_mprotect =                selinux_file_mprotect,
5500         .file_lock =                    selinux_file_lock,
5501         .file_fcntl =                   selinux_file_fcntl,
5502         .file_set_fowner =              selinux_file_set_fowner,
5503         .file_send_sigiotask =          selinux_file_send_sigiotask,
5504         .file_receive =                 selinux_file_receive,
5505
5506         .dentry_open =                  selinux_dentry_open,
5507
5508         .task_create =                  selinux_task_create,
5509         .cred_alloc_blank =             selinux_cred_alloc_blank,
5510         .cred_free =                    selinux_cred_free,
5511         .cred_prepare =                 selinux_cred_prepare,
5512         .cred_transfer =                selinux_cred_transfer,
5513         .kernel_act_as =                selinux_kernel_act_as,
5514         .kernel_create_files_as =       selinux_kernel_create_files_as,
5515         .kernel_module_request =        selinux_kernel_module_request,
5516         .task_setpgid =                 selinux_task_setpgid,
5517         .task_getpgid =                 selinux_task_getpgid,
5518         .task_getsid =                  selinux_task_getsid,
5519         .task_getsecid =                selinux_task_getsecid,
5520         .task_setnice =                 selinux_task_setnice,
5521         .task_setioprio =               selinux_task_setioprio,
5522         .task_getioprio =               selinux_task_getioprio,
5523         .task_setrlimit =               selinux_task_setrlimit,
5524         .task_setscheduler =            selinux_task_setscheduler,
5525         .task_getscheduler =            selinux_task_getscheduler,
5526         .task_movememory =              selinux_task_movememory,
5527         .task_kill =                    selinux_task_kill,
5528         .task_wait =                    selinux_task_wait,
5529         .task_to_inode =                selinux_task_to_inode,
5530
5531         .ipc_permission =               selinux_ipc_permission,
5532         .ipc_getsecid =                 selinux_ipc_getsecid,
5533
5534         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5535         .msg_msg_free_security =        selinux_msg_msg_free_security,
5536
5537         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5538         .msg_queue_free_security =      selinux_msg_queue_free_security,
5539         .msg_queue_associate =          selinux_msg_queue_associate,
5540         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5541         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5542         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5543
5544         .shm_alloc_security =           selinux_shm_alloc_security,
5545         .shm_free_security =            selinux_shm_free_security,
5546         .shm_associate =                selinux_shm_associate,
5547         .shm_shmctl =                   selinux_shm_shmctl,
5548         .shm_shmat =                    selinux_shm_shmat,
5549
5550         .sem_alloc_security =           selinux_sem_alloc_security,
5551         .sem_free_security =            selinux_sem_free_security,
5552         .sem_associate =                selinux_sem_associate,
5553         .sem_semctl =                   selinux_sem_semctl,
5554         .sem_semop =                    selinux_sem_semop,
5555
5556         .d_instantiate =                selinux_d_instantiate,
5557
5558         .getprocattr =                  selinux_getprocattr,
5559         .setprocattr =                  selinux_setprocattr,
5560
5561         .secid_to_secctx =              selinux_secid_to_secctx,
5562         .secctx_to_secid =              selinux_secctx_to_secid,
5563         .release_secctx =               selinux_release_secctx,
5564         .inode_notifysecctx =           selinux_inode_notifysecctx,
5565         .inode_setsecctx =              selinux_inode_setsecctx,
5566         .inode_getsecctx =              selinux_inode_getsecctx,
5567
5568         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5569         .unix_may_send =                selinux_socket_unix_may_send,
5570
5571         .socket_create =                selinux_socket_create,
5572         .socket_post_create =           selinux_socket_post_create,
5573         .socket_bind =                  selinux_socket_bind,
5574         .socket_connect =               selinux_socket_connect,
5575         .socket_listen =                selinux_socket_listen,
5576         .socket_accept =                selinux_socket_accept,
5577         .socket_sendmsg =               selinux_socket_sendmsg,
5578         .socket_recvmsg =               selinux_socket_recvmsg,
5579         .socket_getsockname =           selinux_socket_getsockname,
5580         .socket_getpeername =           selinux_socket_getpeername,
5581         .socket_getsockopt =            selinux_socket_getsockopt,
5582         .socket_setsockopt =            selinux_socket_setsockopt,
5583         .socket_shutdown =              selinux_socket_shutdown,
5584         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5585         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5586         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5587         .sk_alloc_security =            selinux_sk_alloc_security,
5588         .sk_free_security =             selinux_sk_free_security,
5589         .sk_clone_security =            selinux_sk_clone_security,
5590         .sk_getsecid =                  selinux_sk_getsecid,
5591         .sock_graft =                   selinux_sock_graft,
5592         .inet_conn_request =            selinux_inet_conn_request,
5593         .inet_csk_clone =               selinux_inet_csk_clone,
5594         .inet_conn_established =        selinux_inet_conn_established,
5595         .secmark_relabel_packet =       selinux_secmark_relabel_packet,
5596         .secmark_refcount_inc =         selinux_secmark_refcount_inc,
5597         .secmark_refcount_dec =         selinux_secmark_refcount_dec,
5598         .req_classify_flow =            selinux_req_classify_flow,
5599         .tun_dev_create =               selinux_tun_dev_create,
5600         .tun_dev_post_create =          selinux_tun_dev_post_create,
5601         .tun_dev_attach =               selinux_tun_dev_attach,
5602
5603 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5604         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5605         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5606         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5607         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5608         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5609         .xfrm_state_free_security =     selinux_xfrm_state_free,
5610         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5611         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5612         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5613         .xfrm_decode_session =          selinux_xfrm_decode_session,
5614 #endif
5615
5616 #ifdef CONFIG_KEYS
5617         .key_alloc =                    selinux_key_alloc,
5618         .key_free =                     selinux_key_free,
5619         .key_permission =               selinux_key_permission,
5620         .key_getsecurity =              selinux_key_getsecurity,
5621 #endif
5622
5623 #ifdef CONFIG_AUDIT
5624         .audit_rule_init =              selinux_audit_rule_init,
5625         .audit_rule_known =             selinux_audit_rule_known,
5626         .audit_rule_match =             selinux_audit_rule_match,
5627         .audit_rule_free =              selinux_audit_rule_free,
5628 #endif
5629 };
5630
5631 static __init int selinux_init(void)
5632 {
5633         if (!security_module_enable(&selinux_ops)) {
5634                 selinux_enabled = 0;
5635                 return 0;
5636         }
5637
5638         if (!selinux_enabled) {
5639                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5640                 return 0;
5641         }
5642
5643         printk(KERN_INFO "SELinux:  Initializing.\n");
5644
5645         /* Set the security state for the initial task. */
5646         cred_init_security();
5647
5648         default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5649
5650         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5651                                             sizeof(struct inode_security_struct),
5652                                             0, SLAB_PANIC, NULL);
5653         avc_init();
5654
5655         if (register_security(&selinux_ops))
5656                 panic("SELinux: Unable to register with kernel.\n");
5657
5658         if (selinux_enforcing)
5659                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5660         else
5661                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5662
5663         return 0;
5664 }
5665
5666 static void delayed_superblock_init(struct super_block *sb, void *unused)
5667 {
5668         superblock_doinit(sb, NULL);
5669 }
5670
5671 void selinux_complete_init(void)
5672 {
5673         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5674
5675         /* Set up any superblocks initialized prior to the policy load. */
5676         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5677         iterate_supers(delayed_superblock_init, NULL);
5678 }
5679
5680 /* SELinux requires early initialization in order to label
5681    all processes and objects when they are created. */
5682 security_initcall(selinux_init);
5683
5684 #if defined(CONFIG_NETFILTER)
5685
5686 static struct nf_hook_ops selinux_ipv4_ops[] = {
5687         {
5688                 .hook =         selinux_ipv4_postroute,
5689                 .owner =        THIS_MODULE,
5690                 .pf =           PF_INET,
5691                 .hooknum =      NF_INET_POST_ROUTING,
5692                 .priority =     NF_IP_PRI_SELINUX_LAST,
5693         },
5694         {
5695                 .hook =         selinux_ipv4_forward,
5696                 .owner =        THIS_MODULE,
5697                 .pf =           PF_INET,
5698                 .hooknum =      NF_INET_FORWARD,
5699                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5700         },
5701         {
5702                 .hook =         selinux_ipv4_output,
5703                 .owner =        THIS_MODULE,
5704                 .pf =           PF_INET,
5705                 .hooknum =      NF_INET_LOCAL_OUT,
5706                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5707         }
5708 };
5709
5710 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5711
5712 static struct nf_hook_ops selinux_ipv6_ops[] = {
5713         {
5714                 .hook =         selinux_ipv6_postroute,
5715                 .owner =        THIS_MODULE,
5716                 .pf =           PF_INET6,
5717                 .hooknum =      NF_INET_POST_ROUTING,
5718                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5719         },
5720         {
5721                 .hook =         selinux_ipv6_forward,
5722                 .owner =        THIS_MODULE,
5723                 .pf =           PF_INET6,
5724                 .hooknum =      NF_INET_FORWARD,
5725                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5726         }
5727 };
5728
5729 #endif  /* IPV6 */
5730
5731 static int __init selinux_nf_ip_init(void)
5732 {
5733         int err = 0;
5734
5735         if (!selinux_enabled)
5736                 goto out;
5737
5738         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5739
5740         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5741         if (err)
5742                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5743
5744 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5745         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5746         if (err)
5747                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5748 #endif  /* IPV6 */
5749
5750 out:
5751         return err;
5752 }
5753
5754 __initcall(selinux_nf_ip_init);
5755
5756 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5757 static void selinux_nf_ip_exit(void)
5758 {
5759         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5760
5761         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5762 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5763         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5764 #endif  /* IPV6 */
5765 }
5766 #endif
5767
5768 #else /* CONFIG_NETFILTER */
5769
5770 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5771 #define selinux_nf_ip_exit()
5772 #endif
5773
5774 #endif /* CONFIG_NETFILTER */
5775
5776 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5777 static int selinux_disabled;
5778
5779 int selinux_disable(void)
5780 {
5781         if (ss_initialized) {
5782                 /* Not permitted after initial policy load. */
5783                 return -EINVAL;
5784         }
5785
5786         if (selinux_disabled) {
5787                 /* Only do this once. */
5788                 return -EINVAL;
5789         }
5790
5791         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5792
5793         selinux_disabled = 1;
5794         selinux_enabled = 0;
5795
5796         reset_security_ops();
5797
5798         /* Try to destroy the avc node cache */
5799         avc_disable();
5800
5801         /* Unregister netfilter hooks. */
5802         selinux_nf_ip_exit();
5803
5804         /* Unregister selinuxfs. */
5805         exit_sel_fs();
5806
5807         return 0;
5808 }
5809 #endif