]> Pileus Git - ~andy/linux/blob - net/ipv4/tcp_ipv4.c
[INET]: Generalise tcp_v4_hash_connect
[~andy/linux] / net / ipv4 / tcp_ipv4.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:     $Id: tcp_ipv4.c,v 1.240 2002/02/01 22:01:04 davem Exp $
9  *
10  *              IPv4 specific functions
11  *
12  *
13  *              code split from:
14  *              linux/ipv4/tcp.c
15  *              linux/ipv4/tcp_input.c
16  *              linux/ipv4/tcp_output.c
17  *
18  *              See tcp.c for author information
19  *
20  *      This program is free software; you can redistribute it and/or
21  *      modify it under the terms of the GNU General Public License
22  *      as published by the Free Software Foundation; either version
23  *      2 of the License, or (at your option) any later version.
24  */
25
26 /*
27  * Changes:
28  *              David S. Miller :       New socket lookup architecture.
29  *                                      This code is dedicated to John Dyson.
30  *              David S. Miller :       Change semantics of established hash,
31  *                                      half is devoted to TIME_WAIT sockets
32  *                                      and the rest go in the other half.
33  *              Andi Kleen :            Add support for syncookies and fixed
34  *                                      some bugs: ip options weren't passed to
35  *                                      the TCP layer, missed a check for an
36  *                                      ACK bit.
37  *              Andi Kleen :            Implemented fast path mtu discovery.
38  *                                      Fixed many serious bugs in the
39  *                                      request_sock handling and moved
40  *                                      most of it into the af independent code.
41  *                                      Added tail drop and some other bugfixes.
42  *                                      Added new listen semantics.
43  *              Mike McLagan    :       Routing by source
44  *      Juan Jose Ciarlante:            ip_dynaddr bits
45  *              Andi Kleen:             various fixes.
46  *      Vitaly E. Lavrov        :       Transparent proxy revived after year
47  *                                      coma.
48  *      Andi Kleen              :       Fix new listen.
49  *      Andi Kleen              :       Fix accept error reporting.
50  *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
51  *      Alexey Kuznetsov                allow both IPv4 and IPv6 sockets to bind
52  *                                      a single port at the same time.
53  */
54
55 #include <linux/config.h>
56
57 #include <linux/types.h>
58 #include <linux/fcntl.h>
59 #include <linux/module.h>
60 #include <linux/random.h>
61 #include <linux/cache.h>
62 #include <linux/jhash.h>
63 #include <linux/init.h>
64 #include <linux/times.h>
65
66 #include <net/icmp.h>
67 #include <net/inet_hashtables.h>
68 #include <net/tcp.h>
69 #include <net/transp_v6.h>
70 #include <net/ipv6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
73 #include <net/xfrm.h>
74
75 #include <linux/inet.h>
76 #include <linux/ipv6.h>
77 #include <linux/stddef.h>
78 #include <linux/proc_fs.h>
79 #include <linux/seq_file.h>
80
81 int sysctl_tcp_tw_reuse;
82 int sysctl_tcp_low_latency;
83
84 /* Check TCP sequence numbers in ICMP packets. */
85 #define ICMP_MIN_LENGTH 8
86
87 /* Socket used for sending RSTs */
88 static struct socket *tcp_socket;
89
90 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb);
91
92 struct inet_hashinfo __cacheline_aligned tcp_hashinfo = {
93         .lhash_lock     = RW_LOCK_UNLOCKED,
94         .lhash_users    = ATOMIC_INIT(0),
95         .lhash_wait     = __WAIT_QUEUE_HEAD_INITIALIZER(tcp_hashinfo.lhash_wait),
96 };
97
98 static int tcp_v4_get_port(struct sock *sk, unsigned short snum)
99 {
100         return inet_csk_get_port(&tcp_hashinfo, sk, snum,
101                                  inet_csk_bind_conflict);
102 }
103
104 static void tcp_v4_hash(struct sock *sk)
105 {
106         inet_hash(&tcp_hashinfo, sk);
107 }
108
109 void tcp_unhash(struct sock *sk)
110 {
111         inet_unhash(&tcp_hashinfo, sk);
112 }
113
114 static inline __u32 tcp_v4_init_sequence(struct sock *sk, struct sk_buff *skb)
115 {
116         return secure_tcp_sequence_number(skb->nh.iph->daddr,
117                                           skb->nh.iph->saddr,
118                                           skb->h.th->dest,
119                                           skb->h.th->source);
120 }
121
122 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
123 {
124         const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
125         struct tcp_sock *tp = tcp_sk(sk);
126
127         /* With PAWS, it is safe from the viewpoint
128            of data integrity. Even without PAWS it is safe provided sequence
129            spaces do not overlap i.e. at data rates <= 80Mbit/sec.
130
131            Actually, the idea is close to VJ's one, only timestamp cache is
132            held not per host, but per port pair and TW bucket is used as state
133            holder.
134
135            If TW bucket has been already destroyed we fall back to VJ's scheme
136            and use initial timestamp retrieved from peer table.
137          */
138         if (tcptw->tw_ts_recent_stamp &&
139             (twp == NULL || (sysctl_tcp_tw_reuse &&
140                              xtime.tv_sec - tcptw->tw_ts_recent_stamp > 1))) {
141                 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
142                 if (tp->write_seq == 0)
143                         tp->write_seq = 1;
144                 tp->rx_opt.ts_recent       = tcptw->tw_ts_recent;
145                 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
146                 sock_hold(sktw);
147                 return 1;
148         }
149
150         return 0;
151 }
152
153 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
154
155 /* This will initiate an outgoing connection. */
156 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
157 {
158         struct inet_sock *inet = inet_sk(sk);
159         struct tcp_sock *tp = tcp_sk(sk);
160         struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
161         struct rtable *rt;
162         u32 daddr, nexthop;
163         int tmp;
164         int err;
165
166         if (addr_len < sizeof(struct sockaddr_in))
167                 return -EINVAL;
168
169         if (usin->sin_family != AF_INET)
170                 return -EAFNOSUPPORT;
171
172         nexthop = daddr = usin->sin_addr.s_addr;
173         if (inet->opt && inet->opt->srr) {
174                 if (!daddr)
175                         return -EINVAL;
176                 nexthop = inet->opt->faddr;
177         }
178
179         tmp = ip_route_connect(&rt, nexthop, inet->saddr,
180                                RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
181                                IPPROTO_TCP,
182                                inet->sport, usin->sin_port, sk);
183         if (tmp < 0)
184                 return tmp;
185
186         if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
187                 ip_rt_put(rt);
188                 return -ENETUNREACH;
189         }
190
191         if (!inet->opt || !inet->opt->srr)
192                 daddr = rt->rt_dst;
193
194         if (!inet->saddr)
195                 inet->saddr = rt->rt_src;
196         inet->rcv_saddr = inet->saddr;
197
198         if (tp->rx_opt.ts_recent_stamp && inet->daddr != daddr) {
199                 /* Reset inherited state */
200                 tp->rx_opt.ts_recent       = 0;
201                 tp->rx_opt.ts_recent_stamp = 0;
202                 tp->write_seq              = 0;
203         }
204
205         if (tcp_death_row.sysctl_tw_recycle &&
206             !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
207                 struct inet_peer *peer = rt_get_peer(rt);
208
209                 /* VJ's idea. We save last timestamp seen from
210                  * the destination in peer table, when entering state TIME-WAIT
211                  * and initialize rx_opt.ts_recent from it, when trying new connection.
212                  */
213
214                 if (peer && peer->tcp_ts_stamp + TCP_PAWS_MSL >= xtime.tv_sec) {
215                         tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
216                         tp->rx_opt.ts_recent = peer->tcp_ts;
217                 }
218         }
219
220         inet->dport = usin->sin_port;
221         inet->daddr = daddr;
222
223         tp->ext_header_len = 0;
224         if (inet->opt)
225                 tp->ext_header_len = inet->opt->optlen;
226
227         tp->rx_opt.mss_clamp = 536;
228
229         /* Socket identity is still unknown (sport may be zero).
230          * However we set state to SYN-SENT and not releasing socket
231          * lock select source port, enter ourselves into the hash tables and
232          * complete initialization after this.
233          */
234         tcp_set_state(sk, TCP_SYN_SENT);
235         err = inet_hash_connect(&tcp_death_row, sk);
236         if (err)
237                 goto failure;
238
239         err = ip_route_newports(&rt, inet->sport, inet->dport, sk);
240         if (err)
241                 goto failure;
242
243         /* OK, now commit destination to socket.  */
244         sk_setup_caps(sk, &rt->u.dst);
245
246         if (!tp->write_seq)
247                 tp->write_seq = secure_tcp_sequence_number(inet->saddr,
248                                                            inet->daddr,
249                                                            inet->sport,
250                                                            usin->sin_port);
251
252         inet->id = tp->write_seq ^ jiffies;
253
254         err = tcp_connect(sk);
255         rt = NULL;
256         if (err)
257                 goto failure;
258
259         return 0;
260
261 failure:
262         /* This unhashes the socket and releases the local port, if necessary. */
263         tcp_set_state(sk, TCP_CLOSE);
264         ip_rt_put(rt);
265         sk->sk_route_caps = 0;
266         inet->dport = 0;
267         return err;
268 }
269
270 /*
271  * This routine does path mtu discovery as defined in RFC1191.
272  */
273 static inline void do_pmtu_discovery(struct sock *sk, struct iphdr *iph,
274                                      u32 mtu)
275 {
276         struct dst_entry *dst;
277         struct inet_sock *inet = inet_sk(sk);
278         struct tcp_sock *tp = tcp_sk(sk);
279
280         /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
281          * send out by Linux are always <576bytes so they should go through
282          * unfragmented).
283          */
284         if (sk->sk_state == TCP_LISTEN)
285                 return;
286
287         /* We don't check in the destentry if pmtu discovery is forbidden
288          * on this route. We just assume that no packet_to_big packets
289          * are send back when pmtu discovery is not active.
290          * There is a small race when the user changes this flag in the
291          * route, but I think that's acceptable.
292          */
293         if ((dst = __sk_dst_check(sk, 0)) == NULL)
294                 return;
295
296         dst->ops->update_pmtu(dst, mtu);
297
298         /* Something is about to be wrong... Remember soft error
299          * for the case, if this connection will not able to recover.
300          */
301         if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
302                 sk->sk_err_soft = EMSGSIZE;
303
304         mtu = dst_mtu(dst);
305
306         if (inet->pmtudisc != IP_PMTUDISC_DONT &&
307             tp->pmtu_cookie > mtu) {
308                 tcp_sync_mss(sk, mtu);
309
310                 /* Resend the TCP packet because it's
311                  * clear that the old packet has been
312                  * dropped. This is the new "fast" path mtu
313                  * discovery.
314                  */
315                 tcp_simple_retransmit(sk);
316         } /* else let the usual retransmit timer handle it */
317 }
318
319 /*
320  * This routine is called by the ICMP module when it gets some
321  * sort of error condition.  If err < 0 then the socket should
322  * be closed and the error returned to the user.  If err > 0
323  * it's just the icmp type << 8 | icmp code.  After adjustment
324  * header points to the first 8 bytes of the tcp header.  We need
325  * to find the appropriate port.
326  *
327  * The locking strategy used here is very "optimistic". When
328  * someone else accesses the socket the ICMP is just dropped
329  * and for some paths there is no check at all.
330  * A more general error queue to queue errors for later handling
331  * is probably better.
332  *
333  */
334
335 void tcp_v4_err(struct sk_buff *skb, u32 info)
336 {
337         struct iphdr *iph = (struct iphdr *)skb->data;
338         struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
339         struct tcp_sock *tp;
340         struct inet_sock *inet;
341         int type = skb->h.icmph->type;
342         int code = skb->h.icmph->code;
343         struct sock *sk;
344         __u32 seq;
345         int err;
346
347         if (skb->len < (iph->ihl << 2) + 8) {
348                 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
349                 return;
350         }
351
352         sk = inet_lookup(&tcp_hashinfo, iph->daddr, th->dest, iph->saddr,
353                          th->source, inet_iif(skb));
354         if (!sk) {
355                 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
356                 return;
357         }
358         if (sk->sk_state == TCP_TIME_WAIT) {
359                 inet_twsk_put((struct inet_timewait_sock *)sk);
360                 return;
361         }
362
363         bh_lock_sock(sk);
364         /* If too many ICMPs get dropped on busy
365          * servers this needs to be solved differently.
366          */
367         if (sock_owned_by_user(sk))
368                 NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS);
369
370         if (sk->sk_state == TCP_CLOSE)
371                 goto out;
372
373         tp = tcp_sk(sk);
374         seq = ntohl(th->seq);
375         if (sk->sk_state != TCP_LISTEN &&
376             !between(seq, tp->snd_una, tp->snd_nxt)) {
377                 NET_INC_STATS(LINUX_MIB_OUTOFWINDOWICMPS);
378                 goto out;
379         }
380
381         switch (type) {
382         case ICMP_SOURCE_QUENCH:
383                 /* Just silently ignore these. */
384                 goto out;
385         case ICMP_PARAMETERPROB:
386                 err = EPROTO;
387                 break;
388         case ICMP_DEST_UNREACH:
389                 if (code > NR_ICMP_UNREACH)
390                         goto out;
391
392                 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
393                         if (!sock_owned_by_user(sk))
394                                 do_pmtu_discovery(sk, iph, info);
395                         goto out;
396                 }
397
398                 err = icmp_err_convert[code].errno;
399                 break;
400         case ICMP_TIME_EXCEEDED:
401                 err = EHOSTUNREACH;
402                 break;
403         default:
404                 goto out;
405         }
406
407         switch (sk->sk_state) {
408                 struct request_sock *req, **prev;
409         case TCP_LISTEN:
410                 if (sock_owned_by_user(sk))
411                         goto out;
412
413                 req = inet_csk_search_req(sk, &prev, th->dest,
414                                           iph->daddr, iph->saddr);
415                 if (!req)
416                         goto out;
417
418                 /* ICMPs are not backlogged, hence we cannot get
419                    an established socket here.
420                  */
421                 BUG_TRAP(!req->sk);
422
423                 if (seq != tcp_rsk(req)->snt_isn) {
424                         NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS);
425                         goto out;
426                 }
427
428                 /*
429                  * Still in SYN_RECV, just remove it silently.
430                  * There is no good way to pass the error to the newly
431                  * created socket, and POSIX does not want network
432                  * errors returned from accept().
433                  */
434                 inet_csk_reqsk_queue_drop(sk, req, prev);
435                 goto out;
436
437         case TCP_SYN_SENT:
438         case TCP_SYN_RECV:  /* Cannot happen.
439                                It can f.e. if SYNs crossed.
440                              */
441                 if (!sock_owned_by_user(sk)) {
442                         TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS);
443                         sk->sk_err = err;
444
445                         sk->sk_error_report(sk);
446
447                         tcp_done(sk);
448                 } else {
449                         sk->sk_err_soft = err;
450                 }
451                 goto out;
452         }
453
454         /* If we've already connected we will keep trying
455          * until we time out, or the user gives up.
456          *
457          * rfc1122 4.2.3.9 allows to consider as hard errors
458          * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
459          * but it is obsoleted by pmtu discovery).
460          *
461          * Note, that in modern internet, where routing is unreliable
462          * and in each dark corner broken firewalls sit, sending random
463          * errors ordered by their masters even this two messages finally lose
464          * their original sense (even Linux sends invalid PORT_UNREACHs)
465          *
466          * Now we are in compliance with RFCs.
467          *                                                      --ANK (980905)
468          */
469
470         inet = inet_sk(sk);
471         if (!sock_owned_by_user(sk) && inet->recverr) {
472                 sk->sk_err = err;
473                 sk->sk_error_report(sk);
474         } else  { /* Only an error on timeout */
475                 sk->sk_err_soft = err;
476         }
477
478 out:
479         bh_unlock_sock(sk);
480         sock_put(sk);
481 }
482
483 /* This routine computes an IPv4 TCP checksum. */
484 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb)
485 {
486         struct inet_sock *inet = inet_sk(sk);
487         struct tcphdr *th = skb->h.th;
488
489         if (skb->ip_summed == CHECKSUM_HW) {
490                 th->check = ~tcp_v4_check(th, len, inet->saddr, inet->daddr, 0);
491                 skb->csum = offsetof(struct tcphdr, check);
492         } else {
493                 th->check = tcp_v4_check(th, len, inet->saddr, inet->daddr,
494                                          csum_partial((char *)th,
495                                                       th->doff << 2,
496                                                       skb->csum));
497         }
498 }
499
500 /*
501  *      This routine will send an RST to the other tcp.
502  *
503  *      Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
504  *                    for reset.
505  *      Answer: if a packet caused RST, it is not for a socket
506  *              existing in our system, if it is matched to a socket,
507  *              it is just duplicate segment or bug in other side's TCP.
508  *              So that we build reply only basing on parameters
509  *              arrived with segment.
510  *      Exception: precedence violation. We do not implement it in any case.
511  */
512
513 static void tcp_v4_send_reset(struct sk_buff *skb)
514 {
515         struct tcphdr *th = skb->h.th;
516         struct tcphdr rth;
517         struct ip_reply_arg arg;
518
519         /* Never send a reset in response to a reset. */
520         if (th->rst)
521                 return;
522
523         if (((struct rtable *)skb->dst)->rt_type != RTN_LOCAL)
524                 return;
525
526         /* Swap the send and the receive. */
527         memset(&rth, 0, sizeof(struct tcphdr));
528         rth.dest   = th->source;
529         rth.source = th->dest;
530         rth.doff   = sizeof(struct tcphdr) / 4;
531         rth.rst    = 1;
532
533         if (th->ack) {
534                 rth.seq = th->ack_seq;
535         } else {
536                 rth.ack = 1;
537                 rth.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
538                                     skb->len - (th->doff << 2));
539         }
540
541         memset(&arg, 0, sizeof arg);
542         arg.iov[0].iov_base = (unsigned char *)&rth;
543         arg.iov[0].iov_len  = sizeof rth;
544         arg.csum = csum_tcpudp_nofold(skb->nh.iph->daddr,
545                                       skb->nh.iph->saddr, /*XXX*/
546                                       sizeof(struct tcphdr), IPPROTO_TCP, 0);
547         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
548
549         ip_send_reply(tcp_socket->sk, skb, &arg, sizeof rth);
550
551         TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
552         TCP_INC_STATS_BH(TCP_MIB_OUTRSTS);
553 }
554
555 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
556    outside socket context is ugly, certainly. What can I do?
557  */
558
559 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
560                             u32 win, u32 ts)
561 {
562         struct tcphdr *th = skb->h.th;
563         struct {
564                 struct tcphdr th;
565                 u32 tsopt[3];
566         } rep;
567         struct ip_reply_arg arg;
568
569         memset(&rep.th, 0, sizeof(struct tcphdr));
570         memset(&arg, 0, sizeof arg);
571
572         arg.iov[0].iov_base = (unsigned char *)&rep;
573         arg.iov[0].iov_len  = sizeof(rep.th);
574         if (ts) {
575                 rep.tsopt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
576                                      (TCPOPT_TIMESTAMP << 8) |
577                                      TCPOLEN_TIMESTAMP);
578                 rep.tsopt[1] = htonl(tcp_time_stamp);
579                 rep.tsopt[2] = htonl(ts);
580                 arg.iov[0].iov_len = sizeof(rep);
581         }
582
583         /* Swap the send and the receive. */
584         rep.th.dest    = th->source;
585         rep.th.source  = th->dest;
586         rep.th.doff    = arg.iov[0].iov_len / 4;
587         rep.th.seq     = htonl(seq);
588         rep.th.ack_seq = htonl(ack);
589         rep.th.ack     = 1;
590         rep.th.window  = htons(win);
591
592         arg.csum = csum_tcpudp_nofold(skb->nh.iph->daddr,
593                                       skb->nh.iph->saddr, /*XXX*/
594                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
595         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
596
597         ip_send_reply(tcp_socket->sk, skb, &arg, arg.iov[0].iov_len);
598
599         TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
600 }
601
602 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
603 {
604         struct inet_timewait_sock *tw = inet_twsk(sk);
605         const struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
606
607         tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
608                         tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, tcptw->tw_ts_recent);
609
610         inet_twsk_put(tw);
611 }
612
613 static void tcp_v4_reqsk_send_ack(struct sk_buff *skb, struct request_sock *req)
614 {
615         tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1, tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
616                         req->ts_recent);
617 }
618
619 /*
620  *      Send a SYN-ACK after having received an ACK.
621  *      This still operates on a request_sock only, not on a big
622  *      socket.
623  */
624 static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req,
625                               struct dst_entry *dst)
626 {
627         const struct inet_request_sock *ireq = inet_rsk(req);
628         int err = -1;
629         struct sk_buff * skb;
630
631         /* First, grab a route. */
632         if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
633                 goto out;
634
635         skb = tcp_make_synack(sk, dst, req);
636
637         if (skb) {
638                 struct tcphdr *th = skb->h.th;
639
640                 th->check = tcp_v4_check(th, skb->len,
641                                          ireq->loc_addr,
642                                          ireq->rmt_addr,
643                                          csum_partial((char *)th, skb->len,
644                                                       skb->csum));
645
646                 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
647                                             ireq->rmt_addr,
648                                             ireq->opt);
649                 if (err == NET_XMIT_CN)
650                         err = 0;
651         }
652
653 out:
654         dst_release(dst);
655         return err;
656 }
657
658 /*
659  *      IPv4 request_sock destructor.
660  */
661 static void tcp_v4_reqsk_destructor(struct request_sock *req)
662 {
663         kfree(inet_rsk(req)->opt);
664 }
665
666 static inline void syn_flood_warning(struct sk_buff *skb)
667 {
668         static unsigned long warntime;
669
670         if (time_after(jiffies, (warntime + HZ * 60))) {
671                 warntime = jiffies;
672                 printk(KERN_INFO
673                        "possible SYN flooding on port %d. Sending cookies.\n",
674                        ntohs(skb->h.th->dest));
675         }
676 }
677
678 /*
679  * Save and compile IPv4 options into the request_sock if needed.
680  */
681 static inline struct ip_options *tcp_v4_save_options(struct sock *sk,
682                                                      struct sk_buff *skb)
683 {
684         struct ip_options *opt = &(IPCB(skb)->opt);
685         struct ip_options *dopt = NULL;
686
687         if (opt && opt->optlen) {
688                 int opt_size = optlength(opt);
689                 dopt = kmalloc(opt_size, GFP_ATOMIC);
690                 if (dopt) {
691                         if (ip_options_echo(dopt, skb)) {
692                                 kfree(dopt);
693                                 dopt = NULL;
694                         }
695                 }
696         }
697         return dopt;
698 }
699
700 struct request_sock_ops tcp_request_sock_ops = {
701         .family         =       PF_INET,
702         .obj_size       =       sizeof(struct tcp_request_sock),
703         .rtx_syn_ack    =       tcp_v4_send_synack,
704         .send_ack       =       tcp_v4_reqsk_send_ack,
705         .destructor     =       tcp_v4_reqsk_destructor,
706         .send_reset     =       tcp_v4_send_reset,
707 };
708
709 static struct timewait_sock_ops tcp_timewait_sock_ops = {
710         .twsk_obj_size  = sizeof(struct tcp_timewait_sock),
711         .twsk_unique    = tcp_twsk_unique,
712 };
713
714 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
715 {
716         struct inet_request_sock *ireq;
717         struct tcp_options_received tmp_opt;
718         struct request_sock *req;
719         __u32 saddr = skb->nh.iph->saddr;
720         __u32 daddr = skb->nh.iph->daddr;
721         __u32 isn = TCP_SKB_CB(skb)->when;
722         struct dst_entry *dst = NULL;
723 #ifdef CONFIG_SYN_COOKIES
724         int want_cookie = 0;
725 #else
726 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
727 #endif
728
729         /* Never answer to SYNs send to broadcast or multicast */
730         if (((struct rtable *)skb->dst)->rt_flags &
731             (RTCF_BROADCAST | RTCF_MULTICAST))
732                 goto drop;
733
734         /* TW buckets are converted to open requests without
735          * limitations, they conserve resources and peer is
736          * evidently real one.
737          */
738         if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
739 #ifdef CONFIG_SYN_COOKIES
740                 if (sysctl_tcp_syncookies) {
741                         want_cookie = 1;
742                 } else
743 #endif
744                 goto drop;
745         }
746
747         /* Accept backlog is full. If we have already queued enough
748          * of warm entries in syn queue, drop request. It is better than
749          * clogging syn queue with openreqs with exponentially increasing
750          * timeout.
751          */
752         if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
753                 goto drop;
754
755         req = reqsk_alloc(&tcp_request_sock_ops);
756         if (!req)
757                 goto drop;
758
759         tcp_clear_options(&tmp_opt);
760         tmp_opt.mss_clamp = 536;
761         tmp_opt.user_mss  = tcp_sk(sk)->rx_opt.user_mss;
762
763         tcp_parse_options(skb, &tmp_opt, 0);
764
765         if (want_cookie) {
766                 tcp_clear_options(&tmp_opt);
767                 tmp_opt.saw_tstamp = 0;
768         }
769
770         if (tmp_opt.saw_tstamp && !tmp_opt.rcv_tsval) {
771                 /* Some OSes (unknown ones, but I see them on web server, which
772                  * contains information interesting only for windows'
773                  * users) do not send their stamp in SYN. It is easy case.
774                  * We simply do not advertise TS support.
775                  */
776                 tmp_opt.saw_tstamp = 0;
777                 tmp_opt.tstamp_ok  = 0;
778         }
779         tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
780
781         tcp_openreq_init(req, &tmp_opt, skb);
782
783         ireq = inet_rsk(req);
784         ireq->loc_addr = daddr;
785         ireq->rmt_addr = saddr;
786         ireq->opt = tcp_v4_save_options(sk, skb);
787         if (!want_cookie)
788                 TCP_ECN_create_request(req, skb->h.th);
789
790         if (want_cookie) {
791 #ifdef CONFIG_SYN_COOKIES
792                 syn_flood_warning(skb);
793 #endif
794                 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
795         } else if (!isn) {
796                 struct inet_peer *peer = NULL;
797
798                 /* VJ's idea. We save last timestamp seen
799                  * from the destination in peer table, when entering
800                  * state TIME-WAIT, and check against it before
801                  * accepting new connection request.
802                  *
803                  * If "isn" is not zero, this request hit alive
804                  * timewait bucket, so that all the necessary checks
805                  * are made in the function processing timewait state.
806                  */
807                 if (tmp_opt.saw_tstamp &&
808                     tcp_death_row.sysctl_tw_recycle &&
809                     (dst = inet_csk_route_req(sk, req)) != NULL &&
810                     (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
811                     peer->v4daddr == saddr) {
812                         if (xtime.tv_sec < peer->tcp_ts_stamp + TCP_PAWS_MSL &&
813                             (s32)(peer->tcp_ts - req->ts_recent) >
814                                                         TCP_PAWS_WINDOW) {
815                                 NET_INC_STATS_BH(LINUX_MIB_PAWSPASSIVEREJECTED);
816                                 dst_release(dst);
817                                 goto drop_and_free;
818                         }
819                 }
820                 /* Kill the following clause, if you dislike this way. */
821                 else if (!sysctl_tcp_syncookies &&
822                          (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
823                           (sysctl_max_syn_backlog >> 2)) &&
824                          (!peer || !peer->tcp_ts_stamp) &&
825                          (!dst || !dst_metric(dst, RTAX_RTT))) {
826                         /* Without syncookies last quarter of
827                          * backlog is filled with destinations,
828                          * proven to be alive.
829                          * It means that we continue to communicate
830                          * to destinations, already remembered
831                          * to the moment of synflood.
832                          */
833                         LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open "
834                                        "request from %u.%u.%u.%u/%u\n",
835                                        NIPQUAD(saddr),
836                                        ntohs(skb->h.th->source));
837                         dst_release(dst);
838                         goto drop_and_free;
839                 }
840
841                 isn = tcp_v4_init_sequence(sk, skb);
842         }
843         tcp_rsk(req)->snt_isn = isn;
844
845         if (tcp_v4_send_synack(sk, req, dst))
846                 goto drop_and_free;
847
848         if (want_cookie) {
849                 reqsk_free(req);
850         } else {
851                 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
852         }
853         return 0;
854
855 drop_and_free:
856         reqsk_free(req);
857 drop:
858         TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS);
859         return 0;
860 }
861
862
863 /*
864  * The three way handshake has completed - we got a valid synack -
865  * now create the new socket.
866  */
867 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
868                                   struct request_sock *req,
869                                   struct dst_entry *dst)
870 {
871         struct inet_request_sock *ireq;
872         struct inet_sock *newinet;
873         struct tcp_sock *newtp;
874         struct sock *newsk;
875
876         if (sk_acceptq_is_full(sk))
877                 goto exit_overflow;
878
879         if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
880                 goto exit;
881
882         newsk = tcp_create_openreq_child(sk, req, skb);
883         if (!newsk)
884                 goto exit;
885
886         sk_setup_caps(newsk, dst);
887
888         newtp                 = tcp_sk(newsk);
889         newinet               = inet_sk(newsk);
890         ireq                  = inet_rsk(req);
891         newinet->daddr        = ireq->rmt_addr;
892         newinet->rcv_saddr    = ireq->loc_addr;
893         newinet->saddr        = ireq->loc_addr;
894         newinet->opt          = ireq->opt;
895         ireq->opt             = NULL;
896         newinet->mc_index     = inet_iif(skb);
897         newinet->mc_ttl       = skb->nh.iph->ttl;
898         newtp->ext_header_len = 0;
899         if (newinet->opt)
900                 newtp->ext_header_len = newinet->opt->optlen;
901         newinet->id = newtp->write_seq ^ jiffies;
902
903         tcp_sync_mss(newsk, dst_mtu(dst));
904         newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
905         tcp_initialize_rcv_mss(newsk);
906
907         __inet_hash(&tcp_hashinfo, newsk, 0);
908         __inet_inherit_port(&tcp_hashinfo, sk, newsk);
909
910         return newsk;
911
912 exit_overflow:
913         NET_INC_STATS_BH(LINUX_MIB_LISTENOVERFLOWS);
914 exit:
915         NET_INC_STATS_BH(LINUX_MIB_LISTENDROPS);
916         dst_release(dst);
917         return NULL;
918 }
919
920 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
921 {
922         struct tcphdr *th = skb->h.th;
923         struct iphdr *iph = skb->nh.iph;
924         struct sock *nsk;
925         struct request_sock **prev;
926         /* Find possible connection requests. */
927         struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
928                                                        iph->saddr, iph->daddr);
929         if (req)
930                 return tcp_check_req(sk, skb, req, prev);
931
932         nsk = __inet_lookup_established(&tcp_hashinfo, skb->nh.iph->saddr,
933                                         th->source, skb->nh.iph->daddr,
934                                         ntohs(th->dest), inet_iif(skb));
935
936         if (nsk) {
937                 if (nsk->sk_state != TCP_TIME_WAIT) {
938                         bh_lock_sock(nsk);
939                         return nsk;
940                 }
941                 inet_twsk_put((struct inet_timewait_sock *)nsk);
942                 return NULL;
943         }
944
945 #ifdef CONFIG_SYN_COOKIES
946         if (!th->rst && !th->syn && th->ack)
947                 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
948 #endif
949         return sk;
950 }
951
952 static int tcp_v4_checksum_init(struct sk_buff *skb)
953 {
954         if (skb->ip_summed == CHECKSUM_HW) {
955                 if (!tcp_v4_check(skb->h.th, skb->len, skb->nh.iph->saddr,
956                                   skb->nh.iph->daddr, skb->csum)) {
957                         skb->ip_summed = CHECKSUM_UNNECESSARY;
958                         return 0;
959                 }
960         }
961
962         skb->csum = csum_tcpudp_nofold(skb->nh.iph->saddr, skb->nh.iph->daddr,
963                                        skb->len, IPPROTO_TCP, 0);
964
965         if (skb->len <= 76) {
966                 return __skb_checksum_complete(skb);
967         }
968         return 0;
969 }
970
971
972 /* The socket must have it's spinlock held when we get
973  * here.
974  *
975  * We have a potential double-lock case here, so even when
976  * doing backlog processing we use the BH locking scheme.
977  * This is because we cannot sleep with the original spinlock
978  * held.
979  */
980 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
981 {
982         if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
983                 TCP_CHECK_TIMER(sk);
984                 if (tcp_rcv_established(sk, skb, skb->h.th, skb->len))
985                         goto reset;
986                 TCP_CHECK_TIMER(sk);
987                 return 0;
988         }
989
990         if (skb->len < (skb->h.th->doff << 2) || tcp_checksum_complete(skb))
991                 goto csum_err;
992
993         if (sk->sk_state == TCP_LISTEN) {
994                 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
995                 if (!nsk)
996                         goto discard;
997
998                 if (nsk != sk) {
999                         if (tcp_child_process(sk, nsk, skb))
1000                                 goto reset;
1001                         return 0;
1002                 }
1003         }
1004
1005         TCP_CHECK_TIMER(sk);
1006         if (tcp_rcv_state_process(sk, skb, skb->h.th, skb->len))
1007                 goto reset;
1008         TCP_CHECK_TIMER(sk);
1009         return 0;
1010
1011 reset:
1012         tcp_v4_send_reset(skb);
1013 discard:
1014         kfree_skb(skb);
1015         /* Be careful here. If this function gets more complicated and
1016          * gcc suffers from register pressure on the x86, sk (in %ebx)
1017          * might be destroyed here. This current version compiles correctly,
1018          * but you have been warned.
1019          */
1020         return 0;
1021
1022 csum_err:
1023         TCP_INC_STATS_BH(TCP_MIB_INERRS);
1024         goto discard;
1025 }
1026
1027 /*
1028  *      From tcp_input.c
1029  */
1030
1031 int tcp_v4_rcv(struct sk_buff *skb)
1032 {
1033         struct tcphdr *th;
1034         struct sock *sk;
1035         int ret;
1036
1037         if (skb->pkt_type != PACKET_HOST)
1038                 goto discard_it;
1039
1040         /* Count it even if it's bad */
1041         TCP_INC_STATS_BH(TCP_MIB_INSEGS);
1042
1043         if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1044                 goto discard_it;
1045
1046         th = skb->h.th;
1047
1048         if (th->doff < sizeof(struct tcphdr) / 4)
1049                 goto bad_packet;
1050         if (!pskb_may_pull(skb, th->doff * 4))
1051                 goto discard_it;
1052
1053         /* An explanation is required here, I think.
1054          * Packet length and doff are validated by header prediction,
1055          * provided case of th->doff==0 is eliminated.
1056          * So, we defer the checks. */
1057         if ((skb->ip_summed != CHECKSUM_UNNECESSARY &&
1058              tcp_v4_checksum_init(skb)))
1059                 goto bad_packet;
1060
1061         th = skb->h.th;
1062         TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1063         TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1064                                     skb->len - th->doff * 4);
1065         TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1066         TCP_SKB_CB(skb)->when    = 0;
1067         TCP_SKB_CB(skb)->flags   = skb->nh.iph->tos;
1068         TCP_SKB_CB(skb)->sacked  = 0;
1069
1070         sk = __inet_lookup(&tcp_hashinfo, skb->nh.iph->saddr, th->source,
1071                            skb->nh.iph->daddr, ntohs(th->dest),
1072                            inet_iif(skb));
1073
1074         if (!sk)
1075                 goto no_tcp_socket;
1076
1077 process:
1078         if (sk->sk_state == TCP_TIME_WAIT)
1079                 goto do_time_wait;
1080
1081         if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1082                 goto discard_and_relse;
1083
1084         if (sk_filter(sk, skb, 0))
1085                 goto discard_and_relse;
1086
1087         skb->dev = NULL;
1088
1089         bh_lock_sock(sk);
1090         ret = 0;
1091         if (!sock_owned_by_user(sk)) {
1092                 if (!tcp_prequeue(sk, skb))
1093                         ret = tcp_v4_do_rcv(sk, skb);
1094         } else
1095                 sk_add_backlog(sk, skb);
1096         bh_unlock_sock(sk);
1097
1098         sock_put(sk);
1099
1100         return ret;
1101
1102 no_tcp_socket:
1103         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1104                 goto discard_it;
1105
1106         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1107 bad_packet:
1108                 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1109         } else {
1110                 tcp_v4_send_reset(skb);
1111         }
1112
1113 discard_it:
1114         /* Discard frame. */
1115         kfree_skb(skb);
1116         return 0;
1117
1118 discard_and_relse:
1119         sock_put(sk);
1120         goto discard_it;
1121
1122 do_time_wait:
1123         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1124                 inet_twsk_put((struct inet_timewait_sock *) sk);
1125                 goto discard_it;
1126         }
1127
1128         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1129                 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1130                 inet_twsk_put((struct inet_timewait_sock *) sk);
1131                 goto discard_it;
1132         }
1133         switch (tcp_timewait_state_process((struct inet_timewait_sock *)sk,
1134                                            skb, th)) {
1135         case TCP_TW_SYN: {
1136                 struct sock *sk2 = inet_lookup_listener(&tcp_hashinfo,
1137                                                         skb->nh.iph->daddr,
1138                                                         ntohs(th->dest),
1139                                                         inet_iif(skb));
1140                 if (sk2) {
1141                         inet_twsk_deschedule((struct inet_timewait_sock *)sk,
1142                                              &tcp_death_row);
1143                         inet_twsk_put((struct inet_timewait_sock *)sk);
1144                         sk = sk2;
1145                         goto process;
1146                 }
1147                 /* Fall through to ACK */
1148         }
1149         case TCP_TW_ACK:
1150                 tcp_v4_timewait_ack(sk, skb);
1151                 break;
1152         case TCP_TW_RST:
1153                 goto no_tcp_socket;
1154         case TCP_TW_SUCCESS:;
1155         }
1156         goto discard_it;
1157 }
1158
1159 /* VJ's idea. Save last timestamp seen from this destination
1160  * and hold it at least for normal timewait interval to use for duplicate
1161  * segment detection in subsequent connections, before they enter synchronized
1162  * state.
1163  */
1164
1165 int tcp_v4_remember_stamp(struct sock *sk)
1166 {
1167         struct inet_sock *inet = inet_sk(sk);
1168         struct tcp_sock *tp = tcp_sk(sk);
1169         struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1170         struct inet_peer *peer = NULL;
1171         int release_it = 0;
1172
1173         if (!rt || rt->rt_dst != inet->daddr) {
1174                 peer = inet_getpeer(inet->daddr, 1);
1175                 release_it = 1;
1176         } else {
1177                 if (!rt->peer)
1178                         rt_bind_peer(rt, 1);
1179                 peer = rt->peer;
1180         }
1181
1182         if (peer) {
1183                 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1184                     (peer->tcp_ts_stamp + TCP_PAWS_MSL < xtime.tv_sec &&
1185                      peer->tcp_ts_stamp <= tp->rx_opt.ts_recent_stamp)) {
1186                         peer->tcp_ts_stamp = tp->rx_opt.ts_recent_stamp;
1187                         peer->tcp_ts = tp->rx_opt.ts_recent;
1188                 }
1189                 if (release_it)
1190                         inet_putpeer(peer);
1191                 return 1;
1192         }
1193
1194         return 0;
1195 }
1196
1197 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1198 {
1199         struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1200
1201         if (peer) {
1202                 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1203
1204                 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1205                     (peer->tcp_ts_stamp + TCP_PAWS_MSL < xtime.tv_sec &&
1206                      peer->tcp_ts_stamp <= tcptw->tw_ts_recent_stamp)) {
1207                         peer->tcp_ts_stamp = tcptw->tw_ts_recent_stamp;
1208                         peer->tcp_ts       = tcptw->tw_ts_recent;
1209                 }
1210                 inet_putpeer(peer);
1211                 return 1;
1212         }
1213
1214         return 0;
1215 }
1216
1217 struct inet_connection_sock_af_ops ipv4_specific = {
1218         .queue_xmit     =       ip_queue_xmit,
1219         .send_check     =       tcp_v4_send_check,
1220         .rebuild_header =       inet_sk_rebuild_header,
1221         .conn_request   =       tcp_v4_conn_request,
1222         .syn_recv_sock  =       tcp_v4_syn_recv_sock,
1223         .remember_stamp =       tcp_v4_remember_stamp,
1224         .net_header_len =       sizeof(struct iphdr),
1225         .setsockopt     =       ip_setsockopt,
1226         .getsockopt     =       ip_getsockopt,
1227         .addr2sockaddr  =       inet_csk_addr2sockaddr,
1228         .sockaddr_len   =       sizeof(struct sockaddr_in),
1229 };
1230
1231 /* NOTE: A lot of things set to zero explicitly by call to
1232  *       sk_alloc() so need not be done here.
1233  */
1234 static int tcp_v4_init_sock(struct sock *sk)
1235 {
1236         struct inet_connection_sock *icsk = inet_csk(sk);
1237         struct tcp_sock *tp = tcp_sk(sk);
1238
1239         skb_queue_head_init(&tp->out_of_order_queue);
1240         tcp_init_xmit_timers(sk);
1241         tcp_prequeue_init(tp);
1242
1243         icsk->icsk_rto = TCP_TIMEOUT_INIT;
1244         tp->mdev = TCP_TIMEOUT_INIT;
1245
1246         /* So many TCP implementations out there (incorrectly) count the
1247          * initial SYN frame in their delayed-ACK and congestion control
1248          * algorithms that we must have the following bandaid to talk
1249          * efficiently to them.  -DaveM
1250          */
1251         tp->snd_cwnd = 2;
1252
1253         /* See draft-stevens-tcpca-spec-01 for discussion of the
1254          * initialization of these values.
1255          */
1256         tp->snd_ssthresh = 0x7fffffff;  /* Infinity */
1257         tp->snd_cwnd_clamp = ~0;
1258         tp->mss_cache = 536;
1259
1260         tp->reordering = sysctl_tcp_reordering;
1261         icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1262
1263         sk->sk_state = TCP_CLOSE;
1264
1265         sk->sk_write_space = sk_stream_write_space;
1266         sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1267
1268         icsk->icsk_af_ops = &ipv4_specific;
1269
1270         sk->sk_sndbuf = sysctl_tcp_wmem[1];
1271         sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1272
1273         atomic_inc(&tcp_sockets_allocated);
1274
1275         return 0;
1276 }
1277
1278 int tcp_v4_destroy_sock(struct sock *sk)
1279 {
1280         struct tcp_sock *tp = tcp_sk(sk);
1281
1282         tcp_clear_xmit_timers(sk);
1283
1284         tcp_cleanup_congestion_control(sk);
1285
1286         /* Cleanup up the write buffer. */
1287         sk_stream_writequeue_purge(sk);
1288
1289         /* Cleans up our, hopefully empty, out_of_order_queue. */
1290         __skb_queue_purge(&tp->out_of_order_queue);
1291
1292         /* Clean prequeue, it must be empty really */
1293         __skb_queue_purge(&tp->ucopy.prequeue);
1294
1295         /* Clean up a referenced TCP bind bucket. */
1296         if (inet_csk(sk)->icsk_bind_hash)
1297                 inet_put_port(&tcp_hashinfo, sk);
1298
1299         /*
1300          * If sendmsg cached page exists, toss it.
1301          */
1302         if (sk->sk_sndmsg_page) {
1303                 __free_page(sk->sk_sndmsg_page);
1304                 sk->sk_sndmsg_page = NULL;
1305         }
1306
1307         atomic_dec(&tcp_sockets_allocated);
1308
1309         return 0;
1310 }
1311
1312 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1313
1314 #ifdef CONFIG_PROC_FS
1315 /* Proc filesystem TCP sock list dumping. */
1316
1317 static inline struct inet_timewait_sock *tw_head(struct hlist_head *head)
1318 {
1319         return hlist_empty(head) ? NULL :
1320                 list_entry(head->first, struct inet_timewait_sock, tw_node);
1321 }
1322
1323 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1324 {
1325         return tw->tw_node.next ?
1326                 hlist_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1327 }
1328
1329 static void *listening_get_next(struct seq_file *seq, void *cur)
1330 {
1331         struct inet_connection_sock *icsk;
1332         struct hlist_node *node;
1333         struct sock *sk = cur;
1334         struct tcp_iter_state* st = seq->private;
1335
1336         if (!sk) {
1337                 st->bucket = 0;
1338                 sk = sk_head(&tcp_hashinfo.listening_hash[0]);
1339                 goto get_sk;
1340         }
1341
1342         ++st->num;
1343
1344         if (st->state == TCP_SEQ_STATE_OPENREQ) {
1345                 struct request_sock *req = cur;
1346
1347                 icsk = inet_csk(st->syn_wait_sk);
1348                 req = req->dl_next;
1349                 while (1) {
1350                         while (req) {
1351                                 if (req->rsk_ops->family == st->family) {
1352                                         cur = req;
1353                                         goto out;
1354                                 }
1355                                 req = req->dl_next;
1356                         }
1357                         if (++st->sbucket >= TCP_SYNQ_HSIZE)
1358                                 break;
1359 get_req:
1360                         req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1361                 }
1362                 sk        = sk_next(st->syn_wait_sk);
1363                 st->state = TCP_SEQ_STATE_LISTENING;
1364                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1365         } else {
1366                 icsk = inet_csk(sk);
1367                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1368                 if (reqsk_queue_len(&icsk->icsk_accept_queue))
1369                         goto start_req;
1370                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1371                 sk = sk_next(sk);
1372         }
1373 get_sk:
1374         sk_for_each_from(sk, node) {
1375                 if (sk->sk_family == st->family) {
1376                         cur = sk;
1377                         goto out;
1378                 }
1379                 icsk = inet_csk(sk);
1380                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1381                 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
1382 start_req:
1383                         st->uid         = sock_i_uid(sk);
1384                         st->syn_wait_sk = sk;
1385                         st->state       = TCP_SEQ_STATE_OPENREQ;
1386                         st->sbucket     = 0;
1387                         goto get_req;
1388                 }
1389                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1390         }
1391         if (++st->bucket < INET_LHTABLE_SIZE) {
1392                 sk = sk_head(&tcp_hashinfo.listening_hash[st->bucket]);
1393                 goto get_sk;
1394         }
1395         cur = NULL;
1396 out:
1397         return cur;
1398 }
1399
1400 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1401 {
1402         void *rc = listening_get_next(seq, NULL);
1403
1404         while (rc && *pos) {
1405                 rc = listening_get_next(seq, rc);
1406                 --*pos;
1407         }
1408         return rc;
1409 }
1410
1411 static void *established_get_first(struct seq_file *seq)
1412 {
1413         struct tcp_iter_state* st = seq->private;
1414         void *rc = NULL;
1415
1416         for (st->bucket = 0; st->bucket < tcp_hashinfo.ehash_size; ++st->bucket) {
1417                 struct sock *sk;
1418                 struct hlist_node *node;
1419                 struct inet_timewait_sock *tw;
1420
1421                 /* We can reschedule _before_ having picked the target: */
1422                 cond_resched_softirq();
1423
1424                 read_lock(&tcp_hashinfo.ehash[st->bucket].lock);
1425                 sk_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1426                         if (sk->sk_family != st->family) {
1427                                 continue;
1428                         }
1429                         rc = sk;
1430                         goto out;
1431                 }
1432                 st->state = TCP_SEQ_STATE_TIME_WAIT;
1433                 inet_twsk_for_each(tw, node,
1434                                    &tcp_hashinfo.ehash[st->bucket + tcp_hashinfo.ehash_size].chain) {
1435                         if (tw->tw_family != st->family) {
1436                                 continue;
1437                         }
1438                         rc = tw;
1439                         goto out;
1440                 }
1441                 read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1442                 st->state = TCP_SEQ_STATE_ESTABLISHED;
1443         }
1444 out:
1445         return rc;
1446 }
1447
1448 static void *established_get_next(struct seq_file *seq, void *cur)
1449 {
1450         struct sock *sk = cur;
1451         struct inet_timewait_sock *tw;
1452         struct hlist_node *node;
1453         struct tcp_iter_state* st = seq->private;
1454
1455         ++st->num;
1456
1457         if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
1458                 tw = cur;
1459                 tw = tw_next(tw);
1460 get_tw:
1461                 while (tw && tw->tw_family != st->family) {
1462                         tw = tw_next(tw);
1463                 }
1464                 if (tw) {
1465                         cur = tw;
1466                         goto out;
1467                 }
1468                 read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1469                 st->state = TCP_SEQ_STATE_ESTABLISHED;
1470
1471                 /* We can reschedule between buckets: */
1472                 cond_resched_softirq();
1473
1474                 if (++st->bucket < tcp_hashinfo.ehash_size) {
1475                         read_lock(&tcp_hashinfo.ehash[st->bucket].lock);
1476                         sk = sk_head(&tcp_hashinfo.ehash[st->bucket].chain);
1477                 } else {
1478                         cur = NULL;
1479                         goto out;
1480                 }
1481         } else
1482                 sk = sk_next(sk);
1483
1484         sk_for_each_from(sk, node) {
1485                 if (sk->sk_family == st->family)
1486                         goto found;
1487         }
1488
1489         st->state = TCP_SEQ_STATE_TIME_WAIT;
1490         tw = tw_head(&tcp_hashinfo.ehash[st->bucket + tcp_hashinfo.ehash_size].chain);
1491         goto get_tw;
1492 found:
1493         cur = sk;
1494 out:
1495         return cur;
1496 }
1497
1498 static void *established_get_idx(struct seq_file *seq, loff_t pos)
1499 {
1500         void *rc = established_get_first(seq);
1501
1502         while (rc && pos) {
1503                 rc = established_get_next(seq, rc);
1504                 --pos;
1505         }               
1506         return rc;
1507 }
1508
1509 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
1510 {
1511         void *rc;
1512         struct tcp_iter_state* st = seq->private;
1513
1514         inet_listen_lock(&tcp_hashinfo);
1515         st->state = TCP_SEQ_STATE_LISTENING;
1516         rc        = listening_get_idx(seq, &pos);
1517
1518         if (!rc) {
1519                 inet_listen_unlock(&tcp_hashinfo);
1520                 local_bh_disable();
1521                 st->state = TCP_SEQ_STATE_ESTABLISHED;
1522                 rc        = established_get_idx(seq, pos);
1523         }
1524
1525         return rc;
1526 }
1527
1528 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
1529 {
1530         struct tcp_iter_state* st = seq->private;
1531         st->state = TCP_SEQ_STATE_LISTENING;
1532         st->num = 0;
1533         return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
1534 }
1535
1536 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1537 {
1538         void *rc = NULL;
1539         struct tcp_iter_state* st;
1540
1541         if (v == SEQ_START_TOKEN) {
1542                 rc = tcp_get_idx(seq, 0);
1543                 goto out;
1544         }
1545         st = seq->private;
1546
1547         switch (st->state) {
1548         case TCP_SEQ_STATE_OPENREQ:
1549         case TCP_SEQ_STATE_LISTENING:
1550                 rc = listening_get_next(seq, v);
1551                 if (!rc) {
1552                         inet_listen_unlock(&tcp_hashinfo);
1553                         local_bh_disable();
1554                         st->state = TCP_SEQ_STATE_ESTABLISHED;
1555                         rc        = established_get_first(seq);
1556                 }
1557                 break;
1558         case TCP_SEQ_STATE_ESTABLISHED:
1559         case TCP_SEQ_STATE_TIME_WAIT:
1560                 rc = established_get_next(seq, v);
1561                 break;
1562         }
1563 out:
1564         ++*pos;
1565         return rc;
1566 }
1567
1568 static void tcp_seq_stop(struct seq_file *seq, void *v)
1569 {
1570         struct tcp_iter_state* st = seq->private;
1571
1572         switch (st->state) {
1573         case TCP_SEQ_STATE_OPENREQ:
1574                 if (v) {
1575                         struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
1576                         read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1577                 }
1578         case TCP_SEQ_STATE_LISTENING:
1579                 if (v != SEQ_START_TOKEN)
1580                         inet_listen_unlock(&tcp_hashinfo);
1581                 break;
1582         case TCP_SEQ_STATE_TIME_WAIT:
1583         case TCP_SEQ_STATE_ESTABLISHED:
1584                 if (v)
1585                         read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1586                 local_bh_enable();
1587                 break;
1588         }
1589 }
1590
1591 static int tcp_seq_open(struct inode *inode, struct file *file)
1592 {
1593         struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
1594         struct seq_file *seq;
1595         struct tcp_iter_state *s;
1596         int rc;
1597
1598         if (unlikely(afinfo == NULL))
1599                 return -EINVAL;
1600
1601         s = kmalloc(sizeof(*s), GFP_KERNEL);
1602         if (!s)
1603                 return -ENOMEM;
1604         memset(s, 0, sizeof(*s));
1605         s->family               = afinfo->family;
1606         s->seq_ops.start        = tcp_seq_start;
1607         s->seq_ops.next         = tcp_seq_next;
1608         s->seq_ops.show         = afinfo->seq_show;
1609         s->seq_ops.stop         = tcp_seq_stop;
1610
1611         rc = seq_open(file, &s->seq_ops);
1612         if (rc)
1613                 goto out_kfree;
1614         seq          = file->private_data;
1615         seq->private = s;
1616 out:
1617         return rc;
1618 out_kfree:
1619         kfree(s);
1620         goto out;
1621 }
1622
1623 int tcp_proc_register(struct tcp_seq_afinfo *afinfo)
1624 {
1625         int rc = 0;
1626         struct proc_dir_entry *p;
1627
1628         if (!afinfo)
1629                 return -EINVAL;
1630         afinfo->seq_fops->owner         = afinfo->owner;
1631         afinfo->seq_fops->open          = tcp_seq_open;
1632         afinfo->seq_fops->read          = seq_read;
1633         afinfo->seq_fops->llseek        = seq_lseek;
1634         afinfo->seq_fops->release       = seq_release_private;
1635         
1636         p = proc_net_fops_create(afinfo->name, S_IRUGO, afinfo->seq_fops);
1637         if (p)
1638                 p->data = afinfo;
1639         else
1640                 rc = -ENOMEM;
1641         return rc;
1642 }
1643
1644 void tcp_proc_unregister(struct tcp_seq_afinfo *afinfo)
1645 {
1646         if (!afinfo)
1647                 return;
1648         proc_net_remove(afinfo->name);
1649         memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops)); 
1650 }
1651
1652 static void get_openreq4(struct sock *sk, struct request_sock *req,
1653                          char *tmpbuf, int i, int uid)
1654 {
1655         const struct inet_request_sock *ireq = inet_rsk(req);
1656         int ttd = req->expires - jiffies;
1657
1658         sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1659                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p",
1660                 i,
1661                 ireq->loc_addr,
1662                 ntohs(inet_sk(sk)->sport),
1663                 ireq->rmt_addr,
1664                 ntohs(ireq->rmt_port),
1665                 TCP_SYN_RECV,
1666                 0, 0, /* could print option size, but that is af dependent. */
1667                 1,    /* timers active (only the expire timer) */
1668                 jiffies_to_clock_t(ttd),
1669                 req->retrans,
1670                 uid,
1671                 0,  /* non standard timer */
1672                 0, /* open_requests have no inode */
1673                 atomic_read(&sk->sk_refcnt),
1674                 req);
1675 }
1676
1677 static void get_tcp4_sock(struct sock *sp, char *tmpbuf, int i)
1678 {
1679         int timer_active;
1680         unsigned long timer_expires;
1681         struct tcp_sock *tp = tcp_sk(sp);
1682         const struct inet_connection_sock *icsk = inet_csk(sp);
1683         struct inet_sock *inet = inet_sk(sp);
1684         unsigned int dest = inet->daddr;
1685         unsigned int src = inet->rcv_saddr;
1686         __u16 destp = ntohs(inet->dport);
1687         __u16 srcp = ntohs(inet->sport);
1688
1689         if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
1690                 timer_active    = 1;
1691                 timer_expires   = icsk->icsk_timeout;
1692         } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
1693                 timer_active    = 4;
1694                 timer_expires   = icsk->icsk_timeout;
1695         } else if (timer_pending(&sp->sk_timer)) {
1696                 timer_active    = 2;
1697                 timer_expires   = sp->sk_timer.expires;
1698         } else {
1699                 timer_active    = 0;
1700                 timer_expires = jiffies;
1701         }
1702
1703         sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
1704                         "%08X %5d %8d %lu %d %p %u %u %u %u %d",
1705                 i, src, srcp, dest, destp, sp->sk_state,
1706                 tp->write_seq - tp->snd_una, tp->rcv_nxt - tp->copied_seq,
1707                 timer_active,
1708                 jiffies_to_clock_t(timer_expires - jiffies),
1709                 icsk->icsk_retransmits,
1710                 sock_i_uid(sp),
1711                 icsk->icsk_probes_out,
1712                 sock_i_ino(sp),
1713                 atomic_read(&sp->sk_refcnt), sp,
1714                 icsk->icsk_rto,
1715                 icsk->icsk_ack.ato,
1716                 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
1717                 tp->snd_cwnd,
1718                 tp->snd_ssthresh >= 0xFFFF ? -1 : tp->snd_ssthresh);
1719 }
1720
1721 static void get_timewait4_sock(struct inet_timewait_sock *tw, char *tmpbuf, int i)
1722 {
1723         unsigned int dest, src;
1724         __u16 destp, srcp;
1725         int ttd = tw->tw_ttd - jiffies;
1726
1727         if (ttd < 0)
1728                 ttd = 0;
1729
1730         dest  = tw->tw_daddr;
1731         src   = tw->tw_rcv_saddr;
1732         destp = ntohs(tw->tw_dport);
1733         srcp  = ntohs(tw->tw_sport);
1734
1735         sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1736                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p",
1737                 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
1738                 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
1739                 atomic_read(&tw->tw_refcnt), tw);
1740 }
1741
1742 #define TMPSZ 150
1743
1744 static int tcp4_seq_show(struct seq_file *seq, void *v)
1745 {
1746         struct tcp_iter_state* st;
1747         char tmpbuf[TMPSZ + 1];
1748
1749         if (v == SEQ_START_TOKEN) {
1750                 seq_printf(seq, "%-*s\n", TMPSZ - 1,
1751                            "  sl  local_address rem_address   st tx_queue "
1752                            "rx_queue tr tm->when retrnsmt   uid  timeout "
1753                            "inode");
1754                 goto out;
1755         }
1756         st = seq->private;
1757
1758         switch (st->state) {
1759         case TCP_SEQ_STATE_LISTENING:
1760         case TCP_SEQ_STATE_ESTABLISHED:
1761                 get_tcp4_sock(v, tmpbuf, st->num);
1762                 break;
1763         case TCP_SEQ_STATE_OPENREQ:
1764                 get_openreq4(st->syn_wait_sk, v, tmpbuf, st->num, st->uid);
1765                 break;
1766         case TCP_SEQ_STATE_TIME_WAIT:
1767                 get_timewait4_sock(v, tmpbuf, st->num);
1768                 break;
1769         }
1770         seq_printf(seq, "%-*s\n", TMPSZ - 1, tmpbuf);
1771 out:
1772         return 0;
1773 }
1774
1775 static struct file_operations tcp4_seq_fops;
1776 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
1777         .owner          = THIS_MODULE,
1778         .name           = "tcp",
1779         .family         = AF_INET,
1780         .seq_show       = tcp4_seq_show,
1781         .seq_fops       = &tcp4_seq_fops,
1782 };
1783
1784 int __init tcp4_proc_init(void)
1785 {
1786         return tcp_proc_register(&tcp4_seq_afinfo);
1787 }
1788
1789 void tcp4_proc_exit(void)
1790 {
1791         tcp_proc_unregister(&tcp4_seq_afinfo);
1792 }
1793 #endif /* CONFIG_PROC_FS */
1794
1795 struct proto tcp_prot = {
1796         .name                   = "TCP",
1797         .owner                  = THIS_MODULE,
1798         .close                  = tcp_close,
1799         .connect                = tcp_v4_connect,
1800         .disconnect             = tcp_disconnect,
1801         .accept                 = inet_csk_accept,
1802         .ioctl                  = tcp_ioctl,
1803         .init                   = tcp_v4_init_sock,
1804         .destroy                = tcp_v4_destroy_sock,
1805         .shutdown               = tcp_shutdown,
1806         .setsockopt             = tcp_setsockopt,
1807         .getsockopt             = tcp_getsockopt,
1808         .sendmsg                = tcp_sendmsg,
1809         .recvmsg                = tcp_recvmsg,
1810         .backlog_rcv            = tcp_v4_do_rcv,
1811         .hash                   = tcp_v4_hash,
1812         .unhash                 = tcp_unhash,
1813         .get_port               = tcp_v4_get_port,
1814         .enter_memory_pressure  = tcp_enter_memory_pressure,
1815         .sockets_allocated      = &tcp_sockets_allocated,
1816         .orphan_count           = &tcp_orphan_count,
1817         .memory_allocated       = &tcp_memory_allocated,
1818         .memory_pressure        = &tcp_memory_pressure,
1819         .sysctl_mem             = sysctl_tcp_mem,
1820         .sysctl_wmem            = sysctl_tcp_wmem,
1821         .sysctl_rmem            = sysctl_tcp_rmem,
1822         .max_header             = MAX_TCP_HEADER,
1823         .obj_size               = sizeof(struct tcp_sock),
1824         .twsk_prot              = &tcp_timewait_sock_ops,
1825         .rsk_prot               = &tcp_request_sock_ops,
1826 };
1827
1828
1829
1830 void __init tcp_v4_init(struct net_proto_family *ops)
1831 {
1832         int err = sock_create_kern(PF_INET, SOCK_RAW, IPPROTO_TCP, &tcp_socket);
1833         if (err < 0)
1834                 panic("Failed to create the TCP control socket.\n");
1835         tcp_socket->sk->sk_allocation   = GFP_ATOMIC;
1836         inet_sk(tcp_socket->sk)->uc_ttl = -1;
1837
1838         /* Unhash it so that IP input processing does not even
1839          * see it, we do not wish this socket to see incoming
1840          * packets.
1841          */
1842         tcp_socket->sk->sk_prot->unhash(tcp_socket->sk);
1843 }
1844
1845 EXPORT_SYMBOL(ipv4_specific);
1846 EXPORT_SYMBOL(inet_bind_bucket_create);
1847 EXPORT_SYMBOL(tcp_hashinfo);
1848 EXPORT_SYMBOL(tcp_prot);
1849 EXPORT_SYMBOL(tcp_unhash);
1850 EXPORT_SYMBOL(tcp_v4_conn_request);
1851 EXPORT_SYMBOL(tcp_v4_connect);
1852 EXPORT_SYMBOL(tcp_v4_do_rcv);
1853 EXPORT_SYMBOL(tcp_v4_remember_stamp);
1854 EXPORT_SYMBOL(tcp_v4_send_check);
1855 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1856
1857 #ifdef CONFIG_PROC_FS
1858 EXPORT_SYMBOL(tcp_proc_register);
1859 EXPORT_SYMBOL(tcp_proc_unregister);
1860 #endif
1861 EXPORT_SYMBOL(sysctl_local_port_range);
1862 EXPORT_SYMBOL(sysctl_tcp_low_latency);
1863 EXPORT_SYMBOL(sysctl_tcp_tw_reuse);
1864