]> Pileus Git - ~andy/linux/blob - net/ceph/messenger.c
libceph: kill last of ceph_msg_pos
[~andy/linux] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef  CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif  /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17
18 #include <linux/ceph/libceph.h>
19 #include <linux/ceph/messenger.h>
20 #include <linux/ceph/decode.h>
21 #include <linux/ceph/pagelist.h>
22 #include <linux/export.h>
23
24 #define list_entry_next(pos, member)                                    \
25         list_entry(pos->member.next, typeof(*pos), member)
26
27 /*
28  * Ceph uses the messenger to exchange ceph_msg messages with other
29  * hosts in the system.  The messenger provides ordered and reliable
30  * delivery.  We tolerate TCP disconnects by reconnecting (with
31  * exponential backoff) in the case of a fault (disconnection, bad
32  * crc, protocol error).  Acks allow sent messages to be discarded by
33  * the sender.
34  */
35
36 /*
37  * We track the state of the socket on a given connection using
38  * values defined below.  The transition to a new socket state is
39  * handled by a function which verifies we aren't coming from an
40  * unexpected state.
41  *
42  *      --------
43  *      | NEW* |  transient initial state
44  *      --------
45  *          | con_sock_state_init()
46  *          v
47  *      ----------
48  *      | CLOSED |  initialized, but no socket (and no
49  *      ----------  TCP connection)
50  *       ^      \
51  *       |       \ con_sock_state_connecting()
52  *       |        ----------------------
53  *       |                              \
54  *       + con_sock_state_closed()       \
55  *       |+---------------------------    \
56  *       | \                          \    \
57  *       |  -----------                \    \
58  *       |  | CLOSING |  socket event;  \    \
59  *       |  -----------  await close     \    \
60  *       |       ^                        \   |
61  *       |       |                         \  |
62  *       |       + con_sock_state_closing() \ |
63  *       |      / \                         | |
64  *       |     /   ---------------          | |
65  *       |    /                   \         v v
66  *       |   /                    --------------
67  *       |  /    -----------------| CONNECTING |  socket created, TCP
68  *       |  |   /                 --------------  connect initiated
69  *       |  |   | con_sock_state_connected()
70  *       |  |   v
71  *      -------------
72  *      | CONNECTED |  TCP connection established
73  *      -------------
74  *
75  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
76  */
77
78 #define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
79 #define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
80 #define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
81 #define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
82 #define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
83
84 /*
85  * connection states
86  */
87 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
88 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
89 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
90 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
91 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
92 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
93
94 /*
95  * ceph_connection flag bits
96  */
97 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
98                                        * messages on errors */
99 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
100 #define CON_FLAG_WRITE_PENDING     2  /* we have data ready to send */
101 #define CON_FLAG_SOCK_CLOSED       3  /* socket state changed to closed */
102 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
103
104 static bool con_flag_valid(unsigned long con_flag)
105 {
106         switch (con_flag) {
107         case CON_FLAG_LOSSYTX:
108         case CON_FLAG_KEEPALIVE_PENDING:
109         case CON_FLAG_WRITE_PENDING:
110         case CON_FLAG_SOCK_CLOSED:
111         case CON_FLAG_BACKOFF:
112                 return true;
113         default:
114                 return false;
115         }
116 }
117
118 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
119 {
120         BUG_ON(!con_flag_valid(con_flag));
121
122         clear_bit(con_flag, &con->flags);
123 }
124
125 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
126 {
127         BUG_ON(!con_flag_valid(con_flag));
128
129         set_bit(con_flag, &con->flags);
130 }
131
132 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
133 {
134         BUG_ON(!con_flag_valid(con_flag));
135
136         return test_bit(con_flag, &con->flags);
137 }
138
139 static bool con_flag_test_and_clear(struct ceph_connection *con,
140                                         unsigned long con_flag)
141 {
142         BUG_ON(!con_flag_valid(con_flag));
143
144         return test_and_clear_bit(con_flag, &con->flags);
145 }
146
147 static bool con_flag_test_and_set(struct ceph_connection *con,
148                                         unsigned long con_flag)
149 {
150         BUG_ON(!con_flag_valid(con_flag));
151
152         return test_and_set_bit(con_flag, &con->flags);
153 }
154
155 /* static tag bytes (protocol control messages) */
156 static char tag_msg = CEPH_MSGR_TAG_MSG;
157 static char tag_ack = CEPH_MSGR_TAG_ACK;
158 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
159
160 #ifdef CONFIG_LOCKDEP
161 static struct lock_class_key socket_class;
162 #endif
163
164 /*
165  * When skipping (ignoring) a block of input we read it into a "skip
166  * buffer," which is this many bytes in size.
167  */
168 #define SKIP_BUF_SIZE   1024
169
170 static void queue_con(struct ceph_connection *con);
171 static void con_work(struct work_struct *);
172 static void con_fault(struct ceph_connection *con);
173
174 /*
175  * Nicely render a sockaddr as a string.  An array of formatted
176  * strings is used, to approximate reentrancy.
177  */
178 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
179 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
180 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
181 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
182
183 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
184 static atomic_t addr_str_seq = ATOMIC_INIT(0);
185
186 static struct page *zero_page;          /* used in certain error cases */
187
188 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
189 {
190         int i;
191         char *s;
192         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
193         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
194
195         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
196         s = addr_str[i];
197
198         switch (ss->ss_family) {
199         case AF_INET:
200                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
201                          ntohs(in4->sin_port));
202                 break;
203
204         case AF_INET6:
205                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
206                          ntohs(in6->sin6_port));
207                 break;
208
209         default:
210                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
211                          ss->ss_family);
212         }
213
214         return s;
215 }
216 EXPORT_SYMBOL(ceph_pr_addr);
217
218 static void encode_my_addr(struct ceph_messenger *msgr)
219 {
220         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
221         ceph_encode_addr(&msgr->my_enc_addr);
222 }
223
224 /*
225  * work queue for all reading and writing to/from the socket.
226  */
227 static struct workqueue_struct *ceph_msgr_wq;
228
229 static void _ceph_msgr_exit(void)
230 {
231         if (ceph_msgr_wq) {
232                 destroy_workqueue(ceph_msgr_wq);
233                 ceph_msgr_wq = NULL;
234         }
235
236         BUG_ON(zero_page == NULL);
237         kunmap(zero_page);
238         page_cache_release(zero_page);
239         zero_page = NULL;
240 }
241
242 int ceph_msgr_init(void)
243 {
244         BUG_ON(zero_page != NULL);
245         zero_page = ZERO_PAGE(0);
246         page_cache_get(zero_page);
247
248         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
249         if (ceph_msgr_wq)
250                 return 0;
251
252         pr_err("msgr_init failed to create workqueue\n");
253         _ceph_msgr_exit();
254
255         return -ENOMEM;
256 }
257 EXPORT_SYMBOL(ceph_msgr_init);
258
259 void ceph_msgr_exit(void)
260 {
261         BUG_ON(ceph_msgr_wq == NULL);
262
263         _ceph_msgr_exit();
264 }
265 EXPORT_SYMBOL(ceph_msgr_exit);
266
267 void ceph_msgr_flush(void)
268 {
269         flush_workqueue(ceph_msgr_wq);
270 }
271 EXPORT_SYMBOL(ceph_msgr_flush);
272
273 /* Connection socket state transition functions */
274
275 static void con_sock_state_init(struct ceph_connection *con)
276 {
277         int old_state;
278
279         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
280         if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
281                 printk("%s: unexpected old state %d\n", __func__, old_state);
282         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
283              CON_SOCK_STATE_CLOSED);
284 }
285
286 static void con_sock_state_connecting(struct ceph_connection *con)
287 {
288         int old_state;
289
290         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
291         if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
292                 printk("%s: unexpected old state %d\n", __func__, old_state);
293         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
294              CON_SOCK_STATE_CONNECTING);
295 }
296
297 static void con_sock_state_connected(struct ceph_connection *con)
298 {
299         int old_state;
300
301         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
302         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
303                 printk("%s: unexpected old state %d\n", __func__, old_state);
304         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
305              CON_SOCK_STATE_CONNECTED);
306 }
307
308 static void con_sock_state_closing(struct ceph_connection *con)
309 {
310         int old_state;
311
312         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
313         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
314                         old_state != CON_SOCK_STATE_CONNECTED &&
315                         old_state != CON_SOCK_STATE_CLOSING))
316                 printk("%s: unexpected old state %d\n", __func__, old_state);
317         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
318              CON_SOCK_STATE_CLOSING);
319 }
320
321 static void con_sock_state_closed(struct ceph_connection *con)
322 {
323         int old_state;
324
325         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
326         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
327                     old_state != CON_SOCK_STATE_CLOSING &&
328                     old_state != CON_SOCK_STATE_CONNECTING &&
329                     old_state != CON_SOCK_STATE_CLOSED))
330                 printk("%s: unexpected old state %d\n", __func__, old_state);
331         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
332              CON_SOCK_STATE_CLOSED);
333 }
334
335 /*
336  * socket callback functions
337  */
338
339 /* data available on socket, or listen socket received a connect */
340 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
341 {
342         struct ceph_connection *con = sk->sk_user_data;
343         if (atomic_read(&con->msgr->stopping)) {
344                 return;
345         }
346
347         if (sk->sk_state != TCP_CLOSE_WAIT) {
348                 dout("%s on %p state = %lu, queueing work\n", __func__,
349                      con, con->state);
350                 queue_con(con);
351         }
352 }
353
354 /* socket has buffer space for writing */
355 static void ceph_sock_write_space(struct sock *sk)
356 {
357         struct ceph_connection *con = sk->sk_user_data;
358
359         /* only queue to workqueue if there is data we want to write,
360          * and there is sufficient space in the socket buffer to accept
361          * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
362          * doesn't get called again until try_write() fills the socket
363          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
364          * and net/core/stream.c:sk_stream_write_space().
365          */
366         if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
367                 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
368                         dout("%s %p queueing write work\n", __func__, con);
369                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
370                         queue_con(con);
371                 }
372         } else {
373                 dout("%s %p nothing to write\n", __func__, con);
374         }
375 }
376
377 /* socket's state has changed */
378 static void ceph_sock_state_change(struct sock *sk)
379 {
380         struct ceph_connection *con = sk->sk_user_data;
381
382         dout("%s %p state = %lu sk_state = %u\n", __func__,
383              con, con->state, sk->sk_state);
384
385         switch (sk->sk_state) {
386         case TCP_CLOSE:
387                 dout("%s TCP_CLOSE\n", __func__);
388         case TCP_CLOSE_WAIT:
389                 dout("%s TCP_CLOSE_WAIT\n", __func__);
390                 con_sock_state_closing(con);
391                 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
392                 queue_con(con);
393                 break;
394         case TCP_ESTABLISHED:
395                 dout("%s TCP_ESTABLISHED\n", __func__);
396                 con_sock_state_connected(con);
397                 queue_con(con);
398                 break;
399         default:        /* Everything else is uninteresting */
400                 break;
401         }
402 }
403
404 /*
405  * set up socket callbacks
406  */
407 static void set_sock_callbacks(struct socket *sock,
408                                struct ceph_connection *con)
409 {
410         struct sock *sk = sock->sk;
411         sk->sk_user_data = con;
412         sk->sk_data_ready = ceph_sock_data_ready;
413         sk->sk_write_space = ceph_sock_write_space;
414         sk->sk_state_change = ceph_sock_state_change;
415 }
416
417
418 /*
419  * socket helpers
420  */
421
422 /*
423  * initiate connection to a remote socket.
424  */
425 static int ceph_tcp_connect(struct ceph_connection *con)
426 {
427         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
428         struct socket *sock;
429         int ret;
430
431         BUG_ON(con->sock);
432         ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
433                                IPPROTO_TCP, &sock);
434         if (ret)
435                 return ret;
436         sock->sk->sk_allocation = GFP_NOFS;
437
438 #ifdef CONFIG_LOCKDEP
439         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
440 #endif
441
442         set_sock_callbacks(sock, con);
443
444         dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
445
446         con_sock_state_connecting(con);
447         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
448                                  O_NONBLOCK);
449         if (ret == -EINPROGRESS) {
450                 dout("connect %s EINPROGRESS sk_state = %u\n",
451                      ceph_pr_addr(&con->peer_addr.in_addr),
452                      sock->sk->sk_state);
453         } else if (ret < 0) {
454                 pr_err("connect %s error %d\n",
455                        ceph_pr_addr(&con->peer_addr.in_addr), ret);
456                 sock_release(sock);
457                 con->error_msg = "connect error";
458
459                 return ret;
460         }
461         con->sock = sock;
462         return 0;
463 }
464
465 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
466 {
467         struct kvec iov = {buf, len};
468         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
469         int r;
470
471         r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
472         if (r == -EAGAIN)
473                 r = 0;
474         return r;
475 }
476
477 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
478                      int page_offset, size_t length)
479 {
480         void *kaddr;
481         int ret;
482
483         BUG_ON(page_offset + length > PAGE_SIZE);
484
485         kaddr = kmap(page);
486         BUG_ON(!kaddr);
487         ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
488         kunmap(page);
489
490         return ret;
491 }
492
493 /*
494  * write something.  @more is true if caller will be sending more data
495  * shortly.
496  */
497 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
498                      size_t kvlen, size_t len, int more)
499 {
500         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
501         int r;
502
503         if (more)
504                 msg.msg_flags |= MSG_MORE;
505         else
506                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
507
508         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
509         if (r == -EAGAIN)
510                 r = 0;
511         return r;
512 }
513
514 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
515                      int offset, size_t size, bool more)
516 {
517         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
518         int ret;
519
520         ret = kernel_sendpage(sock, page, offset, size, flags);
521         if (ret == -EAGAIN)
522                 ret = 0;
523
524         return ret;
525 }
526
527
528 /*
529  * Shutdown/close the socket for the given connection.
530  */
531 static int con_close_socket(struct ceph_connection *con)
532 {
533         int rc = 0;
534
535         dout("con_close_socket on %p sock %p\n", con, con->sock);
536         if (con->sock) {
537                 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
538                 sock_release(con->sock);
539                 con->sock = NULL;
540         }
541
542         /*
543          * Forcibly clear the SOCK_CLOSED flag.  It gets set
544          * independent of the connection mutex, and we could have
545          * received a socket close event before we had the chance to
546          * shut the socket down.
547          */
548         con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
549
550         con_sock_state_closed(con);
551         return rc;
552 }
553
554 /*
555  * Reset a connection.  Discard all incoming and outgoing messages
556  * and clear *_seq state.
557  */
558 static void ceph_msg_remove(struct ceph_msg *msg)
559 {
560         list_del_init(&msg->list_head);
561         BUG_ON(msg->con == NULL);
562         msg->con->ops->put(msg->con);
563         msg->con = NULL;
564
565         ceph_msg_put(msg);
566 }
567 static void ceph_msg_remove_list(struct list_head *head)
568 {
569         while (!list_empty(head)) {
570                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
571                                                         list_head);
572                 ceph_msg_remove(msg);
573         }
574 }
575
576 static void reset_connection(struct ceph_connection *con)
577 {
578         /* reset connection, out_queue, msg_ and connect_seq */
579         /* discard existing out_queue and msg_seq */
580         dout("reset_connection %p\n", con);
581         ceph_msg_remove_list(&con->out_queue);
582         ceph_msg_remove_list(&con->out_sent);
583
584         if (con->in_msg) {
585                 BUG_ON(con->in_msg->con != con);
586                 con->in_msg->con = NULL;
587                 ceph_msg_put(con->in_msg);
588                 con->in_msg = NULL;
589                 con->ops->put(con);
590         }
591
592         con->connect_seq = 0;
593         con->out_seq = 0;
594         if (con->out_msg) {
595                 ceph_msg_put(con->out_msg);
596                 con->out_msg = NULL;
597         }
598         con->in_seq = 0;
599         con->in_seq_acked = 0;
600 }
601
602 /*
603  * mark a peer down.  drop any open connections.
604  */
605 void ceph_con_close(struct ceph_connection *con)
606 {
607         mutex_lock(&con->mutex);
608         dout("con_close %p peer %s\n", con,
609              ceph_pr_addr(&con->peer_addr.in_addr));
610         con->state = CON_STATE_CLOSED;
611
612         con_flag_clear(con, CON_FLAG_LOSSYTX);  /* so we retry next connect */
613         con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
614         con_flag_clear(con, CON_FLAG_WRITE_PENDING);
615         con_flag_clear(con, CON_FLAG_BACKOFF);
616
617         reset_connection(con);
618         con->peer_global_seq = 0;
619         cancel_delayed_work(&con->work);
620         con_close_socket(con);
621         mutex_unlock(&con->mutex);
622 }
623 EXPORT_SYMBOL(ceph_con_close);
624
625 /*
626  * Reopen a closed connection, with a new peer address.
627  */
628 void ceph_con_open(struct ceph_connection *con,
629                    __u8 entity_type, __u64 entity_num,
630                    struct ceph_entity_addr *addr)
631 {
632         mutex_lock(&con->mutex);
633         dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
634
635         WARN_ON(con->state != CON_STATE_CLOSED);
636         con->state = CON_STATE_PREOPEN;
637
638         con->peer_name.type = (__u8) entity_type;
639         con->peer_name.num = cpu_to_le64(entity_num);
640
641         memcpy(&con->peer_addr, addr, sizeof(*addr));
642         con->delay = 0;      /* reset backoff memory */
643         mutex_unlock(&con->mutex);
644         queue_con(con);
645 }
646 EXPORT_SYMBOL(ceph_con_open);
647
648 /*
649  * return true if this connection ever successfully opened
650  */
651 bool ceph_con_opened(struct ceph_connection *con)
652 {
653         return con->connect_seq > 0;
654 }
655
656 /*
657  * initialize a new connection.
658  */
659 void ceph_con_init(struct ceph_connection *con, void *private,
660         const struct ceph_connection_operations *ops,
661         struct ceph_messenger *msgr)
662 {
663         dout("con_init %p\n", con);
664         memset(con, 0, sizeof(*con));
665         con->private = private;
666         con->ops = ops;
667         con->msgr = msgr;
668
669         con_sock_state_init(con);
670
671         mutex_init(&con->mutex);
672         INIT_LIST_HEAD(&con->out_queue);
673         INIT_LIST_HEAD(&con->out_sent);
674         INIT_DELAYED_WORK(&con->work, con_work);
675
676         con->state = CON_STATE_CLOSED;
677 }
678 EXPORT_SYMBOL(ceph_con_init);
679
680
681 /*
682  * We maintain a global counter to order connection attempts.  Get
683  * a unique seq greater than @gt.
684  */
685 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
686 {
687         u32 ret;
688
689         spin_lock(&msgr->global_seq_lock);
690         if (msgr->global_seq < gt)
691                 msgr->global_seq = gt;
692         ret = ++msgr->global_seq;
693         spin_unlock(&msgr->global_seq_lock);
694         return ret;
695 }
696
697 static void con_out_kvec_reset(struct ceph_connection *con)
698 {
699         con->out_kvec_left = 0;
700         con->out_kvec_bytes = 0;
701         con->out_kvec_cur = &con->out_kvec[0];
702 }
703
704 static void con_out_kvec_add(struct ceph_connection *con,
705                                 size_t size, void *data)
706 {
707         int index;
708
709         index = con->out_kvec_left;
710         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
711
712         con->out_kvec[index].iov_len = size;
713         con->out_kvec[index].iov_base = data;
714         con->out_kvec_left++;
715         con->out_kvec_bytes += size;
716 }
717
718 #ifdef CONFIG_BLOCK
719
720 /*
721  * For a bio data item, a piece is whatever remains of the next
722  * entry in the current bio iovec, or the first entry in the next
723  * bio in the list.
724  */
725 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data *data,
726                                         size_t length)
727 {
728         struct ceph_msg_data_cursor *cursor = &data->cursor;
729         struct bio *bio;
730
731         BUG_ON(data->type != CEPH_MSG_DATA_BIO);
732
733         bio = data->bio;
734         BUG_ON(!bio);
735         BUG_ON(!bio->bi_vcnt);
736
737         cursor->resid = length;
738         cursor->bio = bio;
739         cursor->vector_index = 0;
740         cursor->vector_offset = 0;
741         cursor->last_piece = length <= bio->bi_io_vec[0].bv_len;
742 }
743
744 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data *data,
745                                                 size_t *page_offset,
746                                                 size_t *length)
747 {
748         struct ceph_msg_data_cursor *cursor = &data->cursor;
749         struct bio *bio;
750         struct bio_vec *bio_vec;
751         unsigned int index;
752
753         BUG_ON(data->type != CEPH_MSG_DATA_BIO);
754
755         bio = cursor->bio;
756         BUG_ON(!bio);
757
758         index = cursor->vector_index;
759         BUG_ON(index >= (unsigned int) bio->bi_vcnt);
760
761         bio_vec = &bio->bi_io_vec[index];
762         BUG_ON(cursor->vector_offset >= bio_vec->bv_len);
763         *page_offset = (size_t) (bio_vec->bv_offset + cursor->vector_offset);
764         BUG_ON(*page_offset >= PAGE_SIZE);
765         if (cursor->last_piece) /* pagelist offset is always 0 */
766                 *length = cursor->resid;
767         else
768                 *length = (size_t) (bio_vec->bv_len - cursor->vector_offset);
769         BUG_ON(*length > PAGE_SIZE);
770         BUG_ON(*length > cursor->resid);
771
772         return bio_vec->bv_page;
773 }
774
775 static bool ceph_msg_data_bio_advance(struct ceph_msg_data *data, size_t bytes)
776 {
777         struct ceph_msg_data_cursor *cursor = &data->cursor;
778         struct bio *bio;
779         struct bio_vec *bio_vec;
780         unsigned int index;
781
782         BUG_ON(data->type != CEPH_MSG_DATA_BIO);
783
784         bio = cursor->bio;
785         BUG_ON(!bio);
786
787         index = cursor->vector_index;
788         BUG_ON(index >= (unsigned int) bio->bi_vcnt);
789         bio_vec = &bio->bi_io_vec[index];
790
791         /* Advance the cursor offset */
792
793         BUG_ON(cursor->resid < bytes);
794         cursor->resid -= bytes;
795         cursor->vector_offset += bytes;
796         if (cursor->vector_offset < bio_vec->bv_len)
797                 return false;   /* more bytes to process in this segment */
798         BUG_ON(cursor->vector_offset != bio_vec->bv_len);
799
800         /* Move on to the next segment, and possibly the next bio */
801
802         if (++index == (unsigned int) bio->bi_vcnt) {
803                 bio = bio->bi_next;
804                 index = 0;
805         }
806         cursor->bio = bio;
807         cursor->vector_index = index;
808         cursor->vector_offset = 0;
809
810         if (!cursor->last_piece) {
811                 BUG_ON(!cursor->resid);
812                 BUG_ON(!bio);
813                 /* A short read is OK, so use <= rather than == */
814                 if (cursor->resid <= bio->bi_io_vec[index].bv_len)
815                         cursor->last_piece = true;
816         }
817
818         return true;
819 }
820 #endif
821
822 /*
823  * For a page array, a piece comes from the first page in the array
824  * that has not already been fully consumed.
825  */
826 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data *data,
827                                         size_t length)
828 {
829         struct ceph_msg_data_cursor *cursor = &data->cursor;
830         int page_count;
831
832         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
833
834         BUG_ON(!data->pages);
835         BUG_ON(!data->length);
836         BUG_ON(length != data->length);
837
838         cursor->resid = length;
839         page_count = calc_pages_for(data->alignment, (u64)data->length);
840         cursor->page_offset = data->alignment & ~PAGE_MASK;
841         cursor->page_index = 0;
842         BUG_ON(page_count > (int) USHRT_MAX);
843         cursor->page_count = (unsigned short) page_count;
844         cursor->last_piece = length <= PAGE_SIZE;
845 }
846
847 static struct page *ceph_msg_data_pages_next(struct ceph_msg_data *data,
848                                         size_t *page_offset,
849                                         size_t *length)
850 {
851         struct ceph_msg_data_cursor *cursor = &data->cursor;
852
853         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
854
855         BUG_ON(cursor->page_index >= cursor->page_count);
856         BUG_ON(cursor->page_offset >= PAGE_SIZE);
857
858         *page_offset = cursor->page_offset;
859         if (cursor->last_piece)
860                 *length = cursor->resid;
861         else
862                 *length = PAGE_SIZE - *page_offset;
863
864         return data->pages[cursor->page_index];
865 }
866
867 static bool ceph_msg_data_pages_advance(struct ceph_msg_data *data,
868                                                 size_t bytes)
869 {
870         struct ceph_msg_data_cursor *cursor = &data->cursor;
871
872         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
873
874         BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
875
876         /* Advance the cursor page offset */
877
878         cursor->resid -= bytes;
879         cursor->page_offset += bytes;
880         if (!bytes || cursor->page_offset & ~PAGE_MASK)
881                 return false;   /* more bytes to process in the current page */
882
883         /* Move on to the next page */
884
885         BUG_ON(cursor->page_index >= cursor->page_count);
886         cursor->page_offset = 0;
887         cursor->page_index++;
888         cursor->last_piece = cursor->resid <= PAGE_SIZE;
889
890         return true;
891 }
892
893 /*
894  * For a pagelist, a piece is whatever remains to be consumed in the
895  * first page in the list, or the front of the next page.
896  */
897 static void ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data *data,
898                                         size_t length)
899 {
900         struct ceph_msg_data_cursor *cursor = &data->cursor;
901         struct ceph_pagelist *pagelist;
902         struct page *page;
903
904         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
905
906         pagelist = data->pagelist;
907         BUG_ON(!pagelist);
908         BUG_ON(length != pagelist->length);
909
910         if (!length)
911                 return;         /* pagelist can be assigned but empty */
912
913         BUG_ON(list_empty(&pagelist->head));
914         page = list_first_entry(&pagelist->head, struct page, lru);
915
916         cursor->resid = length;
917         cursor->page = page;
918         cursor->offset = 0;
919         cursor->last_piece = length <= PAGE_SIZE;
920 }
921
922 static struct page *ceph_msg_data_pagelist_next(struct ceph_msg_data *data,
923                                                 size_t *page_offset,
924                                                 size_t *length)
925 {
926         struct ceph_msg_data_cursor *cursor = &data->cursor;
927         struct ceph_pagelist *pagelist;
928
929         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
930
931         pagelist = data->pagelist;
932         BUG_ON(!pagelist);
933
934         BUG_ON(!cursor->page);
935         BUG_ON(cursor->offset + cursor->resid != pagelist->length);
936
937         *page_offset = cursor->offset & ~PAGE_MASK;
938         if (cursor->last_piece) /* pagelist offset is always 0 */
939                 *length = cursor->resid;
940         else
941                 *length = PAGE_SIZE - *page_offset;
942
943         return data->cursor.page;
944 }
945
946 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data *data,
947                                                 size_t bytes)
948 {
949         struct ceph_msg_data_cursor *cursor = &data->cursor;
950         struct ceph_pagelist *pagelist;
951
952         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
953
954         pagelist = data->pagelist;
955         BUG_ON(!pagelist);
956
957         BUG_ON(cursor->offset + cursor->resid != pagelist->length);
958         BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
959
960         /* Advance the cursor offset */
961
962         cursor->resid -= bytes;
963         cursor->offset += bytes;
964         /* pagelist offset is always 0 */
965         if (!bytes || cursor->offset & ~PAGE_MASK)
966                 return false;   /* more bytes to process in the current page */
967
968         /* Move on to the next page */
969
970         BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
971         cursor->page = list_entry_next(cursor->page, lru);
972         cursor->last_piece = cursor->resid <= PAGE_SIZE;
973
974         return true;
975 }
976
977 /*
978  * Message data is handled (sent or received) in pieces, where each
979  * piece resides on a single page.  The network layer might not
980  * consume an entire piece at once.  A data item's cursor keeps
981  * track of which piece is next to process and how much remains to
982  * be processed in that piece.  It also tracks whether the current
983  * piece is the last one in the data item.
984  */
985 static void ceph_msg_data_cursor_init(struct ceph_msg_data *data,
986                                         size_t length)
987 {
988         switch (data->type) {
989         case CEPH_MSG_DATA_PAGELIST:
990                 ceph_msg_data_pagelist_cursor_init(data, length);
991                 break;
992         case CEPH_MSG_DATA_PAGES:
993                 ceph_msg_data_pages_cursor_init(data, length);
994                 break;
995 #ifdef CONFIG_BLOCK
996         case CEPH_MSG_DATA_BIO:
997                 ceph_msg_data_bio_cursor_init(data, length);
998                 break;
999 #endif /* CONFIG_BLOCK */
1000         case CEPH_MSG_DATA_NONE:
1001         default:
1002                 /* BUG(); */
1003                 break;
1004         }
1005         data->cursor.need_crc = true;
1006 }
1007
1008 /*
1009  * Return the page containing the next piece to process for a given
1010  * data item, and supply the page offset and length of that piece.
1011  * Indicate whether this is the last piece in this data item.
1012  */
1013 static struct page *ceph_msg_data_next(struct ceph_msg_data *data,
1014                                         size_t *page_offset,
1015                                         size_t *length,
1016                                         bool *last_piece)
1017 {
1018         struct page *page;
1019
1020         switch (data->type) {
1021         case CEPH_MSG_DATA_PAGELIST:
1022                 page = ceph_msg_data_pagelist_next(data, page_offset, length);
1023                 break;
1024         case CEPH_MSG_DATA_PAGES:
1025                 page = ceph_msg_data_pages_next(data, page_offset, length);
1026                 break;
1027 #ifdef CONFIG_BLOCK
1028         case CEPH_MSG_DATA_BIO:
1029                 page = ceph_msg_data_bio_next(data, page_offset, length);
1030                 break;
1031 #endif /* CONFIG_BLOCK */
1032         case CEPH_MSG_DATA_NONE:
1033         default:
1034                 page = NULL;
1035                 break;
1036         }
1037         BUG_ON(!page);
1038         BUG_ON(*page_offset + *length > PAGE_SIZE);
1039         BUG_ON(!*length);
1040         if (last_piece)
1041                 *last_piece = data->cursor.last_piece;
1042
1043         return page;
1044 }
1045
1046 /*
1047  * Returns true if the result moves the cursor on to the next piece
1048  * of the data item.
1049  */
1050 static bool ceph_msg_data_advance(struct ceph_msg_data *data, size_t bytes)
1051 {
1052         struct ceph_msg_data_cursor *cursor = &data->cursor;
1053         bool new_piece;
1054
1055         BUG_ON(bytes > cursor->resid);
1056         switch (data->type) {
1057         case CEPH_MSG_DATA_PAGELIST:
1058                 new_piece = ceph_msg_data_pagelist_advance(data, bytes);
1059                 break;
1060         case CEPH_MSG_DATA_PAGES:
1061                 new_piece = ceph_msg_data_pages_advance(data, bytes);
1062                 break;
1063 #ifdef CONFIG_BLOCK
1064         case CEPH_MSG_DATA_BIO:
1065                 new_piece = ceph_msg_data_bio_advance(data, bytes);
1066                 break;
1067 #endif /* CONFIG_BLOCK */
1068         case CEPH_MSG_DATA_NONE:
1069         default:
1070                 BUG();
1071                 break;
1072         }
1073         data->cursor.need_crc = new_piece;
1074
1075         return new_piece;
1076 }
1077
1078 static void prepare_message_data(struct ceph_msg *msg)
1079 {
1080         size_t data_len;
1081
1082         BUG_ON(!msg);
1083
1084         data_len = le32_to_cpu(msg->hdr.data_len);
1085         BUG_ON(!data_len);
1086
1087         /* Initialize data cursor */
1088
1089         ceph_msg_data_cursor_init(&msg->data, data_len);
1090 }
1091
1092 /*
1093  * Prepare footer for currently outgoing message, and finish things
1094  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1095  */
1096 static void prepare_write_message_footer(struct ceph_connection *con)
1097 {
1098         struct ceph_msg *m = con->out_msg;
1099         int v = con->out_kvec_left;
1100
1101         m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1102
1103         dout("prepare_write_message_footer %p\n", con);
1104         con->out_kvec_is_msg = true;
1105         con->out_kvec[v].iov_base = &m->footer;
1106         con->out_kvec[v].iov_len = sizeof(m->footer);
1107         con->out_kvec_bytes += sizeof(m->footer);
1108         con->out_kvec_left++;
1109         con->out_more = m->more_to_follow;
1110         con->out_msg_done = true;
1111 }
1112
1113 /*
1114  * Prepare headers for the next outgoing message.
1115  */
1116 static void prepare_write_message(struct ceph_connection *con)
1117 {
1118         struct ceph_msg *m;
1119         u32 crc;
1120
1121         con_out_kvec_reset(con);
1122         con->out_kvec_is_msg = true;
1123         con->out_msg_done = false;
1124
1125         /* Sneak an ack in there first?  If we can get it into the same
1126          * TCP packet that's a good thing. */
1127         if (con->in_seq > con->in_seq_acked) {
1128                 con->in_seq_acked = con->in_seq;
1129                 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1130                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1131                 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1132                         &con->out_temp_ack);
1133         }
1134
1135         BUG_ON(list_empty(&con->out_queue));
1136         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1137         con->out_msg = m;
1138         BUG_ON(m->con != con);
1139
1140         /* put message on sent list */
1141         ceph_msg_get(m);
1142         list_move_tail(&m->list_head, &con->out_sent);
1143
1144         /*
1145          * only assign outgoing seq # if we haven't sent this message
1146          * yet.  if it is requeued, resend with it's original seq.
1147          */
1148         if (m->needs_out_seq) {
1149                 m->hdr.seq = cpu_to_le64(++con->out_seq);
1150                 m->needs_out_seq = false;
1151         }
1152
1153         dout("prepare_write_message %p seq %lld type %d len %d+%d+%d\n",
1154              m, con->out_seq, le16_to_cpu(m->hdr.type),
1155              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1156              le32_to_cpu(m->hdr.data_len));
1157         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1158
1159         /* tag + hdr + front + middle */
1160         con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1161         con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1162         con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1163
1164         if (m->middle)
1165                 con_out_kvec_add(con, m->middle->vec.iov_len,
1166                         m->middle->vec.iov_base);
1167
1168         /* fill in crc (except data pages), footer */
1169         crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1170         con->out_msg->hdr.crc = cpu_to_le32(crc);
1171         con->out_msg->footer.flags = 0;
1172
1173         crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1174         con->out_msg->footer.front_crc = cpu_to_le32(crc);
1175         if (m->middle) {
1176                 crc = crc32c(0, m->middle->vec.iov_base,
1177                                 m->middle->vec.iov_len);
1178                 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1179         } else
1180                 con->out_msg->footer.middle_crc = 0;
1181         dout("%s front_crc %u middle_crc %u\n", __func__,
1182              le32_to_cpu(con->out_msg->footer.front_crc),
1183              le32_to_cpu(con->out_msg->footer.middle_crc));
1184
1185         /* is there a data payload? */
1186         con->out_msg->footer.data_crc = 0;
1187         if (m->hdr.data_len) {
1188                 prepare_message_data(con->out_msg);
1189                 con->out_more = 1;  /* data + footer will follow */
1190         } else {
1191                 /* no, queue up footer too and be done */
1192                 prepare_write_message_footer(con);
1193         }
1194
1195         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1196 }
1197
1198 /*
1199  * Prepare an ack.
1200  */
1201 static void prepare_write_ack(struct ceph_connection *con)
1202 {
1203         dout("prepare_write_ack %p %llu -> %llu\n", con,
1204              con->in_seq_acked, con->in_seq);
1205         con->in_seq_acked = con->in_seq;
1206
1207         con_out_kvec_reset(con);
1208
1209         con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1210
1211         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1212         con_out_kvec_add(con, sizeof (con->out_temp_ack),
1213                                 &con->out_temp_ack);
1214
1215         con->out_more = 1;  /* more will follow.. eventually.. */
1216         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1217 }
1218
1219 /*
1220  * Prepare to share the seq during handshake
1221  */
1222 static void prepare_write_seq(struct ceph_connection *con)
1223 {
1224         dout("prepare_write_seq %p %llu -> %llu\n", con,
1225              con->in_seq_acked, con->in_seq);
1226         con->in_seq_acked = con->in_seq;
1227
1228         con_out_kvec_reset(con);
1229
1230         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1231         con_out_kvec_add(con, sizeof (con->out_temp_ack),
1232                          &con->out_temp_ack);
1233
1234         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1235 }
1236
1237 /*
1238  * Prepare to write keepalive byte.
1239  */
1240 static void prepare_write_keepalive(struct ceph_connection *con)
1241 {
1242         dout("prepare_write_keepalive %p\n", con);
1243         con_out_kvec_reset(con);
1244         con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1245         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1246 }
1247
1248 /*
1249  * Connection negotiation.
1250  */
1251
1252 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1253                                                 int *auth_proto)
1254 {
1255         struct ceph_auth_handshake *auth;
1256
1257         if (!con->ops->get_authorizer) {
1258                 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1259                 con->out_connect.authorizer_len = 0;
1260                 return NULL;
1261         }
1262
1263         /* Can't hold the mutex while getting authorizer */
1264         mutex_unlock(&con->mutex);
1265         auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1266         mutex_lock(&con->mutex);
1267
1268         if (IS_ERR(auth))
1269                 return auth;
1270         if (con->state != CON_STATE_NEGOTIATING)
1271                 return ERR_PTR(-EAGAIN);
1272
1273         con->auth_reply_buf = auth->authorizer_reply_buf;
1274         con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1275         return auth;
1276 }
1277
1278 /*
1279  * We connected to a peer and are saying hello.
1280  */
1281 static void prepare_write_banner(struct ceph_connection *con)
1282 {
1283         con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1284         con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1285                                         &con->msgr->my_enc_addr);
1286
1287         con->out_more = 0;
1288         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1289 }
1290
1291 static int prepare_write_connect(struct ceph_connection *con)
1292 {
1293         unsigned int global_seq = get_global_seq(con->msgr, 0);
1294         int proto;
1295         int auth_proto;
1296         struct ceph_auth_handshake *auth;
1297
1298         switch (con->peer_name.type) {
1299         case CEPH_ENTITY_TYPE_MON:
1300                 proto = CEPH_MONC_PROTOCOL;
1301                 break;
1302         case CEPH_ENTITY_TYPE_OSD:
1303                 proto = CEPH_OSDC_PROTOCOL;
1304                 break;
1305         case CEPH_ENTITY_TYPE_MDS:
1306                 proto = CEPH_MDSC_PROTOCOL;
1307                 break;
1308         default:
1309                 BUG();
1310         }
1311
1312         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1313              con->connect_seq, global_seq, proto);
1314
1315         con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1316         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1317         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1318         con->out_connect.global_seq = cpu_to_le32(global_seq);
1319         con->out_connect.protocol_version = cpu_to_le32(proto);
1320         con->out_connect.flags = 0;
1321
1322         auth_proto = CEPH_AUTH_UNKNOWN;
1323         auth = get_connect_authorizer(con, &auth_proto);
1324         if (IS_ERR(auth))
1325                 return PTR_ERR(auth);
1326
1327         con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1328         con->out_connect.authorizer_len = auth ?
1329                 cpu_to_le32(auth->authorizer_buf_len) : 0;
1330
1331         con_out_kvec_add(con, sizeof (con->out_connect),
1332                                         &con->out_connect);
1333         if (auth && auth->authorizer_buf_len)
1334                 con_out_kvec_add(con, auth->authorizer_buf_len,
1335                                         auth->authorizer_buf);
1336
1337         con->out_more = 0;
1338         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1339
1340         return 0;
1341 }
1342
1343 /*
1344  * write as much of pending kvecs to the socket as we can.
1345  *  1 -> done
1346  *  0 -> socket full, but more to do
1347  * <0 -> error
1348  */
1349 static int write_partial_kvec(struct ceph_connection *con)
1350 {
1351         int ret;
1352
1353         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1354         while (con->out_kvec_bytes > 0) {
1355                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1356                                        con->out_kvec_left, con->out_kvec_bytes,
1357                                        con->out_more);
1358                 if (ret <= 0)
1359                         goto out;
1360                 con->out_kvec_bytes -= ret;
1361                 if (con->out_kvec_bytes == 0)
1362                         break;            /* done */
1363
1364                 /* account for full iov entries consumed */
1365                 while (ret >= con->out_kvec_cur->iov_len) {
1366                         BUG_ON(!con->out_kvec_left);
1367                         ret -= con->out_kvec_cur->iov_len;
1368                         con->out_kvec_cur++;
1369                         con->out_kvec_left--;
1370                 }
1371                 /* and for a partially-consumed entry */
1372                 if (ret) {
1373                         con->out_kvec_cur->iov_len -= ret;
1374                         con->out_kvec_cur->iov_base += ret;
1375                 }
1376         }
1377         con->out_kvec_left = 0;
1378         con->out_kvec_is_msg = false;
1379         ret = 1;
1380 out:
1381         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1382              con->out_kvec_bytes, con->out_kvec_left, ret);
1383         return ret;  /* done! */
1384 }
1385
1386 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
1387                         size_t len, size_t sent)
1388 {
1389         struct ceph_msg *msg = con->out_msg;
1390         bool need_crc;
1391
1392         BUG_ON(!msg);
1393         BUG_ON(!sent);
1394
1395         need_crc = ceph_msg_data_advance(&msg->data, sent);
1396         BUG_ON(need_crc && sent != len);
1397
1398         if (sent < len)
1399                 return;
1400
1401         BUG_ON(sent != len);
1402 }
1403
1404 static void in_msg_pos_next(struct ceph_connection *con, size_t len,
1405                                 size_t received)
1406 {
1407         struct ceph_msg *msg = con->in_msg;
1408
1409         BUG_ON(!msg);
1410         BUG_ON(!received);
1411
1412         (void) ceph_msg_data_advance(&msg->data, received);
1413
1414         if (received < len)
1415                 return;
1416
1417         BUG_ON(received != len);
1418 }
1419
1420 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1421                                 unsigned int page_offset,
1422                                 unsigned int length)
1423 {
1424         char *kaddr;
1425
1426         kaddr = kmap(page);
1427         BUG_ON(kaddr == NULL);
1428         crc = crc32c(crc, kaddr + page_offset, length);
1429         kunmap(page);
1430
1431         return crc;
1432 }
1433 /*
1434  * Write as much message data payload as we can.  If we finish, queue
1435  * up the footer.
1436  *  1 -> done, footer is now queued in out_kvec[].
1437  *  0 -> socket full, but more to do
1438  * <0 -> error
1439  */
1440 static int write_partial_message_data(struct ceph_connection *con)
1441 {
1442         struct ceph_msg *msg = con->out_msg;
1443         struct ceph_msg_data_cursor *cursor = &msg->data.cursor;
1444         bool do_datacrc = !con->msgr->nocrc;
1445         u32 crc;
1446
1447         dout("%s %p msg %p\n", __func__, con, msg);
1448
1449         if (WARN_ON(!ceph_msg_has_data(msg)))
1450                 return -EINVAL;
1451
1452         /*
1453          * Iterate through each page that contains data to be
1454          * written, and send as much as possible for each.
1455          *
1456          * If we are calculating the data crc (the default), we will
1457          * need to map the page.  If we have no pages, they have
1458          * been revoked, so use the zero page.
1459          */
1460         crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1461         while (cursor->resid) {
1462                 struct page *page;
1463                 size_t page_offset;
1464                 size_t length;
1465                 bool last_piece;
1466                 int ret;
1467
1468                 page = ceph_msg_data_next(&msg->data, &page_offset, &length,
1469                                                         &last_piece);
1470                 if (do_datacrc && cursor->need_crc)
1471                         crc = ceph_crc32c_page(crc, page, page_offset, length);
1472                 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1473                                       length, last_piece);
1474                 if (ret <= 0) {
1475                         if (do_datacrc)
1476                                 msg->footer.data_crc = cpu_to_le32(crc);
1477
1478                         return ret;
1479                 }
1480                 out_msg_pos_next(con, page, length, (size_t) ret);
1481         }
1482
1483         dout("%s %p msg %p done\n", __func__, con, msg);
1484
1485         /* prepare and queue up footer, too */
1486         if (do_datacrc)
1487                 msg->footer.data_crc = cpu_to_le32(crc);
1488         else
1489                 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1490         con_out_kvec_reset(con);
1491         prepare_write_message_footer(con);
1492
1493         return 1;       /* must return > 0 to indicate success */
1494 }
1495
1496 /*
1497  * write some zeros
1498  */
1499 static int write_partial_skip(struct ceph_connection *con)
1500 {
1501         int ret;
1502
1503         while (con->out_skip > 0) {
1504                 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1505
1506                 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1507                 if (ret <= 0)
1508                         goto out;
1509                 con->out_skip -= ret;
1510         }
1511         ret = 1;
1512 out:
1513         return ret;
1514 }
1515
1516 /*
1517  * Prepare to read connection handshake, or an ack.
1518  */
1519 static void prepare_read_banner(struct ceph_connection *con)
1520 {
1521         dout("prepare_read_banner %p\n", con);
1522         con->in_base_pos = 0;
1523 }
1524
1525 static void prepare_read_connect(struct ceph_connection *con)
1526 {
1527         dout("prepare_read_connect %p\n", con);
1528         con->in_base_pos = 0;
1529 }
1530
1531 static void prepare_read_ack(struct ceph_connection *con)
1532 {
1533         dout("prepare_read_ack %p\n", con);
1534         con->in_base_pos = 0;
1535 }
1536
1537 static void prepare_read_seq(struct ceph_connection *con)
1538 {
1539         dout("prepare_read_seq %p\n", con);
1540         con->in_base_pos = 0;
1541         con->in_tag = CEPH_MSGR_TAG_SEQ;
1542 }
1543
1544 static void prepare_read_tag(struct ceph_connection *con)
1545 {
1546         dout("prepare_read_tag %p\n", con);
1547         con->in_base_pos = 0;
1548         con->in_tag = CEPH_MSGR_TAG_READY;
1549 }
1550
1551 /*
1552  * Prepare to read a message.
1553  */
1554 static int prepare_read_message(struct ceph_connection *con)
1555 {
1556         dout("prepare_read_message %p\n", con);
1557         BUG_ON(con->in_msg != NULL);
1558         con->in_base_pos = 0;
1559         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1560         return 0;
1561 }
1562
1563
1564 static int read_partial(struct ceph_connection *con,
1565                         int end, int size, void *object)
1566 {
1567         while (con->in_base_pos < end) {
1568                 int left = end - con->in_base_pos;
1569                 int have = size - left;
1570                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1571                 if (ret <= 0)
1572                         return ret;
1573                 con->in_base_pos += ret;
1574         }
1575         return 1;
1576 }
1577
1578
1579 /*
1580  * Read all or part of the connect-side handshake on a new connection
1581  */
1582 static int read_partial_banner(struct ceph_connection *con)
1583 {
1584         int size;
1585         int end;
1586         int ret;
1587
1588         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1589
1590         /* peer's banner */
1591         size = strlen(CEPH_BANNER);
1592         end = size;
1593         ret = read_partial(con, end, size, con->in_banner);
1594         if (ret <= 0)
1595                 goto out;
1596
1597         size = sizeof (con->actual_peer_addr);
1598         end += size;
1599         ret = read_partial(con, end, size, &con->actual_peer_addr);
1600         if (ret <= 0)
1601                 goto out;
1602
1603         size = sizeof (con->peer_addr_for_me);
1604         end += size;
1605         ret = read_partial(con, end, size, &con->peer_addr_for_me);
1606         if (ret <= 0)
1607                 goto out;
1608
1609 out:
1610         return ret;
1611 }
1612
1613 static int read_partial_connect(struct ceph_connection *con)
1614 {
1615         int size;
1616         int end;
1617         int ret;
1618
1619         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1620
1621         size = sizeof (con->in_reply);
1622         end = size;
1623         ret = read_partial(con, end, size, &con->in_reply);
1624         if (ret <= 0)
1625                 goto out;
1626
1627         size = le32_to_cpu(con->in_reply.authorizer_len);
1628         end += size;
1629         ret = read_partial(con, end, size, con->auth_reply_buf);
1630         if (ret <= 0)
1631                 goto out;
1632
1633         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1634              con, (int)con->in_reply.tag,
1635              le32_to_cpu(con->in_reply.connect_seq),
1636              le32_to_cpu(con->in_reply.global_seq));
1637 out:
1638         return ret;
1639
1640 }
1641
1642 /*
1643  * Verify the hello banner looks okay.
1644  */
1645 static int verify_hello(struct ceph_connection *con)
1646 {
1647         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1648                 pr_err("connect to %s got bad banner\n",
1649                        ceph_pr_addr(&con->peer_addr.in_addr));
1650                 con->error_msg = "protocol error, bad banner";
1651                 return -1;
1652         }
1653         return 0;
1654 }
1655
1656 static bool addr_is_blank(struct sockaddr_storage *ss)
1657 {
1658         switch (ss->ss_family) {
1659         case AF_INET:
1660                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1661         case AF_INET6:
1662                 return
1663                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1664                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1665                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1666                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1667         }
1668         return false;
1669 }
1670
1671 static int addr_port(struct sockaddr_storage *ss)
1672 {
1673         switch (ss->ss_family) {
1674         case AF_INET:
1675                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1676         case AF_INET6:
1677                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1678         }
1679         return 0;
1680 }
1681
1682 static void addr_set_port(struct sockaddr_storage *ss, int p)
1683 {
1684         switch (ss->ss_family) {
1685         case AF_INET:
1686                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1687                 break;
1688         case AF_INET6:
1689                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1690                 break;
1691         }
1692 }
1693
1694 /*
1695  * Unlike other *_pton function semantics, zero indicates success.
1696  */
1697 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1698                 char delim, const char **ipend)
1699 {
1700         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1701         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1702
1703         memset(ss, 0, sizeof(*ss));
1704
1705         if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1706                 ss->ss_family = AF_INET;
1707                 return 0;
1708         }
1709
1710         if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1711                 ss->ss_family = AF_INET6;
1712                 return 0;
1713         }
1714
1715         return -EINVAL;
1716 }
1717
1718 /*
1719  * Extract hostname string and resolve using kernel DNS facility.
1720  */
1721 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1722 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1723                 struct sockaddr_storage *ss, char delim, const char **ipend)
1724 {
1725         const char *end, *delim_p;
1726         char *colon_p, *ip_addr = NULL;
1727         int ip_len, ret;
1728
1729         /*
1730          * The end of the hostname occurs immediately preceding the delimiter or
1731          * the port marker (':') where the delimiter takes precedence.
1732          */
1733         delim_p = memchr(name, delim, namelen);
1734         colon_p = memchr(name, ':', namelen);
1735
1736         if (delim_p && colon_p)
1737                 end = delim_p < colon_p ? delim_p : colon_p;
1738         else if (!delim_p && colon_p)
1739                 end = colon_p;
1740         else {
1741                 end = delim_p;
1742                 if (!end) /* case: hostname:/ */
1743                         end = name + namelen;
1744         }
1745
1746         if (end <= name)
1747                 return -EINVAL;
1748
1749         /* do dns_resolve upcall */
1750         ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1751         if (ip_len > 0)
1752                 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1753         else
1754                 ret = -ESRCH;
1755
1756         kfree(ip_addr);
1757
1758         *ipend = end;
1759
1760         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1761                         ret, ret ? "failed" : ceph_pr_addr(ss));
1762
1763         return ret;
1764 }
1765 #else
1766 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1767                 struct sockaddr_storage *ss, char delim, const char **ipend)
1768 {
1769         return -EINVAL;
1770 }
1771 #endif
1772
1773 /*
1774  * Parse a server name (IP or hostname). If a valid IP address is not found
1775  * then try to extract a hostname to resolve using userspace DNS upcall.
1776  */
1777 static int ceph_parse_server_name(const char *name, size_t namelen,
1778                         struct sockaddr_storage *ss, char delim, const char **ipend)
1779 {
1780         int ret;
1781
1782         ret = ceph_pton(name, namelen, ss, delim, ipend);
1783         if (ret)
1784                 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1785
1786         return ret;
1787 }
1788
1789 /*
1790  * Parse an ip[:port] list into an addr array.  Use the default
1791  * monitor port if a port isn't specified.
1792  */
1793 int ceph_parse_ips(const char *c, const char *end,
1794                    struct ceph_entity_addr *addr,
1795                    int max_count, int *count)
1796 {
1797         int i, ret = -EINVAL;
1798         const char *p = c;
1799
1800         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1801         for (i = 0; i < max_count; i++) {
1802                 const char *ipend;
1803                 struct sockaddr_storage *ss = &addr[i].in_addr;
1804                 int port;
1805                 char delim = ',';
1806
1807                 if (*p == '[') {
1808                         delim = ']';
1809                         p++;
1810                 }
1811
1812                 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1813                 if (ret)
1814                         goto bad;
1815                 ret = -EINVAL;
1816
1817                 p = ipend;
1818
1819                 if (delim == ']') {
1820                         if (*p != ']') {
1821                                 dout("missing matching ']'\n");
1822                                 goto bad;
1823                         }
1824                         p++;
1825                 }
1826
1827                 /* port? */
1828                 if (p < end && *p == ':') {
1829                         port = 0;
1830                         p++;
1831                         while (p < end && *p >= '0' && *p <= '9') {
1832                                 port = (port * 10) + (*p - '0');
1833                                 p++;
1834                         }
1835                         if (port > 65535 || port == 0)
1836                                 goto bad;
1837                 } else {
1838                         port = CEPH_MON_PORT;
1839                 }
1840
1841                 addr_set_port(ss, port);
1842
1843                 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1844
1845                 if (p == end)
1846                         break;
1847                 if (*p != ',')
1848                         goto bad;
1849                 p++;
1850         }
1851
1852         if (p != end)
1853                 goto bad;
1854
1855         if (count)
1856                 *count = i + 1;
1857         return 0;
1858
1859 bad:
1860         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1861         return ret;
1862 }
1863 EXPORT_SYMBOL(ceph_parse_ips);
1864
1865 static int process_banner(struct ceph_connection *con)
1866 {
1867         dout("process_banner on %p\n", con);
1868
1869         if (verify_hello(con) < 0)
1870                 return -1;
1871
1872         ceph_decode_addr(&con->actual_peer_addr);
1873         ceph_decode_addr(&con->peer_addr_for_me);
1874
1875         /*
1876          * Make sure the other end is who we wanted.  note that the other
1877          * end may not yet know their ip address, so if it's 0.0.0.0, give
1878          * them the benefit of the doubt.
1879          */
1880         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1881                    sizeof(con->peer_addr)) != 0 &&
1882             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1883               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1884                 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1885                            ceph_pr_addr(&con->peer_addr.in_addr),
1886                            (int)le32_to_cpu(con->peer_addr.nonce),
1887                            ceph_pr_addr(&con->actual_peer_addr.in_addr),
1888                            (int)le32_to_cpu(con->actual_peer_addr.nonce));
1889                 con->error_msg = "wrong peer at address";
1890                 return -1;
1891         }
1892
1893         /*
1894          * did we learn our address?
1895          */
1896         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1897                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1898
1899                 memcpy(&con->msgr->inst.addr.in_addr,
1900                        &con->peer_addr_for_me.in_addr,
1901                        sizeof(con->peer_addr_for_me.in_addr));
1902                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1903                 encode_my_addr(con->msgr);
1904                 dout("process_banner learned my addr is %s\n",
1905                      ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1906         }
1907
1908         return 0;
1909 }
1910
1911 static int process_connect(struct ceph_connection *con)
1912 {
1913         u64 sup_feat = con->msgr->supported_features;
1914         u64 req_feat = con->msgr->required_features;
1915         u64 server_feat = le64_to_cpu(con->in_reply.features);
1916         int ret;
1917
1918         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1919
1920         switch (con->in_reply.tag) {
1921         case CEPH_MSGR_TAG_FEATURES:
1922                 pr_err("%s%lld %s feature set mismatch,"
1923                        " my %llx < server's %llx, missing %llx\n",
1924                        ENTITY_NAME(con->peer_name),
1925                        ceph_pr_addr(&con->peer_addr.in_addr),
1926                        sup_feat, server_feat, server_feat & ~sup_feat);
1927                 con->error_msg = "missing required protocol features";
1928                 reset_connection(con);
1929                 return -1;
1930
1931         case CEPH_MSGR_TAG_BADPROTOVER:
1932                 pr_err("%s%lld %s protocol version mismatch,"
1933                        " my %d != server's %d\n",
1934                        ENTITY_NAME(con->peer_name),
1935                        ceph_pr_addr(&con->peer_addr.in_addr),
1936                        le32_to_cpu(con->out_connect.protocol_version),
1937                        le32_to_cpu(con->in_reply.protocol_version));
1938                 con->error_msg = "protocol version mismatch";
1939                 reset_connection(con);
1940                 return -1;
1941
1942         case CEPH_MSGR_TAG_BADAUTHORIZER:
1943                 con->auth_retry++;
1944                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1945                      con->auth_retry);
1946                 if (con->auth_retry == 2) {
1947                         con->error_msg = "connect authorization failure";
1948                         return -1;
1949                 }
1950                 con_out_kvec_reset(con);
1951                 ret = prepare_write_connect(con);
1952                 if (ret < 0)
1953                         return ret;
1954                 prepare_read_connect(con);
1955                 break;
1956
1957         case CEPH_MSGR_TAG_RESETSESSION:
1958                 /*
1959                  * If we connected with a large connect_seq but the peer
1960                  * has no record of a session with us (no connection, or
1961                  * connect_seq == 0), they will send RESETSESION to indicate
1962                  * that they must have reset their session, and may have
1963                  * dropped messages.
1964                  */
1965                 dout("process_connect got RESET peer seq %u\n",
1966                      le32_to_cpu(con->in_reply.connect_seq));
1967                 pr_err("%s%lld %s connection reset\n",
1968                        ENTITY_NAME(con->peer_name),
1969                        ceph_pr_addr(&con->peer_addr.in_addr));
1970                 reset_connection(con);
1971                 con_out_kvec_reset(con);
1972                 ret = prepare_write_connect(con);
1973                 if (ret < 0)
1974                         return ret;
1975                 prepare_read_connect(con);
1976
1977                 /* Tell ceph about it. */
1978                 mutex_unlock(&con->mutex);
1979                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1980                 if (con->ops->peer_reset)
1981                         con->ops->peer_reset(con);
1982                 mutex_lock(&con->mutex);
1983                 if (con->state != CON_STATE_NEGOTIATING)
1984                         return -EAGAIN;
1985                 break;
1986
1987         case CEPH_MSGR_TAG_RETRY_SESSION:
1988                 /*
1989                  * If we sent a smaller connect_seq than the peer has, try
1990                  * again with a larger value.
1991                  */
1992                 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1993                      le32_to_cpu(con->out_connect.connect_seq),
1994                      le32_to_cpu(con->in_reply.connect_seq));
1995                 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1996                 con_out_kvec_reset(con);
1997                 ret = prepare_write_connect(con);
1998                 if (ret < 0)
1999                         return ret;
2000                 prepare_read_connect(con);
2001                 break;
2002
2003         case CEPH_MSGR_TAG_RETRY_GLOBAL:
2004                 /*
2005                  * If we sent a smaller global_seq than the peer has, try
2006                  * again with a larger value.
2007                  */
2008                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2009                      con->peer_global_seq,
2010                      le32_to_cpu(con->in_reply.global_seq));
2011                 get_global_seq(con->msgr,
2012                                le32_to_cpu(con->in_reply.global_seq));
2013                 con_out_kvec_reset(con);
2014                 ret = prepare_write_connect(con);
2015                 if (ret < 0)
2016                         return ret;
2017                 prepare_read_connect(con);
2018                 break;
2019
2020         case CEPH_MSGR_TAG_SEQ:
2021         case CEPH_MSGR_TAG_READY:
2022                 if (req_feat & ~server_feat) {
2023                         pr_err("%s%lld %s protocol feature mismatch,"
2024                                " my required %llx > server's %llx, need %llx\n",
2025                                ENTITY_NAME(con->peer_name),
2026                                ceph_pr_addr(&con->peer_addr.in_addr),
2027                                req_feat, server_feat, req_feat & ~server_feat);
2028                         con->error_msg = "missing required protocol features";
2029                         reset_connection(con);
2030                         return -1;
2031                 }
2032
2033                 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2034                 con->state = CON_STATE_OPEN;
2035                 con->auth_retry = 0;    /* we authenticated; clear flag */
2036                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2037                 con->connect_seq++;
2038                 con->peer_features = server_feat;
2039                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2040                      con->peer_global_seq,
2041                      le32_to_cpu(con->in_reply.connect_seq),
2042                      con->connect_seq);
2043                 WARN_ON(con->connect_seq !=
2044                         le32_to_cpu(con->in_reply.connect_seq));
2045
2046                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2047                         con_flag_set(con, CON_FLAG_LOSSYTX);
2048
2049                 con->delay = 0;      /* reset backoff memory */
2050
2051                 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2052                         prepare_write_seq(con);
2053                         prepare_read_seq(con);
2054                 } else {
2055                         prepare_read_tag(con);
2056                 }
2057                 break;
2058
2059         case CEPH_MSGR_TAG_WAIT:
2060                 /*
2061                  * If there is a connection race (we are opening
2062                  * connections to each other), one of us may just have
2063                  * to WAIT.  This shouldn't happen if we are the
2064                  * client.
2065                  */
2066                 pr_err("process_connect got WAIT as client\n");
2067                 con->error_msg = "protocol error, got WAIT as client";
2068                 return -1;
2069
2070         default:
2071                 pr_err("connect protocol error, will retry\n");
2072                 con->error_msg = "protocol error, garbage tag during connect";
2073                 return -1;
2074         }
2075         return 0;
2076 }
2077
2078
2079 /*
2080  * read (part of) an ack
2081  */
2082 static int read_partial_ack(struct ceph_connection *con)
2083 {
2084         int size = sizeof (con->in_temp_ack);
2085         int end = size;
2086
2087         return read_partial(con, end, size, &con->in_temp_ack);
2088 }
2089
2090 /*
2091  * We can finally discard anything that's been acked.
2092  */
2093 static void process_ack(struct ceph_connection *con)
2094 {
2095         struct ceph_msg *m;
2096         u64 ack = le64_to_cpu(con->in_temp_ack);
2097         u64 seq;
2098
2099         while (!list_empty(&con->out_sent)) {
2100                 m = list_first_entry(&con->out_sent, struct ceph_msg,
2101                                      list_head);
2102                 seq = le64_to_cpu(m->hdr.seq);
2103                 if (seq > ack)
2104                         break;
2105                 dout("got ack for seq %llu type %d at %p\n", seq,
2106                      le16_to_cpu(m->hdr.type), m);
2107                 m->ack_stamp = jiffies;
2108                 ceph_msg_remove(m);
2109         }
2110         prepare_read_tag(con);
2111 }
2112
2113
2114 static int read_partial_message_section(struct ceph_connection *con,
2115                                         struct kvec *section,
2116                                         unsigned int sec_len, u32 *crc)
2117 {
2118         int ret, left;
2119
2120         BUG_ON(!section);
2121
2122         while (section->iov_len < sec_len) {
2123                 BUG_ON(section->iov_base == NULL);
2124                 left = sec_len - section->iov_len;
2125                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2126                                        section->iov_len, left);
2127                 if (ret <= 0)
2128                         return ret;
2129                 section->iov_len += ret;
2130         }
2131         if (section->iov_len == sec_len)
2132                 *crc = crc32c(0, section->iov_base, section->iov_len);
2133
2134         return 1;
2135 }
2136
2137 static int read_partial_msg_data(struct ceph_connection *con)
2138 {
2139         struct ceph_msg *msg = con->in_msg;
2140         struct ceph_msg_data_cursor *cursor = &msg->data.cursor;
2141         const bool do_datacrc = !con->msgr->nocrc;
2142         struct page *page;
2143         size_t page_offset;
2144         size_t length;
2145         u32 crc = 0;
2146         int ret;
2147
2148         BUG_ON(!msg);
2149         if (WARN_ON(!ceph_msg_has_data(msg)))
2150                 return -EIO;
2151
2152         if (do_datacrc)
2153                 crc = con->in_data_crc;
2154         while (cursor->resid) {
2155                 page = ceph_msg_data_next(&msg->data, &page_offset, &length,
2156                                                         NULL);
2157                 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2158                 if (ret <= 0) {
2159                         if (do_datacrc)
2160                                 con->in_data_crc = crc;
2161
2162                         return ret;
2163                 }
2164
2165                 if (do_datacrc)
2166                         crc = ceph_crc32c_page(crc, page, page_offset, ret);
2167                 in_msg_pos_next(con, length, ret);
2168         }
2169         if (do_datacrc)
2170                 con->in_data_crc = crc;
2171
2172         return 1;       /* must return > 0 to indicate success */
2173 }
2174
2175 /*
2176  * read (part of) a message.
2177  */
2178 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2179
2180 static int read_partial_message(struct ceph_connection *con)
2181 {
2182         struct ceph_msg *m = con->in_msg;
2183         int size;
2184         int end;
2185         int ret;
2186         unsigned int front_len, middle_len, data_len;
2187         bool do_datacrc = !con->msgr->nocrc;
2188         u64 seq;
2189         u32 crc;
2190
2191         dout("read_partial_message con %p msg %p\n", con, m);
2192
2193         /* header */
2194         size = sizeof (con->in_hdr);
2195         end = size;
2196         ret = read_partial(con, end, size, &con->in_hdr);
2197         if (ret <= 0)
2198                 return ret;
2199
2200         crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2201         if (cpu_to_le32(crc) != con->in_hdr.crc) {
2202                 pr_err("read_partial_message bad hdr "
2203                        " crc %u != expected %u\n",
2204                        crc, con->in_hdr.crc);
2205                 return -EBADMSG;
2206         }
2207
2208         front_len = le32_to_cpu(con->in_hdr.front_len);
2209         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2210                 return -EIO;
2211         middle_len = le32_to_cpu(con->in_hdr.middle_len);
2212         if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2213                 return -EIO;
2214         data_len = le32_to_cpu(con->in_hdr.data_len);
2215         if (data_len > CEPH_MSG_MAX_DATA_LEN)
2216                 return -EIO;
2217
2218         /* verify seq# */
2219         seq = le64_to_cpu(con->in_hdr.seq);
2220         if ((s64)seq - (s64)con->in_seq < 1) {
2221                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2222                         ENTITY_NAME(con->peer_name),
2223                         ceph_pr_addr(&con->peer_addr.in_addr),
2224                         seq, con->in_seq + 1);
2225                 con->in_base_pos = -front_len - middle_len - data_len -
2226                         sizeof(m->footer);
2227                 con->in_tag = CEPH_MSGR_TAG_READY;
2228                 return 0;
2229         } else if ((s64)seq - (s64)con->in_seq > 1) {
2230                 pr_err("read_partial_message bad seq %lld expected %lld\n",
2231                        seq, con->in_seq + 1);
2232                 con->error_msg = "bad message sequence # for incoming message";
2233                 return -EBADMSG;
2234         }
2235
2236         /* allocate message? */
2237         if (!con->in_msg) {
2238                 int skip = 0;
2239
2240                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2241                      front_len, data_len);
2242                 ret = ceph_con_in_msg_alloc(con, &skip);
2243                 if (ret < 0)
2244                         return ret;
2245                 if (skip) {
2246                         /* skip this message */
2247                         dout("alloc_msg said skip message\n");
2248                         BUG_ON(con->in_msg);
2249                         con->in_base_pos = -front_len - middle_len - data_len -
2250                                 sizeof(m->footer);
2251                         con->in_tag = CEPH_MSGR_TAG_READY;
2252                         con->in_seq++;
2253                         return 0;
2254                 }
2255
2256                 BUG_ON(!con->in_msg);
2257                 BUG_ON(con->in_msg->con != con);
2258                 m = con->in_msg;
2259                 m->front.iov_len = 0;    /* haven't read it yet */
2260                 if (m->middle)
2261                         m->middle->vec.iov_len = 0;
2262
2263                 /* prepare for data payload, if any */
2264
2265                 if (data_len)
2266                         prepare_message_data(con->in_msg);
2267         }
2268
2269         /* front */
2270         ret = read_partial_message_section(con, &m->front, front_len,
2271                                            &con->in_front_crc);
2272         if (ret <= 0)
2273                 return ret;
2274
2275         /* middle */
2276         if (m->middle) {
2277                 ret = read_partial_message_section(con, &m->middle->vec,
2278                                                    middle_len,
2279                                                    &con->in_middle_crc);
2280                 if (ret <= 0)
2281                         return ret;
2282         }
2283
2284         /* (page) data */
2285         if (data_len) {
2286                 ret = read_partial_msg_data(con);
2287                 if (ret <= 0)
2288                         return ret;
2289         }
2290
2291         /* footer */
2292         size = sizeof (m->footer);
2293         end += size;
2294         ret = read_partial(con, end, size, &m->footer);
2295         if (ret <= 0)
2296                 return ret;
2297
2298         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2299              m, front_len, m->footer.front_crc, middle_len,
2300              m->footer.middle_crc, data_len, m->footer.data_crc);
2301
2302         /* crc ok? */
2303         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2304                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2305                        m, con->in_front_crc, m->footer.front_crc);
2306                 return -EBADMSG;
2307         }
2308         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2309                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2310                        m, con->in_middle_crc, m->footer.middle_crc);
2311                 return -EBADMSG;
2312         }
2313         if (do_datacrc &&
2314             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2315             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2316                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2317                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2318                 return -EBADMSG;
2319         }
2320
2321         return 1; /* done! */
2322 }
2323
2324 /*
2325  * Process message.  This happens in the worker thread.  The callback should
2326  * be careful not to do anything that waits on other incoming messages or it
2327  * may deadlock.
2328  */
2329 static void process_message(struct ceph_connection *con)
2330 {
2331         struct ceph_msg *msg;
2332
2333         BUG_ON(con->in_msg->con != con);
2334         con->in_msg->con = NULL;
2335         msg = con->in_msg;
2336         con->in_msg = NULL;
2337         con->ops->put(con);
2338
2339         /* if first message, set peer_name */
2340         if (con->peer_name.type == 0)
2341                 con->peer_name = msg->hdr.src;
2342
2343         con->in_seq++;
2344         mutex_unlock(&con->mutex);
2345
2346         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2347              msg, le64_to_cpu(msg->hdr.seq),
2348              ENTITY_NAME(msg->hdr.src),
2349              le16_to_cpu(msg->hdr.type),
2350              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2351              le32_to_cpu(msg->hdr.front_len),
2352              le32_to_cpu(msg->hdr.data_len),
2353              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2354         con->ops->dispatch(con, msg);
2355
2356         mutex_lock(&con->mutex);
2357 }
2358
2359
2360 /*
2361  * Write something to the socket.  Called in a worker thread when the
2362  * socket appears to be writeable and we have something ready to send.
2363  */
2364 static int try_write(struct ceph_connection *con)
2365 {
2366         int ret = 1;
2367
2368         dout("try_write start %p state %lu\n", con, con->state);
2369
2370 more:
2371         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2372
2373         /* open the socket first? */
2374         if (con->state == CON_STATE_PREOPEN) {
2375                 BUG_ON(con->sock);
2376                 con->state = CON_STATE_CONNECTING;
2377
2378                 con_out_kvec_reset(con);
2379                 prepare_write_banner(con);
2380                 prepare_read_banner(con);
2381
2382                 BUG_ON(con->in_msg);
2383                 con->in_tag = CEPH_MSGR_TAG_READY;
2384                 dout("try_write initiating connect on %p new state %lu\n",
2385                      con, con->state);
2386                 ret = ceph_tcp_connect(con);
2387                 if (ret < 0) {
2388                         con->error_msg = "connect error";
2389                         goto out;
2390                 }
2391         }
2392
2393 more_kvec:
2394         /* kvec data queued? */
2395         if (con->out_skip) {
2396                 ret = write_partial_skip(con);
2397                 if (ret <= 0)
2398                         goto out;
2399         }
2400         if (con->out_kvec_left) {
2401                 ret = write_partial_kvec(con);
2402                 if (ret <= 0)
2403                         goto out;
2404         }
2405
2406         /* msg pages? */
2407         if (con->out_msg) {
2408                 if (con->out_msg_done) {
2409                         ceph_msg_put(con->out_msg);
2410                         con->out_msg = NULL;   /* we're done with this one */
2411                         goto do_next;
2412                 }
2413
2414                 ret = write_partial_message_data(con);
2415                 if (ret == 1)
2416                         goto more_kvec;  /* we need to send the footer, too! */
2417                 if (ret == 0)
2418                         goto out;
2419                 if (ret < 0) {
2420                         dout("try_write write_partial_message_data err %d\n",
2421                              ret);
2422                         goto out;
2423                 }
2424         }
2425
2426 do_next:
2427         if (con->state == CON_STATE_OPEN) {
2428                 /* is anything else pending? */
2429                 if (!list_empty(&con->out_queue)) {
2430                         prepare_write_message(con);
2431                         goto more;
2432                 }
2433                 if (con->in_seq > con->in_seq_acked) {
2434                         prepare_write_ack(con);
2435                         goto more;
2436                 }
2437                 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2438                         prepare_write_keepalive(con);
2439                         goto more;
2440                 }
2441         }
2442
2443         /* Nothing to do! */
2444         con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2445         dout("try_write nothing else to write.\n");
2446         ret = 0;
2447 out:
2448         dout("try_write done on %p ret %d\n", con, ret);
2449         return ret;
2450 }
2451
2452
2453
2454 /*
2455  * Read what we can from the socket.
2456  */
2457 static int try_read(struct ceph_connection *con)
2458 {
2459         int ret = -1;
2460
2461 more:
2462         dout("try_read start on %p state %lu\n", con, con->state);
2463         if (con->state != CON_STATE_CONNECTING &&
2464             con->state != CON_STATE_NEGOTIATING &&
2465             con->state != CON_STATE_OPEN)
2466                 return 0;
2467
2468         BUG_ON(!con->sock);
2469
2470         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2471              con->in_base_pos);
2472
2473         if (con->state == CON_STATE_CONNECTING) {
2474                 dout("try_read connecting\n");
2475                 ret = read_partial_banner(con);
2476                 if (ret <= 0)
2477                         goto out;
2478                 ret = process_banner(con);
2479                 if (ret < 0)
2480                         goto out;
2481
2482                 con->state = CON_STATE_NEGOTIATING;
2483
2484                 /*
2485                  * Received banner is good, exchange connection info.
2486                  * Do not reset out_kvec, as sending our banner raced
2487                  * with receiving peer banner after connect completed.
2488                  */
2489                 ret = prepare_write_connect(con);
2490                 if (ret < 0)
2491                         goto out;
2492                 prepare_read_connect(con);
2493
2494                 /* Send connection info before awaiting response */
2495                 goto out;
2496         }
2497
2498         if (con->state == CON_STATE_NEGOTIATING) {
2499                 dout("try_read negotiating\n");
2500                 ret = read_partial_connect(con);
2501                 if (ret <= 0)
2502                         goto out;
2503                 ret = process_connect(con);
2504                 if (ret < 0)
2505                         goto out;
2506                 goto more;
2507         }
2508
2509         WARN_ON(con->state != CON_STATE_OPEN);
2510
2511         if (con->in_base_pos < 0) {
2512                 /*
2513                  * skipping + discarding content.
2514                  *
2515                  * FIXME: there must be a better way to do this!
2516                  */
2517                 static char buf[SKIP_BUF_SIZE];
2518                 int skip = min((int) sizeof (buf), -con->in_base_pos);
2519
2520                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2521                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2522                 if (ret <= 0)
2523                         goto out;
2524                 con->in_base_pos += ret;
2525                 if (con->in_base_pos)
2526                         goto more;
2527         }
2528         if (con->in_tag == CEPH_MSGR_TAG_READY) {
2529                 /*
2530                  * what's next?
2531                  */
2532                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2533                 if (ret <= 0)
2534                         goto out;
2535                 dout("try_read got tag %d\n", (int)con->in_tag);
2536                 switch (con->in_tag) {
2537                 case CEPH_MSGR_TAG_MSG:
2538                         prepare_read_message(con);
2539                         break;
2540                 case CEPH_MSGR_TAG_ACK:
2541                         prepare_read_ack(con);
2542                         break;
2543                 case CEPH_MSGR_TAG_CLOSE:
2544                         con_close_socket(con);
2545                         con->state = CON_STATE_CLOSED;
2546                         goto out;
2547                 default:
2548                         goto bad_tag;
2549                 }
2550         }
2551         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2552                 ret = read_partial_message(con);
2553                 if (ret <= 0) {
2554                         switch (ret) {
2555                         case -EBADMSG:
2556                                 con->error_msg = "bad crc";
2557                                 ret = -EIO;
2558                                 break;
2559                         case -EIO:
2560                                 con->error_msg = "io error";
2561                                 break;
2562                         }
2563                         goto out;
2564                 }
2565                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2566                         goto more;
2567                 process_message(con);
2568                 if (con->state == CON_STATE_OPEN)
2569                         prepare_read_tag(con);
2570                 goto more;
2571         }
2572         if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2573             con->in_tag == CEPH_MSGR_TAG_SEQ) {
2574                 /*
2575                  * the final handshake seq exchange is semantically
2576                  * equivalent to an ACK
2577                  */
2578                 ret = read_partial_ack(con);
2579                 if (ret <= 0)
2580                         goto out;
2581                 process_ack(con);
2582                 goto more;
2583         }
2584
2585 out:
2586         dout("try_read done on %p ret %d\n", con, ret);
2587         return ret;
2588
2589 bad_tag:
2590         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2591         con->error_msg = "protocol error, garbage tag";
2592         ret = -1;
2593         goto out;
2594 }
2595
2596
2597 /*
2598  * Atomically queue work on a connection after the specified delay.
2599  * Bump @con reference to avoid races with connection teardown.
2600  * Returns 0 if work was queued, or an error code otherwise.
2601  */
2602 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2603 {
2604         if (!con->ops->get(con)) {
2605                 dout("%s %p ref count 0\n", __func__, con);
2606
2607                 return -ENOENT;
2608         }
2609
2610         if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2611                 dout("%s %p - already queued\n", __func__, con);
2612                 con->ops->put(con);
2613
2614                 return -EBUSY;
2615         }
2616
2617         dout("%s %p %lu\n", __func__, con, delay);
2618
2619         return 0;
2620 }
2621
2622 static void queue_con(struct ceph_connection *con)
2623 {
2624         (void) queue_con_delay(con, 0);
2625 }
2626
2627 static bool con_sock_closed(struct ceph_connection *con)
2628 {
2629         if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2630                 return false;
2631
2632 #define CASE(x)                                                         \
2633         case CON_STATE_ ## x:                                           \
2634                 con->error_msg = "socket closed (con state " #x ")";    \
2635                 break;
2636
2637         switch (con->state) {
2638         CASE(CLOSED);
2639         CASE(PREOPEN);
2640         CASE(CONNECTING);
2641         CASE(NEGOTIATING);
2642         CASE(OPEN);
2643         CASE(STANDBY);
2644         default:
2645                 pr_warning("%s con %p unrecognized state %lu\n",
2646                         __func__, con, con->state);
2647                 con->error_msg = "unrecognized con state";
2648                 BUG();
2649                 break;
2650         }
2651 #undef CASE
2652
2653         return true;
2654 }
2655
2656 static bool con_backoff(struct ceph_connection *con)
2657 {
2658         int ret;
2659
2660         if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2661                 return false;
2662
2663         ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2664         if (ret) {
2665                 dout("%s: con %p FAILED to back off %lu\n", __func__,
2666                         con, con->delay);
2667                 BUG_ON(ret == -ENOENT);
2668                 con_flag_set(con, CON_FLAG_BACKOFF);
2669         }
2670
2671         return true;
2672 }
2673
2674 /* Finish fault handling; con->mutex must *not* be held here */
2675
2676 static void con_fault_finish(struct ceph_connection *con)
2677 {
2678         /*
2679          * in case we faulted due to authentication, invalidate our
2680          * current tickets so that we can get new ones.
2681          */
2682         if (con->auth_retry && con->ops->invalidate_authorizer) {
2683                 dout("calling invalidate_authorizer()\n");
2684                 con->ops->invalidate_authorizer(con);
2685         }
2686
2687         if (con->ops->fault)
2688                 con->ops->fault(con);
2689 }
2690
2691 /*
2692  * Do some work on a connection.  Drop a connection ref when we're done.
2693  */
2694 static void con_work(struct work_struct *work)
2695 {
2696         struct ceph_connection *con = container_of(work, struct ceph_connection,
2697                                                    work.work);
2698         bool fault;
2699
2700         mutex_lock(&con->mutex);
2701         while (true) {
2702                 int ret;
2703
2704                 if ((fault = con_sock_closed(con))) {
2705                         dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2706                         break;
2707                 }
2708                 if (con_backoff(con)) {
2709                         dout("%s: con %p BACKOFF\n", __func__, con);
2710                         break;
2711                 }
2712                 if (con->state == CON_STATE_STANDBY) {
2713                         dout("%s: con %p STANDBY\n", __func__, con);
2714                         break;
2715                 }
2716                 if (con->state == CON_STATE_CLOSED) {
2717                         dout("%s: con %p CLOSED\n", __func__, con);
2718                         BUG_ON(con->sock);
2719                         break;
2720                 }
2721                 if (con->state == CON_STATE_PREOPEN) {
2722                         dout("%s: con %p PREOPEN\n", __func__, con);
2723                         BUG_ON(con->sock);
2724                 }
2725
2726                 ret = try_read(con);
2727                 if (ret < 0) {
2728                         if (ret == -EAGAIN)
2729                                 continue;
2730                         con->error_msg = "socket error on read";
2731                         fault = true;
2732                         break;
2733                 }
2734
2735                 ret = try_write(con);
2736                 if (ret < 0) {
2737                         if (ret == -EAGAIN)
2738                                 continue;
2739                         con->error_msg = "socket error on write";
2740                         fault = true;
2741                 }
2742
2743                 break;  /* If we make it to here, we're done */
2744         }
2745         if (fault)
2746                 con_fault(con);
2747         mutex_unlock(&con->mutex);
2748
2749         if (fault)
2750                 con_fault_finish(con);
2751
2752         con->ops->put(con);
2753 }
2754
2755 /*
2756  * Generic error/fault handler.  A retry mechanism is used with
2757  * exponential backoff
2758  */
2759 static void con_fault(struct ceph_connection *con)
2760 {
2761         pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2762                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2763         dout("fault %p state %lu to peer %s\n",
2764              con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2765
2766         WARN_ON(con->state != CON_STATE_CONNECTING &&
2767                con->state != CON_STATE_NEGOTIATING &&
2768                con->state != CON_STATE_OPEN);
2769
2770         con_close_socket(con);
2771
2772         if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2773                 dout("fault on LOSSYTX channel, marking CLOSED\n");
2774                 con->state = CON_STATE_CLOSED;
2775                 return;
2776         }
2777
2778         if (con->in_msg) {
2779                 BUG_ON(con->in_msg->con != con);
2780                 con->in_msg->con = NULL;
2781                 ceph_msg_put(con->in_msg);
2782                 con->in_msg = NULL;
2783                 con->ops->put(con);
2784         }
2785
2786         /* Requeue anything that hasn't been acked */
2787         list_splice_init(&con->out_sent, &con->out_queue);
2788
2789         /* If there are no messages queued or keepalive pending, place
2790          * the connection in a STANDBY state */
2791         if (list_empty(&con->out_queue) &&
2792             !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2793                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2794                 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2795                 con->state = CON_STATE_STANDBY;
2796         } else {
2797                 /* retry after a delay. */
2798                 con->state = CON_STATE_PREOPEN;
2799                 if (con->delay == 0)
2800                         con->delay = BASE_DELAY_INTERVAL;
2801                 else if (con->delay < MAX_DELAY_INTERVAL)
2802                         con->delay *= 2;
2803                 con_flag_set(con, CON_FLAG_BACKOFF);
2804                 queue_con(con);
2805         }
2806 }
2807
2808
2809
2810 /*
2811  * initialize a new messenger instance
2812  */
2813 void ceph_messenger_init(struct ceph_messenger *msgr,
2814                         struct ceph_entity_addr *myaddr,
2815                         u32 supported_features,
2816                         u32 required_features,
2817                         bool nocrc)
2818 {
2819         msgr->supported_features = supported_features;
2820         msgr->required_features = required_features;
2821
2822         spin_lock_init(&msgr->global_seq_lock);
2823
2824         if (myaddr)
2825                 msgr->inst.addr = *myaddr;
2826
2827         /* select a random nonce */
2828         msgr->inst.addr.type = 0;
2829         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2830         encode_my_addr(msgr);
2831         msgr->nocrc = nocrc;
2832
2833         atomic_set(&msgr->stopping, 0);
2834
2835         dout("%s %p\n", __func__, msgr);
2836 }
2837 EXPORT_SYMBOL(ceph_messenger_init);
2838
2839 static void clear_standby(struct ceph_connection *con)
2840 {
2841         /* come back from STANDBY? */
2842         if (con->state == CON_STATE_STANDBY) {
2843                 dout("clear_standby %p and ++connect_seq\n", con);
2844                 con->state = CON_STATE_PREOPEN;
2845                 con->connect_seq++;
2846                 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2847                 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2848         }
2849 }
2850
2851 /*
2852  * Queue up an outgoing message on the given connection.
2853  */
2854 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2855 {
2856         /* set src+dst */
2857         msg->hdr.src = con->msgr->inst.name;
2858         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2859         msg->needs_out_seq = true;
2860
2861         mutex_lock(&con->mutex);
2862
2863         if (con->state == CON_STATE_CLOSED) {
2864                 dout("con_send %p closed, dropping %p\n", con, msg);
2865                 ceph_msg_put(msg);
2866                 mutex_unlock(&con->mutex);
2867                 return;
2868         }
2869
2870         BUG_ON(msg->con != NULL);
2871         msg->con = con->ops->get(con);
2872         BUG_ON(msg->con == NULL);
2873
2874         BUG_ON(!list_empty(&msg->list_head));
2875         list_add_tail(&msg->list_head, &con->out_queue);
2876         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2877              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2878              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2879              le32_to_cpu(msg->hdr.front_len),
2880              le32_to_cpu(msg->hdr.middle_len),
2881              le32_to_cpu(msg->hdr.data_len));
2882
2883         clear_standby(con);
2884         mutex_unlock(&con->mutex);
2885
2886         /* if there wasn't anything waiting to send before, queue
2887          * new work */
2888         if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2889                 queue_con(con);
2890 }
2891 EXPORT_SYMBOL(ceph_con_send);
2892
2893 /*
2894  * Revoke a message that was previously queued for send
2895  */
2896 void ceph_msg_revoke(struct ceph_msg *msg)
2897 {
2898         struct ceph_connection *con = msg->con;
2899
2900         if (!con)
2901                 return;         /* Message not in our possession */
2902
2903         mutex_lock(&con->mutex);
2904         if (!list_empty(&msg->list_head)) {
2905                 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2906                 list_del_init(&msg->list_head);
2907                 BUG_ON(msg->con == NULL);
2908                 msg->con->ops->put(msg->con);
2909                 msg->con = NULL;
2910                 msg->hdr.seq = 0;
2911
2912                 ceph_msg_put(msg);
2913         }
2914         if (con->out_msg == msg) {
2915                 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2916                 con->out_msg = NULL;
2917                 if (con->out_kvec_is_msg) {
2918                         con->out_skip = con->out_kvec_bytes;
2919                         con->out_kvec_is_msg = false;
2920                 }
2921                 msg->hdr.seq = 0;
2922
2923                 ceph_msg_put(msg);
2924         }
2925         mutex_unlock(&con->mutex);
2926 }
2927
2928 /*
2929  * Revoke a message that we may be reading data into
2930  */
2931 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2932 {
2933         struct ceph_connection *con;
2934
2935         BUG_ON(msg == NULL);
2936         if (!msg->con) {
2937                 dout("%s msg %p null con\n", __func__, msg);
2938
2939                 return;         /* Message not in our possession */
2940         }
2941
2942         con = msg->con;
2943         mutex_lock(&con->mutex);
2944         if (con->in_msg == msg) {
2945                 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2946                 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2947                 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2948
2949                 /* skip rest of message */
2950                 dout("%s %p msg %p revoked\n", __func__, con, msg);
2951                 con->in_base_pos = con->in_base_pos -
2952                                 sizeof(struct ceph_msg_header) -
2953                                 front_len -
2954                                 middle_len -
2955                                 data_len -
2956                                 sizeof(struct ceph_msg_footer);
2957                 ceph_msg_put(con->in_msg);
2958                 con->in_msg = NULL;
2959                 con->in_tag = CEPH_MSGR_TAG_READY;
2960                 con->in_seq++;
2961         } else {
2962                 dout("%s %p in_msg %p msg %p no-op\n",
2963                      __func__, con, con->in_msg, msg);
2964         }
2965         mutex_unlock(&con->mutex);
2966 }
2967
2968 /*
2969  * Queue a keepalive byte to ensure the tcp connection is alive.
2970  */
2971 void ceph_con_keepalive(struct ceph_connection *con)
2972 {
2973         dout("con_keepalive %p\n", con);
2974         mutex_lock(&con->mutex);
2975         clear_standby(con);
2976         mutex_unlock(&con->mutex);
2977         if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
2978             con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2979                 queue_con(con);
2980 }
2981 EXPORT_SYMBOL(ceph_con_keepalive);
2982
2983 static void ceph_msg_data_init(struct ceph_msg_data *data)
2984 {
2985         data->type = CEPH_MSG_DATA_NONE;
2986 }
2987
2988 void ceph_msg_data_set_pages(struct ceph_msg *msg, struct page **pages,
2989                 size_t length, size_t alignment)
2990 {
2991         BUG_ON(!pages);
2992         BUG_ON(!length);
2993         BUG_ON(msg->data.type != CEPH_MSG_DATA_NONE);
2994
2995         msg->data.type = CEPH_MSG_DATA_PAGES;
2996         msg->data.pages = pages;
2997         msg->data.length = length;
2998         msg->data.alignment = alignment & ~PAGE_MASK;
2999 }
3000 EXPORT_SYMBOL(ceph_msg_data_set_pages);
3001
3002 void ceph_msg_data_set_pagelist(struct ceph_msg *msg,
3003                                 struct ceph_pagelist *pagelist)
3004 {
3005         BUG_ON(!pagelist);
3006         BUG_ON(!pagelist->length);
3007         BUG_ON(msg->data.type != CEPH_MSG_DATA_NONE);
3008
3009         msg->data.type = CEPH_MSG_DATA_PAGELIST;
3010         msg->data.pagelist = pagelist;
3011 }
3012 EXPORT_SYMBOL(ceph_msg_data_set_pagelist);
3013
3014 void ceph_msg_data_set_bio(struct ceph_msg *msg, struct bio *bio)
3015 {
3016         BUG_ON(!bio);
3017         BUG_ON(msg->data.type != CEPH_MSG_DATA_NONE);
3018
3019         msg->data.type = CEPH_MSG_DATA_BIO;
3020         msg->data.bio = bio;
3021 }
3022 EXPORT_SYMBOL(ceph_msg_data_set_bio);
3023
3024 /*
3025  * construct a new message with given type, size
3026  * the new msg has a ref count of 1.
3027  */
3028 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3029                               bool can_fail)
3030 {
3031         struct ceph_msg *m;
3032
3033         m = kzalloc(sizeof(*m), flags);
3034         if (m == NULL)
3035                 goto out;
3036
3037         m->hdr.type = cpu_to_le16(type);
3038         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3039         m->hdr.front_len = cpu_to_le32(front_len);
3040
3041         INIT_LIST_HEAD(&m->list_head);
3042         kref_init(&m->kref);
3043
3044         ceph_msg_data_init(&m->data);
3045
3046         /* front */
3047         m->front_max = front_len;
3048         if (front_len) {
3049                 if (front_len > PAGE_CACHE_SIZE) {
3050                         m->front.iov_base = __vmalloc(front_len, flags,
3051                                                       PAGE_KERNEL);
3052                         m->front_is_vmalloc = true;
3053                 } else {
3054                         m->front.iov_base = kmalloc(front_len, flags);
3055                 }
3056                 if (m->front.iov_base == NULL) {
3057                         dout("ceph_msg_new can't allocate %d bytes\n",
3058                              front_len);
3059                         goto out2;
3060                 }
3061         } else {
3062                 m->front.iov_base = NULL;
3063         }
3064         m->front.iov_len = front_len;
3065
3066         dout("ceph_msg_new %p front %d\n", m, front_len);
3067         return m;
3068
3069 out2:
3070         ceph_msg_put(m);
3071 out:
3072         if (!can_fail) {
3073                 pr_err("msg_new can't create type %d front %d\n", type,
3074                        front_len);
3075                 WARN_ON(1);
3076         } else {
3077                 dout("msg_new can't create type %d front %d\n", type,
3078                      front_len);
3079         }
3080         return NULL;
3081 }
3082 EXPORT_SYMBOL(ceph_msg_new);
3083
3084 /*
3085  * Allocate "middle" portion of a message, if it is needed and wasn't
3086  * allocated by alloc_msg.  This allows us to read a small fixed-size
3087  * per-type header in the front and then gracefully fail (i.e.,
3088  * propagate the error to the caller based on info in the front) when
3089  * the middle is too large.
3090  */
3091 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3092 {
3093         int type = le16_to_cpu(msg->hdr.type);
3094         int middle_len = le32_to_cpu(msg->hdr.middle_len);
3095
3096         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3097              ceph_msg_type_name(type), middle_len);
3098         BUG_ON(!middle_len);
3099         BUG_ON(msg->middle);
3100
3101         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3102         if (!msg->middle)
3103                 return -ENOMEM;
3104         return 0;
3105 }
3106
3107 /*
3108  * Allocate a message for receiving an incoming message on a
3109  * connection, and save the result in con->in_msg.  Uses the
3110  * connection's private alloc_msg op if available.
3111  *
3112  * Returns 0 on success, or a negative error code.
3113  *
3114  * On success, if we set *skip = 1:
3115  *  - the next message should be skipped and ignored.
3116  *  - con->in_msg == NULL
3117  * or if we set *skip = 0:
3118  *  - con->in_msg is non-null.
3119  * On error (ENOMEM, EAGAIN, ...),
3120  *  - con->in_msg == NULL
3121  */
3122 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3123 {
3124         struct ceph_msg_header *hdr = &con->in_hdr;
3125         int middle_len = le32_to_cpu(hdr->middle_len);
3126         struct ceph_msg *msg;
3127         int ret = 0;
3128
3129         BUG_ON(con->in_msg != NULL);
3130         BUG_ON(!con->ops->alloc_msg);
3131
3132         mutex_unlock(&con->mutex);
3133         msg = con->ops->alloc_msg(con, hdr, skip);
3134         mutex_lock(&con->mutex);
3135         if (con->state != CON_STATE_OPEN) {
3136                 if (msg)
3137                         ceph_msg_put(msg);
3138                 return -EAGAIN;
3139         }
3140         if (msg) {
3141                 BUG_ON(*skip);
3142                 con->in_msg = msg;
3143                 con->in_msg->con = con->ops->get(con);
3144                 BUG_ON(con->in_msg->con == NULL);
3145         } else {
3146                 /*
3147                  * Null message pointer means either we should skip
3148                  * this message or we couldn't allocate memory.  The
3149                  * former is not an error.
3150                  */
3151                 if (*skip)
3152                         return 0;
3153                 con->error_msg = "error allocating memory for incoming message";
3154
3155                 return -ENOMEM;
3156         }
3157         memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3158
3159         if (middle_len && !con->in_msg->middle) {
3160                 ret = ceph_alloc_middle(con, con->in_msg);
3161                 if (ret < 0) {
3162                         ceph_msg_put(con->in_msg);
3163                         con->in_msg = NULL;
3164                 }
3165         }
3166
3167         return ret;
3168 }
3169
3170
3171 /*
3172  * Free a generically kmalloc'd message.
3173  */
3174 void ceph_msg_kfree(struct ceph_msg *m)
3175 {
3176         dout("msg_kfree %p\n", m);
3177         if (m->front_is_vmalloc)
3178                 vfree(m->front.iov_base);
3179         else
3180                 kfree(m->front.iov_base);
3181         kfree(m);
3182 }
3183
3184 /*
3185  * Drop a msg ref.  Destroy as needed.
3186  */
3187 void ceph_msg_last_put(struct kref *kref)
3188 {
3189         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3190
3191         dout("ceph_msg_put last one on %p\n", m);
3192         WARN_ON(!list_empty(&m->list_head));
3193
3194         /* drop middle, data, if any */
3195         if (m->middle) {
3196                 ceph_buffer_put(m->middle);
3197                 m->middle = NULL;
3198         }
3199         if (ceph_msg_has_data(m)) {
3200                 if (m->data.type == CEPH_MSG_DATA_PAGELIST) {
3201                         ceph_pagelist_release(m->data.pagelist);
3202                         kfree(m->data.pagelist);
3203                 }
3204                 memset(&m->data, 0, sizeof m->data);
3205                 ceph_msg_data_init(&m->data);
3206         }
3207
3208         if (m->pool)
3209                 ceph_msgpool_put(m->pool, m);
3210         else
3211                 ceph_msg_kfree(m);
3212 }
3213 EXPORT_SYMBOL(ceph_msg_last_put);
3214
3215 void ceph_msg_dump(struct ceph_msg *msg)
3216 {
3217         pr_debug("msg_dump %p (front_max %d length %zd)\n", msg,
3218                  msg->front_max, msg->data.length);
3219         print_hex_dump(KERN_DEBUG, "header: ",
3220                        DUMP_PREFIX_OFFSET, 16, 1,
3221                        &msg->hdr, sizeof(msg->hdr), true);
3222         print_hex_dump(KERN_DEBUG, " front: ",
3223                        DUMP_PREFIX_OFFSET, 16, 1,
3224                        msg->front.iov_base, msg->front.iov_len, true);
3225         if (msg->middle)
3226                 print_hex_dump(KERN_DEBUG, "middle: ",
3227                                DUMP_PREFIX_OFFSET, 16, 1,
3228                                msg->middle->vec.iov_base,
3229                                msg->middle->vec.iov_len, true);
3230         print_hex_dump(KERN_DEBUG, "footer: ",
3231                        DUMP_PREFIX_OFFSET, 16, 1,
3232                        &msg->footer, sizeof(msg->footer), true);
3233 }
3234 EXPORT_SYMBOL(ceph_msg_dump);