]> Pileus Git - ~andy/linux/blob - net/sched/sch_fq.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[~andy/linux] / net / sched / sch_fq.c
1 /*
2  * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
3  *
4  *  Copyright (C) 2013 Eric Dumazet <edumazet@google.com>
5  *
6  *      This program is free software; you can redistribute it and/or
7  *      modify it under the terms of the GNU General Public License
8  *      as published by the Free Software Foundation; either version
9  *      2 of the License, or (at your option) any later version.
10  *
11  *  Meant to be mostly used for localy generated traffic :
12  *  Fast classification depends on skb->sk being set before reaching us.
13  *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
14  *  All packets belonging to a socket are considered as a 'flow'.
15  *
16  *  Flows are dynamically allocated and stored in a hash table of RB trees
17  *  They are also part of one Round Robin 'queues' (new or old flows)
18  *
19  *  Burst avoidance (aka pacing) capability :
20  *
21  *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
22  *  bunch of packets, and this packet scheduler adds delay between
23  *  packets to respect rate limitation.
24  *
25  *  enqueue() :
26  *   - lookup one RB tree (out of 1024 or more) to find the flow.
27  *     If non existent flow, create it, add it to the tree.
28  *     Add skb to the per flow list of skb (fifo).
29  *   - Use a special fifo for high prio packets
30  *
31  *  dequeue() : serves flows in Round Robin
32  *  Note : When a flow becomes empty, we do not immediately remove it from
33  *  rb trees, for performance reasons (its expected to send additional packets,
34  *  or SLAB cache will reuse socket for another flow)
35  */
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/jiffies.h>
41 #include <linux/string.h>
42 #include <linux/in.h>
43 #include <linux/errno.h>
44 #include <linux/init.h>
45 #include <linux/skbuff.h>
46 #include <linux/slab.h>
47 #include <linux/rbtree.h>
48 #include <linux/hash.h>
49 #include <linux/prefetch.h>
50 #include <net/netlink.h>
51 #include <net/pkt_sched.h>
52 #include <net/sock.h>
53 #include <net/tcp_states.h>
54
55 /*
56  * Per flow structure, dynamically allocated
57  */
58 struct fq_flow {
59         struct sk_buff  *head;          /* list of skbs for this flow : first skb */
60         union {
61                 struct sk_buff *tail;   /* last skb in the list */
62                 unsigned long  age;     /* jiffies when flow was emptied, for gc */
63         };
64         struct rb_node  fq_node;        /* anchor in fq_root[] trees */
65         struct sock     *sk;
66         int             qlen;           /* number of packets in flow queue */
67         int             credit;
68         u32             socket_hash;    /* sk_hash */
69         struct fq_flow *next;           /* next pointer in RR lists, or &detached */
70
71         struct rb_node  rate_node;      /* anchor in q->delayed tree */
72         u64             time_next_packet;
73 };
74
75 struct fq_flow_head {
76         struct fq_flow *first;
77         struct fq_flow *last;
78 };
79
80 struct fq_sched_data {
81         struct fq_flow_head new_flows;
82
83         struct fq_flow_head old_flows;
84
85         struct rb_root  delayed;        /* for rate limited flows */
86         u64             time_next_delayed_flow;
87
88         struct fq_flow  internal;       /* for non classified or high prio packets */
89         u32             quantum;
90         u32             initial_quantum;
91         u32             flow_default_rate;/* rate per flow : bytes per second */
92         u32             flow_max_rate;  /* optional max rate per flow */
93         u32             flow_plimit;    /* max packets per flow */
94         struct rb_root  *fq_root;
95         u8              rate_enable;
96         u8              fq_trees_log;
97
98         u32             flows;
99         u32             inactive_flows;
100         u32             throttled_flows;
101
102         u64             stat_gc_flows;
103         u64             stat_internal_packets;
104         u64             stat_tcp_retrans;
105         u64             stat_throttled;
106         u64             stat_flows_plimit;
107         u64             stat_pkts_too_long;
108         u64             stat_allocation_errors;
109         struct qdisc_watchdog watchdog;
110 };
111
112 /* special value to mark a detached flow (not on old/new list) */
113 static struct fq_flow detached, throttled;
114
115 static void fq_flow_set_detached(struct fq_flow *f)
116 {
117         f->next = &detached;
118 }
119
120 static bool fq_flow_is_detached(const struct fq_flow *f)
121 {
122         return f->next == &detached;
123 }
124
125 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
126 {
127         struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
128
129         while (*p) {
130                 struct fq_flow *aux;
131
132                 parent = *p;
133                 aux = container_of(parent, struct fq_flow, rate_node);
134                 if (f->time_next_packet >= aux->time_next_packet)
135                         p = &parent->rb_right;
136                 else
137                         p = &parent->rb_left;
138         }
139         rb_link_node(&f->rate_node, parent, p);
140         rb_insert_color(&f->rate_node, &q->delayed);
141         q->throttled_flows++;
142         q->stat_throttled++;
143
144         f->next = &throttled;
145         if (q->time_next_delayed_flow > f->time_next_packet)
146                 q->time_next_delayed_flow = f->time_next_packet;
147 }
148
149
150 static struct kmem_cache *fq_flow_cachep __read_mostly;
151
152 static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
153 {
154         if (head->first)
155                 head->last->next = flow;
156         else
157                 head->first = flow;
158         head->last = flow;
159         flow->next = NULL;
160 }
161
162 /* limit number of collected flows per round */
163 #define FQ_GC_MAX 8
164 #define FQ_GC_AGE (3*HZ)
165
166 static bool fq_gc_candidate(const struct fq_flow *f)
167 {
168         return fq_flow_is_detached(f) &&
169                time_after(jiffies, f->age + FQ_GC_AGE);
170 }
171
172 static void fq_gc(struct fq_sched_data *q,
173                   struct rb_root *root,
174                   struct sock *sk)
175 {
176         struct fq_flow *f, *tofree[FQ_GC_MAX];
177         struct rb_node **p, *parent;
178         int fcnt = 0;
179
180         p = &root->rb_node;
181         parent = NULL;
182         while (*p) {
183                 parent = *p;
184
185                 f = container_of(parent, struct fq_flow, fq_node);
186                 if (f->sk == sk)
187                         break;
188
189                 if (fq_gc_candidate(f)) {
190                         tofree[fcnt++] = f;
191                         if (fcnt == FQ_GC_MAX)
192                                 break;
193                 }
194
195                 if (f->sk > sk)
196                         p = &parent->rb_right;
197                 else
198                         p = &parent->rb_left;
199         }
200
201         q->flows -= fcnt;
202         q->inactive_flows -= fcnt;
203         q->stat_gc_flows += fcnt;
204         while (fcnt) {
205                 struct fq_flow *f = tofree[--fcnt];
206
207                 rb_erase(&f->fq_node, root);
208                 kmem_cache_free(fq_flow_cachep, f);
209         }
210 }
211
212 static const u8 prio2band[TC_PRIO_MAX + 1] = {
213         1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1
214 };
215
216 static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
217 {
218         struct rb_node **p, *parent;
219         struct sock *sk = skb->sk;
220         struct rb_root *root;
221         struct fq_flow *f;
222         int band;
223
224         /* warning: no starvation prevention... */
225         band = prio2band[skb->priority & TC_PRIO_MAX];
226         if (unlikely(band == 0))
227                 return &q->internal;
228
229         if (unlikely(!sk)) {
230                 /* By forcing low order bit to 1, we make sure to not
231                  * collide with a local flow (socket pointers are word aligned)
232                  */
233                 sk = (struct sock *)(skb_get_rxhash(skb) | 1L);
234         }
235
236         root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)];
237
238         if (q->flows >= (2U << q->fq_trees_log) &&
239             q->inactive_flows > q->flows/2)
240                 fq_gc(q, root, sk);
241
242         p = &root->rb_node;
243         parent = NULL;
244         while (*p) {
245                 parent = *p;
246
247                 f = container_of(parent, struct fq_flow, fq_node);
248                 if (f->sk == sk) {
249                         /* socket might have been reallocated, so check
250                          * if its sk_hash is the same.
251                          * It not, we need to refill credit with
252                          * initial quantum
253                          */
254                         if (unlikely(skb->sk &&
255                                      f->socket_hash != sk->sk_hash)) {
256                                 f->credit = q->initial_quantum;
257                                 f->socket_hash = sk->sk_hash;
258                         }
259                         return f;
260                 }
261                 if (f->sk > sk)
262                         p = &parent->rb_right;
263                 else
264                         p = &parent->rb_left;
265         }
266
267         f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
268         if (unlikely(!f)) {
269                 q->stat_allocation_errors++;
270                 return &q->internal;
271         }
272         fq_flow_set_detached(f);
273         f->sk = sk;
274         if (skb->sk)
275                 f->socket_hash = sk->sk_hash;
276         f->credit = q->initial_quantum;
277
278         rb_link_node(&f->fq_node, parent, p);
279         rb_insert_color(&f->fq_node, root);
280
281         q->flows++;
282         q->inactive_flows++;
283         return f;
284 }
285
286
287 /* remove one skb from head of flow queue */
288 static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
289 {
290         struct sk_buff *skb = flow->head;
291
292         if (skb) {
293                 flow->head = skb->next;
294                 skb->next = NULL;
295                 flow->qlen--;
296                 sch->qstats.backlog -= qdisc_pkt_len(skb);
297                 sch->q.qlen--;
298         }
299         return skb;
300 }
301
302 /* We might add in the future detection of retransmits
303  * For the time being, just return false
304  */
305 static bool skb_is_retransmit(struct sk_buff *skb)
306 {
307         return false;
308 }
309
310 /* add skb to flow queue
311  * flow queue is a linked list, kind of FIFO, except for TCP retransmits
312  * We special case tcp retransmits to be transmitted before other packets.
313  * We rely on fact that TCP retransmits are unlikely, so we do not waste
314  * a separate queue or a pointer.
315  * head->  [retrans pkt 1]
316  *         [retrans pkt 2]
317  *         [ normal pkt 1]
318  *         [ normal pkt 2]
319  *         [ normal pkt 3]
320  * tail->  [ normal pkt 4]
321  */
322 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
323 {
324         struct sk_buff *prev, *head = flow->head;
325
326         skb->next = NULL;
327         if (!head) {
328                 flow->head = skb;
329                 flow->tail = skb;
330                 return;
331         }
332         if (likely(!skb_is_retransmit(skb))) {
333                 flow->tail->next = skb;
334                 flow->tail = skb;
335                 return;
336         }
337
338         /* This skb is a tcp retransmit,
339          * find the last retrans packet in the queue
340          */
341         prev = NULL;
342         while (skb_is_retransmit(head)) {
343                 prev = head;
344                 head = head->next;
345                 if (!head)
346                         break;
347         }
348         if (!prev) { /* no rtx packet in queue, become the new head */
349                 skb->next = flow->head;
350                 flow->head = skb;
351         } else {
352                 if (prev == flow->tail)
353                         flow->tail = skb;
354                 else
355                         skb->next = prev->next;
356                 prev->next = skb;
357         }
358 }
359
360 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
361 {
362         struct fq_sched_data *q = qdisc_priv(sch);
363         struct fq_flow *f;
364
365         if (unlikely(sch->q.qlen >= sch->limit))
366                 return qdisc_drop(skb, sch);
367
368         f = fq_classify(skb, q);
369         if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
370                 q->stat_flows_plimit++;
371                 return qdisc_drop(skb, sch);
372         }
373
374         f->qlen++;
375         flow_queue_add(f, skb);
376         if (skb_is_retransmit(skb))
377                 q->stat_tcp_retrans++;
378         sch->qstats.backlog += qdisc_pkt_len(skb);
379         if (fq_flow_is_detached(f)) {
380                 fq_flow_add_tail(&q->new_flows, f);
381                 if (q->quantum > f->credit)
382                         f->credit = q->quantum;
383                 q->inactive_flows--;
384                 qdisc_unthrottled(sch);
385         }
386         if (unlikely(f == &q->internal)) {
387                 q->stat_internal_packets++;
388                 qdisc_unthrottled(sch);
389         }
390         sch->q.qlen++;
391
392         return NET_XMIT_SUCCESS;
393 }
394
395 static void fq_check_throttled(struct fq_sched_data *q, u64 now)
396 {
397         struct rb_node *p;
398
399         if (q->time_next_delayed_flow > now)
400                 return;
401
402         q->time_next_delayed_flow = ~0ULL;
403         while ((p = rb_first(&q->delayed)) != NULL) {
404                 struct fq_flow *f = container_of(p, struct fq_flow, rate_node);
405
406                 if (f->time_next_packet > now) {
407                         q->time_next_delayed_flow = f->time_next_packet;
408                         break;
409                 }
410                 rb_erase(p, &q->delayed);
411                 q->throttled_flows--;
412                 fq_flow_add_tail(&q->old_flows, f);
413         }
414 }
415
416 static struct sk_buff *fq_dequeue(struct Qdisc *sch)
417 {
418         struct fq_sched_data *q = qdisc_priv(sch);
419         u64 now = ktime_to_ns(ktime_get());
420         struct fq_flow_head *head;
421         struct sk_buff *skb;
422         struct fq_flow *f;
423         u32 rate;
424
425         skb = fq_dequeue_head(sch, &q->internal);
426         if (skb)
427                 goto out;
428         fq_check_throttled(q, now);
429 begin:
430         head = &q->new_flows;
431         if (!head->first) {
432                 head = &q->old_flows;
433                 if (!head->first) {
434                         if (q->time_next_delayed_flow != ~0ULL)
435                                 qdisc_watchdog_schedule_ns(&q->watchdog,
436                                                            q->time_next_delayed_flow);
437                         return NULL;
438                 }
439         }
440         f = head->first;
441
442         if (f->credit <= 0) {
443                 f->credit += q->quantum;
444                 head->first = f->next;
445                 fq_flow_add_tail(&q->old_flows, f);
446                 goto begin;
447         }
448
449         if (unlikely(f->head && now < f->time_next_packet)) {
450                 head->first = f->next;
451                 fq_flow_set_throttled(q, f);
452                 goto begin;
453         }
454
455         skb = fq_dequeue_head(sch, f);
456         if (!skb) {
457                 head->first = f->next;
458                 /* force a pass through old_flows to prevent starvation */
459                 if ((head == &q->new_flows) && q->old_flows.first) {
460                         fq_flow_add_tail(&q->old_flows, f);
461                 } else {
462                         fq_flow_set_detached(f);
463                         f->age = jiffies;
464                         q->inactive_flows++;
465                 }
466                 goto begin;
467         }
468         prefetch(&skb->end);
469         f->time_next_packet = now;
470         f->credit -= qdisc_pkt_len(skb);
471
472         if (f->credit > 0 || !q->rate_enable)
473                 goto out;
474
475         if (skb->sk && skb->sk->sk_state != TCP_TIME_WAIT) {
476                 rate = skb->sk->sk_pacing_rate ?: q->flow_default_rate;
477
478                 rate = min(rate, q->flow_max_rate);
479         } else {
480                 rate = q->flow_max_rate;
481                 if (rate == ~0U)
482                         goto out;
483         }
484         if (rate) {
485                 u32 plen = max(qdisc_pkt_len(skb), q->quantum);
486                 u64 len = (u64)plen * NSEC_PER_SEC;
487
488                 do_div(len, rate);
489                 /* Since socket rate can change later,
490                  * clamp the delay to 125 ms.
491                  * TODO: maybe segment the too big skb, as in commit
492                  * e43ac79a4bc ("sch_tbf: segment too big GSO packets")
493                  */
494                 if (unlikely(len > 125 * NSEC_PER_MSEC)) {
495                         len = 125 * NSEC_PER_MSEC;
496                         q->stat_pkts_too_long++;
497                 }
498
499                 f->time_next_packet = now + len;
500         }
501 out:
502         qdisc_bstats_update(sch, skb);
503         qdisc_unthrottled(sch);
504         return skb;
505 }
506
507 static void fq_reset(struct Qdisc *sch)
508 {
509         struct fq_sched_data *q = qdisc_priv(sch);
510         struct rb_root *root;
511         struct sk_buff *skb;
512         struct rb_node *p;
513         struct fq_flow *f;
514         unsigned int idx;
515
516         while ((skb = fq_dequeue_head(sch, &q->internal)) != NULL)
517                 kfree_skb(skb);
518
519         if (!q->fq_root)
520                 return;
521
522         for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
523                 root = &q->fq_root[idx];
524                 while ((p = rb_first(root)) != NULL) {
525                         f = container_of(p, struct fq_flow, fq_node);
526                         rb_erase(p, root);
527
528                         while ((skb = fq_dequeue_head(sch, f)) != NULL)
529                                 kfree_skb(skb);
530
531                         kmem_cache_free(fq_flow_cachep, f);
532                 }
533         }
534         q->new_flows.first      = NULL;
535         q->old_flows.first      = NULL;
536         q->delayed              = RB_ROOT;
537         q->flows                = 0;
538         q->inactive_flows       = 0;
539         q->throttled_flows      = 0;
540 }
541
542 static void fq_rehash(struct fq_sched_data *q,
543                       struct rb_root *old_array, u32 old_log,
544                       struct rb_root *new_array, u32 new_log)
545 {
546         struct rb_node *op, **np, *parent;
547         struct rb_root *oroot, *nroot;
548         struct fq_flow *of, *nf;
549         int fcnt = 0;
550         u32 idx;
551
552         for (idx = 0; idx < (1U << old_log); idx++) {
553                 oroot = &old_array[idx];
554                 while ((op = rb_first(oroot)) != NULL) {
555                         rb_erase(op, oroot);
556                         of = container_of(op, struct fq_flow, fq_node);
557                         if (fq_gc_candidate(of)) {
558                                 fcnt++;
559                                 kmem_cache_free(fq_flow_cachep, of);
560                                 continue;
561                         }
562                         nroot = &new_array[hash_32((u32)(long)of->sk, new_log)];
563
564                         np = &nroot->rb_node;
565                         parent = NULL;
566                         while (*np) {
567                                 parent = *np;
568
569                                 nf = container_of(parent, struct fq_flow, fq_node);
570                                 BUG_ON(nf->sk == of->sk);
571
572                                 if (nf->sk > of->sk)
573                                         np = &parent->rb_right;
574                                 else
575                                         np = &parent->rb_left;
576                         }
577
578                         rb_link_node(&of->fq_node, parent, np);
579                         rb_insert_color(&of->fq_node, nroot);
580                 }
581         }
582         q->flows -= fcnt;
583         q->inactive_flows -= fcnt;
584         q->stat_gc_flows += fcnt;
585 }
586
587 static int fq_resize(struct fq_sched_data *q, u32 log)
588 {
589         struct rb_root *array;
590         u32 idx;
591
592         if (q->fq_root && log == q->fq_trees_log)
593                 return 0;
594
595         array = kmalloc(sizeof(struct rb_root) << log, GFP_KERNEL);
596         if (!array)
597                 return -ENOMEM;
598
599         for (idx = 0; idx < (1U << log); idx++)
600                 array[idx] = RB_ROOT;
601
602         if (q->fq_root) {
603                 fq_rehash(q, q->fq_root, q->fq_trees_log, array, log);
604                 kfree(q->fq_root);
605         }
606         q->fq_root = array;
607         q->fq_trees_log = log;
608
609         return 0;
610 }
611
612 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
613         [TCA_FQ_PLIMIT]                 = { .type = NLA_U32 },
614         [TCA_FQ_FLOW_PLIMIT]            = { .type = NLA_U32 },
615         [TCA_FQ_QUANTUM]                = { .type = NLA_U32 },
616         [TCA_FQ_INITIAL_QUANTUM]        = { .type = NLA_U32 },
617         [TCA_FQ_RATE_ENABLE]            = { .type = NLA_U32 },
618         [TCA_FQ_FLOW_DEFAULT_RATE]      = { .type = NLA_U32 },
619         [TCA_FQ_FLOW_MAX_RATE]          = { .type = NLA_U32 },
620         [TCA_FQ_BUCKETS_LOG]            = { .type = NLA_U32 },
621 };
622
623 static int fq_change(struct Qdisc *sch, struct nlattr *opt)
624 {
625         struct fq_sched_data *q = qdisc_priv(sch);
626         struct nlattr *tb[TCA_FQ_MAX + 1];
627         int err, drop_count = 0;
628         u32 fq_log;
629
630         if (!opt)
631                 return -EINVAL;
632
633         err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy);
634         if (err < 0)
635                 return err;
636
637         sch_tree_lock(sch);
638
639         fq_log = q->fq_trees_log;
640
641         if (tb[TCA_FQ_BUCKETS_LOG]) {
642                 u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
643
644                 if (nval >= 1 && nval <= ilog2(256*1024))
645                         fq_log = nval;
646                 else
647                         err = -EINVAL;
648         }
649         if (tb[TCA_FQ_PLIMIT])
650                 sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
651
652         if (tb[TCA_FQ_FLOW_PLIMIT])
653                 q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
654
655         if (tb[TCA_FQ_QUANTUM])
656                 q->quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
657
658         if (tb[TCA_FQ_INITIAL_QUANTUM])
659                 q->quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
660
661         if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
662                 q->flow_default_rate = nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]);
663
664         if (tb[TCA_FQ_FLOW_MAX_RATE])
665                 q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
666
667         if (tb[TCA_FQ_RATE_ENABLE]) {
668                 u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
669
670                 if (enable <= 1)
671                         q->rate_enable = enable;
672                 else
673                         err = -EINVAL;
674         }
675
676         if (!err)
677                 err = fq_resize(q, fq_log);
678
679         while (sch->q.qlen > sch->limit) {
680                 struct sk_buff *skb = fq_dequeue(sch);
681
682                 if (!skb)
683                         break;
684                 kfree_skb(skb);
685                 drop_count++;
686         }
687         qdisc_tree_decrease_qlen(sch, drop_count);
688
689         sch_tree_unlock(sch);
690         return err;
691 }
692
693 static void fq_destroy(struct Qdisc *sch)
694 {
695         struct fq_sched_data *q = qdisc_priv(sch);
696
697         fq_reset(sch);
698         kfree(q->fq_root);
699         qdisc_watchdog_cancel(&q->watchdog);
700 }
701
702 static int fq_init(struct Qdisc *sch, struct nlattr *opt)
703 {
704         struct fq_sched_data *q = qdisc_priv(sch);
705         int err;
706
707         sch->limit              = 10000;
708         q->flow_plimit          = 100;
709         q->quantum              = 2 * psched_mtu(qdisc_dev(sch));
710         q->initial_quantum      = 10 * psched_mtu(qdisc_dev(sch));
711         q->flow_default_rate    = 0;
712         q->flow_max_rate        = ~0U;
713         q->rate_enable          = 1;
714         q->new_flows.first      = NULL;
715         q->old_flows.first      = NULL;
716         q->delayed              = RB_ROOT;
717         q->fq_root              = NULL;
718         q->fq_trees_log         = ilog2(1024);
719         qdisc_watchdog_init(&q->watchdog, sch);
720
721         if (opt)
722                 err = fq_change(sch, opt);
723         else
724                 err = fq_resize(q, q->fq_trees_log);
725
726         return err;
727 }
728
729 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
730 {
731         struct fq_sched_data *q = qdisc_priv(sch);
732         struct nlattr *opts;
733
734         opts = nla_nest_start(skb, TCA_OPTIONS);
735         if (opts == NULL)
736                 goto nla_put_failure;
737
738         if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
739             nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
740             nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
741             nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
742             nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
743             nla_put_u32(skb, TCA_FQ_FLOW_DEFAULT_RATE, q->flow_default_rate) ||
744             nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
745             nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
746                 goto nla_put_failure;
747
748         nla_nest_end(skb, opts);
749         return skb->len;
750
751 nla_put_failure:
752         return -1;
753 }
754
755 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
756 {
757         struct fq_sched_data *q = qdisc_priv(sch);
758         u64 now = ktime_to_ns(ktime_get());
759         struct tc_fq_qd_stats st = {
760                 .gc_flows               = q->stat_gc_flows,
761                 .highprio_packets       = q->stat_internal_packets,
762                 .tcp_retrans            = q->stat_tcp_retrans,
763                 .throttled              = q->stat_throttled,
764                 .flows_plimit           = q->stat_flows_plimit,
765                 .pkts_too_long          = q->stat_pkts_too_long,
766                 .allocation_errors      = q->stat_allocation_errors,
767                 .flows                  = q->flows,
768                 .inactive_flows         = q->inactive_flows,
769                 .throttled_flows        = q->throttled_flows,
770                 .time_next_delayed_flow = q->time_next_delayed_flow - now,
771         };
772
773         return gnet_stats_copy_app(d, &st, sizeof(st));
774 }
775
776 static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
777         .id             =       "fq",
778         .priv_size      =       sizeof(struct fq_sched_data),
779
780         .enqueue        =       fq_enqueue,
781         .dequeue        =       fq_dequeue,
782         .peek           =       qdisc_peek_dequeued,
783         .init           =       fq_init,
784         .reset          =       fq_reset,
785         .destroy        =       fq_destroy,
786         .change         =       fq_change,
787         .dump           =       fq_dump,
788         .dump_stats     =       fq_dump_stats,
789         .owner          =       THIS_MODULE,
790 };
791
792 static int __init fq_module_init(void)
793 {
794         int ret;
795
796         fq_flow_cachep = kmem_cache_create("fq_flow_cache",
797                                            sizeof(struct fq_flow),
798                                            0, 0, NULL);
799         if (!fq_flow_cachep)
800                 return -ENOMEM;
801
802         ret = register_qdisc(&fq_qdisc_ops);
803         if (ret)
804                 kmem_cache_destroy(fq_flow_cachep);
805         return ret;
806 }
807
808 static void __exit fq_module_exit(void)
809 {
810         unregister_qdisc(&fq_qdisc_ops);
811         kmem_cache_destroy(fq_flow_cachep);
812 }
813
814 module_init(fq_module_init)
815 module_exit(fq_module_exit)
816 MODULE_AUTHOR("Eric Dumazet");
817 MODULE_LICENSE("GPL");