]> Pileus Git - ~andy/linux/blob - net/openvswitch/flow.c
Merge branch 'master' into for-next
[~andy/linux] / net / openvswitch / flow.c
1 /*
2  * Copyright (c) 2007-2011 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18
19 #include "flow.h"
20 #include "datapath.h"
21 #include <linux/uaccess.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <net/llc_pdu.h>
27 #include <linux/kernel.h>
28 #include <linux/jhash.h>
29 #include <linux/jiffies.h>
30 #include <linux/llc.h>
31 #include <linux/module.h>
32 #include <linux/in.h>
33 #include <linux/rcupdate.h>
34 #include <linux/if_arp.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/tcp.h>
38 #include <linux/udp.h>
39 #include <linux/icmp.h>
40 #include <linux/icmpv6.h>
41 #include <linux/rculist.h>
42 #include <net/ip.h>
43 #include <net/ipv6.h>
44 #include <net/ndisc.h>
45
46 static struct kmem_cache *flow_cache;
47
48 static int check_header(struct sk_buff *skb, int len)
49 {
50         if (unlikely(skb->len < len))
51                 return -EINVAL;
52         if (unlikely(!pskb_may_pull(skb, len)))
53                 return -ENOMEM;
54         return 0;
55 }
56
57 static bool arphdr_ok(struct sk_buff *skb)
58 {
59         return pskb_may_pull(skb, skb_network_offset(skb) +
60                                   sizeof(struct arp_eth_header));
61 }
62
63 static int check_iphdr(struct sk_buff *skb)
64 {
65         unsigned int nh_ofs = skb_network_offset(skb);
66         unsigned int ip_len;
67         int err;
68
69         err = check_header(skb, nh_ofs + sizeof(struct iphdr));
70         if (unlikely(err))
71                 return err;
72
73         ip_len = ip_hdrlen(skb);
74         if (unlikely(ip_len < sizeof(struct iphdr) ||
75                      skb->len < nh_ofs + ip_len))
76                 return -EINVAL;
77
78         skb_set_transport_header(skb, nh_ofs + ip_len);
79         return 0;
80 }
81
82 static bool tcphdr_ok(struct sk_buff *skb)
83 {
84         int th_ofs = skb_transport_offset(skb);
85         int tcp_len;
86
87         if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
88                 return false;
89
90         tcp_len = tcp_hdrlen(skb);
91         if (unlikely(tcp_len < sizeof(struct tcphdr) ||
92                      skb->len < th_ofs + tcp_len))
93                 return false;
94
95         return true;
96 }
97
98 static bool udphdr_ok(struct sk_buff *skb)
99 {
100         return pskb_may_pull(skb, skb_transport_offset(skb) +
101                                   sizeof(struct udphdr));
102 }
103
104 static bool icmphdr_ok(struct sk_buff *skb)
105 {
106         return pskb_may_pull(skb, skb_transport_offset(skb) +
107                                   sizeof(struct icmphdr));
108 }
109
110 u64 ovs_flow_used_time(unsigned long flow_jiffies)
111 {
112         struct timespec cur_ts;
113         u64 cur_ms, idle_ms;
114
115         ktime_get_ts(&cur_ts);
116         idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
117         cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
118                  cur_ts.tv_nsec / NSEC_PER_MSEC;
119
120         return cur_ms - idle_ms;
121 }
122
123 #define SW_FLOW_KEY_OFFSET(field)               \
124         (offsetof(struct sw_flow_key, field) +  \
125          FIELD_SIZEOF(struct sw_flow_key, field))
126
127 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key,
128                          int *key_lenp)
129 {
130         unsigned int nh_ofs = skb_network_offset(skb);
131         unsigned int nh_len;
132         int payload_ofs;
133         struct ipv6hdr *nh;
134         uint8_t nexthdr;
135         __be16 frag_off;
136         int err;
137
138         *key_lenp = SW_FLOW_KEY_OFFSET(ipv6.label);
139
140         err = check_header(skb, nh_ofs + sizeof(*nh));
141         if (unlikely(err))
142                 return err;
143
144         nh = ipv6_hdr(skb);
145         nexthdr = nh->nexthdr;
146         payload_ofs = (u8 *)(nh + 1) - skb->data;
147
148         key->ip.proto = NEXTHDR_NONE;
149         key->ip.tos = ipv6_get_dsfield(nh);
150         key->ip.ttl = nh->hop_limit;
151         key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
152         key->ipv6.addr.src = nh->saddr;
153         key->ipv6.addr.dst = nh->daddr;
154
155         payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
156         if (unlikely(payload_ofs < 0))
157                 return -EINVAL;
158
159         if (frag_off) {
160                 if (frag_off & htons(~0x7))
161                         key->ip.frag = OVS_FRAG_TYPE_LATER;
162                 else
163                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
164         }
165
166         nh_len = payload_ofs - nh_ofs;
167         skb_set_transport_header(skb, nh_ofs + nh_len);
168         key->ip.proto = nexthdr;
169         return nh_len;
170 }
171
172 static bool icmp6hdr_ok(struct sk_buff *skb)
173 {
174         return pskb_may_pull(skb, skb_transport_offset(skb) +
175                                   sizeof(struct icmp6hdr));
176 }
177
178 #define TCP_FLAGS_OFFSET 13
179 #define TCP_FLAG_MASK 0x3f
180
181 void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb)
182 {
183         u8 tcp_flags = 0;
184
185         if ((flow->key.eth.type == htons(ETH_P_IP) ||
186              flow->key.eth.type == htons(ETH_P_IPV6)) &&
187             flow->key.ip.proto == IPPROTO_TCP &&
188             likely(skb->len >= skb_transport_offset(skb) + sizeof(struct tcphdr))) {
189                 u8 *tcp = (u8 *)tcp_hdr(skb);
190                 tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
191         }
192
193         spin_lock(&flow->lock);
194         flow->used = jiffies;
195         flow->packet_count++;
196         flow->byte_count += skb->len;
197         flow->tcp_flags |= tcp_flags;
198         spin_unlock(&flow->lock);
199 }
200
201 struct sw_flow_actions *ovs_flow_actions_alloc(const struct nlattr *actions)
202 {
203         int actions_len = nla_len(actions);
204         struct sw_flow_actions *sfa;
205
206         if (actions_len > MAX_ACTIONS_BUFSIZE)
207                 return ERR_PTR(-EINVAL);
208
209         sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL);
210         if (!sfa)
211                 return ERR_PTR(-ENOMEM);
212
213         sfa->actions_len = actions_len;
214         memcpy(sfa->actions, nla_data(actions), actions_len);
215         return sfa;
216 }
217
218 struct sw_flow *ovs_flow_alloc(void)
219 {
220         struct sw_flow *flow;
221
222         flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
223         if (!flow)
224                 return ERR_PTR(-ENOMEM);
225
226         spin_lock_init(&flow->lock);
227         flow->sf_acts = NULL;
228
229         return flow;
230 }
231
232 static struct hlist_head *find_bucket(struct flow_table *table, u32 hash)
233 {
234         hash = jhash_1word(hash, table->hash_seed);
235         return flex_array_get(table->buckets,
236                                 (hash & (table->n_buckets - 1)));
237 }
238
239 static struct flex_array *alloc_buckets(unsigned int n_buckets)
240 {
241         struct flex_array *buckets;
242         int i, err;
243
244         buckets = flex_array_alloc(sizeof(struct hlist_head *),
245                                    n_buckets, GFP_KERNEL);
246         if (!buckets)
247                 return NULL;
248
249         err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL);
250         if (err) {
251                 flex_array_free(buckets);
252                 return NULL;
253         }
254
255         for (i = 0; i < n_buckets; i++)
256                 INIT_HLIST_HEAD((struct hlist_head *)
257                                         flex_array_get(buckets, i));
258
259         return buckets;
260 }
261
262 static void free_buckets(struct flex_array *buckets)
263 {
264         flex_array_free(buckets);
265 }
266
267 struct flow_table *ovs_flow_tbl_alloc(int new_size)
268 {
269         struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL);
270
271         if (!table)
272                 return NULL;
273
274         table->buckets = alloc_buckets(new_size);
275
276         if (!table->buckets) {
277                 kfree(table);
278                 return NULL;
279         }
280         table->n_buckets = new_size;
281         table->count = 0;
282         table->node_ver = 0;
283         table->keep_flows = false;
284         get_random_bytes(&table->hash_seed, sizeof(u32));
285
286         return table;
287 }
288
289 void ovs_flow_tbl_destroy(struct flow_table *table)
290 {
291         int i;
292
293         if (!table)
294                 return;
295
296         if (table->keep_flows)
297                 goto skip_flows;
298
299         for (i = 0; i < table->n_buckets; i++) {
300                 struct sw_flow *flow;
301                 struct hlist_head *head = flex_array_get(table->buckets, i);
302                 struct hlist_node *node, *n;
303                 int ver = table->node_ver;
304
305                 hlist_for_each_entry_safe(flow, node, n, head, hash_node[ver]) {
306                         hlist_del_rcu(&flow->hash_node[ver]);
307                         ovs_flow_free(flow);
308                 }
309         }
310
311 skip_flows:
312         free_buckets(table->buckets);
313         kfree(table);
314 }
315
316 static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
317 {
318         struct flow_table *table = container_of(rcu, struct flow_table, rcu);
319
320         ovs_flow_tbl_destroy(table);
321 }
322
323 void ovs_flow_tbl_deferred_destroy(struct flow_table *table)
324 {
325         if (!table)
326                 return;
327
328         call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb);
329 }
330
331 struct sw_flow *ovs_flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *last)
332 {
333         struct sw_flow *flow;
334         struct hlist_head *head;
335         struct hlist_node *n;
336         int ver;
337         int i;
338
339         ver = table->node_ver;
340         while (*bucket < table->n_buckets) {
341                 i = 0;
342                 head = flex_array_get(table->buckets, *bucket);
343                 hlist_for_each_entry_rcu(flow, n, head, hash_node[ver]) {
344                         if (i < *last) {
345                                 i++;
346                                 continue;
347                         }
348                         *last = i + 1;
349                         return flow;
350                 }
351                 (*bucket)++;
352                 *last = 0;
353         }
354
355         return NULL;
356 }
357
358 static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new)
359 {
360         int old_ver;
361         int i;
362
363         old_ver = old->node_ver;
364         new->node_ver = !old_ver;
365
366         /* Insert in new table. */
367         for (i = 0; i < old->n_buckets; i++) {
368                 struct sw_flow *flow;
369                 struct hlist_head *head;
370                 struct hlist_node *n;
371
372                 head = flex_array_get(old->buckets, i);
373
374                 hlist_for_each_entry(flow, n, head, hash_node[old_ver])
375                         ovs_flow_tbl_insert(new, flow);
376         }
377         old->keep_flows = true;
378 }
379
380 static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets)
381 {
382         struct flow_table *new_table;
383
384         new_table = ovs_flow_tbl_alloc(n_buckets);
385         if (!new_table)
386                 return ERR_PTR(-ENOMEM);
387
388         flow_table_copy_flows(table, new_table);
389
390         return new_table;
391 }
392
393 struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table)
394 {
395         return __flow_tbl_rehash(table, table->n_buckets);
396 }
397
398 struct flow_table *ovs_flow_tbl_expand(struct flow_table *table)
399 {
400         return __flow_tbl_rehash(table, table->n_buckets * 2);
401 }
402
403 void ovs_flow_free(struct sw_flow *flow)
404 {
405         if (unlikely(!flow))
406                 return;
407
408         kfree((struct sf_flow_acts __force *)flow->sf_acts);
409         kmem_cache_free(flow_cache, flow);
410 }
411
412 /* RCU callback used by ovs_flow_deferred_free. */
413 static void rcu_free_flow_callback(struct rcu_head *rcu)
414 {
415         struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
416
417         ovs_flow_free(flow);
418 }
419
420 /* Schedules 'flow' to be freed after the next RCU grace period.
421  * The caller must hold rcu_read_lock for this to be sensible. */
422 void ovs_flow_deferred_free(struct sw_flow *flow)
423 {
424         call_rcu(&flow->rcu, rcu_free_flow_callback);
425 }
426
427 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
428  * The caller must hold rcu_read_lock for this to be sensible. */
429 void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
430 {
431         kfree_rcu(sf_acts, rcu);
432 }
433
434 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
435 {
436         struct qtag_prefix {
437                 __be16 eth_type; /* ETH_P_8021Q */
438                 __be16 tci;
439         };
440         struct qtag_prefix *qp;
441
442         if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
443                 return 0;
444
445         if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
446                                          sizeof(__be16))))
447                 return -ENOMEM;
448
449         qp = (struct qtag_prefix *) skb->data;
450         key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
451         __skb_pull(skb, sizeof(struct qtag_prefix));
452
453         return 0;
454 }
455
456 static __be16 parse_ethertype(struct sk_buff *skb)
457 {
458         struct llc_snap_hdr {
459                 u8  dsap;  /* Always 0xAA */
460                 u8  ssap;  /* Always 0xAA */
461                 u8  ctrl;
462                 u8  oui[3];
463                 __be16 ethertype;
464         };
465         struct llc_snap_hdr *llc;
466         __be16 proto;
467
468         proto = *(__be16 *) skb->data;
469         __skb_pull(skb, sizeof(__be16));
470
471         if (ntohs(proto) >= 1536)
472                 return proto;
473
474         if (skb->len < sizeof(struct llc_snap_hdr))
475                 return htons(ETH_P_802_2);
476
477         if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
478                 return htons(0);
479
480         llc = (struct llc_snap_hdr *) skb->data;
481         if (llc->dsap != LLC_SAP_SNAP ||
482             llc->ssap != LLC_SAP_SNAP ||
483             (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
484                 return htons(ETH_P_802_2);
485
486         __skb_pull(skb, sizeof(struct llc_snap_hdr));
487         return llc->ethertype;
488 }
489
490 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
491                         int *key_lenp, int nh_len)
492 {
493         struct icmp6hdr *icmp = icmp6_hdr(skb);
494         int error = 0;
495         int key_len;
496
497         /* The ICMPv6 type and code fields use the 16-bit transport port
498          * fields, so we need to store them in 16-bit network byte order.
499          */
500         key->ipv6.tp.src = htons(icmp->icmp6_type);
501         key->ipv6.tp.dst = htons(icmp->icmp6_code);
502         key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
503
504         if (icmp->icmp6_code == 0 &&
505             (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
506              icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
507                 int icmp_len = skb->len - skb_transport_offset(skb);
508                 struct nd_msg *nd;
509                 int offset;
510
511                 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
512
513                 /* In order to process neighbor discovery options, we need the
514                  * entire packet.
515                  */
516                 if (unlikely(icmp_len < sizeof(*nd)))
517                         goto out;
518                 if (unlikely(skb_linearize(skb))) {
519                         error = -ENOMEM;
520                         goto out;
521                 }
522
523                 nd = (struct nd_msg *)skb_transport_header(skb);
524                 key->ipv6.nd.target = nd->target;
525                 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
526
527                 icmp_len -= sizeof(*nd);
528                 offset = 0;
529                 while (icmp_len >= 8) {
530                         struct nd_opt_hdr *nd_opt =
531                                  (struct nd_opt_hdr *)(nd->opt + offset);
532                         int opt_len = nd_opt->nd_opt_len * 8;
533
534                         if (unlikely(!opt_len || opt_len > icmp_len))
535                                 goto invalid;
536
537                         /* Store the link layer address if the appropriate
538                          * option is provided.  It is considered an error if
539                          * the same link layer option is specified twice.
540                          */
541                         if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
542                             && opt_len == 8) {
543                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
544                                         goto invalid;
545                                 memcpy(key->ipv6.nd.sll,
546                                     &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
547                         } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
548                                    && opt_len == 8) {
549                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
550                                         goto invalid;
551                                 memcpy(key->ipv6.nd.tll,
552                                     &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
553                         }
554
555                         icmp_len -= opt_len;
556                         offset += opt_len;
557                 }
558         }
559
560         goto out;
561
562 invalid:
563         memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
564         memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
565         memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
566
567 out:
568         *key_lenp = key_len;
569         return error;
570 }
571
572 /**
573  * ovs_flow_extract - extracts a flow key from an Ethernet frame.
574  * @skb: sk_buff that contains the frame, with skb->data pointing to the
575  * Ethernet header
576  * @in_port: port number on which @skb was received.
577  * @key: output flow key
578  * @key_lenp: length of output flow key
579  *
580  * The caller must ensure that skb->len >= ETH_HLEN.
581  *
582  * Returns 0 if successful, otherwise a negative errno value.
583  *
584  * Initializes @skb header pointers as follows:
585  *
586  *    - skb->mac_header: the Ethernet header.
587  *
588  *    - skb->network_header: just past the Ethernet header, or just past the
589  *      VLAN header, to the first byte of the Ethernet payload.
590  *
591  *    - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6
592  *      on output, then just past the IP header, if one is present and
593  *      of a correct length, otherwise the same as skb->network_header.
594  *      For other key->dl_type values it is left untouched.
595  */
596 int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key,
597                  int *key_lenp)
598 {
599         int error = 0;
600         int key_len = SW_FLOW_KEY_OFFSET(eth);
601         struct ethhdr *eth;
602
603         memset(key, 0, sizeof(*key));
604
605         key->phy.priority = skb->priority;
606         key->phy.in_port = in_port;
607         key->phy.skb_mark = skb->mark;
608
609         skb_reset_mac_header(skb);
610
611         /* Link layer.  We are guaranteed to have at least the 14 byte Ethernet
612          * header in the linear data area.
613          */
614         eth = eth_hdr(skb);
615         memcpy(key->eth.src, eth->h_source, ETH_ALEN);
616         memcpy(key->eth.dst, eth->h_dest, ETH_ALEN);
617
618         __skb_pull(skb, 2 * ETH_ALEN);
619
620         if (vlan_tx_tag_present(skb))
621                 key->eth.tci = htons(skb->vlan_tci);
622         else if (eth->h_proto == htons(ETH_P_8021Q))
623                 if (unlikely(parse_vlan(skb, key)))
624                         return -ENOMEM;
625
626         key->eth.type = parse_ethertype(skb);
627         if (unlikely(key->eth.type == htons(0)))
628                 return -ENOMEM;
629
630         skb_reset_network_header(skb);
631         __skb_push(skb, skb->data - skb_mac_header(skb));
632
633         /* Network layer. */
634         if (key->eth.type == htons(ETH_P_IP)) {
635                 struct iphdr *nh;
636                 __be16 offset;
637
638                 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
639
640                 error = check_iphdr(skb);
641                 if (unlikely(error)) {
642                         if (error == -EINVAL) {
643                                 skb->transport_header = skb->network_header;
644                                 error = 0;
645                         }
646                         goto out;
647                 }
648
649                 nh = ip_hdr(skb);
650                 key->ipv4.addr.src = nh->saddr;
651                 key->ipv4.addr.dst = nh->daddr;
652
653                 key->ip.proto = nh->protocol;
654                 key->ip.tos = nh->tos;
655                 key->ip.ttl = nh->ttl;
656
657                 offset = nh->frag_off & htons(IP_OFFSET);
658                 if (offset) {
659                         key->ip.frag = OVS_FRAG_TYPE_LATER;
660                         goto out;
661                 }
662                 if (nh->frag_off & htons(IP_MF) ||
663                          skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
664                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
665
666                 /* Transport layer. */
667                 if (key->ip.proto == IPPROTO_TCP) {
668                         key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
669                         if (tcphdr_ok(skb)) {
670                                 struct tcphdr *tcp = tcp_hdr(skb);
671                                 key->ipv4.tp.src = tcp->source;
672                                 key->ipv4.tp.dst = tcp->dest;
673                         }
674                 } else if (key->ip.proto == IPPROTO_UDP) {
675                         key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
676                         if (udphdr_ok(skb)) {
677                                 struct udphdr *udp = udp_hdr(skb);
678                                 key->ipv4.tp.src = udp->source;
679                                 key->ipv4.tp.dst = udp->dest;
680                         }
681                 } else if (key->ip.proto == IPPROTO_ICMP) {
682                         key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
683                         if (icmphdr_ok(skb)) {
684                                 struct icmphdr *icmp = icmp_hdr(skb);
685                                 /* The ICMP type and code fields use the 16-bit
686                                  * transport port fields, so we need to store
687                                  * them in 16-bit network byte order. */
688                                 key->ipv4.tp.src = htons(icmp->type);
689                                 key->ipv4.tp.dst = htons(icmp->code);
690                         }
691                 }
692
693         } else if ((key->eth.type == htons(ETH_P_ARP) ||
694                    key->eth.type == htons(ETH_P_RARP)) && arphdr_ok(skb)) {
695                 struct arp_eth_header *arp;
696
697                 arp = (struct arp_eth_header *)skb_network_header(skb);
698
699                 if (arp->ar_hrd == htons(ARPHRD_ETHER)
700                                 && arp->ar_pro == htons(ETH_P_IP)
701                                 && arp->ar_hln == ETH_ALEN
702                                 && arp->ar_pln == 4) {
703
704                         /* We only match on the lower 8 bits of the opcode. */
705                         if (ntohs(arp->ar_op) <= 0xff)
706                                 key->ip.proto = ntohs(arp->ar_op);
707                         memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
708                         memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
709                         memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN);
710                         memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN);
711                         key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
712                 }
713         } else if (key->eth.type == htons(ETH_P_IPV6)) {
714                 int nh_len;             /* IPv6 Header + Extensions */
715
716                 nh_len = parse_ipv6hdr(skb, key, &key_len);
717                 if (unlikely(nh_len < 0)) {
718                         if (nh_len == -EINVAL)
719                                 skb->transport_header = skb->network_header;
720                         else
721                                 error = nh_len;
722                         goto out;
723                 }
724
725                 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
726                         goto out;
727                 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
728                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
729
730                 /* Transport layer. */
731                 if (key->ip.proto == NEXTHDR_TCP) {
732                         key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
733                         if (tcphdr_ok(skb)) {
734                                 struct tcphdr *tcp = tcp_hdr(skb);
735                                 key->ipv6.tp.src = tcp->source;
736                                 key->ipv6.tp.dst = tcp->dest;
737                         }
738                 } else if (key->ip.proto == NEXTHDR_UDP) {
739                         key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
740                         if (udphdr_ok(skb)) {
741                                 struct udphdr *udp = udp_hdr(skb);
742                                 key->ipv6.tp.src = udp->source;
743                                 key->ipv6.tp.dst = udp->dest;
744                         }
745                 } else if (key->ip.proto == NEXTHDR_ICMP) {
746                         key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
747                         if (icmp6hdr_ok(skb)) {
748                                 error = parse_icmpv6(skb, key, &key_len, nh_len);
749                                 if (error < 0)
750                                         goto out;
751                         }
752                 }
753         }
754
755 out:
756         *key_lenp = key_len;
757         return error;
758 }
759
760 u32 ovs_flow_hash(const struct sw_flow_key *key, int key_len)
761 {
762         return jhash2((u32 *)key, DIV_ROUND_UP(key_len, sizeof(u32)), 0);
763 }
764
765 struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *table,
766                                 struct sw_flow_key *key, int key_len)
767 {
768         struct sw_flow *flow;
769         struct hlist_node *n;
770         struct hlist_head *head;
771         u32 hash;
772
773         hash = ovs_flow_hash(key, key_len);
774
775         head = find_bucket(table, hash);
776         hlist_for_each_entry_rcu(flow, n, head, hash_node[table->node_ver]) {
777
778                 if (flow->hash == hash &&
779                     !memcmp(&flow->key, key, key_len)) {
780                         return flow;
781                 }
782         }
783         return NULL;
784 }
785
786 void ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow)
787 {
788         struct hlist_head *head;
789
790         head = find_bucket(table, flow->hash);
791         hlist_add_head_rcu(&flow->hash_node[table->node_ver], head);
792         table->count++;
793 }
794
795 void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow)
796 {
797         hlist_del_rcu(&flow->hash_node[table->node_ver]);
798         table->count--;
799         BUG_ON(table->count < 0);
800 }
801
802 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
803 const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
804         [OVS_KEY_ATTR_ENCAP] = -1,
805         [OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
806         [OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
807         [OVS_KEY_ATTR_SKB_MARK] = sizeof(u32),
808         [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
809         [OVS_KEY_ATTR_VLAN] = sizeof(__be16),
810         [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
811         [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
812         [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
813         [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
814         [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
815         [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
816         [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
817         [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
818         [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
819 };
820
821 static int ipv4_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
822                                   const struct nlattr *a[], u32 *attrs)
823 {
824         const struct ovs_key_icmp *icmp_key;
825         const struct ovs_key_tcp *tcp_key;
826         const struct ovs_key_udp *udp_key;
827
828         switch (swkey->ip.proto) {
829         case IPPROTO_TCP:
830                 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
831                         return -EINVAL;
832                 *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
833
834                 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
835                 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
836                 swkey->ipv4.tp.src = tcp_key->tcp_src;
837                 swkey->ipv4.tp.dst = tcp_key->tcp_dst;
838                 break;
839
840         case IPPROTO_UDP:
841                 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
842                         return -EINVAL;
843                 *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
844
845                 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
846                 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
847                 swkey->ipv4.tp.src = udp_key->udp_src;
848                 swkey->ipv4.tp.dst = udp_key->udp_dst;
849                 break;
850
851         case IPPROTO_ICMP:
852                 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMP)))
853                         return -EINVAL;
854                 *attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
855
856                 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
857                 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
858                 swkey->ipv4.tp.src = htons(icmp_key->icmp_type);
859                 swkey->ipv4.tp.dst = htons(icmp_key->icmp_code);
860                 break;
861         }
862
863         return 0;
864 }
865
866 static int ipv6_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
867                                   const struct nlattr *a[], u32 *attrs)
868 {
869         const struct ovs_key_icmpv6 *icmpv6_key;
870         const struct ovs_key_tcp *tcp_key;
871         const struct ovs_key_udp *udp_key;
872
873         switch (swkey->ip.proto) {
874         case IPPROTO_TCP:
875                 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
876                         return -EINVAL;
877                 *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
878
879                 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
880                 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
881                 swkey->ipv6.tp.src = tcp_key->tcp_src;
882                 swkey->ipv6.tp.dst = tcp_key->tcp_dst;
883                 break;
884
885         case IPPROTO_UDP:
886                 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
887                         return -EINVAL;
888                 *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
889
890                 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
891                 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
892                 swkey->ipv6.tp.src = udp_key->udp_src;
893                 swkey->ipv6.tp.dst = udp_key->udp_dst;
894                 break;
895
896         case IPPROTO_ICMPV6:
897                 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMPV6)))
898                         return -EINVAL;
899                 *attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
900
901                 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
902                 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
903                 swkey->ipv6.tp.src = htons(icmpv6_key->icmpv6_type);
904                 swkey->ipv6.tp.dst = htons(icmpv6_key->icmpv6_code);
905
906                 if (swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
907                     swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
908                         const struct ovs_key_nd *nd_key;
909
910                         if (!(*attrs & (1 << OVS_KEY_ATTR_ND)))
911                                 return -EINVAL;
912                         *attrs &= ~(1 << OVS_KEY_ATTR_ND);
913
914                         *key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
915                         nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
916                         memcpy(&swkey->ipv6.nd.target, nd_key->nd_target,
917                                sizeof(swkey->ipv6.nd.target));
918                         memcpy(swkey->ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN);
919                         memcpy(swkey->ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN);
920                 }
921                 break;
922         }
923
924         return 0;
925 }
926
927 static int parse_flow_nlattrs(const struct nlattr *attr,
928                               const struct nlattr *a[], u32 *attrsp)
929 {
930         const struct nlattr *nla;
931         u32 attrs;
932         int rem;
933
934         attrs = 0;
935         nla_for_each_nested(nla, attr, rem) {
936                 u16 type = nla_type(nla);
937                 int expected_len;
938
939                 if (type > OVS_KEY_ATTR_MAX || attrs & (1 << type))
940                         return -EINVAL;
941
942                 expected_len = ovs_key_lens[type];
943                 if (nla_len(nla) != expected_len && expected_len != -1)
944                         return -EINVAL;
945
946                 attrs |= 1 << type;
947                 a[type] = nla;
948         }
949         if (rem)
950                 return -EINVAL;
951
952         *attrsp = attrs;
953         return 0;
954 }
955
956 /**
957  * ovs_flow_from_nlattrs - parses Netlink attributes into a flow key.
958  * @swkey: receives the extracted flow key.
959  * @key_lenp: number of bytes used in @swkey.
960  * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
961  * sequence.
962  */
963 int ovs_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp,
964                       const struct nlattr *attr)
965 {
966         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
967         const struct ovs_key_ethernet *eth_key;
968         int key_len;
969         u32 attrs;
970         int err;
971
972         memset(swkey, 0, sizeof(struct sw_flow_key));
973         key_len = SW_FLOW_KEY_OFFSET(eth);
974
975         err = parse_flow_nlattrs(attr, a, &attrs);
976         if (err)
977                 return err;
978
979         /* Metadata attributes. */
980         if (attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
981                 swkey->phy.priority = nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]);
982                 attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
983         }
984         if (attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
985                 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
986                 if (in_port >= DP_MAX_PORTS)
987                         return -EINVAL;
988                 swkey->phy.in_port = in_port;
989                 attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
990         } else {
991                 swkey->phy.in_port = DP_MAX_PORTS;
992         }
993         if (attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
994                 swkey->phy.skb_mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
995                 attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
996         }
997
998         /* Data attributes. */
999         if (!(attrs & (1 << OVS_KEY_ATTR_ETHERNET)))
1000                 return -EINVAL;
1001         attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1002
1003         eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1004         memcpy(swkey->eth.src, eth_key->eth_src, ETH_ALEN);
1005         memcpy(swkey->eth.dst, eth_key->eth_dst, ETH_ALEN);
1006
1007         if (attrs & (1u << OVS_KEY_ATTR_ETHERTYPE) &&
1008             nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q)) {
1009                 const struct nlattr *encap;
1010                 __be16 tci;
1011
1012                 if (attrs != ((1 << OVS_KEY_ATTR_VLAN) |
1013                               (1 << OVS_KEY_ATTR_ETHERTYPE) |
1014                               (1 << OVS_KEY_ATTR_ENCAP)))
1015                         return -EINVAL;
1016
1017                 encap = a[OVS_KEY_ATTR_ENCAP];
1018                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1019                 if (tci & htons(VLAN_TAG_PRESENT)) {
1020                         swkey->eth.tci = tci;
1021
1022                         err = parse_flow_nlattrs(encap, a, &attrs);
1023                         if (err)
1024                                 return err;
1025                 } else if (!tci) {
1026                         /* Corner case for truncated 802.1Q header. */
1027                         if (nla_len(encap))
1028                                 return -EINVAL;
1029
1030                         swkey->eth.type = htons(ETH_P_8021Q);
1031                         *key_lenp = key_len;
1032                         return 0;
1033                 } else {
1034                         return -EINVAL;
1035                 }
1036         }
1037
1038         if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1039                 swkey->eth.type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1040                 if (ntohs(swkey->eth.type) < 1536)
1041                         return -EINVAL;
1042                 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1043         } else {
1044                 swkey->eth.type = htons(ETH_P_802_2);
1045         }
1046
1047         if (swkey->eth.type == htons(ETH_P_IP)) {
1048                 const struct ovs_key_ipv4 *ipv4_key;
1049
1050                 if (!(attrs & (1 << OVS_KEY_ATTR_IPV4)))
1051                         return -EINVAL;
1052                 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1053
1054                 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
1055                 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1056                 if (ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX)
1057                         return -EINVAL;
1058                 swkey->ip.proto = ipv4_key->ipv4_proto;
1059                 swkey->ip.tos = ipv4_key->ipv4_tos;
1060                 swkey->ip.ttl = ipv4_key->ipv4_ttl;
1061                 swkey->ip.frag = ipv4_key->ipv4_frag;
1062                 swkey->ipv4.addr.src = ipv4_key->ipv4_src;
1063                 swkey->ipv4.addr.dst = ipv4_key->ipv4_dst;
1064
1065                 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1066                         err = ipv4_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1067                         if (err)
1068                                 return err;
1069                 }
1070         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1071                 const struct ovs_key_ipv6 *ipv6_key;
1072
1073                 if (!(attrs & (1 << OVS_KEY_ATTR_IPV6)))
1074                         return -EINVAL;
1075                 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1076
1077                 key_len = SW_FLOW_KEY_OFFSET(ipv6.label);
1078                 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1079                 if (ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX)
1080                         return -EINVAL;
1081                 swkey->ipv6.label = ipv6_key->ipv6_label;
1082                 swkey->ip.proto = ipv6_key->ipv6_proto;
1083                 swkey->ip.tos = ipv6_key->ipv6_tclass;
1084                 swkey->ip.ttl = ipv6_key->ipv6_hlimit;
1085                 swkey->ip.frag = ipv6_key->ipv6_frag;
1086                 memcpy(&swkey->ipv6.addr.src, ipv6_key->ipv6_src,
1087                        sizeof(swkey->ipv6.addr.src));
1088                 memcpy(&swkey->ipv6.addr.dst, ipv6_key->ipv6_dst,
1089                        sizeof(swkey->ipv6.addr.dst));
1090
1091                 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1092                         err = ipv6_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1093                         if (err)
1094                                 return err;
1095                 }
1096         } else if (swkey->eth.type == htons(ETH_P_ARP) ||
1097                    swkey->eth.type == htons(ETH_P_RARP)) {
1098                 const struct ovs_key_arp *arp_key;
1099
1100                 if (!(attrs & (1 << OVS_KEY_ATTR_ARP)))
1101                         return -EINVAL;
1102                 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1103
1104                 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
1105                 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1106                 swkey->ipv4.addr.src = arp_key->arp_sip;
1107                 swkey->ipv4.addr.dst = arp_key->arp_tip;
1108                 if (arp_key->arp_op & htons(0xff00))
1109                         return -EINVAL;
1110                 swkey->ip.proto = ntohs(arp_key->arp_op);
1111                 memcpy(swkey->ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN);
1112                 memcpy(swkey->ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN);
1113         }
1114
1115         if (attrs)
1116                 return -EINVAL;
1117         *key_lenp = key_len;
1118
1119         return 0;
1120 }
1121
1122 /**
1123  * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key.
1124  * @priority: receives the skb priority
1125  * @mark: receives the skb mark
1126  * @in_port: receives the extracted input port.
1127  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1128  * sequence.
1129  *
1130  * This parses a series of Netlink attributes that form a flow key, which must
1131  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1132  * get the metadata, that is, the parts of the flow key that cannot be
1133  * extracted from the packet itself.
1134  */
1135 int ovs_flow_metadata_from_nlattrs(u32 *priority, u32 *mark, u16 *in_port,
1136                                const struct nlattr *attr)
1137 {
1138         const struct nlattr *nla;
1139         int rem;
1140
1141         *in_port = DP_MAX_PORTS;
1142         *priority = 0;
1143         *mark = 0;
1144
1145         nla_for_each_nested(nla, attr, rem) {
1146                 int type = nla_type(nla);
1147
1148                 if (type <= OVS_KEY_ATTR_MAX && ovs_key_lens[type] > 0) {
1149                         if (nla_len(nla) != ovs_key_lens[type])
1150                                 return -EINVAL;
1151
1152                         switch (type) {
1153                         case OVS_KEY_ATTR_PRIORITY:
1154                                 *priority = nla_get_u32(nla);
1155                                 break;
1156
1157                         case OVS_KEY_ATTR_IN_PORT:
1158                                 if (nla_get_u32(nla) >= DP_MAX_PORTS)
1159                                         return -EINVAL;
1160                                 *in_port = nla_get_u32(nla);
1161                                 break;
1162
1163                         case OVS_KEY_ATTR_SKB_MARK:
1164                                 *mark = nla_get_u32(nla);
1165                                 break;
1166                         }
1167                 }
1168         }
1169         if (rem)
1170                 return -EINVAL;
1171         return 0;
1172 }
1173
1174 int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb)
1175 {
1176         struct ovs_key_ethernet *eth_key;
1177         struct nlattr *nla, *encap;
1178
1179         if (swkey->phy.priority &&
1180             nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, swkey->phy.priority))
1181                 goto nla_put_failure;
1182
1183         if (swkey->phy.in_port != DP_MAX_PORTS &&
1184             nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, swkey->phy.in_port))
1185                 goto nla_put_failure;
1186
1187         if (swkey->phy.skb_mark &&
1188             nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, swkey->phy.skb_mark))
1189                 goto nla_put_failure;
1190
1191         nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1192         if (!nla)
1193                 goto nla_put_failure;
1194         eth_key = nla_data(nla);
1195         memcpy(eth_key->eth_src, swkey->eth.src, ETH_ALEN);
1196         memcpy(eth_key->eth_dst, swkey->eth.dst, ETH_ALEN);
1197
1198         if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1199                 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_P_8021Q)) ||
1200                     nla_put_be16(skb, OVS_KEY_ATTR_VLAN, swkey->eth.tci))
1201                         goto nla_put_failure;
1202                 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1203                 if (!swkey->eth.tci)
1204                         goto unencap;
1205         } else {
1206                 encap = NULL;
1207         }
1208
1209         if (swkey->eth.type == htons(ETH_P_802_2))
1210                 goto unencap;
1211
1212         if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, swkey->eth.type))
1213                 goto nla_put_failure;
1214
1215         if (swkey->eth.type == htons(ETH_P_IP)) {
1216                 struct ovs_key_ipv4 *ipv4_key;
1217
1218                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1219                 if (!nla)
1220                         goto nla_put_failure;
1221                 ipv4_key = nla_data(nla);
1222                 ipv4_key->ipv4_src = swkey->ipv4.addr.src;
1223                 ipv4_key->ipv4_dst = swkey->ipv4.addr.dst;
1224                 ipv4_key->ipv4_proto = swkey->ip.proto;
1225                 ipv4_key->ipv4_tos = swkey->ip.tos;
1226                 ipv4_key->ipv4_ttl = swkey->ip.ttl;
1227                 ipv4_key->ipv4_frag = swkey->ip.frag;
1228         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1229                 struct ovs_key_ipv6 *ipv6_key;
1230
1231                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1232                 if (!nla)
1233                         goto nla_put_failure;
1234                 ipv6_key = nla_data(nla);
1235                 memcpy(ipv6_key->ipv6_src, &swkey->ipv6.addr.src,
1236                                 sizeof(ipv6_key->ipv6_src));
1237                 memcpy(ipv6_key->ipv6_dst, &swkey->ipv6.addr.dst,
1238                                 sizeof(ipv6_key->ipv6_dst));
1239                 ipv6_key->ipv6_label = swkey->ipv6.label;
1240                 ipv6_key->ipv6_proto = swkey->ip.proto;
1241                 ipv6_key->ipv6_tclass = swkey->ip.tos;
1242                 ipv6_key->ipv6_hlimit = swkey->ip.ttl;
1243                 ipv6_key->ipv6_frag = swkey->ip.frag;
1244         } else if (swkey->eth.type == htons(ETH_P_ARP) ||
1245                    swkey->eth.type == htons(ETH_P_RARP)) {
1246                 struct ovs_key_arp *arp_key;
1247
1248                 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1249                 if (!nla)
1250                         goto nla_put_failure;
1251                 arp_key = nla_data(nla);
1252                 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1253                 arp_key->arp_sip = swkey->ipv4.addr.src;
1254                 arp_key->arp_tip = swkey->ipv4.addr.dst;
1255                 arp_key->arp_op = htons(swkey->ip.proto);
1256                 memcpy(arp_key->arp_sha, swkey->ipv4.arp.sha, ETH_ALEN);
1257                 memcpy(arp_key->arp_tha, swkey->ipv4.arp.tha, ETH_ALEN);
1258         }
1259
1260         if ((swkey->eth.type == htons(ETH_P_IP) ||
1261              swkey->eth.type == htons(ETH_P_IPV6)) &&
1262              swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1263
1264                 if (swkey->ip.proto == IPPROTO_TCP) {
1265                         struct ovs_key_tcp *tcp_key;
1266
1267                         nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1268                         if (!nla)
1269                                 goto nla_put_failure;
1270                         tcp_key = nla_data(nla);
1271                         if (swkey->eth.type == htons(ETH_P_IP)) {
1272                                 tcp_key->tcp_src = swkey->ipv4.tp.src;
1273                                 tcp_key->tcp_dst = swkey->ipv4.tp.dst;
1274                         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1275                                 tcp_key->tcp_src = swkey->ipv6.tp.src;
1276                                 tcp_key->tcp_dst = swkey->ipv6.tp.dst;
1277                         }
1278                 } else if (swkey->ip.proto == IPPROTO_UDP) {
1279                         struct ovs_key_udp *udp_key;
1280
1281                         nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1282                         if (!nla)
1283                                 goto nla_put_failure;
1284                         udp_key = nla_data(nla);
1285                         if (swkey->eth.type == htons(ETH_P_IP)) {
1286                                 udp_key->udp_src = swkey->ipv4.tp.src;
1287                                 udp_key->udp_dst = swkey->ipv4.tp.dst;
1288                         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1289                                 udp_key->udp_src = swkey->ipv6.tp.src;
1290                                 udp_key->udp_dst = swkey->ipv6.tp.dst;
1291                         }
1292                 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1293                            swkey->ip.proto == IPPROTO_ICMP) {
1294                         struct ovs_key_icmp *icmp_key;
1295
1296                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1297                         if (!nla)
1298                                 goto nla_put_failure;
1299                         icmp_key = nla_data(nla);
1300                         icmp_key->icmp_type = ntohs(swkey->ipv4.tp.src);
1301                         icmp_key->icmp_code = ntohs(swkey->ipv4.tp.dst);
1302                 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1303                            swkey->ip.proto == IPPROTO_ICMPV6) {
1304                         struct ovs_key_icmpv6 *icmpv6_key;
1305
1306                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1307                                                 sizeof(*icmpv6_key));
1308                         if (!nla)
1309                                 goto nla_put_failure;
1310                         icmpv6_key = nla_data(nla);
1311                         icmpv6_key->icmpv6_type = ntohs(swkey->ipv6.tp.src);
1312                         icmpv6_key->icmpv6_code = ntohs(swkey->ipv6.tp.dst);
1313
1314                         if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1315                             icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1316                                 struct ovs_key_nd *nd_key;
1317
1318                                 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1319                                 if (!nla)
1320                                         goto nla_put_failure;
1321                                 nd_key = nla_data(nla);
1322                                 memcpy(nd_key->nd_target, &swkey->ipv6.nd.target,
1323                                                         sizeof(nd_key->nd_target));
1324                                 memcpy(nd_key->nd_sll, swkey->ipv6.nd.sll, ETH_ALEN);
1325                                 memcpy(nd_key->nd_tll, swkey->ipv6.nd.tll, ETH_ALEN);
1326                         }
1327                 }
1328         }
1329
1330 unencap:
1331         if (encap)
1332                 nla_nest_end(skb, encap);
1333
1334         return 0;
1335
1336 nla_put_failure:
1337         return -EMSGSIZE;
1338 }
1339
1340 /* Initializes the flow module.
1341  * Returns zero if successful or a negative error code. */
1342 int ovs_flow_init(void)
1343 {
1344         flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
1345                                         0, NULL);
1346         if (flow_cache == NULL)
1347                 return -ENOMEM;
1348
1349         return 0;
1350 }
1351
1352 /* Uninitializes the flow module. */
1353 void ovs_flow_exit(void)
1354 {
1355         kmem_cache_destroy(flow_cache);
1356 }