]> Pileus Git - ~andy/linux/blob - net/ceph/messenger.c
libceph: fix possible CONFIG_BLOCK build problem
[~andy/linux] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef  CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif  /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17
18 #include <linux/ceph/libceph.h>
19 #include <linux/ceph/messenger.h>
20 #include <linux/ceph/decode.h>
21 #include <linux/ceph/pagelist.h>
22 #include <linux/export.h>
23
24 #define list_entry_next(pos, member)                                    \
25         list_entry(pos->member.next, typeof(*pos), member)
26
27 /*
28  * Ceph uses the messenger to exchange ceph_msg messages with other
29  * hosts in the system.  The messenger provides ordered and reliable
30  * delivery.  We tolerate TCP disconnects by reconnecting (with
31  * exponential backoff) in the case of a fault (disconnection, bad
32  * crc, protocol error).  Acks allow sent messages to be discarded by
33  * the sender.
34  */
35
36 /*
37  * We track the state of the socket on a given connection using
38  * values defined below.  The transition to a new socket state is
39  * handled by a function which verifies we aren't coming from an
40  * unexpected state.
41  *
42  *      --------
43  *      | NEW* |  transient initial state
44  *      --------
45  *          | con_sock_state_init()
46  *          v
47  *      ----------
48  *      | CLOSED |  initialized, but no socket (and no
49  *      ----------  TCP connection)
50  *       ^      \
51  *       |       \ con_sock_state_connecting()
52  *       |        ----------------------
53  *       |                              \
54  *       + con_sock_state_closed()       \
55  *       |+---------------------------    \
56  *       | \                          \    \
57  *       |  -----------                \    \
58  *       |  | CLOSING |  socket event;  \    \
59  *       |  -----------  await close     \    \
60  *       |       ^                        \   |
61  *       |       |                         \  |
62  *       |       + con_sock_state_closing() \ |
63  *       |      / \                         | |
64  *       |     /   ---------------          | |
65  *       |    /                   \         v v
66  *       |   /                    --------------
67  *       |  /    -----------------| CONNECTING |  socket created, TCP
68  *       |  |   /                 --------------  connect initiated
69  *       |  |   | con_sock_state_connected()
70  *       |  |   v
71  *      -------------
72  *      | CONNECTED |  TCP connection established
73  *      -------------
74  *
75  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
76  */
77
78 #define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
79 #define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
80 #define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
81 #define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
82 #define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
83
84 /*
85  * connection states
86  */
87 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
88 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
89 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
90 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
91 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
92 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
93
94 /*
95  * ceph_connection flag bits
96  */
97 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
98                                        * messages on errors */
99 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
100 #define CON_FLAG_WRITE_PENDING     2  /* we have data ready to send */
101 #define CON_FLAG_SOCK_CLOSED       3  /* socket state changed to closed */
102 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
103
104 static bool con_flag_valid(unsigned long con_flag)
105 {
106         switch (con_flag) {
107         case CON_FLAG_LOSSYTX:
108         case CON_FLAG_KEEPALIVE_PENDING:
109         case CON_FLAG_WRITE_PENDING:
110         case CON_FLAG_SOCK_CLOSED:
111         case CON_FLAG_BACKOFF:
112                 return true;
113         default:
114                 return false;
115         }
116 }
117
118 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
119 {
120         BUG_ON(!con_flag_valid(con_flag));
121
122         clear_bit(con_flag, &con->flags);
123 }
124
125 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
126 {
127         BUG_ON(!con_flag_valid(con_flag));
128
129         set_bit(con_flag, &con->flags);
130 }
131
132 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
133 {
134         BUG_ON(!con_flag_valid(con_flag));
135
136         return test_bit(con_flag, &con->flags);
137 }
138
139 static bool con_flag_test_and_clear(struct ceph_connection *con,
140                                         unsigned long con_flag)
141 {
142         BUG_ON(!con_flag_valid(con_flag));
143
144         return test_and_clear_bit(con_flag, &con->flags);
145 }
146
147 static bool con_flag_test_and_set(struct ceph_connection *con,
148                                         unsigned long con_flag)
149 {
150         BUG_ON(!con_flag_valid(con_flag));
151
152         return test_and_set_bit(con_flag, &con->flags);
153 }
154
155 /* static tag bytes (protocol control messages) */
156 static char tag_msg = CEPH_MSGR_TAG_MSG;
157 static char tag_ack = CEPH_MSGR_TAG_ACK;
158 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
159
160 #ifdef CONFIG_LOCKDEP
161 static struct lock_class_key socket_class;
162 #endif
163
164 /*
165  * When skipping (ignoring) a block of input we read it into a "skip
166  * buffer," which is this many bytes in size.
167  */
168 #define SKIP_BUF_SIZE   1024
169
170 static void queue_con(struct ceph_connection *con);
171 static void con_work(struct work_struct *);
172 static void con_fault(struct ceph_connection *con);
173
174 /*
175  * Nicely render a sockaddr as a string.  An array of formatted
176  * strings is used, to approximate reentrancy.
177  */
178 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
179 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
180 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
181 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
182
183 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
184 static atomic_t addr_str_seq = ATOMIC_INIT(0);
185
186 static struct page *zero_page;          /* used in certain error cases */
187
188 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
189 {
190         int i;
191         char *s;
192         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
193         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
194
195         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
196         s = addr_str[i];
197
198         switch (ss->ss_family) {
199         case AF_INET:
200                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
201                          ntohs(in4->sin_port));
202                 break;
203
204         case AF_INET6:
205                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
206                          ntohs(in6->sin6_port));
207                 break;
208
209         default:
210                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
211                          ss->ss_family);
212         }
213
214         return s;
215 }
216 EXPORT_SYMBOL(ceph_pr_addr);
217
218 static void encode_my_addr(struct ceph_messenger *msgr)
219 {
220         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
221         ceph_encode_addr(&msgr->my_enc_addr);
222 }
223
224 /*
225  * work queue for all reading and writing to/from the socket.
226  */
227 static struct workqueue_struct *ceph_msgr_wq;
228
229 static void _ceph_msgr_exit(void)
230 {
231         if (ceph_msgr_wq) {
232                 destroy_workqueue(ceph_msgr_wq);
233                 ceph_msgr_wq = NULL;
234         }
235
236         BUG_ON(zero_page == NULL);
237         kunmap(zero_page);
238         page_cache_release(zero_page);
239         zero_page = NULL;
240 }
241
242 int ceph_msgr_init(void)
243 {
244         BUG_ON(zero_page != NULL);
245         zero_page = ZERO_PAGE(0);
246         page_cache_get(zero_page);
247
248         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
249         if (ceph_msgr_wq)
250                 return 0;
251
252         pr_err("msgr_init failed to create workqueue\n");
253         _ceph_msgr_exit();
254
255         return -ENOMEM;
256 }
257 EXPORT_SYMBOL(ceph_msgr_init);
258
259 void ceph_msgr_exit(void)
260 {
261         BUG_ON(ceph_msgr_wq == NULL);
262
263         _ceph_msgr_exit();
264 }
265 EXPORT_SYMBOL(ceph_msgr_exit);
266
267 void ceph_msgr_flush(void)
268 {
269         flush_workqueue(ceph_msgr_wq);
270 }
271 EXPORT_SYMBOL(ceph_msgr_flush);
272
273 /* Connection socket state transition functions */
274
275 static void con_sock_state_init(struct ceph_connection *con)
276 {
277         int old_state;
278
279         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
280         if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
281                 printk("%s: unexpected old state %d\n", __func__, old_state);
282         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
283              CON_SOCK_STATE_CLOSED);
284 }
285
286 static void con_sock_state_connecting(struct ceph_connection *con)
287 {
288         int old_state;
289
290         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
291         if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
292                 printk("%s: unexpected old state %d\n", __func__, old_state);
293         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
294              CON_SOCK_STATE_CONNECTING);
295 }
296
297 static void con_sock_state_connected(struct ceph_connection *con)
298 {
299         int old_state;
300
301         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
302         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
303                 printk("%s: unexpected old state %d\n", __func__, old_state);
304         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
305              CON_SOCK_STATE_CONNECTED);
306 }
307
308 static void con_sock_state_closing(struct ceph_connection *con)
309 {
310         int old_state;
311
312         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
313         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
314                         old_state != CON_SOCK_STATE_CONNECTED &&
315                         old_state != CON_SOCK_STATE_CLOSING))
316                 printk("%s: unexpected old state %d\n", __func__, old_state);
317         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
318              CON_SOCK_STATE_CLOSING);
319 }
320
321 static void con_sock_state_closed(struct ceph_connection *con)
322 {
323         int old_state;
324
325         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
326         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
327                     old_state != CON_SOCK_STATE_CLOSING &&
328                     old_state != CON_SOCK_STATE_CONNECTING &&
329                     old_state != CON_SOCK_STATE_CLOSED))
330                 printk("%s: unexpected old state %d\n", __func__, old_state);
331         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
332              CON_SOCK_STATE_CLOSED);
333 }
334
335 /*
336  * socket callback functions
337  */
338
339 /* data available on socket, or listen socket received a connect */
340 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
341 {
342         struct ceph_connection *con = sk->sk_user_data;
343         if (atomic_read(&con->msgr->stopping)) {
344                 return;
345         }
346
347         if (sk->sk_state != TCP_CLOSE_WAIT) {
348                 dout("%s on %p state = %lu, queueing work\n", __func__,
349                      con, con->state);
350                 queue_con(con);
351         }
352 }
353
354 /* socket has buffer space for writing */
355 static void ceph_sock_write_space(struct sock *sk)
356 {
357         struct ceph_connection *con = sk->sk_user_data;
358
359         /* only queue to workqueue if there is data we want to write,
360          * and there is sufficient space in the socket buffer to accept
361          * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
362          * doesn't get called again until try_write() fills the socket
363          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
364          * and net/core/stream.c:sk_stream_write_space().
365          */
366         if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
367                 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
368                         dout("%s %p queueing write work\n", __func__, con);
369                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
370                         queue_con(con);
371                 }
372         } else {
373                 dout("%s %p nothing to write\n", __func__, con);
374         }
375 }
376
377 /* socket's state has changed */
378 static void ceph_sock_state_change(struct sock *sk)
379 {
380         struct ceph_connection *con = sk->sk_user_data;
381
382         dout("%s %p state = %lu sk_state = %u\n", __func__,
383              con, con->state, sk->sk_state);
384
385         switch (sk->sk_state) {
386         case TCP_CLOSE:
387                 dout("%s TCP_CLOSE\n", __func__);
388         case TCP_CLOSE_WAIT:
389                 dout("%s TCP_CLOSE_WAIT\n", __func__);
390                 con_sock_state_closing(con);
391                 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
392                 queue_con(con);
393                 break;
394         case TCP_ESTABLISHED:
395                 dout("%s TCP_ESTABLISHED\n", __func__);
396                 con_sock_state_connected(con);
397                 queue_con(con);
398                 break;
399         default:        /* Everything else is uninteresting */
400                 break;
401         }
402 }
403
404 /*
405  * set up socket callbacks
406  */
407 static void set_sock_callbacks(struct socket *sock,
408                                struct ceph_connection *con)
409 {
410         struct sock *sk = sock->sk;
411         sk->sk_user_data = con;
412         sk->sk_data_ready = ceph_sock_data_ready;
413         sk->sk_write_space = ceph_sock_write_space;
414         sk->sk_state_change = ceph_sock_state_change;
415 }
416
417
418 /*
419  * socket helpers
420  */
421
422 /*
423  * initiate connection to a remote socket.
424  */
425 static int ceph_tcp_connect(struct ceph_connection *con)
426 {
427         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
428         struct socket *sock;
429         int ret;
430
431         BUG_ON(con->sock);
432         ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
433                                IPPROTO_TCP, &sock);
434         if (ret)
435                 return ret;
436         sock->sk->sk_allocation = GFP_NOFS;
437
438 #ifdef CONFIG_LOCKDEP
439         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
440 #endif
441
442         set_sock_callbacks(sock, con);
443
444         dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
445
446         con_sock_state_connecting(con);
447         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
448                                  O_NONBLOCK);
449         if (ret == -EINPROGRESS) {
450                 dout("connect %s EINPROGRESS sk_state = %u\n",
451                      ceph_pr_addr(&con->peer_addr.in_addr),
452                      sock->sk->sk_state);
453         } else if (ret < 0) {
454                 pr_err("connect %s error %d\n",
455                        ceph_pr_addr(&con->peer_addr.in_addr), ret);
456                 sock_release(sock);
457                 con->error_msg = "connect error";
458
459                 return ret;
460         }
461         con->sock = sock;
462         return 0;
463 }
464
465 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
466 {
467         struct kvec iov = {buf, len};
468         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
469         int r;
470
471         r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
472         if (r == -EAGAIN)
473                 r = 0;
474         return r;
475 }
476
477 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
478                      int page_offset, size_t length)
479 {
480         void *kaddr;
481         int ret;
482
483         BUG_ON(page_offset + length > PAGE_SIZE);
484
485         kaddr = kmap(page);
486         BUG_ON(!kaddr);
487         ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
488         kunmap(page);
489
490         return ret;
491 }
492
493 /*
494  * write something.  @more is true if caller will be sending more data
495  * shortly.
496  */
497 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
498                      size_t kvlen, size_t len, int more)
499 {
500         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
501         int r;
502
503         if (more)
504                 msg.msg_flags |= MSG_MORE;
505         else
506                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
507
508         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
509         if (r == -EAGAIN)
510                 r = 0;
511         return r;
512 }
513
514 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
515                      int offset, size_t size, bool more)
516 {
517         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
518         int ret;
519
520         ret = kernel_sendpage(sock, page, offset, size, flags);
521         if (ret == -EAGAIN)
522                 ret = 0;
523
524         return ret;
525 }
526
527
528 /*
529  * Shutdown/close the socket for the given connection.
530  */
531 static int con_close_socket(struct ceph_connection *con)
532 {
533         int rc = 0;
534
535         dout("con_close_socket on %p sock %p\n", con, con->sock);
536         if (con->sock) {
537                 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
538                 sock_release(con->sock);
539                 con->sock = NULL;
540         }
541
542         /*
543          * Forcibly clear the SOCK_CLOSED flag.  It gets set
544          * independent of the connection mutex, and we could have
545          * received a socket close event before we had the chance to
546          * shut the socket down.
547          */
548         con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
549
550         con_sock_state_closed(con);
551         return rc;
552 }
553
554 /*
555  * Reset a connection.  Discard all incoming and outgoing messages
556  * and clear *_seq state.
557  */
558 static void ceph_msg_remove(struct ceph_msg *msg)
559 {
560         list_del_init(&msg->list_head);
561         BUG_ON(msg->con == NULL);
562         msg->con->ops->put(msg->con);
563         msg->con = NULL;
564
565         ceph_msg_put(msg);
566 }
567 static void ceph_msg_remove_list(struct list_head *head)
568 {
569         while (!list_empty(head)) {
570                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
571                                                         list_head);
572                 ceph_msg_remove(msg);
573         }
574 }
575
576 static void reset_connection(struct ceph_connection *con)
577 {
578         /* reset connection, out_queue, msg_ and connect_seq */
579         /* discard existing out_queue and msg_seq */
580         dout("reset_connection %p\n", con);
581         ceph_msg_remove_list(&con->out_queue);
582         ceph_msg_remove_list(&con->out_sent);
583
584         if (con->in_msg) {
585                 BUG_ON(con->in_msg->con != con);
586                 con->in_msg->con = NULL;
587                 ceph_msg_put(con->in_msg);
588                 con->in_msg = NULL;
589                 con->ops->put(con);
590         }
591
592         con->connect_seq = 0;
593         con->out_seq = 0;
594         if (con->out_msg) {
595                 ceph_msg_put(con->out_msg);
596                 con->out_msg = NULL;
597         }
598         con->in_seq = 0;
599         con->in_seq_acked = 0;
600 }
601
602 /*
603  * mark a peer down.  drop any open connections.
604  */
605 void ceph_con_close(struct ceph_connection *con)
606 {
607         mutex_lock(&con->mutex);
608         dout("con_close %p peer %s\n", con,
609              ceph_pr_addr(&con->peer_addr.in_addr));
610         con->state = CON_STATE_CLOSED;
611
612         con_flag_clear(con, CON_FLAG_LOSSYTX);  /* so we retry next connect */
613         con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
614         con_flag_clear(con, CON_FLAG_WRITE_PENDING);
615         con_flag_clear(con, CON_FLAG_BACKOFF);
616
617         reset_connection(con);
618         con->peer_global_seq = 0;
619         cancel_delayed_work(&con->work);
620         con_close_socket(con);
621         mutex_unlock(&con->mutex);
622 }
623 EXPORT_SYMBOL(ceph_con_close);
624
625 /*
626  * Reopen a closed connection, with a new peer address.
627  */
628 void ceph_con_open(struct ceph_connection *con,
629                    __u8 entity_type, __u64 entity_num,
630                    struct ceph_entity_addr *addr)
631 {
632         mutex_lock(&con->mutex);
633         dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
634
635         WARN_ON(con->state != CON_STATE_CLOSED);
636         con->state = CON_STATE_PREOPEN;
637
638         con->peer_name.type = (__u8) entity_type;
639         con->peer_name.num = cpu_to_le64(entity_num);
640
641         memcpy(&con->peer_addr, addr, sizeof(*addr));
642         con->delay = 0;      /* reset backoff memory */
643         mutex_unlock(&con->mutex);
644         queue_con(con);
645 }
646 EXPORT_SYMBOL(ceph_con_open);
647
648 /*
649  * return true if this connection ever successfully opened
650  */
651 bool ceph_con_opened(struct ceph_connection *con)
652 {
653         return con->connect_seq > 0;
654 }
655
656 /*
657  * initialize a new connection.
658  */
659 void ceph_con_init(struct ceph_connection *con, void *private,
660         const struct ceph_connection_operations *ops,
661         struct ceph_messenger *msgr)
662 {
663         dout("con_init %p\n", con);
664         memset(con, 0, sizeof(*con));
665         con->private = private;
666         con->ops = ops;
667         con->msgr = msgr;
668
669         con_sock_state_init(con);
670
671         mutex_init(&con->mutex);
672         INIT_LIST_HEAD(&con->out_queue);
673         INIT_LIST_HEAD(&con->out_sent);
674         INIT_DELAYED_WORK(&con->work, con_work);
675
676         con->state = CON_STATE_CLOSED;
677 }
678 EXPORT_SYMBOL(ceph_con_init);
679
680
681 /*
682  * We maintain a global counter to order connection attempts.  Get
683  * a unique seq greater than @gt.
684  */
685 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
686 {
687         u32 ret;
688
689         spin_lock(&msgr->global_seq_lock);
690         if (msgr->global_seq < gt)
691                 msgr->global_seq = gt;
692         ret = ++msgr->global_seq;
693         spin_unlock(&msgr->global_seq_lock);
694         return ret;
695 }
696
697 static void con_out_kvec_reset(struct ceph_connection *con)
698 {
699         con->out_kvec_left = 0;
700         con->out_kvec_bytes = 0;
701         con->out_kvec_cur = &con->out_kvec[0];
702 }
703
704 static void con_out_kvec_add(struct ceph_connection *con,
705                                 size_t size, void *data)
706 {
707         int index;
708
709         index = con->out_kvec_left;
710         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
711
712         con->out_kvec[index].iov_len = size;
713         con->out_kvec[index].iov_base = data;
714         con->out_kvec_left++;
715         con->out_kvec_bytes += size;
716 }
717
718 #ifdef CONFIG_BLOCK
719
720 /*
721  * For a bio data item, a piece is whatever remains of the next
722  * entry in the current bio iovec, or the first entry in the next
723  * bio in the list.
724  */
725 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data *data,
726                                         size_t length)
727 {
728         struct ceph_msg_data_cursor *cursor = &data->cursor;
729         struct bio *bio;
730
731         BUG_ON(data->type != CEPH_MSG_DATA_BIO);
732
733         bio = data->bio;
734         BUG_ON(!bio);
735         BUG_ON(!bio->bi_vcnt);
736
737         cursor->resid = length;
738         cursor->bio = bio;
739         cursor->vector_index = 0;
740         cursor->vector_offset = 0;
741         cursor->last_piece = length <= bio->bi_io_vec[0].bv_len;
742 }
743
744 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data *data,
745                                                 size_t *page_offset,
746                                                 size_t *length)
747 {
748         struct ceph_msg_data_cursor *cursor = &data->cursor;
749         struct bio *bio;
750         struct bio_vec *bio_vec;
751         unsigned int index;
752
753         BUG_ON(data->type != CEPH_MSG_DATA_BIO);
754
755         bio = cursor->bio;
756         BUG_ON(!bio);
757
758         index = cursor->vector_index;
759         BUG_ON(index >= (unsigned int) bio->bi_vcnt);
760
761         bio_vec = &bio->bi_io_vec[index];
762         BUG_ON(cursor->vector_offset >= bio_vec->bv_len);
763         *page_offset = (size_t) (bio_vec->bv_offset + cursor->vector_offset);
764         BUG_ON(*page_offset >= PAGE_SIZE);
765         if (cursor->last_piece) /* pagelist offset is always 0 */
766                 *length = cursor->resid;
767         else
768                 *length = (size_t) (bio_vec->bv_len - cursor->vector_offset);
769         BUG_ON(*length > cursor->resid);
770         BUG_ON(*page_offset + *length > PAGE_SIZE);
771
772         return bio_vec->bv_page;
773 }
774
775 static bool ceph_msg_data_bio_advance(struct ceph_msg_data *data, size_t bytes)
776 {
777         struct ceph_msg_data_cursor *cursor = &data->cursor;
778         struct bio *bio;
779         struct bio_vec *bio_vec;
780         unsigned int index;
781
782         BUG_ON(data->type != CEPH_MSG_DATA_BIO);
783
784         bio = cursor->bio;
785         BUG_ON(!bio);
786
787         index = cursor->vector_index;
788         BUG_ON(index >= (unsigned int) bio->bi_vcnt);
789         bio_vec = &bio->bi_io_vec[index];
790
791         /* Advance the cursor offset */
792
793         BUG_ON(cursor->resid < bytes);
794         cursor->resid -= bytes;
795         cursor->vector_offset += bytes;
796         if (cursor->vector_offset < bio_vec->bv_len)
797                 return false;   /* more bytes to process in this segment */
798         BUG_ON(cursor->vector_offset != bio_vec->bv_len);
799
800         /* Move on to the next segment, and possibly the next bio */
801
802         if (++index == (unsigned int) bio->bi_vcnt) {
803                 bio = bio->bi_next;
804                 index = 0;
805         }
806         cursor->bio = bio;
807         cursor->vector_index = index;
808         cursor->vector_offset = 0;
809
810         if (!cursor->last_piece) {
811                 BUG_ON(!cursor->resid);
812                 BUG_ON(!bio);
813                 /* A short read is OK, so use <= rather than == */
814                 if (cursor->resid <= bio->bi_io_vec[index].bv_len)
815                         cursor->last_piece = true;
816         }
817
818         return true;
819 }
820 #endif /* CONFIG_BLOCK */
821
822 /*
823  * For a page array, a piece comes from the first page in the array
824  * that has not already been fully consumed.
825  */
826 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data *data,
827                                         size_t length)
828 {
829         struct ceph_msg_data_cursor *cursor = &data->cursor;
830         int page_count;
831
832         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
833
834         BUG_ON(!data->pages);
835         BUG_ON(!data->length);
836         BUG_ON(length > data->length);  /* short reads are OK */
837
838         cursor->resid = length;
839         page_count = calc_pages_for(data->alignment, (u64)data->length);
840         cursor->page_offset = data->alignment & ~PAGE_MASK;
841         cursor->page_index = 0;
842         BUG_ON(page_count > (int)USHRT_MAX);
843         cursor->page_count = (unsigned short)page_count;
844         BUG_ON(length > SIZE_MAX - cursor->page_offset);
845         cursor->last_piece = (size_t)cursor->page_offset + length <= PAGE_SIZE;
846 }
847
848 static struct page *ceph_msg_data_pages_next(struct ceph_msg_data *data,
849                                         size_t *page_offset,
850                                         size_t *length)
851 {
852         struct ceph_msg_data_cursor *cursor = &data->cursor;
853
854         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
855
856         BUG_ON(cursor->page_index >= cursor->page_count);
857         BUG_ON(cursor->page_offset >= PAGE_SIZE);
858
859         *page_offset = cursor->page_offset;
860         if (cursor->last_piece)
861                 *length = cursor->resid;
862         else
863                 *length = PAGE_SIZE - *page_offset;
864
865         return data->pages[cursor->page_index];
866 }
867
868 static bool ceph_msg_data_pages_advance(struct ceph_msg_data *data,
869                                                 size_t bytes)
870 {
871         struct ceph_msg_data_cursor *cursor = &data->cursor;
872
873         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
874
875         BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
876
877         /* Advance the cursor page offset */
878
879         cursor->resid -= bytes;
880         cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
881         if (!bytes || cursor->page_offset)
882                 return false;   /* more bytes to process in the current page */
883
884         /* Move on to the next page; offset is already at 0 */
885
886         BUG_ON(cursor->page_index >= cursor->page_count);
887         cursor->page_index++;
888         cursor->last_piece = cursor->resid <= PAGE_SIZE;
889
890         return true;
891 }
892
893 /*
894  * For a pagelist, a piece is whatever remains to be consumed in the
895  * first page in the list, or the front of the next page.
896  */
897 static void ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data *data,
898                                         size_t length)
899 {
900         struct ceph_msg_data_cursor *cursor = &data->cursor;
901         struct ceph_pagelist *pagelist;
902         struct page *page;
903
904         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
905
906         pagelist = data->pagelist;
907         BUG_ON(!pagelist);
908         BUG_ON(length > pagelist->length);      /* short reads are OK */
909
910         if (!length)
911                 return;         /* pagelist can be assigned but empty */
912
913         BUG_ON(list_empty(&pagelist->head));
914         page = list_first_entry(&pagelist->head, struct page, lru);
915
916         cursor->resid = length;
917         cursor->page = page;
918         cursor->offset = 0;
919         cursor->last_piece = length <= PAGE_SIZE;
920 }
921
922 static struct page *ceph_msg_data_pagelist_next(struct ceph_msg_data *data,
923                                                 size_t *page_offset,
924                                                 size_t *length)
925 {
926         struct ceph_msg_data_cursor *cursor = &data->cursor;
927         struct ceph_pagelist *pagelist;
928
929         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
930
931         pagelist = data->pagelist;
932         BUG_ON(!pagelist);
933
934         BUG_ON(!cursor->page);
935         BUG_ON(cursor->offset + cursor->resid != pagelist->length);
936
937         /* offset of first page in pagelist is always 0 */
938         *page_offset = cursor->offset & ~PAGE_MASK;
939         if (cursor->last_piece)
940                 *length = cursor->resid;
941         else
942                 *length = PAGE_SIZE - *page_offset;
943
944         return data->cursor.page;
945 }
946
947 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data *data,
948                                                 size_t bytes)
949 {
950         struct ceph_msg_data_cursor *cursor = &data->cursor;
951         struct ceph_pagelist *pagelist;
952
953         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
954
955         pagelist = data->pagelist;
956         BUG_ON(!pagelist);
957
958         BUG_ON(cursor->offset + cursor->resid != pagelist->length);
959         BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
960
961         /* Advance the cursor offset */
962
963         cursor->resid -= bytes;
964         cursor->offset += bytes;
965         /* offset of first page in pagelist is always 0 */
966         if (!bytes || cursor->offset & ~PAGE_MASK)
967                 return false;   /* more bytes to process in the current page */
968
969         /* Move on to the next page */
970
971         BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
972         cursor->page = list_entry_next(cursor->page, lru);
973         cursor->last_piece = cursor->resid <= PAGE_SIZE;
974
975         return true;
976 }
977
978 /*
979  * Message data is handled (sent or received) in pieces, where each
980  * piece resides on a single page.  The network layer might not
981  * consume an entire piece at once.  A data item's cursor keeps
982  * track of which piece is next to process and how much remains to
983  * be processed in that piece.  It also tracks whether the current
984  * piece is the last one in the data item.
985  */
986 static void ceph_msg_data_cursor_init(struct ceph_msg_data *data,
987                                         size_t length)
988 {
989         switch (data->type) {
990         case CEPH_MSG_DATA_PAGELIST:
991                 ceph_msg_data_pagelist_cursor_init(data, length);
992                 break;
993         case CEPH_MSG_DATA_PAGES:
994                 ceph_msg_data_pages_cursor_init(data, length);
995                 break;
996 #ifdef CONFIG_BLOCK
997         case CEPH_MSG_DATA_BIO:
998                 ceph_msg_data_bio_cursor_init(data, length);
999                 break;
1000 #endif /* CONFIG_BLOCK */
1001         case CEPH_MSG_DATA_NONE:
1002         default:
1003                 /* BUG(); */
1004                 break;
1005         }
1006         data->cursor.need_crc = true;
1007 }
1008
1009 /*
1010  * Return the page containing the next piece to process for a given
1011  * data item, and supply the page offset and length of that piece.
1012  * Indicate whether this is the last piece in this data item.
1013  */
1014 static struct page *ceph_msg_data_next(struct ceph_msg_data *data,
1015                                         size_t *page_offset,
1016                                         size_t *length,
1017                                         bool *last_piece)
1018 {
1019         struct page *page;
1020
1021         switch (data->type) {
1022         case CEPH_MSG_DATA_PAGELIST:
1023                 page = ceph_msg_data_pagelist_next(data, page_offset, length);
1024                 break;
1025         case CEPH_MSG_DATA_PAGES:
1026                 page = ceph_msg_data_pages_next(data, page_offset, length);
1027                 break;
1028 #ifdef CONFIG_BLOCK
1029         case CEPH_MSG_DATA_BIO:
1030                 page = ceph_msg_data_bio_next(data, page_offset, length);
1031                 break;
1032 #endif /* CONFIG_BLOCK */
1033         case CEPH_MSG_DATA_NONE:
1034         default:
1035                 page = NULL;
1036                 break;
1037         }
1038         BUG_ON(!page);
1039         BUG_ON(*page_offset + *length > PAGE_SIZE);
1040         BUG_ON(!*length);
1041         if (last_piece)
1042                 *last_piece = data->cursor.last_piece;
1043
1044         return page;
1045 }
1046
1047 /*
1048  * Returns true if the result moves the cursor on to the next piece
1049  * of the data item.
1050  */
1051 static bool ceph_msg_data_advance(struct ceph_msg_data *data, size_t bytes)
1052 {
1053         struct ceph_msg_data_cursor *cursor = &data->cursor;
1054         bool new_piece;
1055
1056         BUG_ON(bytes > cursor->resid);
1057         switch (data->type) {
1058         case CEPH_MSG_DATA_PAGELIST:
1059                 new_piece = ceph_msg_data_pagelist_advance(data, bytes);
1060                 break;
1061         case CEPH_MSG_DATA_PAGES:
1062                 new_piece = ceph_msg_data_pages_advance(data, bytes);
1063                 break;
1064 #ifdef CONFIG_BLOCK
1065         case CEPH_MSG_DATA_BIO:
1066                 new_piece = ceph_msg_data_bio_advance(data, bytes);
1067                 break;
1068 #endif /* CONFIG_BLOCK */
1069         case CEPH_MSG_DATA_NONE:
1070         default:
1071                 BUG();
1072                 break;
1073         }
1074         data->cursor.need_crc = new_piece;
1075
1076         return new_piece;
1077 }
1078
1079 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1080 {
1081         BUG_ON(!msg);
1082         BUG_ON(!data_len);
1083
1084         /* Initialize data cursor */
1085
1086         ceph_msg_data_cursor_init(msg->data, (size_t)data_len);
1087 }
1088
1089 /*
1090  * Prepare footer for currently outgoing message, and finish things
1091  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1092  */
1093 static void prepare_write_message_footer(struct ceph_connection *con)
1094 {
1095         struct ceph_msg *m = con->out_msg;
1096         int v = con->out_kvec_left;
1097
1098         m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1099
1100         dout("prepare_write_message_footer %p\n", con);
1101         con->out_kvec_is_msg = true;
1102         con->out_kvec[v].iov_base = &m->footer;
1103         con->out_kvec[v].iov_len = sizeof(m->footer);
1104         con->out_kvec_bytes += sizeof(m->footer);
1105         con->out_kvec_left++;
1106         con->out_more = m->more_to_follow;
1107         con->out_msg_done = true;
1108 }
1109
1110 /*
1111  * Prepare headers for the next outgoing message.
1112  */
1113 static void prepare_write_message(struct ceph_connection *con)
1114 {
1115         struct ceph_msg *m;
1116         u32 crc;
1117
1118         con_out_kvec_reset(con);
1119         con->out_kvec_is_msg = true;
1120         con->out_msg_done = false;
1121
1122         /* Sneak an ack in there first?  If we can get it into the same
1123          * TCP packet that's a good thing. */
1124         if (con->in_seq > con->in_seq_acked) {
1125                 con->in_seq_acked = con->in_seq;
1126                 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1127                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1128                 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1129                         &con->out_temp_ack);
1130         }
1131
1132         BUG_ON(list_empty(&con->out_queue));
1133         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1134         con->out_msg = m;
1135         BUG_ON(m->con != con);
1136
1137         /* put message on sent list */
1138         ceph_msg_get(m);
1139         list_move_tail(&m->list_head, &con->out_sent);
1140
1141         /*
1142          * only assign outgoing seq # if we haven't sent this message
1143          * yet.  if it is requeued, resend with it's original seq.
1144          */
1145         if (m->needs_out_seq) {
1146                 m->hdr.seq = cpu_to_le64(++con->out_seq);
1147                 m->needs_out_seq = false;
1148         }
1149         WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1150
1151         dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1152              m, con->out_seq, le16_to_cpu(m->hdr.type),
1153              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1154              m->data_length);
1155         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1156
1157         /* tag + hdr + front + middle */
1158         con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1159         con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1160         con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1161
1162         if (m->middle)
1163                 con_out_kvec_add(con, m->middle->vec.iov_len,
1164                         m->middle->vec.iov_base);
1165
1166         /* fill in crc (except data pages), footer */
1167         crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1168         con->out_msg->hdr.crc = cpu_to_le32(crc);
1169         con->out_msg->footer.flags = 0;
1170
1171         crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1172         con->out_msg->footer.front_crc = cpu_to_le32(crc);
1173         if (m->middle) {
1174                 crc = crc32c(0, m->middle->vec.iov_base,
1175                                 m->middle->vec.iov_len);
1176                 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1177         } else
1178                 con->out_msg->footer.middle_crc = 0;
1179         dout("%s front_crc %u middle_crc %u\n", __func__,
1180              le32_to_cpu(con->out_msg->footer.front_crc),
1181              le32_to_cpu(con->out_msg->footer.middle_crc));
1182
1183         /* is there a data payload? */
1184         con->out_msg->footer.data_crc = 0;
1185         if (m->data_length) {
1186                 prepare_message_data(con->out_msg, m->data_length);
1187                 con->out_more = 1;  /* data + footer will follow */
1188         } else {
1189                 /* no, queue up footer too and be done */
1190                 prepare_write_message_footer(con);
1191         }
1192
1193         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1194 }
1195
1196 /*
1197  * Prepare an ack.
1198  */
1199 static void prepare_write_ack(struct ceph_connection *con)
1200 {
1201         dout("prepare_write_ack %p %llu -> %llu\n", con,
1202              con->in_seq_acked, con->in_seq);
1203         con->in_seq_acked = con->in_seq;
1204
1205         con_out_kvec_reset(con);
1206
1207         con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1208
1209         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1210         con_out_kvec_add(con, sizeof (con->out_temp_ack),
1211                                 &con->out_temp_ack);
1212
1213         con->out_more = 1;  /* more will follow.. eventually.. */
1214         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1215 }
1216
1217 /*
1218  * Prepare to share the seq during handshake
1219  */
1220 static void prepare_write_seq(struct ceph_connection *con)
1221 {
1222         dout("prepare_write_seq %p %llu -> %llu\n", con,
1223              con->in_seq_acked, con->in_seq);
1224         con->in_seq_acked = con->in_seq;
1225
1226         con_out_kvec_reset(con);
1227
1228         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1229         con_out_kvec_add(con, sizeof (con->out_temp_ack),
1230                          &con->out_temp_ack);
1231
1232         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1233 }
1234
1235 /*
1236  * Prepare to write keepalive byte.
1237  */
1238 static void prepare_write_keepalive(struct ceph_connection *con)
1239 {
1240         dout("prepare_write_keepalive %p\n", con);
1241         con_out_kvec_reset(con);
1242         con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1243         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1244 }
1245
1246 /*
1247  * Connection negotiation.
1248  */
1249
1250 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1251                                                 int *auth_proto)
1252 {
1253         struct ceph_auth_handshake *auth;
1254
1255         if (!con->ops->get_authorizer) {
1256                 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1257                 con->out_connect.authorizer_len = 0;
1258                 return NULL;
1259         }
1260
1261         /* Can't hold the mutex while getting authorizer */
1262         mutex_unlock(&con->mutex);
1263         auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1264         mutex_lock(&con->mutex);
1265
1266         if (IS_ERR(auth))
1267                 return auth;
1268         if (con->state != CON_STATE_NEGOTIATING)
1269                 return ERR_PTR(-EAGAIN);
1270
1271         con->auth_reply_buf = auth->authorizer_reply_buf;
1272         con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1273         return auth;
1274 }
1275
1276 /*
1277  * We connected to a peer and are saying hello.
1278  */
1279 static void prepare_write_banner(struct ceph_connection *con)
1280 {
1281         con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1282         con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1283                                         &con->msgr->my_enc_addr);
1284
1285         con->out_more = 0;
1286         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1287 }
1288
1289 static int prepare_write_connect(struct ceph_connection *con)
1290 {
1291         unsigned int global_seq = get_global_seq(con->msgr, 0);
1292         int proto;
1293         int auth_proto;
1294         struct ceph_auth_handshake *auth;
1295
1296         switch (con->peer_name.type) {
1297         case CEPH_ENTITY_TYPE_MON:
1298                 proto = CEPH_MONC_PROTOCOL;
1299                 break;
1300         case CEPH_ENTITY_TYPE_OSD:
1301                 proto = CEPH_OSDC_PROTOCOL;
1302                 break;
1303         case CEPH_ENTITY_TYPE_MDS:
1304                 proto = CEPH_MDSC_PROTOCOL;
1305                 break;
1306         default:
1307                 BUG();
1308         }
1309
1310         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1311              con->connect_seq, global_seq, proto);
1312
1313         con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1314         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1315         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1316         con->out_connect.global_seq = cpu_to_le32(global_seq);
1317         con->out_connect.protocol_version = cpu_to_le32(proto);
1318         con->out_connect.flags = 0;
1319
1320         auth_proto = CEPH_AUTH_UNKNOWN;
1321         auth = get_connect_authorizer(con, &auth_proto);
1322         if (IS_ERR(auth))
1323                 return PTR_ERR(auth);
1324
1325         con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1326         con->out_connect.authorizer_len = auth ?
1327                 cpu_to_le32(auth->authorizer_buf_len) : 0;
1328
1329         con_out_kvec_add(con, sizeof (con->out_connect),
1330                                         &con->out_connect);
1331         if (auth && auth->authorizer_buf_len)
1332                 con_out_kvec_add(con, auth->authorizer_buf_len,
1333                                         auth->authorizer_buf);
1334
1335         con->out_more = 0;
1336         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1337
1338         return 0;
1339 }
1340
1341 /*
1342  * write as much of pending kvecs to the socket as we can.
1343  *  1 -> done
1344  *  0 -> socket full, but more to do
1345  * <0 -> error
1346  */
1347 static int write_partial_kvec(struct ceph_connection *con)
1348 {
1349         int ret;
1350
1351         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1352         while (con->out_kvec_bytes > 0) {
1353                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1354                                        con->out_kvec_left, con->out_kvec_bytes,
1355                                        con->out_more);
1356                 if (ret <= 0)
1357                         goto out;
1358                 con->out_kvec_bytes -= ret;
1359                 if (con->out_kvec_bytes == 0)
1360                         break;            /* done */
1361
1362                 /* account for full iov entries consumed */
1363                 while (ret >= con->out_kvec_cur->iov_len) {
1364                         BUG_ON(!con->out_kvec_left);
1365                         ret -= con->out_kvec_cur->iov_len;
1366                         con->out_kvec_cur++;
1367                         con->out_kvec_left--;
1368                 }
1369                 /* and for a partially-consumed entry */
1370                 if (ret) {
1371                         con->out_kvec_cur->iov_len -= ret;
1372                         con->out_kvec_cur->iov_base += ret;
1373                 }
1374         }
1375         con->out_kvec_left = 0;
1376         con->out_kvec_is_msg = false;
1377         ret = 1;
1378 out:
1379         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1380              con->out_kvec_bytes, con->out_kvec_left, ret);
1381         return ret;  /* done! */
1382 }
1383
1384 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1385                                 unsigned int page_offset,
1386                                 unsigned int length)
1387 {
1388         char *kaddr;
1389
1390         kaddr = kmap(page);
1391         BUG_ON(kaddr == NULL);
1392         crc = crc32c(crc, kaddr + page_offset, length);
1393         kunmap(page);
1394
1395         return crc;
1396 }
1397 /*
1398  * Write as much message data payload as we can.  If we finish, queue
1399  * up the footer.
1400  *  1 -> done, footer is now queued in out_kvec[].
1401  *  0 -> socket full, but more to do
1402  * <0 -> error
1403  */
1404 static int write_partial_message_data(struct ceph_connection *con)
1405 {
1406         struct ceph_msg *msg = con->out_msg;
1407         struct ceph_msg_data_cursor *cursor = &msg->data->cursor;
1408         bool do_datacrc = !con->msgr->nocrc;
1409         u32 crc;
1410
1411         dout("%s %p msg %p\n", __func__, con, msg);
1412
1413         if (WARN_ON(!msg->data))
1414                 return -EINVAL;
1415
1416         /*
1417          * Iterate through each page that contains data to be
1418          * written, and send as much as possible for each.
1419          *
1420          * If we are calculating the data crc (the default), we will
1421          * need to map the page.  If we have no pages, they have
1422          * been revoked, so use the zero page.
1423          */
1424         crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1425         while (cursor->resid) {
1426                 struct page *page;
1427                 size_t page_offset;
1428                 size_t length;
1429                 bool last_piece;
1430                 bool need_crc;
1431                 int ret;
1432
1433                 page = ceph_msg_data_next(msg->data, &page_offset, &length,
1434                                                         &last_piece);
1435                 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1436                                       length, last_piece);
1437                 if (ret <= 0) {
1438                         if (do_datacrc)
1439                                 msg->footer.data_crc = cpu_to_le32(crc);
1440
1441                         return ret;
1442                 }
1443                 if (do_datacrc && cursor->need_crc)
1444                         crc = ceph_crc32c_page(crc, page, page_offset, length);
1445                 need_crc = ceph_msg_data_advance(msg->data, (size_t)ret);
1446         }
1447
1448         dout("%s %p msg %p done\n", __func__, con, msg);
1449
1450         /* prepare and queue up footer, too */
1451         if (do_datacrc)
1452                 msg->footer.data_crc = cpu_to_le32(crc);
1453         else
1454                 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1455         con_out_kvec_reset(con);
1456         prepare_write_message_footer(con);
1457
1458         return 1;       /* must return > 0 to indicate success */
1459 }
1460
1461 /*
1462  * write some zeros
1463  */
1464 static int write_partial_skip(struct ceph_connection *con)
1465 {
1466         int ret;
1467
1468         while (con->out_skip > 0) {
1469                 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1470
1471                 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1472                 if (ret <= 0)
1473                         goto out;
1474                 con->out_skip -= ret;
1475         }
1476         ret = 1;
1477 out:
1478         return ret;
1479 }
1480
1481 /*
1482  * Prepare to read connection handshake, or an ack.
1483  */
1484 static void prepare_read_banner(struct ceph_connection *con)
1485 {
1486         dout("prepare_read_banner %p\n", con);
1487         con->in_base_pos = 0;
1488 }
1489
1490 static void prepare_read_connect(struct ceph_connection *con)
1491 {
1492         dout("prepare_read_connect %p\n", con);
1493         con->in_base_pos = 0;
1494 }
1495
1496 static void prepare_read_ack(struct ceph_connection *con)
1497 {
1498         dout("prepare_read_ack %p\n", con);
1499         con->in_base_pos = 0;
1500 }
1501
1502 static void prepare_read_seq(struct ceph_connection *con)
1503 {
1504         dout("prepare_read_seq %p\n", con);
1505         con->in_base_pos = 0;
1506         con->in_tag = CEPH_MSGR_TAG_SEQ;
1507 }
1508
1509 static void prepare_read_tag(struct ceph_connection *con)
1510 {
1511         dout("prepare_read_tag %p\n", con);
1512         con->in_base_pos = 0;
1513         con->in_tag = CEPH_MSGR_TAG_READY;
1514 }
1515
1516 /*
1517  * Prepare to read a message.
1518  */
1519 static int prepare_read_message(struct ceph_connection *con)
1520 {
1521         dout("prepare_read_message %p\n", con);
1522         BUG_ON(con->in_msg != NULL);
1523         con->in_base_pos = 0;
1524         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1525         return 0;
1526 }
1527
1528
1529 static int read_partial(struct ceph_connection *con,
1530                         int end, int size, void *object)
1531 {
1532         while (con->in_base_pos < end) {
1533                 int left = end - con->in_base_pos;
1534                 int have = size - left;
1535                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1536                 if (ret <= 0)
1537                         return ret;
1538                 con->in_base_pos += ret;
1539         }
1540         return 1;
1541 }
1542
1543
1544 /*
1545  * Read all or part of the connect-side handshake on a new connection
1546  */
1547 static int read_partial_banner(struct ceph_connection *con)
1548 {
1549         int size;
1550         int end;
1551         int ret;
1552
1553         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1554
1555         /* peer's banner */
1556         size = strlen(CEPH_BANNER);
1557         end = size;
1558         ret = read_partial(con, end, size, con->in_banner);
1559         if (ret <= 0)
1560                 goto out;
1561
1562         size = sizeof (con->actual_peer_addr);
1563         end += size;
1564         ret = read_partial(con, end, size, &con->actual_peer_addr);
1565         if (ret <= 0)
1566                 goto out;
1567
1568         size = sizeof (con->peer_addr_for_me);
1569         end += size;
1570         ret = read_partial(con, end, size, &con->peer_addr_for_me);
1571         if (ret <= 0)
1572                 goto out;
1573
1574 out:
1575         return ret;
1576 }
1577
1578 static int read_partial_connect(struct ceph_connection *con)
1579 {
1580         int size;
1581         int end;
1582         int ret;
1583
1584         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1585
1586         size = sizeof (con->in_reply);
1587         end = size;
1588         ret = read_partial(con, end, size, &con->in_reply);
1589         if (ret <= 0)
1590                 goto out;
1591
1592         size = le32_to_cpu(con->in_reply.authorizer_len);
1593         end += size;
1594         ret = read_partial(con, end, size, con->auth_reply_buf);
1595         if (ret <= 0)
1596                 goto out;
1597
1598         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1599              con, (int)con->in_reply.tag,
1600              le32_to_cpu(con->in_reply.connect_seq),
1601              le32_to_cpu(con->in_reply.global_seq));
1602 out:
1603         return ret;
1604
1605 }
1606
1607 /*
1608  * Verify the hello banner looks okay.
1609  */
1610 static int verify_hello(struct ceph_connection *con)
1611 {
1612         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1613                 pr_err("connect to %s got bad banner\n",
1614                        ceph_pr_addr(&con->peer_addr.in_addr));
1615                 con->error_msg = "protocol error, bad banner";
1616                 return -1;
1617         }
1618         return 0;
1619 }
1620
1621 static bool addr_is_blank(struct sockaddr_storage *ss)
1622 {
1623         switch (ss->ss_family) {
1624         case AF_INET:
1625                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1626         case AF_INET6:
1627                 return
1628                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1629                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1630                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1631                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1632         }
1633         return false;
1634 }
1635
1636 static int addr_port(struct sockaddr_storage *ss)
1637 {
1638         switch (ss->ss_family) {
1639         case AF_INET:
1640                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1641         case AF_INET6:
1642                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1643         }
1644         return 0;
1645 }
1646
1647 static void addr_set_port(struct sockaddr_storage *ss, int p)
1648 {
1649         switch (ss->ss_family) {
1650         case AF_INET:
1651                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1652                 break;
1653         case AF_INET6:
1654                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1655                 break;
1656         }
1657 }
1658
1659 /*
1660  * Unlike other *_pton function semantics, zero indicates success.
1661  */
1662 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1663                 char delim, const char **ipend)
1664 {
1665         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1666         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1667
1668         memset(ss, 0, sizeof(*ss));
1669
1670         if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1671                 ss->ss_family = AF_INET;
1672                 return 0;
1673         }
1674
1675         if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1676                 ss->ss_family = AF_INET6;
1677                 return 0;
1678         }
1679
1680         return -EINVAL;
1681 }
1682
1683 /*
1684  * Extract hostname string and resolve using kernel DNS facility.
1685  */
1686 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1687 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1688                 struct sockaddr_storage *ss, char delim, const char **ipend)
1689 {
1690         const char *end, *delim_p;
1691         char *colon_p, *ip_addr = NULL;
1692         int ip_len, ret;
1693
1694         /*
1695          * The end of the hostname occurs immediately preceding the delimiter or
1696          * the port marker (':') where the delimiter takes precedence.
1697          */
1698         delim_p = memchr(name, delim, namelen);
1699         colon_p = memchr(name, ':', namelen);
1700
1701         if (delim_p && colon_p)
1702                 end = delim_p < colon_p ? delim_p : colon_p;
1703         else if (!delim_p && colon_p)
1704                 end = colon_p;
1705         else {
1706                 end = delim_p;
1707                 if (!end) /* case: hostname:/ */
1708                         end = name + namelen;
1709         }
1710
1711         if (end <= name)
1712                 return -EINVAL;
1713
1714         /* do dns_resolve upcall */
1715         ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1716         if (ip_len > 0)
1717                 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1718         else
1719                 ret = -ESRCH;
1720
1721         kfree(ip_addr);
1722
1723         *ipend = end;
1724
1725         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1726                         ret, ret ? "failed" : ceph_pr_addr(ss));
1727
1728         return ret;
1729 }
1730 #else
1731 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1732                 struct sockaddr_storage *ss, char delim, const char **ipend)
1733 {
1734         return -EINVAL;
1735 }
1736 #endif
1737
1738 /*
1739  * Parse a server name (IP or hostname). If a valid IP address is not found
1740  * then try to extract a hostname to resolve using userspace DNS upcall.
1741  */
1742 static int ceph_parse_server_name(const char *name, size_t namelen,
1743                         struct sockaddr_storage *ss, char delim, const char **ipend)
1744 {
1745         int ret;
1746
1747         ret = ceph_pton(name, namelen, ss, delim, ipend);
1748         if (ret)
1749                 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1750
1751         return ret;
1752 }
1753
1754 /*
1755  * Parse an ip[:port] list into an addr array.  Use the default
1756  * monitor port if a port isn't specified.
1757  */
1758 int ceph_parse_ips(const char *c, const char *end,
1759                    struct ceph_entity_addr *addr,
1760                    int max_count, int *count)
1761 {
1762         int i, ret = -EINVAL;
1763         const char *p = c;
1764
1765         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1766         for (i = 0; i < max_count; i++) {
1767                 const char *ipend;
1768                 struct sockaddr_storage *ss = &addr[i].in_addr;
1769                 int port;
1770                 char delim = ',';
1771
1772                 if (*p == '[') {
1773                         delim = ']';
1774                         p++;
1775                 }
1776
1777                 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1778                 if (ret)
1779                         goto bad;
1780                 ret = -EINVAL;
1781
1782                 p = ipend;
1783
1784                 if (delim == ']') {
1785                         if (*p != ']') {
1786                                 dout("missing matching ']'\n");
1787                                 goto bad;
1788                         }
1789                         p++;
1790                 }
1791
1792                 /* port? */
1793                 if (p < end && *p == ':') {
1794                         port = 0;
1795                         p++;
1796                         while (p < end && *p >= '0' && *p <= '9') {
1797                                 port = (port * 10) + (*p - '0');
1798                                 p++;
1799                         }
1800                         if (port > 65535 || port == 0)
1801                                 goto bad;
1802                 } else {
1803                         port = CEPH_MON_PORT;
1804                 }
1805
1806                 addr_set_port(ss, port);
1807
1808                 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1809
1810                 if (p == end)
1811                         break;
1812                 if (*p != ',')
1813                         goto bad;
1814                 p++;
1815         }
1816
1817         if (p != end)
1818                 goto bad;
1819
1820         if (count)
1821                 *count = i + 1;
1822         return 0;
1823
1824 bad:
1825         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1826         return ret;
1827 }
1828 EXPORT_SYMBOL(ceph_parse_ips);
1829
1830 static int process_banner(struct ceph_connection *con)
1831 {
1832         dout("process_banner on %p\n", con);
1833
1834         if (verify_hello(con) < 0)
1835                 return -1;
1836
1837         ceph_decode_addr(&con->actual_peer_addr);
1838         ceph_decode_addr(&con->peer_addr_for_me);
1839
1840         /*
1841          * Make sure the other end is who we wanted.  note that the other
1842          * end may not yet know their ip address, so if it's 0.0.0.0, give
1843          * them the benefit of the doubt.
1844          */
1845         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1846                    sizeof(con->peer_addr)) != 0 &&
1847             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1848               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1849                 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1850                            ceph_pr_addr(&con->peer_addr.in_addr),
1851                            (int)le32_to_cpu(con->peer_addr.nonce),
1852                            ceph_pr_addr(&con->actual_peer_addr.in_addr),
1853                            (int)le32_to_cpu(con->actual_peer_addr.nonce));
1854                 con->error_msg = "wrong peer at address";
1855                 return -1;
1856         }
1857
1858         /*
1859          * did we learn our address?
1860          */
1861         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1862                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1863
1864                 memcpy(&con->msgr->inst.addr.in_addr,
1865                        &con->peer_addr_for_me.in_addr,
1866                        sizeof(con->peer_addr_for_me.in_addr));
1867                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1868                 encode_my_addr(con->msgr);
1869                 dout("process_banner learned my addr is %s\n",
1870                      ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1871         }
1872
1873         return 0;
1874 }
1875
1876 static int process_connect(struct ceph_connection *con)
1877 {
1878         u64 sup_feat = con->msgr->supported_features;
1879         u64 req_feat = con->msgr->required_features;
1880         u64 server_feat = le64_to_cpu(con->in_reply.features);
1881         int ret;
1882
1883         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1884
1885         switch (con->in_reply.tag) {
1886         case CEPH_MSGR_TAG_FEATURES:
1887                 pr_err("%s%lld %s feature set mismatch,"
1888                        " my %llx < server's %llx, missing %llx\n",
1889                        ENTITY_NAME(con->peer_name),
1890                        ceph_pr_addr(&con->peer_addr.in_addr),
1891                        sup_feat, server_feat, server_feat & ~sup_feat);
1892                 con->error_msg = "missing required protocol features";
1893                 reset_connection(con);
1894                 return -1;
1895
1896         case CEPH_MSGR_TAG_BADPROTOVER:
1897                 pr_err("%s%lld %s protocol version mismatch,"
1898                        " my %d != server's %d\n",
1899                        ENTITY_NAME(con->peer_name),
1900                        ceph_pr_addr(&con->peer_addr.in_addr),
1901                        le32_to_cpu(con->out_connect.protocol_version),
1902                        le32_to_cpu(con->in_reply.protocol_version));
1903                 con->error_msg = "protocol version mismatch";
1904                 reset_connection(con);
1905                 return -1;
1906
1907         case CEPH_MSGR_TAG_BADAUTHORIZER:
1908                 con->auth_retry++;
1909                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1910                      con->auth_retry);
1911                 if (con->auth_retry == 2) {
1912                         con->error_msg = "connect authorization failure";
1913                         return -1;
1914                 }
1915                 con_out_kvec_reset(con);
1916                 ret = prepare_write_connect(con);
1917                 if (ret < 0)
1918                         return ret;
1919                 prepare_read_connect(con);
1920                 break;
1921
1922         case CEPH_MSGR_TAG_RESETSESSION:
1923                 /*
1924                  * If we connected with a large connect_seq but the peer
1925                  * has no record of a session with us (no connection, or
1926                  * connect_seq == 0), they will send RESETSESION to indicate
1927                  * that they must have reset their session, and may have
1928                  * dropped messages.
1929                  */
1930                 dout("process_connect got RESET peer seq %u\n",
1931                      le32_to_cpu(con->in_reply.connect_seq));
1932                 pr_err("%s%lld %s connection reset\n",
1933                        ENTITY_NAME(con->peer_name),
1934                        ceph_pr_addr(&con->peer_addr.in_addr));
1935                 reset_connection(con);
1936                 con_out_kvec_reset(con);
1937                 ret = prepare_write_connect(con);
1938                 if (ret < 0)
1939                         return ret;
1940                 prepare_read_connect(con);
1941
1942                 /* Tell ceph about it. */
1943                 mutex_unlock(&con->mutex);
1944                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1945                 if (con->ops->peer_reset)
1946                         con->ops->peer_reset(con);
1947                 mutex_lock(&con->mutex);
1948                 if (con->state != CON_STATE_NEGOTIATING)
1949                         return -EAGAIN;
1950                 break;
1951
1952         case CEPH_MSGR_TAG_RETRY_SESSION:
1953                 /*
1954                  * If we sent a smaller connect_seq than the peer has, try
1955                  * again with a larger value.
1956                  */
1957                 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1958                      le32_to_cpu(con->out_connect.connect_seq),
1959                      le32_to_cpu(con->in_reply.connect_seq));
1960                 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1961                 con_out_kvec_reset(con);
1962                 ret = prepare_write_connect(con);
1963                 if (ret < 0)
1964                         return ret;
1965                 prepare_read_connect(con);
1966                 break;
1967
1968         case CEPH_MSGR_TAG_RETRY_GLOBAL:
1969                 /*
1970                  * If we sent a smaller global_seq than the peer has, try
1971                  * again with a larger value.
1972                  */
1973                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1974                      con->peer_global_seq,
1975                      le32_to_cpu(con->in_reply.global_seq));
1976                 get_global_seq(con->msgr,
1977                                le32_to_cpu(con->in_reply.global_seq));
1978                 con_out_kvec_reset(con);
1979                 ret = prepare_write_connect(con);
1980                 if (ret < 0)
1981                         return ret;
1982                 prepare_read_connect(con);
1983                 break;
1984
1985         case CEPH_MSGR_TAG_SEQ:
1986         case CEPH_MSGR_TAG_READY:
1987                 if (req_feat & ~server_feat) {
1988                         pr_err("%s%lld %s protocol feature mismatch,"
1989                                " my required %llx > server's %llx, need %llx\n",
1990                                ENTITY_NAME(con->peer_name),
1991                                ceph_pr_addr(&con->peer_addr.in_addr),
1992                                req_feat, server_feat, req_feat & ~server_feat);
1993                         con->error_msg = "missing required protocol features";
1994                         reset_connection(con);
1995                         return -1;
1996                 }
1997
1998                 WARN_ON(con->state != CON_STATE_NEGOTIATING);
1999                 con->state = CON_STATE_OPEN;
2000                 con->auth_retry = 0;    /* we authenticated; clear flag */
2001                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2002                 con->connect_seq++;
2003                 con->peer_features = server_feat;
2004                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2005                      con->peer_global_seq,
2006                      le32_to_cpu(con->in_reply.connect_seq),
2007                      con->connect_seq);
2008                 WARN_ON(con->connect_seq !=
2009                         le32_to_cpu(con->in_reply.connect_seq));
2010
2011                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2012                         con_flag_set(con, CON_FLAG_LOSSYTX);
2013
2014                 con->delay = 0;      /* reset backoff memory */
2015
2016                 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2017                         prepare_write_seq(con);
2018                         prepare_read_seq(con);
2019                 } else {
2020                         prepare_read_tag(con);
2021                 }
2022                 break;
2023
2024         case CEPH_MSGR_TAG_WAIT:
2025                 /*
2026                  * If there is a connection race (we are opening
2027                  * connections to each other), one of us may just have
2028                  * to WAIT.  This shouldn't happen if we are the
2029                  * client.
2030                  */
2031                 pr_err("process_connect got WAIT as client\n");
2032                 con->error_msg = "protocol error, got WAIT as client";
2033                 return -1;
2034
2035         default:
2036                 pr_err("connect protocol error, will retry\n");
2037                 con->error_msg = "protocol error, garbage tag during connect";
2038                 return -1;
2039         }
2040         return 0;
2041 }
2042
2043
2044 /*
2045  * read (part of) an ack
2046  */
2047 static int read_partial_ack(struct ceph_connection *con)
2048 {
2049         int size = sizeof (con->in_temp_ack);
2050         int end = size;
2051
2052         return read_partial(con, end, size, &con->in_temp_ack);
2053 }
2054
2055 /*
2056  * We can finally discard anything that's been acked.
2057  */
2058 static void process_ack(struct ceph_connection *con)
2059 {
2060         struct ceph_msg *m;
2061         u64 ack = le64_to_cpu(con->in_temp_ack);
2062         u64 seq;
2063
2064         while (!list_empty(&con->out_sent)) {
2065                 m = list_first_entry(&con->out_sent, struct ceph_msg,
2066                                      list_head);
2067                 seq = le64_to_cpu(m->hdr.seq);
2068                 if (seq > ack)
2069                         break;
2070                 dout("got ack for seq %llu type %d at %p\n", seq,
2071                      le16_to_cpu(m->hdr.type), m);
2072                 m->ack_stamp = jiffies;
2073                 ceph_msg_remove(m);
2074         }
2075         prepare_read_tag(con);
2076 }
2077
2078
2079 static int read_partial_message_section(struct ceph_connection *con,
2080                                         struct kvec *section,
2081                                         unsigned int sec_len, u32 *crc)
2082 {
2083         int ret, left;
2084
2085         BUG_ON(!section);
2086
2087         while (section->iov_len < sec_len) {
2088                 BUG_ON(section->iov_base == NULL);
2089                 left = sec_len - section->iov_len;
2090                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2091                                        section->iov_len, left);
2092                 if (ret <= 0)
2093                         return ret;
2094                 section->iov_len += ret;
2095         }
2096         if (section->iov_len == sec_len)
2097                 *crc = crc32c(0, section->iov_base, section->iov_len);
2098
2099         return 1;
2100 }
2101
2102 static int read_partial_msg_data(struct ceph_connection *con)
2103 {
2104         struct ceph_msg *msg = con->in_msg;
2105         struct ceph_msg_data_cursor *cursor = &msg->data->cursor;
2106         const bool do_datacrc = !con->msgr->nocrc;
2107         struct page *page;
2108         size_t page_offset;
2109         size_t length;
2110         u32 crc = 0;
2111         int ret;
2112
2113         BUG_ON(!msg);
2114         if (!msg->data)
2115                 return -EIO;
2116
2117         if (do_datacrc)
2118                 crc = con->in_data_crc;
2119         while (cursor->resid) {
2120                 page = ceph_msg_data_next(msg->data, &page_offset, &length,
2121                                                         NULL);
2122                 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2123                 if (ret <= 0) {
2124                         if (do_datacrc)
2125                                 con->in_data_crc = crc;
2126
2127                         return ret;
2128                 }
2129
2130                 if (do_datacrc)
2131                         crc = ceph_crc32c_page(crc, page, page_offset, ret);
2132                 (void) ceph_msg_data_advance(msg->data, (size_t)ret);
2133         }
2134         if (do_datacrc)
2135                 con->in_data_crc = crc;
2136
2137         return 1;       /* must return > 0 to indicate success */
2138 }
2139
2140 /*
2141  * read (part of) a message.
2142  */
2143 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2144
2145 static int read_partial_message(struct ceph_connection *con)
2146 {
2147         struct ceph_msg *m = con->in_msg;
2148         int size;
2149         int end;
2150         int ret;
2151         unsigned int front_len, middle_len, data_len;
2152         bool do_datacrc = !con->msgr->nocrc;
2153         u64 seq;
2154         u32 crc;
2155
2156         dout("read_partial_message con %p msg %p\n", con, m);
2157
2158         /* header */
2159         size = sizeof (con->in_hdr);
2160         end = size;
2161         ret = read_partial(con, end, size, &con->in_hdr);
2162         if (ret <= 0)
2163                 return ret;
2164
2165         crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2166         if (cpu_to_le32(crc) != con->in_hdr.crc) {
2167                 pr_err("read_partial_message bad hdr "
2168                        " crc %u != expected %u\n",
2169                        crc, con->in_hdr.crc);
2170                 return -EBADMSG;
2171         }
2172
2173         front_len = le32_to_cpu(con->in_hdr.front_len);
2174         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2175                 return -EIO;
2176         middle_len = le32_to_cpu(con->in_hdr.middle_len);
2177         if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2178                 return -EIO;
2179         data_len = le32_to_cpu(con->in_hdr.data_len);
2180         if (data_len > CEPH_MSG_MAX_DATA_LEN)
2181                 return -EIO;
2182
2183         /* verify seq# */
2184         seq = le64_to_cpu(con->in_hdr.seq);
2185         if ((s64)seq - (s64)con->in_seq < 1) {
2186                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2187                         ENTITY_NAME(con->peer_name),
2188                         ceph_pr_addr(&con->peer_addr.in_addr),
2189                         seq, con->in_seq + 1);
2190                 con->in_base_pos = -front_len - middle_len - data_len -
2191                         sizeof(m->footer);
2192                 con->in_tag = CEPH_MSGR_TAG_READY;
2193                 return 0;
2194         } else if ((s64)seq - (s64)con->in_seq > 1) {
2195                 pr_err("read_partial_message bad seq %lld expected %lld\n",
2196                        seq, con->in_seq + 1);
2197                 con->error_msg = "bad message sequence # for incoming message";
2198                 return -EBADMSG;
2199         }
2200
2201         /* allocate message? */
2202         if (!con->in_msg) {
2203                 int skip = 0;
2204
2205                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2206                      front_len, data_len);
2207                 ret = ceph_con_in_msg_alloc(con, &skip);
2208                 if (ret < 0)
2209                         return ret;
2210                 if (skip) {
2211                         /* skip this message */
2212                         dout("alloc_msg said skip message\n");
2213                         BUG_ON(con->in_msg);
2214                         con->in_base_pos = -front_len - middle_len - data_len -
2215                                 sizeof(m->footer);
2216                         con->in_tag = CEPH_MSGR_TAG_READY;
2217                         con->in_seq++;
2218                         return 0;
2219                 }
2220
2221                 BUG_ON(!con->in_msg);
2222                 BUG_ON(con->in_msg->con != con);
2223                 m = con->in_msg;
2224                 m->front.iov_len = 0;    /* haven't read it yet */
2225                 if (m->middle)
2226                         m->middle->vec.iov_len = 0;
2227
2228                 /* prepare for data payload, if any */
2229
2230                 if (data_len)
2231                         prepare_message_data(con->in_msg, data_len);
2232         }
2233
2234         /* front */
2235         ret = read_partial_message_section(con, &m->front, front_len,
2236                                            &con->in_front_crc);
2237         if (ret <= 0)
2238                 return ret;
2239
2240         /* middle */
2241         if (m->middle) {
2242                 ret = read_partial_message_section(con, &m->middle->vec,
2243                                                    middle_len,
2244                                                    &con->in_middle_crc);
2245                 if (ret <= 0)
2246                         return ret;
2247         }
2248
2249         /* (page) data */
2250         if (data_len) {
2251                 ret = read_partial_msg_data(con);
2252                 if (ret <= 0)
2253                         return ret;
2254         }
2255
2256         /* footer */
2257         size = sizeof (m->footer);
2258         end += size;
2259         ret = read_partial(con, end, size, &m->footer);
2260         if (ret <= 0)
2261                 return ret;
2262
2263         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2264              m, front_len, m->footer.front_crc, middle_len,
2265              m->footer.middle_crc, data_len, m->footer.data_crc);
2266
2267         /* crc ok? */
2268         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2269                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2270                        m, con->in_front_crc, m->footer.front_crc);
2271                 return -EBADMSG;
2272         }
2273         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2274                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2275                        m, con->in_middle_crc, m->footer.middle_crc);
2276                 return -EBADMSG;
2277         }
2278         if (do_datacrc &&
2279             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2280             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2281                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2282                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2283                 return -EBADMSG;
2284         }
2285
2286         return 1; /* done! */
2287 }
2288
2289 /*
2290  * Process message.  This happens in the worker thread.  The callback should
2291  * be careful not to do anything that waits on other incoming messages or it
2292  * may deadlock.
2293  */
2294 static void process_message(struct ceph_connection *con)
2295 {
2296         struct ceph_msg *msg;
2297
2298         BUG_ON(con->in_msg->con != con);
2299         con->in_msg->con = NULL;
2300         msg = con->in_msg;
2301         con->in_msg = NULL;
2302         con->ops->put(con);
2303
2304         /* if first message, set peer_name */
2305         if (con->peer_name.type == 0)
2306                 con->peer_name = msg->hdr.src;
2307
2308         con->in_seq++;
2309         mutex_unlock(&con->mutex);
2310
2311         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2312              msg, le64_to_cpu(msg->hdr.seq),
2313              ENTITY_NAME(msg->hdr.src),
2314              le16_to_cpu(msg->hdr.type),
2315              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2316              le32_to_cpu(msg->hdr.front_len),
2317              le32_to_cpu(msg->hdr.data_len),
2318              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2319         con->ops->dispatch(con, msg);
2320
2321         mutex_lock(&con->mutex);
2322 }
2323
2324
2325 /*
2326  * Write something to the socket.  Called in a worker thread when the
2327  * socket appears to be writeable and we have something ready to send.
2328  */
2329 static int try_write(struct ceph_connection *con)
2330 {
2331         int ret = 1;
2332
2333         dout("try_write start %p state %lu\n", con, con->state);
2334
2335 more:
2336         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2337
2338         /* open the socket first? */
2339         if (con->state == CON_STATE_PREOPEN) {
2340                 BUG_ON(con->sock);
2341                 con->state = CON_STATE_CONNECTING;
2342
2343                 con_out_kvec_reset(con);
2344                 prepare_write_banner(con);
2345                 prepare_read_banner(con);
2346
2347                 BUG_ON(con->in_msg);
2348                 con->in_tag = CEPH_MSGR_TAG_READY;
2349                 dout("try_write initiating connect on %p new state %lu\n",
2350                      con, con->state);
2351                 ret = ceph_tcp_connect(con);
2352                 if (ret < 0) {
2353                         con->error_msg = "connect error";
2354                         goto out;
2355                 }
2356         }
2357
2358 more_kvec:
2359         /* kvec data queued? */
2360         if (con->out_skip) {
2361                 ret = write_partial_skip(con);
2362                 if (ret <= 0)
2363                         goto out;
2364         }
2365         if (con->out_kvec_left) {
2366                 ret = write_partial_kvec(con);
2367                 if (ret <= 0)
2368                         goto out;
2369         }
2370
2371         /* msg pages? */
2372         if (con->out_msg) {
2373                 if (con->out_msg_done) {
2374                         ceph_msg_put(con->out_msg);
2375                         con->out_msg = NULL;   /* we're done with this one */
2376                         goto do_next;
2377                 }
2378
2379                 ret = write_partial_message_data(con);
2380                 if (ret == 1)
2381                         goto more_kvec;  /* we need to send the footer, too! */
2382                 if (ret == 0)
2383                         goto out;
2384                 if (ret < 0) {
2385                         dout("try_write write_partial_message_data err %d\n",
2386                              ret);
2387                         goto out;
2388                 }
2389         }
2390
2391 do_next:
2392         if (con->state == CON_STATE_OPEN) {
2393                 /* is anything else pending? */
2394                 if (!list_empty(&con->out_queue)) {
2395                         prepare_write_message(con);
2396                         goto more;
2397                 }
2398                 if (con->in_seq > con->in_seq_acked) {
2399                         prepare_write_ack(con);
2400                         goto more;
2401                 }
2402                 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2403                         prepare_write_keepalive(con);
2404                         goto more;
2405                 }
2406         }
2407
2408         /* Nothing to do! */
2409         con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2410         dout("try_write nothing else to write.\n");
2411         ret = 0;
2412 out:
2413         dout("try_write done on %p ret %d\n", con, ret);
2414         return ret;
2415 }
2416
2417
2418
2419 /*
2420  * Read what we can from the socket.
2421  */
2422 static int try_read(struct ceph_connection *con)
2423 {
2424         int ret = -1;
2425
2426 more:
2427         dout("try_read start on %p state %lu\n", con, con->state);
2428         if (con->state != CON_STATE_CONNECTING &&
2429             con->state != CON_STATE_NEGOTIATING &&
2430             con->state != CON_STATE_OPEN)
2431                 return 0;
2432
2433         BUG_ON(!con->sock);
2434
2435         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2436              con->in_base_pos);
2437
2438         if (con->state == CON_STATE_CONNECTING) {
2439                 dout("try_read connecting\n");
2440                 ret = read_partial_banner(con);
2441                 if (ret <= 0)
2442                         goto out;
2443                 ret = process_banner(con);
2444                 if (ret < 0)
2445                         goto out;
2446
2447                 con->state = CON_STATE_NEGOTIATING;
2448
2449                 /*
2450                  * Received banner is good, exchange connection info.
2451                  * Do not reset out_kvec, as sending our banner raced
2452                  * with receiving peer banner after connect completed.
2453                  */
2454                 ret = prepare_write_connect(con);
2455                 if (ret < 0)
2456                         goto out;
2457                 prepare_read_connect(con);
2458
2459                 /* Send connection info before awaiting response */
2460                 goto out;
2461         }
2462
2463         if (con->state == CON_STATE_NEGOTIATING) {
2464                 dout("try_read negotiating\n");
2465                 ret = read_partial_connect(con);
2466                 if (ret <= 0)
2467                         goto out;
2468                 ret = process_connect(con);
2469                 if (ret < 0)
2470                         goto out;
2471                 goto more;
2472         }
2473
2474         WARN_ON(con->state != CON_STATE_OPEN);
2475
2476         if (con->in_base_pos < 0) {
2477                 /*
2478                  * skipping + discarding content.
2479                  *
2480                  * FIXME: there must be a better way to do this!
2481                  */
2482                 static char buf[SKIP_BUF_SIZE];
2483                 int skip = min((int) sizeof (buf), -con->in_base_pos);
2484
2485                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2486                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2487                 if (ret <= 0)
2488                         goto out;
2489                 con->in_base_pos += ret;
2490                 if (con->in_base_pos)
2491                         goto more;
2492         }
2493         if (con->in_tag == CEPH_MSGR_TAG_READY) {
2494                 /*
2495                  * what's next?
2496                  */
2497                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2498                 if (ret <= 0)
2499                         goto out;
2500                 dout("try_read got tag %d\n", (int)con->in_tag);
2501                 switch (con->in_tag) {
2502                 case CEPH_MSGR_TAG_MSG:
2503                         prepare_read_message(con);
2504                         break;
2505                 case CEPH_MSGR_TAG_ACK:
2506                         prepare_read_ack(con);
2507                         break;
2508                 case CEPH_MSGR_TAG_CLOSE:
2509                         con_close_socket(con);
2510                         con->state = CON_STATE_CLOSED;
2511                         goto out;
2512                 default:
2513                         goto bad_tag;
2514                 }
2515         }
2516         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2517                 ret = read_partial_message(con);
2518                 if (ret <= 0) {
2519                         switch (ret) {
2520                         case -EBADMSG:
2521                                 con->error_msg = "bad crc";
2522                                 ret = -EIO;
2523                                 break;
2524                         case -EIO:
2525                                 con->error_msg = "io error";
2526                                 break;
2527                         }
2528                         goto out;
2529                 }
2530                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2531                         goto more;
2532                 process_message(con);
2533                 if (con->state == CON_STATE_OPEN)
2534                         prepare_read_tag(con);
2535                 goto more;
2536         }
2537         if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2538             con->in_tag == CEPH_MSGR_TAG_SEQ) {
2539                 /*
2540                  * the final handshake seq exchange is semantically
2541                  * equivalent to an ACK
2542                  */
2543                 ret = read_partial_ack(con);
2544                 if (ret <= 0)
2545                         goto out;
2546                 process_ack(con);
2547                 goto more;
2548         }
2549
2550 out:
2551         dout("try_read done on %p ret %d\n", con, ret);
2552         return ret;
2553
2554 bad_tag:
2555         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2556         con->error_msg = "protocol error, garbage tag";
2557         ret = -1;
2558         goto out;
2559 }
2560
2561
2562 /*
2563  * Atomically queue work on a connection after the specified delay.
2564  * Bump @con reference to avoid races with connection teardown.
2565  * Returns 0 if work was queued, or an error code otherwise.
2566  */
2567 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2568 {
2569         if (!con->ops->get(con)) {
2570                 dout("%s %p ref count 0\n", __func__, con);
2571
2572                 return -ENOENT;
2573         }
2574
2575         if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2576                 dout("%s %p - already queued\n", __func__, con);
2577                 con->ops->put(con);
2578
2579                 return -EBUSY;
2580         }
2581
2582         dout("%s %p %lu\n", __func__, con, delay);
2583
2584         return 0;
2585 }
2586
2587 static void queue_con(struct ceph_connection *con)
2588 {
2589         (void) queue_con_delay(con, 0);
2590 }
2591
2592 static bool con_sock_closed(struct ceph_connection *con)
2593 {
2594         if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2595                 return false;
2596
2597 #define CASE(x)                                                         \
2598         case CON_STATE_ ## x:                                           \
2599                 con->error_msg = "socket closed (con state " #x ")";    \
2600                 break;
2601
2602         switch (con->state) {
2603         CASE(CLOSED);
2604         CASE(PREOPEN);
2605         CASE(CONNECTING);
2606         CASE(NEGOTIATING);
2607         CASE(OPEN);
2608         CASE(STANDBY);
2609         default:
2610                 pr_warning("%s con %p unrecognized state %lu\n",
2611                         __func__, con, con->state);
2612                 con->error_msg = "unrecognized con state";
2613                 BUG();
2614                 break;
2615         }
2616 #undef CASE
2617
2618         return true;
2619 }
2620
2621 static bool con_backoff(struct ceph_connection *con)
2622 {
2623         int ret;
2624
2625         if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2626                 return false;
2627
2628         ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2629         if (ret) {
2630                 dout("%s: con %p FAILED to back off %lu\n", __func__,
2631                         con, con->delay);
2632                 BUG_ON(ret == -ENOENT);
2633                 con_flag_set(con, CON_FLAG_BACKOFF);
2634         }
2635
2636         return true;
2637 }
2638
2639 /* Finish fault handling; con->mutex must *not* be held here */
2640
2641 static void con_fault_finish(struct ceph_connection *con)
2642 {
2643         /*
2644          * in case we faulted due to authentication, invalidate our
2645          * current tickets so that we can get new ones.
2646          */
2647         if (con->auth_retry && con->ops->invalidate_authorizer) {
2648                 dout("calling invalidate_authorizer()\n");
2649                 con->ops->invalidate_authorizer(con);
2650         }
2651
2652         if (con->ops->fault)
2653                 con->ops->fault(con);
2654 }
2655
2656 /*
2657  * Do some work on a connection.  Drop a connection ref when we're done.
2658  */
2659 static void con_work(struct work_struct *work)
2660 {
2661         struct ceph_connection *con = container_of(work, struct ceph_connection,
2662                                                    work.work);
2663         bool fault;
2664
2665         mutex_lock(&con->mutex);
2666         while (true) {
2667                 int ret;
2668
2669                 if ((fault = con_sock_closed(con))) {
2670                         dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2671                         break;
2672                 }
2673                 if (con_backoff(con)) {
2674                         dout("%s: con %p BACKOFF\n", __func__, con);
2675                         break;
2676                 }
2677                 if (con->state == CON_STATE_STANDBY) {
2678                         dout("%s: con %p STANDBY\n", __func__, con);
2679                         break;
2680                 }
2681                 if (con->state == CON_STATE_CLOSED) {
2682                         dout("%s: con %p CLOSED\n", __func__, con);
2683                         BUG_ON(con->sock);
2684                         break;
2685                 }
2686                 if (con->state == CON_STATE_PREOPEN) {
2687                         dout("%s: con %p PREOPEN\n", __func__, con);
2688                         BUG_ON(con->sock);
2689                 }
2690
2691                 ret = try_read(con);
2692                 if (ret < 0) {
2693                         if (ret == -EAGAIN)
2694                                 continue;
2695                         con->error_msg = "socket error on read";
2696                         fault = true;
2697                         break;
2698                 }
2699
2700                 ret = try_write(con);
2701                 if (ret < 0) {
2702                         if (ret == -EAGAIN)
2703                                 continue;
2704                         con->error_msg = "socket error on write";
2705                         fault = true;
2706                 }
2707
2708                 break;  /* If we make it to here, we're done */
2709         }
2710         if (fault)
2711                 con_fault(con);
2712         mutex_unlock(&con->mutex);
2713
2714         if (fault)
2715                 con_fault_finish(con);
2716
2717         con->ops->put(con);
2718 }
2719
2720 /*
2721  * Generic error/fault handler.  A retry mechanism is used with
2722  * exponential backoff
2723  */
2724 static void con_fault(struct ceph_connection *con)
2725 {
2726         pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2727                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2728         dout("fault %p state %lu to peer %s\n",
2729              con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2730
2731         WARN_ON(con->state != CON_STATE_CONNECTING &&
2732                con->state != CON_STATE_NEGOTIATING &&
2733                con->state != CON_STATE_OPEN);
2734
2735         con_close_socket(con);
2736
2737         if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2738                 dout("fault on LOSSYTX channel, marking CLOSED\n");
2739                 con->state = CON_STATE_CLOSED;
2740                 return;
2741         }
2742
2743         if (con->in_msg) {
2744                 BUG_ON(con->in_msg->con != con);
2745                 con->in_msg->con = NULL;
2746                 ceph_msg_put(con->in_msg);
2747                 con->in_msg = NULL;
2748                 con->ops->put(con);
2749         }
2750
2751         /* Requeue anything that hasn't been acked */
2752         list_splice_init(&con->out_sent, &con->out_queue);
2753
2754         /* If there are no messages queued or keepalive pending, place
2755          * the connection in a STANDBY state */
2756         if (list_empty(&con->out_queue) &&
2757             !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2758                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2759                 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2760                 con->state = CON_STATE_STANDBY;
2761         } else {
2762                 /* retry after a delay. */
2763                 con->state = CON_STATE_PREOPEN;
2764                 if (con->delay == 0)
2765                         con->delay = BASE_DELAY_INTERVAL;
2766                 else if (con->delay < MAX_DELAY_INTERVAL)
2767                         con->delay *= 2;
2768                 con_flag_set(con, CON_FLAG_BACKOFF);
2769                 queue_con(con);
2770         }
2771 }
2772
2773
2774
2775 /*
2776  * initialize a new messenger instance
2777  */
2778 void ceph_messenger_init(struct ceph_messenger *msgr,
2779                         struct ceph_entity_addr *myaddr,
2780                         u32 supported_features,
2781                         u32 required_features,
2782                         bool nocrc)
2783 {
2784         msgr->supported_features = supported_features;
2785         msgr->required_features = required_features;
2786
2787         spin_lock_init(&msgr->global_seq_lock);
2788
2789         if (myaddr)
2790                 msgr->inst.addr = *myaddr;
2791
2792         /* select a random nonce */
2793         msgr->inst.addr.type = 0;
2794         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2795         encode_my_addr(msgr);
2796         msgr->nocrc = nocrc;
2797
2798         atomic_set(&msgr->stopping, 0);
2799
2800         dout("%s %p\n", __func__, msgr);
2801 }
2802 EXPORT_SYMBOL(ceph_messenger_init);
2803
2804 static void clear_standby(struct ceph_connection *con)
2805 {
2806         /* come back from STANDBY? */
2807         if (con->state == CON_STATE_STANDBY) {
2808                 dout("clear_standby %p and ++connect_seq\n", con);
2809                 con->state = CON_STATE_PREOPEN;
2810                 con->connect_seq++;
2811                 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2812                 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2813         }
2814 }
2815
2816 /*
2817  * Queue up an outgoing message on the given connection.
2818  */
2819 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2820 {
2821         /* set src+dst */
2822         msg->hdr.src = con->msgr->inst.name;
2823         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2824         msg->needs_out_seq = true;
2825
2826         mutex_lock(&con->mutex);
2827
2828         if (con->state == CON_STATE_CLOSED) {
2829                 dout("con_send %p closed, dropping %p\n", con, msg);
2830                 ceph_msg_put(msg);
2831                 mutex_unlock(&con->mutex);
2832                 return;
2833         }
2834
2835         BUG_ON(msg->con != NULL);
2836         msg->con = con->ops->get(con);
2837         BUG_ON(msg->con == NULL);
2838
2839         BUG_ON(!list_empty(&msg->list_head));
2840         list_add_tail(&msg->list_head, &con->out_queue);
2841         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2842              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2843              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2844              le32_to_cpu(msg->hdr.front_len),
2845              le32_to_cpu(msg->hdr.middle_len),
2846              le32_to_cpu(msg->hdr.data_len));
2847
2848         clear_standby(con);
2849         mutex_unlock(&con->mutex);
2850
2851         /* if there wasn't anything waiting to send before, queue
2852          * new work */
2853         if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2854                 queue_con(con);
2855 }
2856 EXPORT_SYMBOL(ceph_con_send);
2857
2858 /*
2859  * Revoke a message that was previously queued for send
2860  */
2861 void ceph_msg_revoke(struct ceph_msg *msg)
2862 {
2863         struct ceph_connection *con = msg->con;
2864
2865         if (!con)
2866                 return;         /* Message not in our possession */
2867
2868         mutex_lock(&con->mutex);
2869         if (!list_empty(&msg->list_head)) {
2870                 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2871                 list_del_init(&msg->list_head);
2872                 BUG_ON(msg->con == NULL);
2873                 msg->con->ops->put(msg->con);
2874                 msg->con = NULL;
2875                 msg->hdr.seq = 0;
2876
2877                 ceph_msg_put(msg);
2878         }
2879         if (con->out_msg == msg) {
2880                 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2881                 con->out_msg = NULL;
2882                 if (con->out_kvec_is_msg) {
2883                         con->out_skip = con->out_kvec_bytes;
2884                         con->out_kvec_is_msg = false;
2885                 }
2886                 msg->hdr.seq = 0;
2887
2888                 ceph_msg_put(msg);
2889         }
2890         mutex_unlock(&con->mutex);
2891 }
2892
2893 /*
2894  * Revoke a message that we may be reading data into
2895  */
2896 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2897 {
2898         struct ceph_connection *con;
2899
2900         BUG_ON(msg == NULL);
2901         if (!msg->con) {
2902                 dout("%s msg %p null con\n", __func__, msg);
2903
2904                 return;         /* Message not in our possession */
2905         }
2906
2907         con = msg->con;
2908         mutex_lock(&con->mutex);
2909         if (con->in_msg == msg) {
2910                 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2911                 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2912                 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2913
2914                 /* skip rest of message */
2915                 dout("%s %p msg %p revoked\n", __func__, con, msg);
2916                 con->in_base_pos = con->in_base_pos -
2917                                 sizeof(struct ceph_msg_header) -
2918                                 front_len -
2919                                 middle_len -
2920                                 data_len -
2921                                 sizeof(struct ceph_msg_footer);
2922                 ceph_msg_put(con->in_msg);
2923                 con->in_msg = NULL;
2924                 con->in_tag = CEPH_MSGR_TAG_READY;
2925                 con->in_seq++;
2926         } else {
2927                 dout("%s %p in_msg %p msg %p no-op\n",
2928                      __func__, con, con->in_msg, msg);
2929         }
2930         mutex_unlock(&con->mutex);
2931 }
2932
2933 /*
2934  * Queue a keepalive byte to ensure the tcp connection is alive.
2935  */
2936 void ceph_con_keepalive(struct ceph_connection *con)
2937 {
2938         dout("con_keepalive %p\n", con);
2939         mutex_lock(&con->mutex);
2940         clear_standby(con);
2941         mutex_unlock(&con->mutex);
2942         if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
2943             con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2944                 queue_con(con);
2945 }
2946 EXPORT_SYMBOL(ceph_con_keepalive);
2947
2948 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
2949 {
2950         struct ceph_msg_data *data;
2951
2952         if (WARN_ON(!ceph_msg_data_type_valid(type)))
2953                 return NULL;
2954
2955         data = kzalloc(sizeof (*data), GFP_NOFS);
2956         if (data)
2957                 data->type = type;
2958
2959         return data;
2960 }
2961
2962 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
2963 {
2964         if (!data)
2965                 return;
2966
2967         if (data->type == CEPH_MSG_DATA_PAGELIST) {
2968                 ceph_pagelist_release(data->pagelist);
2969                 kfree(data->pagelist);
2970         }
2971         kfree(data);
2972 }
2973
2974 void ceph_msg_data_set_pages(struct ceph_msg *msg, struct page **pages,
2975                 size_t length, size_t alignment)
2976 {
2977         struct ceph_msg_data *data;
2978
2979         BUG_ON(!pages);
2980         BUG_ON(!length);
2981         BUG_ON(msg->data_length);
2982         BUG_ON(msg->data != NULL);
2983
2984         data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
2985         BUG_ON(!data);
2986         data->pages = pages;
2987         data->length = length;
2988         data->alignment = alignment & ~PAGE_MASK;
2989
2990         msg->data = data;
2991         msg->data_length = length;
2992 }
2993 EXPORT_SYMBOL(ceph_msg_data_set_pages);
2994
2995 void ceph_msg_data_set_pagelist(struct ceph_msg *msg,
2996                                 struct ceph_pagelist *pagelist)
2997 {
2998         struct ceph_msg_data *data;
2999
3000         BUG_ON(!pagelist);
3001         BUG_ON(!pagelist->length);
3002         BUG_ON(msg->data_length);
3003         BUG_ON(msg->data != NULL);
3004
3005         data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3006         BUG_ON(!data);
3007         data->pagelist = pagelist;
3008
3009         msg->data = data;
3010         msg->data_length = pagelist->length;
3011 }
3012 EXPORT_SYMBOL(ceph_msg_data_set_pagelist);
3013
3014 #ifdef  CONFIG_BLOCK
3015 void ceph_msg_data_set_bio(struct ceph_msg *msg, struct bio *bio,
3016                 size_t length)
3017 {
3018         struct ceph_msg_data *data;
3019
3020         BUG_ON(!bio);
3021         BUG_ON(msg->data_length);
3022         BUG_ON(msg->data != NULL);
3023
3024         data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3025         BUG_ON(!data);
3026         data->bio = bio;
3027
3028         msg->data = data;
3029         msg->data_length = length;
3030 }
3031 EXPORT_SYMBOL(ceph_msg_data_set_bio);
3032 #endif  /* CONFIG_BLOCK */
3033
3034 /*
3035  * construct a new message with given type, size
3036  * the new msg has a ref count of 1.
3037  */
3038 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3039                               bool can_fail)
3040 {
3041         struct ceph_msg *m;
3042
3043         m = kzalloc(sizeof(*m), flags);
3044         if (m == NULL)
3045                 goto out;
3046
3047         m->hdr.type = cpu_to_le16(type);
3048         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3049         m->hdr.front_len = cpu_to_le32(front_len);
3050
3051         INIT_LIST_HEAD(&m->list_head);
3052         kref_init(&m->kref);
3053
3054         /* front */
3055         m->front_max = front_len;
3056         if (front_len) {
3057                 if (front_len > PAGE_CACHE_SIZE) {
3058                         m->front.iov_base = __vmalloc(front_len, flags,
3059                                                       PAGE_KERNEL);
3060                         m->front_is_vmalloc = true;
3061                 } else {
3062                         m->front.iov_base = kmalloc(front_len, flags);
3063                 }
3064                 if (m->front.iov_base == NULL) {
3065                         dout("ceph_msg_new can't allocate %d bytes\n",
3066                              front_len);
3067                         goto out2;
3068                 }
3069         } else {
3070                 m->front.iov_base = NULL;
3071         }
3072         m->front.iov_len = front_len;
3073
3074         dout("ceph_msg_new %p front %d\n", m, front_len);
3075         return m;
3076
3077 out2:
3078         ceph_msg_put(m);
3079 out:
3080         if (!can_fail) {
3081                 pr_err("msg_new can't create type %d front %d\n", type,
3082                        front_len);
3083                 WARN_ON(1);
3084         } else {
3085                 dout("msg_new can't create type %d front %d\n", type,
3086                      front_len);
3087         }
3088         return NULL;
3089 }
3090 EXPORT_SYMBOL(ceph_msg_new);
3091
3092 /*
3093  * Allocate "middle" portion of a message, if it is needed and wasn't
3094  * allocated by alloc_msg.  This allows us to read a small fixed-size
3095  * per-type header in the front and then gracefully fail (i.e.,
3096  * propagate the error to the caller based on info in the front) when
3097  * the middle is too large.
3098  */
3099 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3100 {
3101         int type = le16_to_cpu(msg->hdr.type);
3102         int middle_len = le32_to_cpu(msg->hdr.middle_len);
3103
3104         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3105              ceph_msg_type_name(type), middle_len);
3106         BUG_ON(!middle_len);
3107         BUG_ON(msg->middle);
3108
3109         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3110         if (!msg->middle)
3111                 return -ENOMEM;
3112         return 0;
3113 }
3114
3115 /*
3116  * Allocate a message for receiving an incoming message on a
3117  * connection, and save the result in con->in_msg.  Uses the
3118  * connection's private alloc_msg op if available.
3119  *
3120  * Returns 0 on success, or a negative error code.
3121  *
3122  * On success, if we set *skip = 1:
3123  *  - the next message should be skipped and ignored.
3124  *  - con->in_msg == NULL
3125  * or if we set *skip = 0:
3126  *  - con->in_msg is non-null.
3127  * On error (ENOMEM, EAGAIN, ...),
3128  *  - con->in_msg == NULL
3129  */
3130 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3131 {
3132         struct ceph_msg_header *hdr = &con->in_hdr;
3133         int middle_len = le32_to_cpu(hdr->middle_len);
3134         struct ceph_msg *msg;
3135         int ret = 0;
3136
3137         BUG_ON(con->in_msg != NULL);
3138         BUG_ON(!con->ops->alloc_msg);
3139
3140         mutex_unlock(&con->mutex);
3141         msg = con->ops->alloc_msg(con, hdr, skip);
3142         mutex_lock(&con->mutex);
3143         if (con->state != CON_STATE_OPEN) {
3144                 if (msg)
3145                         ceph_msg_put(msg);
3146                 return -EAGAIN;
3147         }
3148         if (msg) {
3149                 BUG_ON(*skip);
3150                 con->in_msg = msg;
3151                 con->in_msg->con = con->ops->get(con);
3152                 BUG_ON(con->in_msg->con == NULL);
3153         } else {
3154                 /*
3155                  * Null message pointer means either we should skip
3156                  * this message or we couldn't allocate memory.  The
3157                  * former is not an error.
3158                  */
3159                 if (*skip)
3160                         return 0;
3161                 con->error_msg = "error allocating memory for incoming message";
3162
3163                 return -ENOMEM;
3164         }
3165         memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3166
3167         if (middle_len && !con->in_msg->middle) {
3168                 ret = ceph_alloc_middle(con, con->in_msg);
3169                 if (ret < 0) {
3170                         ceph_msg_put(con->in_msg);
3171                         con->in_msg = NULL;
3172                 }
3173         }
3174
3175         return ret;
3176 }
3177
3178
3179 /*
3180  * Free a generically kmalloc'd message.
3181  */
3182 void ceph_msg_kfree(struct ceph_msg *m)
3183 {
3184         dout("msg_kfree %p\n", m);
3185         if (m->front_is_vmalloc)
3186                 vfree(m->front.iov_base);
3187         else
3188                 kfree(m->front.iov_base);
3189         kfree(m);
3190 }
3191
3192 /*
3193  * Drop a msg ref.  Destroy as needed.
3194  */
3195 void ceph_msg_last_put(struct kref *kref)
3196 {
3197         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3198
3199         dout("ceph_msg_put last one on %p\n", m);
3200         WARN_ON(!list_empty(&m->list_head));
3201
3202         /* drop middle, data, if any */
3203         if (m->middle) {
3204                 ceph_buffer_put(m->middle);
3205                 m->middle = NULL;
3206         }
3207         ceph_msg_data_destroy(m->data);
3208         m->data = NULL;
3209         m->data_length = 0;
3210
3211         if (m->pool)
3212                 ceph_msgpool_put(m->pool, m);
3213         else
3214                 ceph_msg_kfree(m);
3215 }
3216 EXPORT_SYMBOL(ceph_msg_last_put);
3217
3218 void ceph_msg_dump(struct ceph_msg *msg)
3219 {
3220         pr_debug("msg_dump %p (front_max %d length %zd)\n", msg,
3221                  msg->front_max, msg->data->length);
3222         print_hex_dump(KERN_DEBUG, "header: ",
3223                        DUMP_PREFIX_OFFSET, 16, 1,
3224                        &msg->hdr, sizeof(msg->hdr), true);
3225         print_hex_dump(KERN_DEBUG, " front: ",
3226                        DUMP_PREFIX_OFFSET, 16, 1,
3227                        msg->front.iov_base, msg->front.iov_len, true);
3228         if (msg->middle)
3229                 print_hex_dump(KERN_DEBUG, "middle: ",
3230                                DUMP_PREFIX_OFFSET, 16, 1,
3231                                msg->middle->vec.iov_base,
3232                                msg->middle->vec.iov_len, true);
3233         print_hex_dump(KERN_DEBUG, "footer: ",
3234                        DUMP_PREFIX_OFFSET, 16, 1,
3235                        &msg->footer, sizeof(msg->footer), true);
3236 }
3237 EXPORT_SYMBOL(ceph_msg_dump);