]> Pileus Git - ~andy/linux/blob - net/sunrpc/cache.c
49115b107fbd78ab2ec67bbca8623ed5c8141ff9
[~andy/linux] / net / sunrpc / cache.c
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <linux/pagemap.h>
31 #include <linux/smp_lock.h>
32 #include <asm/ioctls.h>
33 #include <linux/sunrpc/types.h>
34 #include <linux/sunrpc/cache.h>
35 #include <linux/sunrpc/stats.h>
36 #include <linux/sunrpc/rpc_pipe_fs.h>
37 #include "netns.h"
38
39 #define  RPCDBG_FACILITY RPCDBG_CACHE
40
41 static void cache_defer_req(struct cache_req *req, struct cache_head *item);
42 static void cache_revisit_request(struct cache_head *item);
43
44 static void cache_init(struct cache_head *h)
45 {
46         time_t now = seconds_since_boot();
47         h->next = NULL;
48         h->flags = 0;
49         kref_init(&h->ref);
50         h->expiry_time = now + CACHE_NEW_EXPIRY;
51         h->last_refresh = now;
52 }
53
54 static inline int cache_is_expired(struct cache_detail *detail, struct cache_head *h)
55 {
56         return  (h->expiry_time < seconds_since_boot()) ||
57                 (detail->flush_time > h->last_refresh);
58 }
59
60 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
61                                        struct cache_head *key, int hash)
62 {
63         struct cache_head **head,  **hp;
64         struct cache_head *new = NULL, *freeme = NULL;
65
66         head = &detail->hash_table[hash];
67
68         read_lock(&detail->hash_lock);
69
70         for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
71                 struct cache_head *tmp = *hp;
72                 if (detail->match(tmp, key)) {
73                         if (cache_is_expired(detail, tmp))
74                                 /* This entry is expired, we will discard it. */
75                                 break;
76                         cache_get(tmp);
77                         read_unlock(&detail->hash_lock);
78                         return tmp;
79                 }
80         }
81         read_unlock(&detail->hash_lock);
82         /* Didn't find anything, insert an empty entry */
83
84         new = detail->alloc();
85         if (!new)
86                 return NULL;
87         /* must fully initialise 'new', else
88          * we might get lose if we need to
89          * cache_put it soon.
90          */
91         cache_init(new);
92         detail->init(new, key);
93
94         write_lock(&detail->hash_lock);
95
96         /* check if entry appeared while we slept */
97         for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
98                 struct cache_head *tmp = *hp;
99                 if (detail->match(tmp, key)) {
100                         if (cache_is_expired(detail, tmp)) {
101                                 *hp = tmp->next;
102                                 tmp->next = NULL;
103                                 detail->entries --;
104                                 freeme = tmp;
105                                 break;
106                         }
107                         cache_get(tmp);
108                         write_unlock(&detail->hash_lock);
109                         cache_put(new, detail);
110                         return tmp;
111                 }
112         }
113         new->next = *head;
114         *head = new;
115         detail->entries++;
116         cache_get(new);
117         write_unlock(&detail->hash_lock);
118
119         if (freeme)
120                 cache_put(freeme, detail);
121         return new;
122 }
123 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
124
125
126 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
127
128 static void cache_fresh_locked(struct cache_head *head, time_t expiry)
129 {
130         head->expiry_time = expiry;
131         head->last_refresh = seconds_since_boot();
132         set_bit(CACHE_VALID, &head->flags);
133 }
134
135 static void cache_fresh_unlocked(struct cache_head *head,
136                                  struct cache_detail *detail)
137 {
138         if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
139                 cache_revisit_request(head);
140                 cache_dequeue(detail, head);
141         }
142 }
143
144 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
145                                        struct cache_head *new, struct cache_head *old, int hash)
146 {
147         /* The 'old' entry is to be replaced by 'new'.
148          * If 'old' is not VALID, we update it directly,
149          * otherwise we need to replace it
150          */
151         struct cache_head **head;
152         struct cache_head *tmp;
153
154         if (!test_bit(CACHE_VALID, &old->flags)) {
155                 write_lock(&detail->hash_lock);
156                 if (!test_bit(CACHE_VALID, &old->flags)) {
157                         if (test_bit(CACHE_NEGATIVE, &new->flags))
158                                 set_bit(CACHE_NEGATIVE, &old->flags);
159                         else
160                                 detail->update(old, new);
161                         cache_fresh_locked(old, new->expiry_time);
162                         write_unlock(&detail->hash_lock);
163                         cache_fresh_unlocked(old, detail);
164                         return old;
165                 }
166                 write_unlock(&detail->hash_lock);
167         }
168         /* We need to insert a new entry */
169         tmp = detail->alloc();
170         if (!tmp) {
171                 cache_put(old, detail);
172                 return NULL;
173         }
174         cache_init(tmp);
175         detail->init(tmp, old);
176         head = &detail->hash_table[hash];
177
178         write_lock(&detail->hash_lock);
179         if (test_bit(CACHE_NEGATIVE, &new->flags))
180                 set_bit(CACHE_NEGATIVE, &tmp->flags);
181         else
182                 detail->update(tmp, new);
183         tmp->next = *head;
184         *head = tmp;
185         detail->entries++;
186         cache_get(tmp);
187         cache_fresh_locked(tmp, new->expiry_time);
188         cache_fresh_locked(old, 0);
189         write_unlock(&detail->hash_lock);
190         cache_fresh_unlocked(tmp, detail);
191         cache_fresh_unlocked(old, detail);
192         cache_put(old, detail);
193         return tmp;
194 }
195 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
196
197 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
198 {
199         if (!cd->cache_upcall)
200                 return -EINVAL;
201         return cd->cache_upcall(cd, h);
202 }
203
204 static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h)
205 {
206         if (!test_bit(CACHE_VALID, &h->flags))
207                 return -EAGAIN;
208         else {
209                 /* entry is valid */
210                 if (test_bit(CACHE_NEGATIVE, &h->flags))
211                         return -ENOENT;
212                 else
213                         return 0;
214         }
215 }
216
217 /*
218  * This is the generic cache management routine for all
219  * the authentication caches.
220  * It checks the currency of a cache item and will (later)
221  * initiate an upcall to fill it if needed.
222  *
223  *
224  * Returns 0 if the cache_head can be used, or cache_puts it and returns
225  * -EAGAIN if upcall is pending and request has been queued
226  * -ETIMEDOUT if upcall failed or request could not be queue or
227  *           upcall completed but item is still invalid (implying that
228  *           the cache item has been replaced with a newer one).
229  * -ENOENT if cache entry was negative
230  */
231 int cache_check(struct cache_detail *detail,
232                     struct cache_head *h, struct cache_req *rqstp)
233 {
234         int rv;
235         long refresh_age, age;
236
237         /* First decide return status as best we can */
238         rv = cache_is_valid(detail, h);
239
240         /* now see if we want to start an upcall */
241         refresh_age = (h->expiry_time - h->last_refresh);
242         age = seconds_since_boot() - h->last_refresh;
243
244         if (rqstp == NULL) {
245                 if (rv == -EAGAIN)
246                         rv = -ENOENT;
247         } else if (rv == -EAGAIN || age > refresh_age/2) {
248                 dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
249                                 refresh_age, age);
250                 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
251                         switch (cache_make_upcall(detail, h)) {
252                         case -EINVAL:
253                                 clear_bit(CACHE_PENDING, &h->flags);
254                                 cache_revisit_request(h);
255                                 if (rv == -EAGAIN) {
256                                         set_bit(CACHE_NEGATIVE, &h->flags);
257                                         cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY);
258                                         cache_fresh_unlocked(h, detail);
259                                         rv = -ENOENT;
260                                 }
261                                 break;
262
263                         case -EAGAIN:
264                                 clear_bit(CACHE_PENDING, &h->flags);
265                                 cache_revisit_request(h);
266                                 break;
267                         }
268                 }
269         }
270
271         if (rv == -EAGAIN) {
272                 cache_defer_req(rqstp, h);
273                 if (!test_bit(CACHE_PENDING, &h->flags)) {
274                         /* Request is not deferred */
275                         rv = cache_is_valid(detail, h);
276                         if (rv == -EAGAIN)
277                                 rv = -ETIMEDOUT;
278                 }
279         }
280         if (rv)
281                 cache_put(h, detail);
282         return rv;
283 }
284 EXPORT_SYMBOL_GPL(cache_check);
285
286 /*
287  * caches need to be periodically cleaned.
288  * For this we maintain a list of cache_detail and
289  * a current pointer into that list and into the table
290  * for that entry.
291  *
292  * Each time clean_cache is called it finds the next non-empty entry
293  * in the current table and walks the list in that entry
294  * looking for entries that can be removed.
295  *
296  * An entry gets removed if:
297  * - The expiry is before current time
298  * - The last_refresh time is before the flush_time for that cache
299  *
300  * later we might drop old entries with non-NEVER expiry if that table
301  * is getting 'full' for some definition of 'full'
302  *
303  * The question of "how often to scan a table" is an interesting one
304  * and is answered in part by the use of the "nextcheck" field in the
305  * cache_detail.
306  * When a scan of a table begins, the nextcheck field is set to a time
307  * that is well into the future.
308  * While scanning, if an expiry time is found that is earlier than the
309  * current nextcheck time, nextcheck is set to that expiry time.
310  * If the flush_time is ever set to a time earlier than the nextcheck
311  * time, the nextcheck time is then set to that flush_time.
312  *
313  * A table is then only scanned if the current time is at least
314  * the nextcheck time.
315  *
316  */
317
318 static LIST_HEAD(cache_list);
319 static DEFINE_SPINLOCK(cache_list_lock);
320 static struct cache_detail *current_detail;
321 static int current_index;
322
323 static void do_cache_clean(struct work_struct *work);
324 static struct delayed_work cache_cleaner;
325
326 static void sunrpc_init_cache_detail(struct cache_detail *cd)
327 {
328         rwlock_init(&cd->hash_lock);
329         INIT_LIST_HEAD(&cd->queue);
330         spin_lock(&cache_list_lock);
331         cd->nextcheck = 0;
332         cd->entries = 0;
333         atomic_set(&cd->readers, 0);
334         cd->last_close = 0;
335         cd->last_warn = -1;
336         list_add(&cd->others, &cache_list);
337         spin_unlock(&cache_list_lock);
338
339         /* start the cleaning process */
340         schedule_delayed_work(&cache_cleaner, 0);
341 }
342
343 static void sunrpc_destroy_cache_detail(struct cache_detail *cd)
344 {
345         cache_purge(cd);
346         spin_lock(&cache_list_lock);
347         write_lock(&cd->hash_lock);
348         if (cd->entries || atomic_read(&cd->inuse)) {
349                 write_unlock(&cd->hash_lock);
350                 spin_unlock(&cache_list_lock);
351                 goto out;
352         }
353         if (current_detail == cd)
354                 current_detail = NULL;
355         list_del_init(&cd->others);
356         write_unlock(&cd->hash_lock);
357         spin_unlock(&cache_list_lock);
358         if (list_empty(&cache_list)) {
359                 /* module must be being unloaded so its safe to kill the worker */
360                 cancel_delayed_work_sync(&cache_cleaner);
361         }
362         return;
363 out:
364         printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
365 }
366
367 /* clean cache tries to find something to clean
368  * and cleans it.
369  * It returns 1 if it cleaned something,
370  *            0 if it didn't find anything this time
371  *           -1 if it fell off the end of the list.
372  */
373 static int cache_clean(void)
374 {
375         int rv = 0;
376         struct list_head *next;
377
378         spin_lock(&cache_list_lock);
379
380         /* find a suitable table if we don't already have one */
381         while (current_detail == NULL ||
382             current_index >= current_detail->hash_size) {
383                 if (current_detail)
384                         next = current_detail->others.next;
385                 else
386                         next = cache_list.next;
387                 if (next == &cache_list) {
388                         current_detail = NULL;
389                         spin_unlock(&cache_list_lock);
390                         return -1;
391                 }
392                 current_detail = list_entry(next, struct cache_detail, others);
393                 if (current_detail->nextcheck > seconds_since_boot())
394                         current_index = current_detail->hash_size;
395                 else {
396                         current_index = 0;
397                         current_detail->nextcheck = seconds_since_boot()+30*60;
398                 }
399         }
400
401         /* find a non-empty bucket in the table */
402         while (current_detail &&
403                current_index < current_detail->hash_size &&
404                current_detail->hash_table[current_index] == NULL)
405                 current_index++;
406
407         /* find a cleanable entry in the bucket and clean it, or set to next bucket */
408
409         if (current_detail && current_index < current_detail->hash_size) {
410                 struct cache_head *ch, **cp;
411                 struct cache_detail *d;
412
413                 write_lock(&current_detail->hash_lock);
414
415                 /* Ok, now to clean this strand */
416
417                 cp = & current_detail->hash_table[current_index];
418                 for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) {
419                         if (current_detail->nextcheck > ch->expiry_time)
420                                 current_detail->nextcheck = ch->expiry_time+1;
421                         if (!cache_is_expired(current_detail, ch))
422                                 continue;
423
424                         *cp = ch->next;
425                         ch->next = NULL;
426                         current_detail->entries--;
427                         rv = 1;
428                         break;
429                 }
430
431                 write_unlock(&current_detail->hash_lock);
432                 d = current_detail;
433                 if (!ch)
434                         current_index ++;
435                 spin_unlock(&cache_list_lock);
436                 if (ch) {
437                         if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
438                                 cache_dequeue(current_detail, ch);
439                         cache_revisit_request(ch);
440                         cache_put(ch, d);
441                 }
442         } else
443                 spin_unlock(&cache_list_lock);
444
445         return rv;
446 }
447
448 /*
449  * We want to regularly clean the cache, so we need to schedule some work ...
450  */
451 static void do_cache_clean(struct work_struct *work)
452 {
453         int delay = 5;
454         if (cache_clean() == -1)
455                 delay = round_jiffies_relative(30*HZ);
456
457         if (list_empty(&cache_list))
458                 delay = 0;
459
460         if (delay)
461                 schedule_delayed_work(&cache_cleaner, delay);
462 }
463
464
465 /*
466  * Clean all caches promptly.  This just calls cache_clean
467  * repeatedly until we are sure that every cache has had a chance to
468  * be fully cleaned
469  */
470 void cache_flush(void)
471 {
472         while (cache_clean() != -1)
473                 cond_resched();
474         while (cache_clean() != -1)
475                 cond_resched();
476 }
477 EXPORT_SYMBOL_GPL(cache_flush);
478
479 void cache_purge(struct cache_detail *detail)
480 {
481         detail->flush_time = LONG_MAX;
482         detail->nextcheck = seconds_since_boot();
483         cache_flush();
484         detail->flush_time = 1;
485 }
486 EXPORT_SYMBOL_GPL(cache_purge);
487
488
489 /*
490  * Deferral and Revisiting of Requests.
491  *
492  * If a cache lookup finds a pending entry, we
493  * need to defer the request and revisit it later.
494  * All deferred requests are stored in a hash table,
495  * indexed by "struct cache_head *".
496  * As it may be wasteful to store a whole request
497  * structure, we allow the request to provide a
498  * deferred form, which must contain a
499  * 'struct cache_deferred_req'
500  * This cache_deferred_req contains a method to allow
501  * it to be revisited when cache info is available
502  */
503
504 #define DFR_HASHSIZE    (PAGE_SIZE/sizeof(struct list_head))
505 #define DFR_HASH(item)  ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
506
507 #define DFR_MAX 300     /* ??? */
508
509 static DEFINE_SPINLOCK(cache_defer_lock);
510 static LIST_HEAD(cache_defer_list);
511 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
512 static int cache_defer_cnt;
513
514 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
515 {
516         list_del_init(&dreq->recent);
517         hlist_del_init(&dreq->hash);
518         cache_defer_cnt--;
519 }
520
521 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
522 {
523         int hash = DFR_HASH(item);
524
525         list_add(&dreq->recent, &cache_defer_list);
526         hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
527 }
528
529 static void setup_deferral(struct cache_deferred_req *dreq, struct cache_head *item)
530 {
531         struct cache_deferred_req *discard;
532
533         dreq->item = item;
534
535         spin_lock(&cache_defer_lock);
536
537         __hash_deferred_req(dreq, item);
538
539         /* it is in, now maybe clean up */
540         discard = NULL;
541         if (++cache_defer_cnt > DFR_MAX) {
542                 discard = list_entry(cache_defer_list.prev,
543                                      struct cache_deferred_req, recent);
544                 __unhash_deferred_req(discard);
545         }
546         spin_unlock(&cache_defer_lock);
547
548         if (discard)
549                 /* there was one too many */
550                 discard->revisit(discard, 1);
551 }
552
553 struct thread_deferred_req {
554         struct cache_deferred_req handle;
555         struct completion completion;
556 };
557
558 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
559 {
560         struct thread_deferred_req *dr =
561                 container_of(dreq, struct thread_deferred_req, handle);
562         complete(&dr->completion);
563 }
564
565 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
566 {
567         struct thread_deferred_req sleeper;
568         struct cache_deferred_req *dreq = &sleeper.handle;
569
570         sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
571         dreq->revisit = cache_restart_thread;
572
573         setup_deferral(dreq, item);
574
575         if (!test_bit(CACHE_PENDING, &item->flags) ||
576             wait_for_completion_interruptible_timeout(
577                     &sleeper.completion, req->thread_wait) <= 0) {
578                 /* The completion wasn't completed, so we need
579                  * to clean up
580                  */
581                 spin_lock(&cache_defer_lock);
582                 if (!hlist_unhashed(&sleeper.handle.hash)) {
583                         __unhash_deferred_req(&sleeper.handle);
584                         spin_unlock(&cache_defer_lock);
585                 } else {
586                         /* cache_revisit_request already removed
587                          * this from the hash table, but hasn't
588                          * called ->revisit yet.  It will very soon
589                          * and we need to wait for it.
590                          */
591                         spin_unlock(&cache_defer_lock);
592                         wait_for_completion(&sleeper.completion);
593                 }
594         }
595 }
596
597 static void cache_defer_req(struct cache_req *req, struct cache_head *item)
598 {
599         struct cache_deferred_req *dreq;
600
601         if (cache_defer_cnt >= DFR_MAX)
602                 /* too much in the cache, randomly drop this one,
603                  * or continue and drop the oldest
604                  */
605                 if (net_random()&1)
606                         return;
607
608
609         if (req->thread_wait) {
610                 cache_wait_req(req, item);
611                 if (!test_bit(CACHE_PENDING, &item->flags))
612                         return;
613         }
614         dreq = req->defer(req);
615         if (dreq == NULL)
616                 return;
617         setup_deferral(dreq, item);
618         if (!test_bit(CACHE_PENDING, &item->flags))
619                 /* Bit could have been cleared before we managed to
620                  * set up the deferral, so need to revisit just in case
621                  */
622                 cache_revisit_request(item);
623 }
624
625 static void cache_revisit_request(struct cache_head *item)
626 {
627         struct cache_deferred_req *dreq;
628         struct list_head pending;
629         struct hlist_node *lp, *tmp;
630         int hash = DFR_HASH(item);
631
632         INIT_LIST_HEAD(&pending);
633         spin_lock(&cache_defer_lock);
634
635         hlist_for_each_entry_safe(dreq, lp, tmp, &cache_defer_hash[hash], hash)
636                 if (dreq->item == item) {
637                         __unhash_deferred_req(dreq);
638                         list_add(&dreq->recent, &pending);
639                 }
640
641         spin_unlock(&cache_defer_lock);
642
643         while (!list_empty(&pending)) {
644                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
645                 list_del_init(&dreq->recent);
646                 dreq->revisit(dreq, 0);
647         }
648 }
649
650 void cache_clean_deferred(void *owner)
651 {
652         struct cache_deferred_req *dreq, *tmp;
653         struct list_head pending;
654
655
656         INIT_LIST_HEAD(&pending);
657         spin_lock(&cache_defer_lock);
658
659         list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
660                 if (dreq->owner == owner) {
661                         __unhash_deferred_req(dreq);
662                         list_add(&dreq->recent, &pending);
663                 }
664         }
665         spin_unlock(&cache_defer_lock);
666
667         while (!list_empty(&pending)) {
668                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
669                 list_del_init(&dreq->recent);
670                 dreq->revisit(dreq, 1);
671         }
672 }
673
674 /*
675  * communicate with user-space
676  *
677  * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
678  * On read, you get a full request, or block.
679  * On write, an update request is processed.
680  * Poll works if anything to read, and always allows write.
681  *
682  * Implemented by linked list of requests.  Each open file has
683  * a ->private that also exists in this list.  New requests are added
684  * to the end and may wakeup and preceding readers.
685  * New readers are added to the head.  If, on read, an item is found with
686  * CACHE_UPCALLING clear, we free it from the list.
687  *
688  */
689
690 static DEFINE_SPINLOCK(queue_lock);
691 static DEFINE_MUTEX(queue_io_mutex);
692
693 struct cache_queue {
694         struct list_head        list;
695         int                     reader; /* if 0, then request */
696 };
697 struct cache_request {
698         struct cache_queue      q;
699         struct cache_head       *item;
700         char                    * buf;
701         int                     len;
702         int                     readers;
703 };
704 struct cache_reader {
705         struct cache_queue      q;
706         int                     offset; /* if non-0, we have a refcnt on next request */
707 };
708
709 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
710                           loff_t *ppos, struct cache_detail *cd)
711 {
712         struct cache_reader *rp = filp->private_data;
713         struct cache_request *rq;
714         struct inode *inode = filp->f_path.dentry->d_inode;
715         int err;
716
717         if (count == 0)
718                 return 0;
719
720         mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
721                               * readers on this file */
722  again:
723         spin_lock(&queue_lock);
724         /* need to find next request */
725         while (rp->q.list.next != &cd->queue &&
726                list_entry(rp->q.list.next, struct cache_queue, list)
727                ->reader) {
728                 struct list_head *next = rp->q.list.next;
729                 list_move(&rp->q.list, next);
730         }
731         if (rp->q.list.next == &cd->queue) {
732                 spin_unlock(&queue_lock);
733                 mutex_unlock(&inode->i_mutex);
734                 BUG_ON(rp->offset);
735                 return 0;
736         }
737         rq = container_of(rp->q.list.next, struct cache_request, q.list);
738         BUG_ON(rq->q.reader);
739         if (rp->offset == 0)
740                 rq->readers++;
741         spin_unlock(&queue_lock);
742
743         if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
744                 err = -EAGAIN;
745                 spin_lock(&queue_lock);
746                 list_move(&rp->q.list, &rq->q.list);
747                 spin_unlock(&queue_lock);
748         } else {
749                 if (rp->offset + count > rq->len)
750                         count = rq->len - rp->offset;
751                 err = -EFAULT;
752                 if (copy_to_user(buf, rq->buf + rp->offset, count))
753                         goto out;
754                 rp->offset += count;
755                 if (rp->offset >= rq->len) {
756                         rp->offset = 0;
757                         spin_lock(&queue_lock);
758                         list_move(&rp->q.list, &rq->q.list);
759                         spin_unlock(&queue_lock);
760                 }
761                 err = 0;
762         }
763  out:
764         if (rp->offset == 0) {
765                 /* need to release rq */
766                 spin_lock(&queue_lock);
767                 rq->readers--;
768                 if (rq->readers == 0 &&
769                     !test_bit(CACHE_PENDING, &rq->item->flags)) {
770                         list_del(&rq->q.list);
771                         spin_unlock(&queue_lock);
772                         cache_put(rq->item, cd);
773                         kfree(rq->buf);
774                         kfree(rq);
775                 } else
776                         spin_unlock(&queue_lock);
777         }
778         if (err == -EAGAIN)
779                 goto again;
780         mutex_unlock(&inode->i_mutex);
781         return err ? err :  count;
782 }
783
784 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
785                                  size_t count, struct cache_detail *cd)
786 {
787         ssize_t ret;
788
789         if (copy_from_user(kaddr, buf, count))
790                 return -EFAULT;
791         kaddr[count] = '\0';
792         ret = cd->cache_parse(cd, kaddr, count);
793         if (!ret)
794                 ret = count;
795         return ret;
796 }
797
798 static ssize_t cache_slow_downcall(const char __user *buf,
799                                    size_t count, struct cache_detail *cd)
800 {
801         static char write_buf[8192]; /* protected by queue_io_mutex */
802         ssize_t ret = -EINVAL;
803
804         if (count >= sizeof(write_buf))
805                 goto out;
806         mutex_lock(&queue_io_mutex);
807         ret = cache_do_downcall(write_buf, buf, count, cd);
808         mutex_unlock(&queue_io_mutex);
809 out:
810         return ret;
811 }
812
813 static ssize_t cache_downcall(struct address_space *mapping,
814                               const char __user *buf,
815                               size_t count, struct cache_detail *cd)
816 {
817         struct page *page;
818         char *kaddr;
819         ssize_t ret = -ENOMEM;
820
821         if (count >= PAGE_CACHE_SIZE)
822                 goto out_slow;
823
824         page = find_or_create_page(mapping, 0, GFP_KERNEL);
825         if (!page)
826                 goto out_slow;
827
828         kaddr = kmap(page);
829         ret = cache_do_downcall(kaddr, buf, count, cd);
830         kunmap(page);
831         unlock_page(page);
832         page_cache_release(page);
833         return ret;
834 out_slow:
835         return cache_slow_downcall(buf, count, cd);
836 }
837
838 static ssize_t cache_write(struct file *filp, const char __user *buf,
839                            size_t count, loff_t *ppos,
840                            struct cache_detail *cd)
841 {
842         struct address_space *mapping = filp->f_mapping;
843         struct inode *inode = filp->f_path.dentry->d_inode;
844         ssize_t ret = -EINVAL;
845
846         if (!cd->cache_parse)
847                 goto out;
848
849         mutex_lock(&inode->i_mutex);
850         ret = cache_downcall(mapping, buf, count, cd);
851         mutex_unlock(&inode->i_mutex);
852 out:
853         return ret;
854 }
855
856 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
857
858 static unsigned int cache_poll(struct file *filp, poll_table *wait,
859                                struct cache_detail *cd)
860 {
861         unsigned int mask;
862         struct cache_reader *rp = filp->private_data;
863         struct cache_queue *cq;
864
865         poll_wait(filp, &queue_wait, wait);
866
867         /* alway allow write */
868         mask = POLL_OUT | POLLWRNORM;
869
870         if (!rp)
871                 return mask;
872
873         spin_lock(&queue_lock);
874
875         for (cq= &rp->q; &cq->list != &cd->queue;
876              cq = list_entry(cq->list.next, struct cache_queue, list))
877                 if (!cq->reader) {
878                         mask |= POLLIN | POLLRDNORM;
879                         break;
880                 }
881         spin_unlock(&queue_lock);
882         return mask;
883 }
884
885 static int cache_ioctl(struct inode *ino, struct file *filp,
886                        unsigned int cmd, unsigned long arg,
887                        struct cache_detail *cd)
888 {
889         int len = 0;
890         struct cache_reader *rp = filp->private_data;
891         struct cache_queue *cq;
892
893         if (cmd != FIONREAD || !rp)
894                 return -EINVAL;
895
896         spin_lock(&queue_lock);
897
898         /* only find the length remaining in current request,
899          * or the length of the next request
900          */
901         for (cq= &rp->q; &cq->list != &cd->queue;
902              cq = list_entry(cq->list.next, struct cache_queue, list))
903                 if (!cq->reader) {
904                         struct cache_request *cr =
905                                 container_of(cq, struct cache_request, q);
906                         len = cr->len - rp->offset;
907                         break;
908                 }
909         spin_unlock(&queue_lock);
910
911         return put_user(len, (int __user *)arg);
912 }
913
914 static int cache_open(struct inode *inode, struct file *filp,
915                       struct cache_detail *cd)
916 {
917         struct cache_reader *rp = NULL;
918
919         if (!cd || !try_module_get(cd->owner))
920                 return -EACCES;
921         nonseekable_open(inode, filp);
922         if (filp->f_mode & FMODE_READ) {
923                 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
924                 if (!rp)
925                         return -ENOMEM;
926                 rp->offset = 0;
927                 rp->q.reader = 1;
928                 atomic_inc(&cd->readers);
929                 spin_lock(&queue_lock);
930                 list_add(&rp->q.list, &cd->queue);
931                 spin_unlock(&queue_lock);
932         }
933         filp->private_data = rp;
934         return 0;
935 }
936
937 static int cache_release(struct inode *inode, struct file *filp,
938                          struct cache_detail *cd)
939 {
940         struct cache_reader *rp = filp->private_data;
941
942         if (rp) {
943                 spin_lock(&queue_lock);
944                 if (rp->offset) {
945                         struct cache_queue *cq;
946                         for (cq= &rp->q; &cq->list != &cd->queue;
947                              cq = list_entry(cq->list.next, struct cache_queue, list))
948                                 if (!cq->reader) {
949                                         container_of(cq, struct cache_request, q)
950                                                 ->readers--;
951                                         break;
952                                 }
953                         rp->offset = 0;
954                 }
955                 list_del(&rp->q.list);
956                 spin_unlock(&queue_lock);
957
958                 filp->private_data = NULL;
959                 kfree(rp);
960
961                 cd->last_close = seconds_since_boot();
962                 atomic_dec(&cd->readers);
963         }
964         module_put(cd->owner);
965         return 0;
966 }
967
968
969
970 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
971 {
972         struct cache_queue *cq;
973         spin_lock(&queue_lock);
974         list_for_each_entry(cq, &detail->queue, list)
975                 if (!cq->reader) {
976                         struct cache_request *cr = container_of(cq, struct cache_request, q);
977                         if (cr->item != ch)
978                                 continue;
979                         if (cr->readers != 0)
980                                 continue;
981                         list_del(&cr->q.list);
982                         spin_unlock(&queue_lock);
983                         cache_put(cr->item, detail);
984                         kfree(cr->buf);
985                         kfree(cr);
986                         return;
987                 }
988         spin_unlock(&queue_lock);
989 }
990
991 /*
992  * Support routines for text-based upcalls.
993  * Fields are separated by spaces.
994  * Fields are either mangled to quote space tab newline slosh with slosh
995  * or a hexified with a leading \x
996  * Record is terminated with newline.
997  *
998  */
999
1000 void qword_add(char **bpp, int *lp, char *str)
1001 {
1002         char *bp = *bpp;
1003         int len = *lp;
1004         char c;
1005
1006         if (len < 0) return;
1007
1008         while ((c=*str++) && len)
1009                 switch(c) {
1010                 case ' ':
1011                 case '\t':
1012                 case '\n':
1013                 case '\\':
1014                         if (len >= 4) {
1015                                 *bp++ = '\\';
1016                                 *bp++ = '0' + ((c & 0300)>>6);
1017                                 *bp++ = '0' + ((c & 0070)>>3);
1018                                 *bp++ = '0' + ((c & 0007)>>0);
1019                         }
1020                         len -= 4;
1021                         break;
1022                 default:
1023                         *bp++ = c;
1024                         len--;
1025                 }
1026         if (c || len <1) len = -1;
1027         else {
1028                 *bp++ = ' ';
1029                 len--;
1030         }
1031         *bpp = bp;
1032         *lp = len;
1033 }
1034 EXPORT_SYMBOL_GPL(qword_add);
1035
1036 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1037 {
1038         char *bp = *bpp;
1039         int len = *lp;
1040
1041         if (len < 0) return;
1042
1043         if (len > 2) {
1044                 *bp++ = '\\';
1045                 *bp++ = 'x';
1046                 len -= 2;
1047                 while (blen && len >= 2) {
1048                         unsigned char c = *buf++;
1049                         *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
1050                         *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
1051                         len -= 2;
1052                         blen--;
1053                 }
1054         }
1055         if (blen || len<1) len = -1;
1056         else {
1057                 *bp++ = ' ';
1058                 len--;
1059         }
1060         *bpp = bp;
1061         *lp = len;
1062 }
1063 EXPORT_SYMBOL_GPL(qword_addhex);
1064
1065 static void warn_no_listener(struct cache_detail *detail)
1066 {
1067         if (detail->last_warn != detail->last_close) {
1068                 detail->last_warn = detail->last_close;
1069                 if (detail->warn_no_listener)
1070                         detail->warn_no_listener(detail, detail->last_close != 0);
1071         }
1072 }
1073
1074 static bool cache_listeners_exist(struct cache_detail *detail)
1075 {
1076         if (atomic_read(&detail->readers))
1077                 return true;
1078         if (detail->last_close == 0)
1079                 /* This cache was never opened */
1080                 return false;
1081         if (detail->last_close < seconds_since_boot() - 30)
1082                 /*
1083                  * We allow for the possibility that someone might
1084                  * restart a userspace daemon without restarting the
1085                  * server; but after 30 seconds, we give up.
1086                  */
1087                  return false;
1088         return true;
1089 }
1090
1091 /*
1092  * register an upcall request to user-space and queue it up for read() by the
1093  * upcall daemon.
1094  *
1095  * Each request is at most one page long.
1096  */
1097 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h,
1098                 void (*cache_request)(struct cache_detail *,
1099                                       struct cache_head *,
1100                                       char **,
1101                                       int *))
1102 {
1103
1104         char *buf;
1105         struct cache_request *crq;
1106         char *bp;
1107         int len;
1108
1109         if (!cache_listeners_exist(detail)) {
1110                 warn_no_listener(detail);
1111                 return -EINVAL;
1112         }
1113
1114         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1115         if (!buf)
1116                 return -EAGAIN;
1117
1118         crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1119         if (!crq) {
1120                 kfree(buf);
1121                 return -EAGAIN;
1122         }
1123
1124         bp = buf; len = PAGE_SIZE;
1125
1126         cache_request(detail, h, &bp, &len);
1127
1128         if (len < 0) {
1129                 kfree(buf);
1130                 kfree(crq);
1131                 return -EAGAIN;
1132         }
1133         crq->q.reader = 0;
1134         crq->item = cache_get(h);
1135         crq->buf = buf;
1136         crq->len = PAGE_SIZE - len;
1137         crq->readers = 0;
1138         spin_lock(&queue_lock);
1139         list_add_tail(&crq->q.list, &detail->queue);
1140         spin_unlock(&queue_lock);
1141         wake_up(&queue_wait);
1142         return 0;
1143 }
1144 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1145
1146 /*
1147  * parse a message from user-space and pass it
1148  * to an appropriate cache
1149  * Messages are, like requests, separated into fields by
1150  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1151  *
1152  * Message is
1153  *   reply cachename expiry key ... content....
1154  *
1155  * key and content are both parsed by cache
1156  */
1157
1158 #define isodigit(c) (isdigit(c) && c <= '7')
1159 int qword_get(char **bpp, char *dest, int bufsize)
1160 {
1161         /* return bytes copied, or -1 on error */
1162         char *bp = *bpp;
1163         int len = 0;
1164
1165         while (*bp == ' ') bp++;
1166
1167         if (bp[0] == '\\' && bp[1] == 'x') {
1168                 /* HEX STRING */
1169                 bp += 2;
1170                 while (len < bufsize) {
1171                         int h, l;
1172
1173                         h = hex_to_bin(bp[0]);
1174                         if (h < 0)
1175                                 break;
1176
1177                         l = hex_to_bin(bp[1]);
1178                         if (l < 0)
1179                                 break;
1180
1181                         *dest++ = (h << 4) | l;
1182                         bp += 2;
1183                         len++;
1184                 }
1185         } else {
1186                 /* text with \nnn octal quoting */
1187                 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1188                         if (*bp == '\\' &&
1189                             isodigit(bp[1]) && (bp[1] <= '3') &&
1190                             isodigit(bp[2]) &&
1191                             isodigit(bp[3])) {
1192                                 int byte = (*++bp -'0');
1193                                 bp++;
1194                                 byte = (byte << 3) | (*bp++ - '0');
1195                                 byte = (byte << 3) | (*bp++ - '0');
1196                                 *dest++ = byte;
1197                                 len++;
1198                         } else {
1199                                 *dest++ = *bp++;
1200                                 len++;
1201                         }
1202                 }
1203         }
1204
1205         if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1206                 return -1;
1207         while (*bp == ' ') bp++;
1208         *bpp = bp;
1209         *dest = '\0';
1210         return len;
1211 }
1212 EXPORT_SYMBOL_GPL(qword_get);
1213
1214
1215 /*
1216  * support /proc/sunrpc/cache/$CACHENAME/content
1217  * as a seqfile.
1218  * We call ->cache_show passing NULL for the item to
1219  * get a header, then pass each real item in the cache
1220  */
1221
1222 struct handle {
1223         struct cache_detail *cd;
1224 };
1225
1226 static void *c_start(struct seq_file *m, loff_t *pos)
1227         __acquires(cd->hash_lock)
1228 {
1229         loff_t n = *pos;
1230         unsigned hash, entry;
1231         struct cache_head *ch;
1232         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1233
1234
1235         read_lock(&cd->hash_lock);
1236         if (!n--)
1237                 return SEQ_START_TOKEN;
1238         hash = n >> 32;
1239         entry = n & ((1LL<<32) - 1);
1240
1241         for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1242                 if (!entry--)
1243                         return ch;
1244         n &= ~((1LL<<32) - 1);
1245         do {
1246                 hash++;
1247                 n += 1LL<<32;
1248         } while(hash < cd->hash_size &&
1249                 cd->hash_table[hash]==NULL);
1250         if (hash >= cd->hash_size)
1251                 return NULL;
1252         *pos = n+1;
1253         return cd->hash_table[hash];
1254 }
1255
1256 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1257 {
1258         struct cache_head *ch = p;
1259         int hash = (*pos >> 32);
1260         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1261
1262         if (p == SEQ_START_TOKEN)
1263                 hash = 0;
1264         else if (ch->next == NULL) {
1265                 hash++;
1266                 *pos += 1LL<<32;
1267         } else {
1268                 ++*pos;
1269                 return ch->next;
1270         }
1271         *pos &= ~((1LL<<32) - 1);
1272         while (hash < cd->hash_size &&
1273                cd->hash_table[hash] == NULL) {
1274                 hash++;
1275                 *pos += 1LL<<32;
1276         }
1277         if (hash >= cd->hash_size)
1278                 return NULL;
1279         ++*pos;
1280         return cd->hash_table[hash];
1281 }
1282
1283 static void c_stop(struct seq_file *m, void *p)
1284         __releases(cd->hash_lock)
1285 {
1286         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1287         read_unlock(&cd->hash_lock);
1288 }
1289
1290 static int c_show(struct seq_file *m, void *p)
1291 {
1292         struct cache_head *cp = p;
1293         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1294
1295         if (p == SEQ_START_TOKEN)
1296                 return cd->cache_show(m, cd, NULL);
1297
1298         ifdebug(CACHE)
1299                 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1300                            convert_to_wallclock(cp->expiry_time),
1301                            atomic_read(&cp->ref.refcount), cp->flags);
1302         cache_get(cp);
1303         if (cache_check(cd, cp, NULL))
1304                 /* cache_check does a cache_put on failure */
1305                 seq_printf(m, "# ");
1306         else
1307                 cache_put(cp, cd);
1308
1309         return cd->cache_show(m, cd, cp);
1310 }
1311
1312 static const struct seq_operations cache_content_op = {
1313         .start  = c_start,
1314         .next   = c_next,
1315         .stop   = c_stop,
1316         .show   = c_show,
1317 };
1318
1319 static int content_open(struct inode *inode, struct file *file,
1320                         struct cache_detail *cd)
1321 {
1322         struct handle *han;
1323
1324         if (!cd || !try_module_get(cd->owner))
1325                 return -EACCES;
1326         han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1327         if (han == NULL) {
1328                 module_put(cd->owner);
1329                 return -ENOMEM;
1330         }
1331
1332         han->cd = cd;
1333         return 0;
1334 }
1335
1336 static int content_release(struct inode *inode, struct file *file,
1337                 struct cache_detail *cd)
1338 {
1339         int ret = seq_release_private(inode, file);
1340         module_put(cd->owner);
1341         return ret;
1342 }
1343
1344 static int open_flush(struct inode *inode, struct file *file,
1345                         struct cache_detail *cd)
1346 {
1347         if (!cd || !try_module_get(cd->owner))
1348                 return -EACCES;
1349         return nonseekable_open(inode, file);
1350 }
1351
1352 static int release_flush(struct inode *inode, struct file *file,
1353                         struct cache_detail *cd)
1354 {
1355         module_put(cd->owner);
1356         return 0;
1357 }
1358
1359 static ssize_t read_flush(struct file *file, char __user *buf,
1360                           size_t count, loff_t *ppos,
1361                           struct cache_detail *cd)
1362 {
1363         char tbuf[20];
1364         unsigned long p = *ppos;
1365         size_t len;
1366
1367         sprintf(tbuf, "%lu\n", convert_to_wallclock(cd->flush_time));
1368         len = strlen(tbuf);
1369         if (p >= len)
1370                 return 0;
1371         len -= p;
1372         if (len > count)
1373                 len = count;
1374         if (copy_to_user(buf, (void*)(tbuf+p), len))
1375                 return -EFAULT;
1376         *ppos += len;
1377         return len;
1378 }
1379
1380 static ssize_t write_flush(struct file *file, const char __user *buf,
1381                            size_t count, loff_t *ppos,
1382                            struct cache_detail *cd)
1383 {
1384         char tbuf[20];
1385         char *bp, *ep;
1386
1387         if (*ppos || count > sizeof(tbuf)-1)
1388                 return -EINVAL;
1389         if (copy_from_user(tbuf, buf, count))
1390                 return -EFAULT;
1391         tbuf[count] = 0;
1392         simple_strtoul(tbuf, &ep, 0);
1393         if (*ep && *ep != '\n')
1394                 return -EINVAL;
1395
1396         bp = tbuf;
1397         cd->flush_time = get_expiry(&bp);
1398         cd->nextcheck = seconds_since_boot();
1399         cache_flush();
1400
1401         *ppos += count;
1402         return count;
1403 }
1404
1405 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1406                                  size_t count, loff_t *ppos)
1407 {
1408         struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1409
1410         return cache_read(filp, buf, count, ppos, cd);
1411 }
1412
1413 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1414                                   size_t count, loff_t *ppos)
1415 {
1416         struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1417
1418         return cache_write(filp, buf, count, ppos, cd);
1419 }
1420
1421 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1422 {
1423         struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1424
1425         return cache_poll(filp, wait, cd);
1426 }
1427
1428 static long cache_ioctl_procfs(struct file *filp,
1429                                unsigned int cmd, unsigned long arg)
1430 {
1431         long ret;
1432         struct inode *inode = filp->f_path.dentry->d_inode;
1433         struct cache_detail *cd = PDE(inode)->data;
1434
1435         lock_kernel();
1436         ret = cache_ioctl(inode, filp, cmd, arg, cd);
1437         unlock_kernel();
1438
1439         return ret;
1440 }
1441
1442 static int cache_open_procfs(struct inode *inode, struct file *filp)
1443 {
1444         struct cache_detail *cd = PDE(inode)->data;
1445
1446         return cache_open(inode, filp, cd);
1447 }
1448
1449 static int cache_release_procfs(struct inode *inode, struct file *filp)
1450 {
1451         struct cache_detail *cd = PDE(inode)->data;
1452
1453         return cache_release(inode, filp, cd);
1454 }
1455
1456 static const struct file_operations cache_file_operations_procfs = {
1457         .owner          = THIS_MODULE,
1458         .llseek         = no_llseek,
1459         .read           = cache_read_procfs,
1460         .write          = cache_write_procfs,
1461         .poll           = cache_poll_procfs,
1462         .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */
1463         .open           = cache_open_procfs,
1464         .release        = cache_release_procfs,
1465 };
1466
1467 static int content_open_procfs(struct inode *inode, struct file *filp)
1468 {
1469         struct cache_detail *cd = PDE(inode)->data;
1470
1471         return content_open(inode, filp, cd);
1472 }
1473
1474 static int content_release_procfs(struct inode *inode, struct file *filp)
1475 {
1476         struct cache_detail *cd = PDE(inode)->data;
1477
1478         return content_release(inode, filp, cd);
1479 }
1480
1481 static const struct file_operations content_file_operations_procfs = {
1482         .open           = content_open_procfs,
1483         .read           = seq_read,
1484         .llseek         = seq_lseek,
1485         .release        = content_release_procfs,
1486 };
1487
1488 static int open_flush_procfs(struct inode *inode, struct file *filp)
1489 {
1490         struct cache_detail *cd = PDE(inode)->data;
1491
1492         return open_flush(inode, filp, cd);
1493 }
1494
1495 static int release_flush_procfs(struct inode *inode, struct file *filp)
1496 {
1497         struct cache_detail *cd = PDE(inode)->data;
1498
1499         return release_flush(inode, filp, cd);
1500 }
1501
1502 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1503                             size_t count, loff_t *ppos)
1504 {
1505         struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1506
1507         return read_flush(filp, buf, count, ppos, cd);
1508 }
1509
1510 static ssize_t write_flush_procfs(struct file *filp,
1511                                   const char __user *buf,
1512                                   size_t count, loff_t *ppos)
1513 {
1514         struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1515
1516         return write_flush(filp, buf, count, ppos, cd);
1517 }
1518
1519 static const struct file_operations cache_flush_operations_procfs = {
1520         .open           = open_flush_procfs,
1521         .read           = read_flush_procfs,
1522         .write          = write_flush_procfs,
1523         .release        = release_flush_procfs,
1524 };
1525
1526 static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net)
1527 {
1528         struct sunrpc_net *sn;
1529
1530         if (cd->u.procfs.proc_ent == NULL)
1531                 return;
1532         if (cd->u.procfs.flush_ent)
1533                 remove_proc_entry("flush", cd->u.procfs.proc_ent);
1534         if (cd->u.procfs.channel_ent)
1535                 remove_proc_entry("channel", cd->u.procfs.proc_ent);
1536         if (cd->u.procfs.content_ent)
1537                 remove_proc_entry("content", cd->u.procfs.proc_ent);
1538         cd->u.procfs.proc_ent = NULL;
1539         sn = net_generic(net, sunrpc_net_id);
1540         remove_proc_entry(cd->name, sn->proc_net_rpc);
1541 }
1542
1543 #ifdef CONFIG_PROC_FS
1544 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1545 {
1546         struct proc_dir_entry *p;
1547         struct sunrpc_net *sn;
1548
1549         sn = net_generic(net, sunrpc_net_id);
1550         cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc);
1551         if (cd->u.procfs.proc_ent == NULL)
1552                 goto out_nomem;
1553         cd->u.procfs.channel_ent = NULL;
1554         cd->u.procfs.content_ent = NULL;
1555
1556         p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1557                              cd->u.procfs.proc_ent,
1558                              &cache_flush_operations_procfs, cd);
1559         cd->u.procfs.flush_ent = p;
1560         if (p == NULL)
1561                 goto out_nomem;
1562
1563         if (cd->cache_upcall || cd->cache_parse) {
1564                 p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1565                                      cd->u.procfs.proc_ent,
1566                                      &cache_file_operations_procfs, cd);
1567                 cd->u.procfs.channel_ent = p;
1568                 if (p == NULL)
1569                         goto out_nomem;
1570         }
1571         if (cd->cache_show) {
1572                 p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR,
1573                                 cd->u.procfs.proc_ent,
1574                                 &content_file_operations_procfs, cd);
1575                 cd->u.procfs.content_ent = p;
1576                 if (p == NULL)
1577                         goto out_nomem;
1578         }
1579         return 0;
1580 out_nomem:
1581         remove_cache_proc_entries(cd, net);
1582         return -ENOMEM;
1583 }
1584 #else /* CONFIG_PROC_FS */
1585 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1586 {
1587         return 0;
1588 }
1589 #endif
1590
1591 void __init cache_initialize(void)
1592 {
1593         INIT_DELAYED_WORK_DEFERRABLE(&cache_cleaner, do_cache_clean);
1594 }
1595
1596 int cache_register_net(struct cache_detail *cd, struct net *net)
1597 {
1598         int ret;
1599
1600         sunrpc_init_cache_detail(cd);
1601         ret = create_cache_proc_entries(cd, net);
1602         if (ret)
1603                 sunrpc_destroy_cache_detail(cd);
1604         return ret;
1605 }
1606
1607 int cache_register(struct cache_detail *cd)
1608 {
1609         return cache_register_net(cd, &init_net);
1610 }
1611 EXPORT_SYMBOL_GPL(cache_register);
1612
1613 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1614 {
1615         remove_cache_proc_entries(cd, net);
1616         sunrpc_destroy_cache_detail(cd);
1617 }
1618
1619 void cache_unregister(struct cache_detail *cd)
1620 {
1621         cache_unregister_net(cd, &init_net);
1622 }
1623 EXPORT_SYMBOL_GPL(cache_unregister);
1624
1625 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1626                                  size_t count, loff_t *ppos)
1627 {
1628         struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1629
1630         return cache_read(filp, buf, count, ppos, cd);
1631 }
1632
1633 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1634                                   size_t count, loff_t *ppos)
1635 {
1636         struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1637
1638         return cache_write(filp, buf, count, ppos, cd);
1639 }
1640
1641 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1642 {
1643         struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1644
1645         return cache_poll(filp, wait, cd);
1646 }
1647
1648 static long cache_ioctl_pipefs(struct file *filp,
1649                               unsigned int cmd, unsigned long arg)
1650 {
1651         struct inode *inode = filp->f_dentry->d_inode;
1652         struct cache_detail *cd = RPC_I(inode)->private;
1653         long ret;
1654
1655         lock_kernel();
1656         ret = cache_ioctl(inode, filp, cmd, arg, cd);
1657         unlock_kernel();
1658
1659         return ret;
1660 }
1661
1662 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1663 {
1664         struct cache_detail *cd = RPC_I(inode)->private;
1665
1666         return cache_open(inode, filp, cd);
1667 }
1668
1669 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1670 {
1671         struct cache_detail *cd = RPC_I(inode)->private;
1672
1673         return cache_release(inode, filp, cd);
1674 }
1675
1676 const struct file_operations cache_file_operations_pipefs = {
1677         .owner          = THIS_MODULE,
1678         .llseek         = no_llseek,
1679         .read           = cache_read_pipefs,
1680         .write          = cache_write_pipefs,
1681         .poll           = cache_poll_pipefs,
1682         .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */
1683         .open           = cache_open_pipefs,
1684         .release        = cache_release_pipefs,
1685 };
1686
1687 static int content_open_pipefs(struct inode *inode, struct file *filp)
1688 {
1689         struct cache_detail *cd = RPC_I(inode)->private;
1690
1691         return content_open(inode, filp, cd);
1692 }
1693
1694 static int content_release_pipefs(struct inode *inode, struct file *filp)
1695 {
1696         struct cache_detail *cd = RPC_I(inode)->private;
1697
1698         return content_release(inode, filp, cd);
1699 }
1700
1701 const struct file_operations content_file_operations_pipefs = {
1702         .open           = content_open_pipefs,
1703         .read           = seq_read,
1704         .llseek         = seq_lseek,
1705         .release        = content_release_pipefs,
1706 };
1707
1708 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1709 {
1710         struct cache_detail *cd = RPC_I(inode)->private;
1711
1712         return open_flush(inode, filp, cd);
1713 }
1714
1715 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1716 {
1717         struct cache_detail *cd = RPC_I(inode)->private;
1718
1719         return release_flush(inode, filp, cd);
1720 }
1721
1722 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1723                             size_t count, loff_t *ppos)
1724 {
1725         struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1726
1727         return read_flush(filp, buf, count, ppos, cd);
1728 }
1729
1730 static ssize_t write_flush_pipefs(struct file *filp,
1731                                   const char __user *buf,
1732                                   size_t count, loff_t *ppos)
1733 {
1734         struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1735
1736         return write_flush(filp, buf, count, ppos, cd);
1737 }
1738
1739 const struct file_operations cache_flush_operations_pipefs = {
1740         .open           = open_flush_pipefs,
1741         .read           = read_flush_pipefs,
1742         .write          = write_flush_pipefs,
1743         .release        = release_flush_pipefs,
1744 };
1745
1746 int sunrpc_cache_register_pipefs(struct dentry *parent,
1747                                  const char *name, mode_t umode,
1748                                  struct cache_detail *cd)
1749 {
1750         struct qstr q;
1751         struct dentry *dir;
1752         int ret = 0;
1753
1754         sunrpc_init_cache_detail(cd);
1755         q.name = name;
1756         q.len = strlen(name);
1757         q.hash = full_name_hash(q.name, q.len);
1758         dir = rpc_create_cache_dir(parent, &q, umode, cd);
1759         if (!IS_ERR(dir))
1760                 cd->u.pipefs.dir = dir;
1761         else {
1762                 sunrpc_destroy_cache_detail(cd);
1763                 ret = PTR_ERR(dir);
1764         }
1765         return ret;
1766 }
1767 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1768
1769 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1770 {
1771         rpc_remove_cache_dir(cd->u.pipefs.dir);
1772         cd->u.pipefs.dir = NULL;
1773         sunrpc_destroy_cache_detail(cd);
1774 }
1775 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1776