]> Pileus Git - ~andy/linux/blob - net/vmw_vsock/af_vsock.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[~andy/linux] / net / vmw_vsock / af_vsock.c
1 /*
2  * VMware vSockets Driver
3  *
4  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  */
15
16 /* Implementation notes:
17  *
18  * - There are two kinds of sockets: those created by user action (such as
19  * calling socket(2)) and those created by incoming connection request packets.
20  *
21  * - There are two "global" tables, one for bound sockets (sockets that have
22  * specified an address that they are responsible for) and one for connected
23  * sockets (sockets that have established a connection with another socket).
24  * These tables are "global" in that all sockets on the system are placed
25  * within them. - Note, though, that the bound table contains an extra entry
26  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27  * that list. The bound table is used solely for lookup of sockets when packets
28  * are received and that's not necessary for SOCK_DGRAM sockets since we create
29  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
30  * sockets out of the bound hash buckets will reduce the chance of collisions
31  * when looking for SOCK_STREAM sockets and prevents us from having to check the
32  * socket type in the hash table lookups.
33  *
34  * - Sockets created by user action will either be "client" sockets that
35  * initiate a connection or "server" sockets that listen for connections; we do
36  * not support simultaneous connects (two "client" sockets connecting).
37  *
38  * - "Server" sockets are referred to as listener sockets throughout this
39  * implementation because they are in the SS_LISTEN state.  When a connection
40  * request is received (the second kind of socket mentioned above), we create a
41  * new socket and refer to it as a pending socket.  These pending sockets are
42  * placed on the pending connection list of the listener socket.  When future
43  * packets are received for the address the listener socket is bound to, we
44  * check if the source of the packet is from one that has an existing pending
45  * connection.  If it does, we process the packet for the pending socket.  When
46  * that socket reaches the connected state, it is removed from the listener
47  * socket's pending list and enqueued in the listener socket's accept queue.
48  * Callers of accept(2) will accept connected sockets from the listener socket's
49  * accept queue.  If the socket cannot be accepted for some reason then it is
50  * marked rejected.  Once the connection is accepted, it is owned by the user
51  * process and the responsibility for cleanup falls with that user process.
52  *
53  * - It is possible that these pending sockets will never reach the connected
54  * state; in fact, we may never receive another packet after the connection
55  * request.  Because of this, we must schedule a cleanup function to run in the
56  * future, after some amount of time passes where a connection should have been
57  * established.  This function ensures that the socket is off all lists so it
58  * cannot be retrieved, then drops all references to the socket so it is cleaned
59  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
60  * function will also cleanup rejected sockets, those that reach the connected
61  * state but leave it before they have been accepted.
62  *
63  * - Sockets created by user action will be cleaned up when the user process
64  * calls close(2), causing our release implementation to be called. Our release
65  * implementation will perform some cleanup then drop the last reference so our
66  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
67  * perform additional cleanup that's common for both types of sockets.
68  *
69  * - A socket's reference count is what ensures that the structure won't be
70  * freed.  Each entry in a list (such as the "global" bound and connected tables
71  * and the listener socket's pending list and connected queue) ensures a
72  * reference.  When we defer work until process context and pass a socket as our
73  * argument, we must ensure the reference count is increased to ensure the
74  * socket isn't freed before the function is run; the deferred function will
75  * then drop the reference.
76  */
77
78 #include <linux/types.h>
79
80 #define EXPORT_SYMTAB
81 #include <linux/bitops.h>
82 #include <linux/cred.h>
83 #include <linux/init.h>
84 #include <linux/io.h>
85 #include <linux/kernel.h>
86 #include <linux/kmod.h>
87 #include <linux/list.h>
88 #include <linux/miscdevice.h>
89 #include <linux/module.h>
90 #include <linux/mutex.h>
91 #include <linux/net.h>
92 #include <linux/poll.h>
93 #include <linux/skbuff.h>
94 #include <linux/smp.h>
95 #include <linux/socket.h>
96 #include <linux/stddef.h>
97 #include <linux/unistd.h>
98 #include <linux/wait.h>
99 #include <linux/workqueue.h>
100 #include <net/sock.h>
101
102 #include "af_vsock.h"
103 #include "vsock_version.h"
104
105 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
106 static void vsock_sk_destruct(struct sock *sk);
107 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
108
109 /* Protocol family. */
110 static struct proto vsock_proto = {
111         .name = "AF_VSOCK",
112         .owner = THIS_MODULE,
113         .obj_size = sizeof(struct vsock_sock),
114 };
115
116 /* The default peer timeout indicates how long we will wait for a peer response
117  * to a control message.
118  */
119 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
120
121 #define SS_LISTEN 255
122
123 static const struct vsock_transport *transport;
124 static DEFINE_MUTEX(vsock_register_mutex);
125
126 /**** EXPORTS ****/
127
128 /* Get the ID of the local context.  This is transport dependent. */
129
130 int vm_sockets_get_local_cid(void)
131 {
132         return transport->get_local_cid();
133 }
134 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
135
136 /**** UTILS ****/
137
138 /* Each bound VSocket is stored in the bind hash table and each connected
139  * VSocket is stored in the connected hash table.
140  *
141  * Unbound sockets are all put on the same list attached to the end of the hash
142  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
143  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
144  * represents the list that addr hashes to).
145  *
146  * Specifically, we initialize the vsock_bind_table array to a size of
147  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
148  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
149  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
150  * mods with VSOCK_HASH_SIZE - 1 to ensure this.
151  */
152 #define VSOCK_HASH_SIZE         251
153 #define MAX_PORT_RETRIES        24
154
155 #define VSOCK_HASH(addr)        ((addr)->svm_port % (VSOCK_HASH_SIZE - 1))
156 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
157 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
158
159 /* XXX This can probably be implemented in a better way. */
160 #define VSOCK_CONN_HASH(src, dst)                               \
161         (((src)->svm_cid ^ (dst)->svm_port) % (VSOCK_HASH_SIZE - 1))
162 #define vsock_connected_sockets(src, dst)               \
163         (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
164 #define vsock_connected_sockets_vsk(vsk)                                \
165         vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
166
167 static struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
168 static struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
169 static DEFINE_SPINLOCK(vsock_table_lock);
170
171 static __init void vsock_init_tables(void)
172 {
173         int i;
174
175         for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
176                 INIT_LIST_HEAD(&vsock_bind_table[i]);
177
178         for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
179                 INIT_LIST_HEAD(&vsock_connected_table[i]);
180 }
181
182 static void __vsock_insert_bound(struct list_head *list,
183                                  struct vsock_sock *vsk)
184 {
185         sock_hold(&vsk->sk);
186         list_add(&vsk->bound_table, list);
187 }
188
189 static void __vsock_insert_connected(struct list_head *list,
190                                      struct vsock_sock *vsk)
191 {
192         sock_hold(&vsk->sk);
193         list_add(&vsk->connected_table, list);
194 }
195
196 static void __vsock_remove_bound(struct vsock_sock *vsk)
197 {
198         list_del_init(&vsk->bound_table);
199         sock_put(&vsk->sk);
200 }
201
202 static void __vsock_remove_connected(struct vsock_sock *vsk)
203 {
204         list_del_init(&vsk->connected_table);
205         sock_put(&vsk->sk);
206 }
207
208 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
209 {
210         struct vsock_sock *vsk;
211
212         list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
213                 if (vsock_addr_equals_addr_any(addr, &vsk->local_addr))
214                         return sk_vsock(vsk);
215
216         return NULL;
217 }
218
219 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
220                                                   struct sockaddr_vm *dst)
221 {
222         struct vsock_sock *vsk;
223
224         list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
225                             connected_table) {
226                 if (vsock_addr_equals_addr(src, &vsk->remote_addr)
227                     && vsock_addr_equals_addr(dst, &vsk->local_addr)) {
228                         return sk_vsock(vsk);
229                 }
230         }
231
232         return NULL;
233 }
234
235 static bool __vsock_in_bound_table(struct vsock_sock *vsk)
236 {
237         return !list_empty(&vsk->bound_table);
238 }
239
240 static bool __vsock_in_connected_table(struct vsock_sock *vsk)
241 {
242         return !list_empty(&vsk->connected_table);
243 }
244
245 static void vsock_insert_unbound(struct vsock_sock *vsk)
246 {
247         spin_lock_bh(&vsock_table_lock);
248         __vsock_insert_bound(vsock_unbound_sockets, vsk);
249         spin_unlock_bh(&vsock_table_lock);
250 }
251
252 void vsock_insert_connected(struct vsock_sock *vsk)
253 {
254         struct list_head *list = vsock_connected_sockets(
255                 &vsk->remote_addr, &vsk->local_addr);
256
257         spin_lock_bh(&vsock_table_lock);
258         __vsock_insert_connected(list, vsk);
259         spin_unlock_bh(&vsock_table_lock);
260 }
261 EXPORT_SYMBOL_GPL(vsock_insert_connected);
262
263 void vsock_remove_bound(struct vsock_sock *vsk)
264 {
265         spin_lock_bh(&vsock_table_lock);
266         __vsock_remove_bound(vsk);
267         spin_unlock_bh(&vsock_table_lock);
268 }
269 EXPORT_SYMBOL_GPL(vsock_remove_bound);
270
271 void vsock_remove_connected(struct vsock_sock *vsk)
272 {
273         spin_lock_bh(&vsock_table_lock);
274         __vsock_remove_connected(vsk);
275         spin_unlock_bh(&vsock_table_lock);
276 }
277 EXPORT_SYMBOL_GPL(vsock_remove_connected);
278
279 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
280 {
281         struct sock *sk;
282
283         spin_lock_bh(&vsock_table_lock);
284         sk = __vsock_find_bound_socket(addr);
285         if (sk)
286                 sock_hold(sk);
287
288         spin_unlock_bh(&vsock_table_lock);
289
290         return sk;
291 }
292 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
293
294 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
295                                          struct sockaddr_vm *dst)
296 {
297         struct sock *sk;
298
299         spin_lock_bh(&vsock_table_lock);
300         sk = __vsock_find_connected_socket(src, dst);
301         if (sk)
302                 sock_hold(sk);
303
304         spin_unlock_bh(&vsock_table_lock);
305
306         return sk;
307 }
308 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
309
310 static bool vsock_in_bound_table(struct vsock_sock *vsk)
311 {
312         bool ret;
313
314         spin_lock_bh(&vsock_table_lock);
315         ret = __vsock_in_bound_table(vsk);
316         spin_unlock_bh(&vsock_table_lock);
317
318         return ret;
319 }
320
321 static bool vsock_in_connected_table(struct vsock_sock *vsk)
322 {
323         bool ret;
324
325         spin_lock_bh(&vsock_table_lock);
326         ret = __vsock_in_connected_table(vsk);
327         spin_unlock_bh(&vsock_table_lock);
328
329         return ret;
330 }
331
332 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
333 {
334         int i;
335
336         spin_lock_bh(&vsock_table_lock);
337
338         for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
339                 struct vsock_sock *vsk;
340                 list_for_each_entry(vsk, &vsock_connected_table[i],
341                                     connected_table);
342                         fn(sk_vsock(vsk));
343         }
344
345         spin_unlock_bh(&vsock_table_lock);
346 }
347 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
348
349 void vsock_add_pending(struct sock *listener, struct sock *pending)
350 {
351         struct vsock_sock *vlistener;
352         struct vsock_sock *vpending;
353
354         vlistener = vsock_sk(listener);
355         vpending = vsock_sk(pending);
356
357         sock_hold(pending);
358         sock_hold(listener);
359         list_add_tail(&vpending->pending_links, &vlistener->pending_links);
360 }
361 EXPORT_SYMBOL_GPL(vsock_add_pending);
362
363 void vsock_remove_pending(struct sock *listener, struct sock *pending)
364 {
365         struct vsock_sock *vpending = vsock_sk(pending);
366
367         list_del_init(&vpending->pending_links);
368         sock_put(listener);
369         sock_put(pending);
370 }
371 EXPORT_SYMBOL_GPL(vsock_remove_pending);
372
373 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
374 {
375         struct vsock_sock *vlistener;
376         struct vsock_sock *vconnected;
377
378         vlistener = vsock_sk(listener);
379         vconnected = vsock_sk(connected);
380
381         sock_hold(connected);
382         sock_hold(listener);
383         list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
384 }
385 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
386
387 static struct sock *vsock_dequeue_accept(struct sock *listener)
388 {
389         struct vsock_sock *vlistener;
390         struct vsock_sock *vconnected;
391
392         vlistener = vsock_sk(listener);
393
394         if (list_empty(&vlistener->accept_queue))
395                 return NULL;
396
397         vconnected = list_entry(vlistener->accept_queue.next,
398                                 struct vsock_sock, accept_queue);
399
400         list_del_init(&vconnected->accept_queue);
401         sock_put(listener);
402         /* The caller will need a reference on the connected socket so we let
403          * it call sock_put().
404          */
405
406         return sk_vsock(vconnected);
407 }
408
409 static bool vsock_is_accept_queue_empty(struct sock *sk)
410 {
411         struct vsock_sock *vsk = vsock_sk(sk);
412         return list_empty(&vsk->accept_queue);
413 }
414
415 static bool vsock_is_pending(struct sock *sk)
416 {
417         struct vsock_sock *vsk = vsock_sk(sk);
418         return !list_empty(&vsk->pending_links);
419 }
420
421 static int vsock_send_shutdown(struct sock *sk, int mode)
422 {
423         return transport->shutdown(vsock_sk(sk), mode);
424 }
425
426 void vsock_pending_work(struct work_struct *work)
427 {
428         struct sock *sk;
429         struct sock *listener;
430         struct vsock_sock *vsk;
431         bool cleanup;
432
433         vsk = container_of(work, struct vsock_sock, dwork.work);
434         sk = sk_vsock(vsk);
435         listener = vsk->listener;
436         cleanup = true;
437
438         lock_sock(listener);
439         lock_sock(sk);
440
441         if (vsock_is_pending(sk)) {
442                 vsock_remove_pending(listener, sk);
443         } else if (!vsk->rejected) {
444                 /* We are not on the pending list and accept() did not reject
445                  * us, so we must have been accepted by our user process.  We
446                  * just need to drop our references to the sockets and be on
447                  * our way.
448                  */
449                 cleanup = false;
450                 goto out;
451         }
452
453         listener->sk_ack_backlog--;
454
455         /* We need to remove ourself from the global connected sockets list so
456          * incoming packets can't find this socket, and to reduce the reference
457          * count.
458          */
459         if (vsock_in_connected_table(vsk))
460                 vsock_remove_connected(vsk);
461
462         sk->sk_state = SS_FREE;
463
464 out:
465         release_sock(sk);
466         release_sock(listener);
467         if (cleanup)
468                 sock_put(sk);
469
470         sock_put(sk);
471         sock_put(listener);
472 }
473 EXPORT_SYMBOL_GPL(vsock_pending_work);
474
475 /**** SOCKET OPERATIONS ****/
476
477 static int __vsock_bind_stream(struct vsock_sock *vsk,
478                                struct sockaddr_vm *addr)
479 {
480         static u32 port = LAST_RESERVED_PORT + 1;
481         struct sockaddr_vm new_addr;
482
483         vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
484
485         if (addr->svm_port == VMADDR_PORT_ANY) {
486                 bool found = false;
487                 unsigned int i;
488
489                 for (i = 0; i < MAX_PORT_RETRIES; i++) {
490                         if (port <= LAST_RESERVED_PORT)
491                                 port = LAST_RESERVED_PORT + 1;
492
493                         new_addr.svm_port = port++;
494
495                         if (!__vsock_find_bound_socket(&new_addr)) {
496                                 found = true;
497                                 break;
498                         }
499                 }
500
501                 if (!found)
502                         return -EADDRNOTAVAIL;
503         } else {
504                 /* If port is in reserved range, ensure caller
505                  * has necessary privileges.
506                  */
507                 if (addr->svm_port <= LAST_RESERVED_PORT &&
508                     !capable(CAP_NET_BIND_SERVICE)) {
509                         return -EACCES;
510                 }
511
512                 if (__vsock_find_bound_socket(&new_addr))
513                         return -EADDRINUSE;
514         }
515
516         vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
517
518         /* Remove stream sockets from the unbound list and add them to the hash
519          * table for easy lookup by its address.  The unbound list is simply an
520          * extra entry at the end of the hash table, a trick used by AF_UNIX.
521          */
522         __vsock_remove_bound(vsk);
523         __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
524
525         return 0;
526 }
527
528 static int __vsock_bind_dgram(struct vsock_sock *vsk,
529                               struct sockaddr_vm *addr)
530 {
531         return transport->dgram_bind(vsk, addr);
532 }
533
534 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
535 {
536         struct vsock_sock *vsk = vsock_sk(sk);
537         u32 cid;
538         int retval;
539
540         /* First ensure this socket isn't already bound. */
541         if (vsock_addr_bound(&vsk->local_addr))
542                 return -EINVAL;
543
544         /* Now bind to the provided address or select appropriate values if
545          * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
546          * like AF_INET prevents binding to a non-local IP address (in most
547          * cases), we only allow binding to the local CID.
548          */
549         cid = transport->get_local_cid();
550         if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
551                 return -EADDRNOTAVAIL;
552
553         switch (sk->sk_socket->type) {
554         case SOCK_STREAM:
555                 spin_lock_bh(&vsock_table_lock);
556                 retval = __vsock_bind_stream(vsk, addr);
557                 spin_unlock_bh(&vsock_table_lock);
558                 break;
559
560         case SOCK_DGRAM:
561                 retval = __vsock_bind_dgram(vsk, addr);
562                 break;
563
564         default:
565                 retval = -EINVAL;
566                 break;
567         }
568
569         return retval;
570 }
571
572 struct sock *__vsock_create(struct net *net,
573                             struct socket *sock,
574                             struct sock *parent,
575                             gfp_t priority,
576                             unsigned short type)
577 {
578         struct sock *sk;
579         struct vsock_sock *psk;
580         struct vsock_sock *vsk;
581
582         sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto);
583         if (!sk)
584                 return NULL;
585
586         sock_init_data(sock, sk);
587
588         /* sk->sk_type is normally set in sock_init_data, but only if sock is
589          * non-NULL. We make sure that our sockets always have a type by
590          * setting it here if needed.
591          */
592         if (!sock)
593                 sk->sk_type = type;
594
595         vsk = vsock_sk(sk);
596         vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
597         vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
598
599         sk->sk_destruct = vsock_sk_destruct;
600         sk->sk_backlog_rcv = vsock_queue_rcv_skb;
601         sk->sk_state = 0;
602         sock_reset_flag(sk, SOCK_DONE);
603
604         INIT_LIST_HEAD(&vsk->bound_table);
605         INIT_LIST_HEAD(&vsk->connected_table);
606         vsk->listener = NULL;
607         INIT_LIST_HEAD(&vsk->pending_links);
608         INIT_LIST_HEAD(&vsk->accept_queue);
609         vsk->rejected = false;
610         vsk->sent_request = false;
611         vsk->ignore_connecting_rst = false;
612         vsk->peer_shutdown = 0;
613
614         psk = parent ? vsock_sk(parent) : NULL;
615         if (parent) {
616                 vsk->trusted = psk->trusted;
617                 vsk->owner = get_cred(psk->owner);
618                 vsk->connect_timeout = psk->connect_timeout;
619         } else {
620                 vsk->trusted = capable(CAP_NET_ADMIN);
621                 vsk->owner = get_current_cred();
622                 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
623         }
624
625         if (transport->init(vsk, psk) < 0) {
626                 sk_free(sk);
627                 return NULL;
628         }
629
630         if (sock)
631                 vsock_insert_unbound(vsk);
632
633         return sk;
634 }
635 EXPORT_SYMBOL_GPL(__vsock_create);
636
637 static void __vsock_release(struct sock *sk)
638 {
639         if (sk) {
640                 struct sk_buff *skb;
641                 struct sock *pending;
642                 struct vsock_sock *vsk;
643
644                 vsk = vsock_sk(sk);
645                 pending = NULL; /* Compiler warning. */
646
647                 if (vsock_in_bound_table(vsk))
648                         vsock_remove_bound(vsk);
649
650                 if (vsock_in_connected_table(vsk))
651                         vsock_remove_connected(vsk);
652
653                 transport->release(vsk);
654
655                 lock_sock(sk);
656                 sock_orphan(sk);
657                 sk->sk_shutdown = SHUTDOWN_MASK;
658
659                 while ((skb = skb_dequeue(&sk->sk_receive_queue)))
660                         kfree_skb(skb);
661
662                 /* Clean up any sockets that never were accepted. */
663                 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
664                         __vsock_release(pending);
665                         sock_put(pending);
666                 }
667
668                 release_sock(sk);
669                 sock_put(sk);
670         }
671 }
672
673 static void vsock_sk_destruct(struct sock *sk)
674 {
675         struct vsock_sock *vsk = vsock_sk(sk);
676
677         transport->destruct(vsk);
678
679         /* When clearing these addresses, there's no need to set the family and
680          * possibly register the address family with the kernel.
681          */
682         vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
683         vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
684
685         put_cred(vsk->owner);
686 }
687
688 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
689 {
690         int err;
691
692         err = sock_queue_rcv_skb(sk, skb);
693         if (err)
694                 kfree_skb(skb);
695
696         return err;
697 }
698
699 s64 vsock_stream_has_data(struct vsock_sock *vsk)
700 {
701         return transport->stream_has_data(vsk);
702 }
703 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
704
705 s64 vsock_stream_has_space(struct vsock_sock *vsk)
706 {
707         return transport->stream_has_space(vsk);
708 }
709 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
710
711 static int vsock_release(struct socket *sock)
712 {
713         __vsock_release(sock->sk);
714         sock->sk = NULL;
715         sock->state = SS_FREE;
716
717         return 0;
718 }
719
720 static int
721 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
722 {
723         int err;
724         struct sock *sk;
725         struct sockaddr_vm *vm_addr;
726
727         sk = sock->sk;
728
729         if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
730                 return -EINVAL;
731
732         lock_sock(sk);
733         err = __vsock_bind(sk, vm_addr);
734         release_sock(sk);
735
736         return err;
737 }
738
739 static int vsock_getname(struct socket *sock,
740                          struct sockaddr *addr, int *addr_len, int peer)
741 {
742         int err;
743         struct sock *sk;
744         struct vsock_sock *vsk;
745         struct sockaddr_vm *vm_addr;
746
747         sk = sock->sk;
748         vsk = vsock_sk(sk);
749         err = 0;
750
751         lock_sock(sk);
752
753         if (peer) {
754                 if (sock->state != SS_CONNECTED) {
755                         err = -ENOTCONN;
756                         goto out;
757                 }
758                 vm_addr = &vsk->remote_addr;
759         } else {
760                 vm_addr = &vsk->local_addr;
761         }
762
763         if (!vm_addr) {
764                 err = -EINVAL;
765                 goto out;
766         }
767
768         /* sys_getsockname() and sys_getpeername() pass us a
769          * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
770          * that macro is defined in socket.c instead of .h, so we hardcode its
771          * value here.
772          */
773         BUILD_BUG_ON(sizeof(*vm_addr) > 128);
774         memcpy(addr, vm_addr, sizeof(*vm_addr));
775         *addr_len = sizeof(*vm_addr);
776
777 out:
778         release_sock(sk);
779         return err;
780 }
781
782 static int vsock_shutdown(struct socket *sock, int mode)
783 {
784         int err;
785         struct sock *sk;
786
787         /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
788          * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
789          * here like the other address families do.  Note also that the
790          * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
791          * which is what we want.
792          */
793         mode++;
794
795         if ((mode & ~SHUTDOWN_MASK) || !mode)
796                 return -EINVAL;
797
798         /* If this is a STREAM socket and it is not connected then bail out
799          * immediately.  If it is a DGRAM socket then we must first kick the
800          * socket so that it wakes up from any sleeping calls, for example
801          * recv(), and then afterwards return the error.
802          */
803
804         sk = sock->sk;
805         if (sock->state == SS_UNCONNECTED) {
806                 err = -ENOTCONN;
807                 if (sk->sk_type == SOCK_STREAM)
808                         return err;
809         } else {
810                 sock->state = SS_DISCONNECTING;
811                 err = 0;
812         }
813
814         /* Receive and send shutdowns are treated alike. */
815         mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
816         if (mode) {
817                 lock_sock(sk);
818                 sk->sk_shutdown |= mode;
819                 sk->sk_state_change(sk);
820                 release_sock(sk);
821
822                 if (sk->sk_type == SOCK_STREAM) {
823                         sock_reset_flag(sk, SOCK_DONE);
824                         vsock_send_shutdown(sk, mode);
825                 }
826         }
827
828         return err;
829 }
830
831 static unsigned int vsock_poll(struct file *file, struct socket *sock,
832                                poll_table *wait)
833 {
834         struct sock *sk;
835         unsigned int mask;
836         struct vsock_sock *vsk;
837
838         sk = sock->sk;
839         vsk = vsock_sk(sk);
840
841         poll_wait(file, sk_sleep(sk), wait);
842         mask = 0;
843
844         if (sk->sk_err)
845                 /* Signify that there has been an error on this socket. */
846                 mask |= POLLERR;
847
848         /* INET sockets treat local write shutdown and peer write shutdown as a
849          * case of POLLHUP set.
850          */
851         if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
852             ((sk->sk_shutdown & SEND_SHUTDOWN) &&
853              (vsk->peer_shutdown & SEND_SHUTDOWN))) {
854                 mask |= POLLHUP;
855         }
856
857         if (sk->sk_shutdown & RCV_SHUTDOWN ||
858             vsk->peer_shutdown & SEND_SHUTDOWN) {
859                 mask |= POLLRDHUP;
860         }
861
862         if (sock->type == SOCK_DGRAM) {
863                 /* For datagram sockets we can read if there is something in
864                  * the queue and write as long as the socket isn't shutdown for
865                  * sending.
866                  */
867                 if (!skb_queue_empty(&sk->sk_receive_queue) ||
868                     (sk->sk_shutdown & RCV_SHUTDOWN)) {
869                         mask |= POLLIN | POLLRDNORM;
870                 }
871
872                 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
873                         mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
874
875         } else if (sock->type == SOCK_STREAM) {
876                 lock_sock(sk);
877
878                 /* Listening sockets that have connections in their accept
879                  * queue can be read.
880                  */
881                 if (sk->sk_state == SS_LISTEN
882                     && !vsock_is_accept_queue_empty(sk))
883                         mask |= POLLIN | POLLRDNORM;
884
885                 /* If there is something in the queue then we can read. */
886                 if (transport->stream_is_active(vsk) &&
887                     !(sk->sk_shutdown & RCV_SHUTDOWN)) {
888                         bool data_ready_now = false;
889                         int ret = transport->notify_poll_in(
890                                         vsk, 1, &data_ready_now);
891                         if (ret < 0) {
892                                 mask |= POLLERR;
893                         } else {
894                                 if (data_ready_now)
895                                         mask |= POLLIN | POLLRDNORM;
896
897                         }
898                 }
899
900                 /* Sockets whose connections have been closed, reset, or
901                  * terminated should also be considered read, and we check the
902                  * shutdown flag for that.
903                  */
904                 if (sk->sk_shutdown & RCV_SHUTDOWN ||
905                     vsk->peer_shutdown & SEND_SHUTDOWN) {
906                         mask |= POLLIN | POLLRDNORM;
907                 }
908
909                 /* Connected sockets that can produce data can be written. */
910                 if (sk->sk_state == SS_CONNECTED) {
911                         if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
912                                 bool space_avail_now = false;
913                                 int ret = transport->notify_poll_out(
914                                                 vsk, 1, &space_avail_now);
915                                 if (ret < 0) {
916                                         mask |= POLLERR;
917                                 } else {
918                                         if (space_avail_now)
919                                                 /* Remove POLLWRBAND since INET
920                                                  * sockets are not setting it.
921                                                  */
922                                                 mask |= POLLOUT | POLLWRNORM;
923
924                                 }
925                         }
926                 }
927
928                 /* Simulate INET socket poll behaviors, which sets
929                  * POLLOUT|POLLWRNORM when peer is closed and nothing to read,
930                  * but local send is not shutdown.
931                  */
932                 if (sk->sk_state == SS_UNCONNECTED) {
933                         if (!(sk->sk_shutdown & SEND_SHUTDOWN))
934                                 mask |= POLLOUT | POLLWRNORM;
935
936                 }
937
938                 release_sock(sk);
939         }
940
941         return mask;
942 }
943
944 static int vsock_dgram_sendmsg(struct kiocb *kiocb, struct socket *sock,
945                                struct msghdr *msg, size_t len)
946 {
947         int err;
948         struct sock *sk;
949         struct vsock_sock *vsk;
950         struct sockaddr_vm *remote_addr;
951
952         if (msg->msg_flags & MSG_OOB)
953                 return -EOPNOTSUPP;
954
955         /* For now, MSG_DONTWAIT is always assumed... */
956         err = 0;
957         sk = sock->sk;
958         vsk = vsock_sk(sk);
959
960         lock_sock(sk);
961
962         if (!vsock_addr_bound(&vsk->local_addr)) {
963                 struct sockaddr_vm local_addr;
964
965                 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
966                 err = __vsock_bind(sk, &local_addr);
967                 if (err != 0)
968                         goto out;
969
970         }
971
972         /* If the provided message contains an address, use that.  Otherwise
973          * fall back on the socket's remote handle (if it has been connected).
974          */
975         if (msg->msg_name &&
976             vsock_addr_cast(msg->msg_name, msg->msg_namelen,
977                             &remote_addr) == 0) {
978                 /* Ensure this address is of the right type and is a valid
979                  * destination.
980                  */
981
982                 if (remote_addr->svm_cid == VMADDR_CID_ANY)
983                         remote_addr->svm_cid = transport->get_local_cid();
984
985                 if (!vsock_addr_bound(remote_addr)) {
986                         err = -EINVAL;
987                         goto out;
988                 }
989         } else if (sock->state == SS_CONNECTED) {
990                 remote_addr = &vsk->remote_addr;
991
992                 if (remote_addr->svm_cid == VMADDR_CID_ANY)
993                         remote_addr->svm_cid = transport->get_local_cid();
994
995                 /* XXX Should connect() or this function ensure remote_addr is
996                  * bound?
997                  */
998                 if (!vsock_addr_bound(&vsk->remote_addr)) {
999                         err = -EINVAL;
1000                         goto out;
1001                 }
1002         } else {
1003                 err = -EINVAL;
1004                 goto out;
1005         }
1006
1007         if (!transport->dgram_allow(remote_addr->svm_cid,
1008                                     remote_addr->svm_port)) {
1009                 err = -EINVAL;
1010                 goto out;
1011         }
1012
1013         err = transport->dgram_enqueue(vsk, remote_addr, msg->msg_iov, len);
1014
1015 out:
1016         release_sock(sk);
1017         return err;
1018 }
1019
1020 static int vsock_dgram_connect(struct socket *sock,
1021                                struct sockaddr *addr, int addr_len, int flags)
1022 {
1023         int err;
1024         struct sock *sk;
1025         struct vsock_sock *vsk;
1026         struct sockaddr_vm *remote_addr;
1027
1028         sk = sock->sk;
1029         vsk = vsock_sk(sk);
1030
1031         err = vsock_addr_cast(addr, addr_len, &remote_addr);
1032         if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1033                 lock_sock(sk);
1034                 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1035                                 VMADDR_PORT_ANY);
1036                 sock->state = SS_UNCONNECTED;
1037                 release_sock(sk);
1038                 return 0;
1039         } else if (err != 0)
1040                 return -EINVAL;
1041
1042         lock_sock(sk);
1043
1044         if (!vsock_addr_bound(&vsk->local_addr)) {
1045                 struct sockaddr_vm local_addr;
1046
1047                 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
1048                 err = __vsock_bind(sk, &local_addr);
1049                 if (err != 0)
1050                         goto out;
1051
1052         }
1053
1054         if (!transport->dgram_allow(remote_addr->svm_cid,
1055                                     remote_addr->svm_port)) {
1056                 err = -EINVAL;
1057                 goto out;
1058         }
1059
1060         memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1061         sock->state = SS_CONNECTED;
1062
1063 out:
1064         release_sock(sk);
1065         return err;
1066 }
1067
1068 static int vsock_dgram_recvmsg(struct kiocb *kiocb, struct socket *sock,
1069                                struct msghdr *msg, size_t len, int flags)
1070 {
1071         return transport->dgram_dequeue(kiocb, vsock_sk(sock->sk), msg, len,
1072                                         flags);
1073 }
1074
1075 static const struct proto_ops vsock_dgram_ops = {
1076         .family = PF_VSOCK,
1077         .owner = THIS_MODULE,
1078         .release = vsock_release,
1079         .bind = vsock_bind,
1080         .connect = vsock_dgram_connect,
1081         .socketpair = sock_no_socketpair,
1082         .accept = sock_no_accept,
1083         .getname = vsock_getname,
1084         .poll = vsock_poll,
1085         .ioctl = sock_no_ioctl,
1086         .listen = sock_no_listen,
1087         .shutdown = vsock_shutdown,
1088         .setsockopt = sock_no_setsockopt,
1089         .getsockopt = sock_no_getsockopt,
1090         .sendmsg = vsock_dgram_sendmsg,
1091         .recvmsg = vsock_dgram_recvmsg,
1092         .mmap = sock_no_mmap,
1093         .sendpage = sock_no_sendpage,
1094 };
1095
1096 static void vsock_connect_timeout(struct work_struct *work)
1097 {
1098         struct sock *sk;
1099         struct vsock_sock *vsk;
1100
1101         vsk = container_of(work, struct vsock_sock, dwork.work);
1102         sk = sk_vsock(vsk);
1103
1104         lock_sock(sk);
1105         if (sk->sk_state == SS_CONNECTING &&
1106             (sk->sk_shutdown != SHUTDOWN_MASK)) {
1107                 sk->sk_state = SS_UNCONNECTED;
1108                 sk->sk_err = ETIMEDOUT;
1109                 sk->sk_error_report(sk);
1110         }
1111         release_sock(sk);
1112
1113         sock_put(sk);
1114 }
1115
1116 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1117                                 int addr_len, int flags)
1118 {
1119         int err;
1120         struct sock *sk;
1121         struct vsock_sock *vsk;
1122         struct sockaddr_vm *remote_addr;
1123         long timeout;
1124         DEFINE_WAIT(wait);
1125
1126         err = 0;
1127         sk = sock->sk;
1128         vsk = vsock_sk(sk);
1129
1130         lock_sock(sk);
1131
1132         /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1133         switch (sock->state) {
1134         case SS_CONNECTED:
1135                 err = -EISCONN;
1136                 goto out;
1137         case SS_DISCONNECTING:
1138                 err = -EINVAL;
1139                 goto out;
1140         case SS_CONNECTING:
1141                 /* This continues on so we can move sock into the SS_CONNECTED
1142                  * state once the connection has completed (at which point err
1143                  * will be set to zero also).  Otherwise, we will either wait
1144                  * for the connection or return -EALREADY should this be a
1145                  * non-blocking call.
1146                  */
1147                 err = -EALREADY;
1148                 break;
1149         default:
1150                 if ((sk->sk_state == SS_LISTEN) ||
1151                     vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1152                         err = -EINVAL;
1153                         goto out;
1154                 }
1155
1156                 /* The hypervisor and well-known contexts do not have socket
1157                  * endpoints.
1158                  */
1159                 if (!transport->stream_allow(remote_addr->svm_cid,
1160                                              remote_addr->svm_port)) {
1161                         err = -ENETUNREACH;
1162                         goto out;
1163                 }
1164
1165                 /* Set the remote address that we are connecting to. */
1166                 memcpy(&vsk->remote_addr, remote_addr,
1167                        sizeof(vsk->remote_addr));
1168
1169                 /* Autobind this socket to the local address if necessary. */
1170                 if (!vsock_addr_bound(&vsk->local_addr)) {
1171                         struct sockaddr_vm local_addr;
1172
1173                         vsock_addr_init(&local_addr, VMADDR_CID_ANY,
1174                                         VMADDR_PORT_ANY);
1175                         err = __vsock_bind(sk, &local_addr);
1176                         if (err != 0)
1177                                 goto out;
1178
1179                 }
1180
1181                 sk->sk_state = SS_CONNECTING;
1182
1183                 err = transport->connect(vsk);
1184                 if (err < 0)
1185                         goto out;
1186
1187                 /* Mark sock as connecting and set the error code to in
1188                  * progress in case this is a non-blocking connect.
1189                  */
1190                 sock->state = SS_CONNECTING;
1191                 err = -EINPROGRESS;
1192         }
1193
1194         /* The receive path will handle all communication until we are able to
1195          * enter the connected state.  Here we wait for the connection to be
1196          * completed or a notification of an error.
1197          */
1198         timeout = vsk->connect_timeout;
1199         prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1200
1201         while (sk->sk_state != SS_CONNECTED && sk->sk_err == 0) {
1202                 if (flags & O_NONBLOCK) {
1203                         /* If we're not going to block, we schedule a timeout
1204                          * function to generate a timeout on the connection
1205                          * attempt, in case the peer doesn't respond in a
1206                          * timely manner. We hold on to the socket until the
1207                          * timeout fires.
1208                          */
1209                         sock_hold(sk);
1210                         INIT_DELAYED_WORK(&vsk->dwork,
1211                                           vsock_connect_timeout);
1212                         schedule_delayed_work(&vsk->dwork, timeout);
1213
1214                         /* Skip ahead to preserve error code set above. */
1215                         goto out_wait;
1216                 }
1217
1218                 release_sock(sk);
1219                 timeout = schedule_timeout(timeout);
1220                 lock_sock(sk);
1221
1222                 if (signal_pending(current)) {
1223                         err = sock_intr_errno(timeout);
1224                         goto out_wait_error;
1225                 } else if (timeout == 0) {
1226                         err = -ETIMEDOUT;
1227                         goto out_wait_error;
1228                 }
1229
1230                 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1231         }
1232
1233         if (sk->sk_err) {
1234                 err = -sk->sk_err;
1235                 goto out_wait_error;
1236         } else
1237                 err = 0;
1238
1239 out_wait:
1240         finish_wait(sk_sleep(sk), &wait);
1241 out:
1242         release_sock(sk);
1243         return err;
1244
1245 out_wait_error:
1246         sk->sk_state = SS_UNCONNECTED;
1247         sock->state = SS_UNCONNECTED;
1248         goto out_wait;
1249 }
1250
1251 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags)
1252 {
1253         struct sock *listener;
1254         int err;
1255         struct sock *connected;
1256         struct vsock_sock *vconnected;
1257         long timeout;
1258         DEFINE_WAIT(wait);
1259
1260         err = 0;
1261         listener = sock->sk;
1262
1263         lock_sock(listener);
1264
1265         if (sock->type != SOCK_STREAM) {
1266                 err = -EOPNOTSUPP;
1267                 goto out;
1268         }
1269
1270         if (listener->sk_state != SS_LISTEN) {
1271                 err = -EINVAL;
1272                 goto out;
1273         }
1274
1275         /* Wait for children sockets to appear; these are the new sockets
1276          * created upon connection establishment.
1277          */
1278         timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1279         prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1280
1281         while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1282                listener->sk_err == 0) {
1283                 release_sock(listener);
1284                 timeout = schedule_timeout(timeout);
1285                 lock_sock(listener);
1286
1287                 if (signal_pending(current)) {
1288                         err = sock_intr_errno(timeout);
1289                         goto out_wait;
1290                 } else if (timeout == 0) {
1291                         err = -EAGAIN;
1292                         goto out_wait;
1293                 }
1294
1295                 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1296         }
1297
1298         if (listener->sk_err)
1299                 err = -listener->sk_err;
1300
1301         if (connected) {
1302                 listener->sk_ack_backlog--;
1303
1304                 lock_sock(connected);
1305                 vconnected = vsock_sk(connected);
1306
1307                 /* If the listener socket has received an error, then we should
1308                  * reject this socket and return.  Note that we simply mark the
1309                  * socket rejected, drop our reference, and let the cleanup
1310                  * function handle the cleanup; the fact that we found it in
1311                  * the listener's accept queue guarantees that the cleanup
1312                  * function hasn't run yet.
1313                  */
1314                 if (err) {
1315                         vconnected->rejected = true;
1316                         release_sock(connected);
1317                         sock_put(connected);
1318                         goto out_wait;
1319                 }
1320
1321                 newsock->state = SS_CONNECTED;
1322                 sock_graft(connected, newsock);
1323                 release_sock(connected);
1324                 sock_put(connected);
1325         }
1326
1327 out_wait:
1328         finish_wait(sk_sleep(listener), &wait);
1329 out:
1330         release_sock(listener);
1331         return err;
1332 }
1333
1334 static int vsock_listen(struct socket *sock, int backlog)
1335 {
1336         int err;
1337         struct sock *sk;
1338         struct vsock_sock *vsk;
1339
1340         sk = sock->sk;
1341
1342         lock_sock(sk);
1343
1344         if (sock->type != SOCK_STREAM) {
1345                 err = -EOPNOTSUPP;
1346                 goto out;
1347         }
1348
1349         if (sock->state != SS_UNCONNECTED) {
1350                 err = -EINVAL;
1351                 goto out;
1352         }
1353
1354         vsk = vsock_sk(sk);
1355
1356         if (!vsock_addr_bound(&vsk->local_addr)) {
1357                 err = -EINVAL;
1358                 goto out;
1359         }
1360
1361         sk->sk_max_ack_backlog = backlog;
1362         sk->sk_state = SS_LISTEN;
1363
1364         err = 0;
1365
1366 out:
1367         release_sock(sk);
1368         return err;
1369 }
1370
1371 static int vsock_stream_setsockopt(struct socket *sock,
1372                                    int level,
1373                                    int optname,
1374                                    char __user *optval,
1375                                    unsigned int optlen)
1376 {
1377         int err;
1378         struct sock *sk;
1379         struct vsock_sock *vsk;
1380         u64 val;
1381
1382         if (level != AF_VSOCK)
1383                 return -ENOPROTOOPT;
1384
1385 #define COPY_IN(_v)                                       \
1386         do {                                              \
1387                 if (optlen < sizeof(_v)) {                \
1388                         err = -EINVAL;                    \
1389                         goto exit;                        \
1390                 }                                         \
1391                 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) {     \
1392                         err = -EFAULT;                                  \
1393                         goto exit;                                      \
1394                 }                                                       \
1395         } while (0)
1396
1397         err = 0;
1398         sk = sock->sk;
1399         vsk = vsock_sk(sk);
1400
1401         lock_sock(sk);
1402
1403         switch (optname) {
1404         case SO_VM_SOCKETS_BUFFER_SIZE:
1405                 COPY_IN(val);
1406                 transport->set_buffer_size(vsk, val);
1407                 break;
1408
1409         case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1410                 COPY_IN(val);
1411                 transport->set_max_buffer_size(vsk, val);
1412                 break;
1413
1414         case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1415                 COPY_IN(val);
1416                 transport->set_min_buffer_size(vsk, val);
1417                 break;
1418
1419         case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1420                 struct timeval tv;
1421                 COPY_IN(tv);
1422                 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1423                     tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1424                         vsk->connect_timeout = tv.tv_sec * HZ +
1425                             DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1426                         if (vsk->connect_timeout == 0)
1427                                 vsk->connect_timeout =
1428                                     VSOCK_DEFAULT_CONNECT_TIMEOUT;
1429
1430                 } else {
1431                         err = -ERANGE;
1432                 }
1433                 break;
1434         }
1435
1436         default:
1437                 err = -ENOPROTOOPT;
1438                 break;
1439         }
1440
1441 #undef COPY_IN
1442
1443 exit:
1444         release_sock(sk);
1445         return err;
1446 }
1447
1448 static int vsock_stream_getsockopt(struct socket *sock,
1449                                    int level, int optname,
1450                                    char __user *optval,
1451                                    int __user *optlen)
1452 {
1453         int err;
1454         int len;
1455         struct sock *sk;
1456         struct vsock_sock *vsk;
1457         u64 val;
1458
1459         if (level != AF_VSOCK)
1460                 return -ENOPROTOOPT;
1461
1462         err = get_user(len, optlen);
1463         if (err != 0)
1464                 return err;
1465
1466 #define COPY_OUT(_v)                            \
1467         do {                                    \
1468                 if (len < sizeof(_v))           \
1469                         return -EINVAL;         \
1470                                                 \
1471                 len = sizeof(_v);               \
1472                 if (copy_to_user(optval, &_v, len) != 0)        \
1473                         return -EFAULT;                         \
1474                                                                 \
1475         } while (0)
1476
1477         err = 0;
1478         sk = sock->sk;
1479         vsk = vsock_sk(sk);
1480
1481         switch (optname) {
1482         case SO_VM_SOCKETS_BUFFER_SIZE:
1483                 val = transport->get_buffer_size(vsk);
1484                 COPY_OUT(val);
1485                 break;
1486
1487         case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1488                 val = transport->get_max_buffer_size(vsk);
1489                 COPY_OUT(val);
1490                 break;
1491
1492         case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1493                 val = transport->get_min_buffer_size(vsk);
1494                 COPY_OUT(val);
1495                 break;
1496
1497         case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1498                 struct timeval tv;
1499                 tv.tv_sec = vsk->connect_timeout / HZ;
1500                 tv.tv_usec =
1501                     (vsk->connect_timeout -
1502                      tv.tv_sec * HZ) * (1000000 / HZ);
1503                 COPY_OUT(tv);
1504                 break;
1505         }
1506         default:
1507                 return -ENOPROTOOPT;
1508         }
1509
1510         err = put_user(len, optlen);
1511         if (err != 0)
1512                 return -EFAULT;
1513
1514 #undef COPY_OUT
1515
1516         return 0;
1517 }
1518
1519 static int vsock_stream_sendmsg(struct kiocb *kiocb, struct socket *sock,
1520                                 struct msghdr *msg, size_t len)
1521 {
1522         struct sock *sk;
1523         struct vsock_sock *vsk;
1524         ssize_t total_written;
1525         long timeout;
1526         int err;
1527         struct vsock_transport_send_notify_data send_data;
1528
1529         DEFINE_WAIT(wait);
1530
1531         sk = sock->sk;
1532         vsk = vsock_sk(sk);
1533         total_written = 0;
1534         err = 0;
1535
1536         if (msg->msg_flags & MSG_OOB)
1537                 return -EOPNOTSUPP;
1538
1539         lock_sock(sk);
1540
1541         /* Callers should not provide a destination with stream sockets. */
1542         if (msg->msg_namelen) {
1543                 err = sk->sk_state == SS_CONNECTED ? -EISCONN : -EOPNOTSUPP;
1544                 goto out;
1545         }
1546
1547         /* Send data only if both sides are not shutdown in the direction. */
1548         if (sk->sk_shutdown & SEND_SHUTDOWN ||
1549             vsk->peer_shutdown & RCV_SHUTDOWN) {
1550                 err = -EPIPE;
1551                 goto out;
1552         }
1553
1554         if (sk->sk_state != SS_CONNECTED ||
1555             !vsock_addr_bound(&vsk->local_addr)) {
1556                 err = -ENOTCONN;
1557                 goto out;
1558         }
1559
1560         if (!vsock_addr_bound(&vsk->remote_addr)) {
1561                 err = -EDESTADDRREQ;
1562                 goto out;
1563         }
1564
1565         /* Wait for room in the produce queue to enqueue our user's data. */
1566         timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1567
1568         err = transport->notify_send_init(vsk, &send_data);
1569         if (err < 0)
1570                 goto out;
1571
1572         prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1573
1574         while (total_written < len) {
1575                 ssize_t written;
1576
1577                 while (vsock_stream_has_space(vsk) == 0 &&
1578                        sk->sk_err == 0 &&
1579                        !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1580                        !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1581
1582                         /* Don't wait for non-blocking sockets. */
1583                         if (timeout == 0) {
1584                                 err = -EAGAIN;
1585                                 goto out_wait;
1586                         }
1587
1588                         err = transport->notify_send_pre_block(vsk, &send_data);
1589                         if (err < 0)
1590                                 goto out_wait;
1591
1592                         release_sock(sk);
1593                         timeout = schedule_timeout(timeout);
1594                         lock_sock(sk);
1595                         if (signal_pending(current)) {
1596                                 err = sock_intr_errno(timeout);
1597                                 goto out_wait;
1598                         } else if (timeout == 0) {
1599                                 err = -EAGAIN;
1600                                 goto out_wait;
1601                         }
1602
1603                         prepare_to_wait(sk_sleep(sk), &wait,
1604                                         TASK_INTERRUPTIBLE);
1605                 }
1606
1607                 /* These checks occur both as part of and after the loop
1608                  * conditional since we need to check before and after
1609                  * sleeping.
1610                  */
1611                 if (sk->sk_err) {
1612                         err = -sk->sk_err;
1613                         goto out_wait;
1614                 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1615                            (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1616                         err = -EPIPE;
1617                         goto out_wait;
1618                 }
1619
1620                 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1621                 if (err < 0)
1622                         goto out_wait;
1623
1624                 /* Note that enqueue will only write as many bytes as are free
1625                  * in the produce queue, so we don't need to ensure len is
1626                  * smaller than the queue size.  It is the caller's
1627                  * responsibility to check how many bytes we were able to send.
1628                  */
1629
1630                 written = transport->stream_enqueue(
1631                                 vsk, msg->msg_iov,
1632                                 len - total_written);
1633                 if (written < 0) {
1634                         err = -ENOMEM;
1635                         goto out_wait;
1636                 }
1637
1638                 total_written += written;
1639
1640                 err = transport->notify_send_post_enqueue(
1641                                 vsk, written, &send_data);
1642                 if (err < 0)
1643                         goto out_wait;
1644
1645         }
1646
1647 out_wait:
1648         if (total_written > 0)
1649                 err = total_written;
1650         finish_wait(sk_sleep(sk), &wait);
1651 out:
1652         release_sock(sk);
1653         return err;
1654 }
1655
1656
1657 static int
1658 vsock_stream_recvmsg(struct kiocb *kiocb,
1659                      struct socket *sock,
1660                      struct msghdr *msg, size_t len, int flags)
1661 {
1662         struct sock *sk;
1663         struct vsock_sock *vsk;
1664         int err;
1665         size_t target;
1666         ssize_t copied;
1667         long timeout;
1668         struct vsock_transport_recv_notify_data recv_data;
1669
1670         DEFINE_WAIT(wait);
1671
1672         sk = sock->sk;
1673         vsk = vsock_sk(sk);
1674         err = 0;
1675
1676         lock_sock(sk);
1677
1678         if (sk->sk_state != SS_CONNECTED) {
1679                 /* Recvmsg is supposed to return 0 if a peer performs an
1680                  * orderly shutdown. Differentiate between that case and when a
1681                  * peer has not connected or a local shutdown occured with the
1682                  * SOCK_DONE flag.
1683                  */
1684                 if (sock_flag(sk, SOCK_DONE))
1685                         err = 0;
1686                 else
1687                         err = -ENOTCONN;
1688
1689                 goto out;
1690         }
1691
1692         if (flags & MSG_OOB) {
1693                 err = -EOPNOTSUPP;
1694                 goto out;
1695         }
1696
1697         /* We don't check peer_shutdown flag here since peer may actually shut
1698          * down, but there can be data in the queue that a local socket can
1699          * receive.
1700          */
1701         if (sk->sk_shutdown & RCV_SHUTDOWN) {
1702                 err = 0;
1703                 goto out;
1704         }
1705
1706         /* It is valid on Linux to pass in a zero-length receive buffer.  This
1707          * is not an error.  We may as well bail out now.
1708          */
1709         if (!len) {
1710                 err = 0;
1711                 goto out;
1712         }
1713
1714         /* We must not copy less than target bytes into the user's buffer
1715          * before returning successfully, so we wait for the consume queue to
1716          * have that much data to consume before dequeueing.  Note that this
1717          * makes it impossible to handle cases where target is greater than the
1718          * queue size.
1719          */
1720         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1721         if (target >= transport->stream_rcvhiwat(vsk)) {
1722                 err = -ENOMEM;
1723                 goto out;
1724         }
1725         timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1726         copied = 0;
1727
1728         err = transport->notify_recv_init(vsk, target, &recv_data);
1729         if (err < 0)
1730                 goto out;
1731
1732         prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1733
1734         while (1) {
1735                 s64 ready = vsock_stream_has_data(vsk);
1736
1737                 if (ready < 0) {
1738                         /* Invalid queue pair content. XXX This should be
1739                          * changed to a connection reset in a later change.
1740                          */
1741
1742                         err = -ENOMEM;
1743                         goto out_wait;
1744                 } else if (ready > 0) {
1745                         ssize_t read;
1746
1747                         err = transport->notify_recv_pre_dequeue(
1748                                         vsk, target, &recv_data);
1749                         if (err < 0)
1750                                 break;
1751
1752                         read = transport->stream_dequeue(
1753                                         vsk, msg->msg_iov,
1754                                         len - copied, flags);
1755                         if (read < 0) {
1756                                 err = -ENOMEM;
1757                                 break;
1758                         }
1759
1760                         copied += read;
1761
1762                         err = transport->notify_recv_post_dequeue(
1763                                         vsk, target, read,
1764                                         !(flags & MSG_PEEK), &recv_data);
1765                         if (err < 0)
1766                                 goto out_wait;
1767
1768                         if (read >= target || flags & MSG_PEEK)
1769                                 break;
1770
1771                         target -= read;
1772                 } else {
1773                         if (sk->sk_err != 0 || (sk->sk_shutdown & RCV_SHUTDOWN)
1774                             || (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1775                                 break;
1776                         }
1777                         /* Don't wait for non-blocking sockets. */
1778                         if (timeout == 0) {
1779                                 err = -EAGAIN;
1780                                 break;
1781                         }
1782
1783                         err = transport->notify_recv_pre_block(
1784                                         vsk, target, &recv_data);
1785                         if (err < 0)
1786                                 break;
1787
1788                         release_sock(sk);
1789                         timeout = schedule_timeout(timeout);
1790                         lock_sock(sk);
1791
1792                         if (signal_pending(current)) {
1793                                 err = sock_intr_errno(timeout);
1794                                 break;
1795                         } else if (timeout == 0) {
1796                                 err = -EAGAIN;
1797                                 break;
1798                         }
1799
1800                         prepare_to_wait(sk_sleep(sk), &wait,
1801                                         TASK_INTERRUPTIBLE);
1802                 }
1803         }
1804
1805         if (sk->sk_err)
1806                 err = -sk->sk_err;
1807         else if (sk->sk_shutdown & RCV_SHUTDOWN)
1808                 err = 0;
1809
1810         if (copied > 0) {
1811                 /* We only do these additional bookkeeping/notification steps
1812                  * if we actually copied something out of the queue pair
1813                  * instead of just peeking ahead.
1814                  */
1815
1816                 if (!(flags & MSG_PEEK)) {
1817                         /* If the other side has shutdown for sending and there
1818                          * is nothing more to read, then modify the socket
1819                          * state.
1820                          */
1821                         if (vsk->peer_shutdown & SEND_SHUTDOWN) {
1822                                 if (vsock_stream_has_data(vsk) <= 0) {
1823                                         sk->sk_state = SS_UNCONNECTED;
1824                                         sock_set_flag(sk, SOCK_DONE);
1825                                         sk->sk_state_change(sk);
1826                                 }
1827                         }
1828                 }
1829                 err = copied;
1830         }
1831
1832 out_wait:
1833         finish_wait(sk_sleep(sk), &wait);
1834 out:
1835         release_sock(sk);
1836         return err;
1837 }
1838
1839 static const struct proto_ops vsock_stream_ops = {
1840         .family = PF_VSOCK,
1841         .owner = THIS_MODULE,
1842         .release = vsock_release,
1843         .bind = vsock_bind,
1844         .connect = vsock_stream_connect,
1845         .socketpair = sock_no_socketpair,
1846         .accept = vsock_accept,
1847         .getname = vsock_getname,
1848         .poll = vsock_poll,
1849         .ioctl = sock_no_ioctl,
1850         .listen = vsock_listen,
1851         .shutdown = vsock_shutdown,
1852         .setsockopt = vsock_stream_setsockopt,
1853         .getsockopt = vsock_stream_getsockopt,
1854         .sendmsg = vsock_stream_sendmsg,
1855         .recvmsg = vsock_stream_recvmsg,
1856         .mmap = sock_no_mmap,
1857         .sendpage = sock_no_sendpage,
1858 };
1859
1860 static int vsock_create(struct net *net, struct socket *sock,
1861                         int protocol, int kern)
1862 {
1863         if (!sock)
1864                 return -EINVAL;
1865
1866         if (protocol)
1867                 return -EPROTONOSUPPORT;
1868
1869         switch (sock->type) {
1870         case SOCK_DGRAM:
1871                 sock->ops = &vsock_dgram_ops;
1872                 break;
1873         case SOCK_STREAM:
1874                 sock->ops = &vsock_stream_ops;
1875                 break;
1876         default:
1877                 return -ESOCKTNOSUPPORT;
1878         }
1879
1880         sock->state = SS_UNCONNECTED;
1881
1882         return __vsock_create(net, sock, NULL, GFP_KERNEL, 0) ? 0 : -ENOMEM;
1883 }
1884
1885 static const struct net_proto_family vsock_family_ops = {
1886         .family = AF_VSOCK,
1887         .create = vsock_create,
1888         .owner = THIS_MODULE,
1889 };
1890
1891 static long vsock_dev_do_ioctl(struct file *filp,
1892                                unsigned int cmd, void __user *ptr)
1893 {
1894         u32 __user *p = ptr;
1895         int retval = 0;
1896
1897         switch (cmd) {
1898         case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1899                 if (put_user(transport->get_local_cid(), p) != 0)
1900                         retval = -EFAULT;
1901                 break;
1902
1903         default:
1904                 pr_err("Unknown ioctl %d\n", cmd);
1905                 retval = -EINVAL;
1906         }
1907
1908         return retval;
1909 }
1910
1911 static long vsock_dev_ioctl(struct file *filp,
1912                             unsigned int cmd, unsigned long arg)
1913 {
1914         return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1915 }
1916
1917 #ifdef CONFIG_COMPAT
1918 static long vsock_dev_compat_ioctl(struct file *filp,
1919                                    unsigned int cmd, unsigned long arg)
1920 {
1921         return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1922 }
1923 #endif
1924
1925 static const struct file_operations vsock_device_ops = {
1926         .owner          = THIS_MODULE,
1927         .unlocked_ioctl = vsock_dev_ioctl,
1928 #ifdef CONFIG_COMPAT
1929         .compat_ioctl   = vsock_dev_compat_ioctl,
1930 #endif
1931         .open           = nonseekable_open,
1932 };
1933
1934 static struct miscdevice vsock_device = {
1935         .name           = "vsock",
1936         .minor          = MISC_DYNAMIC_MINOR,
1937         .fops           = &vsock_device_ops,
1938 };
1939
1940 static int __vsock_core_init(void)
1941 {
1942         int err;
1943
1944         vsock_init_tables();
1945
1946         err = misc_register(&vsock_device);
1947         if (err) {
1948                 pr_err("Failed to register misc device\n");
1949                 return -ENOENT;
1950         }
1951
1952         err = proto_register(&vsock_proto, 1);  /* we want our slab */
1953         if (err) {
1954                 pr_err("Cannot register vsock protocol\n");
1955                 goto err_misc_deregister;
1956         }
1957
1958         err = sock_register(&vsock_family_ops);
1959         if (err) {
1960                 pr_err("could not register af_vsock (%d) address family: %d\n",
1961                        AF_VSOCK, err);
1962                 goto err_unregister_proto;
1963         }
1964
1965         return 0;
1966
1967 err_unregister_proto:
1968         proto_unregister(&vsock_proto);
1969 err_misc_deregister:
1970         misc_deregister(&vsock_device);
1971         return err;
1972 }
1973
1974 int vsock_core_init(const struct vsock_transport *t)
1975 {
1976         int retval = mutex_lock_interruptible(&vsock_register_mutex);
1977         if (retval)
1978                 return retval;
1979
1980         if (transport) {
1981                 retval = -EBUSY;
1982                 goto out;
1983         }
1984
1985         transport = t;
1986         retval = __vsock_core_init();
1987         if (retval)
1988                 transport = NULL;
1989
1990 out:
1991         mutex_unlock(&vsock_register_mutex);
1992         return retval;
1993 }
1994 EXPORT_SYMBOL_GPL(vsock_core_init);
1995
1996 void vsock_core_exit(void)
1997 {
1998         mutex_lock(&vsock_register_mutex);
1999
2000         misc_deregister(&vsock_device);
2001         sock_unregister(AF_VSOCK);
2002         proto_unregister(&vsock_proto);
2003
2004         /* We do not want the assignment below re-ordered. */
2005         mb();
2006         transport = NULL;
2007
2008         mutex_unlock(&vsock_register_mutex);
2009 }
2010 EXPORT_SYMBOL_GPL(vsock_core_exit);
2011
2012 MODULE_AUTHOR("VMware, Inc.");
2013 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2014 MODULE_VERSION(VSOCK_DRIVER_VERSION_STRING);
2015 MODULE_LICENSE("GPL v2");