]> Pileus Git - ~andy/linux/blob - net/openvswitch/flow.c
Merge branch 'perf/fast' into perf/core
[~andy/linux] / net / openvswitch / flow.c
1 /*
2  * Copyright (c) 2007-2011 Nicira Networks.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18
19 #include "flow.h"
20 #include "datapath.h"
21 #include <linux/uaccess.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <net/llc_pdu.h>
27 #include <linux/kernel.h>
28 #include <linux/jhash.h>
29 #include <linux/jiffies.h>
30 #include <linux/llc.h>
31 #include <linux/module.h>
32 #include <linux/in.h>
33 #include <linux/rcupdate.h>
34 #include <linux/if_arp.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/tcp.h>
38 #include <linux/udp.h>
39 #include <linux/icmp.h>
40 #include <linux/icmpv6.h>
41 #include <linux/rculist.h>
42 #include <net/ip.h>
43 #include <net/ipv6.h>
44 #include <net/ndisc.h>
45
46 static struct kmem_cache *flow_cache;
47
48 static int check_header(struct sk_buff *skb, int len)
49 {
50         if (unlikely(skb->len < len))
51                 return -EINVAL;
52         if (unlikely(!pskb_may_pull(skb, len)))
53                 return -ENOMEM;
54         return 0;
55 }
56
57 static bool arphdr_ok(struct sk_buff *skb)
58 {
59         return pskb_may_pull(skb, skb_network_offset(skb) +
60                                   sizeof(struct arp_eth_header));
61 }
62
63 static int check_iphdr(struct sk_buff *skb)
64 {
65         unsigned int nh_ofs = skb_network_offset(skb);
66         unsigned int ip_len;
67         int err;
68
69         err = check_header(skb, nh_ofs + sizeof(struct iphdr));
70         if (unlikely(err))
71                 return err;
72
73         ip_len = ip_hdrlen(skb);
74         if (unlikely(ip_len < sizeof(struct iphdr) ||
75                      skb->len < nh_ofs + ip_len))
76                 return -EINVAL;
77
78         skb_set_transport_header(skb, nh_ofs + ip_len);
79         return 0;
80 }
81
82 static bool tcphdr_ok(struct sk_buff *skb)
83 {
84         int th_ofs = skb_transport_offset(skb);
85         int tcp_len;
86
87         if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
88                 return false;
89
90         tcp_len = tcp_hdrlen(skb);
91         if (unlikely(tcp_len < sizeof(struct tcphdr) ||
92                      skb->len < th_ofs + tcp_len))
93                 return false;
94
95         return true;
96 }
97
98 static bool udphdr_ok(struct sk_buff *skb)
99 {
100         return pskb_may_pull(skb, skb_transport_offset(skb) +
101                                   sizeof(struct udphdr));
102 }
103
104 static bool icmphdr_ok(struct sk_buff *skb)
105 {
106         return pskb_may_pull(skb, skb_transport_offset(skb) +
107                                   sizeof(struct icmphdr));
108 }
109
110 u64 ovs_flow_used_time(unsigned long flow_jiffies)
111 {
112         struct timespec cur_ts;
113         u64 cur_ms, idle_ms;
114
115         ktime_get_ts(&cur_ts);
116         idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
117         cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
118                  cur_ts.tv_nsec / NSEC_PER_MSEC;
119
120         return cur_ms - idle_ms;
121 }
122
123 #define SW_FLOW_KEY_OFFSET(field)               \
124         (offsetof(struct sw_flow_key, field) +  \
125          FIELD_SIZEOF(struct sw_flow_key, field))
126
127 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key,
128                          int *key_lenp)
129 {
130         unsigned int nh_ofs = skb_network_offset(skb);
131         unsigned int nh_len;
132         int payload_ofs;
133         struct ipv6hdr *nh;
134         uint8_t nexthdr;
135         __be16 frag_off;
136         int err;
137
138         *key_lenp = SW_FLOW_KEY_OFFSET(ipv6.label);
139
140         err = check_header(skb, nh_ofs + sizeof(*nh));
141         if (unlikely(err))
142                 return err;
143
144         nh = ipv6_hdr(skb);
145         nexthdr = nh->nexthdr;
146         payload_ofs = (u8 *)(nh + 1) - skb->data;
147
148         key->ip.proto = NEXTHDR_NONE;
149         key->ip.tos = ipv6_get_dsfield(nh);
150         key->ip.ttl = nh->hop_limit;
151         key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
152         key->ipv6.addr.src = nh->saddr;
153         key->ipv6.addr.dst = nh->daddr;
154
155         payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
156         if (unlikely(payload_ofs < 0))
157                 return -EINVAL;
158
159         if (frag_off) {
160                 if (frag_off & htons(~0x7))
161                         key->ip.frag = OVS_FRAG_TYPE_LATER;
162                 else
163                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
164         }
165
166         nh_len = payload_ofs - nh_ofs;
167         skb_set_transport_header(skb, nh_ofs + nh_len);
168         key->ip.proto = nexthdr;
169         return nh_len;
170 }
171
172 static bool icmp6hdr_ok(struct sk_buff *skb)
173 {
174         return pskb_may_pull(skb, skb_transport_offset(skb) +
175                                   sizeof(struct icmp6hdr));
176 }
177
178 #define TCP_FLAGS_OFFSET 13
179 #define TCP_FLAG_MASK 0x3f
180
181 void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb)
182 {
183         u8 tcp_flags = 0;
184
185         if (flow->key.eth.type == htons(ETH_P_IP) &&
186             flow->key.ip.proto == IPPROTO_TCP) {
187                 u8 *tcp = (u8 *)tcp_hdr(skb);
188                 tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
189         }
190
191         spin_lock(&flow->lock);
192         flow->used = jiffies;
193         flow->packet_count++;
194         flow->byte_count += skb->len;
195         flow->tcp_flags |= tcp_flags;
196         spin_unlock(&flow->lock);
197 }
198
199 struct sw_flow_actions *ovs_flow_actions_alloc(const struct nlattr *actions)
200 {
201         int actions_len = nla_len(actions);
202         struct sw_flow_actions *sfa;
203
204         /* At least DP_MAX_PORTS actions are required to be able to flood a
205          * packet to every port.  Factor of 2 allows for setting VLAN tags,
206          * etc. */
207         if (actions_len > 2 * DP_MAX_PORTS * nla_total_size(4))
208                 return ERR_PTR(-EINVAL);
209
210         sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL);
211         if (!sfa)
212                 return ERR_PTR(-ENOMEM);
213
214         sfa->actions_len = actions_len;
215         memcpy(sfa->actions, nla_data(actions), actions_len);
216         return sfa;
217 }
218
219 struct sw_flow *ovs_flow_alloc(void)
220 {
221         struct sw_flow *flow;
222
223         flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
224         if (!flow)
225                 return ERR_PTR(-ENOMEM);
226
227         spin_lock_init(&flow->lock);
228         flow->sf_acts = NULL;
229
230         return flow;
231 }
232
233 static struct hlist_head *find_bucket(struct flow_table *table, u32 hash)
234 {
235         hash = jhash_1word(hash, table->hash_seed);
236         return flex_array_get(table->buckets,
237                                 (hash & (table->n_buckets - 1)));
238 }
239
240 static struct flex_array *alloc_buckets(unsigned int n_buckets)
241 {
242         struct flex_array *buckets;
243         int i, err;
244
245         buckets = flex_array_alloc(sizeof(struct hlist_head *),
246                                    n_buckets, GFP_KERNEL);
247         if (!buckets)
248                 return NULL;
249
250         err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL);
251         if (err) {
252                 flex_array_free(buckets);
253                 return NULL;
254         }
255
256         for (i = 0; i < n_buckets; i++)
257                 INIT_HLIST_HEAD((struct hlist_head *)
258                                         flex_array_get(buckets, i));
259
260         return buckets;
261 }
262
263 static void free_buckets(struct flex_array *buckets)
264 {
265         flex_array_free(buckets);
266 }
267
268 struct flow_table *ovs_flow_tbl_alloc(int new_size)
269 {
270         struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL);
271
272         if (!table)
273                 return NULL;
274
275         table->buckets = alloc_buckets(new_size);
276
277         if (!table->buckets) {
278                 kfree(table);
279                 return NULL;
280         }
281         table->n_buckets = new_size;
282         table->count = 0;
283         table->node_ver = 0;
284         table->keep_flows = false;
285         get_random_bytes(&table->hash_seed, sizeof(u32));
286
287         return table;
288 }
289
290 void ovs_flow_tbl_destroy(struct flow_table *table)
291 {
292         int i;
293
294         if (!table)
295                 return;
296
297         if (table->keep_flows)
298                 goto skip_flows;
299
300         for (i = 0; i < table->n_buckets; i++) {
301                 struct sw_flow *flow;
302                 struct hlist_head *head = flex_array_get(table->buckets, i);
303                 struct hlist_node *node, *n;
304                 int ver = table->node_ver;
305
306                 hlist_for_each_entry_safe(flow, node, n, head, hash_node[ver]) {
307                         hlist_del_rcu(&flow->hash_node[ver]);
308                         ovs_flow_free(flow);
309                 }
310         }
311
312 skip_flows:
313         free_buckets(table->buckets);
314         kfree(table);
315 }
316
317 static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
318 {
319         struct flow_table *table = container_of(rcu, struct flow_table, rcu);
320
321         ovs_flow_tbl_destroy(table);
322 }
323
324 void ovs_flow_tbl_deferred_destroy(struct flow_table *table)
325 {
326         if (!table)
327                 return;
328
329         call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb);
330 }
331
332 struct sw_flow *ovs_flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *last)
333 {
334         struct sw_flow *flow;
335         struct hlist_head *head;
336         struct hlist_node *n;
337         int ver;
338         int i;
339
340         ver = table->node_ver;
341         while (*bucket < table->n_buckets) {
342                 i = 0;
343                 head = flex_array_get(table->buckets, *bucket);
344                 hlist_for_each_entry_rcu(flow, n, head, hash_node[ver]) {
345                         if (i < *last) {
346                                 i++;
347                                 continue;
348                         }
349                         *last = i + 1;
350                         return flow;
351                 }
352                 (*bucket)++;
353                 *last = 0;
354         }
355
356         return NULL;
357 }
358
359 static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new)
360 {
361         int old_ver;
362         int i;
363
364         old_ver = old->node_ver;
365         new->node_ver = !old_ver;
366
367         /* Insert in new table. */
368         for (i = 0; i < old->n_buckets; i++) {
369                 struct sw_flow *flow;
370                 struct hlist_head *head;
371                 struct hlist_node *n;
372
373                 head = flex_array_get(old->buckets, i);
374
375                 hlist_for_each_entry(flow, n, head, hash_node[old_ver])
376                         ovs_flow_tbl_insert(new, flow);
377         }
378         old->keep_flows = true;
379 }
380
381 static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets)
382 {
383         struct flow_table *new_table;
384
385         new_table = ovs_flow_tbl_alloc(n_buckets);
386         if (!new_table)
387                 return ERR_PTR(-ENOMEM);
388
389         flow_table_copy_flows(table, new_table);
390
391         return new_table;
392 }
393
394 struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table)
395 {
396         return __flow_tbl_rehash(table, table->n_buckets);
397 }
398
399 struct flow_table *ovs_flow_tbl_expand(struct flow_table *table)
400 {
401         return __flow_tbl_rehash(table, table->n_buckets * 2);
402 }
403
404 void ovs_flow_free(struct sw_flow *flow)
405 {
406         if (unlikely(!flow))
407                 return;
408
409         kfree((struct sf_flow_acts __force *)flow->sf_acts);
410         kmem_cache_free(flow_cache, flow);
411 }
412
413 /* RCU callback used by ovs_flow_deferred_free. */
414 static void rcu_free_flow_callback(struct rcu_head *rcu)
415 {
416         struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
417
418         ovs_flow_free(flow);
419 }
420
421 /* Schedules 'flow' to be freed after the next RCU grace period.
422  * The caller must hold rcu_read_lock for this to be sensible. */
423 void ovs_flow_deferred_free(struct sw_flow *flow)
424 {
425         call_rcu(&flow->rcu, rcu_free_flow_callback);
426 }
427
428 /* RCU callback used by ovs_flow_deferred_free_acts. */
429 static void rcu_free_acts_callback(struct rcu_head *rcu)
430 {
431         struct sw_flow_actions *sf_acts = container_of(rcu,
432                         struct sw_flow_actions, rcu);
433         kfree(sf_acts);
434 }
435
436 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
437  * The caller must hold rcu_read_lock for this to be sensible. */
438 void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
439 {
440         call_rcu(&sf_acts->rcu, rcu_free_acts_callback);
441 }
442
443 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
444 {
445         struct qtag_prefix {
446                 __be16 eth_type; /* ETH_P_8021Q */
447                 __be16 tci;
448         };
449         struct qtag_prefix *qp;
450
451         if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
452                 return 0;
453
454         if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
455                                          sizeof(__be16))))
456                 return -ENOMEM;
457
458         qp = (struct qtag_prefix *) skb->data;
459         key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
460         __skb_pull(skb, sizeof(struct qtag_prefix));
461
462         return 0;
463 }
464
465 static __be16 parse_ethertype(struct sk_buff *skb)
466 {
467         struct llc_snap_hdr {
468                 u8  dsap;  /* Always 0xAA */
469                 u8  ssap;  /* Always 0xAA */
470                 u8  ctrl;
471                 u8  oui[3];
472                 __be16 ethertype;
473         };
474         struct llc_snap_hdr *llc;
475         __be16 proto;
476
477         proto = *(__be16 *) skb->data;
478         __skb_pull(skb, sizeof(__be16));
479
480         if (ntohs(proto) >= 1536)
481                 return proto;
482
483         if (skb->len < sizeof(struct llc_snap_hdr))
484                 return htons(ETH_P_802_2);
485
486         if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
487                 return htons(0);
488
489         llc = (struct llc_snap_hdr *) skb->data;
490         if (llc->dsap != LLC_SAP_SNAP ||
491             llc->ssap != LLC_SAP_SNAP ||
492             (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
493                 return htons(ETH_P_802_2);
494
495         __skb_pull(skb, sizeof(struct llc_snap_hdr));
496         return llc->ethertype;
497 }
498
499 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
500                         int *key_lenp, int nh_len)
501 {
502         struct icmp6hdr *icmp = icmp6_hdr(skb);
503         int error = 0;
504         int key_len;
505
506         /* The ICMPv6 type and code fields use the 16-bit transport port
507          * fields, so we need to store them in 16-bit network byte order.
508          */
509         key->ipv6.tp.src = htons(icmp->icmp6_type);
510         key->ipv6.tp.dst = htons(icmp->icmp6_code);
511         key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
512
513         if (icmp->icmp6_code == 0 &&
514             (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
515              icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
516                 int icmp_len = skb->len - skb_transport_offset(skb);
517                 struct nd_msg *nd;
518                 int offset;
519
520                 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
521
522                 /* In order to process neighbor discovery options, we need the
523                  * entire packet.
524                  */
525                 if (unlikely(icmp_len < sizeof(*nd)))
526                         goto out;
527                 if (unlikely(skb_linearize(skb))) {
528                         error = -ENOMEM;
529                         goto out;
530                 }
531
532                 nd = (struct nd_msg *)skb_transport_header(skb);
533                 key->ipv6.nd.target = nd->target;
534                 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
535
536                 icmp_len -= sizeof(*nd);
537                 offset = 0;
538                 while (icmp_len >= 8) {
539                         struct nd_opt_hdr *nd_opt =
540                                  (struct nd_opt_hdr *)(nd->opt + offset);
541                         int opt_len = nd_opt->nd_opt_len * 8;
542
543                         if (unlikely(!opt_len || opt_len > icmp_len))
544                                 goto invalid;
545
546                         /* Store the link layer address if the appropriate
547                          * option is provided.  It is considered an error if
548                          * the same link layer option is specified twice.
549                          */
550                         if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
551                             && opt_len == 8) {
552                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
553                                         goto invalid;
554                                 memcpy(key->ipv6.nd.sll,
555                                     &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
556                         } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
557                                    && opt_len == 8) {
558                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
559                                         goto invalid;
560                                 memcpy(key->ipv6.nd.tll,
561                                     &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
562                         }
563
564                         icmp_len -= opt_len;
565                         offset += opt_len;
566                 }
567         }
568
569         goto out;
570
571 invalid:
572         memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
573         memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
574         memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
575
576 out:
577         *key_lenp = key_len;
578         return error;
579 }
580
581 /**
582  * ovs_flow_extract - extracts a flow key from an Ethernet frame.
583  * @skb: sk_buff that contains the frame, with skb->data pointing to the
584  * Ethernet header
585  * @in_port: port number on which @skb was received.
586  * @key: output flow key
587  * @key_lenp: length of output flow key
588  *
589  * The caller must ensure that skb->len >= ETH_HLEN.
590  *
591  * Returns 0 if successful, otherwise a negative errno value.
592  *
593  * Initializes @skb header pointers as follows:
594  *
595  *    - skb->mac_header: the Ethernet header.
596  *
597  *    - skb->network_header: just past the Ethernet header, or just past the
598  *      VLAN header, to the first byte of the Ethernet payload.
599  *
600  *    - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6
601  *      on output, then just past the IP header, if one is present and
602  *      of a correct length, otherwise the same as skb->network_header.
603  *      For other key->dl_type values it is left untouched.
604  */
605 int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key,
606                  int *key_lenp)
607 {
608         int error = 0;
609         int key_len = SW_FLOW_KEY_OFFSET(eth);
610         struct ethhdr *eth;
611
612         memset(key, 0, sizeof(*key));
613
614         key->phy.priority = skb->priority;
615         key->phy.in_port = in_port;
616
617         skb_reset_mac_header(skb);
618
619         /* Link layer.  We are guaranteed to have at least the 14 byte Ethernet
620          * header in the linear data area.
621          */
622         eth = eth_hdr(skb);
623         memcpy(key->eth.src, eth->h_source, ETH_ALEN);
624         memcpy(key->eth.dst, eth->h_dest, ETH_ALEN);
625
626         __skb_pull(skb, 2 * ETH_ALEN);
627
628         if (vlan_tx_tag_present(skb))
629                 key->eth.tci = htons(skb->vlan_tci);
630         else if (eth->h_proto == htons(ETH_P_8021Q))
631                 if (unlikely(parse_vlan(skb, key)))
632                         return -ENOMEM;
633
634         key->eth.type = parse_ethertype(skb);
635         if (unlikely(key->eth.type == htons(0)))
636                 return -ENOMEM;
637
638         skb_reset_network_header(skb);
639         __skb_push(skb, skb->data - skb_mac_header(skb));
640
641         /* Network layer. */
642         if (key->eth.type == htons(ETH_P_IP)) {
643                 struct iphdr *nh;
644                 __be16 offset;
645
646                 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
647
648                 error = check_iphdr(skb);
649                 if (unlikely(error)) {
650                         if (error == -EINVAL) {
651                                 skb->transport_header = skb->network_header;
652                                 error = 0;
653                         }
654                         goto out;
655                 }
656
657                 nh = ip_hdr(skb);
658                 key->ipv4.addr.src = nh->saddr;
659                 key->ipv4.addr.dst = nh->daddr;
660
661                 key->ip.proto = nh->protocol;
662                 key->ip.tos = nh->tos;
663                 key->ip.ttl = nh->ttl;
664
665                 offset = nh->frag_off & htons(IP_OFFSET);
666                 if (offset) {
667                         key->ip.frag = OVS_FRAG_TYPE_LATER;
668                         goto out;
669                 }
670                 if (nh->frag_off & htons(IP_MF) ||
671                          skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
672                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
673
674                 /* Transport layer. */
675                 if (key->ip.proto == IPPROTO_TCP) {
676                         key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
677                         if (tcphdr_ok(skb)) {
678                                 struct tcphdr *tcp = tcp_hdr(skb);
679                                 key->ipv4.tp.src = tcp->source;
680                                 key->ipv4.tp.dst = tcp->dest;
681                         }
682                 } else if (key->ip.proto == IPPROTO_UDP) {
683                         key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
684                         if (udphdr_ok(skb)) {
685                                 struct udphdr *udp = udp_hdr(skb);
686                                 key->ipv4.tp.src = udp->source;
687                                 key->ipv4.tp.dst = udp->dest;
688                         }
689                 } else if (key->ip.proto == IPPROTO_ICMP) {
690                         key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
691                         if (icmphdr_ok(skb)) {
692                                 struct icmphdr *icmp = icmp_hdr(skb);
693                                 /* The ICMP type and code fields use the 16-bit
694                                  * transport port fields, so we need to store
695                                  * them in 16-bit network byte order. */
696                                 key->ipv4.tp.src = htons(icmp->type);
697                                 key->ipv4.tp.dst = htons(icmp->code);
698                         }
699                 }
700
701         } else if (key->eth.type == htons(ETH_P_ARP) && arphdr_ok(skb)) {
702                 struct arp_eth_header *arp;
703
704                 arp = (struct arp_eth_header *)skb_network_header(skb);
705
706                 if (arp->ar_hrd == htons(ARPHRD_ETHER)
707                                 && arp->ar_pro == htons(ETH_P_IP)
708                                 && arp->ar_hln == ETH_ALEN
709                                 && arp->ar_pln == 4) {
710
711                         /* We only match on the lower 8 bits of the opcode. */
712                         if (ntohs(arp->ar_op) <= 0xff)
713                                 key->ip.proto = ntohs(arp->ar_op);
714
715                         if (key->ip.proto == ARPOP_REQUEST
716                                         || key->ip.proto == ARPOP_REPLY) {
717                                 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
718                                 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
719                                 memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN);
720                                 memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN);
721                                 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
722                         }
723                 }
724         } else if (key->eth.type == htons(ETH_P_IPV6)) {
725                 int nh_len;             /* IPv6 Header + Extensions */
726
727                 nh_len = parse_ipv6hdr(skb, key, &key_len);
728                 if (unlikely(nh_len < 0)) {
729                         if (nh_len == -EINVAL)
730                                 skb->transport_header = skb->network_header;
731                         else
732                                 error = nh_len;
733                         goto out;
734                 }
735
736                 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
737                         goto out;
738                 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
739                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
740
741                 /* Transport layer. */
742                 if (key->ip.proto == NEXTHDR_TCP) {
743                         key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
744                         if (tcphdr_ok(skb)) {
745                                 struct tcphdr *tcp = tcp_hdr(skb);
746                                 key->ipv6.tp.src = tcp->source;
747                                 key->ipv6.tp.dst = tcp->dest;
748                         }
749                 } else if (key->ip.proto == NEXTHDR_UDP) {
750                         key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
751                         if (udphdr_ok(skb)) {
752                                 struct udphdr *udp = udp_hdr(skb);
753                                 key->ipv6.tp.src = udp->source;
754                                 key->ipv6.tp.dst = udp->dest;
755                         }
756                 } else if (key->ip.proto == NEXTHDR_ICMP) {
757                         key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
758                         if (icmp6hdr_ok(skb)) {
759                                 error = parse_icmpv6(skb, key, &key_len, nh_len);
760                                 if (error < 0)
761                                         goto out;
762                         }
763                 }
764         }
765
766 out:
767         *key_lenp = key_len;
768         return error;
769 }
770
771 u32 ovs_flow_hash(const struct sw_flow_key *key, int key_len)
772 {
773         return jhash2((u32 *)key, DIV_ROUND_UP(key_len, sizeof(u32)), 0);
774 }
775
776 struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *table,
777                                 struct sw_flow_key *key, int key_len)
778 {
779         struct sw_flow *flow;
780         struct hlist_node *n;
781         struct hlist_head *head;
782         u32 hash;
783
784         hash = ovs_flow_hash(key, key_len);
785
786         head = find_bucket(table, hash);
787         hlist_for_each_entry_rcu(flow, n, head, hash_node[table->node_ver]) {
788
789                 if (flow->hash == hash &&
790                     !memcmp(&flow->key, key, key_len)) {
791                         return flow;
792                 }
793         }
794         return NULL;
795 }
796
797 void ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow)
798 {
799         struct hlist_head *head;
800
801         head = find_bucket(table, flow->hash);
802         hlist_add_head_rcu(&flow->hash_node[table->node_ver], head);
803         table->count++;
804 }
805
806 void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow)
807 {
808         hlist_del_rcu(&flow->hash_node[table->node_ver]);
809         table->count--;
810         BUG_ON(table->count < 0);
811 }
812
813 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
814 const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
815         [OVS_KEY_ATTR_ENCAP] = -1,
816         [OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
817         [OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
818         [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
819         [OVS_KEY_ATTR_VLAN] = sizeof(__be16),
820         [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
821         [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
822         [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
823         [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
824         [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
825         [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
826         [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
827         [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
828         [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
829 };
830
831 static int ipv4_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
832                                   const struct nlattr *a[], u32 *attrs)
833 {
834         const struct ovs_key_icmp *icmp_key;
835         const struct ovs_key_tcp *tcp_key;
836         const struct ovs_key_udp *udp_key;
837
838         switch (swkey->ip.proto) {
839         case IPPROTO_TCP:
840                 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
841                         return -EINVAL;
842                 *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
843
844                 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
845                 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
846                 swkey->ipv4.tp.src = tcp_key->tcp_src;
847                 swkey->ipv4.tp.dst = tcp_key->tcp_dst;
848                 break;
849
850         case IPPROTO_UDP:
851                 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
852                         return -EINVAL;
853                 *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
854
855                 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
856                 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
857                 swkey->ipv4.tp.src = udp_key->udp_src;
858                 swkey->ipv4.tp.dst = udp_key->udp_dst;
859                 break;
860
861         case IPPROTO_ICMP:
862                 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMP)))
863                         return -EINVAL;
864                 *attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
865
866                 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
867                 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
868                 swkey->ipv4.tp.src = htons(icmp_key->icmp_type);
869                 swkey->ipv4.tp.dst = htons(icmp_key->icmp_code);
870                 break;
871         }
872
873         return 0;
874 }
875
876 static int ipv6_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
877                                   const struct nlattr *a[], u32 *attrs)
878 {
879         const struct ovs_key_icmpv6 *icmpv6_key;
880         const struct ovs_key_tcp *tcp_key;
881         const struct ovs_key_udp *udp_key;
882
883         switch (swkey->ip.proto) {
884         case IPPROTO_TCP:
885                 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
886                         return -EINVAL;
887                 *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
888
889                 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
890                 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
891                 swkey->ipv6.tp.src = tcp_key->tcp_src;
892                 swkey->ipv6.tp.dst = tcp_key->tcp_dst;
893                 break;
894
895         case IPPROTO_UDP:
896                 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
897                         return -EINVAL;
898                 *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
899
900                 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
901                 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
902                 swkey->ipv6.tp.src = udp_key->udp_src;
903                 swkey->ipv6.tp.dst = udp_key->udp_dst;
904                 break;
905
906         case IPPROTO_ICMPV6:
907                 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMPV6)))
908                         return -EINVAL;
909                 *attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
910
911                 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
912                 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
913                 swkey->ipv6.tp.src = htons(icmpv6_key->icmpv6_type);
914                 swkey->ipv6.tp.dst = htons(icmpv6_key->icmpv6_code);
915
916                 if (swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
917                     swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
918                         const struct ovs_key_nd *nd_key;
919
920                         if (!(*attrs & (1 << OVS_KEY_ATTR_ND)))
921                                 return -EINVAL;
922                         *attrs &= ~(1 << OVS_KEY_ATTR_ND);
923
924                         *key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
925                         nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
926                         memcpy(&swkey->ipv6.nd.target, nd_key->nd_target,
927                                sizeof(swkey->ipv6.nd.target));
928                         memcpy(swkey->ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN);
929                         memcpy(swkey->ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN);
930                 }
931                 break;
932         }
933
934         return 0;
935 }
936
937 static int parse_flow_nlattrs(const struct nlattr *attr,
938                               const struct nlattr *a[], u32 *attrsp)
939 {
940         const struct nlattr *nla;
941         u32 attrs;
942         int rem;
943
944         attrs = 0;
945         nla_for_each_nested(nla, attr, rem) {
946                 u16 type = nla_type(nla);
947                 int expected_len;
948
949                 if (type > OVS_KEY_ATTR_MAX || attrs & (1 << type))
950                         return -EINVAL;
951
952                 expected_len = ovs_key_lens[type];
953                 if (nla_len(nla) != expected_len && expected_len != -1)
954                         return -EINVAL;
955
956                 attrs |= 1 << type;
957                 a[type] = nla;
958         }
959         if (rem)
960                 return -EINVAL;
961
962         *attrsp = attrs;
963         return 0;
964 }
965
966 /**
967  * ovs_flow_from_nlattrs - parses Netlink attributes into a flow key.
968  * @swkey: receives the extracted flow key.
969  * @key_lenp: number of bytes used in @swkey.
970  * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
971  * sequence.
972  */
973 int ovs_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp,
974                       const struct nlattr *attr)
975 {
976         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
977         const struct ovs_key_ethernet *eth_key;
978         int key_len;
979         u32 attrs;
980         int err;
981
982         memset(swkey, 0, sizeof(struct sw_flow_key));
983         key_len = SW_FLOW_KEY_OFFSET(eth);
984
985         err = parse_flow_nlattrs(attr, a, &attrs);
986         if (err)
987                 return err;
988
989         /* Metadata attributes. */
990         if (attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
991                 swkey->phy.priority = nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]);
992                 attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
993         }
994         if (attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
995                 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
996                 if (in_port >= DP_MAX_PORTS)
997                         return -EINVAL;
998                 swkey->phy.in_port = in_port;
999                 attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1000         } else {
1001                 swkey->phy.in_port = USHRT_MAX;
1002         }
1003
1004         /* Data attributes. */
1005         if (!(attrs & (1 << OVS_KEY_ATTR_ETHERNET)))
1006                 return -EINVAL;
1007         attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1008
1009         eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1010         memcpy(swkey->eth.src, eth_key->eth_src, ETH_ALEN);
1011         memcpy(swkey->eth.dst, eth_key->eth_dst, ETH_ALEN);
1012
1013         if (attrs & (1u << OVS_KEY_ATTR_ETHERTYPE) &&
1014             nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q)) {
1015                 const struct nlattr *encap;
1016                 __be16 tci;
1017
1018                 if (attrs != ((1 << OVS_KEY_ATTR_VLAN) |
1019                               (1 << OVS_KEY_ATTR_ETHERTYPE) |
1020                               (1 << OVS_KEY_ATTR_ENCAP)))
1021                         return -EINVAL;
1022
1023                 encap = a[OVS_KEY_ATTR_ENCAP];
1024                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1025                 if (tci & htons(VLAN_TAG_PRESENT)) {
1026                         swkey->eth.tci = tci;
1027
1028                         err = parse_flow_nlattrs(encap, a, &attrs);
1029                         if (err)
1030                                 return err;
1031                 } else if (!tci) {
1032                         /* Corner case for truncated 802.1Q header. */
1033                         if (nla_len(encap))
1034                                 return -EINVAL;
1035
1036                         swkey->eth.type = htons(ETH_P_8021Q);
1037                         *key_lenp = key_len;
1038                         return 0;
1039                 } else {
1040                         return -EINVAL;
1041                 }
1042         }
1043
1044         if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1045                 swkey->eth.type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1046                 if (ntohs(swkey->eth.type) < 1536)
1047                         return -EINVAL;
1048                 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1049         } else {
1050                 swkey->eth.type = htons(ETH_P_802_2);
1051         }
1052
1053         if (swkey->eth.type == htons(ETH_P_IP)) {
1054                 const struct ovs_key_ipv4 *ipv4_key;
1055
1056                 if (!(attrs & (1 << OVS_KEY_ATTR_IPV4)))
1057                         return -EINVAL;
1058                 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1059
1060                 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
1061                 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1062                 if (ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX)
1063                         return -EINVAL;
1064                 swkey->ip.proto = ipv4_key->ipv4_proto;
1065                 swkey->ip.tos = ipv4_key->ipv4_tos;
1066                 swkey->ip.ttl = ipv4_key->ipv4_ttl;
1067                 swkey->ip.frag = ipv4_key->ipv4_frag;
1068                 swkey->ipv4.addr.src = ipv4_key->ipv4_src;
1069                 swkey->ipv4.addr.dst = ipv4_key->ipv4_dst;
1070
1071                 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1072                         err = ipv4_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1073                         if (err)
1074                                 return err;
1075                 }
1076         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1077                 const struct ovs_key_ipv6 *ipv6_key;
1078
1079                 if (!(attrs & (1 << OVS_KEY_ATTR_IPV6)))
1080                         return -EINVAL;
1081                 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1082
1083                 key_len = SW_FLOW_KEY_OFFSET(ipv6.label);
1084                 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1085                 if (ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX)
1086                         return -EINVAL;
1087                 swkey->ipv6.label = ipv6_key->ipv6_label;
1088                 swkey->ip.proto = ipv6_key->ipv6_proto;
1089                 swkey->ip.tos = ipv6_key->ipv6_tclass;
1090                 swkey->ip.ttl = ipv6_key->ipv6_hlimit;
1091                 swkey->ip.frag = ipv6_key->ipv6_frag;
1092                 memcpy(&swkey->ipv6.addr.src, ipv6_key->ipv6_src,
1093                        sizeof(swkey->ipv6.addr.src));
1094                 memcpy(&swkey->ipv6.addr.dst, ipv6_key->ipv6_dst,
1095                        sizeof(swkey->ipv6.addr.dst));
1096
1097                 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1098                         err = ipv6_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1099                         if (err)
1100                                 return err;
1101                 }
1102         } else if (swkey->eth.type == htons(ETH_P_ARP)) {
1103                 const struct ovs_key_arp *arp_key;
1104
1105                 if (!(attrs & (1 << OVS_KEY_ATTR_ARP)))
1106                         return -EINVAL;
1107                 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1108
1109                 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
1110                 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1111                 swkey->ipv4.addr.src = arp_key->arp_sip;
1112                 swkey->ipv4.addr.dst = arp_key->arp_tip;
1113                 if (arp_key->arp_op & htons(0xff00))
1114                         return -EINVAL;
1115                 swkey->ip.proto = ntohs(arp_key->arp_op);
1116                 memcpy(swkey->ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN);
1117                 memcpy(swkey->ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN);
1118         }
1119
1120         if (attrs)
1121                 return -EINVAL;
1122         *key_lenp = key_len;
1123
1124         return 0;
1125 }
1126
1127 /**
1128  * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key.
1129  * @in_port: receives the extracted input port.
1130  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1131  * sequence.
1132  *
1133  * This parses a series of Netlink attributes that form a flow key, which must
1134  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1135  * get the metadata, that is, the parts of the flow key that cannot be
1136  * extracted from the packet itself.
1137  */
1138 int ovs_flow_metadata_from_nlattrs(u32 *priority, u16 *in_port,
1139                                const struct nlattr *attr)
1140 {
1141         const struct nlattr *nla;
1142         int rem;
1143
1144         *in_port = USHRT_MAX;
1145         *priority = 0;
1146
1147         nla_for_each_nested(nla, attr, rem) {
1148                 int type = nla_type(nla);
1149
1150                 if (type <= OVS_KEY_ATTR_MAX && ovs_key_lens[type] > 0) {
1151                         if (nla_len(nla) != ovs_key_lens[type])
1152                                 return -EINVAL;
1153
1154                         switch (type) {
1155                         case OVS_KEY_ATTR_PRIORITY:
1156                                 *priority = nla_get_u32(nla);
1157                                 break;
1158
1159                         case OVS_KEY_ATTR_IN_PORT:
1160                                 if (nla_get_u32(nla) >= DP_MAX_PORTS)
1161                                         return -EINVAL;
1162                                 *in_port = nla_get_u32(nla);
1163                                 break;
1164                         }
1165                 }
1166         }
1167         if (rem)
1168                 return -EINVAL;
1169         return 0;
1170 }
1171
1172 int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb)
1173 {
1174         struct ovs_key_ethernet *eth_key;
1175         struct nlattr *nla, *encap;
1176
1177         if (swkey->phy.priority)
1178                 NLA_PUT_U32(skb, OVS_KEY_ATTR_PRIORITY, swkey->phy.priority);
1179
1180         if (swkey->phy.in_port != USHRT_MAX)
1181                 NLA_PUT_U32(skb, OVS_KEY_ATTR_IN_PORT, swkey->phy.in_port);
1182
1183         nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1184         if (!nla)
1185                 goto nla_put_failure;
1186         eth_key = nla_data(nla);
1187         memcpy(eth_key->eth_src, swkey->eth.src, ETH_ALEN);
1188         memcpy(eth_key->eth_dst, swkey->eth.dst, ETH_ALEN);
1189
1190         if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1191                 NLA_PUT_BE16(skb, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_P_8021Q));
1192                 NLA_PUT_BE16(skb, OVS_KEY_ATTR_VLAN, swkey->eth.tci);
1193                 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1194                 if (!swkey->eth.tci)
1195                         goto unencap;
1196         } else {
1197                 encap = NULL;
1198         }
1199
1200         if (swkey->eth.type == htons(ETH_P_802_2))
1201                 goto unencap;
1202
1203         NLA_PUT_BE16(skb, OVS_KEY_ATTR_ETHERTYPE, swkey->eth.type);
1204
1205         if (swkey->eth.type == htons(ETH_P_IP)) {
1206                 struct ovs_key_ipv4 *ipv4_key;
1207
1208                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1209                 if (!nla)
1210                         goto nla_put_failure;
1211                 ipv4_key = nla_data(nla);
1212                 ipv4_key->ipv4_src = swkey->ipv4.addr.src;
1213                 ipv4_key->ipv4_dst = swkey->ipv4.addr.dst;
1214                 ipv4_key->ipv4_proto = swkey->ip.proto;
1215                 ipv4_key->ipv4_tos = swkey->ip.tos;
1216                 ipv4_key->ipv4_ttl = swkey->ip.ttl;
1217                 ipv4_key->ipv4_frag = swkey->ip.frag;
1218         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1219                 struct ovs_key_ipv6 *ipv6_key;
1220
1221                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1222                 if (!nla)
1223                         goto nla_put_failure;
1224                 ipv6_key = nla_data(nla);
1225                 memcpy(ipv6_key->ipv6_src, &swkey->ipv6.addr.src,
1226                                 sizeof(ipv6_key->ipv6_src));
1227                 memcpy(ipv6_key->ipv6_dst, &swkey->ipv6.addr.dst,
1228                                 sizeof(ipv6_key->ipv6_dst));
1229                 ipv6_key->ipv6_label = swkey->ipv6.label;
1230                 ipv6_key->ipv6_proto = swkey->ip.proto;
1231                 ipv6_key->ipv6_tclass = swkey->ip.tos;
1232                 ipv6_key->ipv6_hlimit = swkey->ip.ttl;
1233                 ipv6_key->ipv6_frag = swkey->ip.frag;
1234         } else if (swkey->eth.type == htons(ETH_P_ARP)) {
1235                 struct ovs_key_arp *arp_key;
1236
1237                 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1238                 if (!nla)
1239                         goto nla_put_failure;
1240                 arp_key = nla_data(nla);
1241                 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1242                 arp_key->arp_sip = swkey->ipv4.addr.src;
1243                 arp_key->arp_tip = swkey->ipv4.addr.dst;
1244                 arp_key->arp_op = htons(swkey->ip.proto);
1245                 memcpy(arp_key->arp_sha, swkey->ipv4.arp.sha, ETH_ALEN);
1246                 memcpy(arp_key->arp_tha, swkey->ipv4.arp.tha, ETH_ALEN);
1247         }
1248
1249         if ((swkey->eth.type == htons(ETH_P_IP) ||
1250              swkey->eth.type == htons(ETH_P_IPV6)) &&
1251              swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1252
1253                 if (swkey->ip.proto == IPPROTO_TCP) {
1254                         struct ovs_key_tcp *tcp_key;
1255
1256                         nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1257                         if (!nla)
1258                                 goto nla_put_failure;
1259                         tcp_key = nla_data(nla);
1260                         if (swkey->eth.type == htons(ETH_P_IP)) {
1261                                 tcp_key->tcp_src = swkey->ipv4.tp.src;
1262                                 tcp_key->tcp_dst = swkey->ipv4.tp.dst;
1263                         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1264                                 tcp_key->tcp_src = swkey->ipv6.tp.src;
1265                                 tcp_key->tcp_dst = swkey->ipv6.tp.dst;
1266                         }
1267                 } else if (swkey->ip.proto == IPPROTO_UDP) {
1268                         struct ovs_key_udp *udp_key;
1269
1270                         nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1271                         if (!nla)
1272                                 goto nla_put_failure;
1273                         udp_key = nla_data(nla);
1274                         if (swkey->eth.type == htons(ETH_P_IP)) {
1275                                 udp_key->udp_src = swkey->ipv4.tp.src;
1276                                 udp_key->udp_dst = swkey->ipv4.tp.dst;
1277                         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1278                                 udp_key->udp_src = swkey->ipv6.tp.src;
1279                                 udp_key->udp_dst = swkey->ipv6.tp.dst;
1280                         }
1281                 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1282                            swkey->ip.proto == IPPROTO_ICMP) {
1283                         struct ovs_key_icmp *icmp_key;
1284
1285                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1286                         if (!nla)
1287                                 goto nla_put_failure;
1288                         icmp_key = nla_data(nla);
1289                         icmp_key->icmp_type = ntohs(swkey->ipv4.tp.src);
1290                         icmp_key->icmp_code = ntohs(swkey->ipv4.tp.dst);
1291                 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1292                            swkey->ip.proto == IPPROTO_ICMPV6) {
1293                         struct ovs_key_icmpv6 *icmpv6_key;
1294
1295                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1296                                                 sizeof(*icmpv6_key));
1297                         if (!nla)
1298                                 goto nla_put_failure;
1299                         icmpv6_key = nla_data(nla);
1300                         icmpv6_key->icmpv6_type = ntohs(swkey->ipv6.tp.src);
1301                         icmpv6_key->icmpv6_code = ntohs(swkey->ipv6.tp.dst);
1302
1303                         if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1304                             icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1305                                 struct ovs_key_nd *nd_key;
1306
1307                                 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1308                                 if (!nla)
1309                                         goto nla_put_failure;
1310                                 nd_key = nla_data(nla);
1311                                 memcpy(nd_key->nd_target, &swkey->ipv6.nd.target,
1312                                                         sizeof(nd_key->nd_target));
1313                                 memcpy(nd_key->nd_sll, swkey->ipv6.nd.sll, ETH_ALEN);
1314                                 memcpy(nd_key->nd_tll, swkey->ipv6.nd.tll, ETH_ALEN);
1315                         }
1316                 }
1317         }
1318
1319 unencap:
1320         if (encap)
1321                 nla_nest_end(skb, encap);
1322
1323         return 0;
1324
1325 nla_put_failure:
1326         return -EMSGSIZE;
1327 }
1328
1329 /* Initializes the flow module.
1330  * Returns zero if successful or a negative error code. */
1331 int ovs_flow_init(void)
1332 {
1333         flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
1334                                         0, NULL);
1335         if (flow_cache == NULL)
1336                 return -ENOMEM;
1337
1338         return 0;
1339 }
1340
1341 /* Uninitializes the flow module. */
1342 void ovs_flow_exit(void)
1343 {
1344         kmem_cache_destroy(flow_cache);
1345 }