]> Pileus Git - ~andy/linux/blob - security/selinux/hooks.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[~andy/linux] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *      Paul Moore <paul@paul-moore.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/security.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
52 #include <net/icmp.h>
53 #include <net/ip.h>             /* for local_port_range[] */
54 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
55 #include <net/net_namespace.h>
56 #include <net/netlabel.h>
57 #include <linux/uaccess.h>
58 #include <asm/ioctls.h>
59 #include <linux/atomic.h>
60 #include <linux/bitops.h>
61 #include <linux/interrupt.h>
62 #include <linux/netdevice.h>    /* for network interface checks */
63 #include <linux/netlink.h>
64 #include <linux/tcp.h>
65 #include <linux/udp.h>
66 #include <linux/dccp.h>
67 #include <linux/quota.h>
68 #include <linux/un.h>           /* for Unix socket types */
69 #include <net/af_unix.h>        /* for Unix socket types */
70 #include <linux/parser.h>
71 #include <linux/nfs_mount.h>
72 #include <net/ipv6.h>
73 #include <linux/hugetlb.h>
74 #include <linux/personality.h>
75 #include <linux/audit.h>
76 #include <linux/string.h>
77 #include <linux/selinux.h>
78 #include <linux/mutex.h>
79 #include <linux/posix-timers.h>
80 #include <linux/syslog.h>
81 #include <linux/user_namespace.h>
82 #include <linux/export.h>
83 #include <linux/msg.h>
84 #include <linux/shm.h>
85
86 #include "avc.h"
87 #include "objsec.h"
88 #include "netif.h"
89 #include "netnode.h"
90 #include "netport.h"
91 #include "xfrm.h"
92 #include "netlabel.h"
93 #include "audit.h"
94 #include "avc_ss.h"
95
96 #define NUM_SEL_MNT_OPTS 5
97
98 extern struct security_operations *security_ops;
99
100 /* SECMARK reference count */
101 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
102
103 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
104 int selinux_enforcing;
105
106 static int __init enforcing_setup(char *str)
107 {
108         unsigned long enforcing;
109         if (!strict_strtoul(str, 0, &enforcing))
110                 selinux_enforcing = enforcing ? 1 : 0;
111         return 1;
112 }
113 __setup("enforcing=", enforcing_setup);
114 #endif
115
116 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
117 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
118
119 static int __init selinux_enabled_setup(char *str)
120 {
121         unsigned long enabled;
122         if (!strict_strtoul(str, 0, &enabled))
123                 selinux_enabled = enabled ? 1 : 0;
124         return 1;
125 }
126 __setup("selinux=", selinux_enabled_setup);
127 #else
128 int selinux_enabled = 1;
129 #endif
130
131 static struct kmem_cache *sel_inode_cache;
132
133 /**
134  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
135  *
136  * Description:
137  * This function checks the SECMARK reference counter to see if any SECMARK
138  * targets are currently configured, if the reference counter is greater than
139  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
140  * enabled, false (0) if SECMARK is disabled.
141  *
142  */
143 static int selinux_secmark_enabled(void)
144 {
145         return (atomic_read(&selinux_secmark_refcount) > 0);
146 }
147
148 /*
149  * initialise the security for the init task
150  */
151 static void cred_init_security(void)
152 {
153         struct cred *cred = (struct cred *) current->real_cred;
154         struct task_security_struct *tsec;
155
156         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
157         if (!tsec)
158                 panic("SELinux:  Failed to initialize initial task.\n");
159
160         tsec->osid = tsec->sid = SECINITSID_KERNEL;
161         cred->security = tsec;
162 }
163
164 /*
165  * get the security ID of a set of credentials
166  */
167 static inline u32 cred_sid(const struct cred *cred)
168 {
169         const struct task_security_struct *tsec;
170
171         tsec = cred->security;
172         return tsec->sid;
173 }
174
175 /*
176  * get the objective security ID of a task
177  */
178 static inline u32 task_sid(const struct task_struct *task)
179 {
180         u32 sid;
181
182         rcu_read_lock();
183         sid = cred_sid(__task_cred(task));
184         rcu_read_unlock();
185         return sid;
186 }
187
188 /*
189  * get the subjective security ID of the current task
190  */
191 static inline u32 current_sid(void)
192 {
193         const struct task_security_struct *tsec = current_security();
194
195         return tsec->sid;
196 }
197
198 /* Allocate and free functions for each kind of security blob. */
199
200 static int inode_alloc_security(struct inode *inode)
201 {
202         struct inode_security_struct *isec;
203         u32 sid = current_sid();
204
205         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
206         if (!isec)
207                 return -ENOMEM;
208
209         mutex_init(&isec->lock);
210         INIT_LIST_HEAD(&isec->list);
211         isec->inode = inode;
212         isec->sid = SECINITSID_UNLABELED;
213         isec->sclass = SECCLASS_FILE;
214         isec->task_sid = sid;
215         inode->i_security = isec;
216
217         return 0;
218 }
219
220 static void inode_free_security(struct inode *inode)
221 {
222         struct inode_security_struct *isec = inode->i_security;
223         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
224
225         spin_lock(&sbsec->isec_lock);
226         if (!list_empty(&isec->list))
227                 list_del_init(&isec->list);
228         spin_unlock(&sbsec->isec_lock);
229
230         inode->i_security = NULL;
231         kmem_cache_free(sel_inode_cache, isec);
232 }
233
234 static int file_alloc_security(struct file *file)
235 {
236         struct file_security_struct *fsec;
237         u32 sid = current_sid();
238
239         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
240         if (!fsec)
241                 return -ENOMEM;
242
243         fsec->sid = sid;
244         fsec->fown_sid = sid;
245         file->f_security = fsec;
246
247         return 0;
248 }
249
250 static void file_free_security(struct file *file)
251 {
252         struct file_security_struct *fsec = file->f_security;
253         file->f_security = NULL;
254         kfree(fsec);
255 }
256
257 static int superblock_alloc_security(struct super_block *sb)
258 {
259         struct superblock_security_struct *sbsec;
260
261         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
262         if (!sbsec)
263                 return -ENOMEM;
264
265         mutex_init(&sbsec->lock);
266         INIT_LIST_HEAD(&sbsec->isec_head);
267         spin_lock_init(&sbsec->isec_lock);
268         sbsec->sb = sb;
269         sbsec->sid = SECINITSID_UNLABELED;
270         sbsec->def_sid = SECINITSID_FILE;
271         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
272         sb->s_security = sbsec;
273
274         return 0;
275 }
276
277 static void superblock_free_security(struct super_block *sb)
278 {
279         struct superblock_security_struct *sbsec = sb->s_security;
280         sb->s_security = NULL;
281         kfree(sbsec);
282 }
283
284 /* The file system's label must be initialized prior to use. */
285
286 static const char *labeling_behaviors[6] = {
287         "uses xattr",
288         "uses transition SIDs",
289         "uses task SIDs",
290         "uses genfs_contexts",
291         "not configured for labeling",
292         "uses mountpoint labeling",
293 };
294
295 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
296
297 static inline int inode_doinit(struct inode *inode)
298 {
299         return inode_doinit_with_dentry(inode, NULL);
300 }
301
302 enum {
303         Opt_error = -1,
304         Opt_context = 1,
305         Opt_fscontext = 2,
306         Opt_defcontext = 3,
307         Opt_rootcontext = 4,
308         Opt_labelsupport = 5,
309 };
310
311 static const match_table_t tokens = {
312         {Opt_context, CONTEXT_STR "%s"},
313         {Opt_fscontext, FSCONTEXT_STR "%s"},
314         {Opt_defcontext, DEFCONTEXT_STR "%s"},
315         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
316         {Opt_labelsupport, LABELSUPP_STR},
317         {Opt_error, NULL},
318 };
319
320 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
321
322 static int may_context_mount_sb_relabel(u32 sid,
323                         struct superblock_security_struct *sbsec,
324                         const struct cred *cred)
325 {
326         const struct task_security_struct *tsec = cred->security;
327         int rc;
328
329         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
330                           FILESYSTEM__RELABELFROM, NULL);
331         if (rc)
332                 return rc;
333
334         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
335                           FILESYSTEM__RELABELTO, NULL);
336         return rc;
337 }
338
339 static int may_context_mount_inode_relabel(u32 sid,
340                         struct superblock_security_struct *sbsec,
341                         const struct cred *cred)
342 {
343         const struct task_security_struct *tsec = cred->security;
344         int rc;
345         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
346                           FILESYSTEM__RELABELFROM, NULL);
347         if (rc)
348                 return rc;
349
350         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
351                           FILESYSTEM__ASSOCIATE, NULL);
352         return rc;
353 }
354
355 static int sb_finish_set_opts(struct super_block *sb)
356 {
357         struct superblock_security_struct *sbsec = sb->s_security;
358         struct dentry *root = sb->s_root;
359         struct inode *root_inode = root->d_inode;
360         int rc = 0;
361
362         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
363                 /* Make sure that the xattr handler exists and that no
364                    error other than -ENODATA is returned by getxattr on
365                    the root directory.  -ENODATA is ok, as this may be
366                    the first boot of the SELinux kernel before we have
367                    assigned xattr values to the filesystem. */
368                 if (!root_inode->i_op->getxattr) {
369                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
370                                "xattr support\n", sb->s_id, sb->s_type->name);
371                         rc = -EOPNOTSUPP;
372                         goto out;
373                 }
374                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
375                 if (rc < 0 && rc != -ENODATA) {
376                         if (rc == -EOPNOTSUPP)
377                                 printk(KERN_WARNING "SELinux: (dev %s, type "
378                                        "%s) has no security xattr handler\n",
379                                        sb->s_id, sb->s_type->name);
380                         else
381                                 printk(KERN_WARNING "SELinux: (dev %s, type "
382                                        "%s) getxattr errno %d\n", sb->s_id,
383                                        sb->s_type->name, -rc);
384                         goto out;
385                 }
386         }
387
388         sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
389
390         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
391                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
392                        sb->s_id, sb->s_type->name);
393         else
394                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
395                        sb->s_id, sb->s_type->name,
396                        labeling_behaviors[sbsec->behavior-1]);
397
398         if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
399             sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
400             sbsec->behavior == SECURITY_FS_USE_NONE ||
401             sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
402                 sbsec->flags &= ~SE_SBLABELSUPP;
403
404         /* Special handling for sysfs. Is genfs but also has setxattr handler*/
405         if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
406                 sbsec->flags |= SE_SBLABELSUPP;
407
408         /* Initialize the root inode. */
409         rc = inode_doinit_with_dentry(root_inode, root);
410
411         /* Initialize any other inodes associated with the superblock, e.g.
412            inodes created prior to initial policy load or inodes created
413            during get_sb by a pseudo filesystem that directly
414            populates itself. */
415         spin_lock(&sbsec->isec_lock);
416 next_inode:
417         if (!list_empty(&sbsec->isec_head)) {
418                 struct inode_security_struct *isec =
419                                 list_entry(sbsec->isec_head.next,
420                                            struct inode_security_struct, list);
421                 struct inode *inode = isec->inode;
422                 spin_unlock(&sbsec->isec_lock);
423                 inode = igrab(inode);
424                 if (inode) {
425                         if (!IS_PRIVATE(inode))
426                                 inode_doinit(inode);
427                         iput(inode);
428                 }
429                 spin_lock(&sbsec->isec_lock);
430                 list_del_init(&isec->list);
431                 goto next_inode;
432         }
433         spin_unlock(&sbsec->isec_lock);
434 out:
435         return rc;
436 }
437
438 /*
439  * This function should allow an FS to ask what it's mount security
440  * options were so it can use those later for submounts, displaying
441  * mount options, or whatever.
442  */
443 static int selinux_get_mnt_opts(const struct super_block *sb,
444                                 struct security_mnt_opts *opts)
445 {
446         int rc = 0, i;
447         struct superblock_security_struct *sbsec = sb->s_security;
448         char *context = NULL;
449         u32 len;
450         char tmp;
451
452         security_init_mnt_opts(opts);
453
454         if (!(sbsec->flags & SE_SBINITIALIZED))
455                 return -EINVAL;
456
457         if (!ss_initialized)
458                 return -EINVAL;
459
460         tmp = sbsec->flags & SE_MNTMASK;
461         /* count the number of mount options for this sb */
462         for (i = 0; i < 8; i++) {
463                 if (tmp & 0x01)
464                         opts->num_mnt_opts++;
465                 tmp >>= 1;
466         }
467         /* Check if the Label support flag is set */
468         if (sbsec->flags & SE_SBLABELSUPP)
469                 opts->num_mnt_opts++;
470
471         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
472         if (!opts->mnt_opts) {
473                 rc = -ENOMEM;
474                 goto out_free;
475         }
476
477         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
478         if (!opts->mnt_opts_flags) {
479                 rc = -ENOMEM;
480                 goto out_free;
481         }
482
483         i = 0;
484         if (sbsec->flags & FSCONTEXT_MNT) {
485                 rc = security_sid_to_context(sbsec->sid, &context, &len);
486                 if (rc)
487                         goto out_free;
488                 opts->mnt_opts[i] = context;
489                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
490         }
491         if (sbsec->flags & CONTEXT_MNT) {
492                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
493                 if (rc)
494                         goto out_free;
495                 opts->mnt_opts[i] = context;
496                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
497         }
498         if (sbsec->flags & DEFCONTEXT_MNT) {
499                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
500                 if (rc)
501                         goto out_free;
502                 opts->mnt_opts[i] = context;
503                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
504         }
505         if (sbsec->flags & ROOTCONTEXT_MNT) {
506                 struct inode *root = sbsec->sb->s_root->d_inode;
507                 struct inode_security_struct *isec = root->i_security;
508
509                 rc = security_sid_to_context(isec->sid, &context, &len);
510                 if (rc)
511                         goto out_free;
512                 opts->mnt_opts[i] = context;
513                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
514         }
515         if (sbsec->flags & SE_SBLABELSUPP) {
516                 opts->mnt_opts[i] = NULL;
517                 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
518         }
519
520         BUG_ON(i != opts->num_mnt_opts);
521
522         return 0;
523
524 out_free:
525         security_free_mnt_opts(opts);
526         return rc;
527 }
528
529 static int bad_option(struct superblock_security_struct *sbsec, char flag,
530                       u32 old_sid, u32 new_sid)
531 {
532         char mnt_flags = sbsec->flags & SE_MNTMASK;
533
534         /* check if the old mount command had the same options */
535         if (sbsec->flags & SE_SBINITIALIZED)
536                 if (!(sbsec->flags & flag) ||
537                     (old_sid != new_sid))
538                         return 1;
539
540         /* check if we were passed the same options twice,
541          * aka someone passed context=a,context=b
542          */
543         if (!(sbsec->flags & SE_SBINITIALIZED))
544                 if (mnt_flags & flag)
545                         return 1;
546         return 0;
547 }
548
549 /*
550  * Allow filesystems with binary mount data to explicitly set mount point
551  * labeling information.
552  */
553 static int selinux_set_mnt_opts(struct super_block *sb,
554                                 struct security_mnt_opts *opts)
555 {
556         const struct cred *cred = current_cred();
557         int rc = 0, i;
558         struct superblock_security_struct *sbsec = sb->s_security;
559         const char *name = sb->s_type->name;
560         struct inode *inode = sbsec->sb->s_root->d_inode;
561         struct inode_security_struct *root_isec = inode->i_security;
562         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
563         u32 defcontext_sid = 0;
564         char **mount_options = opts->mnt_opts;
565         int *flags = opts->mnt_opts_flags;
566         int num_opts = opts->num_mnt_opts;
567
568         mutex_lock(&sbsec->lock);
569
570         if (!ss_initialized) {
571                 if (!num_opts) {
572                         /* Defer initialization until selinux_complete_init,
573                            after the initial policy is loaded and the security
574                            server is ready to handle calls. */
575                         goto out;
576                 }
577                 rc = -EINVAL;
578                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
579                         "before the security server is initialized\n");
580                 goto out;
581         }
582
583         /*
584          * Binary mount data FS will come through this function twice.  Once
585          * from an explicit call and once from the generic calls from the vfs.
586          * Since the generic VFS calls will not contain any security mount data
587          * we need to skip the double mount verification.
588          *
589          * This does open a hole in which we will not notice if the first
590          * mount using this sb set explict options and a second mount using
591          * this sb does not set any security options.  (The first options
592          * will be used for both mounts)
593          */
594         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
595             && (num_opts == 0))
596                 goto out;
597
598         /*
599          * parse the mount options, check if they are valid sids.
600          * also check if someone is trying to mount the same sb more
601          * than once with different security options.
602          */
603         for (i = 0; i < num_opts; i++) {
604                 u32 sid;
605
606                 if (flags[i] == SE_SBLABELSUPP)
607                         continue;
608                 rc = security_context_to_sid(mount_options[i],
609                                              strlen(mount_options[i]), &sid);
610                 if (rc) {
611                         printk(KERN_WARNING "SELinux: security_context_to_sid"
612                                "(%s) failed for (dev %s, type %s) errno=%d\n",
613                                mount_options[i], sb->s_id, name, rc);
614                         goto out;
615                 }
616                 switch (flags[i]) {
617                 case FSCONTEXT_MNT:
618                         fscontext_sid = sid;
619
620                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
621                                         fscontext_sid))
622                                 goto out_double_mount;
623
624                         sbsec->flags |= FSCONTEXT_MNT;
625                         break;
626                 case CONTEXT_MNT:
627                         context_sid = sid;
628
629                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
630                                         context_sid))
631                                 goto out_double_mount;
632
633                         sbsec->flags |= CONTEXT_MNT;
634                         break;
635                 case ROOTCONTEXT_MNT:
636                         rootcontext_sid = sid;
637
638                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
639                                         rootcontext_sid))
640                                 goto out_double_mount;
641
642                         sbsec->flags |= ROOTCONTEXT_MNT;
643
644                         break;
645                 case DEFCONTEXT_MNT:
646                         defcontext_sid = sid;
647
648                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
649                                         defcontext_sid))
650                                 goto out_double_mount;
651
652                         sbsec->flags |= DEFCONTEXT_MNT;
653
654                         break;
655                 default:
656                         rc = -EINVAL;
657                         goto out;
658                 }
659         }
660
661         if (sbsec->flags & SE_SBINITIALIZED) {
662                 /* previously mounted with options, but not on this attempt? */
663                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
664                         goto out_double_mount;
665                 rc = 0;
666                 goto out;
667         }
668
669         if (strcmp(sb->s_type->name, "proc") == 0)
670                 sbsec->flags |= SE_SBPROC;
671
672         /* Determine the labeling behavior to use for this filesystem type. */
673         rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
674         if (rc) {
675                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
676                        __func__, sb->s_type->name, rc);
677                 goto out;
678         }
679
680         /* sets the context of the superblock for the fs being mounted. */
681         if (fscontext_sid) {
682                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
683                 if (rc)
684                         goto out;
685
686                 sbsec->sid = fscontext_sid;
687         }
688
689         /*
690          * Switch to using mount point labeling behavior.
691          * sets the label used on all file below the mountpoint, and will set
692          * the superblock context if not already set.
693          */
694         if (context_sid) {
695                 if (!fscontext_sid) {
696                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
697                                                           cred);
698                         if (rc)
699                                 goto out;
700                         sbsec->sid = context_sid;
701                 } else {
702                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
703                                                              cred);
704                         if (rc)
705                                 goto out;
706                 }
707                 if (!rootcontext_sid)
708                         rootcontext_sid = context_sid;
709
710                 sbsec->mntpoint_sid = context_sid;
711                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
712         }
713
714         if (rootcontext_sid) {
715                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
716                                                      cred);
717                 if (rc)
718                         goto out;
719
720                 root_isec->sid = rootcontext_sid;
721                 root_isec->initialized = 1;
722         }
723
724         if (defcontext_sid) {
725                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
726                         rc = -EINVAL;
727                         printk(KERN_WARNING "SELinux: defcontext option is "
728                                "invalid for this filesystem type\n");
729                         goto out;
730                 }
731
732                 if (defcontext_sid != sbsec->def_sid) {
733                         rc = may_context_mount_inode_relabel(defcontext_sid,
734                                                              sbsec, cred);
735                         if (rc)
736                                 goto out;
737                 }
738
739                 sbsec->def_sid = defcontext_sid;
740         }
741
742         rc = sb_finish_set_opts(sb);
743 out:
744         mutex_unlock(&sbsec->lock);
745         return rc;
746 out_double_mount:
747         rc = -EINVAL;
748         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
749                "security settings for (dev %s, type %s)\n", sb->s_id, name);
750         goto out;
751 }
752
753 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
754                                         struct super_block *newsb)
755 {
756         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
757         struct superblock_security_struct *newsbsec = newsb->s_security;
758
759         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
760         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
761         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
762
763         /*
764          * if the parent was able to be mounted it clearly had no special lsm
765          * mount options.  thus we can safely deal with this superblock later
766          */
767         if (!ss_initialized)
768                 return;
769
770         /* how can we clone if the old one wasn't set up?? */
771         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
772
773         /* if fs is reusing a sb, just let its options stand... */
774         if (newsbsec->flags & SE_SBINITIALIZED)
775                 return;
776
777         mutex_lock(&newsbsec->lock);
778
779         newsbsec->flags = oldsbsec->flags;
780
781         newsbsec->sid = oldsbsec->sid;
782         newsbsec->def_sid = oldsbsec->def_sid;
783         newsbsec->behavior = oldsbsec->behavior;
784
785         if (set_context) {
786                 u32 sid = oldsbsec->mntpoint_sid;
787
788                 if (!set_fscontext)
789                         newsbsec->sid = sid;
790                 if (!set_rootcontext) {
791                         struct inode *newinode = newsb->s_root->d_inode;
792                         struct inode_security_struct *newisec = newinode->i_security;
793                         newisec->sid = sid;
794                 }
795                 newsbsec->mntpoint_sid = sid;
796         }
797         if (set_rootcontext) {
798                 const struct inode *oldinode = oldsb->s_root->d_inode;
799                 const struct inode_security_struct *oldisec = oldinode->i_security;
800                 struct inode *newinode = newsb->s_root->d_inode;
801                 struct inode_security_struct *newisec = newinode->i_security;
802
803                 newisec->sid = oldisec->sid;
804         }
805
806         sb_finish_set_opts(newsb);
807         mutex_unlock(&newsbsec->lock);
808 }
809
810 static int selinux_parse_opts_str(char *options,
811                                   struct security_mnt_opts *opts)
812 {
813         char *p;
814         char *context = NULL, *defcontext = NULL;
815         char *fscontext = NULL, *rootcontext = NULL;
816         int rc, num_mnt_opts = 0;
817
818         opts->num_mnt_opts = 0;
819
820         /* Standard string-based options. */
821         while ((p = strsep(&options, "|")) != NULL) {
822                 int token;
823                 substring_t args[MAX_OPT_ARGS];
824
825                 if (!*p)
826                         continue;
827
828                 token = match_token(p, tokens, args);
829
830                 switch (token) {
831                 case Opt_context:
832                         if (context || defcontext) {
833                                 rc = -EINVAL;
834                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
835                                 goto out_err;
836                         }
837                         context = match_strdup(&args[0]);
838                         if (!context) {
839                                 rc = -ENOMEM;
840                                 goto out_err;
841                         }
842                         break;
843
844                 case Opt_fscontext:
845                         if (fscontext) {
846                                 rc = -EINVAL;
847                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
848                                 goto out_err;
849                         }
850                         fscontext = match_strdup(&args[0]);
851                         if (!fscontext) {
852                                 rc = -ENOMEM;
853                                 goto out_err;
854                         }
855                         break;
856
857                 case Opt_rootcontext:
858                         if (rootcontext) {
859                                 rc = -EINVAL;
860                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
861                                 goto out_err;
862                         }
863                         rootcontext = match_strdup(&args[0]);
864                         if (!rootcontext) {
865                                 rc = -ENOMEM;
866                                 goto out_err;
867                         }
868                         break;
869
870                 case Opt_defcontext:
871                         if (context || defcontext) {
872                                 rc = -EINVAL;
873                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
874                                 goto out_err;
875                         }
876                         defcontext = match_strdup(&args[0]);
877                         if (!defcontext) {
878                                 rc = -ENOMEM;
879                                 goto out_err;
880                         }
881                         break;
882                 case Opt_labelsupport:
883                         break;
884                 default:
885                         rc = -EINVAL;
886                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
887                         goto out_err;
888
889                 }
890         }
891
892         rc = -ENOMEM;
893         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
894         if (!opts->mnt_opts)
895                 goto out_err;
896
897         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
898         if (!opts->mnt_opts_flags) {
899                 kfree(opts->mnt_opts);
900                 goto out_err;
901         }
902
903         if (fscontext) {
904                 opts->mnt_opts[num_mnt_opts] = fscontext;
905                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
906         }
907         if (context) {
908                 opts->mnt_opts[num_mnt_opts] = context;
909                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
910         }
911         if (rootcontext) {
912                 opts->mnt_opts[num_mnt_opts] = rootcontext;
913                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
914         }
915         if (defcontext) {
916                 opts->mnt_opts[num_mnt_opts] = defcontext;
917                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
918         }
919
920         opts->num_mnt_opts = num_mnt_opts;
921         return 0;
922
923 out_err:
924         kfree(context);
925         kfree(defcontext);
926         kfree(fscontext);
927         kfree(rootcontext);
928         return rc;
929 }
930 /*
931  * string mount options parsing and call set the sbsec
932  */
933 static int superblock_doinit(struct super_block *sb, void *data)
934 {
935         int rc = 0;
936         char *options = data;
937         struct security_mnt_opts opts;
938
939         security_init_mnt_opts(&opts);
940
941         if (!data)
942                 goto out;
943
944         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
945
946         rc = selinux_parse_opts_str(options, &opts);
947         if (rc)
948                 goto out_err;
949
950 out:
951         rc = selinux_set_mnt_opts(sb, &opts);
952
953 out_err:
954         security_free_mnt_opts(&opts);
955         return rc;
956 }
957
958 static void selinux_write_opts(struct seq_file *m,
959                                struct security_mnt_opts *opts)
960 {
961         int i;
962         char *prefix;
963
964         for (i = 0; i < opts->num_mnt_opts; i++) {
965                 char *has_comma;
966
967                 if (opts->mnt_opts[i])
968                         has_comma = strchr(opts->mnt_opts[i], ',');
969                 else
970                         has_comma = NULL;
971
972                 switch (opts->mnt_opts_flags[i]) {
973                 case CONTEXT_MNT:
974                         prefix = CONTEXT_STR;
975                         break;
976                 case FSCONTEXT_MNT:
977                         prefix = FSCONTEXT_STR;
978                         break;
979                 case ROOTCONTEXT_MNT:
980                         prefix = ROOTCONTEXT_STR;
981                         break;
982                 case DEFCONTEXT_MNT:
983                         prefix = DEFCONTEXT_STR;
984                         break;
985                 case SE_SBLABELSUPP:
986                         seq_putc(m, ',');
987                         seq_puts(m, LABELSUPP_STR);
988                         continue;
989                 default:
990                         BUG();
991                         return;
992                 };
993                 /* we need a comma before each option */
994                 seq_putc(m, ',');
995                 seq_puts(m, prefix);
996                 if (has_comma)
997                         seq_putc(m, '\"');
998                 seq_puts(m, opts->mnt_opts[i]);
999                 if (has_comma)
1000                         seq_putc(m, '\"');
1001         }
1002 }
1003
1004 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1005 {
1006         struct security_mnt_opts opts;
1007         int rc;
1008
1009         rc = selinux_get_mnt_opts(sb, &opts);
1010         if (rc) {
1011                 /* before policy load we may get EINVAL, don't show anything */
1012                 if (rc == -EINVAL)
1013                         rc = 0;
1014                 return rc;
1015         }
1016
1017         selinux_write_opts(m, &opts);
1018
1019         security_free_mnt_opts(&opts);
1020
1021         return rc;
1022 }
1023
1024 static inline u16 inode_mode_to_security_class(umode_t mode)
1025 {
1026         switch (mode & S_IFMT) {
1027         case S_IFSOCK:
1028                 return SECCLASS_SOCK_FILE;
1029         case S_IFLNK:
1030                 return SECCLASS_LNK_FILE;
1031         case S_IFREG:
1032                 return SECCLASS_FILE;
1033         case S_IFBLK:
1034                 return SECCLASS_BLK_FILE;
1035         case S_IFDIR:
1036                 return SECCLASS_DIR;
1037         case S_IFCHR:
1038                 return SECCLASS_CHR_FILE;
1039         case S_IFIFO:
1040                 return SECCLASS_FIFO_FILE;
1041
1042         }
1043
1044         return SECCLASS_FILE;
1045 }
1046
1047 static inline int default_protocol_stream(int protocol)
1048 {
1049         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1050 }
1051
1052 static inline int default_protocol_dgram(int protocol)
1053 {
1054         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1055 }
1056
1057 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1058 {
1059         switch (family) {
1060         case PF_UNIX:
1061                 switch (type) {
1062                 case SOCK_STREAM:
1063                 case SOCK_SEQPACKET:
1064                         return SECCLASS_UNIX_STREAM_SOCKET;
1065                 case SOCK_DGRAM:
1066                         return SECCLASS_UNIX_DGRAM_SOCKET;
1067                 }
1068                 break;
1069         case PF_INET:
1070         case PF_INET6:
1071                 switch (type) {
1072                 case SOCK_STREAM:
1073                         if (default_protocol_stream(protocol))
1074                                 return SECCLASS_TCP_SOCKET;
1075                         else
1076                                 return SECCLASS_RAWIP_SOCKET;
1077                 case SOCK_DGRAM:
1078                         if (default_protocol_dgram(protocol))
1079                                 return SECCLASS_UDP_SOCKET;
1080                         else
1081                                 return SECCLASS_RAWIP_SOCKET;
1082                 case SOCK_DCCP:
1083                         return SECCLASS_DCCP_SOCKET;
1084                 default:
1085                         return SECCLASS_RAWIP_SOCKET;
1086                 }
1087                 break;
1088         case PF_NETLINK:
1089                 switch (protocol) {
1090                 case NETLINK_ROUTE:
1091                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1092                 case NETLINK_FIREWALL:
1093                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1094                 case NETLINK_SOCK_DIAG:
1095                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1096                 case NETLINK_NFLOG:
1097                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1098                 case NETLINK_XFRM:
1099                         return SECCLASS_NETLINK_XFRM_SOCKET;
1100                 case NETLINK_SELINUX:
1101                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1102                 case NETLINK_AUDIT:
1103                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1104                 case NETLINK_IP6_FW:
1105                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1106                 case NETLINK_DNRTMSG:
1107                         return SECCLASS_NETLINK_DNRT_SOCKET;
1108                 case NETLINK_KOBJECT_UEVENT:
1109                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1110                 default:
1111                         return SECCLASS_NETLINK_SOCKET;
1112                 }
1113         case PF_PACKET:
1114                 return SECCLASS_PACKET_SOCKET;
1115         case PF_KEY:
1116                 return SECCLASS_KEY_SOCKET;
1117         case PF_APPLETALK:
1118                 return SECCLASS_APPLETALK_SOCKET;
1119         }
1120
1121         return SECCLASS_SOCKET;
1122 }
1123
1124 #ifdef CONFIG_PROC_FS
1125 static int selinux_proc_get_sid(struct dentry *dentry,
1126                                 u16 tclass,
1127                                 u32 *sid)
1128 {
1129         int rc;
1130         char *buffer, *path;
1131
1132         buffer = (char *)__get_free_page(GFP_KERNEL);
1133         if (!buffer)
1134                 return -ENOMEM;
1135
1136         path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1137         if (IS_ERR(path))
1138                 rc = PTR_ERR(path);
1139         else {
1140                 /* each process gets a /proc/PID/ entry. Strip off the
1141                  * PID part to get a valid selinux labeling.
1142                  * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1143                 while (path[1] >= '0' && path[1] <= '9') {
1144                         path[1] = '/';
1145                         path++;
1146                 }
1147                 rc = security_genfs_sid("proc", path, tclass, sid);
1148         }
1149         free_page((unsigned long)buffer);
1150         return rc;
1151 }
1152 #else
1153 static int selinux_proc_get_sid(struct dentry *dentry,
1154                                 u16 tclass,
1155                                 u32 *sid)
1156 {
1157         return -EINVAL;
1158 }
1159 #endif
1160
1161 /* The inode's security attributes must be initialized before first use. */
1162 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1163 {
1164         struct superblock_security_struct *sbsec = NULL;
1165         struct inode_security_struct *isec = inode->i_security;
1166         u32 sid;
1167         struct dentry *dentry;
1168 #define INITCONTEXTLEN 255
1169         char *context = NULL;
1170         unsigned len = 0;
1171         int rc = 0;
1172
1173         if (isec->initialized)
1174                 goto out;
1175
1176         mutex_lock(&isec->lock);
1177         if (isec->initialized)
1178                 goto out_unlock;
1179
1180         sbsec = inode->i_sb->s_security;
1181         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1182                 /* Defer initialization until selinux_complete_init,
1183                    after the initial policy is loaded and the security
1184                    server is ready to handle calls. */
1185                 spin_lock(&sbsec->isec_lock);
1186                 if (list_empty(&isec->list))
1187                         list_add(&isec->list, &sbsec->isec_head);
1188                 spin_unlock(&sbsec->isec_lock);
1189                 goto out_unlock;
1190         }
1191
1192         switch (sbsec->behavior) {
1193         case SECURITY_FS_USE_XATTR:
1194                 if (!inode->i_op->getxattr) {
1195                         isec->sid = sbsec->def_sid;
1196                         break;
1197                 }
1198
1199                 /* Need a dentry, since the xattr API requires one.
1200                    Life would be simpler if we could just pass the inode. */
1201                 if (opt_dentry) {
1202                         /* Called from d_instantiate or d_splice_alias. */
1203                         dentry = dget(opt_dentry);
1204                 } else {
1205                         /* Called from selinux_complete_init, try to find a dentry. */
1206                         dentry = d_find_alias(inode);
1207                 }
1208                 if (!dentry) {
1209                         /*
1210                          * this is can be hit on boot when a file is accessed
1211                          * before the policy is loaded.  When we load policy we
1212                          * may find inodes that have no dentry on the
1213                          * sbsec->isec_head list.  No reason to complain as these
1214                          * will get fixed up the next time we go through
1215                          * inode_doinit with a dentry, before these inodes could
1216                          * be used again by userspace.
1217                          */
1218                         goto out_unlock;
1219                 }
1220
1221                 len = INITCONTEXTLEN;
1222                 context = kmalloc(len+1, GFP_NOFS);
1223                 if (!context) {
1224                         rc = -ENOMEM;
1225                         dput(dentry);
1226                         goto out_unlock;
1227                 }
1228                 context[len] = '\0';
1229                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1230                                            context, len);
1231                 if (rc == -ERANGE) {
1232                         kfree(context);
1233
1234                         /* Need a larger buffer.  Query for the right size. */
1235                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1236                                                    NULL, 0);
1237                         if (rc < 0) {
1238                                 dput(dentry);
1239                                 goto out_unlock;
1240                         }
1241                         len = rc;
1242                         context = kmalloc(len+1, GFP_NOFS);
1243                         if (!context) {
1244                                 rc = -ENOMEM;
1245                                 dput(dentry);
1246                                 goto out_unlock;
1247                         }
1248                         context[len] = '\0';
1249                         rc = inode->i_op->getxattr(dentry,
1250                                                    XATTR_NAME_SELINUX,
1251                                                    context, len);
1252                 }
1253                 dput(dentry);
1254                 if (rc < 0) {
1255                         if (rc != -ENODATA) {
1256                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1257                                        "%d for dev=%s ino=%ld\n", __func__,
1258                                        -rc, inode->i_sb->s_id, inode->i_ino);
1259                                 kfree(context);
1260                                 goto out_unlock;
1261                         }
1262                         /* Map ENODATA to the default file SID */
1263                         sid = sbsec->def_sid;
1264                         rc = 0;
1265                 } else {
1266                         rc = security_context_to_sid_default(context, rc, &sid,
1267                                                              sbsec->def_sid,
1268                                                              GFP_NOFS);
1269                         if (rc) {
1270                                 char *dev = inode->i_sb->s_id;
1271                                 unsigned long ino = inode->i_ino;
1272
1273                                 if (rc == -EINVAL) {
1274                                         if (printk_ratelimit())
1275                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1276                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1277                                                         "filesystem in question.\n", ino, dev, context);
1278                                 } else {
1279                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1280                                                "returned %d for dev=%s ino=%ld\n",
1281                                                __func__, context, -rc, dev, ino);
1282                                 }
1283                                 kfree(context);
1284                                 /* Leave with the unlabeled SID */
1285                                 rc = 0;
1286                                 break;
1287                         }
1288                 }
1289                 kfree(context);
1290                 isec->sid = sid;
1291                 break;
1292         case SECURITY_FS_USE_TASK:
1293                 isec->sid = isec->task_sid;
1294                 break;
1295         case SECURITY_FS_USE_TRANS:
1296                 /* Default to the fs SID. */
1297                 isec->sid = sbsec->sid;
1298
1299                 /* Try to obtain a transition SID. */
1300                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1301                 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1302                                              isec->sclass, NULL, &sid);
1303                 if (rc)
1304                         goto out_unlock;
1305                 isec->sid = sid;
1306                 break;
1307         case SECURITY_FS_USE_MNTPOINT:
1308                 isec->sid = sbsec->mntpoint_sid;
1309                 break;
1310         default:
1311                 /* Default to the fs superblock SID. */
1312                 isec->sid = sbsec->sid;
1313
1314                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1315                         if (opt_dentry) {
1316                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1317                                 rc = selinux_proc_get_sid(opt_dentry,
1318                                                           isec->sclass,
1319                                                           &sid);
1320                                 if (rc)
1321                                         goto out_unlock;
1322                                 isec->sid = sid;
1323                         }
1324                 }
1325                 break;
1326         }
1327
1328         isec->initialized = 1;
1329
1330 out_unlock:
1331         mutex_unlock(&isec->lock);
1332 out:
1333         if (isec->sclass == SECCLASS_FILE)
1334                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1335         return rc;
1336 }
1337
1338 /* Convert a Linux signal to an access vector. */
1339 static inline u32 signal_to_av(int sig)
1340 {
1341         u32 perm = 0;
1342
1343         switch (sig) {
1344         case SIGCHLD:
1345                 /* Commonly granted from child to parent. */
1346                 perm = PROCESS__SIGCHLD;
1347                 break;
1348         case SIGKILL:
1349                 /* Cannot be caught or ignored */
1350                 perm = PROCESS__SIGKILL;
1351                 break;
1352         case SIGSTOP:
1353                 /* Cannot be caught or ignored */
1354                 perm = PROCESS__SIGSTOP;
1355                 break;
1356         default:
1357                 /* All other signals. */
1358                 perm = PROCESS__SIGNAL;
1359                 break;
1360         }
1361
1362         return perm;
1363 }
1364
1365 /*
1366  * Check permission between a pair of credentials
1367  * fork check, ptrace check, etc.
1368  */
1369 static int cred_has_perm(const struct cred *actor,
1370                          const struct cred *target,
1371                          u32 perms)
1372 {
1373         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1374
1375         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1376 }
1377
1378 /*
1379  * Check permission between a pair of tasks, e.g. signal checks,
1380  * fork check, ptrace check, etc.
1381  * tsk1 is the actor and tsk2 is the target
1382  * - this uses the default subjective creds of tsk1
1383  */
1384 static int task_has_perm(const struct task_struct *tsk1,
1385                          const struct task_struct *tsk2,
1386                          u32 perms)
1387 {
1388         const struct task_security_struct *__tsec1, *__tsec2;
1389         u32 sid1, sid2;
1390
1391         rcu_read_lock();
1392         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1393         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1394         rcu_read_unlock();
1395         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1396 }
1397
1398 /*
1399  * Check permission between current and another task, e.g. signal checks,
1400  * fork check, ptrace check, etc.
1401  * current is the actor and tsk2 is the target
1402  * - this uses current's subjective creds
1403  */
1404 static int current_has_perm(const struct task_struct *tsk,
1405                             u32 perms)
1406 {
1407         u32 sid, tsid;
1408
1409         sid = current_sid();
1410         tsid = task_sid(tsk);
1411         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1412 }
1413
1414 #if CAP_LAST_CAP > 63
1415 #error Fix SELinux to handle capabilities > 63.
1416 #endif
1417
1418 /* Check whether a task is allowed to use a capability. */
1419 static int cred_has_capability(const struct cred *cred,
1420                                int cap, int audit)
1421 {
1422         struct common_audit_data ad;
1423         struct av_decision avd;
1424         u16 sclass;
1425         u32 sid = cred_sid(cred);
1426         u32 av = CAP_TO_MASK(cap);
1427         int rc;
1428
1429         ad.type = LSM_AUDIT_DATA_CAP;
1430         ad.u.cap = cap;
1431
1432         switch (CAP_TO_INDEX(cap)) {
1433         case 0:
1434                 sclass = SECCLASS_CAPABILITY;
1435                 break;
1436         case 1:
1437                 sclass = SECCLASS_CAPABILITY2;
1438                 break;
1439         default:
1440                 printk(KERN_ERR
1441                        "SELinux:  out of range capability %d\n", cap);
1442                 BUG();
1443                 return -EINVAL;
1444         }
1445
1446         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1447         if (audit == SECURITY_CAP_AUDIT) {
1448                 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1449                 if (rc2)
1450                         return rc2;
1451         }
1452         return rc;
1453 }
1454
1455 /* Check whether a task is allowed to use a system operation. */
1456 static int task_has_system(struct task_struct *tsk,
1457                            u32 perms)
1458 {
1459         u32 sid = task_sid(tsk);
1460
1461         return avc_has_perm(sid, SECINITSID_KERNEL,
1462                             SECCLASS_SYSTEM, perms, NULL);
1463 }
1464
1465 /* Check whether a task has a particular permission to an inode.
1466    The 'adp' parameter is optional and allows other audit
1467    data to be passed (e.g. the dentry). */
1468 static int inode_has_perm(const struct cred *cred,
1469                           struct inode *inode,
1470                           u32 perms,
1471                           struct common_audit_data *adp,
1472                           unsigned flags)
1473 {
1474         struct inode_security_struct *isec;
1475         u32 sid;
1476
1477         validate_creds(cred);
1478
1479         if (unlikely(IS_PRIVATE(inode)))
1480                 return 0;
1481
1482         sid = cred_sid(cred);
1483         isec = inode->i_security;
1484
1485         return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
1486 }
1487
1488 /* Same as inode_has_perm, but pass explicit audit data containing
1489    the dentry to help the auditing code to more easily generate the
1490    pathname if needed. */
1491 static inline int dentry_has_perm(const struct cred *cred,
1492                                   struct dentry *dentry,
1493                                   u32 av)
1494 {
1495         struct inode *inode = dentry->d_inode;
1496         struct common_audit_data ad;
1497
1498         ad.type = LSM_AUDIT_DATA_DENTRY;
1499         ad.u.dentry = dentry;
1500         return inode_has_perm(cred, inode, av, &ad, 0);
1501 }
1502
1503 /* Same as inode_has_perm, but pass explicit audit data containing
1504    the path to help the auditing code to more easily generate the
1505    pathname if needed. */
1506 static inline int path_has_perm(const struct cred *cred,
1507                                 struct path *path,
1508                                 u32 av)
1509 {
1510         struct inode *inode = path->dentry->d_inode;
1511         struct common_audit_data ad;
1512
1513         ad.type = LSM_AUDIT_DATA_PATH;
1514         ad.u.path = *path;
1515         return inode_has_perm(cred, inode, av, &ad, 0);
1516 }
1517
1518 /* Check whether a task can use an open file descriptor to
1519    access an inode in a given way.  Check access to the
1520    descriptor itself, and then use dentry_has_perm to
1521    check a particular permission to the file.
1522    Access to the descriptor is implicitly granted if it
1523    has the same SID as the process.  If av is zero, then
1524    access to the file is not checked, e.g. for cases
1525    where only the descriptor is affected like seek. */
1526 static int file_has_perm(const struct cred *cred,
1527                          struct file *file,
1528                          u32 av)
1529 {
1530         struct file_security_struct *fsec = file->f_security;
1531         struct inode *inode = file->f_path.dentry->d_inode;
1532         struct common_audit_data ad;
1533         u32 sid = cred_sid(cred);
1534         int rc;
1535
1536         ad.type = LSM_AUDIT_DATA_PATH;
1537         ad.u.path = file->f_path;
1538
1539         if (sid != fsec->sid) {
1540                 rc = avc_has_perm(sid, fsec->sid,
1541                                   SECCLASS_FD,
1542                                   FD__USE,
1543                                   &ad);
1544                 if (rc)
1545                         goto out;
1546         }
1547
1548         /* av is zero if only checking access to the descriptor. */
1549         rc = 0;
1550         if (av)
1551                 rc = inode_has_perm(cred, inode, av, &ad, 0);
1552
1553 out:
1554         return rc;
1555 }
1556
1557 /* Check whether a task can create a file. */
1558 static int may_create(struct inode *dir,
1559                       struct dentry *dentry,
1560                       u16 tclass)
1561 {
1562         const struct task_security_struct *tsec = current_security();
1563         struct inode_security_struct *dsec;
1564         struct superblock_security_struct *sbsec;
1565         u32 sid, newsid;
1566         struct common_audit_data ad;
1567         int rc;
1568
1569         dsec = dir->i_security;
1570         sbsec = dir->i_sb->s_security;
1571
1572         sid = tsec->sid;
1573         newsid = tsec->create_sid;
1574
1575         ad.type = LSM_AUDIT_DATA_DENTRY;
1576         ad.u.dentry = dentry;
1577
1578         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1579                           DIR__ADD_NAME | DIR__SEARCH,
1580                           &ad);
1581         if (rc)
1582                 return rc;
1583
1584         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1585                 rc = security_transition_sid(sid, dsec->sid, tclass,
1586                                              &dentry->d_name, &newsid);
1587                 if (rc)
1588                         return rc;
1589         }
1590
1591         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1592         if (rc)
1593                 return rc;
1594
1595         return avc_has_perm(newsid, sbsec->sid,
1596                             SECCLASS_FILESYSTEM,
1597                             FILESYSTEM__ASSOCIATE, &ad);
1598 }
1599
1600 /* Check whether a task can create a key. */
1601 static int may_create_key(u32 ksid,
1602                           struct task_struct *ctx)
1603 {
1604         u32 sid = task_sid(ctx);
1605
1606         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1607 }
1608
1609 #define MAY_LINK        0
1610 #define MAY_UNLINK      1
1611 #define MAY_RMDIR       2
1612
1613 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1614 static int may_link(struct inode *dir,
1615                     struct dentry *dentry,
1616                     int kind)
1617
1618 {
1619         struct inode_security_struct *dsec, *isec;
1620         struct common_audit_data ad;
1621         u32 sid = current_sid();
1622         u32 av;
1623         int rc;
1624
1625         dsec = dir->i_security;
1626         isec = dentry->d_inode->i_security;
1627
1628         ad.type = LSM_AUDIT_DATA_DENTRY;
1629         ad.u.dentry = dentry;
1630
1631         av = DIR__SEARCH;
1632         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1633         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1634         if (rc)
1635                 return rc;
1636
1637         switch (kind) {
1638         case MAY_LINK:
1639                 av = FILE__LINK;
1640                 break;
1641         case MAY_UNLINK:
1642                 av = FILE__UNLINK;
1643                 break;
1644         case MAY_RMDIR:
1645                 av = DIR__RMDIR;
1646                 break;
1647         default:
1648                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1649                         __func__, kind);
1650                 return 0;
1651         }
1652
1653         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1654         return rc;
1655 }
1656
1657 static inline int may_rename(struct inode *old_dir,
1658                              struct dentry *old_dentry,
1659                              struct inode *new_dir,
1660                              struct dentry *new_dentry)
1661 {
1662         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1663         struct common_audit_data ad;
1664         u32 sid = current_sid();
1665         u32 av;
1666         int old_is_dir, new_is_dir;
1667         int rc;
1668
1669         old_dsec = old_dir->i_security;
1670         old_isec = old_dentry->d_inode->i_security;
1671         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1672         new_dsec = new_dir->i_security;
1673
1674         ad.type = LSM_AUDIT_DATA_DENTRY;
1675
1676         ad.u.dentry = old_dentry;
1677         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1678                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1679         if (rc)
1680                 return rc;
1681         rc = avc_has_perm(sid, old_isec->sid,
1682                           old_isec->sclass, FILE__RENAME, &ad);
1683         if (rc)
1684                 return rc;
1685         if (old_is_dir && new_dir != old_dir) {
1686                 rc = avc_has_perm(sid, old_isec->sid,
1687                                   old_isec->sclass, DIR__REPARENT, &ad);
1688                 if (rc)
1689                         return rc;
1690         }
1691
1692         ad.u.dentry = new_dentry;
1693         av = DIR__ADD_NAME | DIR__SEARCH;
1694         if (new_dentry->d_inode)
1695                 av |= DIR__REMOVE_NAME;
1696         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1697         if (rc)
1698                 return rc;
1699         if (new_dentry->d_inode) {
1700                 new_isec = new_dentry->d_inode->i_security;
1701                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1702                 rc = avc_has_perm(sid, new_isec->sid,
1703                                   new_isec->sclass,
1704                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1705                 if (rc)
1706                         return rc;
1707         }
1708
1709         return 0;
1710 }
1711
1712 /* Check whether a task can perform a filesystem operation. */
1713 static int superblock_has_perm(const struct cred *cred,
1714                                struct super_block *sb,
1715                                u32 perms,
1716                                struct common_audit_data *ad)
1717 {
1718         struct superblock_security_struct *sbsec;
1719         u32 sid = cred_sid(cred);
1720
1721         sbsec = sb->s_security;
1722         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1723 }
1724
1725 /* Convert a Linux mode and permission mask to an access vector. */
1726 static inline u32 file_mask_to_av(int mode, int mask)
1727 {
1728         u32 av = 0;
1729
1730         if (!S_ISDIR(mode)) {
1731                 if (mask & MAY_EXEC)
1732                         av |= FILE__EXECUTE;
1733                 if (mask & MAY_READ)
1734                         av |= FILE__READ;
1735
1736                 if (mask & MAY_APPEND)
1737                         av |= FILE__APPEND;
1738                 else if (mask & MAY_WRITE)
1739                         av |= FILE__WRITE;
1740
1741         } else {
1742                 if (mask & MAY_EXEC)
1743                         av |= DIR__SEARCH;
1744                 if (mask & MAY_WRITE)
1745                         av |= DIR__WRITE;
1746                 if (mask & MAY_READ)
1747                         av |= DIR__READ;
1748         }
1749
1750         return av;
1751 }
1752
1753 /* Convert a Linux file to an access vector. */
1754 static inline u32 file_to_av(struct file *file)
1755 {
1756         u32 av = 0;
1757
1758         if (file->f_mode & FMODE_READ)
1759                 av |= FILE__READ;
1760         if (file->f_mode & FMODE_WRITE) {
1761                 if (file->f_flags & O_APPEND)
1762                         av |= FILE__APPEND;
1763                 else
1764                         av |= FILE__WRITE;
1765         }
1766         if (!av) {
1767                 /*
1768                  * Special file opened with flags 3 for ioctl-only use.
1769                  */
1770                 av = FILE__IOCTL;
1771         }
1772
1773         return av;
1774 }
1775
1776 /*
1777  * Convert a file to an access vector and include the correct open
1778  * open permission.
1779  */
1780 static inline u32 open_file_to_av(struct file *file)
1781 {
1782         u32 av = file_to_av(file);
1783
1784         if (selinux_policycap_openperm)
1785                 av |= FILE__OPEN;
1786
1787         return av;
1788 }
1789
1790 /* Hook functions begin here. */
1791
1792 static int selinux_ptrace_access_check(struct task_struct *child,
1793                                      unsigned int mode)
1794 {
1795         int rc;
1796
1797         rc = cap_ptrace_access_check(child, mode);
1798         if (rc)
1799                 return rc;
1800
1801         if (mode & PTRACE_MODE_READ) {
1802                 u32 sid = current_sid();
1803                 u32 csid = task_sid(child);
1804                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1805         }
1806
1807         return current_has_perm(child, PROCESS__PTRACE);
1808 }
1809
1810 static int selinux_ptrace_traceme(struct task_struct *parent)
1811 {
1812         int rc;
1813
1814         rc = cap_ptrace_traceme(parent);
1815         if (rc)
1816                 return rc;
1817
1818         return task_has_perm(parent, current, PROCESS__PTRACE);
1819 }
1820
1821 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1822                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1823 {
1824         int error;
1825
1826         error = current_has_perm(target, PROCESS__GETCAP);
1827         if (error)
1828                 return error;
1829
1830         return cap_capget(target, effective, inheritable, permitted);
1831 }
1832
1833 static int selinux_capset(struct cred *new, const struct cred *old,
1834                           const kernel_cap_t *effective,
1835                           const kernel_cap_t *inheritable,
1836                           const kernel_cap_t *permitted)
1837 {
1838         int error;
1839
1840         error = cap_capset(new, old,
1841                                       effective, inheritable, permitted);
1842         if (error)
1843                 return error;
1844
1845         return cred_has_perm(old, new, PROCESS__SETCAP);
1846 }
1847
1848 /*
1849  * (This comment used to live with the selinux_task_setuid hook,
1850  * which was removed).
1851  *
1852  * Since setuid only affects the current process, and since the SELinux
1853  * controls are not based on the Linux identity attributes, SELinux does not
1854  * need to control this operation.  However, SELinux does control the use of
1855  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1856  */
1857
1858 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1859                            int cap, int audit)
1860 {
1861         int rc;
1862
1863         rc = cap_capable(cred, ns, cap, audit);
1864         if (rc)
1865                 return rc;
1866
1867         return cred_has_capability(cred, cap, audit);
1868 }
1869
1870 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1871 {
1872         const struct cred *cred = current_cred();
1873         int rc = 0;
1874
1875         if (!sb)
1876                 return 0;
1877
1878         switch (cmds) {
1879         case Q_SYNC:
1880         case Q_QUOTAON:
1881         case Q_QUOTAOFF:
1882         case Q_SETINFO:
1883         case Q_SETQUOTA:
1884                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1885                 break;
1886         case Q_GETFMT:
1887         case Q_GETINFO:
1888         case Q_GETQUOTA:
1889                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1890                 break;
1891         default:
1892                 rc = 0;  /* let the kernel handle invalid cmds */
1893                 break;
1894         }
1895         return rc;
1896 }
1897
1898 static int selinux_quota_on(struct dentry *dentry)
1899 {
1900         const struct cred *cred = current_cred();
1901
1902         return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1903 }
1904
1905 static int selinux_syslog(int type)
1906 {
1907         int rc;
1908
1909         switch (type) {
1910         case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
1911         case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
1912                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1913                 break;
1914         case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
1915         case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
1916         /* Set level of messages printed to console */
1917         case SYSLOG_ACTION_CONSOLE_LEVEL:
1918                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1919                 break;
1920         case SYSLOG_ACTION_CLOSE:       /* Close log */
1921         case SYSLOG_ACTION_OPEN:        /* Open log */
1922         case SYSLOG_ACTION_READ:        /* Read from log */
1923         case SYSLOG_ACTION_READ_CLEAR:  /* Read/clear last kernel messages */
1924         case SYSLOG_ACTION_CLEAR:       /* Clear ring buffer */
1925         default:
1926                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1927                 break;
1928         }
1929         return rc;
1930 }
1931
1932 /*
1933  * Check that a process has enough memory to allocate a new virtual
1934  * mapping. 0 means there is enough memory for the allocation to
1935  * succeed and -ENOMEM implies there is not.
1936  *
1937  * Do not audit the selinux permission check, as this is applied to all
1938  * processes that allocate mappings.
1939  */
1940 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1941 {
1942         int rc, cap_sys_admin = 0;
1943
1944         rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
1945                              SECURITY_CAP_NOAUDIT);
1946         if (rc == 0)
1947                 cap_sys_admin = 1;
1948
1949         return __vm_enough_memory(mm, pages, cap_sys_admin);
1950 }
1951
1952 /* binprm security operations */
1953
1954 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
1955 {
1956         const struct task_security_struct *old_tsec;
1957         struct task_security_struct *new_tsec;
1958         struct inode_security_struct *isec;
1959         struct common_audit_data ad;
1960         struct inode *inode = bprm->file->f_path.dentry->d_inode;
1961         int rc;
1962
1963         rc = cap_bprm_set_creds(bprm);
1964         if (rc)
1965                 return rc;
1966
1967         /* SELinux context only depends on initial program or script and not
1968          * the script interpreter */
1969         if (bprm->cred_prepared)
1970                 return 0;
1971
1972         old_tsec = current_security();
1973         new_tsec = bprm->cred->security;
1974         isec = inode->i_security;
1975
1976         /* Default to the current task SID. */
1977         new_tsec->sid = old_tsec->sid;
1978         new_tsec->osid = old_tsec->sid;
1979
1980         /* Reset fs, key, and sock SIDs on execve. */
1981         new_tsec->create_sid = 0;
1982         new_tsec->keycreate_sid = 0;
1983         new_tsec->sockcreate_sid = 0;
1984
1985         if (old_tsec->exec_sid) {
1986                 new_tsec->sid = old_tsec->exec_sid;
1987                 /* Reset exec SID on execve. */
1988                 new_tsec->exec_sid = 0;
1989
1990                 /*
1991                  * Minimize confusion: if no_new_privs and a transition is
1992                  * explicitly requested, then fail the exec.
1993                  */
1994                 if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
1995                         return -EPERM;
1996         } else {
1997                 /* Check for a default transition on this program. */
1998                 rc = security_transition_sid(old_tsec->sid, isec->sid,
1999                                              SECCLASS_PROCESS, NULL,
2000                                              &new_tsec->sid);
2001                 if (rc)
2002                         return rc;
2003         }
2004
2005         ad.type = LSM_AUDIT_DATA_PATH;
2006         ad.u.path = bprm->file->f_path;
2007
2008         if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2009             (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2010                 new_tsec->sid = old_tsec->sid;
2011
2012         if (new_tsec->sid == old_tsec->sid) {
2013                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2014                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2015                 if (rc)
2016                         return rc;
2017         } else {
2018                 /* Check permissions for the transition. */
2019                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2020                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2021                 if (rc)
2022                         return rc;
2023
2024                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2025                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2026                 if (rc)
2027                         return rc;
2028
2029                 /* Check for shared state */
2030                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2031                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2032                                           SECCLASS_PROCESS, PROCESS__SHARE,
2033                                           NULL);
2034                         if (rc)
2035                                 return -EPERM;
2036                 }
2037
2038                 /* Make sure that anyone attempting to ptrace over a task that
2039                  * changes its SID has the appropriate permit */
2040                 if (bprm->unsafe &
2041                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2042                         struct task_struct *tracer;
2043                         struct task_security_struct *sec;
2044                         u32 ptsid = 0;
2045
2046                         rcu_read_lock();
2047                         tracer = ptrace_parent(current);
2048                         if (likely(tracer != NULL)) {
2049                                 sec = __task_cred(tracer)->security;
2050                                 ptsid = sec->sid;
2051                         }
2052                         rcu_read_unlock();
2053
2054                         if (ptsid != 0) {
2055                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2056                                                   SECCLASS_PROCESS,
2057                                                   PROCESS__PTRACE, NULL);
2058                                 if (rc)
2059                                         return -EPERM;
2060                         }
2061                 }
2062
2063                 /* Clear any possibly unsafe personality bits on exec: */
2064                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2065         }
2066
2067         return 0;
2068 }
2069
2070 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2071 {
2072         const struct task_security_struct *tsec = current_security();
2073         u32 sid, osid;
2074         int atsecure = 0;
2075
2076         sid = tsec->sid;
2077         osid = tsec->osid;
2078
2079         if (osid != sid) {
2080                 /* Enable secure mode for SIDs transitions unless
2081                    the noatsecure permission is granted between
2082                    the two SIDs, i.e. ahp returns 0. */
2083                 atsecure = avc_has_perm(osid, sid,
2084                                         SECCLASS_PROCESS,
2085                                         PROCESS__NOATSECURE, NULL);
2086         }
2087
2088         return (atsecure || cap_bprm_secureexec(bprm));
2089 }
2090
2091 /* Derived from fs/exec.c:flush_old_files. */
2092 static inline void flush_unauthorized_files(const struct cred *cred,
2093                                             struct files_struct *files)
2094 {
2095         struct file *file, *devnull = NULL;
2096         struct tty_struct *tty;
2097         struct fdtable *fdt;
2098         long j = -1;
2099         int drop_tty = 0;
2100
2101         tty = get_current_tty();
2102         if (tty) {
2103                 spin_lock(&tty_files_lock);
2104                 if (!list_empty(&tty->tty_files)) {
2105                         struct tty_file_private *file_priv;
2106
2107                         /* Revalidate access to controlling tty.
2108                            Use path_has_perm on the tty path directly rather
2109                            than using file_has_perm, as this particular open
2110                            file may belong to another process and we are only
2111                            interested in the inode-based check here. */
2112                         file_priv = list_first_entry(&tty->tty_files,
2113                                                 struct tty_file_private, list);
2114                         file = file_priv->file;
2115                         if (path_has_perm(cred, &file->f_path, FILE__READ | FILE__WRITE))
2116                                 drop_tty = 1;
2117                 }
2118                 spin_unlock(&tty_files_lock);
2119                 tty_kref_put(tty);
2120         }
2121         /* Reset controlling tty. */
2122         if (drop_tty)
2123                 no_tty();
2124
2125         /* Revalidate access to inherited open files. */
2126         spin_lock(&files->file_lock);
2127         for (;;) {
2128                 unsigned long set, i;
2129                 int fd;
2130
2131                 j++;
2132                 i = j * BITS_PER_LONG;
2133                 fdt = files_fdtable(files);
2134                 if (i >= fdt->max_fds)
2135                         break;
2136                 set = fdt->open_fds[j];
2137                 if (!set)
2138                         continue;
2139                 spin_unlock(&files->file_lock);
2140                 for ( ; set ; i++, set >>= 1) {
2141                         if (set & 1) {
2142                                 file = fget(i);
2143                                 if (!file)
2144                                         continue;
2145                                 if (file_has_perm(cred,
2146                                                   file,
2147                                                   file_to_av(file))) {
2148                                         sys_close(i);
2149                                         fd = get_unused_fd();
2150                                         if (fd != i) {
2151                                                 if (fd >= 0)
2152                                                         put_unused_fd(fd);
2153                                                 fput(file);
2154                                                 continue;
2155                                         }
2156                                         if (devnull) {
2157                                                 get_file(devnull);
2158                                         } else {
2159                                                 devnull = dentry_open(
2160                                                         &selinux_null,
2161                                                         O_RDWR, cred);
2162                                                 if (IS_ERR(devnull)) {
2163                                                         devnull = NULL;
2164                                                         put_unused_fd(fd);
2165                                                         fput(file);
2166                                                         continue;
2167                                                 }
2168                                         }
2169                                         fd_install(fd, devnull);
2170                                 }
2171                                 fput(file);
2172                         }
2173                 }
2174                 spin_lock(&files->file_lock);
2175
2176         }
2177         spin_unlock(&files->file_lock);
2178 }
2179
2180 /*
2181  * Prepare a process for imminent new credential changes due to exec
2182  */
2183 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2184 {
2185         struct task_security_struct *new_tsec;
2186         struct rlimit *rlim, *initrlim;
2187         int rc, i;
2188
2189         new_tsec = bprm->cred->security;
2190         if (new_tsec->sid == new_tsec->osid)
2191                 return;
2192
2193         /* Close files for which the new task SID is not authorized. */
2194         flush_unauthorized_files(bprm->cred, current->files);
2195
2196         /* Always clear parent death signal on SID transitions. */
2197         current->pdeath_signal = 0;
2198
2199         /* Check whether the new SID can inherit resource limits from the old
2200          * SID.  If not, reset all soft limits to the lower of the current
2201          * task's hard limit and the init task's soft limit.
2202          *
2203          * Note that the setting of hard limits (even to lower them) can be
2204          * controlled by the setrlimit check.  The inclusion of the init task's
2205          * soft limit into the computation is to avoid resetting soft limits
2206          * higher than the default soft limit for cases where the default is
2207          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2208          */
2209         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2210                           PROCESS__RLIMITINH, NULL);
2211         if (rc) {
2212                 /* protect against do_prlimit() */
2213                 task_lock(current);
2214                 for (i = 0; i < RLIM_NLIMITS; i++) {
2215                         rlim = current->signal->rlim + i;
2216                         initrlim = init_task.signal->rlim + i;
2217                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2218                 }
2219                 task_unlock(current);
2220                 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2221         }
2222 }
2223
2224 /*
2225  * Clean up the process immediately after the installation of new credentials
2226  * due to exec
2227  */
2228 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2229 {
2230         const struct task_security_struct *tsec = current_security();
2231         struct itimerval itimer;
2232         u32 osid, sid;
2233         int rc, i;
2234
2235         osid = tsec->osid;
2236         sid = tsec->sid;
2237
2238         if (sid == osid)
2239                 return;
2240
2241         /* Check whether the new SID can inherit signal state from the old SID.
2242          * If not, clear itimers to avoid subsequent signal generation and
2243          * flush and unblock signals.
2244          *
2245          * This must occur _after_ the task SID has been updated so that any
2246          * kill done after the flush will be checked against the new SID.
2247          */
2248         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2249         if (rc) {
2250                 memset(&itimer, 0, sizeof itimer);
2251                 for (i = 0; i < 3; i++)
2252                         do_setitimer(i, &itimer, NULL);
2253                 spin_lock_irq(&current->sighand->siglock);
2254                 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2255                         __flush_signals(current);
2256                         flush_signal_handlers(current, 1);
2257                         sigemptyset(&current->blocked);
2258                 }
2259                 spin_unlock_irq(&current->sighand->siglock);
2260         }
2261
2262         /* Wake up the parent if it is waiting so that it can recheck
2263          * wait permission to the new task SID. */
2264         read_lock(&tasklist_lock);
2265         __wake_up_parent(current, current->real_parent);
2266         read_unlock(&tasklist_lock);
2267 }
2268
2269 /* superblock security operations */
2270
2271 static int selinux_sb_alloc_security(struct super_block *sb)
2272 {
2273         return superblock_alloc_security(sb);
2274 }
2275
2276 static void selinux_sb_free_security(struct super_block *sb)
2277 {
2278         superblock_free_security(sb);
2279 }
2280
2281 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2282 {
2283         if (plen > olen)
2284                 return 0;
2285
2286         return !memcmp(prefix, option, plen);
2287 }
2288
2289 static inline int selinux_option(char *option, int len)
2290 {
2291         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2292                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2293                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2294                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2295                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2296 }
2297
2298 static inline void take_option(char **to, char *from, int *first, int len)
2299 {
2300         if (!*first) {
2301                 **to = ',';
2302                 *to += 1;
2303         } else
2304                 *first = 0;
2305         memcpy(*to, from, len);
2306         *to += len;
2307 }
2308
2309 static inline void take_selinux_option(char **to, char *from, int *first,
2310                                        int len)
2311 {
2312         int current_size = 0;
2313
2314         if (!*first) {
2315                 **to = '|';
2316                 *to += 1;
2317         } else
2318                 *first = 0;
2319
2320         while (current_size < len) {
2321                 if (*from != '"') {
2322                         **to = *from;
2323                         *to += 1;
2324                 }
2325                 from += 1;
2326                 current_size += 1;
2327         }
2328 }
2329
2330 static int selinux_sb_copy_data(char *orig, char *copy)
2331 {
2332         int fnosec, fsec, rc = 0;
2333         char *in_save, *in_curr, *in_end;
2334         char *sec_curr, *nosec_save, *nosec;
2335         int open_quote = 0;
2336
2337         in_curr = orig;
2338         sec_curr = copy;
2339
2340         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2341         if (!nosec) {
2342                 rc = -ENOMEM;
2343                 goto out;
2344         }
2345
2346         nosec_save = nosec;
2347         fnosec = fsec = 1;
2348         in_save = in_end = orig;
2349
2350         do {
2351                 if (*in_end == '"')
2352                         open_quote = !open_quote;
2353                 if ((*in_end == ',' && open_quote == 0) ||
2354                                 *in_end == '\0') {
2355                         int len = in_end - in_curr;
2356
2357                         if (selinux_option(in_curr, len))
2358                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2359                         else
2360                                 take_option(&nosec, in_curr, &fnosec, len);
2361
2362                         in_curr = in_end + 1;
2363                 }
2364         } while (*in_end++);
2365
2366         strcpy(in_save, nosec_save);
2367         free_page((unsigned long)nosec_save);
2368 out:
2369         return rc;
2370 }
2371
2372 static int selinux_sb_remount(struct super_block *sb, void *data)
2373 {
2374         int rc, i, *flags;
2375         struct security_mnt_opts opts;
2376         char *secdata, **mount_options;
2377         struct superblock_security_struct *sbsec = sb->s_security;
2378
2379         if (!(sbsec->flags & SE_SBINITIALIZED))
2380                 return 0;
2381
2382         if (!data)
2383                 return 0;
2384
2385         if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2386                 return 0;
2387
2388         security_init_mnt_opts(&opts);
2389         secdata = alloc_secdata();
2390         if (!secdata)
2391                 return -ENOMEM;
2392         rc = selinux_sb_copy_data(data, secdata);
2393         if (rc)
2394                 goto out_free_secdata;
2395
2396         rc = selinux_parse_opts_str(secdata, &opts);
2397         if (rc)
2398                 goto out_free_secdata;
2399
2400         mount_options = opts.mnt_opts;
2401         flags = opts.mnt_opts_flags;
2402
2403         for (i = 0; i < opts.num_mnt_opts; i++) {
2404                 u32 sid;
2405                 size_t len;
2406
2407                 if (flags[i] == SE_SBLABELSUPP)
2408                         continue;
2409                 len = strlen(mount_options[i]);
2410                 rc = security_context_to_sid(mount_options[i], len, &sid);
2411                 if (rc) {
2412                         printk(KERN_WARNING "SELinux: security_context_to_sid"
2413                                "(%s) failed for (dev %s, type %s) errno=%d\n",
2414                                mount_options[i], sb->s_id, sb->s_type->name, rc);
2415                         goto out_free_opts;
2416                 }
2417                 rc = -EINVAL;
2418                 switch (flags[i]) {
2419                 case FSCONTEXT_MNT:
2420                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2421                                 goto out_bad_option;
2422                         break;
2423                 case CONTEXT_MNT:
2424                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2425                                 goto out_bad_option;
2426                         break;
2427                 case ROOTCONTEXT_MNT: {
2428                         struct inode_security_struct *root_isec;
2429                         root_isec = sb->s_root->d_inode->i_security;
2430
2431                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2432                                 goto out_bad_option;
2433                         break;
2434                 }
2435                 case DEFCONTEXT_MNT:
2436                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2437                                 goto out_bad_option;
2438                         break;
2439                 default:
2440                         goto out_free_opts;
2441                 }
2442         }
2443
2444         rc = 0;
2445 out_free_opts:
2446         security_free_mnt_opts(&opts);
2447 out_free_secdata:
2448         free_secdata(secdata);
2449         return rc;
2450 out_bad_option:
2451         printk(KERN_WARNING "SELinux: unable to change security options "
2452                "during remount (dev %s, type=%s)\n", sb->s_id,
2453                sb->s_type->name);
2454         goto out_free_opts;
2455 }
2456
2457 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2458 {
2459         const struct cred *cred = current_cred();
2460         struct common_audit_data ad;
2461         int rc;
2462
2463         rc = superblock_doinit(sb, data);
2464         if (rc)
2465                 return rc;
2466
2467         /* Allow all mounts performed by the kernel */
2468         if (flags & MS_KERNMOUNT)
2469                 return 0;
2470
2471         ad.type = LSM_AUDIT_DATA_DENTRY;
2472         ad.u.dentry = sb->s_root;
2473         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2474 }
2475
2476 static int selinux_sb_statfs(struct dentry *dentry)
2477 {
2478         const struct cred *cred = current_cred();
2479         struct common_audit_data ad;
2480
2481         ad.type = LSM_AUDIT_DATA_DENTRY;
2482         ad.u.dentry = dentry->d_sb->s_root;
2483         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2484 }
2485
2486 static int selinux_mount(char *dev_name,
2487                          struct path *path,
2488                          char *type,
2489                          unsigned long flags,
2490                          void *data)
2491 {
2492         const struct cred *cred = current_cred();
2493
2494         if (flags & MS_REMOUNT)
2495                 return superblock_has_perm(cred, path->dentry->d_sb,
2496                                            FILESYSTEM__REMOUNT, NULL);
2497         else
2498                 return path_has_perm(cred, path, FILE__MOUNTON);
2499 }
2500
2501 static int selinux_umount(struct vfsmount *mnt, int flags)
2502 {
2503         const struct cred *cred = current_cred();
2504
2505         return superblock_has_perm(cred, mnt->mnt_sb,
2506                                    FILESYSTEM__UNMOUNT, NULL);
2507 }
2508
2509 /* inode security operations */
2510
2511 static int selinux_inode_alloc_security(struct inode *inode)
2512 {
2513         return inode_alloc_security(inode);
2514 }
2515
2516 static void selinux_inode_free_security(struct inode *inode)
2517 {
2518         inode_free_security(inode);
2519 }
2520
2521 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2522                                        const struct qstr *qstr, char **name,
2523                                        void **value, size_t *len)
2524 {
2525         const struct task_security_struct *tsec = current_security();
2526         struct inode_security_struct *dsec;
2527         struct superblock_security_struct *sbsec;
2528         u32 sid, newsid, clen;
2529         int rc;
2530         char *namep = NULL, *context;
2531
2532         dsec = dir->i_security;
2533         sbsec = dir->i_sb->s_security;
2534
2535         sid = tsec->sid;
2536         newsid = tsec->create_sid;
2537
2538         if ((sbsec->flags & SE_SBINITIALIZED) &&
2539             (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2540                 newsid = sbsec->mntpoint_sid;
2541         else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2542                 rc = security_transition_sid(sid, dsec->sid,
2543                                              inode_mode_to_security_class(inode->i_mode),
2544                                              qstr, &newsid);
2545                 if (rc) {
2546                         printk(KERN_WARNING "%s:  "
2547                                "security_transition_sid failed, rc=%d (dev=%s "
2548                                "ino=%ld)\n",
2549                                __func__,
2550                                -rc, inode->i_sb->s_id, inode->i_ino);
2551                         return rc;
2552                 }
2553         }
2554
2555         /* Possibly defer initialization to selinux_complete_init. */
2556         if (sbsec->flags & SE_SBINITIALIZED) {
2557                 struct inode_security_struct *isec = inode->i_security;
2558                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2559                 isec->sid = newsid;
2560                 isec->initialized = 1;
2561         }
2562
2563         if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2564                 return -EOPNOTSUPP;
2565
2566         if (name) {
2567                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2568                 if (!namep)
2569                         return -ENOMEM;
2570                 *name = namep;
2571         }
2572
2573         if (value && len) {
2574                 rc = security_sid_to_context_force(newsid, &context, &clen);
2575                 if (rc) {
2576                         kfree(namep);
2577                         return rc;
2578                 }
2579                 *value = context;
2580                 *len = clen;
2581         }
2582
2583         return 0;
2584 }
2585
2586 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2587 {
2588         return may_create(dir, dentry, SECCLASS_FILE);
2589 }
2590
2591 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2592 {
2593         return may_link(dir, old_dentry, MAY_LINK);
2594 }
2595
2596 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2597 {
2598         return may_link(dir, dentry, MAY_UNLINK);
2599 }
2600
2601 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2602 {
2603         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2604 }
2605
2606 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2607 {
2608         return may_create(dir, dentry, SECCLASS_DIR);
2609 }
2610
2611 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2612 {
2613         return may_link(dir, dentry, MAY_RMDIR);
2614 }
2615
2616 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2617 {
2618         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2619 }
2620
2621 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2622                                 struct inode *new_inode, struct dentry *new_dentry)
2623 {
2624         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2625 }
2626
2627 static int selinux_inode_readlink(struct dentry *dentry)
2628 {
2629         const struct cred *cred = current_cred();
2630
2631         return dentry_has_perm(cred, dentry, FILE__READ);
2632 }
2633
2634 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2635 {
2636         const struct cred *cred = current_cred();
2637
2638         return dentry_has_perm(cred, dentry, FILE__READ);
2639 }
2640
2641 static noinline int audit_inode_permission(struct inode *inode,
2642                                            u32 perms, u32 audited, u32 denied,
2643                                            unsigned flags)
2644 {
2645         struct common_audit_data ad;
2646         struct inode_security_struct *isec = inode->i_security;
2647         int rc;
2648
2649         ad.type = LSM_AUDIT_DATA_INODE;
2650         ad.u.inode = inode;
2651
2652         rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2653                             audited, denied, &ad, flags);
2654         if (rc)
2655                 return rc;
2656         return 0;
2657 }
2658
2659 static int selinux_inode_permission(struct inode *inode, int mask)
2660 {
2661         const struct cred *cred = current_cred();
2662         u32 perms;
2663         bool from_access;
2664         unsigned flags = mask & MAY_NOT_BLOCK;
2665         struct inode_security_struct *isec;
2666         u32 sid;
2667         struct av_decision avd;
2668         int rc, rc2;
2669         u32 audited, denied;
2670
2671         from_access = mask & MAY_ACCESS;
2672         mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2673
2674         /* No permission to check.  Existence test. */
2675         if (!mask)
2676                 return 0;
2677
2678         validate_creds(cred);
2679
2680         if (unlikely(IS_PRIVATE(inode)))
2681                 return 0;
2682
2683         perms = file_mask_to_av(inode->i_mode, mask);
2684
2685         sid = cred_sid(cred);
2686         isec = inode->i_security;
2687
2688         rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2689         audited = avc_audit_required(perms, &avd, rc,
2690                                      from_access ? FILE__AUDIT_ACCESS : 0,
2691                                      &denied);
2692         if (likely(!audited))
2693                 return rc;
2694
2695         rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
2696         if (rc2)
2697                 return rc2;
2698         return rc;
2699 }
2700
2701 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2702 {
2703         const struct cred *cred = current_cred();
2704         unsigned int ia_valid = iattr->ia_valid;
2705         __u32 av = FILE__WRITE;
2706
2707         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2708         if (ia_valid & ATTR_FORCE) {
2709                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2710                               ATTR_FORCE);
2711                 if (!ia_valid)
2712                         return 0;
2713         }
2714
2715         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2716                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2717                 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2718
2719         if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2720                 av |= FILE__OPEN;
2721
2722         return dentry_has_perm(cred, dentry, av);
2723 }
2724
2725 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2726 {
2727         const struct cred *cred = current_cred();
2728         struct path path;
2729
2730         path.dentry = dentry;
2731         path.mnt = mnt;
2732
2733         return path_has_perm(cred, &path, FILE__GETATTR);
2734 }
2735
2736 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2737 {
2738         const struct cred *cred = current_cred();
2739
2740         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2741                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2742                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2743                         if (!capable(CAP_SETFCAP))
2744                                 return -EPERM;
2745                 } else if (!capable(CAP_SYS_ADMIN)) {
2746                         /* A different attribute in the security namespace.
2747                            Restrict to administrator. */
2748                         return -EPERM;
2749                 }
2750         }
2751
2752         /* Not an attribute we recognize, so just check the
2753            ordinary setattr permission. */
2754         return dentry_has_perm(cred, dentry, FILE__SETATTR);
2755 }
2756
2757 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2758                                   const void *value, size_t size, int flags)
2759 {
2760         struct inode *inode = dentry->d_inode;
2761         struct inode_security_struct *isec = inode->i_security;
2762         struct superblock_security_struct *sbsec;
2763         struct common_audit_data ad;
2764         u32 newsid, sid = current_sid();
2765         int rc = 0;
2766
2767         if (strcmp(name, XATTR_NAME_SELINUX))
2768                 return selinux_inode_setotherxattr(dentry, name);
2769
2770         sbsec = inode->i_sb->s_security;
2771         if (!(sbsec->flags & SE_SBLABELSUPP))
2772                 return -EOPNOTSUPP;
2773
2774         if (!inode_owner_or_capable(inode))
2775                 return -EPERM;
2776
2777         ad.type = LSM_AUDIT_DATA_DENTRY;
2778         ad.u.dentry = dentry;
2779
2780         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2781                           FILE__RELABELFROM, &ad);
2782         if (rc)
2783                 return rc;
2784
2785         rc = security_context_to_sid(value, size, &newsid);
2786         if (rc == -EINVAL) {
2787                 if (!capable(CAP_MAC_ADMIN)) {
2788                         struct audit_buffer *ab;
2789                         size_t audit_size;
2790                         const char *str;
2791
2792                         /* We strip a nul only if it is at the end, otherwise the
2793                          * context contains a nul and we should audit that */
2794                         if (value) {
2795                                 str = value;
2796                                 if (str[size - 1] == '\0')
2797                                         audit_size = size - 1;
2798                                 else
2799                                         audit_size = size;
2800                         } else {
2801                                 str = "";
2802                                 audit_size = 0;
2803                         }
2804                         ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2805                         audit_log_format(ab, "op=setxattr invalid_context=");
2806                         audit_log_n_untrustedstring(ab, value, audit_size);
2807                         audit_log_end(ab);
2808
2809                         return rc;
2810                 }
2811                 rc = security_context_to_sid_force(value, size, &newsid);
2812         }
2813         if (rc)
2814                 return rc;
2815
2816         rc = avc_has_perm(sid, newsid, isec->sclass,
2817                           FILE__RELABELTO, &ad);
2818         if (rc)
2819                 return rc;
2820
2821         rc = security_validate_transition(isec->sid, newsid, sid,
2822                                           isec->sclass);
2823         if (rc)
2824                 return rc;
2825
2826         return avc_has_perm(newsid,
2827                             sbsec->sid,
2828                             SECCLASS_FILESYSTEM,
2829                             FILESYSTEM__ASSOCIATE,
2830                             &ad);
2831 }
2832
2833 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2834                                         const void *value, size_t size,
2835                                         int flags)
2836 {
2837         struct inode *inode = dentry->d_inode;
2838         struct inode_security_struct *isec = inode->i_security;
2839         u32 newsid;
2840         int rc;
2841
2842         if (strcmp(name, XATTR_NAME_SELINUX)) {
2843                 /* Not an attribute we recognize, so nothing to do. */
2844                 return;
2845         }
2846
2847         rc = security_context_to_sid_force(value, size, &newsid);
2848         if (rc) {
2849                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2850                        "for (%s, %lu), rc=%d\n",
2851                        inode->i_sb->s_id, inode->i_ino, -rc);
2852                 return;
2853         }
2854
2855         isec->sid = newsid;
2856         return;
2857 }
2858
2859 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2860 {
2861         const struct cred *cred = current_cred();
2862
2863         return dentry_has_perm(cred, dentry, FILE__GETATTR);
2864 }
2865
2866 static int selinux_inode_listxattr(struct dentry *dentry)
2867 {
2868         const struct cred *cred = current_cred();
2869
2870         return dentry_has_perm(cred, dentry, FILE__GETATTR);
2871 }
2872
2873 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2874 {
2875         if (strcmp(name, XATTR_NAME_SELINUX))
2876                 return selinux_inode_setotherxattr(dentry, name);
2877
2878         /* No one is allowed to remove a SELinux security label.
2879            You can change the label, but all data must be labeled. */
2880         return -EACCES;
2881 }
2882
2883 /*
2884  * Copy the inode security context value to the user.
2885  *
2886  * Permission check is handled by selinux_inode_getxattr hook.
2887  */
2888 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2889 {
2890         u32 size;
2891         int error;
2892         char *context = NULL;
2893         struct inode_security_struct *isec = inode->i_security;
2894
2895         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2896                 return -EOPNOTSUPP;
2897
2898         /*
2899          * If the caller has CAP_MAC_ADMIN, then get the raw context
2900          * value even if it is not defined by current policy; otherwise,
2901          * use the in-core value under current policy.
2902          * Use the non-auditing forms of the permission checks since
2903          * getxattr may be called by unprivileged processes commonly
2904          * and lack of permission just means that we fall back to the
2905          * in-core context value, not a denial.
2906          */
2907         error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
2908                                 SECURITY_CAP_NOAUDIT);
2909         if (!error)
2910                 error = security_sid_to_context_force(isec->sid, &context,
2911                                                       &size);
2912         else
2913                 error = security_sid_to_context(isec->sid, &context, &size);
2914         if (error)
2915                 return error;
2916         error = size;
2917         if (alloc) {
2918                 *buffer = context;
2919                 goto out_nofree;
2920         }
2921         kfree(context);
2922 out_nofree:
2923         return error;
2924 }
2925
2926 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2927                                      const void *value, size_t size, int flags)
2928 {
2929         struct inode_security_struct *isec = inode->i_security;
2930         u32 newsid;
2931         int rc;
2932
2933         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2934                 return -EOPNOTSUPP;
2935
2936         if (!value || !size)
2937                 return -EACCES;
2938
2939         rc = security_context_to_sid((void *)value, size, &newsid);
2940         if (rc)
2941                 return rc;
2942
2943         isec->sid = newsid;
2944         isec->initialized = 1;
2945         return 0;
2946 }
2947
2948 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2949 {
2950         const int len = sizeof(XATTR_NAME_SELINUX);
2951         if (buffer && len <= buffer_size)
2952                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2953         return len;
2954 }
2955
2956 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2957 {
2958         struct inode_security_struct *isec = inode->i_security;
2959         *secid = isec->sid;
2960 }
2961
2962 /* file security operations */
2963
2964 static int selinux_revalidate_file_permission(struct file *file, int mask)
2965 {
2966         const struct cred *cred = current_cred();
2967         struct inode *inode = file->f_path.dentry->d_inode;
2968
2969         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2970         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2971                 mask |= MAY_APPEND;
2972
2973         return file_has_perm(cred, file,
2974                              file_mask_to_av(inode->i_mode, mask));
2975 }
2976
2977 static int selinux_file_permission(struct file *file, int mask)
2978 {
2979         struct inode *inode = file->f_path.dentry->d_inode;
2980         struct file_security_struct *fsec = file->f_security;
2981         struct inode_security_struct *isec = inode->i_security;
2982         u32 sid = current_sid();
2983
2984         if (!mask)
2985                 /* No permission to check.  Existence test. */
2986                 return 0;
2987
2988         if (sid == fsec->sid && fsec->isid == isec->sid &&
2989             fsec->pseqno == avc_policy_seqno())
2990                 /* No change since file_open check. */
2991                 return 0;
2992
2993         return selinux_revalidate_file_permission(file, mask);
2994 }
2995
2996 static int selinux_file_alloc_security(struct file *file)
2997 {
2998         return file_alloc_security(file);
2999 }
3000
3001 static void selinux_file_free_security(struct file *file)
3002 {
3003         file_free_security(file);
3004 }
3005
3006 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3007                               unsigned long arg)
3008 {
3009         const struct cred *cred = current_cred();
3010         int error = 0;
3011
3012         switch (cmd) {
3013         case FIONREAD:
3014         /* fall through */
3015         case FIBMAP:
3016         /* fall through */
3017         case FIGETBSZ:
3018         /* fall through */
3019         case FS_IOC_GETFLAGS:
3020         /* fall through */
3021         case FS_IOC_GETVERSION:
3022                 error = file_has_perm(cred, file, FILE__GETATTR);
3023                 break;
3024
3025         case FS_IOC_SETFLAGS:
3026         /* fall through */
3027         case FS_IOC_SETVERSION:
3028                 error = file_has_perm(cred, file, FILE__SETATTR);
3029                 break;
3030
3031         /* sys_ioctl() checks */
3032         case FIONBIO:
3033         /* fall through */
3034         case FIOASYNC:
3035                 error = file_has_perm(cred, file, 0);
3036                 break;
3037
3038         case KDSKBENT:
3039         case KDSKBSENT:
3040                 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3041                                             SECURITY_CAP_AUDIT);
3042                 break;
3043
3044         /* default case assumes that the command will go
3045          * to the file's ioctl() function.
3046          */
3047         default:
3048                 error = file_has_perm(cred, file, FILE__IOCTL);
3049         }
3050         return error;
3051 }
3052
3053 static int default_noexec;
3054
3055 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3056 {
3057         const struct cred *cred = current_cred();
3058         int rc = 0;
3059
3060         if (default_noexec &&
3061             (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3062                 /*
3063                  * We are making executable an anonymous mapping or a
3064                  * private file mapping that will also be writable.
3065                  * This has an additional check.
3066                  */
3067                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3068                 if (rc)
3069                         goto error;
3070         }
3071
3072         if (file) {
3073                 /* read access is always possible with a mapping */
3074                 u32 av = FILE__READ;
3075
3076                 /* write access only matters if the mapping is shared */
3077                 if (shared && (prot & PROT_WRITE))
3078                         av |= FILE__WRITE;
3079
3080                 if (prot & PROT_EXEC)
3081                         av |= FILE__EXECUTE;
3082
3083                 return file_has_perm(cred, file, av);
3084         }
3085
3086 error:
3087         return rc;
3088 }
3089
3090 static int selinux_mmap_addr(unsigned long addr)
3091 {
3092         int rc = 0;
3093         u32 sid = current_sid();
3094
3095         /*
3096          * notice that we are intentionally putting the SELinux check before
3097          * the secondary cap_file_mmap check.  This is such a likely attempt
3098          * at bad behaviour/exploit that we always want to get the AVC, even
3099          * if DAC would have also denied the operation.
3100          */
3101         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3102                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3103                                   MEMPROTECT__MMAP_ZERO, NULL);
3104                 if (rc)
3105                         return rc;
3106         }
3107
3108         /* do DAC check on address space usage */
3109         return cap_mmap_addr(addr);
3110 }
3111
3112 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3113                              unsigned long prot, unsigned long flags)
3114 {
3115         if (selinux_checkreqprot)
3116                 prot = reqprot;
3117
3118         return file_map_prot_check(file, prot,
3119                                    (flags & MAP_TYPE) == MAP_SHARED);
3120 }
3121
3122 static int selinux_file_mprotect(struct vm_area_struct *vma,
3123                                  unsigned long reqprot,
3124                                  unsigned long prot)
3125 {
3126         const struct cred *cred = current_cred();
3127
3128         if (selinux_checkreqprot)
3129                 prot = reqprot;
3130
3131         if (default_noexec &&
3132             (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3133                 int rc = 0;
3134                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3135                     vma->vm_end <= vma->vm_mm->brk) {
3136                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3137                 } else if (!vma->vm_file &&
3138                            vma->vm_start <= vma->vm_mm->start_stack &&
3139                            vma->vm_end >= vma->vm_mm->start_stack) {
3140                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3141                 } else if (vma->vm_file && vma->anon_vma) {
3142                         /*
3143                          * We are making executable a file mapping that has
3144                          * had some COW done. Since pages might have been
3145                          * written, check ability to execute the possibly
3146                          * modified content.  This typically should only
3147                          * occur for text relocations.
3148                          */
3149                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3150                 }
3151                 if (rc)
3152                         return rc;
3153         }
3154
3155         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3156 }
3157
3158 static int selinux_file_lock(struct file *file, unsigned int cmd)
3159 {
3160         const struct cred *cred = current_cred();
3161
3162         return file_has_perm(cred, file, FILE__LOCK);
3163 }
3164
3165 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3166                               unsigned long arg)
3167 {
3168         const struct cred *cred = current_cred();
3169         int err = 0;
3170
3171         switch (cmd) {
3172         case F_SETFL:
3173                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3174                         err = -EINVAL;
3175                         break;
3176                 }
3177
3178                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3179                         err = file_has_perm(cred, file, FILE__WRITE);
3180                         break;
3181                 }
3182                 /* fall through */
3183         case F_SETOWN:
3184         case F_SETSIG:
3185         case F_GETFL:
3186         case F_GETOWN:
3187         case F_GETSIG:
3188         case F_GETOWNER_UIDS:
3189                 /* Just check FD__USE permission */
3190                 err = file_has_perm(cred, file, 0);
3191                 break;
3192         case F_GETLK:
3193         case F_SETLK:
3194         case F_SETLKW:
3195 #if BITS_PER_LONG == 32
3196         case F_GETLK64:
3197         case F_SETLK64:
3198         case F_SETLKW64:
3199 #endif
3200                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3201                         err = -EINVAL;
3202                         break;
3203                 }
3204                 err = file_has_perm(cred, file, FILE__LOCK);
3205                 break;
3206         }
3207
3208         return err;
3209 }
3210
3211 static int selinux_file_set_fowner(struct file *file)
3212 {
3213         struct file_security_struct *fsec;
3214
3215         fsec = file->f_security;
3216         fsec->fown_sid = current_sid();
3217
3218         return 0;
3219 }
3220
3221 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3222                                        struct fown_struct *fown, int signum)
3223 {
3224         struct file *file;
3225         u32 sid = task_sid(tsk);
3226         u32 perm;
3227         struct file_security_struct *fsec;
3228
3229         /* struct fown_struct is never outside the context of a struct file */
3230         file = container_of(fown, struct file, f_owner);
3231
3232         fsec = file->f_security;
3233
3234         if (!signum)
3235                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3236         else
3237                 perm = signal_to_av(signum);
3238
3239         return avc_has_perm(fsec->fown_sid, sid,
3240                             SECCLASS_PROCESS, perm, NULL);
3241 }
3242
3243 static int selinux_file_receive(struct file *file)
3244 {
3245         const struct cred *cred = current_cred();
3246
3247         return file_has_perm(cred, file, file_to_av(file));
3248 }
3249
3250 static int selinux_file_open(struct file *file, const struct cred *cred)
3251 {
3252         struct file_security_struct *fsec;
3253         struct inode_security_struct *isec;
3254
3255         fsec = file->f_security;
3256         isec = file->f_path.dentry->d_inode->i_security;
3257         /*
3258          * Save inode label and policy sequence number
3259          * at open-time so that selinux_file_permission
3260          * can determine whether revalidation is necessary.
3261          * Task label is already saved in the file security
3262          * struct as its SID.
3263          */
3264         fsec->isid = isec->sid;
3265         fsec->pseqno = avc_policy_seqno();
3266         /*
3267          * Since the inode label or policy seqno may have changed
3268          * between the selinux_inode_permission check and the saving
3269          * of state above, recheck that access is still permitted.
3270          * Otherwise, access might never be revalidated against the
3271          * new inode label or new policy.
3272          * This check is not redundant - do not remove.
3273          */
3274         return path_has_perm(cred, &file->f_path, open_file_to_av(file));
3275 }
3276
3277 /* task security operations */
3278
3279 static int selinux_task_create(unsigned long clone_flags)
3280 {
3281         return current_has_perm(current, PROCESS__FORK);
3282 }
3283
3284 /*
3285  * allocate the SELinux part of blank credentials
3286  */
3287 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3288 {
3289         struct task_security_struct *tsec;
3290
3291         tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3292         if (!tsec)
3293                 return -ENOMEM;
3294
3295         cred->security = tsec;
3296         return 0;
3297 }
3298
3299 /*
3300  * detach and free the LSM part of a set of credentials
3301  */
3302 static void selinux_cred_free(struct cred *cred)
3303 {
3304         struct task_security_struct *tsec = cred->security;
3305
3306         /*
3307          * cred->security == NULL if security_cred_alloc_blank() or
3308          * security_prepare_creds() returned an error.
3309          */
3310         BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3311         cred->security = (void *) 0x7UL;
3312         kfree(tsec);
3313 }
3314
3315 /*
3316  * prepare a new set of credentials for modification
3317  */
3318 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3319                                 gfp_t gfp)
3320 {
3321         const struct task_security_struct *old_tsec;
3322         struct task_security_struct *tsec;
3323
3324         old_tsec = old->security;
3325
3326         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3327         if (!tsec)
3328                 return -ENOMEM;
3329
3330         new->security = tsec;
3331         return 0;
3332 }
3333
3334 /*
3335  * transfer the SELinux data to a blank set of creds
3336  */
3337 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3338 {
3339         const struct task_security_struct *old_tsec = old->security;
3340         struct task_security_struct *tsec = new->security;
3341
3342         *tsec = *old_tsec;
3343 }
3344
3345 /*
3346  * set the security data for a kernel service
3347  * - all the creation contexts are set to unlabelled
3348  */
3349 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3350 {
3351         struct task_security_struct *tsec = new->security;
3352         u32 sid = current_sid();
3353         int ret;
3354
3355         ret = avc_has_perm(sid, secid,
3356                            SECCLASS_KERNEL_SERVICE,
3357                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3358                            NULL);
3359         if (ret == 0) {
3360                 tsec->sid = secid;
3361                 tsec->create_sid = 0;
3362                 tsec->keycreate_sid = 0;
3363                 tsec->sockcreate_sid = 0;
3364         }
3365         return ret;
3366 }
3367
3368 /*
3369  * set the file creation context in a security record to the same as the
3370  * objective context of the specified inode
3371  */
3372 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3373 {
3374         struct inode_security_struct *isec = inode->i_security;
3375         struct task_security_struct *tsec = new->security;
3376         u32 sid = current_sid();
3377         int ret;
3378
3379         ret = avc_has_perm(sid, isec->sid,
3380                            SECCLASS_KERNEL_SERVICE,
3381                            KERNEL_SERVICE__CREATE_FILES_AS,
3382                            NULL);
3383
3384         if (ret == 0)
3385                 tsec->create_sid = isec->sid;
3386         return ret;
3387 }
3388
3389 static int selinux_kernel_module_request(char *kmod_name)
3390 {
3391         u32 sid;
3392         struct common_audit_data ad;
3393
3394         sid = task_sid(current);
3395
3396         ad.type = LSM_AUDIT_DATA_KMOD;
3397         ad.u.kmod_name = kmod_name;
3398
3399         return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3400                             SYSTEM__MODULE_REQUEST, &ad);
3401 }
3402
3403 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3404 {
3405         return current_has_perm(p, PROCESS__SETPGID);
3406 }
3407
3408 static int selinux_task_getpgid(struct task_struct *p)
3409 {
3410         return current_has_perm(p, PROCESS__GETPGID);
3411 }
3412
3413 static int selinux_task_getsid(struct task_struct *p)
3414 {
3415         return current_has_perm(p, PROCESS__GETSESSION);
3416 }
3417
3418 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3419 {
3420         *secid = task_sid(p);
3421 }
3422
3423 static int selinux_task_setnice(struct task_struct *p, int nice)
3424 {
3425         int rc;
3426
3427         rc = cap_task_setnice(p, nice);
3428         if (rc)
3429                 return rc;
3430
3431         return current_has_perm(p, PROCESS__SETSCHED);
3432 }
3433
3434 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3435 {
3436         int rc;
3437
3438         rc = cap_task_setioprio(p, ioprio);
3439         if (rc)
3440                 return rc;
3441
3442         return current_has_perm(p, PROCESS__SETSCHED);
3443 }
3444
3445 static int selinux_task_getioprio(struct task_struct *p)
3446 {
3447         return current_has_perm(p, PROCESS__GETSCHED);
3448 }
3449
3450 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3451                 struct rlimit *new_rlim)
3452 {
3453         struct rlimit *old_rlim = p->signal->rlim + resource;
3454
3455         /* Control the ability to change the hard limit (whether
3456            lowering or raising it), so that the hard limit can
3457            later be used as a safe reset point for the soft limit
3458            upon context transitions.  See selinux_bprm_committing_creds. */
3459         if (old_rlim->rlim_max != new_rlim->rlim_max)
3460                 return current_has_perm(p, PROCESS__SETRLIMIT);
3461
3462         return 0;
3463 }
3464
3465 static int selinux_task_setscheduler(struct task_struct *p)
3466 {
3467         int rc;
3468
3469         rc = cap_task_setscheduler(p);
3470         if (rc)
3471                 return rc;
3472
3473         return current_has_perm(p, PROCESS__SETSCHED);
3474 }
3475
3476 static int selinux_task_getscheduler(struct task_struct *p)
3477 {
3478         return current_has_perm(p, PROCESS__GETSCHED);
3479 }
3480
3481 static int selinux_task_movememory(struct task_struct *p)
3482 {
3483         return current_has_perm(p, PROCESS__SETSCHED);
3484 }
3485
3486 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3487                                 int sig, u32 secid)
3488 {
3489         u32 perm;
3490         int rc;
3491
3492         if (!sig)
3493                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3494         else
3495                 perm = signal_to_av(sig);
3496         if (secid)
3497                 rc = avc_has_perm(secid, task_sid(p),
3498                                   SECCLASS_PROCESS, perm, NULL);
3499         else
3500                 rc = current_has_perm(p, perm);
3501         return rc;
3502 }
3503
3504 static int selinux_task_wait(struct task_struct *p)
3505 {
3506         return task_has_perm(p, current, PROCESS__SIGCHLD);
3507 }
3508
3509 static void selinux_task_to_inode(struct task_struct *p,
3510                                   struct inode *inode)
3511 {
3512         struct inode_security_struct *isec = inode->i_security;
3513         u32 sid = task_sid(p);
3514
3515         isec->sid = sid;
3516         isec->initialized = 1;
3517 }
3518
3519 /* Returns error only if unable to parse addresses */
3520 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3521                         struct common_audit_data *ad, u8 *proto)
3522 {
3523         int offset, ihlen, ret = -EINVAL;
3524         struct iphdr _iph, *ih;
3525
3526         offset = skb_network_offset(skb);
3527         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3528         if (ih == NULL)
3529                 goto out;
3530
3531         ihlen = ih->ihl * 4;
3532         if (ihlen < sizeof(_iph))
3533                 goto out;
3534
3535         ad->u.net->v4info.saddr = ih->saddr;
3536         ad->u.net->v4info.daddr = ih->daddr;
3537         ret = 0;
3538
3539         if (proto)
3540                 *proto = ih->protocol;
3541
3542         switch (ih->protocol) {
3543         case IPPROTO_TCP: {
3544                 struct tcphdr _tcph, *th;
3545
3546                 if (ntohs(ih->frag_off) & IP_OFFSET)
3547                         break;
3548
3549                 offset += ihlen;
3550                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3551                 if (th == NULL)
3552                         break;
3553
3554                 ad->u.net->sport = th->source;
3555                 ad->u.net->dport = th->dest;
3556                 break;
3557         }
3558
3559         case IPPROTO_UDP: {
3560                 struct udphdr _udph, *uh;
3561
3562                 if (ntohs(ih->frag_off) & IP_OFFSET)
3563                         break;
3564
3565                 offset += ihlen;
3566                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3567                 if (uh == NULL)
3568                         break;
3569
3570                 ad->u.net->sport = uh->source;
3571                 ad->u.net->dport = uh->dest;
3572                 break;
3573         }
3574
3575         case IPPROTO_DCCP: {
3576                 struct dccp_hdr _dccph, *dh;
3577
3578                 if (ntohs(ih->frag_off) & IP_OFFSET)
3579                         break;
3580
3581                 offset += ihlen;
3582                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3583                 if (dh == NULL)
3584                         break;
3585
3586                 ad->u.net->sport = dh->dccph_sport;
3587                 ad->u.net->dport = dh->dccph_dport;
3588                 break;
3589         }
3590
3591         default:
3592                 break;
3593         }
3594 out:
3595         return ret;
3596 }
3597
3598 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3599
3600 /* Returns error only if unable to parse addresses */
3601 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3602                         struct common_audit_data *ad, u8 *proto)
3603 {
3604         u8 nexthdr;
3605         int ret = -EINVAL, offset;
3606         struct ipv6hdr _ipv6h, *ip6;
3607         __be16 frag_off;
3608
3609         offset = skb_network_offset(skb);
3610         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3611         if (ip6 == NULL)
3612                 goto out;
3613
3614         ad->u.net->v6info.saddr = ip6->saddr;
3615         ad->u.net->v6info.daddr = ip6->daddr;
3616         ret = 0;
3617
3618         nexthdr = ip6->nexthdr;
3619         offset += sizeof(_ipv6h);
3620         offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3621         if (offset < 0)
3622                 goto out;
3623
3624         if (proto)
3625                 *proto = nexthdr;
3626
3627         switch (nexthdr) {
3628         case IPPROTO_TCP: {
3629                 struct tcphdr _tcph, *th;
3630
3631                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3632                 if (th == NULL)
3633                         break;
3634
3635                 ad->u.net->sport = th->source;
3636                 ad->u.net->dport = th->dest;
3637                 break;
3638         }
3639
3640         case IPPROTO_UDP: {
3641                 struct udphdr _udph, *uh;
3642
3643                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3644                 if (uh == NULL)
3645                         break;
3646
3647                 ad->u.net->sport = uh->source;
3648                 ad->u.net->dport = uh->dest;
3649                 break;
3650         }
3651
3652         case IPPROTO_DCCP: {
3653                 struct dccp_hdr _dccph, *dh;
3654
3655                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3656                 if (dh == NULL)
3657                         break;
3658
3659                 ad->u.net->sport = dh->dccph_sport;
3660                 ad->u.net->dport = dh->dccph_dport;
3661                 break;
3662         }
3663
3664         /* includes fragments */
3665         default:
3666                 break;
3667         }
3668 out:
3669         return ret;
3670 }
3671
3672 #endif /* IPV6 */
3673
3674 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3675                              char **_addrp, int src, u8 *proto)
3676 {
3677         char *addrp;
3678         int ret;
3679
3680         switch (ad->u.net->family) {
3681         case PF_INET:
3682                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3683                 if (ret)
3684                         goto parse_error;
3685                 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3686                                        &ad->u.net->v4info.daddr);
3687                 goto okay;
3688
3689 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3690         case PF_INET6:
3691                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3692                 if (ret)
3693                         goto parse_error;
3694                 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3695                                        &ad->u.net->v6info.daddr);
3696                 goto okay;
3697 #endif  /* IPV6 */
3698         default:
3699                 addrp = NULL;
3700                 goto okay;
3701         }
3702
3703 parse_error:
3704         printk(KERN_WARNING
3705                "SELinux: failure in selinux_parse_skb(),"
3706                " unable to parse packet\n");
3707         return ret;
3708
3709 okay:
3710         if (_addrp)
3711                 *_addrp = addrp;
3712         return 0;
3713 }
3714
3715 /**
3716  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3717  * @skb: the packet
3718  * @family: protocol family
3719  * @sid: the packet's peer label SID
3720  *
3721  * Description:
3722  * Check the various different forms of network peer labeling and determine
3723  * the peer label/SID for the packet; most of the magic actually occurs in
3724  * the security server function security_net_peersid_cmp().  The function
3725  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3726  * or -EACCES if @sid is invalid due to inconsistencies with the different
3727  * peer labels.
3728  *
3729  */
3730 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3731 {
3732         int err;
3733         u32 xfrm_sid;
3734         u32 nlbl_sid;
3735         u32 nlbl_type;
3736
3737         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3738         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3739
3740         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3741         if (unlikely(err)) {
3742                 printk(KERN_WARNING
3743                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3744                        " unable to determine packet's peer label\n");
3745                 return -EACCES;
3746         }
3747
3748         return 0;
3749 }
3750
3751 /* socket security operations */
3752
3753 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3754                                  u16 secclass, u32 *socksid)
3755 {
3756         if (tsec->sockcreate_sid > SECSID_NULL) {
3757                 *socksid = tsec->sockcreate_sid;
3758                 return 0;
3759         }
3760
3761         return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3762                                        socksid);
3763 }
3764
3765 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3766 {
3767         struct sk_security_struct *sksec = sk->sk_security;
3768         struct common_audit_data ad;
3769         struct lsm_network_audit net = {0,};
3770         u32 tsid = task_sid(task);
3771
3772         if (sksec->sid == SECINITSID_KERNEL)
3773                 return 0;
3774
3775         ad.type = LSM_AUDIT_DATA_NET;
3776         ad.u.net = &net;
3777         ad.u.net->sk = sk;
3778
3779         return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3780 }
3781
3782 static int selinux_socket_create(int family, int type,
3783                                  int protocol, int kern)
3784 {
3785         const struct task_security_struct *tsec = current_security();
3786         u32 newsid;
3787         u16 secclass;
3788         int rc;
3789
3790         if (kern)
3791                 return 0;
3792
3793         secclass = socket_type_to_security_class(family, type, protocol);
3794         rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3795         if (rc)
3796                 return rc;
3797
3798         return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3799 }
3800
3801 static int selinux_socket_post_create(struct socket *sock, int family,
3802                                       int type, int protocol, int kern)
3803 {
3804         const struct task_security_struct *tsec = current_security();
3805         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3806         struct sk_security_struct *sksec;
3807         int err = 0;
3808
3809         isec->sclass = socket_type_to_security_class(family, type, protocol);
3810
3811         if (kern)
3812                 isec->sid = SECINITSID_KERNEL;
3813         else {
3814                 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3815                 if (err)
3816                         return err;
3817         }
3818
3819         isec->initialized = 1;
3820
3821         if (sock->sk) {
3822                 sksec = sock->sk->sk_security;
3823                 sksec->sid = isec->sid;
3824                 sksec->sclass = isec->sclass;
3825                 err = selinux_netlbl_socket_post_create(sock->sk, family);
3826         }
3827
3828         return err;
3829 }
3830
3831 /* Range of port numbers used to automatically bind.
3832    Need to determine whether we should perform a name_bind
3833    permission check between the socket and the port number. */
3834
3835 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3836 {
3837         struct sock *sk = sock->sk;
3838         u16 family;
3839         int err;
3840
3841         err = sock_has_perm(current, sk, SOCKET__BIND);
3842         if (err)
3843                 goto out;
3844
3845         /*
3846          * If PF_INET or PF_INET6, check name_bind permission for the port.
3847          * Multiple address binding for SCTP is not supported yet: we just
3848          * check the first address now.
3849          */
3850         family = sk->sk_family;
3851         if (family == PF_INET || family == PF_INET6) {
3852                 char *addrp;
3853                 struct sk_security_struct *sksec = sk->sk_security;
3854                 struct common_audit_data ad;
3855                 struct lsm_network_audit net = {0,};
3856                 struct sockaddr_in *addr4 = NULL;
3857                 struct sockaddr_in6 *addr6 = NULL;
3858                 unsigned short snum;
3859                 u32 sid, node_perm;
3860
3861                 if (family == PF_INET) {
3862                         addr4 = (struct sockaddr_in *)address;
3863                         snum = ntohs(addr4->sin_port);
3864                         addrp = (char *)&addr4->sin_addr.s_addr;
3865                 } else {
3866                         addr6 = (struct sockaddr_in6 *)address;
3867                         snum = ntohs(addr6->sin6_port);
3868                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3869                 }
3870
3871                 if (snum) {
3872                         int low, high;
3873
3874                         inet_get_local_port_range(&low, &high);
3875
3876                         if (snum < max(PROT_SOCK, low) || snum > high) {
3877                                 err = sel_netport_sid(sk->sk_protocol,
3878                                                       snum, &sid);
3879                                 if (err)
3880                                         goto out;
3881                                 ad.type = LSM_AUDIT_DATA_NET;
3882                                 ad.u.net = &net;
3883                                 ad.u.net->sport = htons(snum);
3884                                 ad.u.net->family = family;
3885                                 err = avc_has_perm(sksec->sid, sid,
3886                                                    sksec->sclass,
3887                                                    SOCKET__NAME_BIND, &ad);
3888                                 if (err)
3889                                         goto out;
3890                         }
3891                 }
3892
3893                 switch (sksec->sclass) {
3894                 case SECCLASS_TCP_SOCKET:
3895                         node_perm = TCP_SOCKET__NODE_BIND;
3896                         break;
3897
3898                 case SECCLASS_UDP_SOCKET:
3899                         node_perm = UDP_SOCKET__NODE_BIND;
3900                         break;
3901
3902                 case SECCLASS_DCCP_SOCKET:
3903                         node_perm = DCCP_SOCKET__NODE_BIND;
3904                         break;
3905
3906                 default:
3907                         node_perm = RAWIP_SOCKET__NODE_BIND;
3908                         break;
3909                 }
3910
3911                 err = sel_netnode_sid(addrp, family, &sid);
3912                 if (err)
3913                         goto out;
3914
3915                 ad.type = LSM_AUDIT_DATA_NET;
3916                 ad.u.net = &net;
3917                 ad.u.net->sport = htons(snum);
3918                 ad.u.net->family = family;
3919
3920                 if (family == PF_INET)
3921                         ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
3922                 else
3923                         ad.u.net->v6info.saddr = addr6->sin6_addr;
3924
3925                 err = avc_has_perm(sksec->sid, sid,
3926                                    sksec->sclass, node_perm, &ad);
3927                 if (err)
3928                         goto out;
3929         }
3930 out:
3931         return err;
3932 }
3933
3934 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3935 {
3936         struct sock *sk = sock->sk;
3937         struct sk_security_struct *sksec = sk->sk_security;
3938         int err;
3939
3940         err = sock_has_perm(current, sk, SOCKET__CONNECT);
3941         if (err)
3942                 return err;
3943
3944         /*
3945          * If a TCP or DCCP socket, check name_connect permission for the port.
3946          */
3947         if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3948             sksec->sclass == SECCLASS_DCCP_SOCKET) {
3949                 struct common_audit_data ad;
3950                 struct lsm_network_audit net = {0,};
3951                 struct sockaddr_in *addr4 = NULL;
3952                 struct sockaddr_in6 *addr6 = NULL;
3953                 unsigned short snum;
3954                 u32 sid, perm;
3955
3956                 if (sk->sk_family == PF_INET) {
3957                         addr4 = (struct sockaddr_in *)address;
3958                         if (addrlen < sizeof(struct sockaddr_in))
3959                                 return -EINVAL;
3960                         snum = ntohs(addr4->sin_port);
3961                 } else {
3962                         addr6 = (struct sockaddr_in6 *)address;
3963                         if (addrlen < SIN6_LEN_RFC2133)
3964                                 return -EINVAL;
3965                         snum = ntohs(addr6->sin6_port);
3966                 }
3967
3968                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3969                 if (err)
3970                         goto out;
3971
3972                 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3973                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3974
3975                 ad.type = LSM_AUDIT_DATA_NET;
3976                 ad.u.net = &net;
3977                 ad.u.net->dport = htons(snum);
3978                 ad.u.net->family = sk->sk_family;
3979                 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
3980                 if (err)
3981                         goto out;
3982         }
3983
3984         err = selinux_netlbl_socket_connect(sk, address);
3985
3986 out:
3987         return err;
3988 }
3989
3990 static int selinux_socket_listen(struct socket *sock, int backlog)
3991 {
3992         return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3993 }
3994
3995 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3996 {
3997         int err;
3998         struct inode_security_struct *isec;
3999         struct inode_security_struct *newisec;
4000
4001         err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4002         if (err)
4003                 return err;
4004
4005         newisec = SOCK_INODE(newsock)->i_security;
4006
4007         isec = SOCK_INODE(sock)->i_security;
4008         newisec->sclass = isec->sclass;
4009         newisec->sid = isec->sid;
4010         newisec->initialized = 1;
4011
4012         return 0;
4013 }
4014
4015 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4016                                   int size)
4017 {
4018         return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4019 }
4020
4021 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4022                                   int size, int flags)
4023 {
4024         return sock_has_perm(current, sock->sk, SOCKET__READ);
4025 }
4026
4027 static int selinux_socket_getsockname(struct socket *sock)
4028 {
4029         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4030 }
4031
4032 static int selinux_socket_getpeername(struct socket *sock)
4033 {
4034         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4035 }
4036
4037 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4038 {
4039         int err;
4040
4041         err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4042         if (err)
4043                 return err;
4044
4045         return selinux_netlbl_socket_setsockopt(sock, level, optname);
4046 }
4047
4048 static int selinux_socket_getsockopt(struct socket *sock, int level,
4049                                      int optname)
4050 {
4051         return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4052 }
4053
4054 static int selinux_socket_shutdown(struct socket *sock, int how)
4055 {
4056         return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4057 }
4058
4059 static int selinux_socket_unix_stream_connect(struct sock *sock,
4060                                               struct sock *other,
4061                                               struct sock *newsk)
4062 {
4063         struct sk_security_struct *sksec_sock = sock->sk_security;
4064         struct sk_security_struct *sksec_other = other->sk_security;
4065         struct sk_security_struct *sksec_new = newsk->sk_security;
4066         struct common_audit_data ad;
4067         struct lsm_network_audit net = {0,};
4068         int err;
4069
4070         ad.type = LSM_AUDIT_DATA_NET;
4071         ad.u.net = &net;
4072         ad.u.net->sk = other;
4073
4074         err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4075                            sksec_other->sclass,
4076                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4077         if (err)
4078                 return err;
4079
4080         /* server child socket */
4081         sksec_new->peer_sid = sksec_sock->sid;
4082         err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4083                                     &sksec_new->sid);
4084         if (err)
4085                 return err;
4086
4087         /* connecting socket */
4088         sksec_sock->peer_sid = sksec_new->sid;
4089
4090         return 0;
4091 }
4092
4093 static int selinux_socket_unix_may_send(struct socket *sock,
4094                                         struct socket *other)
4095 {
4096         struct sk_security_struct *ssec = sock->sk->sk_security;
4097         struct sk_security_struct *osec = other->sk->sk_security;
4098         struct common_audit_data ad;
4099         struct lsm_network_audit net = {0,};
4100
4101         ad.type = LSM_AUDIT_DATA_NET;
4102         ad.u.net = &net;
4103         ad.u.net->sk = other->sk;
4104
4105         return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4106                             &ad);
4107 }
4108
4109 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4110                                     u32 peer_sid,
4111                                     struct common_audit_data *ad)
4112 {
4113         int err;
4114         u32 if_sid;
4115         u32 node_sid;
4116
4117         err = sel_netif_sid(ifindex, &if_sid);
4118         if (err)
4119                 return err;
4120         err = avc_has_perm(peer_sid, if_sid,
4121                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4122         if (err)
4123                 return err;
4124
4125         err = sel_netnode_sid(addrp, family, &node_sid);
4126         if (err)
4127                 return err;
4128         return avc_has_perm(peer_sid, node_sid,
4129                             SECCLASS_NODE, NODE__RECVFROM, ad);
4130 }
4131
4132 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4133                                        u16 family)
4134 {
4135         int err = 0;
4136         struct sk_security_struct *sksec = sk->sk_security;
4137         u32 sk_sid = sksec->sid;
4138         struct common_audit_data ad;
4139         struct lsm_network_audit net = {0,};
4140         char *addrp;
4141
4142         ad.type = LSM_AUDIT_DATA_NET;
4143         ad.u.net = &net;
4144         ad.u.net->netif = skb->skb_iif;
4145         ad.u.net->family = family;
4146         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4147         if (err)
4148                 return err;
4149
4150         if (selinux_secmark_enabled()) {
4151                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4152                                    PACKET__RECV, &ad);
4153                 if (err)
4154                         return err;
4155         }
4156
4157         err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4158         if (err)
4159                 return err;
4160         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4161
4162         return err;
4163 }
4164
4165 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4166 {
4167         int err;
4168         struct sk_security_struct *sksec = sk->sk_security;
4169         u16 family = sk->sk_family;
4170         u32 sk_sid = sksec->sid;
4171         struct common_audit_data ad;
4172         struct lsm_network_audit net = {0,};
4173         char *addrp;
4174         u8 secmark_active;
4175         u8 peerlbl_active;
4176
4177         if (family != PF_INET && family != PF_INET6)
4178                 return 0;
4179
4180         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4181         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4182                 family = PF_INET;
4183
4184         /* If any sort of compatibility mode is enabled then handoff processing
4185          * to the selinux_sock_rcv_skb_compat() function to deal with the
4186          * special handling.  We do this in an attempt to keep this function
4187          * as fast and as clean as possible. */
4188         if (!selinux_policycap_netpeer)
4189                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4190
4191         secmark_active = selinux_secmark_enabled();
4192         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4193         if (!secmark_active && !peerlbl_active)
4194                 return 0;
4195
4196         ad.type = LSM_AUDIT_DATA_NET;
4197         ad.u.net = &net;
4198         ad.u.net->netif = skb->skb_iif;
4199         ad.u.net->family = family;
4200         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4201         if (err)
4202                 return err;
4203
4204         if (peerlbl_active) {
4205                 u32 peer_sid;
4206
4207                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4208                 if (err)
4209                         return err;
4210                 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4211                                                peer_sid, &ad);
4212                 if (err) {
4213                         selinux_netlbl_err(skb, err, 0);
4214                         return err;
4215                 }
4216                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4217                                    PEER__RECV, &ad);
4218                 if (err)
4219                         selinux_netlbl_err(skb, err, 0);
4220         }
4221
4222         if (secmark_active) {
4223                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4224                                    PACKET__RECV, &ad);
4225                 if (err)
4226                         return err;
4227         }
4228
4229         return err;
4230 }
4231
4232 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4233                                             int __user *optlen, unsigned len)
4234 {
4235         int err = 0;
4236         char *scontext;
4237         u32 scontext_len;
4238         struct sk_security_struct *sksec = sock->sk->sk_security;
4239         u32 peer_sid = SECSID_NULL;
4240
4241         if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4242             sksec->sclass == SECCLASS_TCP_SOCKET)
4243                 peer_sid = sksec->peer_sid;
4244         if (peer_sid == SECSID_NULL)
4245                 return -ENOPROTOOPT;
4246
4247         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4248         if (err)
4249                 return err;
4250
4251         if (scontext_len > len) {
4252                 err = -ERANGE;
4253                 goto out_len;
4254         }
4255
4256         if (copy_to_user(optval, scontext, scontext_len))
4257                 err = -EFAULT;
4258
4259 out_len:
4260         if (put_user(scontext_len, optlen))
4261                 err = -EFAULT;
4262         kfree(scontext);
4263         return err;
4264 }
4265
4266 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4267 {
4268         u32 peer_secid = SECSID_NULL;
4269         u16 family;
4270
4271         if (skb && skb->protocol == htons(ETH_P_IP))
4272                 family = PF_INET;
4273         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4274                 family = PF_INET6;
4275         else if (sock)
4276                 family = sock->sk->sk_family;
4277         else
4278                 goto out;
4279
4280         if (sock && family == PF_UNIX)
4281                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4282         else if (skb)
4283                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4284
4285 out:
4286         *secid = peer_secid;
4287         if (peer_secid == SECSID_NULL)
4288                 return -EINVAL;
4289         return 0;
4290 }
4291
4292 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4293 {
4294         struct sk_security_struct *sksec;
4295
4296         sksec = kzalloc(sizeof(*sksec), priority);
4297         if (!sksec)
4298                 return -ENOMEM;
4299
4300         sksec->peer_sid = SECINITSID_UNLABELED;
4301         sksec->sid = SECINITSID_UNLABELED;
4302         selinux_netlbl_sk_security_reset(sksec);
4303         sk->sk_security = sksec;
4304
4305         return 0;
4306 }
4307
4308 static void selinux_sk_free_security(struct sock *sk)
4309 {
4310         struct sk_security_struct *sksec = sk->sk_security;
4311
4312         sk->sk_security = NULL;
4313         selinux_netlbl_sk_security_free(sksec);
4314         kfree(sksec);
4315 }
4316
4317 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4318 {
4319         struct sk_security_struct *sksec = sk->sk_security;
4320         struct sk_security_struct *newsksec = newsk->sk_security;
4321
4322         newsksec->sid = sksec->sid;
4323         newsksec->peer_sid = sksec->peer_sid;
4324         newsksec->sclass = sksec->sclass;
4325
4326         selinux_netlbl_sk_security_reset(newsksec);
4327 }
4328
4329 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4330 {
4331         if (!sk)
4332                 *secid = SECINITSID_ANY_SOCKET;
4333         else {
4334                 struct sk_security_struct *sksec = sk->sk_security;
4335
4336                 *secid = sksec->sid;
4337         }
4338 }
4339
4340 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4341 {
4342         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4343         struct sk_security_struct *sksec = sk->sk_security;
4344
4345         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4346             sk->sk_family == PF_UNIX)
4347                 isec->sid = sksec->sid;
4348         sksec->sclass = isec->sclass;
4349 }
4350
4351 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4352                                      struct request_sock *req)
4353 {
4354         struct sk_security_struct *sksec = sk->sk_security;
4355         int err;
4356         u16 family = sk->sk_family;
4357         u32 newsid;
4358         u32 peersid;
4359
4360         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4361         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4362                 family = PF_INET;
4363
4364         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4365         if (err)
4366                 return err;
4367         if (peersid == SECSID_NULL) {
4368                 req->secid = sksec->sid;
4369                 req->peer_secid = SECSID_NULL;
4370         } else {
4371                 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4372                 if (err)
4373                         return err;
4374                 req->secid = newsid;
4375                 req->peer_secid = peersid;
4376         }
4377
4378         return selinux_netlbl_inet_conn_request(req, family);
4379 }
4380
4381 static void selinux_inet_csk_clone(struct sock *newsk,
4382                                    const struct request_sock *req)
4383 {
4384         struct sk_security_struct *newsksec = newsk->sk_security;
4385
4386         newsksec->sid = req->secid;
4387         newsksec->peer_sid = req->peer_secid;
4388         /* NOTE: Ideally, we should also get the isec->sid for the
4389            new socket in sync, but we don't have the isec available yet.
4390            So we will wait until sock_graft to do it, by which
4391            time it will have been created and available. */
4392
4393         /* We don't need to take any sort of lock here as we are the only
4394          * thread with access to newsksec */
4395         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4396 }
4397
4398 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4399 {
4400         u16 family = sk->sk_family;
4401         struct sk_security_struct *sksec = sk->sk_security;
4402
4403         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4404         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4405                 family = PF_INET;
4406
4407         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4408 }
4409
4410 static int selinux_secmark_relabel_packet(u32 sid)
4411 {
4412         const struct task_security_struct *__tsec;
4413         u32 tsid;
4414
4415         __tsec = current_security();
4416         tsid = __tsec->sid;
4417
4418         return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4419 }
4420
4421 static void selinux_secmark_refcount_inc(void)
4422 {
4423         atomic_inc(&selinux_secmark_refcount);
4424 }
4425
4426 static void selinux_secmark_refcount_dec(void)
4427 {
4428         atomic_dec(&selinux_secmark_refcount);
4429 }
4430
4431 static void selinux_req_classify_flow(const struct request_sock *req,
4432                                       struct flowi *fl)
4433 {
4434         fl->flowi_secid = req->secid;
4435 }
4436
4437 static int selinux_tun_dev_create(void)
4438 {
4439         u32 sid = current_sid();
4440
4441         /* we aren't taking into account the "sockcreate" SID since the socket
4442          * that is being created here is not a socket in the traditional sense,
4443          * instead it is a private sock, accessible only to the kernel, and
4444          * representing a wide range of network traffic spanning multiple
4445          * connections unlike traditional sockets - check the TUN driver to
4446          * get a better understanding of why this socket is special */
4447
4448         return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4449                             NULL);
4450 }
4451
4452 static void selinux_tun_dev_post_create(struct sock *sk)
4453 {
4454         struct sk_security_struct *sksec = sk->sk_security;
4455
4456         /* we don't currently perform any NetLabel based labeling here and it
4457          * isn't clear that we would want to do so anyway; while we could apply
4458          * labeling without the support of the TUN user the resulting labeled
4459          * traffic from the other end of the connection would almost certainly
4460          * cause confusion to the TUN user that had no idea network labeling
4461          * protocols were being used */
4462
4463         /* see the comments in selinux_tun_dev_create() about why we don't use
4464          * the sockcreate SID here */
4465
4466         sksec->sid = current_sid();
4467         sksec->sclass = SECCLASS_TUN_SOCKET;
4468 }
4469
4470 static int selinux_tun_dev_attach(struct sock *sk)
4471 {
4472         struct sk_security_struct *sksec = sk->sk_security;
4473         u32 sid = current_sid();
4474         int err;
4475
4476         err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4477                            TUN_SOCKET__RELABELFROM, NULL);
4478         if (err)
4479                 return err;
4480         err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4481                            TUN_SOCKET__RELABELTO, NULL);
4482         if (err)
4483                 return err;
4484
4485         sksec->sid = sid;
4486
4487         return 0;
4488 }
4489
4490 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4491 {
4492         int err = 0;
4493         u32 perm;
4494         struct nlmsghdr *nlh;
4495         struct sk_security_struct *sksec = sk->sk_security;
4496
4497         if (skb->len < NLMSG_SPACE(0)) {
4498                 err = -EINVAL;
4499                 goto out;
4500         }
4501         nlh = nlmsg_hdr(skb);
4502
4503         err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4504         if (err) {
4505                 if (err == -EINVAL) {
4506                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4507                                   "SELinux:  unrecognized netlink message"
4508                                   " type=%hu for sclass=%hu\n",
4509                                   nlh->nlmsg_type, sksec->sclass);
4510                         if (!selinux_enforcing || security_get_allow_unknown())
4511                                 err = 0;
4512                 }
4513
4514                 /* Ignore */
4515                 if (err == -ENOENT)
4516                         err = 0;
4517                 goto out;
4518         }
4519
4520         err = sock_has_perm(current, sk, perm);
4521 out:
4522         return err;
4523 }
4524
4525 #ifdef CONFIG_NETFILTER
4526
4527 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4528                                        u16 family)
4529 {
4530         int err;
4531         char *addrp;
4532         u32 peer_sid;
4533         struct common_audit_data ad;
4534         struct lsm_network_audit net = {0,};
4535         u8 secmark_active;
4536         u8 netlbl_active;
4537         u8 peerlbl_active;
4538
4539         if (!selinux_policycap_netpeer)
4540                 return NF_ACCEPT;
4541
4542         secmark_active = selinux_secmark_enabled();
4543         netlbl_active = netlbl_enabled();
4544         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4545         if (!secmark_active && !peerlbl_active)
4546                 return NF_ACCEPT;
4547
4548         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4549                 return NF_DROP;
4550
4551         ad.type = LSM_AUDIT_DATA_NET;
4552         ad.u.net = &net;
4553         ad.u.net->netif = ifindex;
4554         ad.u.net->family = family;
4555         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4556                 return NF_DROP;
4557
4558         if (peerlbl_active) {
4559                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4560                                                peer_sid, &ad);
4561                 if (err) {
4562                         selinux_netlbl_err(skb, err, 1);
4563                         return NF_DROP;
4564                 }
4565         }
4566
4567         if (secmark_active)
4568                 if (avc_has_perm(peer_sid, skb->secmark,
4569                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4570                         return NF_DROP;
4571
4572         if (netlbl_active)
4573                 /* we do this in the FORWARD path and not the POST_ROUTING
4574                  * path because we want to make sure we apply the necessary
4575                  * labeling before IPsec is applied so we can leverage AH
4576                  * protection */
4577                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4578                         return NF_DROP;
4579
4580         return NF_ACCEPT;
4581 }
4582
4583 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4584                                          struct sk_buff *skb,
4585                                          const struct net_device *in,
4586                                          const struct net_device *out,
4587                                          int (*okfn)(struct sk_buff *))
4588 {
4589         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4590 }
4591
4592 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4593 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4594                                          struct sk_buff *skb,
4595                                          const struct net_device *in,
4596                                          const struct net_device *out,
4597                                          int (*okfn)(struct sk_buff *))
4598 {
4599         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4600 }
4601 #endif  /* IPV6 */
4602
4603 static unsigned int selinux_ip_output(struct sk_buff *skb,
4604                                       u16 family)
4605 {
4606         u32 sid;
4607
4608         if (!netlbl_enabled())
4609                 return NF_ACCEPT;
4610
4611         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4612          * because we want to make sure we apply the necessary labeling
4613          * before IPsec is applied so we can leverage AH protection */
4614         if (skb->sk) {
4615                 struct sk_security_struct *sksec = skb->sk->sk_security;
4616                 sid = sksec->sid;
4617         } else
4618                 sid = SECINITSID_KERNEL;
4619         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4620                 return NF_DROP;
4621
4622         return NF_ACCEPT;
4623 }
4624
4625 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4626                                         struct sk_buff *skb,
4627                                         const struct net_device *in,
4628                                         const struct net_device *out,
4629                                         int (*okfn)(struct sk_buff *))
4630 {
4631         return selinux_ip_output(skb, PF_INET);
4632 }
4633
4634 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4635                                                 int ifindex,
4636                                                 u16 family)
4637 {
4638         struct sock *sk = skb->sk;
4639         struct sk_security_struct *sksec;
4640         struct common_audit_data ad;
4641         struct lsm_network_audit net = {0,};
4642         char *addrp;
4643         u8 proto;
4644
4645         if (sk == NULL)
4646                 return NF_ACCEPT;
4647         sksec = sk->sk_security;
4648
4649         ad.type = LSM_AUDIT_DATA_NET;
4650         ad.u.net = &net;
4651         ad.u.net->netif = ifindex;
4652         ad.u.net->family = family;
4653         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4654                 return NF_DROP;
4655
4656         if (selinux_secmark_enabled())
4657                 if (avc_has_perm(sksec->sid, skb->secmark,
4658                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4659                         return NF_DROP_ERR(-ECONNREFUSED);
4660
4661         if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4662                 return NF_DROP_ERR(-ECONNREFUSED);
4663
4664         return NF_ACCEPT;
4665 }
4666
4667 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4668                                          u16 family)
4669 {
4670         u32 secmark_perm;
4671         u32 peer_sid;
4672         struct sock *sk;
4673         struct common_audit_data ad;
4674         struct lsm_network_audit net = {0,};
4675         char *addrp;
4676         u8 secmark_active;
4677         u8 peerlbl_active;
4678
4679         /* If any sort of compatibility mode is enabled then handoff processing
4680          * to the selinux_ip_postroute_compat() function to deal with the
4681          * special handling.  We do this in an attempt to keep this function
4682          * as fast and as clean as possible. */
4683         if (!selinux_policycap_netpeer)
4684                 return selinux_ip_postroute_compat(skb, ifindex, family);
4685 #ifdef CONFIG_XFRM
4686         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4687          * packet transformation so allow the packet to pass without any checks
4688          * since we'll have another chance to perform access control checks
4689          * when the packet is on it's final way out.
4690          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4691          *       is NULL, in this case go ahead and apply access control. */
4692         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4693                 return NF_ACCEPT;
4694 #endif
4695         secmark_active = selinux_secmark_enabled();
4696         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4697         if (!secmark_active && !peerlbl_active)
4698                 return NF_ACCEPT;
4699
4700         /* if the packet is being forwarded then get the peer label from the
4701          * packet itself; otherwise check to see if it is from a local
4702          * application or the kernel, if from an application get the peer label
4703          * from the sending socket, otherwise use the kernel's sid */
4704         sk = skb->sk;
4705         if (sk == NULL) {
4706                 if (skb->skb_iif) {
4707                         secmark_perm = PACKET__FORWARD_OUT;
4708                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4709                                 return NF_DROP;
4710                 } else {
4711                         secmark_perm = PACKET__SEND;
4712                         peer_sid = SECINITSID_KERNEL;
4713                 }
4714         } else {
4715                 struct sk_security_struct *sksec = sk->sk_security;
4716                 peer_sid = sksec->sid;
4717                 secmark_perm = PACKET__SEND;
4718         }
4719
4720         ad.type = LSM_AUDIT_DATA_NET;
4721         ad.u.net = &net;
4722         ad.u.net->netif = ifindex;
4723         ad.u.net->family = family;
4724         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4725                 return NF_DROP;
4726
4727         if (secmark_active)
4728                 if (avc_has_perm(peer_sid, skb->secmark,
4729                                  SECCLASS_PACKET, secmark_perm, &ad))
4730                         return NF_DROP_ERR(-ECONNREFUSED);
4731
4732         if (peerlbl_active) {
4733                 u32 if_sid;
4734                 u32 node_sid;
4735
4736                 if (sel_netif_sid(ifindex, &if_sid))
4737                         return NF_DROP;
4738                 if (avc_has_perm(peer_sid, if_sid,
4739                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4740                         return NF_DROP_ERR(-ECONNREFUSED);
4741
4742                 if (sel_netnode_sid(addrp, family, &node_sid))
4743                         return NF_DROP;
4744                 if (avc_has_perm(peer_sid, node_sid,
4745                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4746                         return NF_DROP_ERR(-ECONNREFUSED);
4747         }
4748
4749         return NF_ACCEPT;
4750 }
4751
4752 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4753                                            struct sk_buff *skb,
4754                                            const struct net_device *in,
4755                                            const struct net_device *out,
4756                                            int (*okfn)(struct sk_buff *))
4757 {
4758         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4759 }
4760
4761 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4762 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4763                                            struct sk_buff *skb,
4764                                            const struct net_device *in,
4765                                            const struct net_device *out,
4766                                            int (*okfn)(struct sk_buff *))
4767 {
4768         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4769 }
4770 #endif  /* IPV6 */
4771
4772 #endif  /* CONFIG_NETFILTER */
4773
4774 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4775 {
4776         int err;
4777
4778         err = cap_netlink_send(sk, skb);
4779         if (err)
4780                 return err;
4781
4782         return selinux_nlmsg_perm(sk, skb);
4783 }
4784
4785 static int ipc_alloc_security(struct task_struct *task,
4786                               struct kern_ipc_perm *perm,
4787                               u16 sclass)
4788 {
4789         struct ipc_security_struct *isec;
4790         u32 sid;
4791
4792         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4793         if (!isec)
4794                 return -ENOMEM;
4795
4796         sid = task_sid(task);
4797         isec->sclass = sclass;
4798         isec->sid = sid;
4799         perm->security = isec;
4800
4801         return 0;
4802 }
4803
4804 static void ipc_free_security(struct kern_ipc_perm *perm)
4805 {
4806         struct ipc_security_struct *isec = perm->security;
4807         perm->security = NULL;
4808         kfree(isec);
4809 }
4810
4811 static int msg_msg_alloc_security(struct msg_msg *msg)
4812 {
4813         struct msg_security_struct *msec;
4814
4815         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4816         if (!msec)
4817                 return -ENOMEM;
4818
4819         msec->sid = SECINITSID_UNLABELED;
4820         msg->security = msec;
4821
4822         return 0;
4823 }
4824
4825 static void msg_msg_free_security(struct msg_msg *msg)
4826 {
4827         struct msg_security_struct *msec = msg->security;
4828
4829         msg->security = NULL;
4830         kfree(msec);
4831 }
4832
4833 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4834                         u32 perms)
4835 {
4836         struct ipc_security_struct *isec;
4837         struct common_audit_data ad;
4838         u32 sid = current_sid();
4839
4840         isec = ipc_perms->security;
4841
4842         ad.type = LSM_AUDIT_DATA_IPC;
4843         ad.u.ipc_id = ipc_perms->key;
4844
4845         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4846 }
4847
4848 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4849 {
4850         return msg_msg_alloc_security(msg);
4851 }
4852
4853 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4854 {
4855         msg_msg_free_security(msg);
4856 }
4857
4858 /* message queue security operations */
4859 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4860 {
4861         struct ipc_security_struct *isec;
4862         struct common_audit_data ad;
4863         u32 sid = current_sid();
4864         int rc;
4865
4866         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4867         if (rc)
4868                 return rc;
4869
4870         isec = msq->q_perm.security;
4871
4872         ad.type = LSM_AUDIT_DATA_IPC;
4873         ad.u.ipc_id = msq->q_perm.key;
4874
4875         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4876                           MSGQ__CREATE, &ad);
4877         if (rc) {
4878                 ipc_free_security(&msq->q_perm);
4879                 return rc;
4880         }
4881         return 0;
4882 }
4883
4884 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4885 {
4886         ipc_free_security(&msq->q_perm);
4887 }
4888
4889 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4890 {
4891         struct ipc_security_struct *isec;
4892         struct common_audit_data ad;
4893         u32 sid = current_sid();
4894
4895         isec = msq->q_perm.security;
4896
4897         ad.type = LSM_AUDIT_DATA_IPC;
4898         ad.u.ipc_id = msq->q_perm.key;
4899
4900         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4901                             MSGQ__ASSOCIATE, &ad);
4902 }
4903
4904 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4905 {
4906         int err;
4907         int perms;
4908
4909         switch (cmd) {
4910         case IPC_INFO:
4911         case MSG_INFO:
4912                 /* No specific object, just general system-wide information. */
4913                 return task_has_system(current, SYSTEM__IPC_INFO);
4914         case IPC_STAT:
4915         case MSG_STAT:
4916                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4917                 break;
4918         case IPC_SET:
4919                 perms = MSGQ__SETATTR;
4920                 break;
4921         case IPC_RMID:
4922                 perms = MSGQ__DESTROY;
4923                 break;
4924         default:
4925                 return 0;
4926         }
4927
4928         err = ipc_has_perm(&msq->q_perm, perms);
4929         return err;
4930 }
4931
4932 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4933 {
4934         struct ipc_security_struct *isec;
4935         struct msg_security_struct *msec;
4936         struct common_audit_data ad;
4937         u32 sid = current_sid();
4938         int rc;
4939
4940         isec = msq->q_perm.security;
4941         msec = msg->security;
4942
4943         /*
4944          * First time through, need to assign label to the message
4945          */
4946         if (msec->sid == SECINITSID_UNLABELED) {
4947                 /*
4948                  * Compute new sid based on current process and
4949                  * message queue this message will be stored in
4950                  */
4951                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4952                                              NULL, &msec->sid);
4953                 if (rc)
4954                         return rc;
4955         }
4956
4957         ad.type = LSM_AUDIT_DATA_IPC;
4958         ad.u.ipc_id = msq->q_perm.key;
4959
4960         /* Can this process write to the queue? */
4961         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4962                           MSGQ__WRITE, &ad);
4963         if (!rc)
4964                 /* Can this process send the message */
4965                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4966                                   MSG__SEND, &ad);
4967         if (!rc)
4968                 /* Can the message be put in the queue? */
4969                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4970                                   MSGQ__ENQUEUE, &ad);
4971
4972         return rc;
4973 }
4974
4975 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4976                                     struct task_struct *target,
4977                                     long type, int mode)
4978 {
4979         struct ipc_security_struct *isec;
4980         struct msg_security_struct *msec;
4981         struct common_audit_data ad;
4982         u32 sid = task_sid(target);
4983         int rc;
4984
4985         isec = msq->q_perm.security;
4986         msec = msg->security;
4987
4988         ad.type = LSM_AUDIT_DATA_IPC;
4989         ad.u.ipc_id = msq->q_perm.key;
4990
4991         rc = avc_has_perm(sid, isec->sid,
4992                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4993         if (!rc)
4994                 rc = avc_has_perm(sid, msec->sid,
4995                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4996         return rc;
4997 }
4998
4999 /* Shared Memory security operations */
5000 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5001 {
5002         struct ipc_security_struct *isec;
5003         struct common_audit_data ad;
5004         u32 sid = current_sid();
5005         int rc;
5006
5007         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5008         if (rc)
5009                 return rc;
5010
5011         isec = shp->shm_perm.security;
5012
5013         ad.type = LSM_AUDIT_DATA_IPC;
5014         ad.u.ipc_id = shp->shm_perm.key;
5015
5016         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5017                           SHM__CREATE, &ad);
5018         if (rc) {
5019                 ipc_free_security(&shp->shm_perm);
5020                 return rc;
5021         }
5022         return 0;
5023 }
5024
5025 static void selinux_shm_free_security(struct shmid_kernel *shp)
5026 {
5027         ipc_free_security(&shp->shm_perm);
5028 }
5029
5030 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5031 {
5032         struct ipc_security_struct *isec;
5033         struct common_audit_data ad;
5034         u32 sid = current_sid();
5035
5036         isec = shp->shm_perm.security;
5037
5038         ad.type = LSM_AUDIT_DATA_IPC;
5039         ad.u.ipc_id = shp->shm_perm.key;
5040
5041         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5042                             SHM__ASSOCIATE, &ad);
5043 }
5044
5045 /* Note, at this point, shp is locked down */
5046 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5047 {
5048         int perms;
5049         int err;
5050
5051         switch (cmd) {
5052         case IPC_INFO:
5053         case SHM_INFO:
5054                 /* No specific object, just general system-wide information. */
5055                 return task_has_system(current, SYSTEM__IPC_INFO);
5056         case IPC_STAT:
5057         case SHM_STAT:
5058                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5059                 break;
5060         case IPC_SET:
5061                 perms = SHM__SETATTR;
5062                 break;
5063         case SHM_LOCK:
5064         case SHM_UNLOCK:
5065                 perms = SHM__LOCK;
5066                 break;
5067         case IPC_RMID:
5068                 perms = SHM__DESTROY;
5069                 break;
5070         default:
5071                 return 0;
5072         }
5073
5074         err = ipc_has_perm(&shp->shm_perm, perms);
5075         return err;
5076 }
5077
5078 static int selinux_shm_shmat(struct shmid_kernel *shp,
5079                              char __user *shmaddr, int shmflg)
5080 {
5081         u32 perms;
5082
5083         if (shmflg & SHM_RDONLY)
5084                 perms = SHM__READ;
5085         else
5086                 perms = SHM__READ | SHM__WRITE;
5087
5088         return ipc_has_perm(&shp->shm_perm, perms);
5089 }
5090
5091 /* Semaphore security operations */
5092 static int selinux_sem_alloc_security(struct sem_array *sma)
5093 {
5094         struct ipc_security_struct *isec;
5095         struct common_audit_data ad;
5096         u32 sid = current_sid();
5097         int rc;
5098
5099         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5100         if (rc)
5101                 return rc;
5102
5103         isec = sma->sem_perm.security;
5104
5105         ad.type = LSM_AUDIT_DATA_IPC;
5106         ad.u.ipc_id = sma->sem_perm.key;
5107
5108         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5109                           SEM__CREATE, &ad);
5110         if (rc) {
5111                 ipc_free_security(&sma->sem_perm);
5112                 return rc;
5113         }
5114         return 0;
5115 }
5116
5117 static void selinux_sem_free_security(struct sem_array *sma)
5118 {
5119         ipc_free_security(&sma->sem_perm);
5120 }
5121
5122 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5123 {
5124         struct ipc_security_struct *isec;
5125         struct common_audit_data ad;
5126         u32 sid = current_sid();
5127
5128         isec = sma->sem_perm.security;
5129
5130         ad.type = LSM_AUDIT_DATA_IPC;
5131         ad.u.ipc_id = sma->sem_perm.key;
5132
5133         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5134                             SEM__ASSOCIATE, &ad);
5135 }
5136
5137 /* Note, at this point, sma is locked down */
5138 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5139 {
5140         int err;
5141         u32 perms;
5142
5143         switch (cmd) {
5144         case IPC_INFO:
5145         case SEM_INFO:
5146                 /* No specific object, just general system-wide information. */
5147                 return task_has_system(current, SYSTEM__IPC_INFO);
5148         case GETPID:
5149         case GETNCNT:
5150         case GETZCNT:
5151                 perms = SEM__GETATTR;
5152                 break;
5153         case GETVAL:
5154         case GETALL:
5155                 perms = SEM__READ;
5156                 break;
5157         case SETVAL:
5158         case SETALL:
5159                 perms = SEM__WRITE;
5160                 break;
5161         case IPC_RMID:
5162                 perms = SEM__DESTROY;
5163                 break;
5164         case IPC_SET:
5165                 perms = SEM__SETATTR;
5166                 break;
5167         case IPC_STAT:
5168         case SEM_STAT:
5169                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5170                 break;
5171         default:
5172                 return 0;
5173         }
5174
5175         err = ipc_has_perm(&sma->sem_perm, perms);
5176         return err;
5177 }
5178
5179 static int selinux_sem_semop(struct sem_array *sma,
5180                              struct sembuf *sops, unsigned nsops, int alter)
5181 {
5182         u32 perms;
5183
5184         if (alter)
5185                 perms = SEM__READ | SEM__WRITE;
5186         else
5187                 perms = SEM__READ;
5188
5189         return ipc_has_perm(&sma->sem_perm, perms);
5190 }
5191
5192 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5193 {
5194         u32 av = 0;
5195
5196         av = 0;
5197         if (flag & S_IRUGO)
5198                 av |= IPC__UNIX_READ;
5199         if (flag & S_IWUGO)
5200                 av |= IPC__UNIX_WRITE;
5201
5202         if (av == 0)
5203                 return 0;
5204
5205         return ipc_has_perm(ipcp, av);
5206 }
5207
5208 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5209 {
5210         struct ipc_security_struct *isec = ipcp->security;
5211         *secid = isec->sid;
5212 }
5213
5214 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5215 {
5216         if (inode)
5217                 inode_doinit_with_dentry(inode, dentry);
5218 }
5219
5220 static int selinux_getprocattr(struct task_struct *p,
5221                                char *name, char **value)
5222 {
5223         const struct task_security_struct *__tsec;
5224         u32 sid;
5225         int error;
5226         unsigned len;
5227
5228         if (current != p) {
5229                 error = current_has_perm(p, PROCESS__GETATTR);
5230                 if (error)
5231                         return error;
5232         }
5233
5234         rcu_read_lock();
5235         __tsec = __task_cred(p)->security;
5236
5237         if (!strcmp(name, "current"))
5238                 sid = __tsec->sid;
5239         else if (!strcmp(name, "prev"))
5240                 sid = __tsec->osid;
5241         else if (!strcmp(name, "exec"))
5242                 sid = __tsec->exec_sid;
5243         else if (!strcmp(name, "fscreate"))
5244                 sid = __tsec->create_sid;
5245         else if (!strcmp(name, "keycreate"))
5246                 sid = __tsec->keycreate_sid;
5247         else if (!strcmp(name, "sockcreate"))
5248                 sid = __tsec->sockcreate_sid;
5249         else
5250                 goto invalid;
5251         rcu_read_unlock();
5252
5253         if (!sid)
5254                 return 0;
5255
5256         error = security_sid_to_context(sid, value, &len);
5257         if (error)
5258                 return error;
5259         return len;
5260
5261 invalid:
5262         rcu_read_unlock();
5263         return -EINVAL;
5264 }
5265
5266 static int selinux_setprocattr(struct task_struct *p,
5267                                char *name, void *value, size_t size)
5268 {
5269         struct task_security_struct *tsec;
5270         struct task_struct *tracer;
5271         struct cred *new;
5272         u32 sid = 0, ptsid;
5273         int error;
5274         char *str = value;
5275
5276         if (current != p) {
5277                 /* SELinux only allows a process to change its own
5278                    security attributes. */
5279                 return -EACCES;
5280         }
5281
5282         /*
5283          * Basic control over ability to set these attributes at all.
5284          * current == p, but we'll pass them separately in case the
5285          * above restriction is ever removed.
5286          */
5287         if (!strcmp(name, "exec"))
5288                 error = current_has_perm(p, PROCESS__SETEXEC);
5289         else if (!strcmp(name, "fscreate"))
5290                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5291         else if (!strcmp(name, "keycreate"))
5292                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5293         else if (!strcmp(name, "sockcreate"))
5294                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5295         else if (!strcmp(name, "current"))
5296                 error = current_has_perm(p, PROCESS__SETCURRENT);
5297         else
5298                 error = -EINVAL;
5299         if (error)
5300                 return error;
5301
5302         /* Obtain a SID for the context, if one was specified. */
5303         if (size && str[1] && str[1] != '\n') {
5304                 if (str[size-1] == '\n') {
5305                         str[size-1] = 0;
5306                         size--;
5307                 }
5308                 error = security_context_to_sid(value, size, &sid);
5309                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5310                         if (!capable(CAP_MAC_ADMIN)) {
5311                                 struct audit_buffer *ab;
5312                                 size_t audit_size;
5313
5314                                 /* We strip a nul only if it is at the end, otherwise the
5315                                  * context contains a nul and we should audit that */
5316                                 if (str[size - 1] == '\0')
5317                                         audit_size = size - 1;
5318                                 else
5319                                         audit_size = size;
5320                                 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5321                                 audit_log_format(ab, "op=fscreate invalid_context=");
5322                                 audit_log_n_untrustedstring(ab, value, audit_size);
5323                                 audit_log_end(ab);
5324
5325                                 return error;
5326                         }
5327                         error = security_context_to_sid_force(value, size,
5328                                                               &sid);
5329                 }
5330                 if (error)
5331                         return error;
5332         }
5333
5334         new = prepare_creds();
5335         if (!new)
5336                 return -ENOMEM;
5337
5338         /* Permission checking based on the specified context is
5339            performed during the actual operation (execve,
5340            open/mkdir/...), when we know the full context of the
5341            operation.  See selinux_bprm_set_creds for the execve
5342            checks and may_create for the file creation checks. The
5343            operation will then fail if the context is not permitted. */
5344         tsec = new->security;
5345         if (!strcmp(name, "exec")) {
5346                 tsec->exec_sid = sid;
5347         } else if (!strcmp(name, "fscreate")) {
5348                 tsec->create_sid = sid;
5349         } else if (!strcmp(name, "keycreate")) {
5350                 error = may_create_key(sid, p);
5351                 if (error)
5352                         goto abort_change;
5353                 tsec->keycreate_sid = sid;
5354         } else if (!strcmp(name, "sockcreate")) {
5355                 tsec->sockcreate_sid = sid;
5356         } else if (!strcmp(name, "current")) {
5357                 error = -EINVAL;
5358                 if (sid == 0)
5359                         goto abort_change;
5360
5361                 /* Only allow single threaded processes to change context */
5362                 error = -EPERM;
5363                 if (!current_is_single_threaded()) {
5364                         error = security_bounded_transition(tsec->sid, sid);
5365                         if (error)
5366                                 goto abort_change;
5367                 }
5368
5369                 /* Check permissions for the transition. */
5370                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5371                                      PROCESS__DYNTRANSITION, NULL);
5372                 if (error)
5373                         goto abort_change;
5374
5375                 /* Check for ptracing, and update the task SID if ok.
5376                    Otherwise, leave SID unchanged and fail. */
5377                 ptsid = 0;
5378                 task_lock(p);
5379                 tracer = ptrace_parent(p);
5380                 if (tracer)
5381                         ptsid = task_sid(tracer);
5382                 task_unlock(p);
5383
5384                 if (tracer) {
5385                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5386                                              PROCESS__PTRACE, NULL);
5387                         if (error)
5388                                 goto abort_change;
5389                 }
5390
5391                 tsec->sid = sid;
5392         } else {
5393                 error = -EINVAL;
5394                 goto abort_change;
5395         }
5396
5397         commit_creds(new);
5398         return size;
5399
5400 abort_change:
5401         abort_creds(new);
5402         return error;
5403 }
5404
5405 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5406 {
5407         return security_sid_to_context(secid, secdata, seclen);
5408 }
5409
5410 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5411 {
5412         return security_context_to_sid(secdata, seclen, secid);
5413 }
5414
5415 static void selinux_release_secctx(char *secdata, u32 seclen)
5416 {
5417         kfree(secdata);
5418 }
5419
5420 /*
5421  *      called with inode->i_mutex locked
5422  */
5423 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5424 {
5425         return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5426 }
5427
5428 /*
5429  *      called with inode->i_mutex locked
5430  */
5431 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5432 {
5433         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5434 }
5435
5436 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5437 {
5438         int len = 0;
5439         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5440                                                 ctx, true);
5441         if (len < 0)
5442                 return len;
5443         *ctxlen = len;
5444         return 0;
5445 }
5446 #ifdef CONFIG_KEYS
5447
5448 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5449                              unsigned long flags)
5450 {
5451         const struct task_security_struct *tsec;
5452         struct key_security_struct *ksec;
5453
5454         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5455         if (!ksec)
5456                 return -ENOMEM;
5457
5458         tsec = cred->security;
5459         if (tsec->keycreate_sid)
5460                 ksec->sid = tsec->keycreate_sid;
5461         else
5462                 ksec->sid = tsec->sid;
5463
5464         k->security = ksec;
5465         return 0;
5466 }
5467
5468 static void selinux_key_free(struct key *k)
5469 {
5470         struct key_security_struct *ksec = k->security;
5471
5472         k->security = NULL;
5473         kfree(ksec);
5474 }
5475
5476 static int selinux_key_permission(key_ref_t key_ref,
5477                                   const struct cred *cred,
5478                                   key_perm_t perm)
5479 {
5480         struct key *key;
5481         struct key_security_struct *ksec;
5482         u32 sid;
5483
5484         /* if no specific permissions are requested, we skip the
5485            permission check. No serious, additional covert channels
5486            appear to be created. */
5487         if (perm == 0)
5488                 return 0;
5489
5490         sid = cred_sid(cred);
5491
5492         key = key_ref_to_ptr(key_ref);
5493         ksec = key->security;
5494
5495         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5496 }
5497
5498 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5499 {
5500         struct key_security_struct *ksec = key->security;
5501         char *context = NULL;
5502         unsigned len;
5503         int rc;
5504
5505         rc = security_sid_to_context(ksec->sid, &context, &len);
5506         if (!rc)
5507                 rc = len;
5508         *_buffer = context;
5509         return rc;
5510 }
5511
5512 #endif
5513
5514 static struct security_operations selinux_ops = {
5515         .name =                         "selinux",
5516
5517         .ptrace_access_check =          selinux_ptrace_access_check,
5518         .ptrace_traceme =               selinux_ptrace_traceme,
5519         .capget =                       selinux_capget,
5520         .capset =                       selinux_capset,
5521         .capable =                      selinux_capable,
5522         .quotactl =                     selinux_quotactl,
5523         .quota_on =                     selinux_quota_on,
5524         .syslog =                       selinux_syslog,
5525         .vm_enough_memory =             selinux_vm_enough_memory,
5526
5527         .netlink_send =                 selinux_netlink_send,
5528
5529         .bprm_set_creds =               selinux_bprm_set_creds,
5530         .bprm_committing_creds =        selinux_bprm_committing_creds,
5531         .bprm_committed_creds =         selinux_bprm_committed_creds,
5532         .bprm_secureexec =              selinux_bprm_secureexec,
5533
5534         .sb_alloc_security =            selinux_sb_alloc_security,
5535         .sb_free_security =             selinux_sb_free_security,
5536         .sb_copy_data =                 selinux_sb_copy_data,
5537         .sb_remount =                   selinux_sb_remount,
5538         .sb_kern_mount =                selinux_sb_kern_mount,
5539         .sb_show_options =              selinux_sb_show_options,
5540         .sb_statfs =                    selinux_sb_statfs,
5541         .sb_mount =                     selinux_mount,
5542         .sb_umount =                    selinux_umount,
5543         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5544         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5545         .sb_parse_opts_str =            selinux_parse_opts_str,
5546
5547
5548         .inode_alloc_security =         selinux_inode_alloc_security,
5549         .inode_free_security =          selinux_inode_free_security,
5550         .inode_init_security =          selinux_inode_init_security,
5551         .inode_create =                 selinux_inode_create,
5552         .inode_link =                   selinux_inode_link,
5553         .inode_unlink =                 selinux_inode_unlink,
5554         .inode_symlink =                selinux_inode_symlink,
5555         .inode_mkdir =                  selinux_inode_mkdir,
5556         .inode_rmdir =                  selinux_inode_rmdir,
5557         .inode_mknod =                  selinux_inode_mknod,
5558         .inode_rename =                 selinux_inode_rename,
5559         .inode_readlink =               selinux_inode_readlink,
5560         .inode_follow_link =            selinux_inode_follow_link,
5561         .inode_permission =             selinux_inode_permission,
5562         .inode_setattr =                selinux_inode_setattr,
5563         .inode_getattr =                selinux_inode_getattr,
5564         .inode_setxattr =               selinux_inode_setxattr,
5565         .inode_post_setxattr =          selinux_inode_post_setxattr,
5566         .inode_getxattr =               selinux_inode_getxattr,
5567         .inode_listxattr =              selinux_inode_listxattr,
5568         .inode_removexattr =            selinux_inode_removexattr,
5569         .inode_getsecurity =            selinux_inode_getsecurity,
5570         .inode_setsecurity =            selinux_inode_setsecurity,
5571         .inode_listsecurity =           selinux_inode_listsecurity,
5572         .inode_getsecid =               selinux_inode_getsecid,
5573
5574         .file_permission =              selinux_file_permission,
5575         .file_alloc_security =          selinux_file_alloc_security,
5576         .file_free_security =           selinux_file_free_security,
5577         .file_ioctl =                   selinux_file_ioctl,
5578         .mmap_file =                    selinux_mmap_file,
5579         .mmap_addr =                    selinux_mmap_addr,
5580         .file_mprotect =                selinux_file_mprotect,
5581         .file_lock =                    selinux_file_lock,
5582         .file_fcntl =                   selinux_file_fcntl,
5583         .file_set_fowner =              selinux_file_set_fowner,
5584         .file_send_sigiotask =          selinux_file_send_sigiotask,
5585         .file_receive =                 selinux_file_receive,
5586
5587         .file_open =                    selinux_file_open,
5588
5589         .task_create =                  selinux_task_create,
5590         .cred_alloc_blank =             selinux_cred_alloc_blank,
5591         .cred_free =                    selinux_cred_free,
5592         .cred_prepare =                 selinux_cred_prepare,
5593         .cred_transfer =                selinux_cred_transfer,
5594         .kernel_act_as =                selinux_kernel_act_as,
5595         .kernel_create_files_as =       selinux_kernel_create_files_as,
5596         .kernel_module_request =        selinux_kernel_module_request,
5597         .task_setpgid =                 selinux_task_setpgid,
5598         .task_getpgid =                 selinux_task_getpgid,
5599         .task_getsid =                  selinux_task_getsid,
5600         .task_getsecid =                selinux_task_getsecid,
5601         .task_setnice =                 selinux_task_setnice,
5602         .task_setioprio =               selinux_task_setioprio,
5603         .task_getioprio =               selinux_task_getioprio,
5604         .task_setrlimit =               selinux_task_setrlimit,
5605         .task_setscheduler =            selinux_task_setscheduler,
5606         .task_getscheduler =            selinux_task_getscheduler,
5607         .task_movememory =              selinux_task_movememory,
5608         .task_kill =                    selinux_task_kill,
5609         .task_wait =                    selinux_task_wait,
5610         .task_to_inode =                selinux_task_to_inode,
5611
5612         .ipc_permission =               selinux_ipc_permission,
5613         .ipc_getsecid =                 selinux_ipc_getsecid,
5614
5615         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5616         .msg_msg_free_security =        selinux_msg_msg_free_security,
5617
5618         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5619         .msg_queue_free_security =      selinux_msg_queue_free_security,
5620         .msg_queue_associate =          selinux_msg_queue_associate,
5621         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5622         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5623         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5624
5625         .shm_alloc_security =           selinux_shm_alloc_security,
5626         .shm_free_security =            selinux_shm_free_security,
5627         .shm_associate =                selinux_shm_associate,
5628         .shm_shmctl =                   selinux_shm_shmctl,
5629         .shm_shmat =                    selinux_shm_shmat,
5630
5631         .sem_alloc_security =           selinux_sem_alloc_security,
5632         .sem_free_security =            selinux_sem_free_security,
5633         .sem_associate =                selinux_sem_associate,
5634         .sem_semctl =                   selinux_sem_semctl,
5635         .sem_semop =                    selinux_sem_semop,
5636
5637         .d_instantiate =                selinux_d_instantiate,
5638
5639         .getprocattr =                  selinux_getprocattr,
5640         .setprocattr =                  selinux_setprocattr,
5641
5642         .secid_to_secctx =              selinux_secid_to_secctx,
5643         .secctx_to_secid =              selinux_secctx_to_secid,
5644         .release_secctx =               selinux_release_secctx,
5645         .inode_notifysecctx =           selinux_inode_notifysecctx,
5646         .inode_setsecctx =              selinux_inode_setsecctx,
5647         .inode_getsecctx =              selinux_inode_getsecctx,
5648
5649         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5650         .unix_may_send =                selinux_socket_unix_may_send,
5651
5652         .socket_create =                selinux_socket_create,
5653         .socket_post_create =           selinux_socket_post_create,
5654         .socket_bind =                  selinux_socket_bind,
5655         .socket_connect =               selinux_socket_connect,
5656         .socket_listen =                selinux_socket_listen,
5657         .socket_accept =                selinux_socket_accept,
5658         .socket_sendmsg =               selinux_socket_sendmsg,
5659         .socket_recvmsg =               selinux_socket_recvmsg,
5660         .socket_getsockname =           selinux_socket_getsockname,
5661         .socket_getpeername =           selinux_socket_getpeername,
5662         .socket_getsockopt =            selinux_socket_getsockopt,
5663         .socket_setsockopt =            selinux_socket_setsockopt,
5664         .socket_shutdown =              selinux_socket_shutdown,
5665         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5666         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5667         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5668         .sk_alloc_security =            selinux_sk_alloc_security,
5669         .sk_free_security =             selinux_sk_free_security,
5670         .sk_clone_security =            selinux_sk_clone_security,
5671         .sk_getsecid =                  selinux_sk_getsecid,
5672         .sock_graft =                   selinux_sock_graft,
5673         .inet_conn_request =            selinux_inet_conn_request,
5674         .inet_csk_clone =               selinux_inet_csk_clone,
5675         .inet_conn_established =        selinux_inet_conn_established,
5676         .secmark_relabel_packet =       selinux_secmark_relabel_packet,
5677         .secmark_refcount_inc =         selinux_secmark_refcount_inc,
5678         .secmark_refcount_dec =         selinux_secmark_refcount_dec,
5679         .req_classify_flow =            selinux_req_classify_flow,
5680         .tun_dev_create =               selinux_tun_dev_create,
5681         .tun_dev_post_create =          selinux_tun_dev_post_create,
5682         .tun_dev_attach =               selinux_tun_dev_attach,
5683
5684 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5685         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5686         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5687         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5688         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5689         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5690         .xfrm_state_free_security =     selinux_xfrm_state_free,
5691         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5692         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5693         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5694         .xfrm_decode_session =          selinux_xfrm_decode_session,
5695 #endif
5696
5697 #ifdef CONFIG_KEYS
5698         .key_alloc =                    selinux_key_alloc,
5699         .key_free =                     selinux_key_free,
5700         .key_permission =               selinux_key_permission,
5701         .key_getsecurity =              selinux_key_getsecurity,
5702 #endif
5703
5704 #ifdef CONFIG_AUDIT
5705         .audit_rule_init =              selinux_audit_rule_init,
5706         .audit_rule_known =             selinux_audit_rule_known,
5707         .audit_rule_match =             selinux_audit_rule_match,
5708         .audit_rule_free =              selinux_audit_rule_free,
5709 #endif
5710 };
5711
5712 static __init int selinux_init(void)
5713 {
5714         if (!security_module_enable(&selinux_ops)) {
5715                 selinux_enabled = 0;
5716                 return 0;
5717         }
5718
5719         if (!selinux_enabled) {
5720                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5721                 return 0;
5722         }
5723
5724         printk(KERN_INFO "SELinux:  Initializing.\n");
5725
5726         /* Set the security state for the initial task. */
5727         cred_init_security();
5728
5729         default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5730
5731         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5732                                             sizeof(struct inode_security_struct),
5733                                             0, SLAB_PANIC, NULL);
5734         avc_init();
5735
5736         if (register_security(&selinux_ops))
5737                 panic("SELinux: Unable to register with kernel.\n");
5738
5739         if (selinux_enforcing)
5740                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5741         else
5742                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5743
5744         return 0;
5745 }
5746
5747 static void delayed_superblock_init(struct super_block *sb, void *unused)
5748 {
5749         superblock_doinit(sb, NULL);
5750 }
5751
5752 void selinux_complete_init(void)
5753 {
5754         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5755
5756         /* Set up any superblocks initialized prior to the policy load. */
5757         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5758         iterate_supers(delayed_superblock_init, NULL);
5759 }
5760
5761 /* SELinux requires early initialization in order to label
5762    all processes and objects when they are created. */
5763 security_initcall(selinux_init);
5764
5765 #if defined(CONFIG_NETFILTER)
5766
5767 static struct nf_hook_ops selinux_ipv4_ops[] = {
5768         {
5769                 .hook =         selinux_ipv4_postroute,
5770                 .owner =        THIS_MODULE,
5771                 .pf =           NFPROTO_IPV4,
5772                 .hooknum =      NF_INET_POST_ROUTING,
5773                 .priority =     NF_IP_PRI_SELINUX_LAST,
5774         },
5775         {
5776                 .hook =         selinux_ipv4_forward,
5777                 .owner =        THIS_MODULE,
5778                 .pf =           NFPROTO_IPV4,
5779                 .hooknum =      NF_INET_FORWARD,
5780                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5781         },
5782         {
5783                 .hook =         selinux_ipv4_output,
5784                 .owner =        THIS_MODULE,
5785                 .pf =           NFPROTO_IPV4,
5786                 .hooknum =      NF_INET_LOCAL_OUT,
5787                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5788         }
5789 };
5790
5791 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5792
5793 static struct nf_hook_ops selinux_ipv6_ops[] = {
5794         {
5795                 .hook =         selinux_ipv6_postroute,
5796                 .owner =        THIS_MODULE,
5797                 .pf =           NFPROTO_IPV6,
5798                 .hooknum =      NF_INET_POST_ROUTING,
5799                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5800         },
5801         {
5802                 .hook =         selinux_ipv6_forward,
5803                 .owner =        THIS_MODULE,
5804                 .pf =           NFPROTO_IPV6,
5805                 .hooknum =      NF_INET_FORWARD,
5806                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5807         }
5808 };
5809
5810 #endif  /* IPV6 */
5811
5812 static int __init selinux_nf_ip_init(void)
5813 {
5814         int err = 0;
5815
5816         if (!selinux_enabled)
5817                 goto out;
5818
5819         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5820
5821         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5822         if (err)
5823                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5824
5825 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5826         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5827         if (err)
5828                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5829 #endif  /* IPV6 */
5830
5831 out:
5832         return err;
5833 }
5834
5835 __initcall(selinux_nf_ip_init);
5836
5837 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5838 static void selinux_nf_ip_exit(void)
5839 {
5840         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5841
5842         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5843 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5844         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5845 #endif  /* IPV6 */
5846 }
5847 #endif
5848
5849 #else /* CONFIG_NETFILTER */
5850
5851 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5852 #define selinux_nf_ip_exit()
5853 #endif
5854
5855 #endif /* CONFIG_NETFILTER */
5856
5857 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5858 static int selinux_disabled;
5859
5860 int selinux_disable(void)
5861 {
5862         if (ss_initialized) {
5863                 /* Not permitted after initial policy load. */
5864                 return -EINVAL;
5865         }
5866
5867         if (selinux_disabled) {
5868                 /* Only do this once. */
5869                 return -EINVAL;
5870         }
5871
5872         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5873
5874         selinux_disabled = 1;
5875         selinux_enabled = 0;
5876
5877         reset_security_ops();
5878
5879         /* Try to destroy the avc node cache */
5880         avc_disable();
5881
5882         /* Unregister netfilter hooks. */
5883         selinux_nf_ip_exit();
5884
5885         /* Unregister selinuxfs. */
5886         exit_sel_fs();
5887
5888         return 0;
5889 }
5890 #endif