]> Pileus Git - ~andy/linux/blob - security/selinux/hooks.c
Merge branch 'next/kvm' into mips-for-linux-next
[~andy/linux] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *      Paul Moore <paul@paul-moore.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/security.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
52 #include <net/icmp.h>
53 #include <net/ip.h>             /* for local_port_range[] */
54 #include <net/sock.h>
55 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
56 #include <net/net_namespace.h>
57 #include <net/netlabel.h>
58 #include <linux/uaccess.h>
59 #include <asm/ioctls.h>
60 #include <linux/atomic.h>
61 #include <linux/bitops.h>
62 #include <linux/interrupt.h>
63 #include <linux/netdevice.h>    /* for network interface checks */
64 #include <linux/netlink.h>
65 #include <linux/tcp.h>
66 #include <linux/udp.h>
67 #include <linux/dccp.h>
68 #include <linux/quota.h>
69 #include <linux/un.h>           /* for Unix socket types */
70 #include <net/af_unix.h>        /* for Unix socket types */
71 #include <linux/parser.h>
72 #include <linux/nfs_mount.h>
73 #include <net/ipv6.h>
74 #include <linux/hugetlb.h>
75 #include <linux/personality.h>
76 #include <linux/audit.h>
77 #include <linux/string.h>
78 #include <linux/selinux.h>
79 #include <linux/mutex.h>
80 #include <linux/posix-timers.h>
81 #include <linux/syslog.h>
82 #include <linux/user_namespace.h>
83 #include <linux/export.h>
84 #include <linux/msg.h>
85 #include <linux/shm.h>
86
87 #include "avc.h"
88 #include "objsec.h"
89 #include "netif.h"
90 #include "netnode.h"
91 #include "netport.h"
92 #include "xfrm.h"
93 #include "netlabel.h"
94 #include "audit.h"
95 #include "avc_ss.h"
96
97 #define NUM_SEL_MNT_OPTS 5
98
99 extern struct security_operations *security_ops;
100
101 /* SECMARK reference count */
102 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
103
104 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
105 int selinux_enforcing;
106
107 static int __init enforcing_setup(char *str)
108 {
109         unsigned long enforcing;
110         if (!strict_strtoul(str, 0, &enforcing))
111                 selinux_enforcing = enforcing ? 1 : 0;
112         return 1;
113 }
114 __setup("enforcing=", enforcing_setup);
115 #endif
116
117 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
118 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
119
120 static int __init selinux_enabled_setup(char *str)
121 {
122         unsigned long enabled;
123         if (!strict_strtoul(str, 0, &enabled))
124                 selinux_enabled = enabled ? 1 : 0;
125         return 1;
126 }
127 __setup("selinux=", selinux_enabled_setup);
128 #else
129 int selinux_enabled = 1;
130 #endif
131
132 static struct kmem_cache *sel_inode_cache;
133
134 /**
135  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
136  *
137  * Description:
138  * This function checks the SECMARK reference counter to see if any SECMARK
139  * targets are currently configured, if the reference counter is greater than
140  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
141  * enabled, false (0) if SECMARK is disabled.
142  *
143  */
144 static int selinux_secmark_enabled(void)
145 {
146         return (atomic_read(&selinux_secmark_refcount) > 0);
147 }
148
149 /*
150  * initialise the security for the init task
151  */
152 static void cred_init_security(void)
153 {
154         struct cred *cred = (struct cred *) current->real_cred;
155         struct task_security_struct *tsec;
156
157         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
158         if (!tsec)
159                 panic("SELinux:  Failed to initialize initial task.\n");
160
161         tsec->osid = tsec->sid = SECINITSID_KERNEL;
162         cred->security = tsec;
163 }
164
165 /*
166  * get the security ID of a set of credentials
167  */
168 static inline u32 cred_sid(const struct cred *cred)
169 {
170         const struct task_security_struct *tsec;
171
172         tsec = cred->security;
173         return tsec->sid;
174 }
175
176 /*
177  * get the objective security ID of a task
178  */
179 static inline u32 task_sid(const struct task_struct *task)
180 {
181         u32 sid;
182
183         rcu_read_lock();
184         sid = cred_sid(__task_cred(task));
185         rcu_read_unlock();
186         return sid;
187 }
188
189 /*
190  * get the subjective security ID of the current task
191  */
192 static inline u32 current_sid(void)
193 {
194         const struct task_security_struct *tsec = current_security();
195
196         return tsec->sid;
197 }
198
199 /* Allocate and free functions for each kind of security blob. */
200
201 static int inode_alloc_security(struct inode *inode)
202 {
203         struct inode_security_struct *isec;
204         u32 sid = current_sid();
205
206         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
207         if (!isec)
208                 return -ENOMEM;
209
210         mutex_init(&isec->lock);
211         INIT_LIST_HEAD(&isec->list);
212         isec->inode = inode;
213         isec->sid = SECINITSID_UNLABELED;
214         isec->sclass = SECCLASS_FILE;
215         isec->task_sid = sid;
216         inode->i_security = isec;
217
218         return 0;
219 }
220
221 static void inode_free_security(struct inode *inode)
222 {
223         struct inode_security_struct *isec = inode->i_security;
224         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
225
226         spin_lock(&sbsec->isec_lock);
227         if (!list_empty(&isec->list))
228                 list_del_init(&isec->list);
229         spin_unlock(&sbsec->isec_lock);
230
231         inode->i_security = NULL;
232         kmem_cache_free(sel_inode_cache, isec);
233 }
234
235 static int file_alloc_security(struct file *file)
236 {
237         struct file_security_struct *fsec;
238         u32 sid = current_sid();
239
240         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
241         if (!fsec)
242                 return -ENOMEM;
243
244         fsec->sid = sid;
245         fsec->fown_sid = sid;
246         file->f_security = fsec;
247
248         return 0;
249 }
250
251 static void file_free_security(struct file *file)
252 {
253         struct file_security_struct *fsec = file->f_security;
254         file->f_security = NULL;
255         kfree(fsec);
256 }
257
258 static int superblock_alloc_security(struct super_block *sb)
259 {
260         struct superblock_security_struct *sbsec;
261
262         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
263         if (!sbsec)
264                 return -ENOMEM;
265
266         mutex_init(&sbsec->lock);
267         INIT_LIST_HEAD(&sbsec->isec_head);
268         spin_lock_init(&sbsec->isec_lock);
269         sbsec->sb = sb;
270         sbsec->sid = SECINITSID_UNLABELED;
271         sbsec->def_sid = SECINITSID_FILE;
272         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
273         sb->s_security = sbsec;
274
275         return 0;
276 }
277
278 static void superblock_free_security(struct super_block *sb)
279 {
280         struct superblock_security_struct *sbsec = sb->s_security;
281         sb->s_security = NULL;
282         kfree(sbsec);
283 }
284
285 /* The file system's label must be initialized prior to use. */
286
287 static const char *labeling_behaviors[6] = {
288         "uses xattr",
289         "uses transition SIDs",
290         "uses task SIDs",
291         "uses genfs_contexts",
292         "not configured for labeling",
293         "uses mountpoint labeling",
294 };
295
296 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
297
298 static inline int inode_doinit(struct inode *inode)
299 {
300         return inode_doinit_with_dentry(inode, NULL);
301 }
302
303 enum {
304         Opt_error = -1,
305         Opt_context = 1,
306         Opt_fscontext = 2,
307         Opt_defcontext = 3,
308         Opt_rootcontext = 4,
309         Opt_labelsupport = 5,
310 };
311
312 static const match_table_t tokens = {
313         {Opt_context, CONTEXT_STR "%s"},
314         {Opt_fscontext, FSCONTEXT_STR "%s"},
315         {Opt_defcontext, DEFCONTEXT_STR "%s"},
316         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
317         {Opt_labelsupport, LABELSUPP_STR},
318         {Opt_error, NULL},
319 };
320
321 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
322
323 static int may_context_mount_sb_relabel(u32 sid,
324                         struct superblock_security_struct *sbsec,
325                         const struct cred *cred)
326 {
327         const struct task_security_struct *tsec = cred->security;
328         int rc;
329
330         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
331                           FILESYSTEM__RELABELFROM, NULL);
332         if (rc)
333                 return rc;
334
335         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
336                           FILESYSTEM__RELABELTO, NULL);
337         return rc;
338 }
339
340 static int may_context_mount_inode_relabel(u32 sid,
341                         struct superblock_security_struct *sbsec,
342                         const struct cred *cred)
343 {
344         const struct task_security_struct *tsec = cred->security;
345         int rc;
346         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
347                           FILESYSTEM__RELABELFROM, NULL);
348         if (rc)
349                 return rc;
350
351         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
352                           FILESYSTEM__ASSOCIATE, NULL);
353         return rc;
354 }
355
356 static int sb_finish_set_opts(struct super_block *sb)
357 {
358         struct superblock_security_struct *sbsec = sb->s_security;
359         struct dentry *root = sb->s_root;
360         struct inode *root_inode = root->d_inode;
361         int rc = 0;
362
363         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
364                 /* Make sure that the xattr handler exists and that no
365                    error other than -ENODATA is returned by getxattr on
366                    the root directory.  -ENODATA is ok, as this may be
367                    the first boot of the SELinux kernel before we have
368                    assigned xattr values to the filesystem. */
369                 if (!root_inode->i_op->getxattr) {
370                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
371                                "xattr support\n", sb->s_id, sb->s_type->name);
372                         rc = -EOPNOTSUPP;
373                         goto out;
374                 }
375                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
376                 if (rc < 0 && rc != -ENODATA) {
377                         if (rc == -EOPNOTSUPP)
378                                 printk(KERN_WARNING "SELinux: (dev %s, type "
379                                        "%s) has no security xattr handler\n",
380                                        sb->s_id, sb->s_type->name);
381                         else
382                                 printk(KERN_WARNING "SELinux: (dev %s, type "
383                                        "%s) getxattr errno %d\n", sb->s_id,
384                                        sb->s_type->name, -rc);
385                         goto out;
386                 }
387         }
388
389         sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
390
391         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
392                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
393                        sb->s_id, sb->s_type->name);
394         else
395                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
396                        sb->s_id, sb->s_type->name,
397                        labeling_behaviors[sbsec->behavior-1]);
398
399         if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
400             sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
401             sbsec->behavior == SECURITY_FS_USE_NONE ||
402             sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
403                 sbsec->flags &= ~SE_SBLABELSUPP;
404
405         /* Special handling for sysfs. Is genfs but also has setxattr handler*/
406         if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
407                 sbsec->flags |= SE_SBLABELSUPP;
408
409         /* Initialize the root inode. */
410         rc = inode_doinit_with_dentry(root_inode, root);
411
412         /* Initialize any other inodes associated with the superblock, e.g.
413            inodes created prior to initial policy load or inodes created
414            during get_sb by a pseudo filesystem that directly
415            populates itself. */
416         spin_lock(&sbsec->isec_lock);
417 next_inode:
418         if (!list_empty(&sbsec->isec_head)) {
419                 struct inode_security_struct *isec =
420                                 list_entry(sbsec->isec_head.next,
421                                            struct inode_security_struct, list);
422                 struct inode *inode = isec->inode;
423                 spin_unlock(&sbsec->isec_lock);
424                 inode = igrab(inode);
425                 if (inode) {
426                         if (!IS_PRIVATE(inode))
427                                 inode_doinit(inode);
428                         iput(inode);
429                 }
430                 spin_lock(&sbsec->isec_lock);
431                 list_del_init(&isec->list);
432                 goto next_inode;
433         }
434         spin_unlock(&sbsec->isec_lock);
435 out:
436         return rc;
437 }
438
439 /*
440  * This function should allow an FS to ask what it's mount security
441  * options were so it can use those later for submounts, displaying
442  * mount options, or whatever.
443  */
444 static int selinux_get_mnt_opts(const struct super_block *sb,
445                                 struct security_mnt_opts *opts)
446 {
447         int rc = 0, i;
448         struct superblock_security_struct *sbsec = sb->s_security;
449         char *context = NULL;
450         u32 len;
451         char tmp;
452
453         security_init_mnt_opts(opts);
454
455         if (!(sbsec->flags & SE_SBINITIALIZED))
456                 return -EINVAL;
457
458         if (!ss_initialized)
459                 return -EINVAL;
460
461         tmp = sbsec->flags & SE_MNTMASK;
462         /* count the number of mount options for this sb */
463         for (i = 0; i < 8; i++) {
464                 if (tmp & 0x01)
465                         opts->num_mnt_opts++;
466                 tmp >>= 1;
467         }
468         /* Check if the Label support flag is set */
469         if (sbsec->flags & SE_SBLABELSUPP)
470                 opts->num_mnt_opts++;
471
472         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
473         if (!opts->mnt_opts) {
474                 rc = -ENOMEM;
475                 goto out_free;
476         }
477
478         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
479         if (!opts->mnt_opts_flags) {
480                 rc = -ENOMEM;
481                 goto out_free;
482         }
483
484         i = 0;
485         if (sbsec->flags & FSCONTEXT_MNT) {
486                 rc = security_sid_to_context(sbsec->sid, &context, &len);
487                 if (rc)
488                         goto out_free;
489                 opts->mnt_opts[i] = context;
490                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
491         }
492         if (sbsec->flags & CONTEXT_MNT) {
493                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
494                 if (rc)
495                         goto out_free;
496                 opts->mnt_opts[i] = context;
497                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
498         }
499         if (sbsec->flags & DEFCONTEXT_MNT) {
500                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
501                 if (rc)
502                         goto out_free;
503                 opts->mnt_opts[i] = context;
504                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
505         }
506         if (sbsec->flags & ROOTCONTEXT_MNT) {
507                 struct inode *root = sbsec->sb->s_root->d_inode;
508                 struct inode_security_struct *isec = root->i_security;
509
510                 rc = security_sid_to_context(isec->sid, &context, &len);
511                 if (rc)
512                         goto out_free;
513                 opts->mnt_opts[i] = context;
514                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
515         }
516         if (sbsec->flags & SE_SBLABELSUPP) {
517                 opts->mnt_opts[i] = NULL;
518                 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
519         }
520
521         BUG_ON(i != opts->num_mnt_opts);
522
523         return 0;
524
525 out_free:
526         security_free_mnt_opts(opts);
527         return rc;
528 }
529
530 static int bad_option(struct superblock_security_struct *sbsec, char flag,
531                       u32 old_sid, u32 new_sid)
532 {
533         char mnt_flags = sbsec->flags & SE_MNTMASK;
534
535         /* check if the old mount command had the same options */
536         if (sbsec->flags & SE_SBINITIALIZED)
537                 if (!(sbsec->flags & flag) ||
538                     (old_sid != new_sid))
539                         return 1;
540
541         /* check if we were passed the same options twice,
542          * aka someone passed context=a,context=b
543          */
544         if (!(sbsec->flags & SE_SBINITIALIZED))
545                 if (mnt_flags & flag)
546                         return 1;
547         return 0;
548 }
549
550 /*
551  * Allow filesystems with binary mount data to explicitly set mount point
552  * labeling information.
553  */
554 static int selinux_set_mnt_opts(struct super_block *sb,
555                                 struct security_mnt_opts *opts)
556 {
557         const struct cred *cred = current_cred();
558         int rc = 0, i;
559         struct superblock_security_struct *sbsec = sb->s_security;
560         const char *name = sb->s_type->name;
561         struct inode *inode = sbsec->sb->s_root->d_inode;
562         struct inode_security_struct *root_isec = inode->i_security;
563         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
564         u32 defcontext_sid = 0;
565         char **mount_options = opts->mnt_opts;
566         int *flags = opts->mnt_opts_flags;
567         int num_opts = opts->num_mnt_opts;
568
569         mutex_lock(&sbsec->lock);
570
571         if (!ss_initialized) {
572                 if (!num_opts) {
573                         /* Defer initialization until selinux_complete_init,
574                            after the initial policy is loaded and the security
575                            server is ready to handle calls. */
576                         goto out;
577                 }
578                 rc = -EINVAL;
579                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
580                         "before the security server is initialized\n");
581                 goto out;
582         }
583
584         /*
585          * Binary mount data FS will come through this function twice.  Once
586          * from an explicit call and once from the generic calls from the vfs.
587          * Since the generic VFS calls will not contain any security mount data
588          * we need to skip the double mount verification.
589          *
590          * This does open a hole in which we will not notice if the first
591          * mount using this sb set explict options and a second mount using
592          * this sb does not set any security options.  (The first options
593          * will be used for both mounts)
594          */
595         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
596             && (num_opts == 0))
597                 goto out;
598
599         /*
600          * parse the mount options, check if they are valid sids.
601          * also check if someone is trying to mount the same sb more
602          * than once with different security options.
603          */
604         for (i = 0; i < num_opts; i++) {
605                 u32 sid;
606
607                 if (flags[i] == SE_SBLABELSUPP)
608                         continue;
609                 rc = security_context_to_sid(mount_options[i],
610                                              strlen(mount_options[i]), &sid);
611                 if (rc) {
612                         printk(KERN_WARNING "SELinux: security_context_to_sid"
613                                "(%s) failed for (dev %s, type %s) errno=%d\n",
614                                mount_options[i], sb->s_id, name, rc);
615                         goto out;
616                 }
617                 switch (flags[i]) {
618                 case FSCONTEXT_MNT:
619                         fscontext_sid = sid;
620
621                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
622                                         fscontext_sid))
623                                 goto out_double_mount;
624
625                         sbsec->flags |= FSCONTEXT_MNT;
626                         break;
627                 case CONTEXT_MNT:
628                         context_sid = sid;
629
630                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
631                                         context_sid))
632                                 goto out_double_mount;
633
634                         sbsec->flags |= CONTEXT_MNT;
635                         break;
636                 case ROOTCONTEXT_MNT:
637                         rootcontext_sid = sid;
638
639                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
640                                         rootcontext_sid))
641                                 goto out_double_mount;
642
643                         sbsec->flags |= ROOTCONTEXT_MNT;
644
645                         break;
646                 case DEFCONTEXT_MNT:
647                         defcontext_sid = sid;
648
649                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
650                                         defcontext_sid))
651                                 goto out_double_mount;
652
653                         sbsec->flags |= DEFCONTEXT_MNT;
654
655                         break;
656                 default:
657                         rc = -EINVAL;
658                         goto out;
659                 }
660         }
661
662         if (sbsec->flags & SE_SBINITIALIZED) {
663                 /* previously mounted with options, but not on this attempt? */
664                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
665                         goto out_double_mount;
666                 rc = 0;
667                 goto out;
668         }
669
670         if (strcmp(sb->s_type->name, "proc") == 0)
671                 sbsec->flags |= SE_SBPROC;
672
673         /* Determine the labeling behavior to use for this filesystem type. */
674         rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
675         if (rc) {
676                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
677                        __func__, sb->s_type->name, rc);
678                 goto out;
679         }
680
681         /* sets the context of the superblock for the fs being mounted. */
682         if (fscontext_sid) {
683                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
684                 if (rc)
685                         goto out;
686
687                 sbsec->sid = fscontext_sid;
688         }
689
690         /*
691          * Switch to using mount point labeling behavior.
692          * sets the label used on all file below the mountpoint, and will set
693          * the superblock context if not already set.
694          */
695         if (context_sid) {
696                 if (!fscontext_sid) {
697                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
698                                                           cred);
699                         if (rc)
700                                 goto out;
701                         sbsec->sid = context_sid;
702                 } else {
703                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
704                                                              cred);
705                         if (rc)
706                                 goto out;
707                 }
708                 if (!rootcontext_sid)
709                         rootcontext_sid = context_sid;
710
711                 sbsec->mntpoint_sid = context_sid;
712                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
713         }
714
715         if (rootcontext_sid) {
716                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
717                                                      cred);
718                 if (rc)
719                         goto out;
720
721                 root_isec->sid = rootcontext_sid;
722                 root_isec->initialized = 1;
723         }
724
725         if (defcontext_sid) {
726                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
727                         rc = -EINVAL;
728                         printk(KERN_WARNING "SELinux: defcontext option is "
729                                "invalid for this filesystem type\n");
730                         goto out;
731                 }
732
733                 if (defcontext_sid != sbsec->def_sid) {
734                         rc = may_context_mount_inode_relabel(defcontext_sid,
735                                                              sbsec, cred);
736                         if (rc)
737                                 goto out;
738                 }
739
740                 sbsec->def_sid = defcontext_sid;
741         }
742
743         rc = sb_finish_set_opts(sb);
744 out:
745         mutex_unlock(&sbsec->lock);
746         return rc;
747 out_double_mount:
748         rc = -EINVAL;
749         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
750                "security settings for (dev %s, type %s)\n", sb->s_id, name);
751         goto out;
752 }
753
754 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
755                                         struct super_block *newsb)
756 {
757         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
758         struct superblock_security_struct *newsbsec = newsb->s_security;
759
760         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
761         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
762         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
763
764         /*
765          * if the parent was able to be mounted it clearly had no special lsm
766          * mount options.  thus we can safely deal with this superblock later
767          */
768         if (!ss_initialized)
769                 return;
770
771         /* how can we clone if the old one wasn't set up?? */
772         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
773
774         /* if fs is reusing a sb, just let its options stand... */
775         if (newsbsec->flags & SE_SBINITIALIZED)
776                 return;
777
778         mutex_lock(&newsbsec->lock);
779
780         newsbsec->flags = oldsbsec->flags;
781
782         newsbsec->sid = oldsbsec->sid;
783         newsbsec->def_sid = oldsbsec->def_sid;
784         newsbsec->behavior = oldsbsec->behavior;
785
786         if (set_context) {
787                 u32 sid = oldsbsec->mntpoint_sid;
788
789                 if (!set_fscontext)
790                         newsbsec->sid = sid;
791                 if (!set_rootcontext) {
792                         struct inode *newinode = newsb->s_root->d_inode;
793                         struct inode_security_struct *newisec = newinode->i_security;
794                         newisec->sid = sid;
795                 }
796                 newsbsec->mntpoint_sid = sid;
797         }
798         if (set_rootcontext) {
799                 const struct inode *oldinode = oldsb->s_root->d_inode;
800                 const struct inode_security_struct *oldisec = oldinode->i_security;
801                 struct inode *newinode = newsb->s_root->d_inode;
802                 struct inode_security_struct *newisec = newinode->i_security;
803
804                 newisec->sid = oldisec->sid;
805         }
806
807         sb_finish_set_opts(newsb);
808         mutex_unlock(&newsbsec->lock);
809 }
810
811 static int selinux_parse_opts_str(char *options,
812                                   struct security_mnt_opts *opts)
813 {
814         char *p;
815         char *context = NULL, *defcontext = NULL;
816         char *fscontext = NULL, *rootcontext = NULL;
817         int rc, num_mnt_opts = 0;
818
819         opts->num_mnt_opts = 0;
820
821         /* Standard string-based options. */
822         while ((p = strsep(&options, "|")) != NULL) {
823                 int token;
824                 substring_t args[MAX_OPT_ARGS];
825
826                 if (!*p)
827                         continue;
828
829                 token = match_token(p, tokens, args);
830
831                 switch (token) {
832                 case Opt_context:
833                         if (context || defcontext) {
834                                 rc = -EINVAL;
835                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
836                                 goto out_err;
837                         }
838                         context = match_strdup(&args[0]);
839                         if (!context) {
840                                 rc = -ENOMEM;
841                                 goto out_err;
842                         }
843                         break;
844
845                 case Opt_fscontext:
846                         if (fscontext) {
847                                 rc = -EINVAL;
848                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
849                                 goto out_err;
850                         }
851                         fscontext = match_strdup(&args[0]);
852                         if (!fscontext) {
853                                 rc = -ENOMEM;
854                                 goto out_err;
855                         }
856                         break;
857
858                 case Opt_rootcontext:
859                         if (rootcontext) {
860                                 rc = -EINVAL;
861                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
862                                 goto out_err;
863                         }
864                         rootcontext = match_strdup(&args[0]);
865                         if (!rootcontext) {
866                                 rc = -ENOMEM;
867                                 goto out_err;
868                         }
869                         break;
870
871                 case Opt_defcontext:
872                         if (context || defcontext) {
873                                 rc = -EINVAL;
874                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
875                                 goto out_err;
876                         }
877                         defcontext = match_strdup(&args[0]);
878                         if (!defcontext) {
879                                 rc = -ENOMEM;
880                                 goto out_err;
881                         }
882                         break;
883                 case Opt_labelsupport:
884                         break;
885                 default:
886                         rc = -EINVAL;
887                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
888                         goto out_err;
889
890                 }
891         }
892
893         rc = -ENOMEM;
894         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
895         if (!opts->mnt_opts)
896                 goto out_err;
897
898         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
899         if (!opts->mnt_opts_flags) {
900                 kfree(opts->mnt_opts);
901                 goto out_err;
902         }
903
904         if (fscontext) {
905                 opts->mnt_opts[num_mnt_opts] = fscontext;
906                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
907         }
908         if (context) {
909                 opts->mnt_opts[num_mnt_opts] = context;
910                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
911         }
912         if (rootcontext) {
913                 opts->mnt_opts[num_mnt_opts] = rootcontext;
914                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
915         }
916         if (defcontext) {
917                 opts->mnt_opts[num_mnt_opts] = defcontext;
918                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
919         }
920
921         opts->num_mnt_opts = num_mnt_opts;
922         return 0;
923
924 out_err:
925         kfree(context);
926         kfree(defcontext);
927         kfree(fscontext);
928         kfree(rootcontext);
929         return rc;
930 }
931 /*
932  * string mount options parsing and call set the sbsec
933  */
934 static int superblock_doinit(struct super_block *sb, void *data)
935 {
936         int rc = 0;
937         char *options = data;
938         struct security_mnt_opts opts;
939
940         security_init_mnt_opts(&opts);
941
942         if (!data)
943                 goto out;
944
945         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
946
947         rc = selinux_parse_opts_str(options, &opts);
948         if (rc)
949                 goto out_err;
950
951 out:
952         rc = selinux_set_mnt_opts(sb, &opts);
953
954 out_err:
955         security_free_mnt_opts(&opts);
956         return rc;
957 }
958
959 static void selinux_write_opts(struct seq_file *m,
960                                struct security_mnt_opts *opts)
961 {
962         int i;
963         char *prefix;
964
965         for (i = 0; i < opts->num_mnt_opts; i++) {
966                 char *has_comma;
967
968                 if (opts->mnt_opts[i])
969                         has_comma = strchr(opts->mnt_opts[i], ',');
970                 else
971                         has_comma = NULL;
972
973                 switch (opts->mnt_opts_flags[i]) {
974                 case CONTEXT_MNT:
975                         prefix = CONTEXT_STR;
976                         break;
977                 case FSCONTEXT_MNT:
978                         prefix = FSCONTEXT_STR;
979                         break;
980                 case ROOTCONTEXT_MNT:
981                         prefix = ROOTCONTEXT_STR;
982                         break;
983                 case DEFCONTEXT_MNT:
984                         prefix = DEFCONTEXT_STR;
985                         break;
986                 case SE_SBLABELSUPP:
987                         seq_putc(m, ',');
988                         seq_puts(m, LABELSUPP_STR);
989                         continue;
990                 default:
991                         BUG();
992                         return;
993                 };
994                 /* we need a comma before each option */
995                 seq_putc(m, ',');
996                 seq_puts(m, prefix);
997                 if (has_comma)
998                         seq_putc(m, '\"');
999                 seq_puts(m, opts->mnt_opts[i]);
1000                 if (has_comma)
1001                         seq_putc(m, '\"');
1002         }
1003 }
1004
1005 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1006 {
1007         struct security_mnt_opts opts;
1008         int rc;
1009
1010         rc = selinux_get_mnt_opts(sb, &opts);
1011         if (rc) {
1012                 /* before policy load we may get EINVAL, don't show anything */
1013                 if (rc == -EINVAL)
1014                         rc = 0;
1015                 return rc;
1016         }
1017
1018         selinux_write_opts(m, &opts);
1019
1020         security_free_mnt_opts(&opts);
1021
1022         return rc;
1023 }
1024
1025 static inline u16 inode_mode_to_security_class(umode_t mode)
1026 {
1027         switch (mode & S_IFMT) {
1028         case S_IFSOCK:
1029                 return SECCLASS_SOCK_FILE;
1030         case S_IFLNK:
1031                 return SECCLASS_LNK_FILE;
1032         case S_IFREG:
1033                 return SECCLASS_FILE;
1034         case S_IFBLK:
1035                 return SECCLASS_BLK_FILE;
1036         case S_IFDIR:
1037                 return SECCLASS_DIR;
1038         case S_IFCHR:
1039                 return SECCLASS_CHR_FILE;
1040         case S_IFIFO:
1041                 return SECCLASS_FIFO_FILE;
1042
1043         }
1044
1045         return SECCLASS_FILE;
1046 }
1047
1048 static inline int default_protocol_stream(int protocol)
1049 {
1050         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1051 }
1052
1053 static inline int default_protocol_dgram(int protocol)
1054 {
1055         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1056 }
1057
1058 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1059 {
1060         switch (family) {
1061         case PF_UNIX:
1062                 switch (type) {
1063                 case SOCK_STREAM:
1064                 case SOCK_SEQPACKET:
1065                         return SECCLASS_UNIX_STREAM_SOCKET;
1066                 case SOCK_DGRAM:
1067                         return SECCLASS_UNIX_DGRAM_SOCKET;
1068                 }
1069                 break;
1070         case PF_INET:
1071         case PF_INET6:
1072                 switch (type) {
1073                 case SOCK_STREAM:
1074                         if (default_protocol_stream(protocol))
1075                                 return SECCLASS_TCP_SOCKET;
1076                         else
1077                                 return SECCLASS_RAWIP_SOCKET;
1078                 case SOCK_DGRAM:
1079                         if (default_protocol_dgram(protocol))
1080                                 return SECCLASS_UDP_SOCKET;
1081                         else
1082                                 return SECCLASS_RAWIP_SOCKET;
1083                 case SOCK_DCCP:
1084                         return SECCLASS_DCCP_SOCKET;
1085                 default:
1086                         return SECCLASS_RAWIP_SOCKET;
1087                 }
1088                 break;
1089         case PF_NETLINK:
1090                 switch (protocol) {
1091                 case NETLINK_ROUTE:
1092                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1093                 case NETLINK_FIREWALL:
1094                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1095                 case NETLINK_SOCK_DIAG:
1096                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1097                 case NETLINK_NFLOG:
1098                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1099                 case NETLINK_XFRM:
1100                         return SECCLASS_NETLINK_XFRM_SOCKET;
1101                 case NETLINK_SELINUX:
1102                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1103                 case NETLINK_AUDIT:
1104                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1105                 case NETLINK_IP6_FW:
1106                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1107                 case NETLINK_DNRTMSG:
1108                         return SECCLASS_NETLINK_DNRT_SOCKET;
1109                 case NETLINK_KOBJECT_UEVENT:
1110                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1111                 default:
1112                         return SECCLASS_NETLINK_SOCKET;
1113                 }
1114         case PF_PACKET:
1115                 return SECCLASS_PACKET_SOCKET;
1116         case PF_KEY:
1117                 return SECCLASS_KEY_SOCKET;
1118         case PF_APPLETALK:
1119                 return SECCLASS_APPLETALK_SOCKET;
1120         }
1121
1122         return SECCLASS_SOCKET;
1123 }
1124
1125 #ifdef CONFIG_PROC_FS
1126 static int selinux_proc_get_sid(struct dentry *dentry,
1127                                 u16 tclass,
1128                                 u32 *sid)
1129 {
1130         int rc;
1131         char *buffer, *path;
1132
1133         buffer = (char *)__get_free_page(GFP_KERNEL);
1134         if (!buffer)
1135                 return -ENOMEM;
1136
1137         path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1138         if (IS_ERR(path))
1139                 rc = PTR_ERR(path);
1140         else {
1141                 /* each process gets a /proc/PID/ entry. Strip off the
1142                  * PID part to get a valid selinux labeling.
1143                  * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1144                 while (path[1] >= '0' && path[1] <= '9') {
1145                         path[1] = '/';
1146                         path++;
1147                 }
1148                 rc = security_genfs_sid("proc", path, tclass, sid);
1149         }
1150         free_page((unsigned long)buffer);
1151         return rc;
1152 }
1153 #else
1154 static int selinux_proc_get_sid(struct dentry *dentry,
1155                                 u16 tclass,
1156                                 u32 *sid)
1157 {
1158         return -EINVAL;
1159 }
1160 #endif
1161
1162 /* The inode's security attributes must be initialized before first use. */
1163 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1164 {
1165         struct superblock_security_struct *sbsec = NULL;
1166         struct inode_security_struct *isec = inode->i_security;
1167         u32 sid;
1168         struct dentry *dentry;
1169 #define INITCONTEXTLEN 255
1170         char *context = NULL;
1171         unsigned len = 0;
1172         int rc = 0;
1173
1174         if (isec->initialized)
1175                 goto out;
1176
1177         mutex_lock(&isec->lock);
1178         if (isec->initialized)
1179                 goto out_unlock;
1180
1181         sbsec = inode->i_sb->s_security;
1182         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1183                 /* Defer initialization until selinux_complete_init,
1184                    after the initial policy is loaded and the security
1185                    server is ready to handle calls. */
1186                 spin_lock(&sbsec->isec_lock);
1187                 if (list_empty(&isec->list))
1188                         list_add(&isec->list, &sbsec->isec_head);
1189                 spin_unlock(&sbsec->isec_lock);
1190                 goto out_unlock;
1191         }
1192
1193         switch (sbsec->behavior) {
1194         case SECURITY_FS_USE_XATTR:
1195                 if (!inode->i_op->getxattr) {
1196                         isec->sid = sbsec->def_sid;
1197                         break;
1198                 }
1199
1200                 /* Need a dentry, since the xattr API requires one.
1201                    Life would be simpler if we could just pass the inode. */
1202                 if (opt_dentry) {
1203                         /* Called from d_instantiate or d_splice_alias. */
1204                         dentry = dget(opt_dentry);
1205                 } else {
1206                         /* Called from selinux_complete_init, try to find a dentry. */
1207                         dentry = d_find_alias(inode);
1208                 }
1209                 if (!dentry) {
1210                         /*
1211                          * this is can be hit on boot when a file is accessed
1212                          * before the policy is loaded.  When we load policy we
1213                          * may find inodes that have no dentry on the
1214                          * sbsec->isec_head list.  No reason to complain as these
1215                          * will get fixed up the next time we go through
1216                          * inode_doinit with a dentry, before these inodes could
1217                          * be used again by userspace.
1218                          */
1219                         goto out_unlock;
1220                 }
1221
1222                 len = INITCONTEXTLEN;
1223                 context = kmalloc(len+1, GFP_NOFS);
1224                 if (!context) {
1225                         rc = -ENOMEM;
1226                         dput(dentry);
1227                         goto out_unlock;
1228                 }
1229                 context[len] = '\0';
1230                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1231                                            context, len);
1232                 if (rc == -ERANGE) {
1233                         kfree(context);
1234
1235                         /* Need a larger buffer.  Query for the right size. */
1236                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1237                                                    NULL, 0);
1238                         if (rc < 0) {
1239                                 dput(dentry);
1240                                 goto out_unlock;
1241                         }
1242                         len = rc;
1243                         context = kmalloc(len+1, GFP_NOFS);
1244                         if (!context) {
1245                                 rc = -ENOMEM;
1246                                 dput(dentry);
1247                                 goto out_unlock;
1248                         }
1249                         context[len] = '\0';
1250                         rc = inode->i_op->getxattr(dentry,
1251                                                    XATTR_NAME_SELINUX,
1252                                                    context, len);
1253                 }
1254                 dput(dentry);
1255                 if (rc < 0) {
1256                         if (rc != -ENODATA) {
1257                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1258                                        "%d for dev=%s ino=%ld\n", __func__,
1259                                        -rc, inode->i_sb->s_id, inode->i_ino);
1260                                 kfree(context);
1261                                 goto out_unlock;
1262                         }
1263                         /* Map ENODATA to the default file SID */
1264                         sid = sbsec->def_sid;
1265                         rc = 0;
1266                 } else {
1267                         rc = security_context_to_sid_default(context, rc, &sid,
1268                                                              sbsec->def_sid,
1269                                                              GFP_NOFS);
1270                         if (rc) {
1271                                 char *dev = inode->i_sb->s_id;
1272                                 unsigned long ino = inode->i_ino;
1273
1274                                 if (rc == -EINVAL) {
1275                                         if (printk_ratelimit())
1276                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1277                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1278                                                         "filesystem in question.\n", ino, dev, context);
1279                                 } else {
1280                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1281                                                "returned %d for dev=%s ino=%ld\n",
1282                                                __func__, context, -rc, dev, ino);
1283                                 }
1284                                 kfree(context);
1285                                 /* Leave with the unlabeled SID */
1286                                 rc = 0;
1287                                 break;
1288                         }
1289                 }
1290                 kfree(context);
1291                 isec->sid = sid;
1292                 break;
1293         case SECURITY_FS_USE_TASK:
1294                 isec->sid = isec->task_sid;
1295                 break;
1296         case SECURITY_FS_USE_TRANS:
1297                 /* Default to the fs SID. */
1298                 isec->sid = sbsec->sid;
1299
1300                 /* Try to obtain a transition SID. */
1301                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1302                 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1303                                              isec->sclass, NULL, &sid);
1304                 if (rc)
1305                         goto out_unlock;
1306                 isec->sid = sid;
1307                 break;
1308         case SECURITY_FS_USE_MNTPOINT:
1309                 isec->sid = sbsec->mntpoint_sid;
1310                 break;
1311         default:
1312                 /* Default to the fs superblock SID. */
1313                 isec->sid = sbsec->sid;
1314
1315                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1316                         if (opt_dentry) {
1317                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1318                                 rc = selinux_proc_get_sid(opt_dentry,
1319                                                           isec->sclass,
1320                                                           &sid);
1321                                 if (rc)
1322                                         goto out_unlock;
1323                                 isec->sid = sid;
1324                         }
1325                 }
1326                 break;
1327         }
1328
1329         isec->initialized = 1;
1330
1331 out_unlock:
1332         mutex_unlock(&isec->lock);
1333 out:
1334         if (isec->sclass == SECCLASS_FILE)
1335                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1336         return rc;
1337 }
1338
1339 /* Convert a Linux signal to an access vector. */
1340 static inline u32 signal_to_av(int sig)
1341 {
1342         u32 perm = 0;
1343
1344         switch (sig) {
1345         case SIGCHLD:
1346                 /* Commonly granted from child to parent. */
1347                 perm = PROCESS__SIGCHLD;
1348                 break;
1349         case SIGKILL:
1350                 /* Cannot be caught or ignored */
1351                 perm = PROCESS__SIGKILL;
1352                 break;
1353         case SIGSTOP:
1354                 /* Cannot be caught or ignored */
1355                 perm = PROCESS__SIGSTOP;
1356                 break;
1357         default:
1358                 /* All other signals. */
1359                 perm = PROCESS__SIGNAL;
1360                 break;
1361         }
1362
1363         return perm;
1364 }
1365
1366 /*
1367  * Check permission between a pair of credentials
1368  * fork check, ptrace check, etc.
1369  */
1370 static int cred_has_perm(const struct cred *actor,
1371                          const struct cred *target,
1372                          u32 perms)
1373 {
1374         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1375
1376         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1377 }
1378
1379 /*
1380  * Check permission between a pair of tasks, e.g. signal checks,
1381  * fork check, ptrace check, etc.
1382  * tsk1 is the actor and tsk2 is the target
1383  * - this uses the default subjective creds of tsk1
1384  */
1385 static int task_has_perm(const struct task_struct *tsk1,
1386                          const struct task_struct *tsk2,
1387                          u32 perms)
1388 {
1389         const struct task_security_struct *__tsec1, *__tsec2;
1390         u32 sid1, sid2;
1391
1392         rcu_read_lock();
1393         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1394         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1395         rcu_read_unlock();
1396         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1397 }
1398
1399 /*
1400  * Check permission between current and another task, e.g. signal checks,
1401  * fork check, ptrace check, etc.
1402  * current is the actor and tsk2 is the target
1403  * - this uses current's subjective creds
1404  */
1405 static int current_has_perm(const struct task_struct *tsk,
1406                             u32 perms)
1407 {
1408         u32 sid, tsid;
1409
1410         sid = current_sid();
1411         tsid = task_sid(tsk);
1412         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1413 }
1414
1415 #if CAP_LAST_CAP > 63
1416 #error Fix SELinux to handle capabilities > 63.
1417 #endif
1418
1419 /* Check whether a task is allowed to use a capability. */
1420 static int cred_has_capability(const struct cred *cred,
1421                                int cap, int audit)
1422 {
1423         struct common_audit_data ad;
1424         struct av_decision avd;
1425         u16 sclass;
1426         u32 sid = cred_sid(cred);
1427         u32 av = CAP_TO_MASK(cap);
1428         int rc;
1429
1430         ad.type = LSM_AUDIT_DATA_CAP;
1431         ad.u.cap = cap;
1432
1433         switch (CAP_TO_INDEX(cap)) {
1434         case 0:
1435                 sclass = SECCLASS_CAPABILITY;
1436                 break;
1437         case 1:
1438                 sclass = SECCLASS_CAPABILITY2;
1439                 break;
1440         default:
1441                 printk(KERN_ERR
1442                        "SELinux:  out of range capability %d\n", cap);
1443                 BUG();
1444                 return -EINVAL;
1445         }
1446
1447         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1448         if (audit == SECURITY_CAP_AUDIT) {
1449                 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1450                 if (rc2)
1451                         return rc2;
1452         }
1453         return rc;
1454 }
1455
1456 /* Check whether a task is allowed to use a system operation. */
1457 static int task_has_system(struct task_struct *tsk,
1458                            u32 perms)
1459 {
1460         u32 sid = task_sid(tsk);
1461
1462         return avc_has_perm(sid, SECINITSID_KERNEL,
1463                             SECCLASS_SYSTEM, perms, NULL);
1464 }
1465
1466 /* Check whether a task has a particular permission to an inode.
1467    The 'adp' parameter is optional and allows other audit
1468    data to be passed (e.g. the dentry). */
1469 static int inode_has_perm(const struct cred *cred,
1470                           struct inode *inode,
1471                           u32 perms,
1472                           struct common_audit_data *adp,
1473                           unsigned flags)
1474 {
1475         struct inode_security_struct *isec;
1476         u32 sid;
1477
1478         validate_creds(cred);
1479
1480         if (unlikely(IS_PRIVATE(inode)))
1481                 return 0;
1482
1483         sid = cred_sid(cred);
1484         isec = inode->i_security;
1485
1486         return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
1487 }
1488
1489 /* Same as inode_has_perm, but pass explicit audit data containing
1490    the dentry to help the auditing code to more easily generate the
1491    pathname if needed. */
1492 static inline int dentry_has_perm(const struct cred *cred,
1493                                   struct dentry *dentry,
1494                                   u32 av)
1495 {
1496         struct inode *inode = dentry->d_inode;
1497         struct common_audit_data ad;
1498
1499         ad.type = LSM_AUDIT_DATA_DENTRY;
1500         ad.u.dentry = dentry;
1501         return inode_has_perm(cred, inode, av, &ad, 0);
1502 }
1503
1504 /* Same as inode_has_perm, but pass explicit audit data containing
1505    the path to help the auditing code to more easily generate the
1506    pathname if needed. */
1507 static inline int path_has_perm(const struct cred *cred,
1508                                 struct path *path,
1509                                 u32 av)
1510 {
1511         struct inode *inode = path->dentry->d_inode;
1512         struct common_audit_data ad;
1513
1514         ad.type = LSM_AUDIT_DATA_PATH;
1515         ad.u.path = *path;
1516         return inode_has_perm(cred, inode, av, &ad, 0);
1517 }
1518
1519 /* Check whether a task can use an open file descriptor to
1520    access an inode in a given way.  Check access to the
1521    descriptor itself, and then use dentry_has_perm to
1522    check a particular permission to the file.
1523    Access to the descriptor is implicitly granted if it
1524    has the same SID as the process.  If av is zero, then
1525    access to the file is not checked, e.g. for cases
1526    where only the descriptor is affected like seek. */
1527 static int file_has_perm(const struct cred *cred,
1528                          struct file *file,
1529                          u32 av)
1530 {
1531         struct file_security_struct *fsec = file->f_security;
1532         struct inode *inode = file_inode(file);
1533         struct common_audit_data ad;
1534         u32 sid = cred_sid(cred);
1535         int rc;
1536
1537         ad.type = LSM_AUDIT_DATA_PATH;
1538         ad.u.path = file->f_path;
1539
1540         if (sid != fsec->sid) {
1541                 rc = avc_has_perm(sid, fsec->sid,
1542                                   SECCLASS_FD,
1543                                   FD__USE,
1544                                   &ad);
1545                 if (rc)
1546                         goto out;
1547         }
1548
1549         /* av is zero if only checking access to the descriptor. */
1550         rc = 0;
1551         if (av)
1552                 rc = inode_has_perm(cred, inode, av, &ad, 0);
1553
1554 out:
1555         return rc;
1556 }
1557
1558 /* Check whether a task can create a file. */
1559 static int may_create(struct inode *dir,
1560                       struct dentry *dentry,
1561                       u16 tclass)
1562 {
1563         const struct task_security_struct *tsec = current_security();
1564         struct inode_security_struct *dsec;
1565         struct superblock_security_struct *sbsec;
1566         u32 sid, newsid;
1567         struct common_audit_data ad;
1568         int rc;
1569
1570         dsec = dir->i_security;
1571         sbsec = dir->i_sb->s_security;
1572
1573         sid = tsec->sid;
1574         newsid = tsec->create_sid;
1575
1576         ad.type = LSM_AUDIT_DATA_DENTRY;
1577         ad.u.dentry = dentry;
1578
1579         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1580                           DIR__ADD_NAME | DIR__SEARCH,
1581                           &ad);
1582         if (rc)
1583                 return rc;
1584
1585         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1586                 rc = security_transition_sid(sid, dsec->sid, tclass,
1587                                              &dentry->d_name, &newsid);
1588                 if (rc)
1589                         return rc;
1590         }
1591
1592         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1593         if (rc)
1594                 return rc;
1595
1596         return avc_has_perm(newsid, sbsec->sid,
1597                             SECCLASS_FILESYSTEM,
1598                             FILESYSTEM__ASSOCIATE, &ad);
1599 }
1600
1601 /* Check whether a task can create a key. */
1602 static int may_create_key(u32 ksid,
1603                           struct task_struct *ctx)
1604 {
1605         u32 sid = task_sid(ctx);
1606
1607         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1608 }
1609
1610 #define MAY_LINK        0
1611 #define MAY_UNLINK      1
1612 #define MAY_RMDIR       2
1613
1614 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1615 static int may_link(struct inode *dir,
1616                     struct dentry *dentry,
1617                     int kind)
1618
1619 {
1620         struct inode_security_struct *dsec, *isec;
1621         struct common_audit_data ad;
1622         u32 sid = current_sid();
1623         u32 av;
1624         int rc;
1625
1626         dsec = dir->i_security;
1627         isec = dentry->d_inode->i_security;
1628
1629         ad.type = LSM_AUDIT_DATA_DENTRY;
1630         ad.u.dentry = dentry;
1631
1632         av = DIR__SEARCH;
1633         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1634         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1635         if (rc)
1636                 return rc;
1637
1638         switch (kind) {
1639         case MAY_LINK:
1640                 av = FILE__LINK;
1641                 break;
1642         case MAY_UNLINK:
1643                 av = FILE__UNLINK;
1644                 break;
1645         case MAY_RMDIR:
1646                 av = DIR__RMDIR;
1647                 break;
1648         default:
1649                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1650                         __func__, kind);
1651                 return 0;
1652         }
1653
1654         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1655         return rc;
1656 }
1657
1658 static inline int may_rename(struct inode *old_dir,
1659                              struct dentry *old_dentry,
1660                              struct inode *new_dir,
1661                              struct dentry *new_dentry)
1662 {
1663         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1664         struct common_audit_data ad;
1665         u32 sid = current_sid();
1666         u32 av;
1667         int old_is_dir, new_is_dir;
1668         int rc;
1669
1670         old_dsec = old_dir->i_security;
1671         old_isec = old_dentry->d_inode->i_security;
1672         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1673         new_dsec = new_dir->i_security;
1674
1675         ad.type = LSM_AUDIT_DATA_DENTRY;
1676
1677         ad.u.dentry = old_dentry;
1678         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1679                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1680         if (rc)
1681                 return rc;
1682         rc = avc_has_perm(sid, old_isec->sid,
1683                           old_isec->sclass, FILE__RENAME, &ad);
1684         if (rc)
1685                 return rc;
1686         if (old_is_dir && new_dir != old_dir) {
1687                 rc = avc_has_perm(sid, old_isec->sid,
1688                                   old_isec->sclass, DIR__REPARENT, &ad);
1689                 if (rc)
1690                         return rc;
1691         }
1692
1693         ad.u.dentry = new_dentry;
1694         av = DIR__ADD_NAME | DIR__SEARCH;
1695         if (new_dentry->d_inode)
1696                 av |= DIR__REMOVE_NAME;
1697         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1698         if (rc)
1699                 return rc;
1700         if (new_dentry->d_inode) {
1701                 new_isec = new_dentry->d_inode->i_security;
1702                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1703                 rc = avc_has_perm(sid, new_isec->sid,
1704                                   new_isec->sclass,
1705                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1706                 if (rc)
1707                         return rc;
1708         }
1709
1710         return 0;
1711 }
1712
1713 /* Check whether a task can perform a filesystem operation. */
1714 static int superblock_has_perm(const struct cred *cred,
1715                                struct super_block *sb,
1716                                u32 perms,
1717                                struct common_audit_data *ad)
1718 {
1719         struct superblock_security_struct *sbsec;
1720         u32 sid = cred_sid(cred);
1721
1722         sbsec = sb->s_security;
1723         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1724 }
1725
1726 /* Convert a Linux mode and permission mask to an access vector. */
1727 static inline u32 file_mask_to_av(int mode, int mask)
1728 {
1729         u32 av = 0;
1730
1731         if (!S_ISDIR(mode)) {
1732                 if (mask & MAY_EXEC)
1733                         av |= FILE__EXECUTE;
1734                 if (mask & MAY_READ)
1735                         av |= FILE__READ;
1736
1737                 if (mask & MAY_APPEND)
1738                         av |= FILE__APPEND;
1739                 else if (mask & MAY_WRITE)
1740                         av |= FILE__WRITE;
1741
1742         } else {
1743                 if (mask & MAY_EXEC)
1744                         av |= DIR__SEARCH;
1745                 if (mask & MAY_WRITE)
1746                         av |= DIR__WRITE;
1747                 if (mask & MAY_READ)
1748                         av |= DIR__READ;
1749         }
1750
1751         return av;
1752 }
1753
1754 /* Convert a Linux file to an access vector. */
1755 static inline u32 file_to_av(struct file *file)
1756 {
1757         u32 av = 0;
1758
1759         if (file->f_mode & FMODE_READ)
1760                 av |= FILE__READ;
1761         if (file->f_mode & FMODE_WRITE) {
1762                 if (file->f_flags & O_APPEND)
1763                         av |= FILE__APPEND;
1764                 else
1765                         av |= FILE__WRITE;
1766         }
1767         if (!av) {
1768                 /*
1769                  * Special file opened with flags 3 for ioctl-only use.
1770                  */
1771                 av = FILE__IOCTL;
1772         }
1773
1774         return av;
1775 }
1776
1777 /*
1778  * Convert a file to an access vector and include the correct open
1779  * open permission.
1780  */
1781 static inline u32 open_file_to_av(struct file *file)
1782 {
1783         u32 av = file_to_av(file);
1784
1785         if (selinux_policycap_openperm)
1786                 av |= FILE__OPEN;
1787
1788         return av;
1789 }
1790
1791 /* Hook functions begin here. */
1792
1793 static int selinux_ptrace_access_check(struct task_struct *child,
1794                                      unsigned int mode)
1795 {
1796         int rc;
1797
1798         rc = cap_ptrace_access_check(child, mode);
1799         if (rc)
1800                 return rc;
1801
1802         if (mode & PTRACE_MODE_READ) {
1803                 u32 sid = current_sid();
1804                 u32 csid = task_sid(child);
1805                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1806         }
1807
1808         return current_has_perm(child, PROCESS__PTRACE);
1809 }
1810
1811 static int selinux_ptrace_traceme(struct task_struct *parent)
1812 {
1813         int rc;
1814
1815         rc = cap_ptrace_traceme(parent);
1816         if (rc)
1817                 return rc;
1818
1819         return task_has_perm(parent, current, PROCESS__PTRACE);
1820 }
1821
1822 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1823                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1824 {
1825         int error;
1826
1827         error = current_has_perm(target, PROCESS__GETCAP);
1828         if (error)
1829                 return error;
1830
1831         return cap_capget(target, effective, inheritable, permitted);
1832 }
1833
1834 static int selinux_capset(struct cred *new, const struct cred *old,
1835                           const kernel_cap_t *effective,
1836                           const kernel_cap_t *inheritable,
1837                           const kernel_cap_t *permitted)
1838 {
1839         int error;
1840
1841         error = cap_capset(new, old,
1842                                       effective, inheritable, permitted);
1843         if (error)
1844                 return error;
1845
1846         return cred_has_perm(old, new, PROCESS__SETCAP);
1847 }
1848
1849 /*
1850  * (This comment used to live with the selinux_task_setuid hook,
1851  * which was removed).
1852  *
1853  * Since setuid only affects the current process, and since the SELinux
1854  * controls are not based on the Linux identity attributes, SELinux does not
1855  * need to control this operation.  However, SELinux does control the use of
1856  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1857  */
1858
1859 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1860                            int cap, int audit)
1861 {
1862         int rc;
1863
1864         rc = cap_capable(cred, ns, cap, audit);
1865         if (rc)
1866                 return rc;
1867
1868         return cred_has_capability(cred, cap, audit);
1869 }
1870
1871 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1872 {
1873         const struct cred *cred = current_cred();
1874         int rc = 0;
1875
1876         if (!sb)
1877                 return 0;
1878
1879         switch (cmds) {
1880         case Q_SYNC:
1881         case Q_QUOTAON:
1882         case Q_QUOTAOFF:
1883         case Q_SETINFO:
1884         case Q_SETQUOTA:
1885                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1886                 break;
1887         case Q_GETFMT:
1888         case Q_GETINFO:
1889         case Q_GETQUOTA:
1890                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1891                 break;
1892         default:
1893                 rc = 0;  /* let the kernel handle invalid cmds */
1894                 break;
1895         }
1896         return rc;
1897 }
1898
1899 static int selinux_quota_on(struct dentry *dentry)
1900 {
1901         const struct cred *cred = current_cred();
1902
1903         return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1904 }
1905
1906 static int selinux_syslog(int type)
1907 {
1908         int rc;
1909
1910         switch (type) {
1911         case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
1912         case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
1913                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1914                 break;
1915         case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
1916         case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
1917         /* Set level of messages printed to console */
1918         case SYSLOG_ACTION_CONSOLE_LEVEL:
1919                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1920                 break;
1921         case SYSLOG_ACTION_CLOSE:       /* Close log */
1922         case SYSLOG_ACTION_OPEN:        /* Open log */
1923         case SYSLOG_ACTION_READ:        /* Read from log */
1924         case SYSLOG_ACTION_READ_CLEAR:  /* Read/clear last kernel messages */
1925         case SYSLOG_ACTION_CLEAR:       /* Clear ring buffer */
1926         default:
1927                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1928                 break;
1929         }
1930         return rc;
1931 }
1932
1933 /*
1934  * Check that a process has enough memory to allocate a new virtual
1935  * mapping. 0 means there is enough memory for the allocation to
1936  * succeed and -ENOMEM implies there is not.
1937  *
1938  * Do not audit the selinux permission check, as this is applied to all
1939  * processes that allocate mappings.
1940  */
1941 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1942 {
1943         int rc, cap_sys_admin = 0;
1944
1945         rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
1946                              SECURITY_CAP_NOAUDIT);
1947         if (rc == 0)
1948                 cap_sys_admin = 1;
1949
1950         return __vm_enough_memory(mm, pages, cap_sys_admin);
1951 }
1952
1953 /* binprm security operations */
1954
1955 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
1956 {
1957         const struct task_security_struct *old_tsec;
1958         struct task_security_struct *new_tsec;
1959         struct inode_security_struct *isec;
1960         struct common_audit_data ad;
1961         struct inode *inode = file_inode(bprm->file);
1962         int rc;
1963
1964         rc = cap_bprm_set_creds(bprm);
1965         if (rc)
1966                 return rc;
1967
1968         /* SELinux context only depends on initial program or script and not
1969          * the script interpreter */
1970         if (bprm->cred_prepared)
1971                 return 0;
1972
1973         old_tsec = current_security();
1974         new_tsec = bprm->cred->security;
1975         isec = inode->i_security;
1976
1977         /* Default to the current task SID. */
1978         new_tsec->sid = old_tsec->sid;
1979         new_tsec->osid = old_tsec->sid;
1980
1981         /* Reset fs, key, and sock SIDs on execve. */
1982         new_tsec->create_sid = 0;
1983         new_tsec->keycreate_sid = 0;
1984         new_tsec->sockcreate_sid = 0;
1985
1986         if (old_tsec->exec_sid) {
1987                 new_tsec->sid = old_tsec->exec_sid;
1988                 /* Reset exec SID on execve. */
1989                 new_tsec->exec_sid = 0;
1990
1991                 /*
1992                  * Minimize confusion: if no_new_privs and a transition is
1993                  * explicitly requested, then fail the exec.
1994                  */
1995                 if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
1996                         return -EPERM;
1997         } else {
1998                 /* Check for a default transition on this program. */
1999                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2000                                              SECCLASS_PROCESS, NULL,
2001                                              &new_tsec->sid);
2002                 if (rc)
2003                         return rc;
2004         }
2005
2006         ad.type = LSM_AUDIT_DATA_PATH;
2007         ad.u.path = bprm->file->f_path;
2008
2009         if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2010             (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2011                 new_tsec->sid = old_tsec->sid;
2012
2013         if (new_tsec->sid == old_tsec->sid) {
2014                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2015                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2016                 if (rc)
2017                         return rc;
2018         } else {
2019                 /* Check permissions for the transition. */
2020                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2021                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2022                 if (rc)
2023                         return rc;
2024
2025                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2026                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2027                 if (rc)
2028                         return rc;
2029
2030                 /* Check for shared state */
2031                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2032                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2033                                           SECCLASS_PROCESS, PROCESS__SHARE,
2034                                           NULL);
2035                         if (rc)
2036                                 return -EPERM;
2037                 }
2038
2039                 /* Make sure that anyone attempting to ptrace over a task that
2040                  * changes its SID has the appropriate permit */
2041                 if (bprm->unsafe &
2042                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2043                         struct task_struct *tracer;
2044                         struct task_security_struct *sec;
2045                         u32 ptsid = 0;
2046
2047                         rcu_read_lock();
2048                         tracer = ptrace_parent(current);
2049                         if (likely(tracer != NULL)) {
2050                                 sec = __task_cred(tracer)->security;
2051                                 ptsid = sec->sid;
2052                         }
2053                         rcu_read_unlock();
2054
2055                         if (ptsid != 0) {
2056                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2057                                                   SECCLASS_PROCESS,
2058                                                   PROCESS__PTRACE, NULL);
2059                                 if (rc)
2060                                         return -EPERM;
2061                         }
2062                 }
2063
2064                 /* Clear any possibly unsafe personality bits on exec: */
2065                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2066         }
2067
2068         return 0;
2069 }
2070
2071 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2072 {
2073         const struct task_security_struct *tsec = current_security();
2074         u32 sid, osid;
2075         int atsecure = 0;
2076
2077         sid = tsec->sid;
2078         osid = tsec->osid;
2079
2080         if (osid != sid) {
2081                 /* Enable secure mode for SIDs transitions unless
2082                    the noatsecure permission is granted between
2083                    the two SIDs, i.e. ahp returns 0. */
2084                 atsecure = avc_has_perm(osid, sid,
2085                                         SECCLASS_PROCESS,
2086                                         PROCESS__NOATSECURE, NULL);
2087         }
2088
2089         return (atsecure || cap_bprm_secureexec(bprm));
2090 }
2091
2092 static int match_file(const void *p, struct file *file, unsigned fd)
2093 {
2094         return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2095 }
2096
2097 /* Derived from fs/exec.c:flush_old_files. */
2098 static inline void flush_unauthorized_files(const struct cred *cred,
2099                                             struct files_struct *files)
2100 {
2101         struct file *file, *devnull = NULL;
2102         struct tty_struct *tty;
2103         int drop_tty = 0;
2104         unsigned n;
2105
2106         tty = get_current_tty();
2107         if (tty) {
2108                 spin_lock(&tty_files_lock);
2109                 if (!list_empty(&tty->tty_files)) {
2110                         struct tty_file_private *file_priv;
2111
2112                         /* Revalidate access to controlling tty.
2113                            Use path_has_perm on the tty path directly rather
2114                            than using file_has_perm, as this particular open
2115                            file may belong to another process and we are only
2116                            interested in the inode-based check here. */
2117                         file_priv = list_first_entry(&tty->tty_files,
2118                                                 struct tty_file_private, list);
2119                         file = file_priv->file;
2120                         if (path_has_perm(cred, &file->f_path, FILE__READ | FILE__WRITE))
2121                                 drop_tty = 1;
2122                 }
2123                 spin_unlock(&tty_files_lock);
2124                 tty_kref_put(tty);
2125         }
2126         /* Reset controlling tty. */
2127         if (drop_tty)
2128                 no_tty();
2129
2130         /* Revalidate access to inherited open files. */
2131         n = iterate_fd(files, 0, match_file, cred);
2132         if (!n) /* none found? */
2133                 return;
2134
2135         devnull = dentry_open(&selinux_null, O_RDWR, cred);
2136         if (IS_ERR(devnull))
2137                 devnull = NULL;
2138         /* replace all the matching ones with this */
2139         do {
2140                 replace_fd(n - 1, devnull, 0);
2141         } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2142         if (devnull)
2143                 fput(devnull);
2144 }
2145
2146 /*
2147  * Prepare a process for imminent new credential changes due to exec
2148  */
2149 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2150 {
2151         struct task_security_struct *new_tsec;
2152         struct rlimit *rlim, *initrlim;
2153         int rc, i;
2154
2155         new_tsec = bprm->cred->security;
2156         if (new_tsec->sid == new_tsec->osid)
2157                 return;
2158
2159         /* Close files for which the new task SID is not authorized. */
2160         flush_unauthorized_files(bprm->cred, current->files);
2161
2162         /* Always clear parent death signal on SID transitions. */
2163         current->pdeath_signal = 0;
2164
2165         /* Check whether the new SID can inherit resource limits from the old
2166          * SID.  If not, reset all soft limits to the lower of the current
2167          * task's hard limit and the init task's soft limit.
2168          *
2169          * Note that the setting of hard limits (even to lower them) can be
2170          * controlled by the setrlimit check.  The inclusion of the init task's
2171          * soft limit into the computation is to avoid resetting soft limits
2172          * higher than the default soft limit for cases where the default is
2173          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2174          */
2175         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2176                           PROCESS__RLIMITINH, NULL);
2177         if (rc) {
2178                 /* protect against do_prlimit() */
2179                 task_lock(current);
2180                 for (i = 0; i < RLIM_NLIMITS; i++) {
2181                         rlim = current->signal->rlim + i;
2182                         initrlim = init_task.signal->rlim + i;
2183                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2184                 }
2185                 task_unlock(current);
2186                 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2187         }
2188 }
2189
2190 /*
2191  * Clean up the process immediately after the installation of new credentials
2192  * due to exec
2193  */
2194 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2195 {
2196         const struct task_security_struct *tsec = current_security();
2197         struct itimerval itimer;
2198         u32 osid, sid;
2199         int rc, i;
2200
2201         osid = tsec->osid;
2202         sid = tsec->sid;
2203
2204         if (sid == osid)
2205                 return;
2206
2207         /* Check whether the new SID can inherit signal state from the old SID.
2208          * If not, clear itimers to avoid subsequent signal generation and
2209          * flush and unblock signals.
2210          *
2211          * This must occur _after_ the task SID has been updated so that any
2212          * kill done after the flush will be checked against the new SID.
2213          */
2214         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2215         if (rc) {
2216                 memset(&itimer, 0, sizeof itimer);
2217                 for (i = 0; i < 3; i++)
2218                         do_setitimer(i, &itimer, NULL);
2219                 spin_lock_irq(&current->sighand->siglock);
2220                 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2221                         __flush_signals(current);
2222                         flush_signal_handlers(current, 1);
2223                         sigemptyset(&current->blocked);
2224                 }
2225                 spin_unlock_irq(&current->sighand->siglock);
2226         }
2227
2228         /* Wake up the parent if it is waiting so that it can recheck
2229          * wait permission to the new task SID. */
2230         read_lock(&tasklist_lock);
2231         __wake_up_parent(current, current->real_parent);
2232         read_unlock(&tasklist_lock);
2233 }
2234
2235 /* superblock security operations */
2236
2237 static int selinux_sb_alloc_security(struct super_block *sb)
2238 {
2239         return superblock_alloc_security(sb);
2240 }
2241
2242 static void selinux_sb_free_security(struct super_block *sb)
2243 {
2244         superblock_free_security(sb);
2245 }
2246
2247 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2248 {
2249         if (plen > olen)
2250                 return 0;
2251
2252         return !memcmp(prefix, option, plen);
2253 }
2254
2255 static inline int selinux_option(char *option, int len)
2256 {
2257         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2258                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2259                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2260                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2261                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2262 }
2263
2264 static inline void take_option(char **to, char *from, int *first, int len)
2265 {
2266         if (!*first) {
2267                 **to = ',';
2268                 *to += 1;
2269         } else
2270                 *first = 0;
2271         memcpy(*to, from, len);
2272         *to += len;
2273 }
2274
2275 static inline void take_selinux_option(char **to, char *from, int *first,
2276                                        int len)
2277 {
2278         int current_size = 0;
2279
2280         if (!*first) {
2281                 **to = '|';
2282                 *to += 1;
2283         } else
2284                 *first = 0;
2285
2286         while (current_size < len) {
2287                 if (*from != '"') {
2288                         **to = *from;
2289                         *to += 1;
2290                 }
2291                 from += 1;
2292                 current_size += 1;
2293         }
2294 }
2295
2296 static int selinux_sb_copy_data(char *orig, char *copy)
2297 {
2298         int fnosec, fsec, rc = 0;
2299         char *in_save, *in_curr, *in_end;
2300         char *sec_curr, *nosec_save, *nosec;
2301         int open_quote = 0;
2302
2303         in_curr = orig;
2304         sec_curr = copy;
2305
2306         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2307         if (!nosec) {
2308                 rc = -ENOMEM;
2309                 goto out;
2310         }
2311
2312         nosec_save = nosec;
2313         fnosec = fsec = 1;
2314         in_save = in_end = orig;
2315
2316         do {
2317                 if (*in_end == '"')
2318                         open_quote = !open_quote;
2319                 if ((*in_end == ',' && open_quote == 0) ||
2320                                 *in_end == '\0') {
2321                         int len = in_end - in_curr;
2322
2323                         if (selinux_option(in_curr, len))
2324                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2325                         else
2326                                 take_option(&nosec, in_curr, &fnosec, len);
2327
2328                         in_curr = in_end + 1;
2329                 }
2330         } while (*in_end++);
2331
2332         strcpy(in_save, nosec_save);
2333         free_page((unsigned long)nosec_save);
2334 out:
2335         return rc;
2336 }
2337
2338 static int selinux_sb_remount(struct super_block *sb, void *data)
2339 {
2340         int rc, i, *flags;
2341         struct security_mnt_opts opts;
2342         char *secdata, **mount_options;
2343         struct superblock_security_struct *sbsec = sb->s_security;
2344
2345         if (!(sbsec->flags & SE_SBINITIALIZED))
2346                 return 0;
2347
2348         if (!data)
2349                 return 0;
2350
2351         if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2352                 return 0;
2353
2354         security_init_mnt_opts(&opts);
2355         secdata = alloc_secdata();
2356         if (!secdata)
2357                 return -ENOMEM;
2358         rc = selinux_sb_copy_data(data, secdata);
2359         if (rc)
2360                 goto out_free_secdata;
2361
2362         rc = selinux_parse_opts_str(secdata, &opts);
2363         if (rc)
2364                 goto out_free_secdata;
2365
2366         mount_options = opts.mnt_opts;
2367         flags = opts.mnt_opts_flags;
2368
2369         for (i = 0; i < opts.num_mnt_opts; i++) {
2370                 u32 sid;
2371                 size_t len;
2372
2373                 if (flags[i] == SE_SBLABELSUPP)
2374                         continue;
2375                 len = strlen(mount_options[i]);
2376                 rc = security_context_to_sid(mount_options[i], len, &sid);
2377                 if (rc) {
2378                         printk(KERN_WARNING "SELinux: security_context_to_sid"
2379                                "(%s) failed for (dev %s, type %s) errno=%d\n",
2380                                mount_options[i], sb->s_id, sb->s_type->name, rc);
2381                         goto out_free_opts;
2382                 }
2383                 rc = -EINVAL;
2384                 switch (flags[i]) {
2385                 case FSCONTEXT_MNT:
2386                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2387                                 goto out_bad_option;
2388                         break;
2389                 case CONTEXT_MNT:
2390                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2391                                 goto out_bad_option;
2392                         break;
2393                 case ROOTCONTEXT_MNT: {
2394                         struct inode_security_struct *root_isec;
2395                         root_isec = sb->s_root->d_inode->i_security;
2396
2397                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2398                                 goto out_bad_option;
2399                         break;
2400                 }
2401                 case DEFCONTEXT_MNT:
2402                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2403                                 goto out_bad_option;
2404                         break;
2405                 default:
2406                         goto out_free_opts;
2407                 }
2408         }
2409
2410         rc = 0;
2411 out_free_opts:
2412         security_free_mnt_opts(&opts);
2413 out_free_secdata:
2414         free_secdata(secdata);
2415         return rc;
2416 out_bad_option:
2417         printk(KERN_WARNING "SELinux: unable to change security options "
2418                "during remount (dev %s, type=%s)\n", sb->s_id,
2419                sb->s_type->name);
2420         goto out_free_opts;
2421 }
2422
2423 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2424 {
2425         const struct cred *cred = current_cred();
2426         struct common_audit_data ad;
2427         int rc;
2428
2429         rc = superblock_doinit(sb, data);
2430         if (rc)
2431                 return rc;
2432
2433         /* Allow all mounts performed by the kernel */
2434         if (flags & MS_KERNMOUNT)
2435                 return 0;
2436
2437         ad.type = LSM_AUDIT_DATA_DENTRY;
2438         ad.u.dentry = sb->s_root;
2439         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2440 }
2441
2442 static int selinux_sb_statfs(struct dentry *dentry)
2443 {
2444         const struct cred *cred = current_cred();
2445         struct common_audit_data ad;
2446
2447         ad.type = LSM_AUDIT_DATA_DENTRY;
2448         ad.u.dentry = dentry->d_sb->s_root;
2449         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2450 }
2451
2452 static int selinux_mount(const char *dev_name,
2453                          struct path *path,
2454                          const char *type,
2455                          unsigned long flags,
2456                          void *data)
2457 {
2458         const struct cred *cred = current_cred();
2459
2460         if (flags & MS_REMOUNT)
2461                 return superblock_has_perm(cred, path->dentry->d_sb,
2462                                            FILESYSTEM__REMOUNT, NULL);
2463         else
2464                 return path_has_perm(cred, path, FILE__MOUNTON);
2465 }
2466
2467 static int selinux_umount(struct vfsmount *mnt, int flags)
2468 {
2469         const struct cred *cred = current_cred();
2470
2471         return superblock_has_perm(cred, mnt->mnt_sb,
2472                                    FILESYSTEM__UNMOUNT, NULL);
2473 }
2474
2475 /* inode security operations */
2476
2477 static int selinux_inode_alloc_security(struct inode *inode)
2478 {
2479         return inode_alloc_security(inode);
2480 }
2481
2482 static void selinux_inode_free_security(struct inode *inode)
2483 {
2484         inode_free_security(inode);
2485 }
2486
2487 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2488                                        const struct qstr *qstr, char **name,
2489                                        void **value, size_t *len)
2490 {
2491         const struct task_security_struct *tsec = current_security();
2492         struct inode_security_struct *dsec;
2493         struct superblock_security_struct *sbsec;
2494         u32 sid, newsid, clen;
2495         int rc;
2496         char *namep = NULL, *context;
2497
2498         dsec = dir->i_security;
2499         sbsec = dir->i_sb->s_security;
2500
2501         sid = tsec->sid;
2502         newsid = tsec->create_sid;
2503
2504         if ((sbsec->flags & SE_SBINITIALIZED) &&
2505             (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2506                 newsid = sbsec->mntpoint_sid;
2507         else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2508                 rc = security_transition_sid(sid, dsec->sid,
2509                                              inode_mode_to_security_class(inode->i_mode),
2510                                              qstr, &newsid);
2511                 if (rc) {
2512                         printk(KERN_WARNING "%s:  "
2513                                "security_transition_sid failed, rc=%d (dev=%s "
2514                                "ino=%ld)\n",
2515                                __func__,
2516                                -rc, inode->i_sb->s_id, inode->i_ino);
2517                         return rc;
2518                 }
2519         }
2520
2521         /* Possibly defer initialization to selinux_complete_init. */
2522         if (sbsec->flags & SE_SBINITIALIZED) {
2523                 struct inode_security_struct *isec = inode->i_security;
2524                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2525                 isec->sid = newsid;
2526                 isec->initialized = 1;
2527         }
2528
2529         if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2530                 return -EOPNOTSUPP;
2531
2532         if (name) {
2533                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2534                 if (!namep)
2535                         return -ENOMEM;
2536                 *name = namep;
2537         }
2538
2539         if (value && len) {
2540                 rc = security_sid_to_context_force(newsid, &context, &clen);
2541                 if (rc) {
2542                         kfree(namep);
2543                         return rc;
2544                 }
2545                 *value = context;
2546                 *len = clen;
2547         }
2548
2549         return 0;
2550 }
2551
2552 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2553 {
2554         return may_create(dir, dentry, SECCLASS_FILE);
2555 }
2556
2557 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2558 {
2559         return may_link(dir, old_dentry, MAY_LINK);
2560 }
2561
2562 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2563 {
2564         return may_link(dir, dentry, MAY_UNLINK);
2565 }
2566
2567 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2568 {
2569         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2570 }
2571
2572 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2573 {
2574         return may_create(dir, dentry, SECCLASS_DIR);
2575 }
2576
2577 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2578 {
2579         return may_link(dir, dentry, MAY_RMDIR);
2580 }
2581
2582 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2583 {
2584         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2585 }
2586
2587 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2588                                 struct inode *new_inode, struct dentry *new_dentry)
2589 {
2590         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2591 }
2592
2593 static int selinux_inode_readlink(struct dentry *dentry)
2594 {
2595         const struct cred *cred = current_cred();
2596
2597         return dentry_has_perm(cred, dentry, FILE__READ);
2598 }
2599
2600 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2601 {
2602         const struct cred *cred = current_cred();
2603
2604         return dentry_has_perm(cred, dentry, FILE__READ);
2605 }
2606
2607 static noinline int audit_inode_permission(struct inode *inode,
2608                                            u32 perms, u32 audited, u32 denied,
2609                                            unsigned flags)
2610 {
2611         struct common_audit_data ad;
2612         struct inode_security_struct *isec = inode->i_security;
2613         int rc;
2614
2615         ad.type = LSM_AUDIT_DATA_INODE;
2616         ad.u.inode = inode;
2617
2618         rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2619                             audited, denied, &ad, flags);
2620         if (rc)
2621                 return rc;
2622         return 0;
2623 }
2624
2625 static int selinux_inode_permission(struct inode *inode, int mask)
2626 {
2627         const struct cred *cred = current_cred();
2628         u32 perms;
2629         bool from_access;
2630         unsigned flags = mask & MAY_NOT_BLOCK;
2631         struct inode_security_struct *isec;
2632         u32 sid;
2633         struct av_decision avd;
2634         int rc, rc2;
2635         u32 audited, denied;
2636
2637         from_access = mask & MAY_ACCESS;
2638         mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2639
2640         /* No permission to check.  Existence test. */
2641         if (!mask)
2642                 return 0;
2643
2644         validate_creds(cred);
2645
2646         if (unlikely(IS_PRIVATE(inode)))
2647                 return 0;
2648
2649         perms = file_mask_to_av(inode->i_mode, mask);
2650
2651         sid = cred_sid(cred);
2652         isec = inode->i_security;
2653
2654         rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2655         audited = avc_audit_required(perms, &avd, rc,
2656                                      from_access ? FILE__AUDIT_ACCESS : 0,
2657                                      &denied);
2658         if (likely(!audited))
2659                 return rc;
2660
2661         rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
2662         if (rc2)
2663                 return rc2;
2664         return rc;
2665 }
2666
2667 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2668 {
2669         const struct cred *cred = current_cred();
2670         unsigned int ia_valid = iattr->ia_valid;
2671         __u32 av = FILE__WRITE;
2672
2673         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2674         if (ia_valid & ATTR_FORCE) {
2675                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2676                               ATTR_FORCE);
2677                 if (!ia_valid)
2678                         return 0;
2679         }
2680
2681         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2682                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2683                 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2684
2685         if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2686                 av |= FILE__OPEN;
2687
2688         return dentry_has_perm(cred, dentry, av);
2689 }
2690
2691 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2692 {
2693         const struct cred *cred = current_cred();
2694         struct path path;
2695
2696         path.dentry = dentry;
2697         path.mnt = mnt;
2698
2699         return path_has_perm(cred, &path, FILE__GETATTR);
2700 }
2701
2702 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2703 {
2704         const struct cred *cred = current_cred();
2705
2706         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2707                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2708                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2709                         if (!capable(CAP_SETFCAP))
2710                                 return -EPERM;
2711                 } else if (!capable(CAP_SYS_ADMIN)) {
2712                         /* A different attribute in the security namespace.
2713                            Restrict to administrator. */
2714                         return -EPERM;
2715                 }
2716         }
2717
2718         /* Not an attribute we recognize, so just check the
2719            ordinary setattr permission. */
2720         return dentry_has_perm(cred, dentry, FILE__SETATTR);
2721 }
2722
2723 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2724                                   const void *value, size_t size, int flags)
2725 {
2726         struct inode *inode = dentry->d_inode;
2727         struct inode_security_struct *isec = inode->i_security;
2728         struct superblock_security_struct *sbsec;
2729         struct common_audit_data ad;
2730         u32 newsid, sid = current_sid();
2731         int rc = 0;
2732
2733         if (strcmp(name, XATTR_NAME_SELINUX))
2734                 return selinux_inode_setotherxattr(dentry, name);
2735
2736         sbsec = inode->i_sb->s_security;
2737         if (!(sbsec->flags & SE_SBLABELSUPP))
2738                 return -EOPNOTSUPP;
2739
2740         if (!inode_owner_or_capable(inode))
2741                 return -EPERM;
2742
2743         ad.type = LSM_AUDIT_DATA_DENTRY;
2744         ad.u.dentry = dentry;
2745
2746         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2747                           FILE__RELABELFROM, &ad);
2748         if (rc)
2749                 return rc;
2750
2751         rc = security_context_to_sid(value, size, &newsid);
2752         if (rc == -EINVAL) {
2753                 if (!capable(CAP_MAC_ADMIN)) {
2754                         struct audit_buffer *ab;
2755                         size_t audit_size;
2756                         const char *str;
2757
2758                         /* We strip a nul only if it is at the end, otherwise the
2759                          * context contains a nul and we should audit that */
2760                         if (value) {
2761                                 str = value;
2762                                 if (str[size - 1] == '\0')
2763                                         audit_size = size - 1;
2764                                 else
2765                                         audit_size = size;
2766                         } else {
2767                                 str = "";
2768                                 audit_size = 0;
2769                         }
2770                         ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2771                         audit_log_format(ab, "op=setxattr invalid_context=");
2772                         audit_log_n_untrustedstring(ab, value, audit_size);
2773                         audit_log_end(ab);
2774
2775                         return rc;
2776                 }
2777                 rc = security_context_to_sid_force(value, size, &newsid);
2778         }
2779         if (rc)
2780                 return rc;
2781
2782         rc = avc_has_perm(sid, newsid, isec->sclass,
2783                           FILE__RELABELTO, &ad);
2784         if (rc)
2785                 return rc;
2786
2787         rc = security_validate_transition(isec->sid, newsid, sid,
2788                                           isec->sclass);
2789         if (rc)
2790                 return rc;
2791
2792         return avc_has_perm(newsid,
2793                             sbsec->sid,
2794                             SECCLASS_FILESYSTEM,
2795                             FILESYSTEM__ASSOCIATE,
2796                             &ad);
2797 }
2798
2799 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2800                                         const void *value, size_t size,
2801                                         int flags)
2802 {
2803         struct inode *inode = dentry->d_inode;
2804         struct inode_security_struct *isec = inode->i_security;
2805         u32 newsid;
2806         int rc;
2807
2808         if (strcmp(name, XATTR_NAME_SELINUX)) {
2809                 /* Not an attribute we recognize, so nothing to do. */
2810                 return;
2811         }
2812
2813         rc = security_context_to_sid_force(value, size, &newsid);
2814         if (rc) {
2815                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2816                        "for (%s, %lu), rc=%d\n",
2817                        inode->i_sb->s_id, inode->i_ino, -rc);
2818                 return;
2819         }
2820
2821         isec->sid = newsid;
2822         return;
2823 }
2824
2825 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2826 {
2827         const struct cred *cred = current_cred();
2828
2829         return dentry_has_perm(cred, dentry, FILE__GETATTR);
2830 }
2831
2832 static int selinux_inode_listxattr(struct dentry *dentry)
2833 {
2834         const struct cred *cred = current_cred();
2835
2836         return dentry_has_perm(cred, dentry, FILE__GETATTR);
2837 }
2838
2839 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2840 {
2841         if (strcmp(name, XATTR_NAME_SELINUX))
2842                 return selinux_inode_setotherxattr(dentry, name);
2843
2844         /* No one is allowed to remove a SELinux security label.
2845            You can change the label, but all data must be labeled. */
2846         return -EACCES;
2847 }
2848
2849 /*
2850  * Copy the inode security context value to the user.
2851  *
2852  * Permission check is handled by selinux_inode_getxattr hook.
2853  */
2854 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2855 {
2856         u32 size;
2857         int error;
2858         char *context = NULL;
2859         struct inode_security_struct *isec = inode->i_security;
2860
2861         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2862                 return -EOPNOTSUPP;
2863
2864         /*
2865          * If the caller has CAP_MAC_ADMIN, then get the raw context
2866          * value even if it is not defined by current policy; otherwise,
2867          * use the in-core value under current policy.
2868          * Use the non-auditing forms of the permission checks since
2869          * getxattr may be called by unprivileged processes commonly
2870          * and lack of permission just means that we fall back to the
2871          * in-core context value, not a denial.
2872          */
2873         error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
2874                                 SECURITY_CAP_NOAUDIT);
2875         if (!error)
2876                 error = security_sid_to_context_force(isec->sid, &context,
2877                                                       &size);
2878         else
2879                 error = security_sid_to_context(isec->sid, &context, &size);
2880         if (error)
2881                 return error;
2882         error = size;
2883         if (alloc) {
2884                 *buffer = context;
2885                 goto out_nofree;
2886         }
2887         kfree(context);
2888 out_nofree:
2889         return error;
2890 }
2891
2892 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2893                                      const void *value, size_t size, int flags)
2894 {
2895         struct inode_security_struct *isec = inode->i_security;
2896         u32 newsid;
2897         int rc;
2898
2899         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2900                 return -EOPNOTSUPP;
2901
2902         if (!value || !size)
2903                 return -EACCES;
2904
2905         rc = security_context_to_sid((void *)value, size, &newsid);
2906         if (rc)
2907                 return rc;
2908
2909         isec->sid = newsid;
2910         isec->initialized = 1;
2911         return 0;
2912 }
2913
2914 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2915 {
2916         const int len = sizeof(XATTR_NAME_SELINUX);
2917         if (buffer && len <= buffer_size)
2918                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2919         return len;
2920 }
2921
2922 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2923 {
2924         struct inode_security_struct *isec = inode->i_security;
2925         *secid = isec->sid;
2926 }
2927
2928 /* file security operations */
2929
2930 static int selinux_revalidate_file_permission(struct file *file, int mask)
2931 {
2932         const struct cred *cred = current_cred();
2933         struct inode *inode = file_inode(file);
2934
2935         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2936         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2937                 mask |= MAY_APPEND;
2938
2939         return file_has_perm(cred, file,
2940                              file_mask_to_av(inode->i_mode, mask));
2941 }
2942
2943 static int selinux_file_permission(struct file *file, int mask)
2944 {
2945         struct inode *inode = file_inode(file);
2946         struct file_security_struct *fsec = file->f_security;
2947         struct inode_security_struct *isec = inode->i_security;
2948         u32 sid = current_sid();
2949
2950         if (!mask)
2951                 /* No permission to check.  Existence test. */
2952                 return 0;
2953
2954         if (sid == fsec->sid && fsec->isid == isec->sid &&
2955             fsec->pseqno == avc_policy_seqno())
2956                 /* No change since file_open check. */
2957                 return 0;
2958
2959         return selinux_revalidate_file_permission(file, mask);
2960 }
2961
2962 static int selinux_file_alloc_security(struct file *file)
2963 {
2964         return file_alloc_security(file);
2965 }
2966
2967 static void selinux_file_free_security(struct file *file)
2968 {
2969         file_free_security(file);
2970 }
2971
2972 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2973                               unsigned long arg)
2974 {
2975         const struct cred *cred = current_cred();
2976         int error = 0;
2977
2978         switch (cmd) {
2979         case FIONREAD:
2980         /* fall through */
2981         case FIBMAP:
2982         /* fall through */
2983         case FIGETBSZ:
2984         /* fall through */
2985         case FS_IOC_GETFLAGS:
2986         /* fall through */
2987         case FS_IOC_GETVERSION:
2988                 error = file_has_perm(cred, file, FILE__GETATTR);
2989                 break;
2990
2991         case FS_IOC_SETFLAGS:
2992         /* fall through */
2993         case FS_IOC_SETVERSION:
2994                 error = file_has_perm(cred, file, FILE__SETATTR);
2995                 break;
2996
2997         /* sys_ioctl() checks */
2998         case FIONBIO:
2999         /* fall through */
3000         case FIOASYNC:
3001                 error = file_has_perm(cred, file, 0);
3002                 break;
3003
3004         case KDSKBENT:
3005         case KDSKBSENT:
3006                 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3007                                             SECURITY_CAP_AUDIT);
3008                 break;
3009
3010         /* default case assumes that the command will go
3011          * to the file's ioctl() function.
3012          */
3013         default:
3014                 error = file_has_perm(cred, file, FILE__IOCTL);
3015         }
3016         return error;
3017 }
3018
3019 static int default_noexec;
3020
3021 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3022 {
3023         const struct cred *cred = current_cred();
3024         int rc = 0;
3025
3026         if (default_noexec &&
3027             (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3028                 /*
3029                  * We are making executable an anonymous mapping or a
3030                  * private file mapping that will also be writable.
3031                  * This has an additional check.
3032                  */
3033                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3034                 if (rc)
3035                         goto error;
3036         }
3037
3038         if (file) {
3039                 /* read access is always possible with a mapping */
3040                 u32 av = FILE__READ;
3041
3042                 /* write access only matters if the mapping is shared */
3043                 if (shared && (prot & PROT_WRITE))
3044                         av |= FILE__WRITE;
3045
3046                 if (prot & PROT_EXEC)
3047                         av |= FILE__EXECUTE;
3048
3049                 return file_has_perm(cred, file, av);
3050         }
3051
3052 error:
3053         return rc;
3054 }
3055
3056 static int selinux_mmap_addr(unsigned long addr)
3057 {
3058         int rc = 0;
3059         u32 sid = current_sid();
3060
3061         /*
3062          * notice that we are intentionally putting the SELinux check before
3063          * the secondary cap_file_mmap check.  This is such a likely attempt
3064          * at bad behaviour/exploit that we always want to get the AVC, even
3065          * if DAC would have also denied the operation.
3066          */
3067         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3068                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3069                                   MEMPROTECT__MMAP_ZERO, NULL);
3070                 if (rc)
3071                         return rc;
3072         }
3073
3074         /* do DAC check on address space usage */
3075         return cap_mmap_addr(addr);
3076 }
3077
3078 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3079                              unsigned long prot, unsigned long flags)
3080 {
3081         if (selinux_checkreqprot)
3082                 prot = reqprot;
3083
3084         return file_map_prot_check(file, prot,
3085                                    (flags & MAP_TYPE) == MAP_SHARED);
3086 }
3087
3088 static int selinux_file_mprotect(struct vm_area_struct *vma,
3089                                  unsigned long reqprot,
3090                                  unsigned long prot)
3091 {
3092         const struct cred *cred = current_cred();
3093
3094         if (selinux_checkreqprot)
3095                 prot = reqprot;
3096
3097         if (default_noexec &&
3098             (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3099                 int rc = 0;
3100                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3101                     vma->vm_end <= vma->vm_mm->brk) {
3102                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3103                 } else if (!vma->vm_file &&
3104                            vma->vm_start <= vma->vm_mm->start_stack &&
3105                            vma->vm_end >= vma->vm_mm->start_stack) {
3106                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3107                 } else if (vma->vm_file && vma->anon_vma) {
3108                         /*
3109                          * We are making executable a file mapping that has
3110                          * had some COW done. Since pages might have been
3111                          * written, check ability to execute the possibly
3112                          * modified content.  This typically should only
3113                          * occur for text relocations.
3114                          */
3115                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3116                 }
3117                 if (rc)
3118                         return rc;
3119         }
3120
3121         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3122 }
3123
3124 static int selinux_file_lock(struct file *file, unsigned int cmd)
3125 {
3126         const struct cred *cred = current_cred();
3127
3128         return file_has_perm(cred, file, FILE__LOCK);
3129 }
3130
3131 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3132                               unsigned long arg)
3133 {
3134         const struct cred *cred = current_cred();
3135         int err = 0;
3136
3137         switch (cmd) {
3138         case F_SETFL:
3139                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3140                         err = file_has_perm(cred, file, FILE__WRITE);
3141                         break;
3142                 }
3143                 /* fall through */
3144         case F_SETOWN:
3145         case F_SETSIG:
3146         case F_GETFL:
3147         case F_GETOWN:
3148         case F_GETSIG:
3149         case F_GETOWNER_UIDS:
3150                 /* Just check FD__USE permission */
3151                 err = file_has_perm(cred, file, 0);
3152                 break;
3153         case F_GETLK:
3154         case F_SETLK:
3155         case F_SETLKW:
3156 #if BITS_PER_LONG == 32
3157         case F_GETLK64:
3158         case F_SETLK64:
3159         case F_SETLKW64:
3160 #endif
3161                 err = file_has_perm(cred, file, FILE__LOCK);
3162                 break;
3163         }
3164
3165         return err;
3166 }
3167
3168 static int selinux_file_set_fowner(struct file *file)
3169 {
3170         struct file_security_struct *fsec;
3171
3172         fsec = file->f_security;
3173         fsec->fown_sid = current_sid();
3174
3175         return 0;
3176 }
3177
3178 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3179                                        struct fown_struct *fown, int signum)
3180 {
3181         struct file *file;
3182         u32 sid = task_sid(tsk);
3183         u32 perm;
3184         struct file_security_struct *fsec;
3185
3186         /* struct fown_struct is never outside the context of a struct file */
3187         file = container_of(fown, struct file, f_owner);
3188
3189         fsec = file->f_security;
3190
3191         if (!signum)
3192                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3193         else
3194                 perm = signal_to_av(signum);
3195
3196         return avc_has_perm(fsec->fown_sid, sid,
3197                             SECCLASS_PROCESS, perm, NULL);
3198 }
3199
3200 static int selinux_file_receive(struct file *file)
3201 {
3202         const struct cred *cred = current_cred();
3203
3204         return file_has_perm(cred, file, file_to_av(file));
3205 }
3206
3207 static int selinux_file_open(struct file *file, const struct cred *cred)
3208 {
3209         struct file_security_struct *fsec;
3210         struct inode_security_struct *isec;
3211
3212         fsec = file->f_security;
3213         isec = file_inode(file)->i_security;
3214         /*
3215          * Save inode label and policy sequence number
3216          * at open-time so that selinux_file_permission
3217          * can determine whether revalidation is necessary.
3218          * Task label is already saved in the file security
3219          * struct as its SID.
3220          */
3221         fsec->isid = isec->sid;
3222         fsec->pseqno = avc_policy_seqno();
3223         /*
3224          * Since the inode label or policy seqno may have changed
3225          * between the selinux_inode_permission check and the saving
3226          * of state above, recheck that access is still permitted.
3227          * Otherwise, access might never be revalidated against the
3228          * new inode label or new policy.
3229          * This check is not redundant - do not remove.
3230          */
3231         return path_has_perm(cred, &file->f_path, open_file_to_av(file));
3232 }
3233
3234 /* task security operations */
3235
3236 static int selinux_task_create(unsigned long clone_flags)
3237 {
3238         return current_has_perm(current, PROCESS__FORK);
3239 }
3240
3241 /*
3242  * allocate the SELinux part of blank credentials
3243  */
3244 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3245 {
3246         struct task_security_struct *tsec;
3247
3248         tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3249         if (!tsec)
3250                 return -ENOMEM;
3251
3252         cred->security = tsec;
3253         return 0;
3254 }
3255
3256 /*
3257  * detach and free the LSM part of a set of credentials
3258  */
3259 static void selinux_cred_free(struct cred *cred)
3260 {
3261         struct task_security_struct *tsec = cred->security;
3262
3263         /*
3264          * cred->security == NULL if security_cred_alloc_blank() or
3265          * security_prepare_creds() returned an error.
3266          */
3267         BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3268         cred->security = (void *) 0x7UL;
3269         kfree(tsec);
3270 }
3271
3272 /*
3273  * prepare a new set of credentials for modification
3274  */
3275 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3276                                 gfp_t gfp)
3277 {
3278         const struct task_security_struct *old_tsec;
3279         struct task_security_struct *tsec;
3280
3281         old_tsec = old->security;
3282
3283         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3284         if (!tsec)
3285                 return -ENOMEM;
3286
3287         new->security = tsec;
3288         return 0;
3289 }
3290
3291 /*
3292  * transfer the SELinux data to a blank set of creds
3293  */
3294 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3295 {
3296         const struct task_security_struct *old_tsec = old->security;
3297         struct task_security_struct *tsec = new->security;
3298
3299         *tsec = *old_tsec;
3300 }
3301
3302 /*
3303  * set the security data for a kernel service
3304  * - all the creation contexts are set to unlabelled
3305  */
3306 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3307 {
3308         struct task_security_struct *tsec = new->security;
3309         u32 sid = current_sid();
3310         int ret;
3311
3312         ret = avc_has_perm(sid, secid,
3313                            SECCLASS_KERNEL_SERVICE,
3314                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3315                            NULL);
3316         if (ret == 0) {
3317                 tsec->sid = secid;
3318                 tsec->create_sid = 0;
3319                 tsec->keycreate_sid = 0;
3320                 tsec->sockcreate_sid = 0;
3321         }
3322         return ret;
3323 }
3324
3325 /*
3326  * set the file creation context in a security record to the same as the
3327  * objective context of the specified inode
3328  */
3329 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3330 {
3331         struct inode_security_struct *isec = inode->i_security;
3332         struct task_security_struct *tsec = new->security;
3333         u32 sid = current_sid();
3334         int ret;
3335
3336         ret = avc_has_perm(sid, isec->sid,
3337                            SECCLASS_KERNEL_SERVICE,
3338                            KERNEL_SERVICE__CREATE_FILES_AS,
3339                            NULL);
3340
3341         if (ret == 0)
3342                 tsec->create_sid = isec->sid;
3343         return ret;
3344 }
3345
3346 static int selinux_kernel_module_request(char *kmod_name)
3347 {
3348         u32 sid;
3349         struct common_audit_data ad;
3350
3351         sid = task_sid(current);
3352
3353         ad.type = LSM_AUDIT_DATA_KMOD;
3354         ad.u.kmod_name = kmod_name;
3355
3356         return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3357                             SYSTEM__MODULE_REQUEST, &ad);
3358 }
3359
3360 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3361 {
3362         return current_has_perm(p, PROCESS__SETPGID);
3363 }
3364
3365 static int selinux_task_getpgid(struct task_struct *p)
3366 {
3367         return current_has_perm(p, PROCESS__GETPGID);
3368 }
3369
3370 static int selinux_task_getsid(struct task_struct *p)
3371 {
3372         return current_has_perm(p, PROCESS__GETSESSION);
3373 }
3374
3375 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3376 {
3377         *secid = task_sid(p);
3378 }
3379
3380 static int selinux_task_setnice(struct task_struct *p, int nice)
3381 {
3382         int rc;
3383
3384         rc = cap_task_setnice(p, nice);
3385         if (rc)
3386                 return rc;
3387
3388         return current_has_perm(p, PROCESS__SETSCHED);
3389 }
3390
3391 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3392 {
3393         int rc;
3394
3395         rc = cap_task_setioprio(p, ioprio);
3396         if (rc)
3397                 return rc;
3398
3399         return current_has_perm(p, PROCESS__SETSCHED);
3400 }
3401
3402 static int selinux_task_getioprio(struct task_struct *p)
3403 {
3404         return current_has_perm(p, PROCESS__GETSCHED);
3405 }
3406
3407 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3408                 struct rlimit *new_rlim)
3409 {
3410         struct rlimit *old_rlim = p->signal->rlim + resource;
3411
3412         /* Control the ability to change the hard limit (whether
3413            lowering or raising it), so that the hard limit can
3414            later be used as a safe reset point for the soft limit
3415            upon context transitions.  See selinux_bprm_committing_creds. */
3416         if (old_rlim->rlim_max != new_rlim->rlim_max)
3417                 return current_has_perm(p, PROCESS__SETRLIMIT);
3418
3419         return 0;
3420 }
3421
3422 static int selinux_task_setscheduler(struct task_struct *p)
3423 {
3424         int rc;
3425
3426         rc = cap_task_setscheduler(p);
3427         if (rc)
3428                 return rc;
3429
3430         return current_has_perm(p, PROCESS__SETSCHED);
3431 }
3432
3433 static int selinux_task_getscheduler(struct task_struct *p)
3434 {
3435         return current_has_perm(p, PROCESS__GETSCHED);
3436 }
3437
3438 static int selinux_task_movememory(struct task_struct *p)
3439 {
3440         return current_has_perm(p, PROCESS__SETSCHED);
3441 }
3442
3443 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3444                                 int sig, u32 secid)
3445 {
3446         u32 perm;
3447         int rc;
3448
3449         if (!sig)
3450                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3451         else
3452                 perm = signal_to_av(sig);
3453         if (secid)
3454                 rc = avc_has_perm(secid, task_sid(p),
3455                                   SECCLASS_PROCESS, perm, NULL);
3456         else
3457                 rc = current_has_perm(p, perm);
3458         return rc;
3459 }
3460
3461 static int selinux_task_wait(struct task_struct *p)
3462 {
3463         return task_has_perm(p, current, PROCESS__SIGCHLD);
3464 }
3465
3466 static void selinux_task_to_inode(struct task_struct *p,
3467                                   struct inode *inode)
3468 {
3469         struct inode_security_struct *isec = inode->i_security;
3470         u32 sid = task_sid(p);
3471
3472         isec->sid = sid;
3473         isec->initialized = 1;
3474 }
3475
3476 /* Returns error only if unable to parse addresses */
3477 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3478                         struct common_audit_data *ad, u8 *proto)
3479 {
3480         int offset, ihlen, ret = -EINVAL;
3481         struct iphdr _iph, *ih;
3482
3483         offset = skb_network_offset(skb);
3484         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3485         if (ih == NULL)
3486                 goto out;
3487
3488         ihlen = ih->ihl * 4;
3489         if (ihlen < sizeof(_iph))
3490                 goto out;
3491
3492         ad->u.net->v4info.saddr = ih->saddr;
3493         ad->u.net->v4info.daddr = ih->daddr;
3494         ret = 0;
3495
3496         if (proto)
3497                 *proto = ih->protocol;
3498
3499         switch (ih->protocol) {
3500         case IPPROTO_TCP: {
3501                 struct tcphdr _tcph, *th;
3502
3503                 if (ntohs(ih->frag_off) & IP_OFFSET)
3504                         break;
3505
3506                 offset += ihlen;
3507                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3508                 if (th == NULL)
3509                         break;
3510
3511                 ad->u.net->sport = th->source;
3512                 ad->u.net->dport = th->dest;
3513                 break;
3514         }
3515
3516         case IPPROTO_UDP: {
3517                 struct udphdr _udph, *uh;
3518
3519                 if (ntohs(ih->frag_off) & IP_OFFSET)
3520                         break;
3521
3522                 offset += ihlen;
3523                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3524                 if (uh == NULL)
3525                         break;
3526
3527                 ad->u.net->sport = uh->source;
3528                 ad->u.net->dport = uh->dest;
3529                 break;
3530         }
3531
3532         case IPPROTO_DCCP: {
3533                 struct dccp_hdr _dccph, *dh;
3534
3535                 if (ntohs(ih->frag_off) & IP_OFFSET)
3536                         break;
3537
3538                 offset += ihlen;
3539                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3540                 if (dh == NULL)
3541                         break;
3542
3543                 ad->u.net->sport = dh->dccph_sport;
3544                 ad->u.net->dport = dh->dccph_dport;
3545                 break;
3546         }
3547
3548         default:
3549                 break;
3550         }
3551 out:
3552         return ret;
3553 }
3554
3555 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3556
3557 /* Returns error only if unable to parse addresses */
3558 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3559                         struct common_audit_data *ad, u8 *proto)
3560 {
3561         u8 nexthdr;
3562         int ret = -EINVAL, offset;
3563         struct ipv6hdr _ipv6h, *ip6;
3564         __be16 frag_off;
3565
3566         offset = skb_network_offset(skb);
3567         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3568         if (ip6 == NULL)
3569                 goto out;
3570
3571         ad->u.net->v6info.saddr = ip6->saddr;
3572         ad->u.net->v6info.daddr = ip6->daddr;
3573         ret = 0;
3574
3575         nexthdr = ip6->nexthdr;
3576         offset += sizeof(_ipv6h);
3577         offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3578         if (offset < 0)
3579                 goto out;
3580
3581         if (proto)
3582                 *proto = nexthdr;
3583
3584         switch (nexthdr) {
3585         case IPPROTO_TCP: {
3586                 struct tcphdr _tcph, *th;
3587
3588                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3589                 if (th == NULL)
3590                         break;
3591
3592                 ad->u.net->sport = th->source;
3593                 ad->u.net->dport = th->dest;
3594                 break;
3595         }
3596
3597         case IPPROTO_UDP: {
3598                 struct udphdr _udph, *uh;
3599
3600                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3601                 if (uh == NULL)
3602                         break;
3603
3604                 ad->u.net->sport = uh->source;
3605                 ad->u.net->dport = uh->dest;
3606                 break;
3607         }
3608
3609         case IPPROTO_DCCP: {
3610                 struct dccp_hdr _dccph, *dh;
3611
3612                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3613                 if (dh == NULL)
3614                         break;
3615
3616                 ad->u.net->sport = dh->dccph_sport;
3617                 ad->u.net->dport = dh->dccph_dport;
3618                 break;
3619         }
3620
3621         /* includes fragments */
3622         default:
3623                 break;
3624         }
3625 out:
3626         return ret;
3627 }
3628
3629 #endif /* IPV6 */
3630
3631 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3632                              char **_addrp, int src, u8 *proto)
3633 {
3634         char *addrp;
3635         int ret;
3636
3637         switch (ad->u.net->family) {
3638         case PF_INET:
3639                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3640                 if (ret)
3641                         goto parse_error;
3642                 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3643                                        &ad->u.net->v4info.daddr);
3644                 goto okay;
3645
3646 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3647         case PF_INET6:
3648                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3649                 if (ret)
3650                         goto parse_error;
3651                 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3652                                        &ad->u.net->v6info.daddr);
3653                 goto okay;
3654 #endif  /* IPV6 */
3655         default:
3656                 addrp = NULL;
3657                 goto okay;
3658         }
3659
3660 parse_error:
3661         printk(KERN_WARNING
3662                "SELinux: failure in selinux_parse_skb(),"
3663                " unable to parse packet\n");
3664         return ret;
3665
3666 okay:
3667         if (_addrp)
3668                 *_addrp = addrp;
3669         return 0;
3670 }
3671
3672 /**
3673  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3674  * @skb: the packet
3675  * @family: protocol family
3676  * @sid: the packet's peer label SID
3677  *
3678  * Description:
3679  * Check the various different forms of network peer labeling and determine
3680  * the peer label/SID for the packet; most of the magic actually occurs in
3681  * the security server function security_net_peersid_cmp().  The function
3682  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3683  * or -EACCES if @sid is invalid due to inconsistencies with the different
3684  * peer labels.
3685  *
3686  */
3687 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3688 {
3689         int err;
3690         u32 xfrm_sid;
3691         u32 nlbl_sid;
3692         u32 nlbl_type;
3693
3694         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3695         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3696
3697         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3698         if (unlikely(err)) {
3699                 printk(KERN_WARNING
3700                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3701                        " unable to determine packet's peer label\n");
3702                 return -EACCES;
3703         }
3704
3705         return 0;
3706 }
3707
3708 /* socket security operations */
3709
3710 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3711                                  u16 secclass, u32 *socksid)
3712 {
3713         if (tsec->sockcreate_sid > SECSID_NULL) {
3714                 *socksid = tsec->sockcreate_sid;
3715                 return 0;
3716         }
3717
3718         return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3719                                        socksid);
3720 }
3721
3722 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3723 {
3724         struct sk_security_struct *sksec = sk->sk_security;
3725         struct common_audit_data ad;
3726         struct lsm_network_audit net = {0,};
3727         u32 tsid = task_sid(task);
3728
3729         if (sksec->sid == SECINITSID_KERNEL)
3730                 return 0;
3731
3732         ad.type = LSM_AUDIT_DATA_NET;
3733         ad.u.net = &net;
3734         ad.u.net->sk = sk;
3735
3736         return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3737 }
3738
3739 static int selinux_socket_create(int family, int type,
3740                                  int protocol, int kern)
3741 {
3742         const struct task_security_struct *tsec = current_security();
3743         u32 newsid;
3744         u16 secclass;
3745         int rc;
3746
3747         if (kern)
3748                 return 0;
3749
3750         secclass = socket_type_to_security_class(family, type, protocol);
3751         rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3752         if (rc)
3753                 return rc;
3754
3755         return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3756 }
3757
3758 static int selinux_socket_post_create(struct socket *sock, int family,
3759                                       int type, int protocol, int kern)
3760 {
3761         const struct task_security_struct *tsec = current_security();
3762         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3763         struct sk_security_struct *sksec;
3764         int err = 0;
3765
3766         isec->sclass = socket_type_to_security_class(family, type, protocol);
3767
3768         if (kern)
3769                 isec->sid = SECINITSID_KERNEL;
3770         else {
3771                 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3772                 if (err)
3773                         return err;
3774         }
3775
3776         isec->initialized = 1;
3777
3778         if (sock->sk) {
3779                 sksec = sock->sk->sk_security;
3780                 sksec->sid = isec->sid;
3781                 sksec->sclass = isec->sclass;
3782                 err = selinux_netlbl_socket_post_create(sock->sk, family);
3783         }
3784
3785         return err;
3786 }
3787
3788 /* Range of port numbers used to automatically bind.
3789    Need to determine whether we should perform a name_bind
3790    permission check between the socket and the port number. */
3791
3792 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3793 {
3794         struct sock *sk = sock->sk;
3795         u16 family;
3796         int err;
3797
3798         err = sock_has_perm(current, sk, SOCKET__BIND);
3799         if (err)
3800                 goto out;
3801
3802         /*
3803          * If PF_INET or PF_INET6, check name_bind permission for the port.
3804          * Multiple address binding for SCTP is not supported yet: we just
3805          * check the first address now.
3806          */
3807         family = sk->sk_family;
3808         if (family == PF_INET || family == PF_INET6) {
3809                 char *addrp;
3810                 struct sk_security_struct *sksec = sk->sk_security;
3811                 struct common_audit_data ad;
3812                 struct lsm_network_audit net = {0,};
3813                 struct sockaddr_in *addr4 = NULL;
3814                 struct sockaddr_in6 *addr6 = NULL;
3815                 unsigned short snum;
3816                 u32 sid, node_perm;
3817
3818                 if (family == PF_INET) {
3819                         addr4 = (struct sockaddr_in *)address;
3820                         snum = ntohs(addr4->sin_port);
3821                         addrp = (char *)&addr4->sin_addr.s_addr;
3822                 } else {
3823                         addr6 = (struct sockaddr_in6 *)address;
3824                         snum = ntohs(addr6->sin6_port);
3825                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3826                 }
3827
3828                 if (snum) {
3829                         int low, high;
3830
3831                         inet_get_local_port_range(&low, &high);
3832
3833                         if (snum < max(PROT_SOCK, low) || snum > high) {
3834                                 err = sel_netport_sid(sk->sk_protocol,
3835                                                       snum, &sid);
3836                                 if (err)
3837                                         goto out;
3838                                 ad.type = LSM_AUDIT_DATA_NET;
3839                                 ad.u.net = &net;
3840                                 ad.u.net->sport = htons(snum);
3841                                 ad.u.net->family = family;
3842                                 err = avc_has_perm(sksec->sid, sid,
3843                                                    sksec->sclass,
3844                                                    SOCKET__NAME_BIND, &ad);
3845                                 if (err)
3846                                         goto out;
3847                         }
3848                 }
3849
3850                 switch (sksec->sclass) {
3851                 case SECCLASS_TCP_SOCKET:
3852                         node_perm = TCP_SOCKET__NODE_BIND;
3853                         break;
3854
3855                 case SECCLASS_UDP_SOCKET:
3856                         node_perm = UDP_SOCKET__NODE_BIND;
3857                         break;
3858
3859                 case SECCLASS_DCCP_SOCKET:
3860                         node_perm = DCCP_SOCKET__NODE_BIND;
3861                         break;
3862
3863                 default:
3864                         node_perm = RAWIP_SOCKET__NODE_BIND;
3865                         break;
3866                 }
3867
3868                 err = sel_netnode_sid(addrp, family, &sid);
3869                 if (err)
3870                         goto out;
3871
3872                 ad.type = LSM_AUDIT_DATA_NET;
3873                 ad.u.net = &net;
3874                 ad.u.net->sport = htons(snum);
3875                 ad.u.net->family = family;
3876
3877                 if (family == PF_INET)
3878                         ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
3879                 else
3880                         ad.u.net->v6info.saddr = addr6->sin6_addr;
3881
3882                 err = avc_has_perm(sksec->sid, sid,
3883                                    sksec->sclass, node_perm, &ad);
3884                 if (err)
3885                         goto out;
3886         }
3887 out:
3888         return err;
3889 }
3890
3891 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3892 {
3893         struct sock *sk = sock->sk;
3894         struct sk_security_struct *sksec = sk->sk_security;
3895         int err;
3896
3897         err = sock_has_perm(current, sk, SOCKET__CONNECT);
3898         if (err)
3899                 return err;
3900
3901         /*
3902          * If a TCP or DCCP socket, check name_connect permission for the port.
3903          */
3904         if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3905             sksec->sclass == SECCLASS_DCCP_SOCKET) {
3906                 struct common_audit_data ad;
3907                 struct lsm_network_audit net = {0,};
3908                 struct sockaddr_in *addr4 = NULL;
3909                 struct sockaddr_in6 *addr6 = NULL;
3910                 unsigned short snum;
3911                 u32 sid, perm;
3912
3913                 if (sk->sk_family == PF_INET) {
3914                         addr4 = (struct sockaddr_in *)address;
3915                         if (addrlen < sizeof(struct sockaddr_in))
3916                                 return -EINVAL;
3917                         snum = ntohs(addr4->sin_port);
3918                 } else {
3919                         addr6 = (struct sockaddr_in6 *)address;
3920                         if (addrlen < SIN6_LEN_RFC2133)
3921                                 return -EINVAL;
3922                         snum = ntohs(addr6->sin6_port);
3923                 }
3924
3925                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3926                 if (err)
3927                         goto out;
3928
3929                 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3930                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3931
3932                 ad.type = LSM_AUDIT_DATA_NET;
3933                 ad.u.net = &net;
3934                 ad.u.net->dport = htons(snum);
3935                 ad.u.net->family = sk->sk_family;
3936                 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
3937                 if (err)
3938                         goto out;
3939         }
3940
3941         err = selinux_netlbl_socket_connect(sk, address);
3942
3943 out:
3944         return err;
3945 }
3946
3947 static int selinux_socket_listen(struct socket *sock, int backlog)
3948 {
3949         return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3950 }
3951
3952 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3953 {
3954         int err;
3955         struct inode_security_struct *isec;
3956         struct inode_security_struct *newisec;
3957
3958         err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
3959         if (err)
3960                 return err;
3961
3962         newisec = SOCK_INODE(newsock)->i_security;
3963
3964         isec = SOCK_INODE(sock)->i_security;
3965         newisec->sclass = isec->sclass;
3966         newisec->sid = isec->sid;
3967         newisec->initialized = 1;
3968
3969         return 0;
3970 }
3971
3972 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3973                                   int size)
3974 {
3975         return sock_has_perm(current, sock->sk, SOCKET__WRITE);
3976 }
3977
3978 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3979                                   int size, int flags)
3980 {
3981         return sock_has_perm(current, sock->sk, SOCKET__READ);
3982 }
3983
3984 static int selinux_socket_getsockname(struct socket *sock)
3985 {
3986         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3987 }
3988
3989 static int selinux_socket_getpeername(struct socket *sock)
3990 {
3991         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3992 }
3993
3994 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3995 {
3996         int err;
3997
3998         err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
3999         if (err)
4000                 return err;
4001
4002         return selinux_netlbl_socket_setsockopt(sock, level, optname);
4003 }
4004
4005 static int selinux_socket_getsockopt(struct socket *sock, int level,
4006                                      int optname)
4007 {
4008         return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4009 }
4010
4011 static int selinux_socket_shutdown(struct socket *sock, int how)
4012 {
4013         return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4014 }
4015
4016 static int selinux_socket_unix_stream_connect(struct sock *sock,
4017                                               struct sock *other,
4018                                               struct sock *newsk)
4019 {
4020         struct sk_security_struct *sksec_sock = sock->sk_security;
4021         struct sk_security_struct *sksec_other = other->sk_security;
4022         struct sk_security_struct *sksec_new = newsk->sk_security;
4023         struct common_audit_data ad;
4024         struct lsm_network_audit net = {0,};
4025         int err;
4026
4027         ad.type = LSM_AUDIT_DATA_NET;
4028         ad.u.net = &net;
4029         ad.u.net->sk = other;
4030
4031         err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4032                            sksec_other->sclass,
4033                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4034         if (err)
4035                 return err;
4036
4037         /* server child socket */
4038         sksec_new->peer_sid = sksec_sock->sid;
4039         err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4040                                     &sksec_new->sid);
4041         if (err)
4042                 return err;
4043
4044         /* connecting socket */
4045         sksec_sock->peer_sid = sksec_new->sid;
4046
4047         return 0;
4048 }
4049
4050 static int selinux_socket_unix_may_send(struct socket *sock,
4051                                         struct socket *other)
4052 {
4053         struct sk_security_struct *ssec = sock->sk->sk_security;
4054         struct sk_security_struct *osec = other->sk->sk_security;
4055         struct common_audit_data ad;
4056         struct lsm_network_audit net = {0,};
4057
4058         ad.type = LSM_AUDIT_DATA_NET;
4059         ad.u.net = &net;
4060         ad.u.net->sk = other->sk;
4061
4062         return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4063                             &ad);
4064 }
4065
4066 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4067                                     u32 peer_sid,
4068                                     struct common_audit_data *ad)
4069 {
4070         int err;
4071         u32 if_sid;
4072         u32 node_sid;
4073
4074         err = sel_netif_sid(ifindex, &if_sid);
4075         if (err)
4076                 return err;
4077         err = avc_has_perm(peer_sid, if_sid,
4078                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4079         if (err)
4080                 return err;
4081
4082         err = sel_netnode_sid(addrp, family, &node_sid);
4083         if (err)
4084                 return err;
4085         return avc_has_perm(peer_sid, node_sid,
4086                             SECCLASS_NODE, NODE__RECVFROM, ad);
4087 }
4088
4089 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4090                                        u16 family)
4091 {
4092         int err = 0;
4093         struct sk_security_struct *sksec = sk->sk_security;
4094         u32 sk_sid = sksec->sid;
4095         struct common_audit_data ad;
4096         struct lsm_network_audit net = {0,};
4097         char *addrp;
4098
4099         ad.type = LSM_AUDIT_DATA_NET;
4100         ad.u.net = &net;
4101         ad.u.net->netif = skb->skb_iif;
4102         ad.u.net->family = family;
4103         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4104         if (err)
4105                 return err;
4106
4107         if (selinux_secmark_enabled()) {
4108                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4109                                    PACKET__RECV, &ad);
4110                 if (err)
4111                         return err;
4112         }
4113
4114         err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4115         if (err)
4116                 return err;
4117         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4118
4119         return err;
4120 }
4121
4122 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4123 {
4124         int err;
4125         struct sk_security_struct *sksec = sk->sk_security;
4126         u16 family = sk->sk_family;
4127         u32 sk_sid = sksec->sid;
4128         struct common_audit_data ad;
4129         struct lsm_network_audit net = {0,};
4130         char *addrp;
4131         u8 secmark_active;
4132         u8 peerlbl_active;
4133
4134         if (family != PF_INET && family != PF_INET6)
4135                 return 0;
4136
4137         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4138         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4139                 family = PF_INET;
4140
4141         /* If any sort of compatibility mode is enabled then handoff processing
4142          * to the selinux_sock_rcv_skb_compat() function to deal with the
4143          * special handling.  We do this in an attempt to keep this function
4144          * as fast and as clean as possible. */
4145         if (!selinux_policycap_netpeer)
4146                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4147
4148         secmark_active = selinux_secmark_enabled();
4149         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4150         if (!secmark_active && !peerlbl_active)
4151                 return 0;
4152
4153         ad.type = LSM_AUDIT_DATA_NET;
4154         ad.u.net = &net;
4155         ad.u.net->netif = skb->skb_iif;
4156         ad.u.net->family = family;
4157         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4158         if (err)
4159                 return err;
4160
4161         if (peerlbl_active) {
4162                 u32 peer_sid;
4163
4164                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4165                 if (err)
4166                         return err;
4167                 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4168                                                peer_sid, &ad);
4169                 if (err) {
4170                         selinux_netlbl_err(skb, err, 0);
4171                         return err;
4172                 }
4173                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4174                                    PEER__RECV, &ad);
4175                 if (err)
4176                         selinux_netlbl_err(skb, err, 0);
4177         }
4178
4179         if (secmark_active) {
4180                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4181                                    PACKET__RECV, &ad);
4182                 if (err)
4183                         return err;
4184         }
4185
4186         return err;
4187 }
4188
4189 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4190                                             int __user *optlen, unsigned len)
4191 {
4192         int err = 0;
4193         char *scontext;
4194         u32 scontext_len;
4195         struct sk_security_struct *sksec = sock->sk->sk_security;
4196         u32 peer_sid = SECSID_NULL;
4197
4198         if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4199             sksec->sclass == SECCLASS_TCP_SOCKET)
4200                 peer_sid = sksec->peer_sid;
4201         if (peer_sid == SECSID_NULL)
4202                 return -ENOPROTOOPT;
4203
4204         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4205         if (err)
4206                 return err;
4207
4208         if (scontext_len > len) {
4209                 err = -ERANGE;
4210                 goto out_len;
4211         }
4212
4213         if (copy_to_user(optval, scontext, scontext_len))
4214                 err = -EFAULT;
4215
4216 out_len:
4217         if (put_user(scontext_len, optlen))
4218                 err = -EFAULT;
4219         kfree(scontext);
4220         return err;
4221 }
4222
4223 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4224 {
4225         u32 peer_secid = SECSID_NULL;
4226         u16 family;
4227
4228         if (skb && skb->protocol == htons(ETH_P_IP))
4229                 family = PF_INET;
4230         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4231                 family = PF_INET6;
4232         else if (sock)
4233                 family = sock->sk->sk_family;
4234         else
4235                 goto out;
4236
4237         if (sock && family == PF_UNIX)
4238                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4239         else if (skb)
4240                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4241
4242 out:
4243         *secid = peer_secid;
4244         if (peer_secid == SECSID_NULL)
4245                 return -EINVAL;
4246         return 0;
4247 }
4248
4249 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4250 {
4251         struct sk_security_struct *sksec;
4252
4253         sksec = kzalloc(sizeof(*sksec), priority);
4254         if (!sksec)
4255                 return -ENOMEM;
4256
4257         sksec->peer_sid = SECINITSID_UNLABELED;
4258         sksec->sid = SECINITSID_UNLABELED;
4259         selinux_netlbl_sk_security_reset(sksec);
4260         sk->sk_security = sksec;
4261
4262         return 0;
4263 }
4264
4265 static void selinux_sk_free_security(struct sock *sk)
4266 {
4267         struct sk_security_struct *sksec = sk->sk_security;
4268
4269         sk->sk_security = NULL;
4270         selinux_netlbl_sk_security_free(sksec);
4271         kfree(sksec);
4272 }
4273
4274 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4275 {
4276         struct sk_security_struct *sksec = sk->sk_security;
4277         struct sk_security_struct *newsksec = newsk->sk_security;
4278
4279         newsksec->sid = sksec->sid;
4280         newsksec->peer_sid = sksec->peer_sid;
4281         newsksec->sclass = sksec->sclass;
4282
4283         selinux_netlbl_sk_security_reset(newsksec);
4284 }
4285
4286 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4287 {
4288         if (!sk)
4289                 *secid = SECINITSID_ANY_SOCKET;
4290         else {
4291                 struct sk_security_struct *sksec = sk->sk_security;
4292
4293                 *secid = sksec->sid;
4294         }
4295 }
4296
4297 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4298 {
4299         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4300         struct sk_security_struct *sksec = sk->sk_security;
4301
4302         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4303             sk->sk_family == PF_UNIX)
4304                 isec->sid = sksec->sid;
4305         sksec->sclass = isec->sclass;
4306 }
4307
4308 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4309                                      struct request_sock *req)
4310 {
4311         struct sk_security_struct *sksec = sk->sk_security;
4312         int err;
4313         u16 family = sk->sk_family;
4314         u32 newsid;
4315         u32 peersid;
4316
4317         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4318         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4319                 family = PF_INET;
4320
4321         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4322         if (err)
4323                 return err;
4324         if (peersid == SECSID_NULL) {
4325                 req->secid = sksec->sid;
4326                 req->peer_secid = SECSID_NULL;
4327         } else {
4328                 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4329                 if (err)
4330                         return err;
4331                 req->secid = newsid;
4332                 req->peer_secid = peersid;
4333         }
4334
4335         return selinux_netlbl_inet_conn_request(req, family);
4336 }
4337
4338 static void selinux_inet_csk_clone(struct sock *newsk,
4339                                    const struct request_sock *req)
4340 {
4341         struct sk_security_struct *newsksec = newsk->sk_security;
4342
4343         newsksec->sid = req->secid;
4344         newsksec->peer_sid = req->peer_secid;
4345         /* NOTE: Ideally, we should also get the isec->sid for the
4346            new socket in sync, but we don't have the isec available yet.
4347            So we will wait until sock_graft to do it, by which
4348            time it will have been created and available. */
4349
4350         /* We don't need to take any sort of lock here as we are the only
4351          * thread with access to newsksec */
4352         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4353 }
4354
4355 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4356 {
4357         u16 family = sk->sk_family;
4358         struct sk_security_struct *sksec = sk->sk_security;
4359
4360         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4361         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4362                 family = PF_INET;
4363
4364         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4365 }
4366
4367 static void selinux_skb_owned_by(struct sk_buff *skb, struct sock *sk)
4368 {
4369         skb_set_owner_w(skb, sk);
4370 }
4371
4372 static int selinux_secmark_relabel_packet(u32 sid)
4373 {
4374         const struct task_security_struct *__tsec;
4375         u32 tsid;
4376
4377         __tsec = current_security();
4378         tsid = __tsec->sid;
4379
4380         return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4381 }
4382
4383 static void selinux_secmark_refcount_inc(void)
4384 {
4385         atomic_inc(&selinux_secmark_refcount);
4386 }
4387
4388 static void selinux_secmark_refcount_dec(void)
4389 {
4390         atomic_dec(&selinux_secmark_refcount);
4391 }
4392
4393 static void selinux_req_classify_flow(const struct request_sock *req,
4394                                       struct flowi *fl)
4395 {
4396         fl->flowi_secid = req->secid;
4397 }
4398
4399 static int selinux_tun_dev_alloc_security(void **security)
4400 {
4401         struct tun_security_struct *tunsec;
4402
4403         tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4404         if (!tunsec)
4405                 return -ENOMEM;
4406         tunsec->sid = current_sid();
4407
4408         *security = tunsec;
4409         return 0;
4410 }
4411
4412 static void selinux_tun_dev_free_security(void *security)
4413 {
4414         kfree(security);
4415 }
4416
4417 static int selinux_tun_dev_create(void)
4418 {
4419         u32 sid = current_sid();
4420
4421         /* we aren't taking into account the "sockcreate" SID since the socket
4422          * that is being created here is not a socket in the traditional sense,
4423          * instead it is a private sock, accessible only to the kernel, and
4424          * representing a wide range of network traffic spanning multiple
4425          * connections unlike traditional sockets - check the TUN driver to
4426          * get a better understanding of why this socket is special */
4427
4428         return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4429                             NULL);
4430 }
4431
4432 static int selinux_tun_dev_attach_queue(void *security)
4433 {
4434         struct tun_security_struct *tunsec = security;
4435
4436         return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4437                             TUN_SOCKET__ATTACH_QUEUE, NULL);
4438 }
4439
4440 static int selinux_tun_dev_attach(struct sock *sk, void *security)
4441 {
4442         struct tun_security_struct *tunsec = security;
4443         struct sk_security_struct *sksec = sk->sk_security;
4444
4445         /* we don't currently perform any NetLabel based labeling here and it
4446          * isn't clear that we would want to do so anyway; while we could apply
4447          * labeling without the support of the TUN user the resulting labeled
4448          * traffic from the other end of the connection would almost certainly
4449          * cause confusion to the TUN user that had no idea network labeling
4450          * protocols were being used */
4451
4452         sksec->sid = tunsec->sid;
4453         sksec->sclass = SECCLASS_TUN_SOCKET;
4454
4455         return 0;
4456 }
4457
4458 static int selinux_tun_dev_open(void *security)
4459 {
4460         struct tun_security_struct *tunsec = security;
4461         u32 sid = current_sid();
4462         int err;
4463
4464         err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4465                            TUN_SOCKET__RELABELFROM, NULL);
4466         if (err)
4467                 return err;
4468         err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4469                            TUN_SOCKET__RELABELTO, NULL);
4470         if (err)
4471                 return err;
4472         tunsec->sid = sid;
4473
4474         return 0;
4475 }
4476
4477 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4478 {
4479         int err = 0;
4480         u32 perm;
4481         struct nlmsghdr *nlh;
4482         struct sk_security_struct *sksec = sk->sk_security;
4483
4484         if (skb->len < NLMSG_SPACE(0)) {
4485                 err = -EINVAL;
4486                 goto out;
4487         }
4488         nlh = nlmsg_hdr(skb);
4489
4490         err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4491         if (err) {
4492                 if (err == -EINVAL) {
4493                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4494                                   "SELinux:  unrecognized netlink message"
4495                                   " type=%hu for sclass=%hu\n",
4496                                   nlh->nlmsg_type, sksec->sclass);
4497                         if (!selinux_enforcing || security_get_allow_unknown())
4498                                 err = 0;
4499                 }
4500
4501                 /* Ignore */
4502                 if (err == -ENOENT)
4503                         err = 0;
4504                 goto out;
4505         }
4506
4507         err = sock_has_perm(current, sk, perm);
4508 out:
4509         return err;
4510 }
4511
4512 #ifdef CONFIG_NETFILTER
4513
4514 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4515                                        u16 family)
4516 {
4517         int err;
4518         char *addrp;
4519         u32 peer_sid;
4520         struct common_audit_data ad;
4521         struct lsm_network_audit net = {0,};
4522         u8 secmark_active;
4523         u8 netlbl_active;
4524         u8 peerlbl_active;
4525
4526         if (!selinux_policycap_netpeer)
4527                 return NF_ACCEPT;
4528
4529         secmark_active = selinux_secmark_enabled();
4530         netlbl_active = netlbl_enabled();
4531         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4532         if (!secmark_active && !peerlbl_active)
4533                 return NF_ACCEPT;
4534
4535         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4536                 return NF_DROP;
4537
4538         ad.type = LSM_AUDIT_DATA_NET;
4539         ad.u.net = &net;
4540         ad.u.net->netif = ifindex;
4541         ad.u.net->family = family;
4542         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4543                 return NF_DROP;
4544
4545         if (peerlbl_active) {
4546                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4547                                                peer_sid, &ad);
4548                 if (err) {
4549                         selinux_netlbl_err(skb, err, 1);
4550                         return NF_DROP;
4551                 }
4552         }
4553
4554         if (secmark_active)
4555                 if (avc_has_perm(peer_sid, skb->secmark,
4556                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4557                         return NF_DROP;
4558
4559         if (netlbl_active)
4560                 /* we do this in the FORWARD path and not the POST_ROUTING
4561                  * path because we want to make sure we apply the necessary
4562                  * labeling before IPsec is applied so we can leverage AH
4563                  * protection */
4564                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4565                         return NF_DROP;
4566
4567         return NF_ACCEPT;
4568 }
4569
4570 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4571                                          struct sk_buff *skb,
4572                                          const struct net_device *in,
4573                                          const struct net_device *out,
4574                                          int (*okfn)(struct sk_buff *))
4575 {
4576         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4577 }
4578
4579 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4580 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4581                                          struct sk_buff *skb,
4582                                          const struct net_device *in,
4583                                          const struct net_device *out,
4584                                          int (*okfn)(struct sk_buff *))
4585 {
4586         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4587 }
4588 #endif  /* IPV6 */
4589
4590 static unsigned int selinux_ip_output(struct sk_buff *skb,
4591                                       u16 family)
4592 {
4593         u32 sid;
4594
4595         if (!netlbl_enabled())
4596                 return NF_ACCEPT;
4597
4598         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4599          * because we want to make sure we apply the necessary labeling
4600          * before IPsec is applied so we can leverage AH protection */
4601         if (skb->sk) {
4602                 struct sk_security_struct *sksec = skb->sk->sk_security;
4603                 sid = sksec->sid;
4604         } else
4605                 sid = SECINITSID_KERNEL;
4606         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4607                 return NF_DROP;
4608
4609         return NF_ACCEPT;
4610 }
4611
4612 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4613                                         struct sk_buff *skb,
4614                                         const struct net_device *in,
4615                                         const struct net_device *out,
4616                                         int (*okfn)(struct sk_buff *))
4617 {
4618         return selinux_ip_output(skb, PF_INET);
4619 }
4620
4621 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4622                                                 int ifindex,
4623                                                 u16 family)
4624 {
4625         struct sock *sk = skb->sk;
4626         struct sk_security_struct *sksec;
4627         struct common_audit_data ad;
4628         struct lsm_network_audit net = {0,};
4629         char *addrp;
4630         u8 proto;
4631
4632         if (sk == NULL)
4633                 return NF_ACCEPT;
4634         sksec = sk->sk_security;
4635
4636         ad.type = LSM_AUDIT_DATA_NET;
4637         ad.u.net = &net;
4638         ad.u.net->netif = ifindex;
4639         ad.u.net->family = family;
4640         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4641                 return NF_DROP;
4642
4643         if (selinux_secmark_enabled())
4644                 if (avc_has_perm(sksec->sid, skb->secmark,
4645                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4646                         return NF_DROP_ERR(-ECONNREFUSED);
4647
4648         if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4649                 return NF_DROP_ERR(-ECONNREFUSED);
4650
4651         return NF_ACCEPT;
4652 }
4653
4654 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4655                                          u16 family)
4656 {
4657         u32 secmark_perm;
4658         u32 peer_sid;
4659         struct sock *sk;
4660         struct common_audit_data ad;
4661         struct lsm_network_audit net = {0,};
4662         char *addrp;
4663         u8 secmark_active;
4664         u8 peerlbl_active;
4665
4666         /* If any sort of compatibility mode is enabled then handoff processing
4667          * to the selinux_ip_postroute_compat() function to deal with the
4668          * special handling.  We do this in an attempt to keep this function
4669          * as fast and as clean as possible. */
4670         if (!selinux_policycap_netpeer)
4671                 return selinux_ip_postroute_compat(skb, ifindex, family);
4672 #ifdef CONFIG_XFRM
4673         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4674          * packet transformation so allow the packet to pass without any checks
4675          * since we'll have another chance to perform access control checks
4676          * when the packet is on it's final way out.
4677          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4678          *       is NULL, in this case go ahead and apply access control. */
4679         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4680                 return NF_ACCEPT;
4681 #endif
4682         secmark_active = selinux_secmark_enabled();
4683         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4684         if (!secmark_active && !peerlbl_active)
4685                 return NF_ACCEPT;
4686
4687         /* if the packet is being forwarded then get the peer label from the
4688          * packet itself; otherwise check to see if it is from a local
4689          * application or the kernel, if from an application get the peer label
4690          * from the sending socket, otherwise use the kernel's sid */
4691         sk = skb->sk;
4692         if (sk == NULL) {
4693                 if (skb->skb_iif) {
4694                         secmark_perm = PACKET__FORWARD_OUT;
4695                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4696                                 return NF_DROP;
4697                 } else {
4698                         secmark_perm = PACKET__SEND;
4699                         peer_sid = SECINITSID_KERNEL;
4700                 }
4701         } else {
4702                 struct sk_security_struct *sksec = sk->sk_security;
4703                 peer_sid = sksec->sid;
4704                 secmark_perm = PACKET__SEND;
4705         }
4706
4707         ad.type = LSM_AUDIT_DATA_NET;
4708         ad.u.net = &net;
4709         ad.u.net->netif = ifindex;
4710         ad.u.net->family = family;
4711         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4712                 return NF_DROP;
4713
4714         if (secmark_active)
4715                 if (avc_has_perm(peer_sid, skb->secmark,
4716                                  SECCLASS_PACKET, secmark_perm, &ad))
4717                         return NF_DROP_ERR(-ECONNREFUSED);
4718
4719         if (peerlbl_active) {
4720                 u32 if_sid;
4721                 u32 node_sid;
4722
4723                 if (sel_netif_sid(ifindex, &if_sid))
4724                         return NF_DROP;
4725                 if (avc_has_perm(peer_sid, if_sid,
4726                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4727                         return NF_DROP_ERR(-ECONNREFUSED);
4728
4729                 if (sel_netnode_sid(addrp, family, &node_sid))
4730                         return NF_DROP;
4731                 if (avc_has_perm(peer_sid, node_sid,
4732                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4733                         return NF_DROP_ERR(-ECONNREFUSED);
4734         }
4735
4736         return NF_ACCEPT;
4737 }
4738
4739 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4740                                            struct sk_buff *skb,
4741                                            const struct net_device *in,
4742                                            const struct net_device *out,
4743                                            int (*okfn)(struct sk_buff *))
4744 {
4745         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4746 }
4747
4748 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4749 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4750                                            struct sk_buff *skb,
4751                                            const struct net_device *in,
4752                                            const struct net_device *out,
4753                                            int (*okfn)(struct sk_buff *))
4754 {
4755         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4756 }
4757 #endif  /* IPV6 */
4758
4759 #endif  /* CONFIG_NETFILTER */
4760
4761 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4762 {
4763         int err;
4764
4765         err = cap_netlink_send(sk, skb);
4766         if (err)
4767                 return err;
4768
4769         return selinux_nlmsg_perm(sk, skb);
4770 }
4771
4772 static int ipc_alloc_security(struct task_struct *task,
4773                               struct kern_ipc_perm *perm,
4774                               u16 sclass)
4775 {
4776         struct ipc_security_struct *isec;
4777         u32 sid;
4778
4779         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4780         if (!isec)
4781                 return -ENOMEM;
4782
4783         sid = task_sid(task);
4784         isec->sclass = sclass;
4785         isec->sid = sid;
4786         perm->security = isec;
4787
4788         return 0;
4789 }
4790
4791 static void ipc_free_security(struct kern_ipc_perm *perm)
4792 {
4793         struct ipc_security_struct *isec = perm->security;
4794         perm->security = NULL;
4795         kfree(isec);
4796 }
4797
4798 static int msg_msg_alloc_security(struct msg_msg *msg)
4799 {
4800         struct msg_security_struct *msec;
4801
4802         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4803         if (!msec)
4804                 return -ENOMEM;
4805
4806         msec->sid = SECINITSID_UNLABELED;
4807         msg->security = msec;
4808
4809         return 0;
4810 }
4811
4812 static void msg_msg_free_security(struct msg_msg *msg)
4813 {
4814         struct msg_security_struct *msec = msg->security;
4815
4816         msg->security = NULL;
4817         kfree(msec);
4818 }
4819
4820 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4821                         u32 perms)
4822 {
4823         struct ipc_security_struct *isec;
4824         struct common_audit_data ad;
4825         u32 sid = current_sid();
4826
4827         isec = ipc_perms->security;
4828
4829         ad.type = LSM_AUDIT_DATA_IPC;
4830         ad.u.ipc_id = ipc_perms->key;
4831
4832         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4833 }
4834
4835 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4836 {
4837         return msg_msg_alloc_security(msg);
4838 }
4839
4840 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4841 {
4842         msg_msg_free_security(msg);
4843 }
4844
4845 /* message queue security operations */
4846 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4847 {
4848         struct ipc_security_struct *isec;
4849         struct common_audit_data ad;
4850         u32 sid = current_sid();
4851         int rc;
4852
4853         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4854         if (rc)
4855                 return rc;
4856
4857         isec = msq->q_perm.security;
4858
4859         ad.type = LSM_AUDIT_DATA_IPC;
4860         ad.u.ipc_id = msq->q_perm.key;
4861
4862         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4863                           MSGQ__CREATE, &ad);
4864         if (rc) {
4865                 ipc_free_security(&msq->q_perm);
4866                 return rc;
4867         }
4868         return 0;
4869 }
4870
4871 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4872 {
4873         ipc_free_security(&msq->q_perm);
4874 }
4875
4876 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4877 {
4878         struct ipc_security_struct *isec;
4879         struct common_audit_data ad;
4880         u32 sid = current_sid();
4881
4882         isec = msq->q_perm.security;
4883
4884         ad.type = LSM_AUDIT_DATA_IPC;
4885         ad.u.ipc_id = msq->q_perm.key;
4886
4887         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4888                             MSGQ__ASSOCIATE, &ad);
4889 }
4890
4891 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4892 {
4893         int err;
4894         int perms;
4895
4896         switch (cmd) {
4897         case IPC_INFO:
4898         case MSG_INFO:
4899                 /* No specific object, just general system-wide information. */
4900                 return task_has_system(current, SYSTEM__IPC_INFO);
4901         case IPC_STAT:
4902         case MSG_STAT:
4903                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4904                 break;
4905         case IPC_SET:
4906                 perms = MSGQ__SETATTR;
4907                 break;
4908         case IPC_RMID:
4909                 perms = MSGQ__DESTROY;
4910                 break;
4911         default:
4912                 return 0;
4913         }
4914
4915         err = ipc_has_perm(&msq->q_perm, perms);
4916         return err;
4917 }
4918
4919 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4920 {
4921         struct ipc_security_struct *isec;
4922         struct msg_security_struct *msec;
4923         struct common_audit_data ad;
4924         u32 sid = current_sid();
4925         int rc;
4926
4927         isec = msq->q_perm.security;
4928         msec = msg->security;
4929
4930         /*
4931          * First time through, need to assign label to the message
4932          */
4933         if (msec->sid == SECINITSID_UNLABELED) {
4934                 /*
4935                  * Compute new sid based on current process and
4936                  * message queue this message will be stored in
4937                  */
4938                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4939                                              NULL, &msec->sid);
4940                 if (rc)
4941                         return rc;
4942         }
4943
4944         ad.type = LSM_AUDIT_DATA_IPC;
4945         ad.u.ipc_id = msq->q_perm.key;
4946
4947         /* Can this process write to the queue? */
4948         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4949                           MSGQ__WRITE, &ad);
4950         if (!rc)
4951                 /* Can this process send the message */
4952                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4953                                   MSG__SEND, &ad);
4954         if (!rc)
4955                 /* Can the message be put in the queue? */
4956                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4957                                   MSGQ__ENQUEUE, &ad);
4958
4959         return rc;
4960 }
4961
4962 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4963                                     struct task_struct *target,
4964                                     long type, int mode)
4965 {
4966         struct ipc_security_struct *isec;
4967         struct msg_security_struct *msec;
4968         struct common_audit_data ad;
4969         u32 sid = task_sid(target);
4970         int rc;
4971
4972         isec = msq->q_perm.security;
4973         msec = msg->security;
4974
4975         ad.type = LSM_AUDIT_DATA_IPC;
4976         ad.u.ipc_id = msq->q_perm.key;
4977
4978         rc = avc_has_perm(sid, isec->sid,
4979                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4980         if (!rc)
4981                 rc = avc_has_perm(sid, msec->sid,
4982                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4983         return rc;
4984 }
4985
4986 /* Shared Memory security operations */
4987 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4988 {
4989         struct ipc_security_struct *isec;
4990         struct common_audit_data ad;
4991         u32 sid = current_sid();
4992         int rc;
4993
4994         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4995         if (rc)
4996                 return rc;
4997
4998         isec = shp->shm_perm.security;
4999
5000         ad.type = LSM_AUDIT_DATA_IPC;
5001         ad.u.ipc_id = shp->shm_perm.key;
5002
5003         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5004                           SHM__CREATE, &ad);
5005         if (rc) {
5006                 ipc_free_security(&shp->shm_perm);
5007                 return rc;
5008         }
5009         return 0;
5010 }
5011
5012 static void selinux_shm_free_security(struct shmid_kernel *shp)
5013 {
5014         ipc_free_security(&shp->shm_perm);
5015 }
5016
5017 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5018 {
5019         struct ipc_security_struct *isec;
5020         struct common_audit_data ad;
5021         u32 sid = current_sid();
5022
5023         isec = shp->shm_perm.security;
5024
5025         ad.type = LSM_AUDIT_DATA_IPC;
5026         ad.u.ipc_id = shp->shm_perm.key;
5027
5028         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5029                             SHM__ASSOCIATE, &ad);
5030 }
5031
5032 /* Note, at this point, shp is locked down */
5033 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5034 {
5035         int perms;
5036         int err;
5037
5038         switch (cmd) {
5039         case IPC_INFO:
5040         case SHM_INFO:
5041                 /* No specific object, just general system-wide information. */
5042                 return task_has_system(current, SYSTEM__IPC_INFO);
5043         case IPC_STAT:
5044         case SHM_STAT:
5045                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5046                 break;
5047         case IPC_SET:
5048                 perms = SHM__SETATTR;
5049                 break;
5050         case SHM_LOCK:
5051         case SHM_UNLOCK:
5052                 perms = SHM__LOCK;
5053                 break;
5054         case IPC_RMID:
5055                 perms = SHM__DESTROY;
5056                 break;
5057         default:
5058                 return 0;
5059         }
5060
5061         err = ipc_has_perm(&shp->shm_perm, perms);
5062         return err;
5063 }
5064
5065 static int selinux_shm_shmat(struct shmid_kernel *shp,
5066                              char __user *shmaddr, int shmflg)
5067 {
5068         u32 perms;
5069
5070         if (shmflg & SHM_RDONLY)
5071                 perms = SHM__READ;
5072         else
5073                 perms = SHM__READ | SHM__WRITE;
5074
5075         return ipc_has_perm(&shp->shm_perm, perms);
5076 }
5077
5078 /* Semaphore security operations */
5079 static int selinux_sem_alloc_security(struct sem_array *sma)
5080 {
5081         struct ipc_security_struct *isec;
5082         struct common_audit_data ad;
5083         u32 sid = current_sid();
5084         int rc;
5085
5086         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5087         if (rc)
5088                 return rc;
5089
5090         isec = sma->sem_perm.security;
5091
5092         ad.type = LSM_AUDIT_DATA_IPC;
5093         ad.u.ipc_id = sma->sem_perm.key;
5094
5095         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5096                           SEM__CREATE, &ad);
5097         if (rc) {
5098                 ipc_free_security(&sma->sem_perm);
5099                 return rc;
5100         }
5101         return 0;
5102 }
5103
5104 static void selinux_sem_free_security(struct sem_array *sma)
5105 {
5106         ipc_free_security(&sma->sem_perm);
5107 }
5108
5109 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5110 {
5111         struct ipc_security_struct *isec;
5112         struct common_audit_data ad;
5113         u32 sid = current_sid();
5114
5115         isec = sma->sem_perm.security;
5116
5117         ad.type = LSM_AUDIT_DATA_IPC;
5118         ad.u.ipc_id = sma->sem_perm.key;
5119
5120         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5121                             SEM__ASSOCIATE, &ad);
5122 }
5123
5124 /* Note, at this point, sma is locked down */
5125 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5126 {
5127         int err;
5128         u32 perms;
5129
5130         switch (cmd) {
5131         case IPC_INFO:
5132         case SEM_INFO:
5133                 /* No specific object, just general system-wide information. */
5134                 return task_has_system(current, SYSTEM__IPC_INFO);
5135         case GETPID:
5136         case GETNCNT:
5137         case GETZCNT:
5138                 perms = SEM__GETATTR;
5139                 break;
5140         case GETVAL:
5141         case GETALL:
5142                 perms = SEM__READ;
5143                 break;
5144         case SETVAL:
5145         case SETALL:
5146                 perms = SEM__WRITE;
5147                 break;
5148         case IPC_RMID:
5149                 perms = SEM__DESTROY;
5150                 break;
5151         case IPC_SET:
5152                 perms = SEM__SETATTR;
5153                 break;
5154         case IPC_STAT:
5155         case SEM_STAT:
5156                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5157                 break;
5158         default:
5159                 return 0;
5160         }
5161
5162         err = ipc_has_perm(&sma->sem_perm, perms);
5163         return err;
5164 }
5165
5166 static int selinux_sem_semop(struct sem_array *sma,
5167                              struct sembuf *sops, unsigned nsops, int alter)
5168 {
5169         u32 perms;
5170
5171         if (alter)
5172                 perms = SEM__READ | SEM__WRITE;
5173         else
5174                 perms = SEM__READ;
5175
5176         return ipc_has_perm(&sma->sem_perm, perms);
5177 }
5178
5179 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5180 {
5181         u32 av = 0;
5182
5183         av = 0;
5184         if (flag & S_IRUGO)
5185                 av |= IPC__UNIX_READ;
5186         if (flag & S_IWUGO)
5187                 av |= IPC__UNIX_WRITE;
5188
5189         if (av == 0)
5190                 return 0;
5191
5192         return ipc_has_perm(ipcp, av);
5193 }
5194
5195 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5196 {
5197         struct ipc_security_struct *isec = ipcp->security;
5198         *secid = isec->sid;
5199 }
5200
5201 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5202 {
5203         if (inode)
5204                 inode_doinit_with_dentry(inode, dentry);
5205 }
5206
5207 static int selinux_getprocattr(struct task_struct *p,
5208                                char *name, char **value)
5209 {
5210         const struct task_security_struct *__tsec;
5211         u32 sid;
5212         int error;
5213         unsigned len;
5214
5215         if (current != p) {
5216                 error = current_has_perm(p, PROCESS__GETATTR);
5217                 if (error)
5218                         return error;
5219         }
5220
5221         rcu_read_lock();
5222         __tsec = __task_cred(p)->security;
5223
5224         if (!strcmp(name, "current"))
5225                 sid = __tsec->sid;
5226         else if (!strcmp(name, "prev"))
5227                 sid = __tsec->osid;
5228         else if (!strcmp(name, "exec"))
5229                 sid = __tsec->exec_sid;
5230         else if (!strcmp(name, "fscreate"))
5231                 sid = __tsec->create_sid;
5232         else if (!strcmp(name, "keycreate"))
5233                 sid = __tsec->keycreate_sid;
5234         else if (!strcmp(name, "sockcreate"))
5235                 sid = __tsec->sockcreate_sid;
5236         else
5237                 goto invalid;
5238         rcu_read_unlock();
5239
5240         if (!sid)
5241                 return 0;
5242
5243         error = security_sid_to_context(sid, value, &len);
5244         if (error)
5245                 return error;
5246         return len;
5247
5248 invalid:
5249         rcu_read_unlock();
5250         return -EINVAL;
5251 }
5252
5253 static int selinux_setprocattr(struct task_struct *p,
5254                                char *name, void *value, size_t size)
5255 {
5256         struct task_security_struct *tsec;
5257         struct task_struct *tracer;
5258         struct cred *new;
5259         u32 sid = 0, ptsid;
5260         int error;
5261         char *str = value;
5262
5263         if (current != p) {
5264                 /* SELinux only allows a process to change its own
5265                    security attributes. */
5266                 return -EACCES;
5267         }
5268
5269         /*
5270          * Basic control over ability to set these attributes at all.
5271          * current == p, but we'll pass them separately in case the
5272          * above restriction is ever removed.
5273          */
5274         if (!strcmp(name, "exec"))
5275                 error = current_has_perm(p, PROCESS__SETEXEC);
5276         else if (!strcmp(name, "fscreate"))
5277                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5278         else if (!strcmp(name, "keycreate"))
5279                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5280         else if (!strcmp(name, "sockcreate"))
5281                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5282         else if (!strcmp(name, "current"))
5283                 error = current_has_perm(p, PROCESS__SETCURRENT);
5284         else
5285                 error = -EINVAL;
5286         if (error)
5287                 return error;
5288
5289         /* Obtain a SID for the context, if one was specified. */
5290         if (size && str[1] && str[1] != '\n') {
5291                 if (str[size-1] == '\n') {
5292                         str[size-1] = 0;
5293                         size--;
5294                 }
5295                 error = security_context_to_sid(value, size, &sid);
5296                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5297                         if (!capable(CAP_MAC_ADMIN)) {
5298                                 struct audit_buffer *ab;
5299                                 size_t audit_size;
5300
5301                                 /* We strip a nul only if it is at the end, otherwise the
5302                                  * context contains a nul and we should audit that */
5303                                 if (str[size - 1] == '\0')
5304                                         audit_size = size - 1;
5305                                 else
5306                                         audit_size = size;
5307                                 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5308                                 audit_log_format(ab, "op=fscreate invalid_context=");
5309                                 audit_log_n_untrustedstring(ab, value, audit_size);
5310                                 audit_log_end(ab);
5311
5312                                 return error;
5313                         }
5314                         error = security_context_to_sid_force(value, size,
5315                                                               &sid);
5316                 }
5317                 if (error)
5318                         return error;
5319         }
5320
5321         new = prepare_creds();
5322         if (!new)
5323                 return -ENOMEM;
5324
5325         /* Permission checking based on the specified context is
5326            performed during the actual operation (execve,
5327            open/mkdir/...), when we know the full context of the
5328            operation.  See selinux_bprm_set_creds for the execve
5329            checks and may_create for the file creation checks. The
5330            operation will then fail if the context is not permitted. */
5331         tsec = new->security;
5332         if (!strcmp(name, "exec")) {
5333                 tsec->exec_sid = sid;
5334         } else if (!strcmp(name, "fscreate")) {
5335                 tsec->create_sid = sid;
5336         } else if (!strcmp(name, "keycreate")) {
5337                 error = may_create_key(sid, p);
5338                 if (error)
5339                         goto abort_change;
5340                 tsec->keycreate_sid = sid;
5341         } else if (!strcmp(name, "sockcreate")) {
5342                 tsec->sockcreate_sid = sid;
5343         } else if (!strcmp(name, "current")) {
5344                 error = -EINVAL;
5345                 if (sid == 0)
5346                         goto abort_change;
5347
5348                 /* Only allow single threaded processes to change context */
5349                 error = -EPERM;
5350                 if (!current_is_single_threaded()) {
5351                         error = security_bounded_transition(tsec->sid, sid);
5352                         if (error)
5353                                 goto abort_change;
5354                 }
5355
5356                 /* Check permissions for the transition. */
5357                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5358                                      PROCESS__DYNTRANSITION, NULL);
5359                 if (error)
5360                         goto abort_change;
5361
5362                 /* Check for ptracing, and update the task SID if ok.
5363                    Otherwise, leave SID unchanged and fail. */
5364                 ptsid = 0;
5365                 task_lock(p);
5366                 tracer = ptrace_parent(p);
5367                 if (tracer)
5368                         ptsid = task_sid(tracer);
5369                 task_unlock(p);
5370
5371                 if (tracer) {
5372                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5373                                              PROCESS__PTRACE, NULL);
5374                         if (error)
5375                                 goto abort_change;
5376                 }
5377
5378                 tsec->sid = sid;
5379         } else {
5380                 error = -EINVAL;
5381                 goto abort_change;
5382         }
5383
5384         commit_creds(new);
5385         return size;
5386
5387 abort_change:
5388         abort_creds(new);
5389         return error;
5390 }
5391
5392 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5393 {
5394         return security_sid_to_context(secid, secdata, seclen);
5395 }
5396
5397 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5398 {
5399         return security_context_to_sid(secdata, seclen, secid);
5400 }
5401
5402 static void selinux_release_secctx(char *secdata, u32 seclen)
5403 {
5404         kfree(secdata);
5405 }
5406
5407 /*
5408  *      called with inode->i_mutex locked
5409  */
5410 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5411 {
5412         return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5413 }
5414
5415 /*
5416  *      called with inode->i_mutex locked
5417  */
5418 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5419 {
5420         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5421 }
5422
5423 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5424 {
5425         int len = 0;
5426         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5427                                                 ctx, true);
5428         if (len < 0)
5429                 return len;
5430         *ctxlen = len;
5431         return 0;
5432 }
5433 #ifdef CONFIG_KEYS
5434
5435 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5436                              unsigned long flags)
5437 {
5438         const struct task_security_struct *tsec;
5439         struct key_security_struct *ksec;
5440
5441         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5442         if (!ksec)
5443                 return -ENOMEM;
5444
5445         tsec = cred->security;
5446         if (tsec->keycreate_sid)
5447                 ksec->sid = tsec->keycreate_sid;
5448         else
5449                 ksec->sid = tsec->sid;
5450
5451         k->security = ksec;
5452         return 0;
5453 }
5454
5455 static void selinux_key_free(struct key *k)
5456 {
5457         struct key_security_struct *ksec = k->security;
5458
5459         k->security = NULL;
5460         kfree(ksec);
5461 }
5462
5463 static int selinux_key_permission(key_ref_t key_ref,
5464                                   const struct cred *cred,
5465                                   key_perm_t perm)
5466 {
5467         struct key *key;
5468         struct key_security_struct *ksec;
5469         u32 sid;
5470
5471         /* if no specific permissions are requested, we skip the
5472            permission check. No serious, additional covert channels
5473            appear to be created. */
5474         if (perm == 0)
5475                 return 0;
5476
5477         sid = cred_sid(cred);
5478
5479         key = key_ref_to_ptr(key_ref);
5480         ksec = key->security;
5481
5482         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5483 }
5484
5485 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5486 {
5487         struct key_security_struct *ksec = key->security;
5488         char *context = NULL;
5489         unsigned len;
5490         int rc;
5491
5492         rc = security_sid_to_context(ksec->sid, &context, &len);
5493         if (!rc)
5494                 rc = len;
5495         *_buffer = context;
5496         return rc;
5497 }
5498
5499 #endif
5500
5501 static struct security_operations selinux_ops = {
5502         .name =                         "selinux",
5503
5504         .ptrace_access_check =          selinux_ptrace_access_check,
5505         .ptrace_traceme =               selinux_ptrace_traceme,
5506         .capget =                       selinux_capget,
5507         .capset =                       selinux_capset,
5508         .capable =                      selinux_capable,
5509         .quotactl =                     selinux_quotactl,
5510         .quota_on =                     selinux_quota_on,
5511         .syslog =                       selinux_syslog,
5512         .vm_enough_memory =             selinux_vm_enough_memory,
5513
5514         .netlink_send =                 selinux_netlink_send,
5515
5516         .bprm_set_creds =               selinux_bprm_set_creds,
5517         .bprm_committing_creds =        selinux_bprm_committing_creds,
5518         .bprm_committed_creds =         selinux_bprm_committed_creds,
5519         .bprm_secureexec =              selinux_bprm_secureexec,
5520
5521         .sb_alloc_security =            selinux_sb_alloc_security,
5522         .sb_free_security =             selinux_sb_free_security,
5523         .sb_copy_data =                 selinux_sb_copy_data,
5524         .sb_remount =                   selinux_sb_remount,
5525         .sb_kern_mount =                selinux_sb_kern_mount,
5526         .sb_show_options =              selinux_sb_show_options,
5527         .sb_statfs =                    selinux_sb_statfs,
5528         .sb_mount =                     selinux_mount,
5529         .sb_umount =                    selinux_umount,
5530         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5531         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5532         .sb_parse_opts_str =            selinux_parse_opts_str,
5533
5534
5535         .inode_alloc_security =         selinux_inode_alloc_security,
5536         .inode_free_security =          selinux_inode_free_security,
5537         .inode_init_security =          selinux_inode_init_security,
5538         .inode_create =                 selinux_inode_create,
5539         .inode_link =                   selinux_inode_link,
5540         .inode_unlink =                 selinux_inode_unlink,
5541         .inode_symlink =                selinux_inode_symlink,
5542         .inode_mkdir =                  selinux_inode_mkdir,
5543         .inode_rmdir =                  selinux_inode_rmdir,
5544         .inode_mknod =                  selinux_inode_mknod,
5545         .inode_rename =                 selinux_inode_rename,
5546         .inode_readlink =               selinux_inode_readlink,
5547         .inode_follow_link =            selinux_inode_follow_link,
5548         .inode_permission =             selinux_inode_permission,
5549         .inode_setattr =                selinux_inode_setattr,
5550         .inode_getattr =                selinux_inode_getattr,
5551         .inode_setxattr =               selinux_inode_setxattr,
5552         .inode_post_setxattr =          selinux_inode_post_setxattr,
5553         .inode_getxattr =               selinux_inode_getxattr,
5554         .inode_listxattr =              selinux_inode_listxattr,
5555         .inode_removexattr =            selinux_inode_removexattr,
5556         .inode_getsecurity =            selinux_inode_getsecurity,
5557         .inode_setsecurity =            selinux_inode_setsecurity,
5558         .inode_listsecurity =           selinux_inode_listsecurity,
5559         .inode_getsecid =               selinux_inode_getsecid,
5560
5561         .file_permission =              selinux_file_permission,
5562         .file_alloc_security =          selinux_file_alloc_security,
5563         .file_free_security =           selinux_file_free_security,
5564         .file_ioctl =                   selinux_file_ioctl,
5565         .mmap_file =                    selinux_mmap_file,
5566         .mmap_addr =                    selinux_mmap_addr,
5567         .file_mprotect =                selinux_file_mprotect,
5568         .file_lock =                    selinux_file_lock,
5569         .file_fcntl =                   selinux_file_fcntl,
5570         .file_set_fowner =              selinux_file_set_fowner,
5571         .file_send_sigiotask =          selinux_file_send_sigiotask,
5572         .file_receive =                 selinux_file_receive,
5573
5574         .file_open =                    selinux_file_open,
5575
5576         .task_create =                  selinux_task_create,
5577         .cred_alloc_blank =             selinux_cred_alloc_blank,
5578         .cred_free =                    selinux_cred_free,
5579         .cred_prepare =                 selinux_cred_prepare,
5580         .cred_transfer =                selinux_cred_transfer,
5581         .kernel_act_as =                selinux_kernel_act_as,
5582         .kernel_create_files_as =       selinux_kernel_create_files_as,
5583         .kernel_module_request =        selinux_kernel_module_request,
5584         .task_setpgid =                 selinux_task_setpgid,
5585         .task_getpgid =                 selinux_task_getpgid,
5586         .task_getsid =                  selinux_task_getsid,
5587         .task_getsecid =                selinux_task_getsecid,
5588         .task_setnice =                 selinux_task_setnice,
5589         .task_setioprio =               selinux_task_setioprio,
5590         .task_getioprio =               selinux_task_getioprio,
5591         .task_setrlimit =               selinux_task_setrlimit,
5592         .task_setscheduler =            selinux_task_setscheduler,
5593         .task_getscheduler =            selinux_task_getscheduler,
5594         .task_movememory =              selinux_task_movememory,
5595         .task_kill =                    selinux_task_kill,
5596         .task_wait =                    selinux_task_wait,
5597         .task_to_inode =                selinux_task_to_inode,
5598
5599         .ipc_permission =               selinux_ipc_permission,
5600         .ipc_getsecid =                 selinux_ipc_getsecid,
5601
5602         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5603         .msg_msg_free_security =        selinux_msg_msg_free_security,
5604
5605         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5606         .msg_queue_free_security =      selinux_msg_queue_free_security,
5607         .msg_queue_associate =          selinux_msg_queue_associate,
5608         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5609         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5610         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5611
5612         .shm_alloc_security =           selinux_shm_alloc_security,
5613         .shm_free_security =            selinux_shm_free_security,
5614         .shm_associate =                selinux_shm_associate,
5615         .shm_shmctl =                   selinux_shm_shmctl,
5616         .shm_shmat =                    selinux_shm_shmat,
5617
5618         .sem_alloc_security =           selinux_sem_alloc_security,
5619         .sem_free_security =            selinux_sem_free_security,
5620         .sem_associate =                selinux_sem_associate,
5621         .sem_semctl =                   selinux_sem_semctl,
5622         .sem_semop =                    selinux_sem_semop,
5623
5624         .d_instantiate =                selinux_d_instantiate,
5625
5626         .getprocattr =                  selinux_getprocattr,
5627         .setprocattr =                  selinux_setprocattr,
5628
5629         .secid_to_secctx =              selinux_secid_to_secctx,
5630         .secctx_to_secid =              selinux_secctx_to_secid,
5631         .release_secctx =               selinux_release_secctx,
5632         .inode_notifysecctx =           selinux_inode_notifysecctx,
5633         .inode_setsecctx =              selinux_inode_setsecctx,
5634         .inode_getsecctx =              selinux_inode_getsecctx,
5635
5636         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5637         .unix_may_send =                selinux_socket_unix_may_send,
5638
5639         .socket_create =                selinux_socket_create,
5640         .socket_post_create =           selinux_socket_post_create,
5641         .socket_bind =                  selinux_socket_bind,
5642         .socket_connect =               selinux_socket_connect,
5643         .socket_listen =                selinux_socket_listen,
5644         .socket_accept =                selinux_socket_accept,
5645         .socket_sendmsg =               selinux_socket_sendmsg,
5646         .socket_recvmsg =               selinux_socket_recvmsg,
5647         .socket_getsockname =           selinux_socket_getsockname,
5648         .socket_getpeername =           selinux_socket_getpeername,
5649         .socket_getsockopt =            selinux_socket_getsockopt,
5650         .socket_setsockopt =            selinux_socket_setsockopt,
5651         .socket_shutdown =              selinux_socket_shutdown,
5652         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5653         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5654         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5655         .sk_alloc_security =            selinux_sk_alloc_security,
5656         .sk_free_security =             selinux_sk_free_security,
5657         .sk_clone_security =            selinux_sk_clone_security,
5658         .sk_getsecid =                  selinux_sk_getsecid,
5659         .sock_graft =                   selinux_sock_graft,
5660         .inet_conn_request =            selinux_inet_conn_request,
5661         .inet_csk_clone =               selinux_inet_csk_clone,
5662         .inet_conn_established =        selinux_inet_conn_established,
5663         .secmark_relabel_packet =       selinux_secmark_relabel_packet,
5664         .secmark_refcount_inc =         selinux_secmark_refcount_inc,
5665         .secmark_refcount_dec =         selinux_secmark_refcount_dec,
5666         .req_classify_flow =            selinux_req_classify_flow,
5667         .tun_dev_alloc_security =       selinux_tun_dev_alloc_security,
5668         .tun_dev_free_security =        selinux_tun_dev_free_security,
5669         .tun_dev_create =               selinux_tun_dev_create,
5670         .tun_dev_attach_queue =         selinux_tun_dev_attach_queue,
5671         .tun_dev_attach =               selinux_tun_dev_attach,
5672         .tun_dev_open =                 selinux_tun_dev_open,
5673         .skb_owned_by =                 selinux_skb_owned_by,
5674
5675 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5676         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5677         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5678         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5679         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5680         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5681         .xfrm_state_free_security =     selinux_xfrm_state_free,
5682         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5683         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5684         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5685         .xfrm_decode_session =          selinux_xfrm_decode_session,
5686 #endif
5687
5688 #ifdef CONFIG_KEYS
5689         .key_alloc =                    selinux_key_alloc,
5690         .key_free =                     selinux_key_free,
5691         .key_permission =               selinux_key_permission,
5692         .key_getsecurity =              selinux_key_getsecurity,
5693 #endif
5694
5695 #ifdef CONFIG_AUDIT
5696         .audit_rule_init =              selinux_audit_rule_init,
5697         .audit_rule_known =             selinux_audit_rule_known,
5698         .audit_rule_match =             selinux_audit_rule_match,
5699         .audit_rule_free =              selinux_audit_rule_free,
5700 #endif
5701 };
5702
5703 static __init int selinux_init(void)
5704 {
5705         if (!security_module_enable(&selinux_ops)) {
5706                 selinux_enabled = 0;
5707                 return 0;
5708         }
5709
5710         if (!selinux_enabled) {
5711                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5712                 return 0;
5713         }
5714
5715         printk(KERN_INFO "SELinux:  Initializing.\n");
5716
5717         /* Set the security state for the initial task. */
5718         cred_init_security();
5719
5720         default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5721
5722         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5723                                             sizeof(struct inode_security_struct),
5724                                             0, SLAB_PANIC, NULL);
5725         avc_init();
5726
5727         if (register_security(&selinux_ops))
5728                 panic("SELinux: Unable to register with kernel.\n");
5729
5730         if (selinux_enforcing)
5731                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5732         else
5733                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5734
5735         return 0;
5736 }
5737
5738 static void delayed_superblock_init(struct super_block *sb, void *unused)
5739 {
5740         superblock_doinit(sb, NULL);
5741 }
5742
5743 void selinux_complete_init(void)
5744 {
5745         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5746
5747         /* Set up any superblocks initialized prior to the policy load. */
5748         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5749         iterate_supers(delayed_superblock_init, NULL);
5750 }
5751
5752 /* SELinux requires early initialization in order to label
5753    all processes and objects when they are created. */
5754 security_initcall(selinux_init);
5755
5756 #if defined(CONFIG_NETFILTER)
5757
5758 static struct nf_hook_ops selinux_ipv4_ops[] = {
5759         {
5760                 .hook =         selinux_ipv4_postroute,
5761                 .owner =        THIS_MODULE,
5762                 .pf =           NFPROTO_IPV4,
5763                 .hooknum =      NF_INET_POST_ROUTING,
5764                 .priority =     NF_IP_PRI_SELINUX_LAST,
5765         },
5766         {
5767                 .hook =         selinux_ipv4_forward,
5768                 .owner =        THIS_MODULE,
5769                 .pf =           NFPROTO_IPV4,
5770                 .hooknum =      NF_INET_FORWARD,
5771                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5772         },
5773         {
5774                 .hook =         selinux_ipv4_output,
5775                 .owner =        THIS_MODULE,
5776                 .pf =           NFPROTO_IPV4,
5777                 .hooknum =      NF_INET_LOCAL_OUT,
5778                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5779         }
5780 };
5781
5782 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5783
5784 static struct nf_hook_ops selinux_ipv6_ops[] = {
5785         {
5786                 .hook =         selinux_ipv6_postroute,
5787                 .owner =        THIS_MODULE,
5788                 .pf =           NFPROTO_IPV6,
5789                 .hooknum =      NF_INET_POST_ROUTING,
5790                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5791         },
5792         {
5793                 .hook =         selinux_ipv6_forward,
5794                 .owner =        THIS_MODULE,
5795                 .pf =           NFPROTO_IPV6,
5796                 .hooknum =      NF_INET_FORWARD,
5797                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5798         }
5799 };
5800
5801 #endif  /* IPV6 */
5802
5803 static int __init selinux_nf_ip_init(void)
5804 {
5805         int err = 0;
5806
5807         if (!selinux_enabled)
5808                 goto out;
5809
5810         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5811
5812         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5813         if (err)
5814                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5815
5816 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5817         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5818         if (err)
5819                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5820 #endif  /* IPV6 */
5821
5822 out:
5823         return err;
5824 }
5825
5826 __initcall(selinux_nf_ip_init);
5827
5828 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5829 static void selinux_nf_ip_exit(void)
5830 {
5831         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5832
5833         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5834 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5835         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5836 #endif  /* IPV6 */
5837 }
5838 #endif
5839
5840 #else /* CONFIG_NETFILTER */
5841
5842 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5843 #define selinux_nf_ip_exit()
5844 #endif
5845
5846 #endif /* CONFIG_NETFILTER */
5847
5848 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5849 static int selinux_disabled;
5850
5851 int selinux_disable(void)
5852 {
5853         if (ss_initialized) {
5854                 /* Not permitted after initial policy load. */
5855                 return -EINVAL;
5856         }
5857
5858         if (selinux_disabled) {
5859                 /* Only do this once. */
5860                 return -EINVAL;
5861         }
5862
5863         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5864
5865         selinux_disabled = 1;
5866         selinux_enabled = 0;
5867
5868         reset_security_ops();
5869
5870         /* Try to destroy the avc node cache */
5871         avc_disable();
5872
5873         /* Unregister netfilter hooks. */
5874         selinux_nf_ip_exit();
5875
5876         /* Unregister selinuxfs. */
5877         exit_sel_fs();
5878
5879         return 0;
5880 }
5881 #endif