]> Pileus Git - ~andy/linux/blob - net/ipv4/tcp_ipv4.c
tcp: Remove TCPCT
[~andy/linux] / net / ipv4 / tcp_ipv4.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  *              IPv4 specific functions
9  *
10  *
11  *              code split from:
12  *              linux/ipv4/tcp.c
13  *              linux/ipv4/tcp_input.c
14  *              linux/ipv4/tcp_output.c
15  *
16  *              See tcp.c for author information
17  *
18  *      This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23
24 /*
25  * Changes:
26  *              David S. Miller :       New socket lookup architecture.
27  *                                      This code is dedicated to John Dyson.
28  *              David S. Miller :       Change semantics of established hash,
29  *                                      half is devoted to TIME_WAIT sockets
30  *                                      and the rest go in the other half.
31  *              Andi Kleen :            Add support for syncookies and fixed
32  *                                      some bugs: ip options weren't passed to
33  *                                      the TCP layer, missed a check for an
34  *                                      ACK bit.
35  *              Andi Kleen :            Implemented fast path mtu discovery.
36  *                                      Fixed many serious bugs in the
37  *                                      request_sock handling and moved
38  *                                      most of it into the af independent code.
39  *                                      Added tail drop and some other bugfixes.
40  *                                      Added new listen semantics.
41  *              Mike McLagan    :       Routing by source
42  *      Juan Jose Ciarlante:            ip_dynaddr bits
43  *              Andi Kleen:             various fixes.
44  *      Vitaly E. Lavrov        :       Transparent proxy revived after year
45  *                                      coma.
46  *      Andi Kleen              :       Fix new listen.
47  *      Andi Kleen              :       Fix accept error reporting.
48  *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
49  *      Alexey Kuznetsov                allow both IPv4 and IPv6 sockets to bind
50  *                                      a single port at the same time.
51  */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92
93 #ifdef CONFIG_TCP_MD5SIG
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95                                __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #endif
97
98 struct inet_hashinfo tcp_hashinfo;
99 EXPORT_SYMBOL(tcp_hashinfo);
100
101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102 {
103         return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104                                           ip_hdr(skb)->saddr,
105                                           tcp_hdr(skb)->dest,
106                                           tcp_hdr(skb)->source);
107 }
108
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111         const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112         struct tcp_sock *tp = tcp_sk(sk);
113
114         /* With PAWS, it is safe from the viewpoint
115            of data integrity. Even without PAWS it is safe provided sequence
116            spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117
118            Actually, the idea is close to VJ's one, only timestamp cache is
119            held not per host, but per port pair and TW bucket is used as state
120            holder.
121
122            If TW bucket has been already destroyed we fall back to VJ's scheme
123            and use initial timestamp retrieved from peer table.
124          */
125         if (tcptw->tw_ts_recent_stamp &&
126             (twp == NULL || (sysctl_tcp_tw_reuse &&
127                              get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128                 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129                 if (tp->write_seq == 0)
130                         tp->write_seq = 1;
131                 tp->rx_opt.ts_recent       = tcptw->tw_ts_recent;
132                 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133                 sock_hold(sktw);
134                 return 1;
135         }
136
137         return 0;
138 }
139 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140
141 /* This will initiate an outgoing connection. */
142 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
143 {
144         struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
145         struct inet_sock *inet = inet_sk(sk);
146         struct tcp_sock *tp = tcp_sk(sk);
147         __be16 orig_sport, orig_dport;
148         __be32 daddr, nexthop;
149         struct flowi4 *fl4;
150         struct rtable *rt;
151         int err;
152         struct ip_options_rcu *inet_opt;
153
154         if (addr_len < sizeof(struct sockaddr_in))
155                 return -EINVAL;
156
157         if (usin->sin_family != AF_INET)
158                 return -EAFNOSUPPORT;
159
160         nexthop = daddr = usin->sin_addr.s_addr;
161         inet_opt = rcu_dereference_protected(inet->inet_opt,
162                                              sock_owned_by_user(sk));
163         if (inet_opt && inet_opt->opt.srr) {
164                 if (!daddr)
165                         return -EINVAL;
166                 nexthop = inet_opt->opt.faddr;
167         }
168
169         orig_sport = inet->inet_sport;
170         orig_dport = usin->sin_port;
171         fl4 = &inet->cork.fl.u.ip4;
172         rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
173                               RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
174                               IPPROTO_TCP,
175                               orig_sport, orig_dport, sk, true);
176         if (IS_ERR(rt)) {
177                 err = PTR_ERR(rt);
178                 if (err == -ENETUNREACH)
179                         IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
180                 return err;
181         }
182
183         if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
184                 ip_rt_put(rt);
185                 return -ENETUNREACH;
186         }
187
188         if (!inet_opt || !inet_opt->opt.srr)
189                 daddr = fl4->daddr;
190
191         if (!inet->inet_saddr)
192                 inet->inet_saddr = fl4->saddr;
193         inet->inet_rcv_saddr = inet->inet_saddr;
194
195         if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
196                 /* Reset inherited state */
197                 tp->rx_opt.ts_recent       = 0;
198                 tp->rx_opt.ts_recent_stamp = 0;
199                 if (likely(!tp->repair))
200                         tp->write_seq      = 0;
201         }
202
203         if (tcp_death_row.sysctl_tw_recycle &&
204             !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
205                 tcp_fetch_timewait_stamp(sk, &rt->dst);
206
207         inet->inet_dport = usin->sin_port;
208         inet->inet_daddr = daddr;
209
210         inet_csk(sk)->icsk_ext_hdr_len = 0;
211         if (inet_opt)
212                 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
213
214         tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
215
216         /* Socket identity is still unknown (sport may be zero).
217          * However we set state to SYN-SENT and not releasing socket
218          * lock select source port, enter ourselves into the hash tables and
219          * complete initialization after this.
220          */
221         tcp_set_state(sk, TCP_SYN_SENT);
222         err = inet_hash_connect(&tcp_death_row, sk);
223         if (err)
224                 goto failure;
225
226         rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
227                                inet->inet_sport, inet->inet_dport, sk);
228         if (IS_ERR(rt)) {
229                 err = PTR_ERR(rt);
230                 rt = NULL;
231                 goto failure;
232         }
233         /* OK, now commit destination to socket.  */
234         sk->sk_gso_type = SKB_GSO_TCPV4;
235         sk_setup_caps(sk, &rt->dst);
236
237         if (!tp->write_seq && likely(!tp->repair))
238                 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
239                                                            inet->inet_daddr,
240                                                            inet->inet_sport,
241                                                            usin->sin_port);
242
243         inet->inet_id = tp->write_seq ^ jiffies;
244
245         err = tcp_connect(sk);
246
247         rt = NULL;
248         if (err)
249                 goto failure;
250
251         return 0;
252
253 failure:
254         /*
255          * This unhashes the socket and releases the local port,
256          * if necessary.
257          */
258         tcp_set_state(sk, TCP_CLOSE);
259         ip_rt_put(rt);
260         sk->sk_route_caps = 0;
261         inet->inet_dport = 0;
262         return err;
263 }
264 EXPORT_SYMBOL(tcp_v4_connect);
265
266 /*
267  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
268  * It can be called through tcp_release_cb() if socket was owned by user
269  * at the time tcp_v4_err() was called to handle ICMP message.
270  */
271 static void tcp_v4_mtu_reduced(struct sock *sk)
272 {
273         struct dst_entry *dst;
274         struct inet_sock *inet = inet_sk(sk);
275         u32 mtu = tcp_sk(sk)->mtu_info;
276
277         /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
278          * send out by Linux are always <576bytes so they should go through
279          * unfragmented).
280          */
281         if (sk->sk_state == TCP_LISTEN)
282                 return;
283
284         dst = inet_csk_update_pmtu(sk, mtu);
285         if (!dst)
286                 return;
287
288         /* Something is about to be wrong... Remember soft error
289          * for the case, if this connection will not able to recover.
290          */
291         if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
292                 sk->sk_err_soft = EMSGSIZE;
293
294         mtu = dst_mtu(dst);
295
296         if (inet->pmtudisc != IP_PMTUDISC_DONT &&
297             inet_csk(sk)->icsk_pmtu_cookie > mtu) {
298                 tcp_sync_mss(sk, mtu);
299
300                 /* Resend the TCP packet because it's
301                  * clear that the old packet has been
302                  * dropped. This is the new "fast" path mtu
303                  * discovery.
304                  */
305                 tcp_simple_retransmit(sk);
306         } /* else let the usual retransmit timer handle it */
307 }
308
309 static void do_redirect(struct sk_buff *skb, struct sock *sk)
310 {
311         struct dst_entry *dst = __sk_dst_check(sk, 0);
312
313         if (dst)
314                 dst->ops->redirect(dst, sk, skb);
315 }
316
317 /*
318  * This routine is called by the ICMP module when it gets some
319  * sort of error condition.  If err < 0 then the socket should
320  * be closed and the error returned to the user.  If err > 0
321  * it's just the icmp type << 8 | icmp code.  After adjustment
322  * header points to the first 8 bytes of the tcp header.  We need
323  * to find the appropriate port.
324  *
325  * The locking strategy used here is very "optimistic". When
326  * someone else accesses the socket the ICMP is just dropped
327  * and for some paths there is no check at all.
328  * A more general error queue to queue errors for later handling
329  * is probably better.
330  *
331  */
332
333 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
334 {
335         const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
336         struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
337         struct inet_connection_sock *icsk;
338         struct tcp_sock *tp;
339         struct inet_sock *inet;
340         const int type = icmp_hdr(icmp_skb)->type;
341         const int code = icmp_hdr(icmp_skb)->code;
342         struct sock *sk;
343         struct sk_buff *skb;
344         struct request_sock *req;
345         __u32 seq;
346         __u32 remaining;
347         int err;
348         struct net *net = dev_net(icmp_skb->dev);
349
350         if (icmp_skb->len < (iph->ihl << 2) + 8) {
351                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
352                 return;
353         }
354
355         sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
356                         iph->saddr, th->source, inet_iif(icmp_skb));
357         if (!sk) {
358                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
359                 return;
360         }
361         if (sk->sk_state == TCP_TIME_WAIT) {
362                 inet_twsk_put(inet_twsk(sk));
363                 return;
364         }
365
366         bh_lock_sock(sk);
367         /* If too many ICMPs get dropped on busy
368          * servers this needs to be solved differently.
369          * We do take care of PMTU discovery (RFC1191) special case :
370          * we can receive locally generated ICMP messages while socket is held.
371          */
372         if (sock_owned_by_user(sk)) {
373                 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
374                         NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
375         }
376         if (sk->sk_state == TCP_CLOSE)
377                 goto out;
378
379         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
380                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
381                 goto out;
382         }
383
384         icsk = inet_csk(sk);
385         tp = tcp_sk(sk);
386         req = tp->fastopen_rsk;
387         seq = ntohl(th->seq);
388         if (sk->sk_state != TCP_LISTEN &&
389             !between(seq, tp->snd_una, tp->snd_nxt) &&
390             (req == NULL || seq != tcp_rsk(req)->snt_isn)) {
391                 /* For a Fast Open socket, allow seq to be snt_isn. */
392                 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
393                 goto out;
394         }
395
396         switch (type) {
397         case ICMP_REDIRECT:
398                 do_redirect(icmp_skb, sk);
399                 goto out;
400         case ICMP_SOURCE_QUENCH:
401                 /* Just silently ignore these. */
402                 goto out;
403         case ICMP_PARAMETERPROB:
404                 err = EPROTO;
405                 break;
406         case ICMP_DEST_UNREACH:
407                 if (code > NR_ICMP_UNREACH)
408                         goto out;
409
410                 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
411                         tp->mtu_info = info;
412                         if (!sock_owned_by_user(sk)) {
413                                 tcp_v4_mtu_reduced(sk);
414                         } else {
415                                 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
416                                         sock_hold(sk);
417                         }
418                         goto out;
419                 }
420
421                 err = icmp_err_convert[code].errno;
422                 /* check if icmp_skb allows revert of backoff
423                  * (see draft-zimmermann-tcp-lcd) */
424                 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
425                         break;
426                 if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
427                     !icsk->icsk_backoff)
428                         break;
429
430                 /* XXX (TFO) - revisit the following logic for TFO */
431
432                 if (sock_owned_by_user(sk))
433                         break;
434
435                 icsk->icsk_backoff--;
436                 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
437                         TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
438                 tcp_bound_rto(sk);
439
440                 skb = tcp_write_queue_head(sk);
441                 BUG_ON(!skb);
442
443                 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
444                                 tcp_time_stamp - TCP_SKB_CB(skb)->when);
445
446                 if (remaining) {
447                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
448                                                   remaining, TCP_RTO_MAX);
449                 } else {
450                         /* RTO revert clocked out retransmission.
451                          * Will retransmit now */
452                         tcp_retransmit_timer(sk);
453                 }
454
455                 break;
456         case ICMP_TIME_EXCEEDED:
457                 err = EHOSTUNREACH;
458                 break;
459         default:
460                 goto out;
461         }
462
463         /* XXX (TFO) - if it's a TFO socket and has been accepted, rather
464          * than following the TCP_SYN_RECV case and closing the socket,
465          * we ignore the ICMP error and keep trying like a fully established
466          * socket. Is this the right thing to do?
467          */
468         if (req && req->sk == NULL)
469                 goto out;
470
471         switch (sk->sk_state) {
472                 struct request_sock *req, **prev;
473         case TCP_LISTEN:
474                 if (sock_owned_by_user(sk))
475                         goto out;
476
477                 req = inet_csk_search_req(sk, &prev, th->dest,
478                                           iph->daddr, iph->saddr);
479                 if (!req)
480                         goto out;
481
482                 /* ICMPs are not backlogged, hence we cannot get
483                    an established socket here.
484                  */
485                 WARN_ON(req->sk);
486
487                 if (seq != tcp_rsk(req)->snt_isn) {
488                         NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
489                         goto out;
490                 }
491
492                 /*
493                  * Still in SYN_RECV, just remove it silently.
494                  * There is no good way to pass the error to the newly
495                  * created socket, and POSIX does not want network
496                  * errors returned from accept().
497                  */
498                 inet_csk_reqsk_queue_drop(sk, req, prev);
499                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
500                 goto out;
501
502         case TCP_SYN_SENT:
503         case TCP_SYN_RECV:  /* Cannot happen.
504                                It can f.e. if SYNs crossed,
505                                or Fast Open.
506                              */
507                 if (!sock_owned_by_user(sk)) {
508                         sk->sk_err = err;
509
510                         sk->sk_error_report(sk);
511
512                         tcp_done(sk);
513                 } else {
514                         sk->sk_err_soft = err;
515                 }
516                 goto out;
517         }
518
519         /* If we've already connected we will keep trying
520          * until we time out, or the user gives up.
521          *
522          * rfc1122 4.2.3.9 allows to consider as hard errors
523          * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
524          * but it is obsoleted by pmtu discovery).
525          *
526          * Note, that in modern internet, where routing is unreliable
527          * and in each dark corner broken firewalls sit, sending random
528          * errors ordered by their masters even this two messages finally lose
529          * their original sense (even Linux sends invalid PORT_UNREACHs)
530          *
531          * Now we are in compliance with RFCs.
532          *                                                      --ANK (980905)
533          */
534
535         inet = inet_sk(sk);
536         if (!sock_owned_by_user(sk) && inet->recverr) {
537                 sk->sk_err = err;
538                 sk->sk_error_report(sk);
539         } else  { /* Only an error on timeout */
540                 sk->sk_err_soft = err;
541         }
542
543 out:
544         bh_unlock_sock(sk);
545         sock_put(sk);
546 }
547
548 static void __tcp_v4_send_check(struct sk_buff *skb,
549                                 __be32 saddr, __be32 daddr)
550 {
551         struct tcphdr *th = tcp_hdr(skb);
552
553         if (skb->ip_summed == CHECKSUM_PARTIAL) {
554                 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
555                 skb->csum_start = skb_transport_header(skb) - skb->head;
556                 skb->csum_offset = offsetof(struct tcphdr, check);
557         } else {
558                 th->check = tcp_v4_check(skb->len, saddr, daddr,
559                                          csum_partial(th,
560                                                       th->doff << 2,
561                                                       skb->csum));
562         }
563 }
564
565 /* This routine computes an IPv4 TCP checksum. */
566 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
567 {
568         const struct inet_sock *inet = inet_sk(sk);
569
570         __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
571 }
572 EXPORT_SYMBOL(tcp_v4_send_check);
573
574 int tcp_v4_gso_send_check(struct sk_buff *skb)
575 {
576         const struct iphdr *iph;
577         struct tcphdr *th;
578
579         if (!pskb_may_pull(skb, sizeof(*th)))
580                 return -EINVAL;
581
582         iph = ip_hdr(skb);
583         th = tcp_hdr(skb);
584
585         th->check = 0;
586         skb->ip_summed = CHECKSUM_PARTIAL;
587         __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
588         return 0;
589 }
590
591 /*
592  *      This routine will send an RST to the other tcp.
593  *
594  *      Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
595  *                    for reset.
596  *      Answer: if a packet caused RST, it is not for a socket
597  *              existing in our system, if it is matched to a socket,
598  *              it is just duplicate segment or bug in other side's TCP.
599  *              So that we build reply only basing on parameters
600  *              arrived with segment.
601  *      Exception: precedence violation. We do not implement it in any case.
602  */
603
604 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
605 {
606         const struct tcphdr *th = tcp_hdr(skb);
607         struct {
608                 struct tcphdr th;
609 #ifdef CONFIG_TCP_MD5SIG
610                 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
611 #endif
612         } rep;
613         struct ip_reply_arg arg;
614 #ifdef CONFIG_TCP_MD5SIG
615         struct tcp_md5sig_key *key;
616         const __u8 *hash_location = NULL;
617         unsigned char newhash[16];
618         int genhash;
619         struct sock *sk1 = NULL;
620 #endif
621         struct net *net;
622
623         /* Never send a reset in response to a reset. */
624         if (th->rst)
625                 return;
626
627         if (skb_rtable(skb)->rt_type != RTN_LOCAL)
628                 return;
629
630         /* Swap the send and the receive. */
631         memset(&rep, 0, sizeof(rep));
632         rep.th.dest   = th->source;
633         rep.th.source = th->dest;
634         rep.th.doff   = sizeof(struct tcphdr) / 4;
635         rep.th.rst    = 1;
636
637         if (th->ack) {
638                 rep.th.seq = th->ack_seq;
639         } else {
640                 rep.th.ack = 1;
641                 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
642                                        skb->len - (th->doff << 2));
643         }
644
645         memset(&arg, 0, sizeof(arg));
646         arg.iov[0].iov_base = (unsigned char *)&rep;
647         arg.iov[0].iov_len  = sizeof(rep.th);
648
649 #ifdef CONFIG_TCP_MD5SIG
650         hash_location = tcp_parse_md5sig_option(th);
651         if (!sk && hash_location) {
652                 /*
653                  * active side is lost. Try to find listening socket through
654                  * source port, and then find md5 key through listening socket.
655                  * we are not loose security here:
656                  * Incoming packet is checked with md5 hash with finding key,
657                  * no RST generated if md5 hash doesn't match.
658                  */
659                 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
660                                              &tcp_hashinfo, ip_hdr(skb)->saddr,
661                                              th->source, ip_hdr(skb)->daddr,
662                                              ntohs(th->source), inet_iif(skb));
663                 /* don't send rst if it can't find key */
664                 if (!sk1)
665                         return;
666                 rcu_read_lock();
667                 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
668                                         &ip_hdr(skb)->saddr, AF_INET);
669                 if (!key)
670                         goto release_sk1;
671
672                 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
673                 if (genhash || memcmp(hash_location, newhash, 16) != 0)
674                         goto release_sk1;
675         } else {
676                 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
677                                              &ip_hdr(skb)->saddr,
678                                              AF_INET) : NULL;
679         }
680
681         if (key) {
682                 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
683                                    (TCPOPT_NOP << 16) |
684                                    (TCPOPT_MD5SIG << 8) |
685                                    TCPOLEN_MD5SIG);
686                 /* Update length and the length the header thinks exists */
687                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
688                 rep.th.doff = arg.iov[0].iov_len / 4;
689
690                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
691                                      key, ip_hdr(skb)->saddr,
692                                      ip_hdr(skb)->daddr, &rep.th);
693         }
694 #endif
695         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
696                                       ip_hdr(skb)->saddr, /* XXX */
697                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
698         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
699         arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
700         /* When socket is gone, all binding information is lost.
701          * routing might fail in this case. No choice here, if we choose to force
702          * input interface, we will misroute in case of asymmetric route.
703          */
704         if (sk)
705                 arg.bound_dev_if = sk->sk_bound_dev_if;
706
707         net = dev_net(skb_dst(skb)->dev);
708         arg.tos = ip_hdr(skb)->tos;
709         ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
710                               ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
711
712         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
713         TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
714
715 #ifdef CONFIG_TCP_MD5SIG
716 release_sk1:
717         if (sk1) {
718                 rcu_read_unlock();
719                 sock_put(sk1);
720         }
721 #endif
722 }
723
724 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
725    outside socket context is ugly, certainly. What can I do?
726  */
727
728 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
729                             u32 win, u32 tsval, u32 tsecr, int oif,
730                             struct tcp_md5sig_key *key,
731                             int reply_flags, u8 tos)
732 {
733         const struct tcphdr *th = tcp_hdr(skb);
734         struct {
735                 struct tcphdr th;
736                 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
737 #ifdef CONFIG_TCP_MD5SIG
738                            + (TCPOLEN_MD5SIG_ALIGNED >> 2)
739 #endif
740                         ];
741         } rep;
742         struct ip_reply_arg arg;
743         struct net *net = dev_net(skb_dst(skb)->dev);
744
745         memset(&rep.th, 0, sizeof(struct tcphdr));
746         memset(&arg, 0, sizeof(arg));
747
748         arg.iov[0].iov_base = (unsigned char *)&rep;
749         arg.iov[0].iov_len  = sizeof(rep.th);
750         if (tsecr) {
751                 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
752                                    (TCPOPT_TIMESTAMP << 8) |
753                                    TCPOLEN_TIMESTAMP);
754                 rep.opt[1] = htonl(tsval);
755                 rep.opt[2] = htonl(tsecr);
756                 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
757         }
758
759         /* Swap the send and the receive. */
760         rep.th.dest    = th->source;
761         rep.th.source  = th->dest;
762         rep.th.doff    = arg.iov[0].iov_len / 4;
763         rep.th.seq     = htonl(seq);
764         rep.th.ack_seq = htonl(ack);
765         rep.th.ack     = 1;
766         rep.th.window  = htons(win);
767
768 #ifdef CONFIG_TCP_MD5SIG
769         if (key) {
770                 int offset = (tsecr) ? 3 : 0;
771
772                 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
773                                           (TCPOPT_NOP << 16) |
774                                           (TCPOPT_MD5SIG << 8) |
775                                           TCPOLEN_MD5SIG);
776                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
777                 rep.th.doff = arg.iov[0].iov_len/4;
778
779                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
780                                     key, ip_hdr(skb)->saddr,
781                                     ip_hdr(skb)->daddr, &rep.th);
782         }
783 #endif
784         arg.flags = reply_flags;
785         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
786                                       ip_hdr(skb)->saddr, /* XXX */
787                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
788         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
789         if (oif)
790                 arg.bound_dev_if = oif;
791         arg.tos = tos;
792         ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
793                               ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
794
795         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
796 }
797
798 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
799 {
800         struct inet_timewait_sock *tw = inet_twsk(sk);
801         struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
802
803         tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
804                         tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
805                         tcp_time_stamp + tcptw->tw_ts_offset,
806                         tcptw->tw_ts_recent,
807                         tw->tw_bound_dev_if,
808                         tcp_twsk_md5_key(tcptw),
809                         tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
810                         tw->tw_tos
811                         );
812
813         inet_twsk_put(tw);
814 }
815
816 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
817                                   struct request_sock *req)
818 {
819         /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
820          * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
821          */
822         tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
823                         tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
824                         tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
825                         tcp_time_stamp,
826                         req->ts_recent,
827                         0,
828                         tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
829                                           AF_INET),
830                         inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
831                         ip_hdr(skb)->tos);
832 }
833
834 /*
835  *      Send a SYN-ACK after having received a SYN.
836  *      This still operates on a request_sock only, not on a big
837  *      socket.
838  */
839 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
840                               struct request_sock *req,
841                               u16 queue_mapping,
842                               bool nocache)
843 {
844         const struct inet_request_sock *ireq = inet_rsk(req);
845         struct flowi4 fl4;
846         int err = -1;
847         struct sk_buff * skb;
848
849         /* First, grab a route. */
850         if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
851                 return -1;
852
853         skb = tcp_make_synack(sk, dst, req, NULL);
854
855         if (skb) {
856                 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
857
858                 skb_set_queue_mapping(skb, queue_mapping);
859                 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
860                                             ireq->rmt_addr,
861                                             ireq->opt);
862                 err = net_xmit_eval(err);
863                 if (!tcp_rsk(req)->snt_synack && !err)
864                         tcp_rsk(req)->snt_synack = tcp_time_stamp;
865         }
866
867         return err;
868 }
869
870 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req)
871 {
872         int res = tcp_v4_send_synack(sk, NULL, req, 0, false);
873
874         if (!res)
875                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
876         return res;
877 }
878
879 /*
880  *      IPv4 request_sock destructor.
881  */
882 static void tcp_v4_reqsk_destructor(struct request_sock *req)
883 {
884         kfree(inet_rsk(req)->opt);
885 }
886
887 /*
888  * Return true if a syncookie should be sent
889  */
890 bool tcp_syn_flood_action(struct sock *sk,
891                          const struct sk_buff *skb,
892                          const char *proto)
893 {
894         const char *msg = "Dropping request";
895         bool want_cookie = false;
896         struct listen_sock *lopt;
897
898
899
900 #ifdef CONFIG_SYN_COOKIES
901         if (sysctl_tcp_syncookies) {
902                 msg = "Sending cookies";
903                 want_cookie = true;
904                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
905         } else
906 #endif
907                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
908
909         lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
910         if (!lopt->synflood_warned) {
911                 lopt->synflood_warned = 1;
912                 pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
913                         proto, ntohs(tcp_hdr(skb)->dest), msg);
914         }
915         return want_cookie;
916 }
917 EXPORT_SYMBOL(tcp_syn_flood_action);
918
919 /*
920  * Save and compile IPv4 options into the request_sock if needed.
921  */
922 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
923 {
924         const struct ip_options *opt = &(IPCB(skb)->opt);
925         struct ip_options_rcu *dopt = NULL;
926
927         if (opt && opt->optlen) {
928                 int opt_size = sizeof(*dopt) + opt->optlen;
929
930                 dopt = kmalloc(opt_size, GFP_ATOMIC);
931                 if (dopt) {
932                         if (ip_options_echo(&dopt->opt, skb)) {
933                                 kfree(dopt);
934                                 dopt = NULL;
935                         }
936                 }
937         }
938         return dopt;
939 }
940
941 #ifdef CONFIG_TCP_MD5SIG
942 /*
943  * RFC2385 MD5 checksumming requires a mapping of
944  * IP address->MD5 Key.
945  * We need to maintain these in the sk structure.
946  */
947
948 /* Find the Key structure for an address.  */
949 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
950                                          const union tcp_md5_addr *addr,
951                                          int family)
952 {
953         struct tcp_sock *tp = tcp_sk(sk);
954         struct tcp_md5sig_key *key;
955         unsigned int size = sizeof(struct in_addr);
956         struct tcp_md5sig_info *md5sig;
957
958         /* caller either holds rcu_read_lock() or socket lock */
959         md5sig = rcu_dereference_check(tp->md5sig_info,
960                                        sock_owned_by_user(sk) ||
961                                        lockdep_is_held(&sk->sk_lock.slock));
962         if (!md5sig)
963                 return NULL;
964 #if IS_ENABLED(CONFIG_IPV6)
965         if (family == AF_INET6)
966                 size = sizeof(struct in6_addr);
967 #endif
968         hlist_for_each_entry_rcu(key, &md5sig->head, node) {
969                 if (key->family != family)
970                         continue;
971                 if (!memcmp(&key->addr, addr, size))
972                         return key;
973         }
974         return NULL;
975 }
976 EXPORT_SYMBOL(tcp_md5_do_lookup);
977
978 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
979                                          struct sock *addr_sk)
980 {
981         union tcp_md5_addr *addr;
982
983         addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
984         return tcp_md5_do_lookup(sk, addr, AF_INET);
985 }
986 EXPORT_SYMBOL(tcp_v4_md5_lookup);
987
988 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
989                                                       struct request_sock *req)
990 {
991         union tcp_md5_addr *addr;
992
993         addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
994         return tcp_md5_do_lookup(sk, addr, AF_INET);
995 }
996
997 /* This can be called on a newly created socket, from other files */
998 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
999                    int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
1000 {
1001         /* Add Key to the list */
1002         struct tcp_md5sig_key *key;
1003         struct tcp_sock *tp = tcp_sk(sk);
1004         struct tcp_md5sig_info *md5sig;
1005
1006         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1007         if (key) {
1008                 /* Pre-existing entry - just update that one. */
1009                 memcpy(key->key, newkey, newkeylen);
1010                 key->keylen = newkeylen;
1011                 return 0;
1012         }
1013
1014         md5sig = rcu_dereference_protected(tp->md5sig_info,
1015                                            sock_owned_by_user(sk));
1016         if (!md5sig) {
1017                 md5sig = kmalloc(sizeof(*md5sig), gfp);
1018                 if (!md5sig)
1019                         return -ENOMEM;
1020
1021                 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1022                 INIT_HLIST_HEAD(&md5sig->head);
1023                 rcu_assign_pointer(tp->md5sig_info, md5sig);
1024         }
1025
1026         key = sock_kmalloc(sk, sizeof(*key), gfp);
1027         if (!key)
1028                 return -ENOMEM;
1029         if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1030                 sock_kfree_s(sk, key, sizeof(*key));
1031                 return -ENOMEM;
1032         }
1033
1034         memcpy(key->key, newkey, newkeylen);
1035         key->keylen = newkeylen;
1036         key->family = family;
1037         memcpy(&key->addr, addr,
1038                (family == AF_INET6) ? sizeof(struct in6_addr) :
1039                                       sizeof(struct in_addr));
1040         hlist_add_head_rcu(&key->node, &md5sig->head);
1041         return 0;
1042 }
1043 EXPORT_SYMBOL(tcp_md5_do_add);
1044
1045 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1046 {
1047         struct tcp_sock *tp = tcp_sk(sk);
1048         struct tcp_md5sig_key *key;
1049         struct tcp_md5sig_info *md5sig;
1050
1051         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1052         if (!key)
1053                 return -ENOENT;
1054         hlist_del_rcu(&key->node);
1055         atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1056         kfree_rcu(key, rcu);
1057         md5sig = rcu_dereference_protected(tp->md5sig_info,
1058                                            sock_owned_by_user(sk));
1059         if (hlist_empty(&md5sig->head))
1060                 tcp_free_md5sig_pool();
1061         return 0;
1062 }
1063 EXPORT_SYMBOL(tcp_md5_do_del);
1064
1065 static void tcp_clear_md5_list(struct sock *sk)
1066 {
1067         struct tcp_sock *tp = tcp_sk(sk);
1068         struct tcp_md5sig_key *key;
1069         struct hlist_node *n;
1070         struct tcp_md5sig_info *md5sig;
1071
1072         md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1073
1074         if (!hlist_empty(&md5sig->head))
1075                 tcp_free_md5sig_pool();
1076         hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1077                 hlist_del_rcu(&key->node);
1078                 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1079                 kfree_rcu(key, rcu);
1080         }
1081 }
1082
1083 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1084                                  int optlen)
1085 {
1086         struct tcp_md5sig cmd;
1087         struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1088
1089         if (optlen < sizeof(cmd))
1090                 return -EINVAL;
1091
1092         if (copy_from_user(&cmd, optval, sizeof(cmd)))
1093                 return -EFAULT;
1094
1095         if (sin->sin_family != AF_INET)
1096                 return -EINVAL;
1097
1098         if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1099                 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1100                                       AF_INET);
1101
1102         if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1103                 return -EINVAL;
1104
1105         return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1106                               AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1107                               GFP_KERNEL);
1108 }
1109
1110 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1111                                         __be32 daddr, __be32 saddr, int nbytes)
1112 {
1113         struct tcp4_pseudohdr *bp;
1114         struct scatterlist sg;
1115
1116         bp = &hp->md5_blk.ip4;
1117
1118         /*
1119          * 1. the TCP pseudo-header (in the order: source IP address,
1120          * destination IP address, zero-padded protocol number, and
1121          * segment length)
1122          */
1123         bp->saddr = saddr;
1124         bp->daddr = daddr;
1125         bp->pad = 0;
1126         bp->protocol = IPPROTO_TCP;
1127         bp->len = cpu_to_be16(nbytes);
1128
1129         sg_init_one(&sg, bp, sizeof(*bp));
1130         return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1131 }
1132
1133 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1134                                __be32 daddr, __be32 saddr, const struct tcphdr *th)
1135 {
1136         struct tcp_md5sig_pool *hp;
1137         struct hash_desc *desc;
1138
1139         hp = tcp_get_md5sig_pool();
1140         if (!hp)
1141                 goto clear_hash_noput;
1142         desc = &hp->md5_desc;
1143
1144         if (crypto_hash_init(desc))
1145                 goto clear_hash;
1146         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1147                 goto clear_hash;
1148         if (tcp_md5_hash_header(hp, th))
1149                 goto clear_hash;
1150         if (tcp_md5_hash_key(hp, key))
1151                 goto clear_hash;
1152         if (crypto_hash_final(desc, md5_hash))
1153                 goto clear_hash;
1154
1155         tcp_put_md5sig_pool();
1156         return 0;
1157
1158 clear_hash:
1159         tcp_put_md5sig_pool();
1160 clear_hash_noput:
1161         memset(md5_hash, 0, 16);
1162         return 1;
1163 }
1164
1165 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1166                         const struct sock *sk, const struct request_sock *req,
1167                         const struct sk_buff *skb)
1168 {
1169         struct tcp_md5sig_pool *hp;
1170         struct hash_desc *desc;
1171         const struct tcphdr *th = tcp_hdr(skb);
1172         __be32 saddr, daddr;
1173
1174         if (sk) {
1175                 saddr = inet_sk(sk)->inet_saddr;
1176                 daddr = inet_sk(sk)->inet_daddr;
1177         } else if (req) {
1178                 saddr = inet_rsk(req)->loc_addr;
1179                 daddr = inet_rsk(req)->rmt_addr;
1180         } else {
1181                 const struct iphdr *iph = ip_hdr(skb);
1182                 saddr = iph->saddr;
1183                 daddr = iph->daddr;
1184         }
1185
1186         hp = tcp_get_md5sig_pool();
1187         if (!hp)
1188                 goto clear_hash_noput;
1189         desc = &hp->md5_desc;
1190
1191         if (crypto_hash_init(desc))
1192                 goto clear_hash;
1193
1194         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1195                 goto clear_hash;
1196         if (tcp_md5_hash_header(hp, th))
1197                 goto clear_hash;
1198         if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1199                 goto clear_hash;
1200         if (tcp_md5_hash_key(hp, key))
1201                 goto clear_hash;
1202         if (crypto_hash_final(desc, md5_hash))
1203                 goto clear_hash;
1204
1205         tcp_put_md5sig_pool();
1206         return 0;
1207
1208 clear_hash:
1209         tcp_put_md5sig_pool();
1210 clear_hash_noput:
1211         memset(md5_hash, 0, 16);
1212         return 1;
1213 }
1214 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1215
1216 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1217 {
1218         /*
1219          * This gets called for each TCP segment that arrives
1220          * so we want to be efficient.
1221          * We have 3 drop cases:
1222          * o No MD5 hash and one expected.
1223          * o MD5 hash and we're not expecting one.
1224          * o MD5 hash and its wrong.
1225          */
1226         const __u8 *hash_location = NULL;
1227         struct tcp_md5sig_key *hash_expected;
1228         const struct iphdr *iph = ip_hdr(skb);
1229         const struct tcphdr *th = tcp_hdr(skb);
1230         int genhash;
1231         unsigned char newhash[16];
1232
1233         hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1234                                           AF_INET);
1235         hash_location = tcp_parse_md5sig_option(th);
1236
1237         /* We've parsed the options - do we have a hash? */
1238         if (!hash_expected && !hash_location)
1239                 return false;
1240
1241         if (hash_expected && !hash_location) {
1242                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1243                 return true;
1244         }
1245
1246         if (!hash_expected && hash_location) {
1247                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1248                 return true;
1249         }
1250
1251         /* Okay, so this is hash_expected and hash_location -
1252          * so we need to calculate the checksum.
1253          */
1254         genhash = tcp_v4_md5_hash_skb(newhash,
1255                                       hash_expected,
1256                                       NULL, NULL, skb);
1257
1258         if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1259                 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1260                                      &iph->saddr, ntohs(th->source),
1261                                      &iph->daddr, ntohs(th->dest),
1262                                      genhash ? " tcp_v4_calc_md5_hash failed"
1263                                      : "");
1264                 return true;
1265         }
1266         return false;
1267 }
1268
1269 #endif
1270
1271 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1272         .family         =       PF_INET,
1273         .obj_size       =       sizeof(struct tcp_request_sock),
1274         .rtx_syn_ack    =       tcp_v4_rtx_synack,
1275         .send_ack       =       tcp_v4_reqsk_send_ack,
1276         .destructor     =       tcp_v4_reqsk_destructor,
1277         .send_reset     =       tcp_v4_send_reset,
1278         .syn_ack_timeout =      tcp_syn_ack_timeout,
1279 };
1280
1281 #ifdef CONFIG_TCP_MD5SIG
1282 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1283         .md5_lookup     =       tcp_v4_reqsk_md5_lookup,
1284         .calc_md5_hash  =       tcp_v4_md5_hash_skb,
1285 };
1286 #endif
1287
1288 static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb,
1289                                struct request_sock *req,
1290                                struct tcp_fastopen_cookie *foc,
1291                                struct tcp_fastopen_cookie *valid_foc)
1292 {
1293         bool skip_cookie = false;
1294         struct fastopen_queue *fastopenq;
1295
1296         if (likely(!fastopen_cookie_present(foc))) {
1297                 /* See include/net/tcp.h for the meaning of these knobs */
1298                 if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) ||
1299                     ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) &&
1300                     (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1)))
1301                         skip_cookie = true; /* no cookie to validate */
1302                 else
1303                         return false;
1304         }
1305         fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
1306         /* A FO option is present; bump the counter. */
1307         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE);
1308
1309         /* Make sure the listener has enabled fastopen, and we don't
1310          * exceed the max # of pending TFO requests allowed before trying
1311          * to validating the cookie in order to avoid burning CPU cycles
1312          * unnecessarily.
1313          *
1314          * XXX (TFO) - The implication of checking the max_qlen before
1315          * processing a cookie request is that clients can't differentiate
1316          * between qlen overflow causing Fast Open to be disabled
1317          * temporarily vs a server not supporting Fast Open at all.
1318          */
1319         if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 ||
1320             fastopenq == NULL || fastopenq->max_qlen == 0)
1321                 return false;
1322
1323         if (fastopenq->qlen >= fastopenq->max_qlen) {
1324                 struct request_sock *req1;
1325                 spin_lock(&fastopenq->lock);
1326                 req1 = fastopenq->rskq_rst_head;
1327                 if ((req1 == NULL) || time_after(req1->expires, jiffies)) {
1328                         spin_unlock(&fastopenq->lock);
1329                         NET_INC_STATS_BH(sock_net(sk),
1330                             LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
1331                         /* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/
1332                         foc->len = -1;
1333                         return false;
1334                 }
1335                 fastopenq->rskq_rst_head = req1->dl_next;
1336                 fastopenq->qlen--;
1337                 spin_unlock(&fastopenq->lock);
1338                 reqsk_free(req1);
1339         }
1340         if (skip_cookie) {
1341                 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1342                 return true;
1343         }
1344         if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) {
1345                 if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) {
1346                         tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1347                         if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) ||
1348                             memcmp(&foc->val[0], &valid_foc->val[0],
1349                             TCP_FASTOPEN_COOKIE_SIZE) != 0)
1350                                 return false;
1351                         valid_foc->len = -1;
1352                 }
1353                 /* Acknowledge the data received from the peer. */
1354                 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1355                 return true;
1356         } else if (foc->len == 0) { /* Client requesting a cookie */
1357                 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1358                 NET_INC_STATS_BH(sock_net(sk),
1359                     LINUX_MIB_TCPFASTOPENCOOKIEREQD);
1360         } else {
1361                 /* Client sent a cookie with wrong size. Treat it
1362                  * the same as invalid and return a valid one.
1363                  */
1364                 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1365         }
1366         return false;
1367 }
1368
1369 static int tcp_v4_conn_req_fastopen(struct sock *sk,
1370                                     struct sk_buff *skb,
1371                                     struct sk_buff *skb_synack,
1372                                     struct request_sock *req)
1373 {
1374         struct tcp_sock *tp = tcp_sk(sk);
1375         struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1376         const struct inet_request_sock *ireq = inet_rsk(req);
1377         struct sock *child;
1378         int err;
1379
1380         req->num_retrans = 0;
1381         req->num_timeout = 0;
1382         req->sk = NULL;
1383
1384         child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
1385         if (child == NULL) {
1386                 NET_INC_STATS_BH(sock_net(sk),
1387                                  LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1388                 kfree_skb(skb_synack);
1389                 return -1;
1390         }
1391         err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1392                                     ireq->rmt_addr, ireq->opt);
1393         err = net_xmit_eval(err);
1394         if (!err)
1395                 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1396         /* XXX (TFO) - is it ok to ignore error and continue? */
1397
1398         spin_lock(&queue->fastopenq->lock);
1399         queue->fastopenq->qlen++;
1400         spin_unlock(&queue->fastopenq->lock);
1401
1402         /* Initialize the child socket. Have to fix some values to take
1403          * into account the child is a Fast Open socket and is created
1404          * only out of the bits carried in the SYN packet.
1405          */
1406         tp = tcp_sk(child);
1407
1408         tp->fastopen_rsk = req;
1409         /* Do a hold on the listner sk so that if the listener is being
1410          * closed, the child that has been accepted can live on and still
1411          * access listen_lock.
1412          */
1413         sock_hold(sk);
1414         tcp_rsk(req)->listener = sk;
1415
1416         /* RFC1323: The window in SYN & SYN/ACK segments is never
1417          * scaled. So correct it appropriately.
1418          */
1419         tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
1420
1421         /* Activate the retrans timer so that SYNACK can be retransmitted.
1422          * The request socket is not added to the SYN table of the parent
1423          * because it's been added to the accept queue directly.
1424          */
1425         inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
1426             TCP_TIMEOUT_INIT, TCP_RTO_MAX);
1427
1428         /* Add the child socket directly into the accept queue */
1429         inet_csk_reqsk_queue_add(sk, req, child);
1430
1431         /* Now finish processing the fastopen child socket. */
1432         inet_csk(child)->icsk_af_ops->rebuild_header(child);
1433         tcp_init_congestion_control(child);
1434         tcp_mtup_init(child);
1435         tcp_init_buffer_space(child);
1436         tcp_init_metrics(child);
1437
1438         /* Queue the data carried in the SYN packet. We need to first
1439          * bump skb's refcnt because the caller will attempt to free it.
1440          *
1441          * XXX (TFO) - we honor a zero-payload TFO request for now.
1442          * (Any reason not to?)
1443          */
1444         if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) {
1445                 /* Don't queue the skb if there is no payload in SYN.
1446                  * XXX (TFO) - How about SYN+FIN?
1447                  */
1448                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1449         } else {
1450                 skb = skb_get(skb);
1451                 skb_dst_drop(skb);
1452                 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
1453                 skb_set_owner_r(skb, child);
1454                 __skb_queue_tail(&child->sk_receive_queue, skb);
1455                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1456                 tp->syn_data_acked = 1;
1457         }
1458         sk->sk_data_ready(sk, 0);
1459         bh_unlock_sock(child);
1460         sock_put(child);
1461         WARN_ON(req->sk == NULL);
1462         return 0;
1463 }
1464
1465 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1466 {
1467         struct tcp_options_received tmp_opt;
1468         struct request_sock *req;
1469         struct inet_request_sock *ireq;
1470         struct tcp_sock *tp = tcp_sk(sk);
1471         struct dst_entry *dst = NULL;
1472         __be32 saddr = ip_hdr(skb)->saddr;
1473         __be32 daddr = ip_hdr(skb)->daddr;
1474         __u32 isn = TCP_SKB_CB(skb)->when;
1475         bool want_cookie = false;
1476         struct flowi4 fl4;
1477         struct tcp_fastopen_cookie foc = { .len = -1 };
1478         struct tcp_fastopen_cookie valid_foc = { .len = -1 };
1479         struct sk_buff *skb_synack;
1480         int do_fastopen;
1481
1482         /* Never answer to SYNs send to broadcast or multicast */
1483         if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1484                 goto drop;
1485
1486         /* TW buckets are converted to open requests without
1487          * limitations, they conserve resources and peer is
1488          * evidently real one.
1489          */
1490         if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1491                 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1492                 if (!want_cookie)
1493                         goto drop;
1494         }
1495
1496         /* Accept backlog is full. If we have already queued enough
1497          * of warm entries in syn queue, drop request. It is better than
1498          * clogging syn queue with openreqs with exponentially increasing
1499          * timeout.
1500          */
1501         if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
1502                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1503                 goto drop;
1504         }
1505
1506         req = inet_reqsk_alloc(&tcp_request_sock_ops);
1507         if (!req)
1508                 goto drop;
1509
1510 #ifdef CONFIG_TCP_MD5SIG
1511         tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1512 #endif
1513
1514         tcp_clear_options(&tmp_opt);
1515         tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1516         tmp_opt.user_mss  = tp->rx_opt.user_mss;
1517         tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
1518
1519         if (want_cookie && !tmp_opt.saw_tstamp)
1520                 tcp_clear_options(&tmp_opt);
1521
1522         tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1523         tcp_openreq_init(req, &tmp_opt, skb);
1524
1525         ireq = inet_rsk(req);
1526         ireq->loc_addr = daddr;
1527         ireq->rmt_addr = saddr;
1528         ireq->no_srccheck = inet_sk(sk)->transparent;
1529         ireq->opt = tcp_v4_save_options(skb);
1530
1531         if (security_inet_conn_request(sk, skb, req))
1532                 goto drop_and_free;
1533
1534         if (!want_cookie || tmp_opt.tstamp_ok)
1535                 TCP_ECN_create_request(req, skb, sock_net(sk));
1536
1537         if (want_cookie) {
1538                 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1539                 req->cookie_ts = tmp_opt.tstamp_ok;
1540         } else if (!isn) {
1541                 /* VJ's idea. We save last timestamp seen
1542                  * from the destination in peer table, when entering
1543                  * state TIME-WAIT, and check against it before
1544                  * accepting new connection request.
1545                  *
1546                  * If "isn" is not zero, this request hit alive
1547                  * timewait bucket, so that all the necessary checks
1548                  * are made in the function processing timewait state.
1549                  */
1550                 if (tmp_opt.saw_tstamp &&
1551                     tcp_death_row.sysctl_tw_recycle &&
1552                     (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1553                     fl4.daddr == saddr) {
1554                         if (!tcp_peer_is_proven(req, dst, true)) {
1555                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1556                                 goto drop_and_release;
1557                         }
1558                 }
1559                 /* Kill the following clause, if you dislike this way. */
1560                 else if (!sysctl_tcp_syncookies &&
1561                          (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1562                           (sysctl_max_syn_backlog >> 2)) &&
1563                          !tcp_peer_is_proven(req, dst, false)) {
1564                         /* Without syncookies last quarter of
1565                          * backlog is filled with destinations,
1566                          * proven to be alive.
1567                          * It means that we continue to communicate
1568                          * to destinations, already remembered
1569                          * to the moment of synflood.
1570                          */
1571                         LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1572                                        &saddr, ntohs(tcp_hdr(skb)->source));
1573                         goto drop_and_release;
1574                 }
1575
1576                 isn = tcp_v4_init_sequence(skb);
1577         }
1578         tcp_rsk(req)->snt_isn = isn;
1579
1580         if (dst == NULL) {
1581                 dst = inet_csk_route_req(sk, &fl4, req);
1582                 if (dst == NULL)
1583                         goto drop_and_free;
1584         }
1585         do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc);
1586
1587         /* We don't call tcp_v4_send_synack() directly because we need
1588          * to make sure a child socket can be created successfully before
1589          * sending back synack!
1590          *
1591          * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack()
1592          * (or better yet, call tcp_send_synack() in the child context
1593          * directly, but will have to fix bunch of other code first)
1594          * after syn_recv_sock() except one will need to first fix the
1595          * latter to remove its dependency on the current implementation
1596          * of tcp_v4_send_synack()->tcp_select_initial_window().
1597          */
1598         skb_synack = tcp_make_synack(sk, dst, req,
1599             fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL);
1600
1601         if (skb_synack) {
1602                 __tcp_v4_send_check(skb_synack, ireq->loc_addr, ireq->rmt_addr);
1603                 skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb));
1604         } else
1605                 goto drop_and_free;
1606
1607         if (likely(!do_fastopen)) {
1608                 int err;
1609                 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1610                      ireq->rmt_addr, ireq->opt);
1611                 err = net_xmit_eval(err);
1612                 if (err || want_cookie)
1613                         goto drop_and_free;
1614
1615                 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1616                 tcp_rsk(req)->listener = NULL;
1617                 /* Add the request_sock to the SYN table */
1618                 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1619                 if (fastopen_cookie_present(&foc) && foc.len != 0)
1620                         NET_INC_STATS_BH(sock_net(sk),
1621                             LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1622         } else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req))
1623                 goto drop_and_free;
1624
1625         return 0;
1626
1627 drop_and_release:
1628         dst_release(dst);
1629 drop_and_free:
1630         reqsk_free(req);
1631 drop:
1632         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1633         return 0;
1634 }
1635 EXPORT_SYMBOL(tcp_v4_conn_request);
1636
1637
1638 /*
1639  * The three way handshake has completed - we got a valid synack -
1640  * now create the new socket.
1641  */
1642 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1643                                   struct request_sock *req,
1644                                   struct dst_entry *dst)
1645 {
1646         struct inet_request_sock *ireq;
1647         struct inet_sock *newinet;
1648         struct tcp_sock *newtp;
1649         struct sock *newsk;
1650 #ifdef CONFIG_TCP_MD5SIG
1651         struct tcp_md5sig_key *key;
1652 #endif
1653         struct ip_options_rcu *inet_opt;
1654
1655         if (sk_acceptq_is_full(sk))
1656                 goto exit_overflow;
1657
1658         newsk = tcp_create_openreq_child(sk, req, skb);
1659         if (!newsk)
1660                 goto exit_nonewsk;
1661
1662         newsk->sk_gso_type = SKB_GSO_TCPV4;
1663         inet_sk_rx_dst_set(newsk, skb);
1664
1665         newtp                 = tcp_sk(newsk);
1666         newinet               = inet_sk(newsk);
1667         ireq                  = inet_rsk(req);
1668         newinet->inet_daddr   = ireq->rmt_addr;
1669         newinet->inet_rcv_saddr = ireq->loc_addr;
1670         newinet->inet_saddr           = ireq->loc_addr;
1671         inet_opt              = ireq->opt;
1672         rcu_assign_pointer(newinet->inet_opt, inet_opt);
1673         ireq->opt             = NULL;
1674         newinet->mc_index     = inet_iif(skb);
1675         newinet->mc_ttl       = ip_hdr(skb)->ttl;
1676         newinet->rcv_tos      = ip_hdr(skb)->tos;
1677         inet_csk(newsk)->icsk_ext_hdr_len = 0;
1678         if (inet_opt)
1679                 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1680         newinet->inet_id = newtp->write_seq ^ jiffies;
1681
1682         if (!dst) {
1683                 dst = inet_csk_route_child_sock(sk, newsk, req);
1684                 if (!dst)
1685                         goto put_and_exit;
1686         } else {
1687                 /* syncookie case : see end of cookie_v4_check() */
1688         }
1689         sk_setup_caps(newsk, dst);
1690
1691         tcp_mtup_init(newsk);
1692         tcp_sync_mss(newsk, dst_mtu(dst));
1693         newtp->advmss = dst_metric_advmss(dst);
1694         if (tcp_sk(sk)->rx_opt.user_mss &&
1695             tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1696                 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1697
1698         tcp_initialize_rcv_mss(newsk);
1699         tcp_synack_rtt_meas(newsk, req);
1700         newtp->total_retrans = req->num_retrans;
1701
1702 #ifdef CONFIG_TCP_MD5SIG
1703         /* Copy over the MD5 key from the original socket */
1704         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1705                                 AF_INET);
1706         if (key != NULL) {
1707                 /*
1708                  * We're using one, so create a matching key
1709                  * on the newsk structure. If we fail to get
1710                  * memory, then we end up not copying the key
1711                  * across. Shucks.
1712                  */
1713                 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1714                                AF_INET, key->key, key->keylen, GFP_ATOMIC);
1715                 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1716         }
1717 #endif
1718
1719         if (__inet_inherit_port(sk, newsk) < 0)
1720                 goto put_and_exit;
1721         __inet_hash_nolisten(newsk, NULL);
1722
1723         return newsk;
1724
1725 exit_overflow:
1726         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1727 exit_nonewsk:
1728         dst_release(dst);
1729 exit:
1730         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1731         return NULL;
1732 put_and_exit:
1733         inet_csk_prepare_forced_close(newsk);
1734         tcp_done(newsk);
1735         goto exit;
1736 }
1737 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1738
1739 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1740 {
1741         struct tcphdr *th = tcp_hdr(skb);
1742         const struct iphdr *iph = ip_hdr(skb);
1743         struct sock *nsk;
1744         struct request_sock **prev;
1745         /* Find possible connection requests. */
1746         struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1747                                                        iph->saddr, iph->daddr);
1748         if (req)
1749                 return tcp_check_req(sk, skb, req, prev, false);
1750
1751         nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1752                         th->source, iph->daddr, th->dest, inet_iif(skb));
1753
1754         if (nsk) {
1755                 if (nsk->sk_state != TCP_TIME_WAIT) {
1756                         bh_lock_sock(nsk);
1757                         return nsk;
1758                 }
1759                 inet_twsk_put(inet_twsk(nsk));
1760                 return NULL;
1761         }
1762
1763 #ifdef CONFIG_SYN_COOKIES
1764         if (!th->syn)
1765                 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1766 #endif
1767         return sk;
1768 }
1769
1770 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1771 {
1772         const struct iphdr *iph = ip_hdr(skb);
1773
1774         if (skb->ip_summed == CHECKSUM_COMPLETE) {
1775                 if (!tcp_v4_check(skb->len, iph->saddr,
1776                                   iph->daddr, skb->csum)) {
1777                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1778                         return 0;
1779                 }
1780         }
1781
1782         skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1783                                        skb->len, IPPROTO_TCP, 0);
1784
1785         if (skb->len <= 76) {
1786                 return __skb_checksum_complete(skb);
1787         }
1788         return 0;
1789 }
1790
1791
1792 /* The socket must have it's spinlock held when we get
1793  * here.
1794  *
1795  * We have a potential double-lock case here, so even when
1796  * doing backlog processing we use the BH locking scheme.
1797  * This is because we cannot sleep with the original spinlock
1798  * held.
1799  */
1800 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1801 {
1802         struct sock *rsk;
1803 #ifdef CONFIG_TCP_MD5SIG
1804         /*
1805          * We really want to reject the packet as early as possible
1806          * if:
1807          *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1808          *  o There is an MD5 option and we're not expecting one
1809          */
1810         if (tcp_v4_inbound_md5_hash(sk, skb))
1811                 goto discard;
1812 #endif
1813
1814         if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1815                 struct dst_entry *dst = sk->sk_rx_dst;
1816
1817                 sock_rps_save_rxhash(sk, skb);
1818                 if (dst) {
1819                         if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1820                             dst->ops->check(dst, 0) == NULL) {
1821                                 dst_release(dst);
1822                                 sk->sk_rx_dst = NULL;
1823                         }
1824                 }
1825                 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1826                         rsk = sk;
1827                         goto reset;
1828                 }
1829                 return 0;
1830         }
1831
1832         if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1833                 goto csum_err;
1834
1835         if (sk->sk_state == TCP_LISTEN) {
1836                 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1837                 if (!nsk)
1838                         goto discard;
1839
1840                 if (nsk != sk) {
1841                         sock_rps_save_rxhash(nsk, skb);
1842                         if (tcp_child_process(sk, nsk, skb)) {
1843                                 rsk = nsk;
1844                                 goto reset;
1845                         }
1846                         return 0;
1847                 }
1848         } else
1849                 sock_rps_save_rxhash(sk, skb);
1850
1851         if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1852                 rsk = sk;
1853                 goto reset;
1854         }
1855         return 0;
1856
1857 reset:
1858         tcp_v4_send_reset(rsk, skb);
1859 discard:
1860         kfree_skb(skb);
1861         /* Be careful here. If this function gets more complicated and
1862          * gcc suffers from register pressure on the x86, sk (in %ebx)
1863          * might be destroyed here. This current version compiles correctly,
1864          * but you have been warned.
1865          */
1866         return 0;
1867
1868 csum_err:
1869         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1870         goto discard;
1871 }
1872 EXPORT_SYMBOL(tcp_v4_do_rcv);
1873
1874 void tcp_v4_early_demux(struct sk_buff *skb)
1875 {
1876         const struct iphdr *iph;
1877         const struct tcphdr *th;
1878         struct sock *sk;
1879
1880         if (skb->pkt_type != PACKET_HOST)
1881                 return;
1882
1883         if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1884                 return;
1885
1886         iph = ip_hdr(skb);
1887         th = tcp_hdr(skb);
1888
1889         if (th->doff < sizeof(struct tcphdr) / 4)
1890                 return;
1891
1892         sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1893                                        iph->saddr, th->source,
1894                                        iph->daddr, ntohs(th->dest),
1895                                        skb->skb_iif);
1896         if (sk) {
1897                 skb->sk = sk;
1898                 skb->destructor = sock_edemux;
1899                 if (sk->sk_state != TCP_TIME_WAIT) {
1900                         struct dst_entry *dst = sk->sk_rx_dst;
1901
1902                         if (dst)
1903                                 dst = dst_check(dst, 0);
1904                         if (dst &&
1905                             inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1906                                 skb_dst_set_noref(skb, dst);
1907                 }
1908         }
1909 }
1910
1911 /* Packet is added to VJ-style prequeue for processing in process
1912  * context, if a reader task is waiting. Apparently, this exciting
1913  * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1914  * failed somewhere. Latency? Burstiness? Well, at least now we will
1915  * see, why it failed. 8)8)                               --ANK
1916  *
1917  */
1918 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1919 {
1920         struct tcp_sock *tp = tcp_sk(sk);
1921
1922         if (sysctl_tcp_low_latency || !tp->ucopy.task)
1923                 return false;
1924
1925         if (skb->len <= tcp_hdrlen(skb) &&
1926             skb_queue_len(&tp->ucopy.prequeue) == 0)
1927                 return false;
1928
1929         __skb_queue_tail(&tp->ucopy.prequeue, skb);
1930         tp->ucopy.memory += skb->truesize;
1931         if (tp->ucopy.memory > sk->sk_rcvbuf) {
1932                 struct sk_buff *skb1;
1933
1934                 BUG_ON(sock_owned_by_user(sk));
1935
1936                 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1937                         sk_backlog_rcv(sk, skb1);
1938                         NET_INC_STATS_BH(sock_net(sk),
1939                                          LINUX_MIB_TCPPREQUEUEDROPPED);
1940                 }
1941
1942                 tp->ucopy.memory = 0;
1943         } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1944                 wake_up_interruptible_sync_poll(sk_sleep(sk),
1945                                            POLLIN | POLLRDNORM | POLLRDBAND);
1946                 if (!inet_csk_ack_scheduled(sk))
1947                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1948                                                   (3 * tcp_rto_min(sk)) / 4,
1949                                                   TCP_RTO_MAX);
1950         }
1951         return true;
1952 }
1953 EXPORT_SYMBOL(tcp_prequeue);
1954
1955 /*
1956  *      From tcp_input.c
1957  */
1958
1959 int tcp_v4_rcv(struct sk_buff *skb)
1960 {
1961         const struct iphdr *iph;
1962         const struct tcphdr *th;
1963         struct sock *sk;
1964         int ret;
1965         struct net *net = dev_net(skb->dev);
1966
1967         if (skb->pkt_type != PACKET_HOST)
1968                 goto discard_it;
1969
1970         /* Count it even if it's bad */
1971         TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1972
1973         if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1974                 goto discard_it;
1975
1976         th = tcp_hdr(skb);
1977
1978         if (th->doff < sizeof(struct tcphdr) / 4)
1979                 goto bad_packet;
1980         if (!pskb_may_pull(skb, th->doff * 4))
1981                 goto discard_it;
1982
1983         /* An explanation is required here, I think.
1984          * Packet length and doff are validated by header prediction,
1985          * provided case of th->doff==0 is eliminated.
1986          * So, we defer the checks. */
1987         if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1988                 goto bad_packet;
1989
1990         th = tcp_hdr(skb);
1991         iph = ip_hdr(skb);
1992         TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1993         TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1994                                     skb->len - th->doff * 4);
1995         TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1996         TCP_SKB_CB(skb)->when    = 0;
1997         TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1998         TCP_SKB_CB(skb)->sacked  = 0;
1999
2000         sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
2001         if (!sk)
2002                 goto no_tcp_socket;
2003
2004 process:
2005         if (sk->sk_state == TCP_TIME_WAIT)
2006                 goto do_time_wait;
2007
2008         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
2009                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
2010                 goto discard_and_relse;
2011         }
2012
2013         if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2014                 goto discard_and_relse;
2015         nf_reset(skb);
2016
2017         if (sk_filter(sk, skb))
2018                 goto discard_and_relse;
2019
2020         skb->dev = NULL;
2021
2022         bh_lock_sock_nested(sk);
2023         ret = 0;
2024         if (!sock_owned_by_user(sk)) {
2025 #ifdef CONFIG_NET_DMA
2026                 struct tcp_sock *tp = tcp_sk(sk);
2027                 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
2028                         tp->ucopy.dma_chan = net_dma_find_channel();
2029                 if (tp->ucopy.dma_chan)
2030                         ret = tcp_v4_do_rcv(sk, skb);
2031                 else
2032 #endif
2033                 {
2034                         if (!tcp_prequeue(sk, skb))
2035                                 ret = tcp_v4_do_rcv(sk, skb);
2036                 }
2037         } else if (unlikely(sk_add_backlog(sk, skb,
2038                                            sk->sk_rcvbuf + sk->sk_sndbuf))) {
2039                 bh_unlock_sock(sk);
2040                 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
2041                 goto discard_and_relse;
2042         }
2043         bh_unlock_sock(sk);
2044
2045         sock_put(sk);
2046
2047         return ret;
2048
2049 no_tcp_socket:
2050         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2051                 goto discard_it;
2052
2053         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2054 bad_packet:
2055                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2056         } else {
2057                 tcp_v4_send_reset(NULL, skb);
2058         }
2059
2060 discard_it:
2061         /* Discard frame. */
2062         kfree_skb(skb);
2063         return 0;
2064
2065 discard_and_relse:
2066         sock_put(sk);
2067         goto discard_it;
2068
2069 do_time_wait:
2070         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2071                 inet_twsk_put(inet_twsk(sk));
2072                 goto discard_it;
2073         }
2074
2075         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2076                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2077                 inet_twsk_put(inet_twsk(sk));
2078                 goto discard_it;
2079         }
2080         switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2081         case TCP_TW_SYN: {
2082                 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2083                                                         &tcp_hashinfo,
2084                                                         iph->saddr, th->source,
2085                                                         iph->daddr, th->dest,
2086                                                         inet_iif(skb));
2087                 if (sk2) {
2088                         inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
2089                         inet_twsk_put(inet_twsk(sk));
2090                         sk = sk2;
2091                         goto process;
2092                 }
2093                 /* Fall through to ACK */
2094         }
2095         case TCP_TW_ACK:
2096                 tcp_v4_timewait_ack(sk, skb);
2097                 break;
2098         case TCP_TW_RST:
2099                 goto no_tcp_socket;
2100         case TCP_TW_SUCCESS:;
2101         }
2102         goto discard_it;
2103 }
2104
2105 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2106         .twsk_obj_size  = sizeof(struct tcp_timewait_sock),
2107         .twsk_unique    = tcp_twsk_unique,
2108         .twsk_destructor= tcp_twsk_destructor,
2109 };
2110
2111 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2112 {
2113         struct dst_entry *dst = skb_dst(skb);
2114
2115         dst_hold(dst);
2116         sk->sk_rx_dst = dst;
2117         inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2118 }
2119 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2120
2121 const struct inet_connection_sock_af_ops ipv4_specific = {
2122         .queue_xmit        = ip_queue_xmit,
2123         .send_check        = tcp_v4_send_check,
2124         .rebuild_header    = inet_sk_rebuild_header,
2125         .sk_rx_dst_set     = inet_sk_rx_dst_set,
2126         .conn_request      = tcp_v4_conn_request,
2127         .syn_recv_sock     = tcp_v4_syn_recv_sock,
2128         .net_header_len    = sizeof(struct iphdr),
2129         .setsockopt        = ip_setsockopt,
2130         .getsockopt        = ip_getsockopt,
2131         .addr2sockaddr     = inet_csk_addr2sockaddr,
2132         .sockaddr_len      = sizeof(struct sockaddr_in),
2133         .bind_conflict     = inet_csk_bind_conflict,
2134 #ifdef CONFIG_COMPAT
2135         .compat_setsockopt = compat_ip_setsockopt,
2136         .compat_getsockopt = compat_ip_getsockopt,
2137 #endif
2138 };
2139 EXPORT_SYMBOL(ipv4_specific);
2140
2141 #ifdef CONFIG_TCP_MD5SIG
2142 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2143         .md5_lookup             = tcp_v4_md5_lookup,
2144         .calc_md5_hash          = tcp_v4_md5_hash_skb,
2145         .md5_parse              = tcp_v4_parse_md5_keys,
2146 };
2147 #endif
2148
2149 /* NOTE: A lot of things set to zero explicitly by call to
2150  *       sk_alloc() so need not be done here.
2151  */
2152 static int tcp_v4_init_sock(struct sock *sk)
2153 {
2154         struct inet_connection_sock *icsk = inet_csk(sk);
2155
2156         tcp_init_sock(sk);
2157
2158         icsk->icsk_af_ops = &ipv4_specific;
2159
2160 #ifdef CONFIG_TCP_MD5SIG
2161         tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2162 #endif
2163
2164         return 0;
2165 }
2166
2167 void tcp_v4_destroy_sock(struct sock *sk)
2168 {
2169         struct tcp_sock *tp = tcp_sk(sk);
2170
2171         tcp_clear_xmit_timers(sk);
2172
2173         tcp_cleanup_congestion_control(sk);
2174
2175         /* Cleanup up the write buffer. */
2176         tcp_write_queue_purge(sk);
2177
2178         /* Cleans up our, hopefully empty, out_of_order_queue. */
2179         __skb_queue_purge(&tp->out_of_order_queue);
2180
2181 #ifdef CONFIG_TCP_MD5SIG
2182         /* Clean up the MD5 key list, if any */
2183         if (tp->md5sig_info) {
2184                 tcp_clear_md5_list(sk);
2185                 kfree_rcu(tp->md5sig_info, rcu);
2186                 tp->md5sig_info = NULL;
2187         }
2188 #endif
2189
2190 #ifdef CONFIG_NET_DMA
2191         /* Cleans up our sk_async_wait_queue */
2192         __skb_queue_purge(&sk->sk_async_wait_queue);
2193 #endif
2194
2195         /* Clean prequeue, it must be empty really */
2196         __skb_queue_purge(&tp->ucopy.prequeue);
2197
2198         /* Clean up a referenced TCP bind bucket. */
2199         if (inet_csk(sk)->icsk_bind_hash)
2200                 inet_put_port(sk);
2201
2202         BUG_ON(tp->fastopen_rsk != NULL);
2203
2204         /* If socket is aborted during connect operation */
2205         tcp_free_fastopen_req(tp);
2206
2207         sk_sockets_allocated_dec(sk);
2208         sock_release_memcg(sk);
2209 }
2210 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2211
2212 #ifdef CONFIG_PROC_FS
2213 /* Proc filesystem TCP sock list dumping. */
2214
2215 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
2216 {
2217         return hlist_nulls_empty(head) ? NULL :
2218                 list_entry(head->first, struct inet_timewait_sock, tw_node);
2219 }
2220
2221 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
2222 {
2223         return !is_a_nulls(tw->tw_node.next) ?
2224                 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2225 }
2226
2227 /*
2228  * Get next listener socket follow cur.  If cur is NULL, get first socket
2229  * starting from bucket given in st->bucket; when st->bucket is zero the
2230  * very first socket in the hash table is returned.
2231  */
2232 static void *listening_get_next(struct seq_file *seq, void *cur)
2233 {
2234         struct inet_connection_sock *icsk;
2235         struct hlist_nulls_node *node;
2236         struct sock *sk = cur;
2237         struct inet_listen_hashbucket *ilb;
2238         struct tcp_iter_state *st = seq->private;
2239         struct net *net = seq_file_net(seq);
2240
2241         if (!sk) {
2242                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2243                 spin_lock_bh(&ilb->lock);
2244                 sk = sk_nulls_head(&ilb->head);
2245                 st->offset = 0;
2246                 goto get_sk;
2247         }
2248         ilb = &tcp_hashinfo.listening_hash[st->bucket];
2249         ++st->num;
2250         ++st->offset;
2251
2252         if (st->state == TCP_SEQ_STATE_OPENREQ) {
2253                 struct request_sock *req = cur;
2254
2255                 icsk = inet_csk(st->syn_wait_sk);
2256                 req = req->dl_next;
2257                 while (1) {
2258                         while (req) {
2259                                 if (req->rsk_ops->family == st->family) {
2260                                         cur = req;
2261                                         goto out;
2262                                 }
2263                                 req = req->dl_next;
2264                         }
2265                         if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2266                                 break;
2267 get_req:
2268                         req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2269                 }
2270                 sk        = sk_nulls_next(st->syn_wait_sk);
2271                 st->state = TCP_SEQ_STATE_LISTENING;
2272                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2273         } else {
2274                 icsk = inet_csk(sk);
2275                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2276                 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2277                         goto start_req;
2278                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2279                 sk = sk_nulls_next(sk);
2280         }
2281 get_sk:
2282         sk_nulls_for_each_from(sk, node) {
2283                 if (!net_eq(sock_net(sk), net))
2284                         continue;
2285                 if (sk->sk_family == st->family) {
2286                         cur = sk;
2287                         goto out;
2288                 }
2289                 icsk = inet_csk(sk);
2290                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2291                 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2292 start_req:
2293                         st->uid         = sock_i_uid(sk);
2294                         st->syn_wait_sk = sk;
2295                         st->state       = TCP_SEQ_STATE_OPENREQ;
2296                         st->sbucket     = 0;
2297                         goto get_req;
2298                 }
2299                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2300         }
2301         spin_unlock_bh(&ilb->lock);
2302         st->offset = 0;
2303         if (++st->bucket < INET_LHTABLE_SIZE) {
2304                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2305                 spin_lock_bh(&ilb->lock);
2306                 sk = sk_nulls_head(&ilb->head);
2307                 goto get_sk;
2308         }
2309         cur = NULL;
2310 out:
2311         return cur;
2312 }
2313
2314 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2315 {
2316         struct tcp_iter_state *st = seq->private;
2317         void *rc;
2318
2319         st->bucket = 0;
2320         st->offset = 0;
2321         rc = listening_get_next(seq, NULL);
2322
2323         while (rc && *pos) {
2324                 rc = listening_get_next(seq, rc);
2325                 --*pos;
2326         }
2327         return rc;
2328 }
2329
2330 static inline bool empty_bucket(struct tcp_iter_state *st)
2331 {
2332         return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2333                 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2334 }
2335
2336 /*
2337  * Get first established socket starting from bucket given in st->bucket.
2338  * If st->bucket is zero, the very first socket in the hash is returned.
2339  */
2340 static void *established_get_first(struct seq_file *seq)
2341 {
2342         struct tcp_iter_state *st = seq->private;
2343         struct net *net = seq_file_net(seq);
2344         void *rc = NULL;
2345
2346         st->offset = 0;
2347         for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2348                 struct sock *sk;
2349                 struct hlist_nulls_node *node;
2350                 struct inet_timewait_sock *tw;
2351                 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2352
2353                 /* Lockless fast path for the common case of empty buckets */
2354                 if (empty_bucket(st))
2355                         continue;
2356
2357                 spin_lock_bh(lock);
2358                 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2359                         if (sk->sk_family != st->family ||
2360                             !net_eq(sock_net(sk), net)) {
2361                                 continue;
2362                         }
2363                         rc = sk;
2364                         goto out;
2365                 }
2366                 st->state = TCP_SEQ_STATE_TIME_WAIT;
2367                 inet_twsk_for_each(tw, node,
2368                                    &tcp_hashinfo.ehash[st->bucket].twchain) {
2369                         if (tw->tw_family != st->family ||
2370                             !net_eq(twsk_net(tw), net)) {
2371                                 continue;
2372                         }
2373                         rc = tw;
2374                         goto out;
2375                 }
2376                 spin_unlock_bh(lock);
2377                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2378         }
2379 out:
2380         return rc;
2381 }
2382
2383 static void *established_get_next(struct seq_file *seq, void *cur)
2384 {
2385         struct sock *sk = cur;
2386         struct inet_timewait_sock *tw;
2387         struct hlist_nulls_node *node;
2388         struct tcp_iter_state *st = seq->private;
2389         struct net *net = seq_file_net(seq);
2390
2391         ++st->num;
2392         ++st->offset;
2393
2394         if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2395                 tw = cur;
2396                 tw = tw_next(tw);
2397 get_tw:
2398                 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2399                         tw = tw_next(tw);
2400                 }
2401                 if (tw) {
2402                         cur = tw;
2403                         goto out;
2404                 }
2405                 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2406                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2407
2408                 /* Look for next non empty bucket */
2409                 st->offset = 0;
2410                 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2411                                 empty_bucket(st))
2412                         ;
2413                 if (st->bucket > tcp_hashinfo.ehash_mask)
2414                         return NULL;
2415
2416                 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2417                 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2418         } else
2419                 sk = sk_nulls_next(sk);
2420
2421         sk_nulls_for_each_from(sk, node) {
2422                 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2423                         goto found;
2424         }
2425
2426         st->state = TCP_SEQ_STATE_TIME_WAIT;
2427         tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2428         goto get_tw;
2429 found:
2430         cur = sk;
2431 out:
2432         return cur;
2433 }
2434
2435 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2436 {
2437         struct tcp_iter_state *st = seq->private;
2438         void *rc;
2439
2440         st->bucket = 0;
2441         rc = established_get_first(seq);
2442
2443         while (rc && pos) {
2444                 rc = established_get_next(seq, rc);
2445                 --pos;
2446         }
2447         return rc;
2448 }
2449
2450 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2451 {
2452         void *rc;
2453         struct tcp_iter_state *st = seq->private;
2454
2455         st->state = TCP_SEQ_STATE_LISTENING;
2456         rc        = listening_get_idx(seq, &pos);
2457
2458         if (!rc) {
2459                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2460                 rc        = established_get_idx(seq, pos);
2461         }
2462
2463         return rc;
2464 }
2465
2466 static void *tcp_seek_last_pos(struct seq_file *seq)
2467 {
2468         struct tcp_iter_state *st = seq->private;
2469         int offset = st->offset;
2470         int orig_num = st->num;
2471         void *rc = NULL;
2472
2473         switch (st->state) {
2474         case TCP_SEQ_STATE_OPENREQ:
2475         case TCP_SEQ_STATE_LISTENING:
2476                 if (st->bucket >= INET_LHTABLE_SIZE)
2477                         break;
2478                 st->state = TCP_SEQ_STATE_LISTENING;
2479                 rc = listening_get_next(seq, NULL);
2480                 while (offset-- && rc)
2481                         rc = listening_get_next(seq, rc);
2482                 if (rc)
2483                         break;
2484                 st->bucket = 0;
2485                 /* Fallthrough */
2486         case TCP_SEQ_STATE_ESTABLISHED:
2487         case TCP_SEQ_STATE_TIME_WAIT:
2488                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2489                 if (st->bucket > tcp_hashinfo.ehash_mask)
2490                         break;
2491                 rc = established_get_first(seq);
2492                 while (offset-- && rc)
2493                         rc = established_get_next(seq, rc);
2494         }
2495
2496         st->num = orig_num;
2497
2498         return rc;
2499 }
2500
2501 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2502 {
2503         struct tcp_iter_state *st = seq->private;
2504         void *rc;
2505
2506         if (*pos && *pos == st->last_pos) {
2507                 rc = tcp_seek_last_pos(seq);
2508                 if (rc)
2509                         goto out;
2510         }
2511
2512         st->state = TCP_SEQ_STATE_LISTENING;
2513         st->num = 0;
2514         st->bucket = 0;
2515         st->offset = 0;
2516         rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2517
2518 out:
2519         st->last_pos = *pos;
2520         return rc;
2521 }
2522
2523 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2524 {
2525         struct tcp_iter_state *st = seq->private;
2526         void *rc = NULL;
2527
2528         if (v == SEQ_START_TOKEN) {
2529                 rc = tcp_get_idx(seq, 0);
2530                 goto out;
2531         }
2532
2533         switch (st->state) {
2534         case TCP_SEQ_STATE_OPENREQ:
2535         case TCP_SEQ_STATE_LISTENING:
2536                 rc = listening_get_next(seq, v);
2537                 if (!rc) {
2538                         st->state = TCP_SEQ_STATE_ESTABLISHED;
2539                         st->bucket = 0;
2540                         st->offset = 0;
2541                         rc        = established_get_first(seq);
2542                 }
2543                 break;
2544         case TCP_SEQ_STATE_ESTABLISHED:
2545         case TCP_SEQ_STATE_TIME_WAIT:
2546                 rc = established_get_next(seq, v);
2547                 break;
2548         }
2549 out:
2550         ++*pos;
2551         st->last_pos = *pos;
2552         return rc;
2553 }
2554
2555 static void tcp_seq_stop(struct seq_file *seq, void *v)
2556 {
2557         struct tcp_iter_state *st = seq->private;
2558
2559         switch (st->state) {
2560         case TCP_SEQ_STATE_OPENREQ:
2561                 if (v) {
2562                         struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2563                         read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2564                 }
2565         case TCP_SEQ_STATE_LISTENING:
2566                 if (v != SEQ_START_TOKEN)
2567                         spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2568                 break;
2569         case TCP_SEQ_STATE_TIME_WAIT:
2570         case TCP_SEQ_STATE_ESTABLISHED:
2571                 if (v)
2572                         spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2573                 break;
2574         }
2575 }
2576
2577 int tcp_seq_open(struct inode *inode, struct file *file)
2578 {
2579         struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2580         struct tcp_iter_state *s;
2581         int err;
2582
2583         err = seq_open_net(inode, file, &afinfo->seq_ops,
2584                           sizeof(struct tcp_iter_state));
2585         if (err < 0)
2586                 return err;
2587
2588         s = ((struct seq_file *)file->private_data)->private;
2589         s->family               = afinfo->family;
2590         s->last_pos             = 0;
2591         return 0;
2592 }
2593 EXPORT_SYMBOL(tcp_seq_open);
2594
2595 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2596 {
2597         int rc = 0;
2598         struct proc_dir_entry *p;
2599
2600         afinfo->seq_ops.start           = tcp_seq_start;
2601         afinfo->seq_ops.next            = tcp_seq_next;
2602         afinfo->seq_ops.stop            = tcp_seq_stop;
2603
2604         p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2605                              afinfo->seq_fops, afinfo);
2606         if (!p)
2607                 rc = -ENOMEM;
2608         return rc;
2609 }
2610 EXPORT_SYMBOL(tcp_proc_register);
2611
2612 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2613 {
2614         remove_proc_entry(afinfo->name, net->proc_net);
2615 }
2616 EXPORT_SYMBOL(tcp_proc_unregister);
2617
2618 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2619                          struct seq_file *f, int i, kuid_t uid, int *len)
2620 {
2621         const struct inet_request_sock *ireq = inet_rsk(req);
2622         long delta = req->expires - jiffies;
2623
2624         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2625                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2626                 i,
2627                 ireq->loc_addr,
2628                 ntohs(inet_sk(sk)->inet_sport),
2629                 ireq->rmt_addr,
2630                 ntohs(ireq->rmt_port),
2631                 TCP_SYN_RECV,
2632                 0, 0, /* could print option size, but that is af dependent. */
2633                 1,    /* timers active (only the expire timer) */
2634                 jiffies_delta_to_clock_t(delta),
2635                 req->num_timeout,
2636                 from_kuid_munged(seq_user_ns(f), uid),
2637                 0,  /* non standard timer */
2638                 0, /* open_requests have no inode */
2639                 atomic_read(&sk->sk_refcnt),
2640                 req,
2641                 len);
2642 }
2643
2644 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2645 {
2646         int timer_active;
2647         unsigned long timer_expires;
2648         const struct tcp_sock *tp = tcp_sk(sk);
2649         const struct inet_connection_sock *icsk = inet_csk(sk);
2650         const struct inet_sock *inet = inet_sk(sk);
2651         struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2652         __be32 dest = inet->inet_daddr;
2653         __be32 src = inet->inet_rcv_saddr;
2654         __u16 destp = ntohs(inet->inet_dport);
2655         __u16 srcp = ntohs(inet->inet_sport);
2656         int rx_queue;
2657
2658         if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2659             icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2660             icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2661                 timer_active    = 1;
2662                 timer_expires   = icsk->icsk_timeout;
2663         } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2664                 timer_active    = 4;
2665                 timer_expires   = icsk->icsk_timeout;
2666         } else if (timer_pending(&sk->sk_timer)) {
2667                 timer_active    = 2;
2668                 timer_expires   = sk->sk_timer.expires;
2669         } else {
2670                 timer_active    = 0;
2671                 timer_expires = jiffies;
2672         }
2673
2674         if (sk->sk_state == TCP_LISTEN)
2675                 rx_queue = sk->sk_ack_backlog;
2676         else
2677                 /*
2678                  * because we dont lock socket, we might find a transient negative value
2679                  */
2680                 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2681
2682         seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2683                         "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2684                 i, src, srcp, dest, destp, sk->sk_state,
2685                 tp->write_seq - tp->snd_una,
2686                 rx_queue,
2687                 timer_active,
2688                 jiffies_delta_to_clock_t(timer_expires - jiffies),
2689                 icsk->icsk_retransmits,
2690                 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2691                 icsk->icsk_probes_out,
2692                 sock_i_ino(sk),
2693                 atomic_read(&sk->sk_refcnt), sk,
2694                 jiffies_to_clock_t(icsk->icsk_rto),
2695                 jiffies_to_clock_t(icsk->icsk_ack.ato),
2696                 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2697                 tp->snd_cwnd,
2698                 sk->sk_state == TCP_LISTEN ?
2699                     (fastopenq ? fastopenq->max_qlen : 0) :
2700                     (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh),
2701                 len);
2702 }
2703
2704 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2705                                struct seq_file *f, int i, int *len)
2706 {
2707         __be32 dest, src;
2708         __u16 destp, srcp;
2709         long delta = tw->tw_ttd - jiffies;
2710
2711         dest  = tw->tw_daddr;
2712         src   = tw->tw_rcv_saddr;
2713         destp = ntohs(tw->tw_dport);
2714         srcp  = ntohs(tw->tw_sport);
2715
2716         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2717                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2718                 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2719                 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2720                 atomic_read(&tw->tw_refcnt), tw, len);
2721 }
2722
2723 #define TMPSZ 150
2724
2725 static int tcp4_seq_show(struct seq_file *seq, void *v)
2726 {
2727         struct tcp_iter_state *st;
2728         int len;
2729
2730         if (v == SEQ_START_TOKEN) {
2731                 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2732                            "  sl  local_address rem_address   st tx_queue "
2733                            "rx_queue tr tm->when retrnsmt   uid  timeout "
2734                            "inode");
2735                 goto out;
2736         }
2737         st = seq->private;
2738
2739         switch (st->state) {
2740         case TCP_SEQ_STATE_LISTENING:
2741         case TCP_SEQ_STATE_ESTABLISHED:
2742                 get_tcp4_sock(v, seq, st->num, &len);
2743                 break;
2744         case TCP_SEQ_STATE_OPENREQ:
2745                 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2746                 break;
2747         case TCP_SEQ_STATE_TIME_WAIT:
2748                 get_timewait4_sock(v, seq, st->num, &len);
2749                 break;
2750         }
2751         seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2752 out:
2753         return 0;
2754 }
2755
2756 static const struct file_operations tcp_afinfo_seq_fops = {
2757         .owner   = THIS_MODULE,
2758         .open    = tcp_seq_open,
2759         .read    = seq_read,
2760         .llseek  = seq_lseek,
2761         .release = seq_release_net
2762 };
2763
2764 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2765         .name           = "tcp",
2766         .family         = AF_INET,
2767         .seq_fops       = &tcp_afinfo_seq_fops,
2768         .seq_ops        = {
2769                 .show           = tcp4_seq_show,
2770         },
2771 };
2772
2773 static int __net_init tcp4_proc_init_net(struct net *net)
2774 {
2775         return tcp_proc_register(net, &tcp4_seq_afinfo);
2776 }
2777
2778 static void __net_exit tcp4_proc_exit_net(struct net *net)
2779 {
2780         tcp_proc_unregister(net, &tcp4_seq_afinfo);
2781 }
2782
2783 static struct pernet_operations tcp4_net_ops = {
2784         .init = tcp4_proc_init_net,
2785         .exit = tcp4_proc_exit_net,
2786 };
2787
2788 int __init tcp4_proc_init(void)
2789 {
2790         return register_pernet_subsys(&tcp4_net_ops);
2791 }
2792
2793 void tcp4_proc_exit(void)
2794 {
2795         unregister_pernet_subsys(&tcp4_net_ops);
2796 }
2797 #endif /* CONFIG_PROC_FS */
2798
2799 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2800 {
2801         const struct iphdr *iph = skb_gro_network_header(skb);
2802         __wsum wsum;
2803         __sum16 sum;
2804
2805         switch (skb->ip_summed) {
2806         case CHECKSUM_COMPLETE:
2807                 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2808                                   skb->csum)) {
2809                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2810                         break;
2811                 }
2812 flush:
2813                 NAPI_GRO_CB(skb)->flush = 1;
2814                 return NULL;
2815
2816         case CHECKSUM_NONE:
2817                 wsum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
2818                                           skb_gro_len(skb), IPPROTO_TCP, 0);
2819                 sum = csum_fold(skb_checksum(skb,
2820                                              skb_gro_offset(skb),
2821                                              skb_gro_len(skb),
2822                                              wsum));
2823                 if (sum)
2824                         goto flush;
2825
2826                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2827                 break;
2828         }
2829
2830         return tcp_gro_receive(head, skb);
2831 }
2832
2833 int tcp4_gro_complete(struct sk_buff *skb)
2834 {
2835         const struct iphdr *iph = ip_hdr(skb);
2836         struct tcphdr *th = tcp_hdr(skb);
2837
2838         th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2839                                   iph->saddr, iph->daddr, 0);
2840         skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2841
2842         return tcp_gro_complete(skb);
2843 }
2844
2845 struct proto tcp_prot = {
2846         .name                   = "TCP",
2847         .owner                  = THIS_MODULE,
2848         .close                  = tcp_close,
2849         .connect                = tcp_v4_connect,
2850         .disconnect             = tcp_disconnect,
2851         .accept                 = inet_csk_accept,
2852         .ioctl                  = tcp_ioctl,
2853         .init                   = tcp_v4_init_sock,
2854         .destroy                = tcp_v4_destroy_sock,
2855         .shutdown               = tcp_shutdown,
2856         .setsockopt             = tcp_setsockopt,
2857         .getsockopt             = tcp_getsockopt,
2858         .recvmsg                = tcp_recvmsg,
2859         .sendmsg                = tcp_sendmsg,
2860         .sendpage               = tcp_sendpage,
2861         .backlog_rcv            = tcp_v4_do_rcv,
2862         .release_cb             = tcp_release_cb,
2863         .mtu_reduced            = tcp_v4_mtu_reduced,
2864         .hash                   = inet_hash,
2865         .unhash                 = inet_unhash,
2866         .get_port               = inet_csk_get_port,
2867         .enter_memory_pressure  = tcp_enter_memory_pressure,
2868         .sockets_allocated      = &tcp_sockets_allocated,
2869         .orphan_count           = &tcp_orphan_count,
2870         .memory_allocated       = &tcp_memory_allocated,
2871         .memory_pressure        = &tcp_memory_pressure,
2872         .sysctl_wmem            = sysctl_tcp_wmem,
2873         .sysctl_rmem            = sysctl_tcp_rmem,
2874         .max_header             = MAX_TCP_HEADER,
2875         .obj_size               = sizeof(struct tcp_sock),
2876         .slab_flags             = SLAB_DESTROY_BY_RCU,
2877         .twsk_prot              = &tcp_timewait_sock_ops,
2878         .rsk_prot               = &tcp_request_sock_ops,
2879         .h.hashinfo             = &tcp_hashinfo,
2880         .no_autobind            = true,
2881 #ifdef CONFIG_COMPAT
2882         .compat_setsockopt      = compat_tcp_setsockopt,
2883         .compat_getsockopt      = compat_tcp_getsockopt,
2884 #endif
2885 #ifdef CONFIG_MEMCG_KMEM
2886         .init_cgroup            = tcp_init_cgroup,
2887         .destroy_cgroup         = tcp_destroy_cgroup,
2888         .proto_cgroup           = tcp_proto_cgroup,
2889 #endif
2890 };
2891 EXPORT_SYMBOL(tcp_prot);
2892
2893 static int __net_init tcp_sk_init(struct net *net)
2894 {
2895         net->ipv4.sysctl_tcp_ecn = 2;
2896         return 0;
2897 }
2898
2899 static void __net_exit tcp_sk_exit(struct net *net)
2900 {
2901 }
2902
2903 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2904 {
2905         inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2906 }
2907
2908 static struct pernet_operations __net_initdata tcp_sk_ops = {
2909        .init       = tcp_sk_init,
2910        .exit       = tcp_sk_exit,
2911        .exit_batch = tcp_sk_exit_batch,
2912 };
2913
2914 void __init tcp_v4_init(void)
2915 {
2916         inet_hashinfo_init(&tcp_hashinfo);
2917         if (register_pernet_subsys(&tcp_sk_ops))
2918                 panic("Failed to create the TCP control socket.\n");
2919 }