]> Pileus Git - ~andy/linux/blob - security/selinux/hooks.c
SELinux: implement the new sb_remount LSM hook
[~andy/linux] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *      Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/ext2_fs.h>
32 #include <linux/sched.h>
33 #include <linux/security.h>
34 #include <linux/xattr.h>
35 #include <linux/capability.h>
36 #include <linux/unistd.h>
37 #include <linux/mm.h>
38 #include <linux/mman.h>
39 #include <linux/slab.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/swap.h>
43 #include <linux/spinlock.h>
44 #include <linux/syscalls.h>
45 #include <linux/dcache.h>
46 #include <linux/file.h>
47 #include <linux/fdtable.h>
48 #include <linux/namei.h>
49 #include <linux/mount.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <linux/netfilter_ipv6.h>
52 #include <linux/tty.h>
53 #include <net/icmp.h>
54 #include <net/ip.h>             /* for local_port_range[] */
55 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
56 #include <net/net_namespace.h>
57 #include <net/netlabel.h>
58 #include <linux/uaccess.h>
59 #include <asm/ioctls.h>
60 #include <asm/atomic.h>
61 #include <linux/bitops.h>
62 #include <linux/interrupt.h>
63 #include <linux/netdevice.h>    /* for network interface checks */
64 #include <linux/netlink.h>
65 #include <linux/tcp.h>
66 #include <linux/udp.h>
67 #include <linux/dccp.h>
68 #include <linux/quota.h>
69 #include <linux/un.h>           /* for Unix socket types */
70 #include <net/af_unix.h>        /* for Unix socket types */
71 #include <linux/parser.h>
72 #include <linux/nfs_mount.h>
73 #include <net/ipv6.h>
74 #include <linux/hugetlb.h>
75 #include <linux/personality.h>
76 #include <linux/audit.h>
77 #include <linux/string.h>
78 #include <linux/selinux.h>
79 #include <linux/mutex.h>
80 #include <linux/posix-timers.h>
81 #include <linux/syslog.h>
82
83 #include "avc.h"
84 #include "objsec.h"
85 #include "netif.h"
86 #include "netnode.h"
87 #include "netport.h"
88 #include "xfrm.h"
89 #include "netlabel.h"
90 #include "audit.h"
91
92 #define NUM_SEL_MNT_OPTS 5
93
94 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
95 extern struct security_operations *security_ops;
96
97 /* SECMARK reference count */
98 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
99
100 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
101 int selinux_enforcing;
102
103 static int __init enforcing_setup(char *str)
104 {
105         unsigned long enforcing;
106         if (!strict_strtoul(str, 0, &enforcing))
107                 selinux_enforcing = enforcing ? 1 : 0;
108         return 1;
109 }
110 __setup("enforcing=", enforcing_setup);
111 #endif
112
113 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
114 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
115
116 static int __init selinux_enabled_setup(char *str)
117 {
118         unsigned long enabled;
119         if (!strict_strtoul(str, 0, &enabled))
120                 selinux_enabled = enabled ? 1 : 0;
121         return 1;
122 }
123 __setup("selinux=", selinux_enabled_setup);
124 #else
125 int selinux_enabled = 1;
126 #endif
127
128 static struct kmem_cache *sel_inode_cache;
129
130 /**
131  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
132  *
133  * Description:
134  * This function checks the SECMARK reference counter to see if any SECMARK
135  * targets are currently configured, if the reference counter is greater than
136  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
137  * enabled, false (0) if SECMARK is disabled.
138  *
139  */
140 static int selinux_secmark_enabled(void)
141 {
142         return (atomic_read(&selinux_secmark_refcount) > 0);
143 }
144
145 /*
146  * initialise the security for the init task
147  */
148 static void cred_init_security(void)
149 {
150         struct cred *cred = (struct cred *) current->real_cred;
151         struct task_security_struct *tsec;
152
153         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
154         if (!tsec)
155                 panic("SELinux:  Failed to initialize initial task.\n");
156
157         tsec->osid = tsec->sid = SECINITSID_KERNEL;
158         cred->security = tsec;
159 }
160
161 /*
162  * get the security ID of a set of credentials
163  */
164 static inline u32 cred_sid(const struct cred *cred)
165 {
166         const struct task_security_struct *tsec;
167
168         tsec = cred->security;
169         return tsec->sid;
170 }
171
172 /*
173  * get the objective security ID of a task
174  */
175 static inline u32 task_sid(const struct task_struct *task)
176 {
177         u32 sid;
178
179         rcu_read_lock();
180         sid = cred_sid(__task_cred(task));
181         rcu_read_unlock();
182         return sid;
183 }
184
185 /*
186  * get the subjective security ID of the current task
187  */
188 static inline u32 current_sid(void)
189 {
190         const struct task_security_struct *tsec = current_security();
191
192         return tsec->sid;
193 }
194
195 /* Allocate and free functions for each kind of security blob. */
196
197 static int inode_alloc_security(struct inode *inode)
198 {
199         struct inode_security_struct *isec;
200         u32 sid = current_sid();
201
202         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
203         if (!isec)
204                 return -ENOMEM;
205
206         mutex_init(&isec->lock);
207         INIT_LIST_HEAD(&isec->list);
208         isec->inode = inode;
209         isec->sid = SECINITSID_UNLABELED;
210         isec->sclass = SECCLASS_FILE;
211         isec->task_sid = sid;
212         inode->i_security = isec;
213
214         return 0;
215 }
216
217 static void inode_free_security(struct inode *inode)
218 {
219         struct inode_security_struct *isec = inode->i_security;
220         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
221
222         spin_lock(&sbsec->isec_lock);
223         if (!list_empty(&isec->list))
224                 list_del_init(&isec->list);
225         spin_unlock(&sbsec->isec_lock);
226
227         inode->i_security = NULL;
228         kmem_cache_free(sel_inode_cache, isec);
229 }
230
231 static int file_alloc_security(struct file *file)
232 {
233         struct file_security_struct *fsec;
234         u32 sid = current_sid();
235
236         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
237         if (!fsec)
238                 return -ENOMEM;
239
240         fsec->sid = sid;
241         fsec->fown_sid = sid;
242         file->f_security = fsec;
243
244         return 0;
245 }
246
247 static void file_free_security(struct file *file)
248 {
249         struct file_security_struct *fsec = file->f_security;
250         file->f_security = NULL;
251         kfree(fsec);
252 }
253
254 static int superblock_alloc_security(struct super_block *sb)
255 {
256         struct superblock_security_struct *sbsec;
257
258         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
259         if (!sbsec)
260                 return -ENOMEM;
261
262         mutex_init(&sbsec->lock);
263         INIT_LIST_HEAD(&sbsec->isec_head);
264         spin_lock_init(&sbsec->isec_lock);
265         sbsec->sb = sb;
266         sbsec->sid = SECINITSID_UNLABELED;
267         sbsec->def_sid = SECINITSID_FILE;
268         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
269         sb->s_security = sbsec;
270
271         return 0;
272 }
273
274 static void superblock_free_security(struct super_block *sb)
275 {
276         struct superblock_security_struct *sbsec = sb->s_security;
277         sb->s_security = NULL;
278         kfree(sbsec);
279 }
280
281 /* The security server must be initialized before
282    any labeling or access decisions can be provided. */
283 extern int ss_initialized;
284
285 /* The file system's label must be initialized prior to use. */
286
287 static const char *labeling_behaviors[6] = {
288         "uses xattr",
289         "uses transition SIDs",
290         "uses task SIDs",
291         "uses genfs_contexts",
292         "not configured for labeling",
293         "uses mountpoint labeling",
294 };
295
296 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
297
298 static inline int inode_doinit(struct inode *inode)
299 {
300         return inode_doinit_with_dentry(inode, NULL);
301 }
302
303 enum {
304         Opt_error = -1,
305         Opt_context = 1,
306         Opt_fscontext = 2,
307         Opt_defcontext = 3,
308         Opt_rootcontext = 4,
309         Opt_labelsupport = 5,
310 };
311
312 static const match_table_t tokens = {
313         {Opt_context, CONTEXT_STR "%s"},
314         {Opt_fscontext, FSCONTEXT_STR "%s"},
315         {Opt_defcontext, DEFCONTEXT_STR "%s"},
316         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
317         {Opt_labelsupport, LABELSUPP_STR},
318         {Opt_error, NULL},
319 };
320
321 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
322
323 static int may_context_mount_sb_relabel(u32 sid,
324                         struct superblock_security_struct *sbsec,
325                         const struct cred *cred)
326 {
327         const struct task_security_struct *tsec = cred->security;
328         int rc;
329
330         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
331                           FILESYSTEM__RELABELFROM, NULL);
332         if (rc)
333                 return rc;
334
335         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
336                           FILESYSTEM__RELABELTO, NULL);
337         return rc;
338 }
339
340 static int may_context_mount_inode_relabel(u32 sid,
341                         struct superblock_security_struct *sbsec,
342                         const struct cred *cred)
343 {
344         const struct task_security_struct *tsec = cred->security;
345         int rc;
346         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
347                           FILESYSTEM__RELABELFROM, NULL);
348         if (rc)
349                 return rc;
350
351         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
352                           FILESYSTEM__ASSOCIATE, NULL);
353         return rc;
354 }
355
356 static int sb_finish_set_opts(struct super_block *sb)
357 {
358         struct superblock_security_struct *sbsec = sb->s_security;
359         struct dentry *root = sb->s_root;
360         struct inode *root_inode = root->d_inode;
361         int rc = 0;
362
363         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
364                 /* Make sure that the xattr handler exists and that no
365                    error other than -ENODATA is returned by getxattr on
366                    the root directory.  -ENODATA is ok, as this may be
367                    the first boot of the SELinux kernel before we have
368                    assigned xattr values to the filesystem. */
369                 if (!root_inode->i_op->getxattr) {
370                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
371                                "xattr support\n", sb->s_id, sb->s_type->name);
372                         rc = -EOPNOTSUPP;
373                         goto out;
374                 }
375                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
376                 if (rc < 0 && rc != -ENODATA) {
377                         if (rc == -EOPNOTSUPP)
378                                 printk(KERN_WARNING "SELinux: (dev %s, type "
379                                        "%s) has no security xattr handler\n",
380                                        sb->s_id, sb->s_type->name);
381                         else
382                                 printk(KERN_WARNING "SELinux: (dev %s, type "
383                                        "%s) getxattr errno %d\n", sb->s_id,
384                                        sb->s_type->name, -rc);
385                         goto out;
386                 }
387         }
388
389         sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
390
391         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
392                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
393                        sb->s_id, sb->s_type->name);
394         else
395                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
396                        sb->s_id, sb->s_type->name,
397                        labeling_behaviors[sbsec->behavior-1]);
398
399         if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
400             sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
401             sbsec->behavior == SECURITY_FS_USE_NONE ||
402             sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
403                 sbsec->flags &= ~SE_SBLABELSUPP;
404
405         /* Special handling for sysfs. Is genfs but also has setxattr handler*/
406         if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
407                 sbsec->flags |= SE_SBLABELSUPP;
408
409         /* Initialize the root inode. */
410         rc = inode_doinit_with_dentry(root_inode, root);
411
412         /* Initialize any other inodes associated with the superblock, e.g.
413            inodes created prior to initial policy load or inodes created
414            during get_sb by a pseudo filesystem that directly
415            populates itself. */
416         spin_lock(&sbsec->isec_lock);
417 next_inode:
418         if (!list_empty(&sbsec->isec_head)) {
419                 struct inode_security_struct *isec =
420                                 list_entry(sbsec->isec_head.next,
421                                            struct inode_security_struct, list);
422                 struct inode *inode = isec->inode;
423                 spin_unlock(&sbsec->isec_lock);
424                 inode = igrab(inode);
425                 if (inode) {
426                         if (!IS_PRIVATE(inode))
427                                 inode_doinit(inode);
428                         iput(inode);
429                 }
430                 spin_lock(&sbsec->isec_lock);
431                 list_del_init(&isec->list);
432                 goto next_inode;
433         }
434         spin_unlock(&sbsec->isec_lock);
435 out:
436         return rc;
437 }
438
439 /*
440  * This function should allow an FS to ask what it's mount security
441  * options were so it can use those later for submounts, displaying
442  * mount options, or whatever.
443  */
444 static int selinux_get_mnt_opts(const struct super_block *sb,
445                                 struct security_mnt_opts *opts)
446 {
447         int rc = 0, i;
448         struct superblock_security_struct *sbsec = sb->s_security;
449         char *context = NULL;
450         u32 len;
451         char tmp;
452
453         security_init_mnt_opts(opts);
454
455         if (!(sbsec->flags & SE_SBINITIALIZED))
456                 return -EINVAL;
457
458         if (!ss_initialized)
459                 return -EINVAL;
460
461         tmp = sbsec->flags & SE_MNTMASK;
462         /* count the number of mount options for this sb */
463         for (i = 0; i < 8; i++) {
464                 if (tmp & 0x01)
465                         opts->num_mnt_opts++;
466                 tmp >>= 1;
467         }
468         /* Check if the Label support flag is set */
469         if (sbsec->flags & SE_SBLABELSUPP)
470                 opts->num_mnt_opts++;
471
472         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
473         if (!opts->mnt_opts) {
474                 rc = -ENOMEM;
475                 goto out_free;
476         }
477
478         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
479         if (!opts->mnt_opts_flags) {
480                 rc = -ENOMEM;
481                 goto out_free;
482         }
483
484         i = 0;
485         if (sbsec->flags & FSCONTEXT_MNT) {
486                 rc = security_sid_to_context(sbsec->sid, &context, &len);
487                 if (rc)
488                         goto out_free;
489                 opts->mnt_opts[i] = context;
490                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
491         }
492         if (sbsec->flags & CONTEXT_MNT) {
493                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
494                 if (rc)
495                         goto out_free;
496                 opts->mnt_opts[i] = context;
497                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
498         }
499         if (sbsec->flags & DEFCONTEXT_MNT) {
500                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
501                 if (rc)
502                         goto out_free;
503                 opts->mnt_opts[i] = context;
504                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
505         }
506         if (sbsec->flags & ROOTCONTEXT_MNT) {
507                 struct inode *root = sbsec->sb->s_root->d_inode;
508                 struct inode_security_struct *isec = root->i_security;
509
510                 rc = security_sid_to_context(isec->sid, &context, &len);
511                 if (rc)
512                         goto out_free;
513                 opts->mnt_opts[i] = context;
514                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
515         }
516         if (sbsec->flags & SE_SBLABELSUPP) {
517                 opts->mnt_opts[i] = NULL;
518                 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
519         }
520
521         BUG_ON(i != opts->num_mnt_opts);
522
523         return 0;
524
525 out_free:
526         security_free_mnt_opts(opts);
527         return rc;
528 }
529
530 static int bad_option(struct superblock_security_struct *sbsec, char flag,
531                       u32 old_sid, u32 new_sid)
532 {
533         char mnt_flags = sbsec->flags & SE_MNTMASK;
534
535         /* check if the old mount command had the same options */
536         if (sbsec->flags & SE_SBINITIALIZED)
537                 if (!(sbsec->flags & flag) ||
538                     (old_sid != new_sid))
539                         return 1;
540
541         /* check if we were passed the same options twice,
542          * aka someone passed context=a,context=b
543          */
544         if (!(sbsec->flags & SE_SBINITIALIZED))
545                 if (mnt_flags & flag)
546                         return 1;
547         return 0;
548 }
549
550 /*
551  * Allow filesystems with binary mount data to explicitly set mount point
552  * labeling information.
553  */
554 static int selinux_set_mnt_opts(struct super_block *sb,
555                                 struct security_mnt_opts *opts)
556 {
557         const struct cred *cred = current_cred();
558         int rc = 0, i;
559         struct superblock_security_struct *sbsec = sb->s_security;
560         const char *name = sb->s_type->name;
561         struct inode *inode = sbsec->sb->s_root->d_inode;
562         struct inode_security_struct *root_isec = inode->i_security;
563         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
564         u32 defcontext_sid = 0;
565         char **mount_options = opts->mnt_opts;
566         int *flags = opts->mnt_opts_flags;
567         int num_opts = opts->num_mnt_opts;
568
569         mutex_lock(&sbsec->lock);
570
571         if (!ss_initialized) {
572                 if (!num_opts) {
573                         /* Defer initialization until selinux_complete_init,
574                            after the initial policy is loaded and the security
575                            server is ready to handle calls. */
576                         goto out;
577                 }
578                 rc = -EINVAL;
579                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
580                         "before the security server is initialized\n");
581                 goto out;
582         }
583
584         /*
585          * Binary mount data FS will come through this function twice.  Once
586          * from an explicit call and once from the generic calls from the vfs.
587          * Since the generic VFS calls will not contain any security mount data
588          * we need to skip the double mount verification.
589          *
590          * This does open a hole in which we will not notice if the first
591          * mount using this sb set explict options and a second mount using
592          * this sb does not set any security options.  (The first options
593          * will be used for both mounts)
594          */
595         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
596             && (num_opts == 0))
597                 goto out;
598
599         /*
600          * parse the mount options, check if they are valid sids.
601          * also check if someone is trying to mount the same sb more
602          * than once with different security options.
603          */
604         for (i = 0; i < num_opts; i++) {
605                 u32 sid;
606
607                 if (flags[i] == SE_SBLABELSUPP)
608                         continue;
609                 rc = security_context_to_sid(mount_options[i],
610                                              strlen(mount_options[i]), &sid);
611                 if (rc) {
612                         printk(KERN_WARNING "SELinux: security_context_to_sid"
613                                "(%s) failed for (dev %s, type %s) errno=%d\n",
614                                mount_options[i], sb->s_id, name, rc);
615                         goto out;
616                 }
617                 switch (flags[i]) {
618                 case FSCONTEXT_MNT:
619                         fscontext_sid = sid;
620
621                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
622                                         fscontext_sid))
623                                 goto out_double_mount;
624
625                         sbsec->flags |= FSCONTEXT_MNT;
626                         break;
627                 case CONTEXT_MNT:
628                         context_sid = sid;
629
630                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
631                                         context_sid))
632                                 goto out_double_mount;
633
634                         sbsec->flags |= CONTEXT_MNT;
635                         break;
636                 case ROOTCONTEXT_MNT:
637                         rootcontext_sid = sid;
638
639                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
640                                         rootcontext_sid))
641                                 goto out_double_mount;
642
643                         sbsec->flags |= ROOTCONTEXT_MNT;
644
645                         break;
646                 case DEFCONTEXT_MNT:
647                         defcontext_sid = sid;
648
649                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
650                                         defcontext_sid))
651                                 goto out_double_mount;
652
653                         sbsec->flags |= DEFCONTEXT_MNT;
654
655                         break;
656                 default:
657                         rc = -EINVAL;
658                         goto out;
659                 }
660         }
661
662         if (sbsec->flags & SE_SBINITIALIZED) {
663                 /* previously mounted with options, but not on this attempt? */
664                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
665                         goto out_double_mount;
666                 rc = 0;
667                 goto out;
668         }
669
670         if (strcmp(sb->s_type->name, "proc") == 0)
671                 sbsec->flags |= SE_SBPROC;
672
673         /* Determine the labeling behavior to use for this filesystem type. */
674         rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
675         if (rc) {
676                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
677                        __func__, sb->s_type->name, rc);
678                 goto out;
679         }
680
681         /* sets the context of the superblock for the fs being mounted. */
682         if (fscontext_sid) {
683                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
684                 if (rc)
685                         goto out;
686
687                 sbsec->sid = fscontext_sid;
688         }
689
690         /*
691          * Switch to using mount point labeling behavior.
692          * sets the label used on all file below the mountpoint, and will set
693          * the superblock context if not already set.
694          */
695         if (context_sid) {
696                 if (!fscontext_sid) {
697                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
698                                                           cred);
699                         if (rc)
700                                 goto out;
701                         sbsec->sid = context_sid;
702                 } else {
703                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
704                                                              cred);
705                         if (rc)
706                                 goto out;
707                 }
708                 if (!rootcontext_sid)
709                         rootcontext_sid = context_sid;
710
711                 sbsec->mntpoint_sid = context_sid;
712                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
713         }
714
715         if (rootcontext_sid) {
716                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
717                                                      cred);
718                 if (rc)
719                         goto out;
720
721                 root_isec->sid = rootcontext_sid;
722                 root_isec->initialized = 1;
723         }
724
725         if (defcontext_sid) {
726                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
727                         rc = -EINVAL;
728                         printk(KERN_WARNING "SELinux: defcontext option is "
729                                "invalid for this filesystem type\n");
730                         goto out;
731                 }
732
733                 if (defcontext_sid != sbsec->def_sid) {
734                         rc = may_context_mount_inode_relabel(defcontext_sid,
735                                                              sbsec, cred);
736                         if (rc)
737                                 goto out;
738                 }
739
740                 sbsec->def_sid = defcontext_sid;
741         }
742
743         rc = sb_finish_set_opts(sb);
744 out:
745         mutex_unlock(&sbsec->lock);
746         return rc;
747 out_double_mount:
748         rc = -EINVAL;
749         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
750                "security settings for (dev %s, type %s)\n", sb->s_id, name);
751         goto out;
752 }
753
754 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
755                                         struct super_block *newsb)
756 {
757         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
758         struct superblock_security_struct *newsbsec = newsb->s_security;
759
760         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
761         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
762         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
763
764         /*
765          * if the parent was able to be mounted it clearly had no special lsm
766          * mount options.  thus we can safely deal with this superblock later
767          */
768         if (!ss_initialized)
769                 return;
770
771         /* how can we clone if the old one wasn't set up?? */
772         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
773
774         /* if fs is reusing a sb, just let its options stand... */
775         if (newsbsec->flags & SE_SBINITIALIZED)
776                 return;
777
778         mutex_lock(&newsbsec->lock);
779
780         newsbsec->flags = oldsbsec->flags;
781
782         newsbsec->sid = oldsbsec->sid;
783         newsbsec->def_sid = oldsbsec->def_sid;
784         newsbsec->behavior = oldsbsec->behavior;
785
786         if (set_context) {
787                 u32 sid = oldsbsec->mntpoint_sid;
788
789                 if (!set_fscontext)
790                         newsbsec->sid = sid;
791                 if (!set_rootcontext) {
792                         struct inode *newinode = newsb->s_root->d_inode;
793                         struct inode_security_struct *newisec = newinode->i_security;
794                         newisec->sid = sid;
795                 }
796                 newsbsec->mntpoint_sid = sid;
797         }
798         if (set_rootcontext) {
799                 const struct inode *oldinode = oldsb->s_root->d_inode;
800                 const struct inode_security_struct *oldisec = oldinode->i_security;
801                 struct inode *newinode = newsb->s_root->d_inode;
802                 struct inode_security_struct *newisec = newinode->i_security;
803
804                 newisec->sid = oldisec->sid;
805         }
806
807         sb_finish_set_opts(newsb);
808         mutex_unlock(&newsbsec->lock);
809 }
810
811 static int selinux_parse_opts_str(char *options,
812                                   struct security_mnt_opts *opts)
813 {
814         char *p;
815         char *context = NULL, *defcontext = NULL;
816         char *fscontext = NULL, *rootcontext = NULL;
817         int rc, num_mnt_opts = 0;
818
819         opts->num_mnt_opts = 0;
820
821         /* Standard string-based options. */
822         while ((p = strsep(&options, "|")) != NULL) {
823                 int token;
824                 substring_t args[MAX_OPT_ARGS];
825
826                 if (!*p)
827                         continue;
828
829                 token = match_token(p, tokens, args);
830
831                 switch (token) {
832                 case Opt_context:
833                         if (context || defcontext) {
834                                 rc = -EINVAL;
835                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
836                                 goto out_err;
837                         }
838                         context = match_strdup(&args[0]);
839                         if (!context) {
840                                 rc = -ENOMEM;
841                                 goto out_err;
842                         }
843                         break;
844
845                 case Opt_fscontext:
846                         if (fscontext) {
847                                 rc = -EINVAL;
848                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
849                                 goto out_err;
850                         }
851                         fscontext = match_strdup(&args[0]);
852                         if (!fscontext) {
853                                 rc = -ENOMEM;
854                                 goto out_err;
855                         }
856                         break;
857
858                 case Opt_rootcontext:
859                         if (rootcontext) {
860                                 rc = -EINVAL;
861                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
862                                 goto out_err;
863                         }
864                         rootcontext = match_strdup(&args[0]);
865                         if (!rootcontext) {
866                                 rc = -ENOMEM;
867                                 goto out_err;
868                         }
869                         break;
870
871                 case Opt_defcontext:
872                         if (context || defcontext) {
873                                 rc = -EINVAL;
874                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
875                                 goto out_err;
876                         }
877                         defcontext = match_strdup(&args[0]);
878                         if (!defcontext) {
879                                 rc = -ENOMEM;
880                                 goto out_err;
881                         }
882                         break;
883                 case Opt_labelsupport:
884                         break;
885                 default:
886                         rc = -EINVAL;
887                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
888                         goto out_err;
889
890                 }
891         }
892
893         rc = -ENOMEM;
894         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
895         if (!opts->mnt_opts)
896                 goto out_err;
897
898         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
899         if (!opts->mnt_opts_flags) {
900                 kfree(opts->mnt_opts);
901                 goto out_err;
902         }
903
904         if (fscontext) {
905                 opts->mnt_opts[num_mnt_opts] = fscontext;
906                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
907         }
908         if (context) {
909                 opts->mnt_opts[num_mnt_opts] = context;
910                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
911         }
912         if (rootcontext) {
913                 opts->mnt_opts[num_mnt_opts] = rootcontext;
914                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
915         }
916         if (defcontext) {
917                 opts->mnt_opts[num_mnt_opts] = defcontext;
918                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
919         }
920
921         opts->num_mnt_opts = num_mnt_opts;
922         return 0;
923
924 out_err:
925         kfree(context);
926         kfree(defcontext);
927         kfree(fscontext);
928         kfree(rootcontext);
929         return rc;
930 }
931 /*
932  * string mount options parsing and call set the sbsec
933  */
934 static int superblock_doinit(struct super_block *sb, void *data)
935 {
936         int rc = 0;
937         char *options = data;
938         struct security_mnt_opts opts;
939
940         security_init_mnt_opts(&opts);
941
942         if (!data)
943                 goto out;
944
945         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
946
947         rc = selinux_parse_opts_str(options, &opts);
948         if (rc)
949                 goto out_err;
950
951 out:
952         rc = selinux_set_mnt_opts(sb, &opts);
953
954 out_err:
955         security_free_mnt_opts(&opts);
956         return rc;
957 }
958
959 static void selinux_write_opts(struct seq_file *m,
960                                struct security_mnt_opts *opts)
961 {
962         int i;
963         char *prefix;
964
965         for (i = 0; i < opts->num_mnt_opts; i++) {
966                 char *has_comma;
967
968                 if (opts->mnt_opts[i])
969                         has_comma = strchr(opts->mnt_opts[i], ',');
970                 else
971                         has_comma = NULL;
972
973                 switch (opts->mnt_opts_flags[i]) {
974                 case CONTEXT_MNT:
975                         prefix = CONTEXT_STR;
976                         break;
977                 case FSCONTEXT_MNT:
978                         prefix = FSCONTEXT_STR;
979                         break;
980                 case ROOTCONTEXT_MNT:
981                         prefix = ROOTCONTEXT_STR;
982                         break;
983                 case DEFCONTEXT_MNT:
984                         prefix = DEFCONTEXT_STR;
985                         break;
986                 case SE_SBLABELSUPP:
987                         seq_putc(m, ',');
988                         seq_puts(m, LABELSUPP_STR);
989                         continue;
990                 default:
991                         BUG();
992                 };
993                 /* we need a comma before each option */
994                 seq_putc(m, ',');
995                 seq_puts(m, prefix);
996                 if (has_comma)
997                         seq_putc(m, '\"');
998                 seq_puts(m, opts->mnt_opts[i]);
999                 if (has_comma)
1000                         seq_putc(m, '\"');
1001         }
1002 }
1003
1004 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1005 {
1006         struct security_mnt_opts opts;
1007         int rc;
1008
1009         rc = selinux_get_mnt_opts(sb, &opts);
1010         if (rc) {
1011                 /* before policy load we may get EINVAL, don't show anything */
1012                 if (rc == -EINVAL)
1013                         rc = 0;
1014                 return rc;
1015         }
1016
1017         selinux_write_opts(m, &opts);
1018
1019         security_free_mnt_opts(&opts);
1020
1021         return rc;
1022 }
1023
1024 static inline u16 inode_mode_to_security_class(umode_t mode)
1025 {
1026         switch (mode & S_IFMT) {
1027         case S_IFSOCK:
1028                 return SECCLASS_SOCK_FILE;
1029         case S_IFLNK:
1030                 return SECCLASS_LNK_FILE;
1031         case S_IFREG:
1032                 return SECCLASS_FILE;
1033         case S_IFBLK:
1034                 return SECCLASS_BLK_FILE;
1035         case S_IFDIR:
1036                 return SECCLASS_DIR;
1037         case S_IFCHR:
1038                 return SECCLASS_CHR_FILE;
1039         case S_IFIFO:
1040                 return SECCLASS_FIFO_FILE;
1041
1042         }
1043
1044         return SECCLASS_FILE;
1045 }
1046
1047 static inline int default_protocol_stream(int protocol)
1048 {
1049         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1050 }
1051
1052 static inline int default_protocol_dgram(int protocol)
1053 {
1054         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1055 }
1056
1057 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1058 {
1059         switch (family) {
1060         case PF_UNIX:
1061                 switch (type) {
1062                 case SOCK_STREAM:
1063                 case SOCK_SEQPACKET:
1064                         return SECCLASS_UNIX_STREAM_SOCKET;
1065                 case SOCK_DGRAM:
1066                         return SECCLASS_UNIX_DGRAM_SOCKET;
1067                 }
1068                 break;
1069         case PF_INET:
1070         case PF_INET6:
1071                 switch (type) {
1072                 case SOCK_STREAM:
1073                         if (default_protocol_stream(protocol))
1074                                 return SECCLASS_TCP_SOCKET;
1075                         else
1076                                 return SECCLASS_RAWIP_SOCKET;
1077                 case SOCK_DGRAM:
1078                         if (default_protocol_dgram(protocol))
1079                                 return SECCLASS_UDP_SOCKET;
1080                         else
1081                                 return SECCLASS_RAWIP_SOCKET;
1082                 case SOCK_DCCP:
1083                         return SECCLASS_DCCP_SOCKET;
1084                 default:
1085                         return SECCLASS_RAWIP_SOCKET;
1086                 }
1087                 break;
1088         case PF_NETLINK:
1089                 switch (protocol) {
1090                 case NETLINK_ROUTE:
1091                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1092                 case NETLINK_FIREWALL:
1093                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1094                 case NETLINK_INET_DIAG:
1095                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1096                 case NETLINK_NFLOG:
1097                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1098                 case NETLINK_XFRM:
1099                         return SECCLASS_NETLINK_XFRM_SOCKET;
1100                 case NETLINK_SELINUX:
1101                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1102                 case NETLINK_AUDIT:
1103                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1104                 case NETLINK_IP6_FW:
1105                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1106                 case NETLINK_DNRTMSG:
1107                         return SECCLASS_NETLINK_DNRT_SOCKET;
1108                 case NETLINK_KOBJECT_UEVENT:
1109                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1110                 default:
1111                         return SECCLASS_NETLINK_SOCKET;
1112                 }
1113         case PF_PACKET:
1114                 return SECCLASS_PACKET_SOCKET;
1115         case PF_KEY:
1116                 return SECCLASS_KEY_SOCKET;
1117         case PF_APPLETALK:
1118                 return SECCLASS_APPLETALK_SOCKET;
1119         }
1120
1121         return SECCLASS_SOCKET;
1122 }
1123
1124 #ifdef CONFIG_PROC_FS
1125 static int selinux_proc_get_sid(struct dentry *dentry,
1126                                 u16 tclass,
1127                                 u32 *sid)
1128 {
1129         int rc;
1130         char *buffer, *path;
1131
1132         buffer = (char *)__get_free_page(GFP_KERNEL);
1133         if (!buffer)
1134                 return -ENOMEM;
1135
1136         path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1137         if (IS_ERR(path))
1138                 rc = PTR_ERR(path);
1139         else {
1140                 /* each process gets a /proc/PID/ entry. Strip off the
1141                  * PID part to get a valid selinux labeling.
1142                  * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1143                 while (path[1] >= '0' && path[1] <= '9') {
1144                         path[1] = '/';
1145                         path++;
1146                 }
1147                 rc = security_genfs_sid("proc", path, tclass, sid);
1148         }
1149         free_page((unsigned long)buffer);
1150         return rc;
1151 }
1152 #else
1153 static int selinux_proc_get_sid(struct dentry *dentry,
1154                                 u16 tclass,
1155                                 u32 *sid)
1156 {
1157         return -EINVAL;
1158 }
1159 #endif
1160
1161 /* The inode's security attributes must be initialized before first use. */
1162 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1163 {
1164         struct superblock_security_struct *sbsec = NULL;
1165         struct inode_security_struct *isec = inode->i_security;
1166         u32 sid;
1167         struct dentry *dentry;
1168 #define INITCONTEXTLEN 255
1169         char *context = NULL;
1170         unsigned len = 0;
1171         int rc = 0;
1172
1173         if (isec->initialized)
1174                 goto out;
1175
1176         mutex_lock(&isec->lock);
1177         if (isec->initialized)
1178                 goto out_unlock;
1179
1180         sbsec = inode->i_sb->s_security;
1181         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1182                 /* Defer initialization until selinux_complete_init,
1183                    after the initial policy is loaded and the security
1184                    server is ready to handle calls. */
1185                 spin_lock(&sbsec->isec_lock);
1186                 if (list_empty(&isec->list))
1187                         list_add(&isec->list, &sbsec->isec_head);
1188                 spin_unlock(&sbsec->isec_lock);
1189                 goto out_unlock;
1190         }
1191
1192         switch (sbsec->behavior) {
1193         case SECURITY_FS_USE_XATTR:
1194                 if (!inode->i_op->getxattr) {
1195                         isec->sid = sbsec->def_sid;
1196                         break;
1197                 }
1198
1199                 /* Need a dentry, since the xattr API requires one.
1200                    Life would be simpler if we could just pass the inode. */
1201                 if (opt_dentry) {
1202                         /* Called from d_instantiate or d_splice_alias. */
1203                         dentry = dget(opt_dentry);
1204                 } else {
1205                         /* Called from selinux_complete_init, try to find a dentry. */
1206                         dentry = d_find_alias(inode);
1207                 }
1208                 if (!dentry) {
1209                         /*
1210                          * this is can be hit on boot when a file is accessed
1211                          * before the policy is loaded.  When we load policy we
1212                          * may find inodes that have no dentry on the
1213                          * sbsec->isec_head list.  No reason to complain as these
1214                          * will get fixed up the next time we go through
1215                          * inode_doinit with a dentry, before these inodes could
1216                          * be used again by userspace.
1217                          */
1218                         goto out_unlock;
1219                 }
1220
1221                 len = INITCONTEXTLEN;
1222                 context = kmalloc(len+1, GFP_NOFS);
1223                 if (!context) {
1224                         rc = -ENOMEM;
1225                         dput(dentry);
1226                         goto out_unlock;
1227                 }
1228                 context[len] = '\0';
1229                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1230                                            context, len);
1231                 if (rc == -ERANGE) {
1232                         kfree(context);
1233
1234                         /* Need a larger buffer.  Query for the right size. */
1235                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1236                                                    NULL, 0);
1237                         if (rc < 0) {
1238                                 dput(dentry);
1239                                 goto out_unlock;
1240                         }
1241                         len = rc;
1242                         context = kmalloc(len+1, GFP_NOFS);
1243                         if (!context) {
1244                                 rc = -ENOMEM;
1245                                 dput(dentry);
1246                                 goto out_unlock;
1247                         }
1248                         context[len] = '\0';
1249                         rc = inode->i_op->getxattr(dentry,
1250                                                    XATTR_NAME_SELINUX,
1251                                                    context, len);
1252                 }
1253                 dput(dentry);
1254                 if (rc < 0) {
1255                         if (rc != -ENODATA) {
1256                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1257                                        "%d for dev=%s ino=%ld\n", __func__,
1258                                        -rc, inode->i_sb->s_id, inode->i_ino);
1259                                 kfree(context);
1260                                 goto out_unlock;
1261                         }
1262                         /* Map ENODATA to the default file SID */
1263                         sid = sbsec->def_sid;
1264                         rc = 0;
1265                 } else {
1266                         rc = security_context_to_sid_default(context, rc, &sid,
1267                                                              sbsec->def_sid,
1268                                                              GFP_NOFS);
1269                         if (rc) {
1270                                 char *dev = inode->i_sb->s_id;
1271                                 unsigned long ino = inode->i_ino;
1272
1273                                 if (rc == -EINVAL) {
1274                                         if (printk_ratelimit())
1275                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1276                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1277                                                         "filesystem in question.\n", ino, dev, context);
1278                                 } else {
1279                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1280                                                "returned %d for dev=%s ino=%ld\n",
1281                                                __func__, context, -rc, dev, ino);
1282                                 }
1283                                 kfree(context);
1284                                 /* Leave with the unlabeled SID */
1285                                 rc = 0;
1286                                 break;
1287                         }
1288                 }
1289                 kfree(context);
1290                 isec->sid = sid;
1291                 break;
1292         case SECURITY_FS_USE_TASK:
1293                 isec->sid = isec->task_sid;
1294                 break;
1295         case SECURITY_FS_USE_TRANS:
1296                 /* Default to the fs SID. */
1297                 isec->sid = sbsec->sid;
1298
1299                 /* Try to obtain a transition SID. */
1300                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1301                 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1302                                              isec->sclass, NULL, &sid);
1303                 if (rc)
1304                         goto out_unlock;
1305                 isec->sid = sid;
1306                 break;
1307         case SECURITY_FS_USE_MNTPOINT:
1308                 isec->sid = sbsec->mntpoint_sid;
1309                 break;
1310         default:
1311                 /* Default to the fs superblock SID. */
1312                 isec->sid = sbsec->sid;
1313
1314                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1315                         if (opt_dentry) {
1316                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1317                                 rc = selinux_proc_get_sid(opt_dentry,
1318                                                           isec->sclass,
1319                                                           &sid);
1320                                 if (rc)
1321                                         goto out_unlock;
1322                                 isec->sid = sid;
1323                         }
1324                 }
1325                 break;
1326         }
1327
1328         isec->initialized = 1;
1329
1330 out_unlock:
1331         mutex_unlock(&isec->lock);
1332 out:
1333         if (isec->sclass == SECCLASS_FILE)
1334                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1335         return rc;
1336 }
1337
1338 /* Convert a Linux signal to an access vector. */
1339 static inline u32 signal_to_av(int sig)
1340 {
1341         u32 perm = 0;
1342
1343         switch (sig) {
1344         case SIGCHLD:
1345                 /* Commonly granted from child to parent. */
1346                 perm = PROCESS__SIGCHLD;
1347                 break;
1348         case SIGKILL:
1349                 /* Cannot be caught or ignored */
1350                 perm = PROCESS__SIGKILL;
1351                 break;
1352         case SIGSTOP:
1353                 /* Cannot be caught or ignored */
1354                 perm = PROCESS__SIGSTOP;
1355                 break;
1356         default:
1357                 /* All other signals. */
1358                 perm = PROCESS__SIGNAL;
1359                 break;
1360         }
1361
1362         return perm;
1363 }
1364
1365 /*
1366  * Check permission between a pair of credentials
1367  * fork check, ptrace check, etc.
1368  */
1369 static int cred_has_perm(const struct cred *actor,
1370                          const struct cred *target,
1371                          u32 perms)
1372 {
1373         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1374
1375         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1376 }
1377
1378 /*
1379  * Check permission between a pair of tasks, e.g. signal checks,
1380  * fork check, ptrace check, etc.
1381  * tsk1 is the actor and tsk2 is the target
1382  * - this uses the default subjective creds of tsk1
1383  */
1384 static int task_has_perm(const struct task_struct *tsk1,
1385                          const struct task_struct *tsk2,
1386                          u32 perms)
1387 {
1388         const struct task_security_struct *__tsec1, *__tsec2;
1389         u32 sid1, sid2;
1390
1391         rcu_read_lock();
1392         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1393         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1394         rcu_read_unlock();
1395         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1396 }
1397
1398 /*
1399  * Check permission between current and another task, e.g. signal checks,
1400  * fork check, ptrace check, etc.
1401  * current is the actor and tsk2 is the target
1402  * - this uses current's subjective creds
1403  */
1404 static int current_has_perm(const struct task_struct *tsk,
1405                             u32 perms)
1406 {
1407         u32 sid, tsid;
1408
1409         sid = current_sid();
1410         tsid = task_sid(tsk);
1411         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1412 }
1413
1414 #if CAP_LAST_CAP > 63
1415 #error Fix SELinux to handle capabilities > 63.
1416 #endif
1417
1418 /* Check whether a task is allowed to use a capability. */
1419 static int task_has_capability(struct task_struct *tsk,
1420                                const struct cred *cred,
1421                                int cap, int audit)
1422 {
1423         struct common_audit_data ad;
1424         struct av_decision avd;
1425         u16 sclass;
1426         u32 sid = cred_sid(cred);
1427         u32 av = CAP_TO_MASK(cap);
1428         int rc;
1429
1430         COMMON_AUDIT_DATA_INIT(&ad, CAP);
1431         ad.tsk = tsk;
1432         ad.u.cap = cap;
1433
1434         switch (CAP_TO_INDEX(cap)) {
1435         case 0:
1436                 sclass = SECCLASS_CAPABILITY;
1437                 break;
1438         case 1:
1439                 sclass = SECCLASS_CAPABILITY2;
1440                 break;
1441         default:
1442                 printk(KERN_ERR
1443                        "SELinux:  out of range capability %d\n", cap);
1444                 BUG();
1445         }
1446
1447         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1448         if (audit == SECURITY_CAP_AUDIT)
1449                 avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1450         return rc;
1451 }
1452
1453 /* Check whether a task is allowed to use a system operation. */
1454 static int task_has_system(struct task_struct *tsk,
1455                            u32 perms)
1456 {
1457         u32 sid = task_sid(tsk);
1458
1459         return avc_has_perm(sid, SECINITSID_KERNEL,
1460                             SECCLASS_SYSTEM, perms, NULL);
1461 }
1462
1463 /* Check whether a task has a particular permission to an inode.
1464    The 'adp' parameter is optional and allows other audit
1465    data to be passed (e.g. the dentry). */
1466 static int inode_has_perm(const struct cred *cred,
1467                           struct inode *inode,
1468                           u32 perms,
1469                           struct common_audit_data *adp)
1470 {
1471         struct inode_security_struct *isec;
1472         struct common_audit_data ad;
1473         u32 sid;
1474
1475         validate_creds(cred);
1476
1477         if (unlikely(IS_PRIVATE(inode)))
1478                 return 0;
1479
1480         sid = cred_sid(cred);
1481         isec = inode->i_security;
1482
1483         if (!adp) {
1484                 adp = &ad;
1485                 COMMON_AUDIT_DATA_INIT(&ad, FS);
1486                 ad.u.fs.inode = inode;
1487         }
1488
1489         return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1490 }
1491
1492 /* Same as inode_has_perm, but pass explicit audit data containing
1493    the dentry to help the auditing code to more easily generate the
1494    pathname if needed. */
1495 static inline int dentry_has_perm(const struct cred *cred,
1496                                   struct vfsmount *mnt,
1497                                   struct dentry *dentry,
1498                                   u32 av)
1499 {
1500         struct inode *inode = dentry->d_inode;
1501         struct common_audit_data ad;
1502
1503         COMMON_AUDIT_DATA_INIT(&ad, FS);
1504         ad.u.fs.path.mnt = mnt;
1505         ad.u.fs.path.dentry = dentry;
1506         return inode_has_perm(cred, inode, av, &ad);
1507 }
1508
1509 /* Check whether a task can use an open file descriptor to
1510    access an inode in a given way.  Check access to the
1511    descriptor itself, and then use dentry_has_perm to
1512    check a particular permission to the file.
1513    Access to the descriptor is implicitly granted if it
1514    has the same SID as the process.  If av is zero, then
1515    access to the file is not checked, e.g. for cases
1516    where only the descriptor is affected like seek. */
1517 static int file_has_perm(const struct cred *cred,
1518                          struct file *file,
1519                          u32 av)
1520 {
1521         struct file_security_struct *fsec = file->f_security;
1522         struct inode *inode = file->f_path.dentry->d_inode;
1523         struct common_audit_data ad;
1524         u32 sid = cred_sid(cred);
1525         int rc;
1526
1527         COMMON_AUDIT_DATA_INIT(&ad, FS);
1528         ad.u.fs.path = file->f_path;
1529
1530         if (sid != fsec->sid) {
1531                 rc = avc_has_perm(sid, fsec->sid,
1532                                   SECCLASS_FD,
1533                                   FD__USE,
1534                                   &ad);
1535                 if (rc)
1536                         goto out;
1537         }
1538
1539         /* av is zero if only checking access to the descriptor. */
1540         rc = 0;
1541         if (av)
1542                 rc = inode_has_perm(cred, inode, av, &ad);
1543
1544 out:
1545         return rc;
1546 }
1547
1548 /* Check whether a task can create a file. */
1549 static int may_create(struct inode *dir,
1550                       struct dentry *dentry,
1551                       u16 tclass)
1552 {
1553         const struct task_security_struct *tsec = current_security();
1554         struct inode_security_struct *dsec;
1555         struct superblock_security_struct *sbsec;
1556         u32 sid, newsid;
1557         struct common_audit_data ad;
1558         int rc;
1559
1560         dsec = dir->i_security;
1561         sbsec = dir->i_sb->s_security;
1562
1563         sid = tsec->sid;
1564         newsid = tsec->create_sid;
1565
1566         COMMON_AUDIT_DATA_INIT(&ad, FS);
1567         ad.u.fs.path.dentry = dentry;
1568
1569         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1570                           DIR__ADD_NAME | DIR__SEARCH,
1571                           &ad);
1572         if (rc)
1573                 return rc;
1574
1575         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1576                 rc = security_transition_sid(sid, dsec->sid, tclass, NULL, &newsid);
1577                 if (rc)
1578                         return rc;
1579         }
1580
1581         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1582         if (rc)
1583                 return rc;
1584
1585         return avc_has_perm(newsid, sbsec->sid,
1586                             SECCLASS_FILESYSTEM,
1587                             FILESYSTEM__ASSOCIATE, &ad);
1588 }
1589
1590 /* Check whether a task can create a key. */
1591 static int may_create_key(u32 ksid,
1592                           struct task_struct *ctx)
1593 {
1594         u32 sid = task_sid(ctx);
1595
1596         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1597 }
1598
1599 #define MAY_LINK        0
1600 #define MAY_UNLINK      1
1601 #define MAY_RMDIR       2
1602
1603 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1604 static int may_link(struct inode *dir,
1605                     struct dentry *dentry,
1606                     int kind)
1607
1608 {
1609         struct inode_security_struct *dsec, *isec;
1610         struct common_audit_data ad;
1611         u32 sid = current_sid();
1612         u32 av;
1613         int rc;
1614
1615         dsec = dir->i_security;
1616         isec = dentry->d_inode->i_security;
1617
1618         COMMON_AUDIT_DATA_INIT(&ad, FS);
1619         ad.u.fs.path.dentry = dentry;
1620
1621         av = DIR__SEARCH;
1622         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1623         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1624         if (rc)
1625                 return rc;
1626
1627         switch (kind) {
1628         case MAY_LINK:
1629                 av = FILE__LINK;
1630                 break;
1631         case MAY_UNLINK:
1632                 av = FILE__UNLINK;
1633                 break;
1634         case MAY_RMDIR:
1635                 av = DIR__RMDIR;
1636                 break;
1637         default:
1638                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1639                         __func__, kind);
1640                 return 0;
1641         }
1642
1643         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1644         return rc;
1645 }
1646
1647 static inline int may_rename(struct inode *old_dir,
1648                              struct dentry *old_dentry,
1649                              struct inode *new_dir,
1650                              struct dentry *new_dentry)
1651 {
1652         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1653         struct common_audit_data ad;
1654         u32 sid = current_sid();
1655         u32 av;
1656         int old_is_dir, new_is_dir;
1657         int rc;
1658
1659         old_dsec = old_dir->i_security;
1660         old_isec = old_dentry->d_inode->i_security;
1661         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1662         new_dsec = new_dir->i_security;
1663
1664         COMMON_AUDIT_DATA_INIT(&ad, FS);
1665
1666         ad.u.fs.path.dentry = old_dentry;
1667         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1668                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1669         if (rc)
1670                 return rc;
1671         rc = avc_has_perm(sid, old_isec->sid,
1672                           old_isec->sclass, FILE__RENAME, &ad);
1673         if (rc)
1674                 return rc;
1675         if (old_is_dir && new_dir != old_dir) {
1676                 rc = avc_has_perm(sid, old_isec->sid,
1677                                   old_isec->sclass, DIR__REPARENT, &ad);
1678                 if (rc)
1679                         return rc;
1680         }
1681
1682         ad.u.fs.path.dentry = new_dentry;
1683         av = DIR__ADD_NAME | DIR__SEARCH;
1684         if (new_dentry->d_inode)
1685                 av |= DIR__REMOVE_NAME;
1686         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1687         if (rc)
1688                 return rc;
1689         if (new_dentry->d_inode) {
1690                 new_isec = new_dentry->d_inode->i_security;
1691                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1692                 rc = avc_has_perm(sid, new_isec->sid,
1693                                   new_isec->sclass,
1694                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1695                 if (rc)
1696                         return rc;
1697         }
1698
1699         return 0;
1700 }
1701
1702 /* Check whether a task can perform a filesystem operation. */
1703 static int superblock_has_perm(const struct cred *cred,
1704                                struct super_block *sb,
1705                                u32 perms,
1706                                struct common_audit_data *ad)
1707 {
1708         struct superblock_security_struct *sbsec;
1709         u32 sid = cred_sid(cred);
1710
1711         sbsec = sb->s_security;
1712         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1713 }
1714
1715 /* Convert a Linux mode and permission mask to an access vector. */
1716 static inline u32 file_mask_to_av(int mode, int mask)
1717 {
1718         u32 av = 0;
1719
1720         if ((mode & S_IFMT) != S_IFDIR) {
1721                 if (mask & MAY_EXEC)
1722                         av |= FILE__EXECUTE;
1723                 if (mask & MAY_READ)
1724                         av |= FILE__READ;
1725
1726                 if (mask & MAY_APPEND)
1727                         av |= FILE__APPEND;
1728                 else if (mask & MAY_WRITE)
1729                         av |= FILE__WRITE;
1730
1731         } else {
1732                 if (mask & MAY_EXEC)
1733                         av |= DIR__SEARCH;
1734                 if (mask & MAY_WRITE)
1735                         av |= DIR__WRITE;
1736                 if (mask & MAY_READ)
1737                         av |= DIR__READ;
1738         }
1739
1740         return av;
1741 }
1742
1743 /* Convert a Linux file to an access vector. */
1744 static inline u32 file_to_av(struct file *file)
1745 {
1746         u32 av = 0;
1747
1748         if (file->f_mode & FMODE_READ)
1749                 av |= FILE__READ;
1750         if (file->f_mode & FMODE_WRITE) {
1751                 if (file->f_flags & O_APPEND)
1752                         av |= FILE__APPEND;
1753                 else
1754                         av |= FILE__WRITE;
1755         }
1756         if (!av) {
1757                 /*
1758                  * Special file opened with flags 3 for ioctl-only use.
1759                  */
1760                 av = FILE__IOCTL;
1761         }
1762
1763         return av;
1764 }
1765
1766 /*
1767  * Convert a file to an access vector and include the correct open
1768  * open permission.
1769  */
1770 static inline u32 open_file_to_av(struct file *file)
1771 {
1772         u32 av = file_to_av(file);
1773
1774         if (selinux_policycap_openperm)
1775                 av |= FILE__OPEN;
1776
1777         return av;
1778 }
1779
1780 /* Hook functions begin here. */
1781
1782 static int selinux_ptrace_access_check(struct task_struct *child,
1783                                      unsigned int mode)
1784 {
1785         int rc;
1786
1787         rc = cap_ptrace_access_check(child, mode);
1788         if (rc)
1789                 return rc;
1790
1791         if (mode == PTRACE_MODE_READ) {
1792                 u32 sid = current_sid();
1793                 u32 csid = task_sid(child);
1794                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1795         }
1796
1797         return current_has_perm(child, PROCESS__PTRACE);
1798 }
1799
1800 static int selinux_ptrace_traceme(struct task_struct *parent)
1801 {
1802         int rc;
1803
1804         rc = cap_ptrace_traceme(parent);
1805         if (rc)
1806                 return rc;
1807
1808         return task_has_perm(parent, current, PROCESS__PTRACE);
1809 }
1810
1811 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1812                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1813 {
1814         int error;
1815
1816         error = current_has_perm(target, PROCESS__GETCAP);
1817         if (error)
1818                 return error;
1819
1820         return cap_capget(target, effective, inheritable, permitted);
1821 }
1822
1823 static int selinux_capset(struct cred *new, const struct cred *old,
1824                           const kernel_cap_t *effective,
1825                           const kernel_cap_t *inheritable,
1826                           const kernel_cap_t *permitted)
1827 {
1828         int error;
1829
1830         error = cap_capset(new, old,
1831                                       effective, inheritable, permitted);
1832         if (error)
1833                 return error;
1834
1835         return cred_has_perm(old, new, PROCESS__SETCAP);
1836 }
1837
1838 /*
1839  * (This comment used to live with the selinux_task_setuid hook,
1840  * which was removed).
1841  *
1842  * Since setuid only affects the current process, and since the SELinux
1843  * controls are not based on the Linux identity attributes, SELinux does not
1844  * need to control this operation.  However, SELinux does control the use of
1845  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1846  */
1847
1848 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1849                            int cap, int audit)
1850 {
1851         int rc;
1852
1853         rc = cap_capable(tsk, cred, cap, audit);
1854         if (rc)
1855                 return rc;
1856
1857         return task_has_capability(tsk, cred, cap, audit);
1858 }
1859
1860 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1861 {
1862         const struct cred *cred = current_cred();
1863         int rc = 0;
1864
1865         if (!sb)
1866                 return 0;
1867
1868         switch (cmds) {
1869         case Q_SYNC:
1870         case Q_QUOTAON:
1871         case Q_QUOTAOFF:
1872         case Q_SETINFO:
1873         case Q_SETQUOTA:
1874                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1875                 break;
1876         case Q_GETFMT:
1877         case Q_GETINFO:
1878         case Q_GETQUOTA:
1879                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1880                 break;
1881         default:
1882                 rc = 0;  /* let the kernel handle invalid cmds */
1883                 break;
1884         }
1885         return rc;
1886 }
1887
1888 static int selinux_quota_on(struct dentry *dentry)
1889 {
1890         const struct cred *cred = current_cred();
1891
1892         return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
1893 }
1894
1895 static int selinux_syslog(int type)
1896 {
1897         int rc;
1898
1899         switch (type) {
1900         case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
1901         case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
1902                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1903                 break;
1904         case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
1905         case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
1906         /* Set level of messages printed to console */
1907         case SYSLOG_ACTION_CONSOLE_LEVEL:
1908                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1909                 break;
1910         case SYSLOG_ACTION_CLOSE:       /* Close log */
1911         case SYSLOG_ACTION_OPEN:        /* Open log */
1912         case SYSLOG_ACTION_READ:        /* Read from log */
1913         case SYSLOG_ACTION_READ_CLEAR:  /* Read/clear last kernel messages */
1914         case SYSLOG_ACTION_CLEAR:       /* Clear ring buffer */
1915         default:
1916                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1917                 break;
1918         }
1919         return rc;
1920 }
1921
1922 /*
1923  * Check that a process has enough memory to allocate a new virtual
1924  * mapping. 0 means there is enough memory for the allocation to
1925  * succeed and -ENOMEM implies there is not.
1926  *
1927  * Do not audit the selinux permission check, as this is applied to all
1928  * processes that allocate mappings.
1929  */
1930 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1931 {
1932         int rc, cap_sys_admin = 0;
1933
1934         rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
1935                              SECURITY_CAP_NOAUDIT);
1936         if (rc == 0)
1937                 cap_sys_admin = 1;
1938
1939         return __vm_enough_memory(mm, pages, cap_sys_admin);
1940 }
1941
1942 /* binprm security operations */
1943
1944 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
1945 {
1946         const struct task_security_struct *old_tsec;
1947         struct task_security_struct *new_tsec;
1948         struct inode_security_struct *isec;
1949         struct common_audit_data ad;
1950         struct inode *inode = bprm->file->f_path.dentry->d_inode;
1951         int rc;
1952
1953         rc = cap_bprm_set_creds(bprm);
1954         if (rc)
1955                 return rc;
1956
1957         /* SELinux context only depends on initial program or script and not
1958          * the script interpreter */
1959         if (bprm->cred_prepared)
1960                 return 0;
1961
1962         old_tsec = current_security();
1963         new_tsec = bprm->cred->security;
1964         isec = inode->i_security;
1965
1966         /* Default to the current task SID. */
1967         new_tsec->sid = old_tsec->sid;
1968         new_tsec->osid = old_tsec->sid;
1969
1970         /* Reset fs, key, and sock SIDs on execve. */
1971         new_tsec->create_sid = 0;
1972         new_tsec->keycreate_sid = 0;
1973         new_tsec->sockcreate_sid = 0;
1974
1975         if (old_tsec->exec_sid) {
1976                 new_tsec->sid = old_tsec->exec_sid;
1977                 /* Reset exec SID on execve. */
1978                 new_tsec->exec_sid = 0;
1979         } else {
1980                 /* Check for a default transition on this program. */
1981                 rc = security_transition_sid(old_tsec->sid, isec->sid,
1982                                              SECCLASS_PROCESS, NULL,
1983                                              &new_tsec->sid);
1984                 if (rc)
1985                         return rc;
1986         }
1987
1988         COMMON_AUDIT_DATA_INIT(&ad, FS);
1989         ad.u.fs.path = bprm->file->f_path;
1990
1991         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1992                 new_tsec->sid = old_tsec->sid;
1993
1994         if (new_tsec->sid == old_tsec->sid) {
1995                 rc = avc_has_perm(old_tsec->sid, isec->sid,
1996                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1997                 if (rc)
1998                         return rc;
1999         } else {
2000                 /* Check permissions for the transition. */
2001                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2002                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2003                 if (rc)
2004                         return rc;
2005
2006                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2007                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2008                 if (rc)
2009                         return rc;
2010
2011                 /* Check for shared state */
2012                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2013                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2014                                           SECCLASS_PROCESS, PROCESS__SHARE,
2015                                           NULL);
2016                         if (rc)
2017                                 return -EPERM;
2018                 }
2019
2020                 /* Make sure that anyone attempting to ptrace over a task that
2021                  * changes its SID has the appropriate permit */
2022                 if (bprm->unsafe &
2023                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2024                         struct task_struct *tracer;
2025                         struct task_security_struct *sec;
2026                         u32 ptsid = 0;
2027
2028                         rcu_read_lock();
2029                         tracer = tracehook_tracer_task(current);
2030                         if (likely(tracer != NULL)) {
2031                                 sec = __task_cred(tracer)->security;
2032                                 ptsid = sec->sid;
2033                         }
2034                         rcu_read_unlock();
2035
2036                         if (ptsid != 0) {
2037                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2038                                                   SECCLASS_PROCESS,
2039                                                   PROCESS__PTRACE, NULL);
2040                                 if (rc)
2041                                         return -EPERM;
2042                         }
2043                 }
2044
2045                 /* Clear any possibly unsafe personality bits on exec: */
2046                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2047         }
2048
2049         return 0;
2050 }
2051
2052 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2053 {
2054         const struct task_security_struct *tsec = current_security();
2055         u32 sid, osid;
2056         int atsecure = 0;
2057
2058         sid = tsec->sid;
2059         osid = tsec->osid;
2060
2061         if (osid != sid) {
2062                 /* Enable secure mode for SIDs transitions unless
2063                    the noatsecure permission is granted between
2064                    the two SIDs, i.e. ahp returns 0. */
2065                 atsecure = avc_has_perm(osid, sid,
2066                                         SECCLASS_PROCESS,
2067                                         PROCESS__NOATSECURE, NULL);
2068         }
2069
2070         return (atsecure || cap_bprm_secureexec(bprm));
2071 }
2072
2073 extern struct vfsmount *selinuxfs_mount;
2074 extern struct dentry *selinux_null;
2075
2076 /* Derived from fs/exec.c:flush_old_files. */
2077 static inline void flush_unauthorized_files(const struct cred *cred,
2078                                             struct files_struct *files)
2079 {
2080         struct common_audit_data ad;
2081         struct file *file, *devnull = NULL;
2082         struct tty_struct *tty;
2083         struct fdtable *fdt;
2084         long j = -1;
2085         int drop_tty = 0;
2086
2087         tty = get_current_tty();
2088         if (tty) {
2089                 spin_lock(&tty_files_lock);
2090                 if (!list_empty(&tty->tty_files)) {
2091                         struct tty_file_private *file_priv;
2092                         struct inode *inode;
2093
2094                         /* Revalidate access to controlling tty.
2095                            Use inode_has_perm on the tty inode directly rather
2096                            than using file_has_perm, as this particular open
2097                            file may belong to another process and we are only
2098                            interested in the inode-based check here. */
2099                         file_priv = list_first_entry(&tty->tty_files,
2100                                                 struct tty_file_private, list);
2101                         file = file_priv->file;
2102                         inode = file->f_path.dentry->d_inode;
2103                         if (inode_has_perm(cred, inode,
2104                                            FILE__READ | FILE__WRITE, NULL)) {
2105                                 drop_tty = 1;
2106                         }
2107                 }
2108                 spin_unlock(&tty_files_lock);
2109                 tty_kref_put(tty);
2110         }
2111         /* Reset controlling tty. */
2112         if (drop_tty)
2113                 no_tty();
2114
2115         /* Revalidate access to inherited open files. */
2116
2117         COMMON_AUDIT_DATA_INIT(&ad, FS);
2118
2119         spin_lock(&files->file_lock);
2120         for (;;) {
2121                 unsigned long set, i;
2122                 int fd;
2123
2124                 j++;
2125                 i = j * __NFDBITS;
2126                 fdt = files_fdtable(files);
2127                 if (i >= fdt->max_fds)
2128                         break;
2129                 set = fdt->open_fds->fds_bits[j];
2130                 if (!set)
2131                         continue;
2132                 spin_unlock(&files->file_lock);
2133                 for ( ; set ; i++, set >>= 1) {
2134                         if (set & 1) {
2135                                 file = fget(i);
2136                                 if (!file)
2137                                         continue;
2138                                 if (file_has_perm(cred,
2139                                                   file,
2140                                                   file_to_av(file))) {
2141                                         sys_close(i);
2142                                         fd = get_unused_fd();
2143                                         if (fd != i) {
2144                                                 if (fd >= 0)
2145                                                         put_unused_fd(fd);
2146                                                 fput(file);
2147                                                 continue;
2148                                         }
2149                                         if (devnull) {
2150                                                 get_file(devnull);
2151                                         } else {
2152                                                 devnull = dentry_open(
2153                                                         dget(selinux_null),
2154                                                         mntget(selinuxfs_mount),
2155                                                         O_RDWR, cred);
2156                                                 if (IS_ERR(devnull)) {
2157                                                         devnull = NULL;
2158                                                         put_unused_fd(fd);
2159                                                         fput(file);
2160                                                         continue;
2161                                                 }
2162                                         }
2163                                         fd_install(fd, devnull);
2164                                 }
2165                                 fput(file);
2166                         }
2167                 }
2168                 spin_lock(&files->file_lock);
2169
2170         }
2171         spin_unlock(&files->file_lock);
2172 }
2173
2174 /*
2175  * Prepare a process for imminent new credential changes due to exec
2176  */
2177 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2178 {
2179         struct task_security_struct *new_tsec;
2180         struct rlimit *rlim, *initrlim;
2181         int rc, i;
2182
2183         new_tsec = bprm->cred->security;
2184         if (new_tsec->sid == new_tsec->osid)
2185                 return;
2186
2187         /* Close files for which the new task SID is not authorized. */
2188         flush_unauthorized_files(bprm->cred, current->files);
2189
2190         /* Always clear parent death signal on SID transitions. */
2191         current->pdeath_signal = 0;
2192
2193         /* Check whether the new SID can inherit resource limits from the old
2194          * SID.  If not, reset all soft limits to the lower of the current
2195          * task's hard limit and the init task's soft limit.
2196          *
2197          * Note that the setting of hard limits (even to lower them) can be
2198          * controlled by the setrlimit check.  The inclusion of the init task's
2199          * soft limit into the computation is to avoid resetting soft limits
2200          * higher than the default soft limit for cases where the default is
2201          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2202          */
2203         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2204                           PROCESS__RLIMITINH, NULL);
2205         if (rc) {
2206                 /* protect against do_prlimit() */
2207                 task_lock(current);
2208                 for (i = 0; i < RLIM_NLIMITS; i++) {
2209                         rlim = current->signal->rlim + i;
2210                         initrlim = init_task.signal->rlim + i;
2211                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2212                 }
2213                 task_unlock(current);
2214                 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2215         }
2216 }
2217
2218 /*
2219  * Clean up the process immediately after the installation of new credentials
2220  * due to exec
2221  */
2222 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2223 {
2224         const struct task_security_struct *tsec = current_security();
2225         struct itimerval itimer;
2226         u32 osid, sid;
2227         int rc, i;
2228
2229         osid = tsec->osid;
2230         sid = tsec->sid;
2231
2232         if (sid == osid)
2233                 return;
2234
2235         /* Check whether the new SID can inherit signal state from the old SID.
2236          * If not, clear itimers to avoid subsequent signal generation and
2237          * flush and unblock signals.
2238          *
2239          * This must occur _after_ the task SID has been updated so that any
2240          * kill done after the flush will be checked against the new SID.
2241          */
2242         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2243         if (rc) {
2244                 memset(&itimer, 0, sizeof itimer);
2245                 for (i = 0; i < 3; i++)
2246                         do_setitimer(i, &itimer, NULL);
2247                 spin_lock_irq(&current->sighand->siglock);
2248                 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2249                         __flush_signals(current);
2250                         flush_signal_handlers(current, 1);
2251                         sigemptyset(&current->blocked);
2252                 }
2253                 spin_unlock_irq(&current->sighand->siglock);
2254         }
2255
2256         /* Wake up the parent if it is waiting so that it can recheck
2257          * wait permission to the new task SID. */
2258         read_lock(&tasklist_lock);
2259         __wake_up_parent(current, current->real_parent);
2260         read_unlock(&tasklist_lock);
2261 }
2262
2263 /* superblock security operations */
2264
2265 static int selinux_sb_alloc_security(struct super_block *sb)
2266 {
2267         return superblock_alloc_security(sb);
2268 }
2269
2270 static void selinux_sb_free_security(struct super_block *sb)
2271 {
2272         superblock_free_security(sb);
2273 }
2274
2275 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2276 {
2277         if (plen > olen)
2278                 return 0;
2279
2280         return !memcmp(prefix, option, plen);
2281 }
2282
2283 static inline int selinux_option(char *option, int len)
2284 {
2285         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2286                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2287                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2288                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2289                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2290 }
2291
2292 static inline void take_option(char **to, char *from, int *first, int len)
2293 {
2294         if (!*first) {
2295                 **to = ',';
2296                 *to += 1;
2297         } else
2298                 *first = 0;
2299         memcpy(*to, from, len);
2300         *to += len;
2301 }
2302
2303 static inline void take_selinux_option(char **to, char *from, int *first,
2304                                        int len)
2305 {
2306         int current_size = 0;
2307
2308         if (!*first) {
2309                 **to = '|';
2310                 *to += 1;
2311         } else
2312                 *first = 0;
2313
2314         while (current_size < len) {
2315                 if (*from != '"') {
2316                         **to = *from;
2317                         *to += 1;
2318                 }
2319                 from += 1;
2320                 current_size += 1;
2321         }
2322 }
2323
2324 static int selinux_sb_copy_data(char *orig, char *copy)
2325 {
2326         int fnosec, fsec, rc = 0;
2327         char *in_save, *in_curr, *in_end;
2328         char *sec_curr, *nosec_save, *nosec;
2329         int open_quote = 0;
2330
2331         in_curr = orig;
2332         sec_curr = copy;
2333
2334         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2335         if (!nosec) {
2336                 rc = -ENOMEM;
2337                 goto out;
2338         }
2339
2340         nosec_save = nosec;
2341         fnosec = fsec = 1;
2342         in_save = in_end = orig;
2343
2344         do {
2345                 if (*in_end == '"')
2346                         open_quote = !open_quote;
2347                 if ((*in_end == ',' && open_quote == 0) ||
2348                                 *in_end == '\0') {
2349                         int len = in_end - in_curr;
2350
2351                         if (selinux_option(in_curr, len))
2352                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2353                         else
2354                                 take_option(&nosec, in_curr, &fnosec, len);
2355
2356                         in_curr = in_end + 1;
2357                 }
2358         } while (*in_end++);
2359
2360         strcpy(in_save, nosec_save);
2361         free_page((unsigned long)nosec_save);
2362 out:
2363         return rc;
2364 }
2365
2366 static int selinux_sb_remount(struct super_block *sb, void *data)
2367 {
2368         int rc, i, *flags;
2369         struct security_mnt_opts opts;
2370         char *secdata, **mount_options;
2371         struct superblock_security_struct *sbsec = sb->s_security;
2372
2373         if (!(sbsec->flags & SE_SBINITIALIZED))
2374                 return 0;
2375
2376         if (!data)
2377                 return 0;
2378
2379         if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2380                 return 0;
2381
2382         security_init_mnt_opts(&opts);
2383         secdata = alloc_secdata();
2384         if (!secdata)
2385                 return -ENOMEM;
2386         rc = selinux_sb_copy_data(data, secdata);
2387         if (rc)
2388                 goto out_free_secdata;
2389
2390         rc = selinux_parse_opts_str(secdata, &opts);
2391         if (rc)
2392                 goto out_free_secdata;
2393
2394         mount_options = opts.mnt_opts;
2395         flags = opts.mnt_opts_flags;
2396
2397         for (i = 0; i < opts.num_mnt_opts; i++) {
2398                 u32 sid;
2399                 size_t len;
2400
2401                 if (flags[i] == SE_SBLABELSUPP)
2402                         continue;
2403                 len = strlen(mount_options[i]);
2404                 rc = security_context_to_sid(mount_options[i], len, &sid);
2405                 if (rc) {
2406                         printk(KERN_WARNING "SELinux: security_context_to_sid"
2407                                "(%s) failed for (dev %s, type %s) errno=%d\n",
2408                                mount_options[i], sb->s_id, sb->s_type->name, rc);
2409                         goto out_free_opts;
2410                 }
2411                 rc = -EINVAL;
2412                 switch (flags[i]) {
2413                 case FSCONTEXT_MNT:
2414                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2415                                 goto out_bad_option;
2416                         break;
2417                 case CONTEXT_MNT:
2418                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2419                                 goto out_bad_option;
2420                         break;
2421                 case ROOTCONTEXT_MNT: {
2422                         struct inode_security_struct *root_isec;
2423                         root_isec = sb->s_root->d_inode->i_security;
2424
2425                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2426                                 goto out_bad_option;
2427                         break;
2428                 }
2429                 case DEFCONTEXT_MNT:
2430                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2431                                 goto out_bad_option;
2432                         break;
2433                 default:
2434                         goto out_free_opts;
2435                 }
2436         }
2437
2438         rc = 0;
2439 out_free_opts:
2440         security_free_mnt_opts(&opts);
2441 out_free_secdata:
2442         free_secdata(secdata);
2443         return rc;
2444 out_bad_option:
2445         printk(KERN_WARNING "SELinux: unable to change security options "
2446                "during remount (dev %s, type=%s)\n", sb->s_id,
2447                sb->s_type->name);
2448         goto out_free_opts;
2449 }
2450
2451 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2452 {
2453         const struct cred *cred = current_cred();
2454         struct common_audit_data ad;
2455         int rc;
2456
2457         rc = superblock_doinit(sb, data);
2458         if (rc)
2459                 return rc;
2460
2461         /* Allow all mounts performed by the kernel */
2462         if (flags & MS_KERNMOUNT)
2463                 return 0;
2464
2465         COMMON_AUDIT_DATA_INIT(&ad, FS);
2466         ad.u.fs.path.dentry = sb->s_root;
2467         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2468 }
2469
2470 static int selinux_sb_statfs(struct dentry *dentry)
2471 {
2472         const struct cred *cred = current_cred();
2473         struct common_audit_data ad;
2474
2475         COMMON_AUDIT_DATA_INIT(&ad, FS);
2476         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2477         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2478 }
2479
2480 static int selinux_mount(char *dev_name,
2481                          struct path *path,
2482                          char *type,
2483                          unsigned long flags,
2484                          void *data)
2485 {
2486         const struct cred *cred = current_cred();
2487
2488         if (flags & MS_REMOUNT)
2489                 return superblock_has_perm(cred, path->mnt->mnt_sb,
2490                                            FILESYSTEM__REMOUNT, NULL);
2491         else
2492                 return dentry_has_perm(cred, path->mnt, path->dentry,
2493                                        FILE__MOUNTON);
2494 }
2495
2496 static int selinux_umount(struct vfsmount *mnt, int flags)
2497 {
2498         const struct cred *cred = current_cred();
2499
2500         return superblock_has_perm(cred, mnt->mnt_sb,
2501                                    FILESYSTEM__UNMOUNT, NULL);
2502 }
2503
2504 /* inode security operations */
2505
2506 static int selinux_inode_alloc_security(struct inode *inode)
2507 {
2508         return inode_alloc_security(inode);
2509 }
2510
2511 static void selinux_inode_free_security(struct inode *inode)
2512 {
2513         inode_free_security(inode);
2514 }
2515
2516 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2517                                        const struct qstr *qstr, char **name,
2518                                        void **value, size_t *len)
2519 {
2520         const struct task_security_struct *tsec = current_security();
2521         struct inode_security_struct *dsec;
2522         struct superblock_security_struct *sbsec;
2523         u32 sid, newsid, clen;
2524         int rc;
2525         char *namep = NULL, *context;
2526
2527         dsec = dir->i_security;
2528         sbsec = dir->i_sb->s_security;
2529
2530         sid = tsec->sid;
2531         newsid = tsec->create_sid;
2532
2533         if ((sbsec->flags & SE_SBINITIALIZED) &&
2534             (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2535                 newsid = sbsec->mntpoint_sid;
2536         else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2537                 rc = security_transition_sid(sid, dsec->sid,
2538                                              inode_mode_to_security_class(inode->i_mode),
2539                                              qstr, &newsid);
2540                 if (rc) {
2541                         printk(KERN_WARNING "%s:  "
2542                                "security_transition_sid failed, rc=%d (dev=%s "
2543                                "ino=%ld)\n",
2544                                __func__,
2545                                -rc, inode->i_sb->s_id, inode->i_ino);
2546                         return rc;
2547                 }
2548         }
2549
2550         /* Possibly defer initialization to selinux_complete_init. */
2551         if (sbsec->flags & SE_SBINITIALIZED) {
2552                 struct inode_security_struct *isec = inode->i_security;
2553                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2554                 isec->sid = newsid;
2555                 isec->initialized = 1;
2556         }
2557
2558         if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2559                 return -EOPNOTSUPP;
2560
2561         if (name) {
2562                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2563                 if (!namep)
2564                         return -ENOMEM;
2565                 *name = namep;
2566         }
2567
2568         if (value && len) {
2569                 rc = security_sid_to_context_force(newsid, &context, &clen);
2570                 if (rc) {
2571                         kfree(namep);
2572                         return rc;
2573                 }
2574                 *value = context;
2575                 *len = clen;
2576         }
2577
2578         return 0;
2579 }
2580
2581 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2582 {
2583         return may_create(dir, dentry, SECCLASS_FILE);
2584 }
2585
2586 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2587 {
2588         return may_link(dir, old_dentry, MAY_LINK);
2589 }
2590
2591 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2592 {
2593         return may_link(dir, dentry, MAY_UNLINK);
2594 }
2595
2596 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2597 {
2598         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2599 }
2600
2601 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2602 {
2603         return may_create(dir, dentry, SECCLASS_DIR);
2604 }
2605
2606 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2607 {
2608         return may_link(dir, dentry, MAY_RMDIR);
2609 }
2610
2611 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2612 {
2613         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2614 }
2615
2616 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2617                                 struct inode *new_inode, struct dentry *new_dentry)
2618 {
2619         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2620 }
2621
2622 static int selinux_inode_readlink(struct dentry *dentry)
2623 {
2624         const struct cred *cred = current_cred();
2625
2626         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2627 }
2628
2629 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2630 {
2631         const struct cred *cred = current_cred();
2632
2633         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2634 }
2635
2636 static int selinux_inode_permission(struct inode *inode, int mask)
2637 {
2638         const struct cred *cred = current_cred();
2639         struct common_audit_data ad;
2640         u32 perms;
2641         bool from_access;
2642
2643         from_access = mask & MAY_ACCESS;
2644         mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2645
2646         /* No permission to check.  Existence test. */
2647         if (!mask)
2648                 return 0;
2649
2650         COMMON_AUDIT_DATA_INIT(&ad, FS);
2651         ad.u.fs.inode = inode;
2652
2653         if (from_access)
2654                 ad.selinux_audit_data.auditdeny |= FILE__AUDIT_ACCESS;
2655
2656         perms = file_mask_to_av(inode->i_mode, mask);
2657
2658         return inode_has_perm(cred, inode, perms, &ad);
2659 }
2660
2661 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2662 {
2663         const struct cred *cred = current_cred();
2664         unsigned int ia_valid = iattr->ia_valid;
2665
2666         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2667         if (ia_valid & ATTR_FORCE) {
2668                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2669                               ATTR_FORCE);
2670                 if (!ia_valid)
2671                         return 0;
2672         }
2673
2674         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2675                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2676                 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2677
2678         return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2679 }
2680
2681 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2682 {
2683         const struct cred *cred = current_cred();
2684
2685         return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2686 }
2687
2688 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2689 {
2690         const struct cred *cred = current_cred();
2691
2692         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2693                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2694                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2695                         if (!capable(CAP_SETFCAP))
2696                                 return -EPERM;
2697                 } else if (!capable(CAP_SYS_ADMIN)) {
2698                         /* A different attribute in the security namespace.
2699                            Restrict to administrator. */
2700                         return -EPERM;
2701                 }
2702         }
2703
2704         /* Not an attribute we recognize, so just check the
2705            ordinary setattr permission. */
2706         return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2707 }
2708
2709 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2710                                   const void *value, size_t size, int flags)
2711 {
2712         struct inode *inode = dentry->d_inode;
2713         struct inode_security_struct *isec = inode->i_security;
2714         struct superblock_security_struct *sbsec;
2715         struct common_audit_data ad;
2716         u32 newsid, sid = current_sid();
2717         int rc = 0;
2718
2719         if (strcmp(name, XATTR_NAME_SELINUX))
2720                 return selinux_inode_setotherxattr(dentry, name);
2721
2722         sbsec = inode->i_sb->s_security;
2723         if (!(sbsec->flags & SE_SBLABELSUPP))
2724                 return -EOPNOTSUPP;
2725
2726         if (!is_owner_or_cap(inode))
2727                 return -EPERM;
2728
2729         COMMON_AUDIT_DATA_INIT(&ad, FS);
2730         ad.u.fs.path.dentry = dentry;
2731
2732         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2733                           FILE__RELABELFROM, &ad);
2734         if (rc)
2735                 return rc;
2736
2737         rc = security_context_to_sid(value, size, &newsid);
2738         if (rc == -EINVAL) {
2739                 if (!capable(CAP_MAC_ADMIN))
2740                         return rc;
2741                 rc = security_context_to_sid_force(value, size, &newsid);
2742         }
2743         if (rc)
2744                 return rc;
2745
2746         rc = avc_has_perm(sid, newsid, isec->sclass,
2747                           FILE__RELABELTO, &ad);
2748         if (rc)
2749                 return rc;
2750
2751         rc = security_validate_transition(isec->sid, newsid, sid,
2752                                           isec->sclass);
2753         if (rc)
2754                 return rc;
2755
2756         return avc_has_perm(newsid,
2757                             sbsec->sid,
2758                             SECCLASS_FILESYSTEM,
2759                             FILESYSTEM__ASSOCIATE,
2760                             &ad);
2761 }
2762
2763 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2764                                         const void *value, size_t size,
2765                                         int flags)
2766 {
2767         struct inode *inode = dentry->d_inode;
2768         struct inode_security_struct *isec = inode->i_security;
2769         u32 newsid;
2770         int rc;
2771
2772         if (strcmp(name, XATTR_NAME_SELINUX)) {
2773                 /* Not an attribute we recognize, so nothing to do. */
2774                 return;
2775         }
2776
2777         rc = security_context_to_sid_force(value, size, &newsid);
2778         if (rc) {
2779                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2780                        "for (%s, %lu), rc=%d\n",
2781                        inode->i_sb->s_id, inode->i_ino, -rc);
2782                 return;
2783         }
2784
2785         isec->sid = newsid;
2786         return;
2787 }
2788
2789 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2790 {
2791         const struct cred *cred = current_cred();
2792
2793         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2794 }
2795
2796 static int selinux_inode_listxattr(struct dentry *dentry)
2797 {
2798         const struct cred *cred = current_cred();
2799
2800         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2801 }
2802
2803 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2804 {
2805         if (strcmp(name, XATTR_NAME_SELINUX))
2806                 return selinux_inode_setotherxattr(dentry, name);
2807
2808         /* No one is allowed to remove a SELinux security label.
2809            You can change the label, but all data must be labeled. */
2810         return -EACCES;
2811 }
2812
2813 /*
2814  * Copy the inode security context value to the user.
2815  *
2816  * Permission check is handled by selinux_inode_getxattr hook.
2817  */
2818 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2819 {
2820         u32 size;
2821         int error;
2822         char *context = NULL;
2823         struct inode_security_struct *isec = inode->i_security;
2824
2825         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2826                 return -EOPNOTSUPP;
2827
2828         /*
2829          * If the caller has CAP_MAC_ADMIN, then get the raw context
2830          * value even if it is not defined by current policy; otherwise,
2831          * use the in-core value under current policy.
2832          * Use the non-auditing forms of the permission checks since
2833          * getxattr may be called by unprivileged processes commonly
2834          * and lack of permission just means that we fall back to the
2835          * in-core context value, not a denial.
2836          */
2837         error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2838                                 SECURITY_CAP_NOAUDIT);
2839         if (!error)
2840                 error = security_sid_to_context_force(isec->sid, &context,
2841                                                       &size);
2842         else
2843                 error = security_sid_to_context(isec->sid, &context, &size);
2844         if (error)
2845                 return error;
2846         error = size;
2847         if (alloc) {
2848                 *buffer = context;
2849                 goto out_nofree;
2850         }
2851         kfree(context);
2852 out_nofree:
2853         return error;
2854 }
2855
2856 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2857                                      const void *value, size_t size, int flags)
2858 {
2859         struct inode_security_struct *isec = inode->i_security;
2860         u32 newsid;
2861         int rc;
2862
2863         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2864                 return -EOPNOTSUPP;
2865
2866         if (!value || !size)
2867                 return -EACCES;
2868
2869         rc = security_context_to_sid((void *)value, size, &newsid);
2870         if (rc)
2871                 return rc;
2872
2873         isec->sid = newsid;
2874         isec->initialized = 1;
2875         return 0;
2876 }
2877
2878 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2879 {
2880         const int len = sizeof(XATTR_NAME_SELINUX);
2881         if (buffer && len <= buffer_size)
2882                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2883         return len;
2884 }
2885
2886 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2887 {
2888         struct inode_security_struct *isec = inode->i_security;
2889         *secid = isec->sid;
2890 }
2891
2892 /* file security operations */
2893
2894 static int selinux_revalidate_file_permission(struct file *file, int mask)
2895 {
2896         const struct cred *cred = current_cred();
2897         struct inode *inode = file->f_path.dentry->d_inode;
2898
2899         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2900         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2901                 mask |= MAY_APPEND;
2902
2903         return file_has_perm(cred, file,
2904                              file_mask_to_av(inode->i_mode, mask));
2905 }
2906
2907 static int selinux_file_permission(struct file *file, int mask)
2908 {
2909         struct inode *inode = file->f_path.dentry->d_inode;
2910         struct file_security_struct *fsec = file->f_security;
2911         struct inode_security_struct *isec = inode->i_security;
2912         u32 sid = current_sid();
2913
2914         if (!mask)
2915                 /* No permission to check.  Existence test. */
2916                 return 0;
2917
2918         if (sid == fsec->sid && fsec->isid == isec->sid &&
2919             fsec->pseqno == avc_policy_seqno())
2920                 /* No change since dentry_open check. */
2921                 return 0;
2922
2923         return selinux_revalidate_file_permission(file, mask);
2924 }
2925
2926 static int selinux_file_alloc_security(struct file *file)
2927 {
2928         return file_alloc_security(file);
2929 }
2930
2931 static void selinux_file_free_security(struct file *file)
2932 {
2933         file_free_security(file);
2934 }
2935
2936 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2937                               unsigned long arg)
2938 {
2939         const struct cred *cred = current_cred();
2940         int error = 0;
2941
2942         switch (cmd) {
2943         case FIONREAD:
2944         /* fall through */
2945         case FIBMAP:
2946         /* fall through */
2947         case FIGETBSZ:
2948         /* fall through */
2949         case EXT2_IOC_GETFLAGS:
2950         /* fall through */
2951         case EXT2_IOC_GETVERSION:
2952                 error = file_has_perm(cred, file, FILE__GETATTR);
2953                 break;
2954
2955         case EXT2_IOC_SETFLAGS:
2956         /* fall through */
2957         case EXT2_IOC_SETVERSION:
2958                 error = file_has_perm(cred, file, FILE__SETATTR);
2959                 break;
2960
2961         /* sys_ioctl() checks */
2962         case FIONBIO:
2963         /* fall through */
2964         case FIOASYNC:
2965                 error = file_has_perm(cred, file, 0);
2966                 break;
2967
2968         case KDSKBENT:
2969         case KDSKBSENT:
2970                 error = task_has_capability(current, cred, CAP_SYS_TTY_CONFIG,
2971                                             SECURITY_CAP_AUDIT);
2972                 break;
2973
2974         /* default case assumes that the command will go
2975          * to the file's ioctl() function.
2976          */
2977         default:
2978                 error = file_has_perm(cred, file, FILE__IOCTL);
2979         }
2980         return error;
2981 }
2982
2983 static int default_noexec;
2984
2985 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2986 {
2987         const struct cred *cred = current_cred();
2988         int rc = 0;
2989
2990         if (default_noexec &&
2991             (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2992                 /*
2993                  * We are making executable an anonymous mapping or a
2994                  * private file mapping that will also be writable.
2995                  * This has an additional check.
2996                  */
2997                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
2998                 if (rc)
2999                         goto error;
3000         }
3001
3002         if (file) {
3003                 /* read access is always possible with a mapping */
3004                 u32 av = FILE__READ;
3005
3006                 /* write access only matters if the mapping is shared */
3007                 if (shared && (prot & PROT_WRITE))
3008                         av |= FILE__WRITE;
3009
3010                 if (prot & PROT_EXEC)
3011                         av |= FILE__EXECUTE;
3012
3013                 return file_has_perm(cred, file, av);
3014         }
3015
3016 error:
3017         return rc;
3018 }
3019
3020 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3021                              unsigned long prot, unsigned long flags,
3022                              unsigned long addr, unsigned long addr_only)
3023 {
3024         int rc = 0;
3025         u32 sid = current_sid();
3026
3027         /*
3028          * notice that we are intentionally putting the SELinux check before
3029          * the secondary cap_file_mmap check.  This is such a likely attempt
3030          * at bad behaviour/exploit that we always want to get the AVC, even
3031          * if DAC would have also denied the operation.
3032          */
3033         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3034                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3035                                   MEMPROTECT__MMAP_ZERO, NULL);
3036                 if (rc)
3037                         return rc;
3038         }
3039
3040         /* do DAC check on address space usage */
3041         rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3042         if (rc || addr_only)
3043                 return rc;
3044
3045         if (selinux_checkreqprot)
3046                 prot = reqprot;
3047
3048         return file_map_prot_check(file, prot,
3049                                    (flags & MAP_TYPE) == MAP_SHARED);
3050 }
3051
3052 static int selinux_file_mprotect(struct vm_area_struct *vma,
3053                                  unsigned long reqprot,
3054                                  unsigned long prot)
3055 {
3056         const struct cred *cred = current_cred();
3057
3058         if (selinux_checkreqprot)
3059                 prot = reqprot;
3060
3061         if (default_noexec &&
3062             (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3063                 int rc = 0;
3064                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3065                     vma->vm_end <= vma->vm_mm->brk) {
3066                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3067                 } else if (!vma->vm_file &&
3068                            vma->vm_start <= vma->vm_mm->start_stack &&
3069                            vma->vm_end >= vma->vm_mm->start_stack) {
3070                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3071                 } else if (vma->vm_file && vma->anon_vma) {
3072                         /*
3073                          * We are making executable a file mapping that has
3074                          * had some COW done. Since pages might have been
3075                          * written, check ability to execute the possibly
3076                          * modified content.  This typically should only
3077                          * occur for text relocations.
3078                          */
3079                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3080                 }
3081                 if (rc)
3082                         return rc;
3083         }
3084
3085         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3086 }
3087
3088 static int selinux_file_lock(struct file *file, unsigned int cmd)
3089 {
3090         const struct cred *cred = current_cred();
3091
3092         return file_has_perm(cred, file, FILE__LOCK);
3093 }
3094
3095 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3096                               unsigned long arg)
3097 {
3098         const struct cred *cred = current_cred();
3099         int err = 0;
3100
3101         switch (cmd) {
3102         case F_SETFL:
3103                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3104                         err = -EINVAL;
3105                         break;
3106                 }
3107
3108                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3109                         err = file_has_perm(cred, file, FILE__WRITE);
3110                         break;
3111                 }
3112                 /* fall through */
3113         case F_SETOWN:
3114         case F_SETSIG:
3115         case F_GETFL:
3116         case F_GETOWN:
3117         case F_GETSIG:
3118                 /* Just check FD__USE permission */
3119                 err = file_has_perm(cred, file, 0);
3120                 break;
3121         case F_GETLK:
3122         case F_SETLK:
3123         case F_SETLKW:
3124 #if BITS_PER_LONG == 32
3125         case F_GETLK64:
3126         case F_SETLK64:
3127         case F_SETLKW64:
3128 #endif
3129                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3130                         err = -EINVAL;
3131                         break;
3132                 }
3133                 err = file_has_perm(cred, file, FILE__LOCK);
3134                 break;
3135         }
3136
3137         return err;
3138 }
3139
3140 static int selinux_file_set_fowner(struct file *file)
3141 {
3142         struct file_security_struct *fsec;
3143
3144         fsec = file->f_security;
3145         fsec->fown_sid = current_sid();
3146
3147         return 0;
3148 }
3149
3150 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3151                                        struct fown_struct *fown, int signum)
3152 {
3153         struct file *file;
3154         u32 sid = task_sid(tsk);
3155         u32 perm;
3156         struct file_security_struct *fsec;
3157
3158         /* struct fown_struct is never outside the context of a struct file */
3159         file = container_of(fown, struct file, f_owner);
3160
3161         fsec = file->f_security;
3162
3163         if (!signum)
3164                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3165         else
3166                 perm = signal_to_av(signum);
3167
3168         return avc_has_perm(fsec->fown_sid, sid,
3169                             SECCLASS_PROCESS, perm, NULL);
3170 }
3171
3172 static int selinux_file_receive(struct file *file)
3173 {
3174         const struct cred *cred = current_cred();
3175
3176         return file_has_perm(cred, file, file_to_av(file));
3177 }
3178
3179 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3180 {
3181         struct file_security_struct *fsec;
3182         struct inode *inode;
3183         struct inode_security_struct *isec;
3184
3185         inode = file->f_path.dentry->d_inode;
3186         fsec = file->f_security;
3187         isec = inode->i_security;
3188         /*
3189          * Save inode label and policy sequence number
3190          * at open-time so that selinux_file_permission
3191          * can determine whether revalidation is necessary.
3192          * Task label is already saved in the file security
3193          * struct as its SID.
3194          */
3195         fsec->isid = isec->sid;
3196         fsec->pseqno = avc_policy_seqno();
3197         /*
3198          * Since the inode label or policy seqno may have changed
3199          * between the selinux_inode_permission check and the saving
3200          * of state above, recheck that access is still permitted.
3201          * Otherwise, access might never be revalidated against the
3202          * new inode label or new policy.
3203          * This check is not redundant - do not remove.
3204          */
3205         return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3206 }
3207
3208 /* task security operations */
3209
3210 static int selinux_task_create(unsigned long clone_flags)
3211 {
3212         return current_has_perm(current, PROCESS__FORK);
3213 }
3214
3215 /*
3216  * allocate the SELinux part of blank credentials
3217  */
3218 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3219 {
3220         struct task_security_struct *tsec;
3221
3222         tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3223         if (!tsec)
3224                 return -ENOMEM;
3225
3226         cred->security = tsec;
3227         return 0;
3228 }
3229
3230 /*
3231  * detach and free the LSM part of a set of credentials
3232  */
3233 static void selinux_cred_free(struct cred *cred)
3234 {
3235         struct task_security_struct *tsec = cred->security;
3236
3237         BUG_ON((unsigned long) cred->security < PAGE_SIZE);
3238         cred->security = (void *) 0x7UL;
3239         kfree(tsec);
3240 }
3241
3242 /*
3243  * prepare a new set of credentials for modification
3244  */
3245 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3246                                 gfp_t gfp)
3247 {
3248         const struct task_security_struct *old_tsec;
3249         struct task_security_struct *tsec;
3250
3251         old_tsec = old->security;
3252
3253         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3254         if (!tsec)
3255                 return -ENOMEM;
3256
3257         new->security = tsec;
3258         return 0;
3259 }
3260
3261 /*
3262  * transfer the SELinux data to a blank set of creds
3263  */
3264 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3265 {
3266         const struct task_security_struct *old_tsec = old->security;
3267         struct task_security_struct *tsec = new->security;
3268
3269         *tsec = *old_tsec;
3270 }
3271
3272 /*
3273  * set the security data for a kernel service
3274  * - all the creation contexts are set to unlabelled
3275  */
3276 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3277 {
3278         struct task_security_struct *tsec = new->security;
3279         u32 sid = current_sid();
3280         int ret;
3281
3282         ret = avc_has_perm(sid, secid,
3283                            SECCLASS_KERNEL_SERVICE,
3284                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3285                            NULL);
3286         if (ret == 0) {
3287                 tsec->sid = secid;
3288                 tsec->create_sid = 0;
3289                 tsec->keycreate_sid = 0;
3290                 tsec->sockcreate_sid = 0;
3291         }
3292         return ret;
3293 }
3294
3295 /*
3296  * set the file creation context in a security record to the same as the
3297  * objective context of the specified inode
3298  */
3299 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3300 {
3301         struct inode_security_struct *isec = inode->i_security;
3302         struct task_security_struct *tsec = new->security;
3303         u32 sid = current_sid();
3304         int ret;
3305
3306         ret = avc_has_perm(sid, isec->sid,
3307                            SECCLASS_KERNEL_SERVICE,
3308                            KERNEL_SERVICE__CREATE_FILES_AS,
3309                            NULL);
3310
3311         if (ret == 0)
3312                 tsec->create_sid = isec->sid;
3313         return ret;
3314 }
3315
3316 static int selinux_kernel_module_request(char *kmod_name)
3317 {
3318         u32 sid;
3319         struct common_audit_data ad;
3320
3321         sid = task_sid(current);
3322
3323         COMMON_AUDIT_DATA_INIT(&ad, KMOD);
3324         ad.u.kmod_name = kmod_name;
3325
3326         return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3327                             SYSTEM__MODULE_REQUEST, &ad);
3328 }
3329
3330 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3331 {
3332         return current_has_perm(p, PROCESS__SETPGID);
3333 }
3334
3335 static int selinux_task_getpgid(struct task_struct *p)
3336 {
3337         return current_has_perm(p, PROCESS__GETPGID);
3338 }
3339
3340 static int selinux_task_getsid(struct task_struct *p)
3341 {
3342         return current_has_perm(p, PROCESS__GETSESSION);
3343 }
3344
3345 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3346 {
3347         *secid = task_sid(p);
3348 }
3349
3350 static int selinux_task_setnice(struct task_struct *p, int nice)
3351 {
3352         int rc;
3353
3354         rc = cap_task_setnice(p, nice);
3355         if (rc)
3356                 return rc;
3357
3358         return current_has_perm(p, PROCESS__SETSCHED);
3359 }
3360
3361 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3362 {
3363         int rc;
3364
3365         rc = cap_task_setioprio(p, ioprio);
3366         if (rc)
3367                 return rc;
3368
3369         return current_has_perm(p, PROCESS__SETSCHED);
3370 }
3371
3372 static int selinux_task_getioprio(struct task_struct *p)
3373 {
3374         return current_has_perm(p, PROCESS__GETSCHED);
3375 }
3376
3377 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3378                 struct rlimit *new_rlim)
3379 {
3380         struct rlimit *old_rlim = p->signal->rlim + resource;
3381
3382         /* Control the ability to change the hard limit (whether
3383            lowering or raising it), so that the hard limit can
3384            later be used as a safe reset point for the soft limit
3385            upon context transitions.  See selinux_bprm_committing_creds. */
3386         if (old_rlim->rlim_max != new_rlim->rlim_max)
3387                 return current_has_perm(p, PROCESS__SETRLIMIT);
3388
3389         return 0;
3390 }
3391
3392 static int selinux_task_setscheduler(struct task_struct *p)
3393 {
3394         int rc;
3395
3396         rc = cap_task_setscheduler(p);
3397         if (rc)
3398                 return rc;
3399
3400         return current_has_perm(p, PROCESS__SETSCHED);
3401 }
3402
3403 static int selinux_task_getscheduler(struct task_struct *p)
3404 {
3405         return current_has_perm(p, PROCESS__GETSCHED);
3406 }
3407
3408 static int selinux_task_movememory(struct task_struct *p)
3409 {
3410         return current_has_perm(p, PROCESS__SETSCHED);
3411 }
3412
3413 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3414                                 int sig, u32 secid)
3415 {
3416         u32 perm;
3417         int rc;
3418
3419         if (!sig)
3420                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3421         else
3422                 perm = signal_to_av(sig);
3423         if (secid)
3424                 rc = avc_has_perm(secid, task_sid(p),
3425                                   SECCLASS_PROCESS, perm, NULL);
3426         else
3427                 rc = current_has_perm(p, perm);
3428         return rc;
3429 }
3430
3431 static int selinux_task_wait(struct task_struct *p)
3432 {
3433         return task_has_perm(p, current, PROCESS__SIGCHLD);
3434 }
3435
3436 static void selinux_task_to_inode(struct task_struct *p,
3437                                   struct inode *inode)
3438 {
3439         struct inode_security_struct *isec = inode->i_security;
3440         u32 sid = task_sid(p);
3441
3442         isec->sid = sid;
3443         isec->initialized = 1;
3444 }
3445
3446 /* Returns error only if unable to parse addresses */
3447 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3448                         struct common_audit_data *ad, u8 *proto)
3449 {
3450         int offset, ihlen, ret = -EINVAL;
3451         struct iphdr _iph, *ih;
3452
3453         offset = skb_network_offset(skb);
3454         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3455         if (ih == NULL)
3456                 goto out;
3457
3458         ihlen = ih->ihl * 4;
3459         if (ihlen < sizeof(_iph))
3460                 goto out;
3461
3462         ad->u.net.v4info.saddr = ih->saddr;
3463         ad->u.net.v4info.daddr = ih->daddr;
3464         ret = 0;
3465
3466         if (proto)
3467                 *proto = ih->protocol;
3468
3469         switch (ih->protocol) {
3470         case IPPROTO_TCP: {
3471                 struct tcphdr _tcph, *th;
3472
3473                 if (ntohs(ih->frag_off) & IP_OFFSET)
3474                         break;
3475
3476                 offset += ihlen;
3477                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3478                 if (th == NULL)
3479                         break;
3480
3481                 ad->u.net.sport = th->source;
3482                 ad->u.net.dport = th->dest;
3483                 break;
3484         }
3485
3486         case IPPROTO_UDP: {
3487                 struct udphdr _udph, *uh;
3488
3489                 if (ntohs(ih->frag_off) & IP_OFFSET)
3490                         break;
3491
3492                 offset += ihlen;
3493                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3494                 if (uh == NULL)
3495                         break;
3496
3497                 ad->u.net.sport = uh->source;
3498                 ad->u.net.dport = uh->dest;
3499                 break;
3500         }
3501
3502         case IPPROTO_DCCP: {
3503                 struct dccp_hdr _dccph, *dh;
3504
3505                 if (ntohs(ih->frag_off) & IP_OFFSET)
3506                         break;
3507
3508                 offset += ihlen;
3509                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3510                 if (dh == NULL)
3511                         break;
3512
3513                 ad->u.net.sport = dh->dccph_sport;
3514                 ad->u.net.dport = dh->dccph_dport;
3515                 break;
3516         }
3517
3518         default:
3519                 break;
3520         }
3521 out:
3522         return ret;
3523 }
3524
3525 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3526
3527 /* Returns error only if unable to parse addresses */
3528 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3529                         struct common_audit_data *ad, u8 *proto)
3530 {
3531         u8 nexthdr;
3532         int ret = -EINVAL, offset;
3533         struct ipv6hdr _ipv6h, *ip6;
3534
3535         offset = skb_network_offset(skb);
3536         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3537         if (ip6 == NULL)
3538                 goto out;
3539
3540         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3541         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3542         ret = 0;
3543
3544         nexthdr = ip6->nexthdr;
3545         offset += sizeof(_ipv6h);
3546         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3547         if (offset < 0)
3548                 goto out;
3549
3550         if (proto)
3551                 *proto = nexthdr;
3552
3553         switch (nexthdr) {
3554         case IPPROTO_TCP: {
3555                 struct tcphdr _tcph, *th;
3556
3557                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3558                 if (th == NULL)
3559                         break;
3560
3561                 ad->u.net.sport = th->source;
3562                 ad->u.net.dport = th->dest;
3563                 break;
3564         }
3565
3566         case IPPROTO_UDP: {
3567                 struct udphdr _udph, *uh;
3568
3569                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3570                 if (uh == NULL)
3571                         break;
3572
3573                 ad->u.net.sport = uh->source;
3574                 ad->u.net.dport = uh->dest;
3575                 break;
3576         }
3577
3578         case IPPROTO_DCCP: {
3579                 struct dccp_hdr _dccph, *dh;
3580
3581                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3582                 if (dh == NULL)
3583                         break;
3584
3585                 ad->u.net.sport = dh->dccph_sport;
3586                 ad->u.net.dport = dh->dccph_dport;
3587                 break;
3588         }
3589
3590         /* includes fragments */
3591         default:
3592                 break;
3593         }
3594 out:
3595         return ret;
3596 }
3597
3598 #endif /* IPV6 */
3599
3600 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3601                              char **_addrp, int src, u8 *proto)
3602 {
3603         char *addrp;
3604         int ret;
3605
3606         switch (ad->u.net.family) {
3607         case PF_INET:
3608                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3609                 if (ret)
3610                         goto parse_error;
3611                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3612                                        &ad->u.net.v4info.daddr);
3613                 goto okay;
3614
3615 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3616         case PF_INET6:
3617                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3618                 if (ret)
3619                         goto parse_error;
3620                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3621                                        &ad->u.net.v6info.daddr);
3622                 goto okay;
3623 #endif  /* IPV6 */
3624         default:
3625                 addrp = NULL;
3626                 goto okay;
3627         }
3628
3629 parse_error:
3630         printk(KERN_WARNING
3631                "SELinux: failure in selinux_parse_skb(),"
3632                " unable to parse packet\n");
3633         return ret;
3634
3635 okay:
3636         if (_addrp)
3637                 *_addrp = addrp;
3638         return 0;
3639 }
3640
3641 /**
3642  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3643  * @skb: the packet
3644  * @family: protocol family
3645  * @sid: the packet's peer label SID
3646  *
3647  * Description:
3648  * Check the various different forms of network peer labeling and determine
3649  * the peer label/SID for the packet; most of the magic actually occurs in
3650  * the security server function security_net_peersid_cmp().  The function
3651  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3652  * or -EACCES if @sid is invalid due to inconsistencies with the different
3653  * peer labels.
3654  *
3655  */
3656 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3657 {
3658         int err;
3659         u32 xfrm_sid;
3660         u32 nlbl_sid;
3661         u32 nlbl_type;
3662
3663         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3664         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3665
3666         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3667         if (unlikely(err)) {
3668                 printk(KERN_WARNING
3669                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3670                        " unable to determine packet's peer label\n");
3671                 return -EACCES;
3672         }
3673
3674         return 0;
3675 }
3676
3677 /* socket security operations */
3678
3679 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3680                                  u16 secclass, u32 *socksid)
3681 {
3682         if (tsec->sockcreate_sid > SECSID_NULL) {
3683                 *socksid = tsec->sockcreate_sid;
3684                 return 0;
3685         }
3686
3687         return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3688                                        socksid);
3689 }
3690
3691 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3692 {
3693         struct sk_security_struct *sksec = sk->sk_security;
3694         struct common_audit_data ad;
3695         u32 tsid = task_sid(task);
3696
3697         if (sksec->sid == SECINITSID_KERNEL)
3698                 return 0;
3699
3700         COMMON_AUDIT_DATA_INIT(&ad, NET);
3701         ad.u.net.sk = sk;
3702
3703         return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3704 }
3705
3706 static int selinux_socket_create(int family, int type,
3707                                  int protocol, int kern)
3708 {
3709         const struct task_security_struct *tsec = current_security();
3710         u32 newsid;
3711         u16 secclass;
3712         int rc;
3713
3714         if (kern)
3715                 return 0;
3716
3717         secclass = socket_type_to_security_class(family, type, protocol);
3718         rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3719         if (rc)
3720                 return rc;
3721
3722         return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3723 }
3724
3725 static int selinux_socket_post_create(struct socket *sock, int family,
3726                                       int type, int protocol, int kern)
3727 {
3728         const struct task_security_struct *tsec = current_security();
3729         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3730         struct sk_security_struct *sksec;
3731         int err = 0;
3732
3733         isec->sclass = socket_type_to_security_class(family, type, protocol);
3734
3735         if (kern)
3736                 isec->sid = SECINITSID_KERNEL;
3737         else {
3738                 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3739                 if (err)
3740                         return err;
3741         }
3742
3743         isec->initialized = 1;
3744
3745         if (sock->sk) {
3746                 sksec = sock->sk->sk_security;
3747                 sksec->sid = isec->sid;
3748                 sksec->sclass = isec->sclass;
3749                 err = selinux_netlbl_socket_post_create(sock->sk, family);
3750         }
3751
3752         return err;
3753 }
3754
3755 /* Range of port numbers used to automatically bind.
3756    Need to determine whether we should perform a name_bind
3757    permission check between the socket and the port number. */
3758
3759 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3760 {
3761         struct sock *sk = sock->sk;
3762         u16 family;
3763         int err;
3764
3765         err = sock_has_perm(current, sk, SOCKET__BIND);
3766         if (err)
3767                 goto out;
3768
3769         /*
3770          * If PF_INET or PF_INET6, check name_bind permission for the port.
3771          * Multiple address binding for SCTP is not supported yet: we just
3772          * check the first address now.
3773          */
3774         family = sk->sk_family;
3775         if (family == PF_INET || family == PF_INET6) {
3776                 char *addrp;
3777                 struct sk_security_struct *sksec = sk->sk_security;
3778                 struct common_audit_data ad;
3779                 struct sockaddr_in *addr4 = NULL;
3780                 struct sockaddr_in6 *addr6 = NULL;
3781                 unsigned short snum;
3782                 u32 sid, node_perm;
3783
3784                 if (family == PF_INET) {
3785                         addr4 = (struct sockaddr_in *)address;
3786                         snum = ntohs(addr4->sin_port);
3787                         addrp = (char *)&addr4->sin_addr.s_addr;
3788                 } else {
3789                         addr6 = (struct sockaddr_in6 *)address;
3790                         snum = ntohs(addr6->sin6_port);
3791                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3792                 }
3793
3794                 if (snum) {
3795                         int low, high;
3796
3797                         inet_get_local_port_range(&low, &high);
3798
3799                         if (snum < max(PROT_SOCK, low) || snum > high) {
3800                                 err = sel_netport_sid(sk->sk_protocol,
3801                                                       snum, &sid);
3802                                 if (err)
3803                                         goto out;
3804                                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3805                                 ad.u.net.sport = htons(snum);
3806                                 ad.u.net.family = family;
3807                                 err = avc_has_perm(sksec->sid, sid,
3808                                                    sksec->sclass,
3809                                                    SOCKET__NAME_BIND, &ad);
3810                                 if (err)
3811                                         goto out;
3812                         }
3813                 }
3814
3815                 switch (sksec->sclass) {
3816                 case SECCLASS_TCP_SOCKET:
3817                         node_perm = TCP_SOCKET__NODE_BIND;
3818                         break;
3819
3820                 case SECCLASS_UDP_SOCKET:
3821                         node_perm = UDP_SOCKET__NODE_BIND;
3822                         break;
3823
3824                 case SECCLASS_DCCP_SOCKET:
3825                         node_perm = DCCP_SOCKET__NODE_BIND;
3826                         break;
3827
3828                 default:
3829                         node_perm = RAWIP_SOCKET__NODE_BIND;
3830                         break;
3831                 }
3832
3833                 err = sel_netnode_sid(addrp, family, &sid);
3834                 if (err)
3835                         goto out;
3836
3837                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3838                 ad.u.net.sport = htons(snum);
3839                 ad.u.net.family = family;
3840
3841                 if (family == PF_INET)
3842                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3843                 else
3844                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3845
3846                 err = avc_has_perm(sksec->sid, sid,
3847                                    sksec->sclass, node_perm, &ad);
3848                 if (err)
3849                         goto out;
3850         }
3851 out:
3852         return err;
3853 }
3854
3855 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3856 {
3857         struct sock *sk = sock->sk;
3858         struct sk_security_struct *sksec = sk->sk_security;
3859         int err;
3860
3861         err = sock_has_perm(current, sk, SOCKET__CONNECT);
3862         if (err)
3863                 return err;
3864
3865         /*
3866          * If a TCP or DCCP socket, check name_connect permission for the port.
3867          */
3868         if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3869             sksec->sclass == SECCLASS_DCCP_SOCKET) {
3870                 struct common_audit_data ad;
3871                 struct sockaddr_in *addr4 = NULL;
3872                 struct sockaddr_in6 *addr6 = NULL;
3873                 unsigned short snum;
3874                 u32 sid, perm;
3875
3876                 if (sk->sk_family == PF_INET) {
3877                         addr4 = (struct sockaddr_in *)address;
3878                         if (addrlen < sizeof(struct sockaddr_in))
3879                                 return -EINVAL;
3880                         snum = ntohs(addr4->sin_port);
3881                 } else {
3882                         addr6 = (struct sockaddr_in6 *)address;
3883                         if (addrlen < SIN6_LEN_RFC2133)
3884                                 return -EINVAL;
3885                         snum = ntohs(addr6->sin6_port);
3886                 }
3887
3888                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3889                 if (err)
3890                         goto out;
3891
3892                 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3893                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3894
3895                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3896                 ad.u.net.dport = htons(snum);
3897                 ad.u.net.family = sk->sk_family;
3898                 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
3899                 if (err)
3900                         goto out;
3901         }
3902
3903         err = selinux_netlbl_socket_connect(sk, address);
3904
3905 out:
3906         return err;
3907 }
3908
3909 static int selinux_socket_listen(struct socket *sock, int backlog)
3910 {
3911         return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3912 }
3913
3914 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3915 {
3916         int err;
3917         struct inode_security_struct *isec;
3918         struct inode_security_struct *newisec;
3919
3920         err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
3921         if (err)
3922                 return err;
3923
3924         newisec = SOCK_INODE(newsock)->i_security;
3925
3926         isec = SOCK_INODE(sock)->i_security;
3927         newisec->sclass = isec->sclass;
3928         newisec->sid = isec->sid;
3929         newisec->initialized = 1;
3930
3931         return 0;
3932 }
3933
3934 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3935                                   int size)
3936 {
3937         return sock_has_perm(current, sock->sk, SOCKET__WRITE);
3938 }
3939
3940 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3941                                   int size, int flags)
3942 {
3943         return sock_has_perm(current, sock->sk, SOCKET__READ);
3944 }
3945
3946 static int selinux_socket_getsockname(struct socket *sock)
3947 {
3948         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3949 }
3950
3951 static int selinux_socket_getpeername(struct socket *sock)
3952 {
3953         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3954 }
3955
3956 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3957 {
3958         int err;
3959
3960         err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
3961         if (err)
3962                 return err;
3963
3964         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3965 }
3966
3967 static int selinux_socket_getsockopt(struct socket *sock, int level,
3968                                      int optname)
3969 {
3970         return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
3971 }
3972
3973 static int selinux_socket_shutdown(struct socket *sock, int how)
3974 {
3975         return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
3976 }
3977
3978 static int selinux_socket_unix_stream_connect(struct sock *sock,
3979                                               struct sock *other,
3980                                               struct sock *newsk)
3981 {
3982         struct sk_security_struct *sksec_sock = sock->sk_security;
3983         struct sk_security_struct *sksec_other = other->sk_security;
3984         struct sk_security_struct *sksec_new = newsk->sk_security;
3985         struct common_audit_data ad;
3986         int err;
3987
3988         COMMON_AUDIT_DATA_INIT(&ad, NET);
3989         ad.u.net.sk = other;
3990
3991         err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
3992                            sksec_other->sclass,
3993                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3994         if (err)
3995                 return err;
3996
3997         /* server child socket */
3998         sksec_new->peer_sid = sksec_sock->sid;
3999         err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4000                                     &sksec_new->sid);
4001         if (err)
4002                 return err;
4003
4004         /* connecting socket */
4005         sksec_sock->peer_sid = sksec_new->sid;
4006
4007         return 0;
4008 }
4009
4010 static int selinux_socket_unix_may_send(struct socket *sock,
4011                                         struct socket *other)
4012 {
4013         struct sk_security_struct *ssec = sock->sk->sk_security;
4014         struct sk_security_struct *osec = other->sk->sk_security;
4015         struct common_audit_data ad;
4016
4017         COMMON_AUDIT_DATA_INIT(&ad, NET);
4018         ad.u.net.sk = other->sk;
4019
4020         return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4021                             &ad);
4022 }
4023
4024 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4025                                     u32 peer_sid,
4026                                     struct common_audit_data *ad)
4027 {
4028         int err;
4029         u32 if_sid;
4030         u32 node_sid;
4031
4032         err = sel_netif_sid(ifindex, &if_sid);
4033         if (err)
4034                 return err;
4035         err = avc_has_perm(peer_sid, if_sid,
4036                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4037         if (err)
4038                 return err;
4039
4040         err = sel_netnode_sid(addrp, family, &node_sid);
4041         if (err)
4042                 return err;
4043         return avc_has_perm(peer_sid, node_sid,
4044                             SECCLASS_NODE, NODE__RECVFROM, ad);
4045 }
4046
4047 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4048                                        u16 family)
4049 {
4050         int err = 0;
4051         struct sk_security_struct *sksec = sk->sk_security;
4052         u32 sk_sid = sksec->sid;
4053         struct common_audit_data ad;
4054         char *addrp;
4055
4056         COMMON_AUDIT_DATA_INIT(&ad, NET);
4057         ad.u.net.netif = skb->skb_iif;
4058         ad.u.net.family = family;
4059         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4060         if (err)
4061                 return err;
4062
4063         if (selinux_secmark_enabled()) {
4064                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4065                                    PACKET__RECV, &ad);
4066                 if (err)
4067                         return err;
4068         }
4069
4070         err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4071         if (err)
4072                 return err;
4073         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4074
4075         return err;
4076 }
4077
4078 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4079 {
4080         int err;
4081         struct sk_security_struct *sksec = sk->sk_security;
4082         u16 family = sk->sk_family;
4083         u32 sk_sid = sksec->sid;
4084         struct common_audit_data ad;
4085         char *addrp;
4086         u8 secmark_active;
4087         u8 peerlbl_active;
4088
4089         if (family != PF_INET && family != PF_INET6)
4090                 return 0;
4091
4092         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4093         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4094                 family = PF_INET;
4095
4096         /* If any sort of compatibility mode is enabled then handoff processing
4097          * to the selinux_sock_rcv_skb_compat() function to deal with the
4098          * special handling.  We do this in an attempt to keep this function
4099          * as fast and as clean as possible. */
4100         if (!selinux_policycap_netpeer)
4101                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4102
4103         secmark_active = selinux_secmark_enabled();
4104         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4105         if (!secmark_active && !peerlbl_active)
4106                 return 0;
4107
4108         COMMON_AUDIT_DATA_INIT(&ad, NET);
4109         ad.u.net.netif = skb->skb_iif;
4110         ad.u.net.family = family;
4111         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4112         if (err)
4113                 return err;
4114
4115         if (peerlbl_active) {
4116                 u32 peer_sid;
4117
4118                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4119                 if (err)
4120                         return err;
4121                 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4122                                                peer_sid, &ad);
4123                 if (err) {
4124                         selinux_netlbl_err(skb, err, 0);
4125                         return err;
4126                 }
4127                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4128                                    PEER__RECV, &ad);
4129                 if (err)
4130                         selinux_netlbl_err(skb, err, 0);
4131         }
4132
4133         if (secmark_active) {
4134                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4135                                    PACKET__RECV, &ad);
4136                 if (err)
4137                         return err;
4138         }
4139
4140         return err;
4141 }
4142
4143 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4144                                             int __user *optlen, unsigned len)
4145 {
4146         int err = 0;
4147         char *scontext;
4148         u32 scontext_len;
4149         struct sk_security_struct *sksec = sock->sk->sk_security;
4150         u32 peer_sid = SECSID_NULL;
4151
4152         if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4153             sksec->sclass == SECCLASS_TCP_SOCKET)
4154                 peer_sid = sksec->peer_sid;
4155         if (peer_sid == SECSID_NULL)
4156                 return -ENOPROTOOPT;
4157
4158         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4159         if (err)
4160                 return err;
4161
4162         if (scontext_len > len) {
4163                 err = -ERANGE;
4164                 goto out_len;
4165         }
4166
4167         if (copy_to_user(optval, scontext, scontext_len))
4168                 err = -EFAULT;
4169
4170 out_len:
4171         if (put_user(scontext_len, optlen))
4172                 err = -EFAULT;
4173         kfree(scontext);
4174         return err;
4175 }
4176
4177 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4178 {
4179         u32 peer_secid = SECSID_NULL;
4180         u16 family;
4181
4182         if (skb && skb->protocol == htons(ETH_P_IP))
4183                 family = PF_INET;
4184         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4185                 family = PF_INET6;
4186         else if (sock)
4187                 family = sock->sk->sk_family;
4188         else
4189                 goto out;
4190
4191         if (sock && family == PF_UNIX)
4192                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4193         else if (skb)
4194                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4195
4196 out:
4197         *secid = peer_secid;
4198         if (peer_secid == SECSID_NULL)
4199                 return -EINVAL;
4200         return 0;
4201 }
4202
4203 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4204 {
4205         struct sk_security_struct *sksec;
4206
4207         sksec = kzalloc(sizeof(*sksec), priority);
4208         if (!sksec)
4209                 return -ENOMEM;
4210
4211         sksec->peer_sid = SECINITSID_UNLABELED;
4212         sksec->sid = SECINITSID_UNLABELED;
4213         selinux_netlbl_sk_security_reset(sksec);
4214         sk->sk_security = sksec;
4215
4216         return 0;
4217 }
4218
4219 static void selinux_sk_free_security(struct sock *sk)
4220 {
4221         struct sk_security_struct *sksec = sk->sk_security;
4222
4223         sk->sk_security = NULL;
4224         selinux_netlbl_sk_security_free(sksec);
4225         kfree(sksec);
4226 }
4227
4228 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4229 {
4230         struct sk_security_struct *sksec = sk->sk_security;
4231         struct sk_security_struct *newsksec = newsk->sk_security;
4232
4233         newsksec->sid = sksec->sid;
4234         newsksec->peer_sid = sksec->peer_sid;
4235         newsksec->sclass = sksec->sclass;
4236
4237         selinux_netlbl_sk_security_reset(newsksec);
4238 }
4239
4240 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4241 {
4242         if (!sk)
4243                 *secid = SECINITSID_ANY_SOCKET;
4244         else {
4245                 struct sk_security_struct *sksec = sk->sk_security;
4246
4247                 *secid = sksec->sid;
4248         }
4249 }
4250
4251 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4252 {
4253         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4254         struct sk_security_struct *sksec = sk->sk_security;
4255
4256         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4257             sk->sk_family == PF_UNIX)
4258                 isec->sid = sksec->sid;
4259         sksec->sclass = isec->sclass;
4260 }
4261
4262 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4263                                      struct request_sock *req)
4264 {
4265         struct sk_security_struct *sksec = sk->sk_security;
4266         int err;
4267         u16 family = sk->sk_family;
4268         u32 newsid;
4269         u32 peersid;
4270
4271         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4272         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4273                 family = PF_INET;
4274
4275         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4276         if (err)
4277                 return err;
4278         if (peersid == SECSID_NULL) {
4279                 req->secid = sksec->sid;
4280                 req->peer_secid = SECSID_NULL;
4281         } else {
4282                 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4283                 if (err)
4284                         return err;
4285                 req->secid = newsid;
4286                 req->peer_secid = peersid;
4287         }
4288
4289         return selinux_netlbl_inet_conn_request(req, family);
4290 }
4291
4292 static void selinux_inet_csk_clone(struct sock *newsk,
4293                                    const struct request_sock *req)
4294 {
4295         struct sk_security_struct *newsksec = newsk->sk_security;
4296
4297         newsksec->sid = req->secid;
4298         newsksec->peer_sid = req->peer_secid;
4299         /* NOTE: Ideally, we should also get the isec->sid for the
4300            new socket in sync, but we don't have the isec available yet.
4301            So we will wait until sock_graft to do it, by which
4302            time it will have been created and available. */
4303
4304         /* We don't need to take any sort of lock here as we are the only
4305          * thread with access to newsksec */
4306         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4307 }
4308
4309 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4310 {
4311         u16 family = sk->sk_family;
4312         struct sk_security_struct *sksec = sk->sk_security;
4313
4314         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4315         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4316                 family = PF_INET;
4317
4318         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4319 }
4320
4321 static int selinux_secmark_relabel_packet(u32 sid)
4322 {
4323         const struct task_security_struct *__tsec;
4324         u32 tsid;
4325
4326         __tsec = current_security();
4327         tsid = __tsec->sid;
4328
4329         return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4330 }
4331
4332 static void selinux_secmark_refcount_inc(void)
4333 {
4334         atomic_inc(&selinux_secmark_refcount);
4335 }
4336
4337 static void selinux_secmark_refcount_dec(void)
4338 {
4339         atomic_dec(&selinux_secmark_refcount);
4340 }
4341
4342 static void selinux_req_classify_flow(const struct request_sock *req,
4343                                       struct flowi *fl)
4344 {
4345         fl->secid = req->secid;
4346 }
4347
4348 static int selinux_tun_dev_create(void)
4349 {
4350         u32 sid = current_sid();
4351
4352         /* we aren't taking into account the "sockcreate" SID since the socket
4353          * that is being created here is not a socket in the traditional sense,
4354          * instead it is a private sock, accessible only to the kernel, and
4355          * representing a wide range of network traffic spanning multiple
4356          * connections unlike traditional sockets - check the TUN driver to
4357          * get a better understanding of why this socket is special */
4358
4359         return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4360                             NULL);
4361 }
4362
4363 static void selinux_tun_dev_post_create(struct sock *sk)
4364 {
4365         struct sk_security_struct *sksec = sk->sk_security;
4366
4367         /* we don't currently perform any NetLabel based labeling here and it
4368          * isn't clear that we would want to do so anyway; while we could apply
4369          * labeling without the support of the TUN user the resulting labeled
4370          * traffic from the other end of the connection would almost certainly
4371          * cause confusion to the TUN user that had no idea network labeling
4372          * protocols were being used */
4373
4374         /* see the comments in selinux_tun_dev_create() about why we don't use
4375          * the sockcreate SID here */
4376
4377         sksec->sid = current_sid();
4378         sksec->sclass = SECCLASS_TUN_SOCKET;
4379 }
4380
4381 static int selinux_tun_dev_attach(struct sock *sk)
4382 {
4383         struct sk_security_struct *sksec = sk->sk_security;
4384         u32 sid = current_sid();
4385         int err;
4386
4387         err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4388                            TUN_SOCKET__RELABELFROM, NULL);
4389         if (err)
4390                 return err;
4391         err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4392                            TUN_SOCKET__RELABELTO, NULL);
4393         if (err)
4394                 return err;
4395
4396         sksec->sid = sid;
4397
4398         return 0;
4399 }
4400
4401 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4402 {
4403         int err = 0;
4404         u32 perm;
4405         struct nlmsghdr *nlh;
4406         struct sk_security_struct *sksec = sk->sk_security;
4407
4408         if (skb->len < NLMSG_SPACE(0)) {
4409                 err = -EINVAL;
4410                 goto out;
4411         }
4412         nlh = nlmsg_hdr(skb);
4413
4414         err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4415         if (err) {
4416                 if (err == -EINVAL) {
4417                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4418                                   "SELinux:  unrecognized netlink message"
4419                                   " type=%hu for sclass=%hu\n",
4420                                   nlh->nlmsg_type, sksec->sclass);
4421                         if (!selinux_enforcing || security_get_allow_unknown())
4422                                 err = 0;
4423                 }
4424
4425                 /* Ignore */
4426                 if (err == -ENOENT)
4427                         err = 0;
4428                 goto out;
4429         }
4430
4431         err = sock_has_perm(current, sk, perm);
4432 out:
4433         return err;
4434 }
4435
4436 #ifdef CONFIG_NETFILTER
4437
4438 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4439                                        u16 family)
4440 {
4441         int err;
4442         char *addrp;
4443         u32 peer_sid;
4444         struct common_audit_data ad;
4445         u8 secmark_active;
4446         u8 netlbl_active;
4447         u8 peerlbl_active;
4448
4449         if (!selinux_policycap_netpeer)
4450                 return NF_ACCEPT;
4451
4452         secmark_active = selinux_secmark_enabled();
4453         netlbl_active = netlbl_enabled();
4454         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4455         if (!secmark_active && !peerlbl_active)
4456                 return NF_ACCEPT;
4457
4458         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4459                 return NF_DROP;
4460
4461         COMMON_AUDIT_DATA_INIT(&ad, NET);
4462         ad.u.net.netif = ifindex;
4463         ad.u.net.family = family;
4464         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4465                 return NF_DROP;
4466
4467         if (peerlbl_active) {
4468                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4469                                                peer_sid, &ad);
4470                 if (err) {
4471                         selinux_netlbl_err(skb, err, 1);
4472                         return NF_DROP;
4473                 }
4474         }
4475
4476         if (secmark_active)
4477                 if (avc_has_perm(peer_sid, skb->secmark,
4478                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4479                         return NF_DROP;
4480
4481         if (netlbl_active)
4482                 /* we do this in the FORWARD path and not the POST_ROUTING
4483                  * path because we want to make sure we apply the necessary
4484                  * labeling before IPsec is applied so we can leverage AH
4485                  * protection */
4486                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4487                         return NF_DROP;
4488
4489         return NF_ACCEPT;
4490 }
4491
4492 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4493                                          struct sk_buff *skb,
4494                                          const struct net_device *in,
4495                                          const struct net_device *out,
4496                                          int (*okfn)(struct sk_buff *))
4497 {
4498         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4499 }
4500
4501 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4502 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4503                                          struct sk_buff *skb,
4504                                          const struct net_device *in,
4505                                          const struct net_device *out,
4506                                          int (*okfn)(struct sk_buff *))
4507 {
4508         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4509 }
4510 #endif  /* IPV6 */
4511
4512 static unsigned int selinux_ip_output(struct sk_buff *skb,
4513                                       u16 family)
4514 {
4515         u32 sid;
4516
4517         if (!netlbl_enabled())
4518                 return NF_ACCEPT;
4519
4520         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4521          * because we want to make sure we apply the necessary labeling
4522          * before IPsec is applied so we can leverage AH protection */
4523         if (skb->sk) {
4524                 struct sk_security_struct *sksec = skb->sk->sk_security;
4525                 sid = sksec->sid;
4526         } else
4527                 sid = SECINITSID_KERNEL;
4528         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4529                 return NF_DROP;
4530
4531         return NF_ACCEPT;
4532 }
4533
4534 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4535                                         struct sk_buff *skb,
4536                                         const struct net_device *in,
4537                                         const struct net_device *out,
4538                                         int (*okfn)(struct sk_buff *))
4539 {
4540         return selinux_ip_output(skb, PF_INET);
4541 }
4542
4543 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4544                                                 int ifindex,
4545                                                 u16 family)
4546 {
4547         struct sock *sk = skb->sk;
4548         struct sk_security_struct *sksec;
4549         struct common_audit_data ad;
4550         char *addrp;
4551         u8 proto;
4552
4553         if (sk == NULL)
4554                 return NF_ACCEPT;
4555         sksec = sk->sk_security;
4556
4557         COMMON_AUDIT_DATA_INIT(&ad, NET);
4558         ad.u.net.netif = ifindex;
4559         ad.u.net.family = family;
4560         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4561                 return NF_DROP;
4562
4563         if (selinux_secmark_enabled())
4564                 if (avc_has_perm(sksec->sid, skb->secmark,
4565                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4566                         return NF_DROP_ERR(-ECONNREFUSED);
4567
4568         if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4569                 return NF_DROP_ERR(-ECONNREFUSED);
4570
4571         return NF_ACCEPT;
4572 }
4573
4574 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4575                                          u16 family)
4576 {
4577         u32 secmark_perm;
4578         u32 peer_sid;
4579         struct sock *sk;
4580         struct common_audit_data ad;
4581         char *addrp;
4582         u8 secmark_active;
4583         u8 peerlbl_active;
4584
4585         /* If any sort of compatibility mode is enabled then handoff processing
4586          * to the selinux_ip_postroute_compat() function to deal with the
4587          * special handling.  We do this in an attempt to keep this function
4588          * as fast and as clean as possible. */
4589         if (!selinux_policycap_netpeer)
4590                 return selinux_ip_postroute_compat(skb, ifindex, family);
4591 #ifdef CONFIG_XFRM
4592         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4593          * packet transformation so allow the packet to pass without any checks
4594          * since we'll have another chance to perform access control checks
4595          * when the packet is on it's final way out.
4596          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4597          *       is NULL, in this case go ahead and apply access control. */
4598         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4599                 return NF_ACCEPT;
4600 #endif
4601         secmark_active = selinux_secmark_enabled();
4602         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4603         if (!secmark_active && !peerlbl_active)
4604                 return NF_ACCEPT;
4605
4606         /* if the packet is being forwarded then get the peer label from the
4607          * packet itself; otherwise check to see if it is from a local
4608          * application or the kernel, if from an application get the peer label
4609          * from the sending socket, otherwise use the kernel's sid */
4610         sk = skb->sk;
4611         if (sk == NULL) {
4612                 if (skb->skb_iif) {
4613                         secmark_perm = PACKET__FORWARD_OUT;
4614                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4615                                 return NF_DROP;
4616                 } else {
4617                         secmark_perm = PACKET__SEND;
4618                         peer_sid = SECINITSID_KERNEL;
4619                 }
4620         } else {
4621                 struct sk_security_struct *sksec = sk->sk_security;
4622                 peer_sid = sksec->sid;
4623                 secmark_perm = PACKET__SEND;
4624         }
4625
4626         COMMON_AUDIT_DATA_INIT(&ad, NET);
4627         ad.u.net.netif = ifindex;
4628         ad.u.net.family = family;
4629         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4630                 return NF_DROP;
4631
4632         if (secmark_active)
4633                 if (avc_has_perm(peer_sid, skb->secmark,
4634                                  SECCLASS_PACKET, secmark_perm, &ad))
4635                         return NF_DROP_ERR(-ECONNREFUSED);
4636
4637         if (peerlbl_active) {
4638                 u32 if_sid;
4639                 u32 node_sid;
4640
4641                 if (sel_netif_sid(ifindex, &if_sid))
4642                         return NF_DROP;
4643                 if (avc_has_perm(peer_sid, if_sid,
4644                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4645                         return NF_DROP_ERR(-ECONNREFUSED);
4646
4647                 if (sel_netnode_sid(addrp, family, &node_sid))
4648                         return NF_DROP;
4649                 if (avc_has_perm(peer_sid, node_sid,
4650                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4651                         return NF_DROP_ERR(-ECONNREFUSED);
4652         }
4653
4654         return NF_ACCEPT;
4655 }
4656
4657 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4658                                            struct sk_buff *skb,
4659                                            const struct net_device *in,
4660                                            const struct net_device *out,
4661                                            int (*okfn)(struct sk_buff *))
4662 {
4663         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4664 }
4665
4666 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4667 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4668                                            struct sk_buff *skb,
4669                                            const struct net_device *in,
4670                                            const struct net_device *out,
4671                                            int (*okfn)(struct sk_buff *))
4672 {
4673         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4674 }
4675 #endif  /* IPV6 */
4676
4677 #endif  /* CONFIG_NETFILTER */
4678
4679 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4680 {
4681         int err;
4682
4683         err = cap_netlink_send(sk, skb);
4684         if (err)
4685                 return err;
4686
4687         return selinux_nlmsg_perm(sk, skb);
4688 }
4689
4690 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4691 {
4692         int err;
4693         struct common_audit_data ad;
4694
4695         err = cap_netlink_recv(skb, capability);
4696         if (err)
4697                 return err;
4698
4699         COMMON_AUDIT_DATA_INIT(&ad, CAP);
4700         ad.u.cap = capability;
4701
4702         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4703                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4704 }
4705
4706 static int ipc_alloc_security(struct task_struct *task,
4707                               struct kern_ipc_perm *perm,
4708                               u16 sclass)
4709 {
4710         struct ipc_security_struct *isec;
4711         u32 sid;
4712
4713         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4714         if (!isec)
4715                 return -ENOMEM;
4716
4717         sid = task_sid(task);
4718         isec->sclass = sclass;
4719         isec->sid = sid;
4720         perm->security = isec;
4721
4722         return 0;
4723 }
4724
4725 static void ipc_free_security(struct kern_ipc_perm *perm)
4726 {
4727         struct ipc_security_struct *isec = perm->security;
4728         perm->security = NULL;
4729         kfree(isec);
4730 }
4731
4732 static int msg_msg_alloc_security(struct msg_msg *msg)
4733 {
4734         struct msg_security_struct *msec;
4735
4736         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4737         if (!msec)
4738                 return -ENOMEM;
4739
4740         msec->sid = SECINITSID_UNLABELED;
4741         msg->security = msec;
4742
4743         return 0;
4744 }
4745
4746 static void msg_msg_free_security(struct msg_msg *msg)
4747 {
4748         struct msg_security_struct *msec = msg->security;
4749
4750         msg->security = NULL;
4751         kfree(msec);
4752 }
4753
4754 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4755                         u32 perms)
4756 {
4757         struct ipc_security_struct *isec;
4758         struct common_audit_data ad;
4759         u32 sid = current_sid();
4760
4761         isec = ipc_perms->security;
4762
4763         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4764         ad.u.ipc_id = ipc_perms->key;
4765
4766         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4767 }
4768
4769 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4770 {
4771         return msg_msg_alloc_security(msg);
4772 }
4773
4774 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4775 {
4776         msg_msg_free_security(msg);
4777 }
4778
4779 /* message queue security operations */
4780 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4781 {
4782         struct ipc_security_struct *isec;
4783         struct common_audit_data ad;
4784         u32 sid = current_sid();
4785         int rc;
4786
4787         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4788         if (rc)
4789                 return rc;
4790
4791         isec = msq->q_perm.security;
4792
4793         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4794         ad.u.ipc_id = msq->q_perm.key;
4795
4796         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4797                           MSGQ__CREATE, &ad);
4798         if (rc) {
4799                 ipc_free_security(&msq->q_perm);
4800                 return rc;
4801         }
4802         return 0;
4803 }
4804
4805 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4806 {
4807         ipc_free_security(&msq->q_perm);
4808 }
4809
4810 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4811 {
4812         struct ipc_security_struct *isec;
4813         struct common_audit_data ad;
4814         u32 sid = current_sid();
4815
4816         isec = msq->q_perm.security;
4817
4818         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4819         ad.u.ipc_id = msq->q_perm.key;
4820
4821         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4822                             MSGQ__ASSOCIATE, &ad);
4823 }
4824
4825 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4826 {
4827         int err;
4828         int perms;
4829
4830         switch (cmd) {
4831         case IPC_INFO:
4832         case MSG_INFO:
4833                 /* No specific object, just general system-wide information. */
4834                 return task_has_system(current, SYSTEM__IPC_INFO);
4835         case IPC_STAT:
4836         case MSG_STAT:
4837                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4838                 break;
4839         case IPC_SET:
4840                 perms = MSGQ__SETATTR;
4841                 break;
4842         case IPC_RMID:
4843                 perms = MSGQ__DESTROY;
4844                 break;
4845         default:
4846                 return 0;
4847         }
4848
4849         err = ipc_has_perm(&msq->q_perm, perms);
4850         return err;
4851 }
4852
4853 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4854 {
4855         struct ipc_security_struct *isec;
4856         struct msg_security_struct *msec;
4857         struct common_audit_data ad;
4858         u32 sid = current_sid();
4859         int rc;
4860
4861         isec = msq->q_perm.security;
4862         msec = msg->security;
4863
4864         /*
4865          * First time through, need to assign label to the message
4866          */
4867         if (msec->sid == SECINITSID_UNLABELED) {
4868                 /*
4869                  * Compute new sid based on current process and
4870                  * message queue this message will be stored in
4871                  */
4872                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4873                                              NULL, &msec->sid);
4874                 if (rc)
4875                         return rc;
4876         }
4877
4878         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4879         ad.u.ipc_id = msq->q_perm.key;
4880
4881         /* Can this process write to the queue? */
4882         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4883                           MSGQ__WRITE, &ad);
4884         if (!rc)
4885                 /* Can this process send the message */
4886                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4887                                   MSG__SEND, &ad);
4888         if (!rc)
4889                 /* Can the message be put in the queue? */
4890                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4891                                   MSGQ__ENQUEUE, &ad);
4892
4893         return rc;
4894 }
4895
4896 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4897                                     struct task_struct *target,
4898                                     long type, int mode)
4899 {
4900         struct ipc_security_struct *isec;
4901         struct msg_security_struct *msec;
4902         struct common_audit_data ad;
4903         u32 sid = task_sid(target);
4904         int rc;
4905
4906         isec = msq->q_perm.security;
4907         msec = msg->security;
4908
4909         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4910         ad.u.ipc_id = msq->q_perm.key;
4911
4912         rc = avc_has_perm(sid, isec->sid,
4913                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4914         if (!rc)
4915                 rc = avc_has_perm(sid, msec->sid,
4916                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4917         return rc;
4918 }
4919
4920 /* Shared Memory security operations */
4921 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4922 {
4923         struct ipc_security_struct *isec;
4924         struct common_audit_data ad;
4925         u32 sid = current_sid();
4926         int rc;
4927
4928         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4929         if (rc)
4930                 return rc;
4931
4932         isec = shp->shm_perm.security;
4933
4934         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4935         ad.u.ipc_id = shp->shm_perm.key;
4936
4937         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4938                           SHM__CREATE, &ad);
4939         if (rc) {
4940                 ipc_free_security(&shp->shm_perm);
4941                 return rc;
4942         }
4943         return 0;
4944 }
4945
4946 static void selinux_shm_free_security(struct shmid_kernel *shp)
4947 {
4948         ipc_free_security(&shp->shm_perm);
4949 }
4950
4951 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4952 {
4953         struct ipc_security_struct *isec;
4954         struct common_audit_data ad;
4955         u32 sid = current_sid();
4956
4957         isec = shp->shm_perm.security;
4958
4959         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4960         ad.u.ipc_id = shp->shm_perm.key;
4961
4962         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4963                             SHM__ASSOCIATE, &ad);
4964 }
4965
4966 /* Note, at this point, shp is locked down */
4967 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4968 {
4969         int perms;
4970         int err;
4971
4972         switch (cmd) {
4973         case IPC_INFO:
4974         case SHM_INFO:
4975                 /* No specific object, just general system-wide information. */
4976                 return task_has_system(current, SYSTEM__IPC_INFO);
4977         case IPC_STAT:
4978         case SHM_STAT:
4979                 perms = SHM__GETATTR | SHM__ASSOCIATE;
4980                 break;
4981         case IPC_SET:
4982                 perms = SHM__SETATTR;
4983                 break;
4984         case SHM_LOCK:
4985         case SHM_UNLOCK:
4986                 perms = SHM__LOCK;
4987                 break;
4988         case IPC_RMID:
4989                 perms = SHM__DESTROY;
4990                 break;
4991         default:
4992                 return 0;
4993         }
4994
4995         err = ipc_has_perm(&shp->shm_perm, perms);
4996         return err;
4997 }
4998
4999 static int selinux_shm_shmat(struct shmid_kernel *shp,
5000                              char __user *shmaddr, int shmflg)
5001 {
5002         u32 perms;
5003
5004         if (shmflg & SHM_RDONLY)
5005                 perms = SHM__READ;
5006         else
5007                 perms = SHM__READ | SHM__WRITE;
5008
5009         return ipc_has_perm(&shp->shm_perm, perms);
5010 }
5011
5012 /* Semaphore security operations */
5013 static int selinux_sem_alloc_security(struct sem_array *sma)
5014 {
5015         struct ipc_security_struct *isec;
5016         struct common_audit_data ad;
5017         u32 sid = current_sid();
5018         int rc;
5019
5020         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5021         if (rc)
5022                 return rc;
5023
5024         isec = sma->sem_perm.security;
5025
5026         COMMON_AUDIT_DATA_INIT(&ad, IPC);
5027         ad.u.ipc_id = sma->sem_perm.key;
5028
5029         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5030                           SEM__CREATE, &ad);
5031         if (rc) {
5032                 ipc_free_security(&sma->sem_perm);
5033                 return rc;
5034         }
5035         return 0;
5036 }
5037
5038 static void selinux_sem_free_security(struct sem_array *sma)
5039 {
5040         ipc_free_security(&sma->sem_perm);
5041 }
5042
5043 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5044 {
5045         struct ipc_security_struct *isec;
5046         struct common_audit_data ad;
5047         u32 sid = current_sid();
5048
5049         isec = sma->sem_perm.security;
5050
5051         COMMON_AUDIT_DATA_INIT(&ad, IPC);
5052         ad.u.ipc_id = sma->sem_perm.key;
5053
5054         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5055                             SEM__ASSOCIATE, &ad);
5056 }
5057
5058 /* Note, at this point, sma is locked down */
5059 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5060 {
5061         int err;
5062         u32 perms;
5063
5064         switch (cmd) {
5065         case IPC_INFO:
5066         case SEM_INFO:
5067                 /* No specific object, just general system-wide information. */
5068                 return task_has_system(current, SYSTEM__IPC_INFO);
5069         case GETPID:
5070         case GETNCNT:
5071         case GETZCNT:
5072                 perms = SEM__GETATTR;
5073                 break;
5074         case GETVAL:
5075         case GETALL:
5076                 perms = SEM__READ;
5077                 break;
5078         case SETVAL:
5079         case SETALL:
5080                 perms = SEM__WRITE;
5081                 break;
5082         case IPC_RMID:
5083                 perms = SEM__DESTROY;
5084                 break;
5085         case IPC_SET:
5086                 perms = SEM__SETATTR;
5087                 break;
5088         case IPC_STAT:
5089         case SEM_STAT:
5090                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5091                 break;
5092         default:
5093                 return 0;
5094         }
5095
5096         err = ipc_has_perm(&sma->sem_perm, perms);
5097         return err;
5098 }
5099
5100 static int selinux_sem_semop(struct sem_array *sma,
5101                              struct sembuf *sops, unsigned nsops, int alter)
5102 {
5103         u32 perms;
5104
5105         if (alter)
5106                 perms = SEM__READ | SEM__WRITE;
5107         else
5108                 perms = SEM__READ;
5109
5110         return ipc_has_perm(&sma->sem_perm, perms);
5111 }
5112
5113 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5114 {
5115         u32 av = 0;
5116
5117         av = 0;
5118         if (flag & S_IRUGO)
5119                 av |= IPC__UNIX_READ;
5120         if (flag & S_IWUGO)
5121                 av |= IPC__UNIX_WRITE;
5122
5123         if (av == 0)
5124                 return 0;
5125
5126         return ipc_has_perm(ipcp, av);
5127 }
5128
5129 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5130 {
5131         struct ipc_security_struct *isec = ipcp->security;
5132         *secid = isec->sid;
5133 }
5134
5135 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5136 {
5137         if (inode)
5138                 inode_doinit_with_dentry(inode, dentry);
5139 }
5140
5141 static int selinux_getprocattr(struct task_struct *p,
5142                                char *name, char **value)
5143 {
5144         const struct task_security_struct *__tsec;
5145         u32 sid;
5146         int error;
5147         unsigned len;
5148
5149         if (current != p) {
5150                 error = current_has_perm(p, PROCESS__GETATTR);
5151                 if (error)
5152                         return error;
5153         }
5154
5155         rcu_read_lock();
5156         __tsec = __task_cred(p)->security;
5157
5158         if (!strcmp(name, "current"))
5159                 sid = __tsec->sid;
5160         else if (!strcmp(name, "prev"))
5161                 sid = __tsec->osid;
5162         else if (!strcmp(name, "exec"))
5163                 sid = __tsec->exec_sid;
5164         else if (!strcmp(name, "fscreate"))
5165                 sid = __tsec->create_sid;
5166         else if (!strcmp(name, "keycreate"))
5167                 sid = __tsec->keycreate_sid;
5168         else if (!strcmp(name, "sockcreate"))
5169                 sid = __tsec->sockcreate_sid;
5170         else
5171                 goto invalid;
5172         rcu_read_unlock();
5173
5174         if (!sid)
5175                 return 0;
5176
5177         error = security_sid_to_context(sid, value, &len);
5178         if (error)
5179                 return error;
5180         return len;
5181
5182 invalid:
5183         rcu_read_unlock();
5184         return -EINVAL;
5185 }
5186
5187 static int selinux_setprocattr(struct task_struct *p,
5188                                char *name, void *value, size_t size)
5189 {
5190         struct task_security_struct *tsec;
5191         struct task_struct *tracer;
5192         struct cred *new;
5193         u32 sid = 0, ptsid;
5194         int error;
5195         char *str = value;
5196
5197         if (current != p) {
5198                 /* SELinux only allows a process to change its own
5199                    security attributes. */
5200                 return -EACCES;
5201         }
5202
5203         /*
5204          * Basic control over ability to set these attributes at all.
5205          * current == p, but we'll pass them separately in case the
5206          * above restriction is ever removed.
5207          */
5208         if (!strcmp(name, "exec"))
5209                 error = current_has_perm(p, PROCESS__SETEXEC);
5210         else if (!strcmp(name, "fscreate"))
5211                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5212         else if (!strcmp(name, "keycreate"))
5213                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5214         else if (!strcmp(name, "sockcreate"))
5215                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5216         else if (!strcmp(name, "current"))
5217                 error = current_has_perm(p, PROCESS__SETCURRENT);
5218         else
5219                 error = -EINVAL;
5220         if (error)
5221                 return error;
5222
5223         /* Obtain a SID for the context, if one was specified. */
5224         if (size && str[1] && str[1] != '\n') {
5225                 if (str[size-1] == '\n') {
5226                         str[size-1] = 0;
5227                         size--;
5228                 }
5229                 error = security_context_to_sid(value, size, &sid);
5230                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5231                         if (!capable(CAP_MAC_ADMIN))
5232                                 return error;
5233                         error = security_context_to_sid_force(value, size,
5234                                                               &sid);
5235                 }
5236                 if (error)
5237                         return error;
5238         }
5239
5240         new = prepare_creds();
5241         if (!new)
5242                 return -ENOMEM;
5243
5244         /* Permission checking based on the specified context is
5245            performed during the actual operation (execve,
5246            open/mkdir/...), when we know the full context of the
5247            operation.  See selinux_bprm_set_creds for the execve
5248            checks and may_create for the file creation checks. The
5249            operation will then fail if the context is not permitted. */
5250         tsec = new->security;
5251         if (!strcmp(name, "exec")) {
5252                 tsec->exec_sid = sid;
5253         } else if (!strcmp(name, "fscreate")) {
5254                 tsec->create_sid = sid;
5255         } else if (!strcmp(name, "keycreate")) {
5256                 error = may_create_key(sid, p);
5257                 if (error)
5258                         goto abort_change;
5259                 tsec->keycreate_sid = sid;
5260         } else if (!strcmp(name, "sockcreate")) {
5261                 tsec->sockcreate_sid = sid;
5262         } else if (!strcmp(name, "current")) {
5263                 error = -EINVAL;
5264                 if (sid == 0)
5265                         goto abort_change;
5266
5267                 /* Only allow single threaded processes to change context */
5268                 error = -EPERM;
5269                 if (!current_is_single_threaded()) {
5270                         error = security_bounded_transition(tsec->sid, sid);
5271                         if (error)
5272                                 goto abort_change;
5273                 }
5274
5275                 /* Check permissions for the transition. */
5276                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5277                                      PROCESS__DYNTRANSITION, NULL);
5278                 if (error)
5279                         goto abort_change;
5280
5281                 /* Check for ptracing, and update the task SID if ok.
5282                    Otherwise, leave SID unchanged and fail. */
5283                 ptsid = 0;
5284                 task_lock(p);
5285                 tracer = tracehook_tracer_task(p);
5286                 if (tracer)
5287                         ptsid = task_sid(tracer);
5288                 task_unlock(p);
5289
5290                 if (tracer) {
5291                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5292                                              PROCESS__PTRACE, NULL);
5293                         if (error)
5294                                 goto abort_change;
5295                 }
5296
5297                 tsec->sid = sid;
5298         } else {
5299                 error = -EINVAL;
5300                 goto abort_change;
5301         }
5302
5303         commit_creds(new);
5304         return size;
5305
5306 abort_change:
5307         abort_creds(new);
5308         return error;
5309 }
5310
5311 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5312 {
5313         return security_sid_to_context(secid, secdata, seclen);
5314 }
5315
5316 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5317 {
5318         return security_context_to_sid(secdata, seclen, secid);
5319 }
5320
5321 static void selinux_release_secctx(char *secdata, u32 seclen)
5322 {
5323         kfree(secdata);
5324 }
5325
5326 /*
5327  *      called with inode->i_mutex locked
5328  */
5329 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5330 {
5331         return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5332 }
5333
5334 /*
5335  *      called with inode->i_mutex locked
5336  */
5337 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5338 {
5339         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5340 }
5341
5342 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5343 {
5344         int len = 0;
5345         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5346                                                 ctx, true);
5347         if (len < 0)
5348                 return len;
5349         *ctxlen = len;
5350         return 0;
5351 }
5352 #ifdef CONFIG_KEYS
5353
5354 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5355                              unsigned long flags)
5356 {
5357         const struct task_security_struct *tsec;
5358         struct key_security_struct *ksec;
5359
5360         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5361         if (!ksec)
5362                 return -ENOMEM;
5363
5364         tsec = cred->security;
5365         if (tsec->keycreate_sid)
5366                 ksec->sid = tsec->keycreate_sid;
5367         else
5368                 ksec->sid = tsec->sid;
5369
5370         k->security = ksec;
5371         return 0;
5372 }
5373
5374 static void selinux_key_free(struct key *k)
5375 {
5376         struct key_security_struct *ksec = k->security;
5377
5378         k->security = NULL;
5379         kfree(ksec);
5380 }
5381
5382 static int selinux_key_permission(key_ref_t key_ref,
5383                                   const struct cred *cred,
5384                                   key_perm_t perm)
5385 {
5386         struct key *key;
5387         struct key_security_struct *ksec;
5388         u32 sid;
5389
5390         /* if no specific permissions are requested, we skip the
5391            permission check. No serious, additional covert channels
5392            appear to be created. */
5393         if (perm == 0)
5394                 return 0;
5395
5396         sid = cred_sid(cred);
5397
5398         key = key_ref_to_ptr(key_ref);
5399         ksec = key->security;
5400
5401         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5402 }
5403
5404 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5405 {
5406         struct key_security_struct *ksec = key->security;
5407         char *context = NULL;
5408         unsigned len;
5409         int rc;
5410
5411         rc = security_sid_to_context(ksec->sid, &context, &len);
5412         if (!rc)
5413                 rc = len;
5414         *_buffer = context;
5415         return rc;
5416 }
5417
5418 #endif
5419
5420 static struct security_operations selinux_ops = {
5421         .name =                         "selinux",
5422
5423         .ptrace_access_check =          selinux_ptrace_access_check,
5424         .ptrace_traceme =               selinux_ptrace_traceme,
5425         .capget =                       selinux_capget,
5426         .capset =                       selinux_capset,
5427         .capable =                      selinux_capable,
5428         .quotactl =                     selinux_quotactl,
5429         .quota_on =                     selinux_quota_on,
5430         .syslog =                       selinux_syslog,
5431         .vm_enough_memory =             selinux_vm_enough_memory,
5432
5433         .netlink_send =                 selinux_netlink_send,
5434         .netlink_recv =                 selinux_netlink_recv,
5435
5436         .bprm_set_creds =               selinux_bprm_set_creds,
5437         .bprm_committing_creds =        selinux_bprm_committing_creds,
5438         .bprm_committed_creds =         selinux_bprm_committed_creds,
5439         .bprm_secureexec =              selinux_bprm_secureexec,
5440
5441         .sb_alloc_security =            selinux_sb_alloc_security,
5442         .sb_free_security =             selinux_sb_free_security,
5443         .sb_copy_data =                 selinux_sb_copy_data,
5444         .sb_remount =                   selinux_sb_remount,
5445         .sb_kern_mount =                selinux_sb_kern_mount,
5446         .sb_show_options =              selinux_sb_show_options,
5447         .sb_statfs =                    selinux_sb_statfs,
5448         .sb_mount =                     selinux_mount,
5449         .sb_umount =                    selinux_umount,
5450         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5451         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5452         .sb_parse_opts_str =            selinux_parse_opts_str,
5453
5454
5455         .inode_alloc_security =         selinux_inode_alloc_security,
5456         .inode_free_security =          selinux_inode_free_security,
5457         .inode_init_security =          selinux_inode_init_security,
5458         .inode_create =                 selinux_inode_create,
5459         .inode_link =                   selinux_inode_link,
5460         .inode_unlink =                 selinux_inode_unlink,
5461         .inode_symlink =                selinux_inode_symlink,
5462         .inode_mkdir =                  selinux_inode_mkdir,
5463         .inode_rmdir =                  selinux_inode_rmdir,
5464         .inode_mknod =                  selinux_inode_mknod,
5465         .inode_rename =                 selinux_inode_rename,
5466         .inode_readlink =               selinux_inode_readlink,
5467         .inode_follow_link =            selinux_inode_follow_link,
5468         .inode_permission =             selinux_inode_permission,
5469         .inode_setattr =                selinux_inode_setattr,
5470         .inode_getattr =                selinux_inode_getattr,
5471         .inode_setxattr =               selinux_inode_setxattr,
5472         .inode_post_setxattr =          selinux_inode_post_setxattr,
5473         .inode_getxattr =               selinux_inode_getxattr,
5474         .inode_listxattr =              selinux_inode_listxattr,
5475         .inode_removexattr =            selinux_inode_removexattr,
5476         .inode_getsecurity =            selinux_inode_getsecurity,
5477         .inode_setsecurity =            selinux_inode_setsecurity,
5478         .inode_listsecurity =           selinux_inode_listsecurity,
5479         .inode_getsecid =               selinux_inode_getsecid,
5480
5481         .file_permission =              selinux_file_permission,
5482         .file_alloc_security =          selinux_file_alloc_security,
5483         .file_free_security =           selinux_file_free_security,
5484         .file_ioctl =                   selinux_file_ioctl,
5485         .file_mmap =                    selinux_file_mmap,
5486         .file_mprotect =                selinux_file_mprotect,
5487         .file_lock =                    selinux_file_lock,
5488         .file_fcntl =                   selinux_file_fcntl,
5489         .file_set_fowner =              selinux_file_set_fowner,
5490         .file_send_sigiotask =          selinux_file_send_sigiotask,
5491         .file_receive =                 selinux_file_receive,
5492
5493         .dentry_open =                  selinux_dentry_open,
5494
5495         .task_create =                  selinux_task_create,
5496         .cred_alloc_blank =             selinux_cred_alloc_blank,
5497         .cred_free =                    selinux_cred_free,
5498         .cred_prepare =                 selinux_cred_prepare,
5499         .cred_transfer =                selinux_cred_transfer,
5500         .kernel_act_as =                selinux_kernel_act_as,
5501         .kernel_create_files_as =       selinux_kernel_create_files_as,
5502         .kernel_module_request =        selinux_kernel_module_request,
5503         .task_setpgid =                 selinux_task_setpgid,
5504         .task_getpgid =                 selinux_task_getpgid,
5505         .task_getsid =                  selinux_task_getsid,
5506         .task_getsecid =                selinux_task_getsecid,
5507         .task_setnice =                 selinux_task_setnice,
5508         .task_setioprio =               selinux_task_setioprio,
5509         .task_getioprio =               selinux_task_getioprio,
5510         .task_setrlimit =               selinux_task_setrlimit,
5511         .task_setscheduler =            selinux_task_setscheduler,
5512         .task_getscheduler =            selinux_task_getscheduler,
5513         .task_movememory =              selinux_task_movememory,
5514         .task_kill =                    selinux_task_kill,
5515         .task_wait =                    selinux_task_wait,
5516         .task_to_inode =                selinux_task_to_inode,
5517
5518         .ipc_permission =               selinux_ipc_permission,
5519         .ipc_getsecid =                 selinux_ipc_getsecid,
5520
5521         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5522         .msg_msg_free_security =        selinux_msg_msg_free_security,
5523
5524         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5525         .msg_queue_free_security =      selinux_msg_queue_free_security,
5526         .msg_queue_associate =          selinux_msg_queue_associate,
5527         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5528         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5529         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5530
5531         .shm_alloc_security =           selinux_shm_alloc_security,
5532         .shm_free_security =            selinux_shm_free_security,
5533         .shm_associate =                selinux_shm_associate,
5534         .shm_shmctl =                   selinux_shm_shmctl,
5535         .shm_shmat =                    selinux_shm_shmat,
5536
5537         .sem_alloc_security =           selinux_sem_alloc_security,
5538         .sem_free_security =            selinux_sem_free_security,
5539         .sem_associate =                selinux_sem_associate,
5540         .sem_semctl =                   selinux_sem_semctl,
5541         .sem_semop =                    selinux_sem_semop,
5542
5543         .d_instantiate =                selinux_d_instantiate,
5544
5545         .getprocattr =                  selinux_getprocattr,
5546         .setprocattr =                  selinux_setprocattr,
5547
5548         .secid_to_secctx =              selinux_secid_to_secctx,
5549         .secctx_to_secid =              selinux_secctx_to_secid,
5550         .release_secctx =               selinux_release_secctx,
5551         .inode_notifysecctx =           selinux_inode_notifysecctx,
5552         .inode_setsecctx =              selinux_inode_setsecctx,
5553         .inode_getsecctx =              selinux_inode_getsecctx,
5554
5555         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5556         .unix_may_send =                selinux_socket_unix_may_send,
5557
5558         .socket_create =                selinux_socket_create,
5559         .socket_post_create =           selinux_socket_post_create,
5560         .socket_bind =                  selinux_socket_bind,
5561         .socket_connect =               selinux_socket_connect,
5562         .socket_listen =                selinux_socket_listen,
5563         .socket_accept =                selinux_socket_accept,
5564         .socket_sendmsg =               selinux_socket_sendmsg,
5565         .socket_recvmsg =               selinux_socket_recvmsg,
5566         .socket_getsockname =           selinux_socket_getsockname,
5567         .socket_getpeername =           selinux_socket_getpeername,
5568         .socket_getsockopt =            selinux_socket_getsockopt,
5569         .socket_setsockopt =            selinux_socket_setsockopt,
5570         .socket_shutdown =              selinux_socket_shutdown,
5571         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5572         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5573         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5574         .sk_alloc_security =            selinux_sk_alloc_security,
5575         .sk_free_security =             selinux_sk_free_security,
5576         .sk_clone_security =            selinux_sk_clone_security,
5577         .sk_getsecid =                  selinux_sk_getsecid,
5578         .sock_graft =                   selinux_sock_graft,
5579         .inet_conn_request =            selinux_inet_conn_request,
5580         .inet_csk_clone =               selinux_inet_csk_clone,
5581         .inet_conn_established =        selinux_inet_conn_established,
5582         .secmark_relabel_packet =       selinux_secmark_relabel_packet,
5583         .secmark_refcount_inc =         selinux_secmark_refcount_inc,
5584         .secmark_refcount_dec =         selinux_secmark_refcount_dec,
5585         .req_classify_flow =            selinux_req_classify_flow,
5586         .tun_dev_create =               selinux_tun_dev_create,
5587         .tun_dev_post_create =          selinux_tun_dev_post_create,
5588         .tun_dev_attach =               selinux_tun_dev_attach,
5589
5590 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5591         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5592         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5593         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5594         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5595         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5596         .xfrm_state_free_security =     selinux_xfrm_state_free,
5597         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5598         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5599         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5600         .xfrm_decode_session =          selinux_xfrm_decode_session,
5601 #endif
5602
5603 #ifdef CONFIG_KEYS
5604         .key_alloc =                    selinux_key_alloc,
5605         .key_free =                     selinux_key_free,
5606         .key_permission =               selinux_key_permission,
5607         .key_getsecurity =              selinux_key_getsecurity,
5608 #endif
5609
5610 #ifdef CONFIG_AUDIT
5611         .audit_rule_init =              selinux_audit_rule_init,
5612         .audit_rule_known =             selinux_audit_rule_known,
5613         .audit_rule_match =             selinux_audit_rule_match,
5614         .audit_rule_free =              selinux_audit_rule_free,
5615 #endif
5616 };
5617
5618 static __init int selinux_init(void)
5619 {
5620         if (!security_module_enable(&selinux_ops)) {
5621                 selinux_enabled = 0;
5622                 return 0;
5623         }
5624
5625         if (!selinux_enabled) {
5626                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5627                 return 0;
5628         }
5629
5630         printk(KERN_INFO "SELinux:  Initializing.\n");
5631
5632         /* Set the security state for the initial task. */
5633         cred_init_security();
5634
5635         default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5636
5637         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5638                                             sizeof(struct inode_security_struct),
5639                                             0, SLAB_PANIC, NULL);
5640         avc_init();
5641
5642         if (register_security(&selinux_ops))
5643                 panic("SELinux: Unable to register with kernel.\n");
5644
5645         if (selinux_enforcing)
5646                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5647         else
5648                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5649
5650         return 0;
5651 }
5652
5653 static void delayed_superblock_init(struct super_block *sb, void *unused)
5654 {
5655         superblock_doinit(sb, NULL);
5656 }
5657
5658 void selinux_complete_init(void)
5659 {
5660         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5661
5662         /* Set up any superblocks initialized prior to the policy load. */
5663         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5664         iterate_supers(delayed_superblock_init, NULL);
5665 }
5666
5667 /* SELinux requires early initialization in order to label
5668    all processes and objects when they are created. */
5669 security_initcall(selinux_init);
5670
5671 #if defined(CONFIG_NETFILTER)
5672
5673 static struct nf_hook_ops selinux_ipv4_ops[] = {
5674         {
5675                 .hook =         selinux_ipv4_postroute,
5676                 .owner =        THIS_MODULE,
5677                 .pf =           PF_INET,
5678                 .hooknum =      NF_INET_POST_ROUTING,
5679                 .priority =     NF_IP_PRI_SELINUX_LAST,
5680         },
5681         {
5682                 .hook =         selinux_ipv4_forward,
5683                 .owner =        THIS_MODULE,
5684                 .pf =           PF_INET,
5685                 .hooknum =      NF_INET_FORWARD,
5686                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5687         },
5688         {
5689                 .hook =         selinux_ipv4_output,
5690                 .owner =        THIS_MODULE,
5691                 .pf =           PF_INET,
5692                 .hooknum =      NF_INET_LOCAL_OUT,
5693                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5694         }
5695 };
5696
5697 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5698
5699 static struct nf_hook_ops selinux_ipv6_ops[] = {
5700         {
5701                 .hook =         selinux_ipv6_postroute,
5702                 .owner =        THIS_MODULE,
5703                 .pf =           PF_INET6,
5704                 .hooknum =      NF_INET_POST_ROUTING,
5705                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5706         },
5707         {
5708                 .hook =         selinux_ipv6_forward,
5709                 .owner =        THIS_MODULE,
5710                 .pf =           PF_INET6,
5711                 .hooknum =      NF_INET_FORWARD,
5712                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5713         }
5714 };
5715
5716 #endif  /* IPV6 */
5717
5718 static int __init selinux_nf_ip_init(void)
5719 {
5720         int err = 0;
5721
5722         if (!selinux_enabled)
5723                 goto out;
5724
5725         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5726
5727         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5728         if (err)
5729                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5730
5731 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5732         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5733         if (err)
5734                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5735 #endif  /* IPV6 */
5736
5737 out:
5738         return err;
5739 }
5740
5741 __initcall(selinux_nf_ip_init);
5742
5743 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5744 static void selinux_nf_ip_exit(void)
5745 {
5746         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5747
5748         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5749 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5750         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5751 #endif  /* IPV6 */
5752 }
5753 #endif
5754
5755 #else /* CONFIG_NETFILTER */
5756
5757 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5758 #define selinux_nf_ip_exit()
5759 #endif
5760
5761 #endif /* CONFIG_NETFILTER */
5762
5763 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5764 static int selinux_disabled;
5765
5766 int selinux_disable(void)
5767 {
5768         extern void exit_sel_fs(void);
5769
5770         if (ss_initialized) {
5771                 /* Not permitted after initial policy load. */
5772                 return -EINVAL;
5773         }
5774
5775         if (selinux_disabled) {
5776                 /* Only do this once. */
5777                 return -EINVAL;
5778         }
5779
5780         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5781
5782         selinux_disabled = 1;
5783         selinux_enabled = 0;
5784
5785         reset_security_ops();
5786
5787         /* Try to destroy the avc node cache */
5788         avc_disable();
5789
5790         /* Unregister netfilter hooks. */
5791         selinux_nf_ip_exit();
5792
5793         /* Unregister selinuxfs. */
5794         exit_sel_fs();
5795
5796         return 0;
5797 }
5798 #endif