]> Pileus Git - ~andy/linux/blob - net/ceph/messenger.c
libceph: implement pages array cursor
[~andy/linux] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef  CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif  /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17
18 #include <linux/ceph/libceph.h>
19 #include <linux/ceph/messenger.h>
20 #include <linux/ceph/decode.h>
21 #include <linux/ceph/pagelist.h>
22 #include <linux/export.h>
23
24 #define list_entry_next(pos, member)                                    \
25         list_entry(pos->member.next, typeof(*pos), member)
26
27 /*
28  * Ceph uses the messenger to exchange ceph_msg messages with other
29  * hosts in the system.  The messenger provides ordered and reliable
30  * delivery.  We tolerate TCP disconnects by reconnecting (with
31  * exponential backoff) in the case of a fault (disconnection, bad
32  * crc, protocol error).  Acks allow sent messages to be discarded by
33  * the sender.
34  */
35
36 /*
37  * We track the state of the socket on a given connection using
38  * values defined below.  The transition to a new socket state is
39  * handled by a function which verifies we aren't coming from an
40  * unexpected state.
41  *
42  *      --------
43  *      | NEW* |  transient initial state
44  *      --------
45  *          | con_sock_state_init()
46  *          v
47  *      ----------
48  *      | CLOSED |  initialized, but no socket (and no
49  *      ----------  TCP connection)
50  *       ^      \
51  *       |       \ con_sock_state_connecting()
52  *       |        ----------------------
53  *       |                              \
54  *       + con_sock_state_closed()       \
55  *       |+---------------------------    \
56  *       | \                          \    \
57  *       |  -----------                \    \
58  *       |  | CLOSING |  socket event;  \    \
59  *       |  -----------  await close     \    \
60  *       |       ^                        \   |
61  *       |       |                         \  |
62  *       |       + con_sock_state_closing() \ |
63  *       |      / \                         | |
64  *       |     /   ---------------          | |
65  *       |    /                   \         v v
66  *       |   /                    --------------
67  *       |  /    -----------------| CONNECTING |  socket created, TCP
68  *       |  |   /                 --------------  connect initiated
69  *       |  |   | con_sock_state_connected()
70  *       |  |   v
71  *      -------------
72  *      | CONNECTED |  TCP connection established
73  *      -------------
74  *
75  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
76  */
77
78 #define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
79 #define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
80 #define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
81 #define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
82 #define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
83
84 /*
85  * connection states
86  */
87 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
88 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
89 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
90 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
91 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
92 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
93
94 /*
95  * ceph_connection flag bits
96  */
97 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
98                                        * messages on errors */
99 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
100 #define CON_FLAG_WRITE_PENDING     2  /* we have data ready to send */
101 #define CON_FLAG_SOCK_CLOSED       3  /* socket state changed to closed */
102 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
103
104 static bool con_flag_valid(unsigned long con_flag)
105 {
106         switch (con_flag) {
107         case CON_FLAG_LOSSYTX:
108         case CON_FLAG_KEEPALIVE_PENDING:
109         case CON_FLAG_WRITE_PENDING:
110         case CON_FLAG_SOCK_CLOSED:
111         case CON_FLAG_BACKOFF:
112                 return true;
113         default:
114                 return false;
115         }
116 }
117
118 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
119 {
120         BUG_ON(!con_flag_valid(con_flag));
121
122         clear_bit(con_flag, &con->flags);
123 }
124
125 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
126 {
127         BUG_ON(!con_flag_valid(con_flag));
128
129         set_bit(con_flag, &con->flags);
130 }
131
132 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
133 {
134         BUG_ON(!con_flag_valid(con_flag));
135
136         return test_bit(con_flag, &con->flags);
137 }
138
139 static bool con_flag_test_and_clear(struct ceph_connection *con,
140                                         unsigned long con_flag)
141 {
142         BUG_ON(!con_flag_valid(con_flag));
143
144         return test_and_clear_bit(con_flag, &con->flags);
145 }
146
147 static bool con_flag_test_and_set(struct ceph_connection *con,
148                                         unsigned long con_flag)
149 {
150         BUG_ON(!con_flag_valid(con_flag));
151
152         return test_and_set_bit(con_flag, &con->flags);
153 }
154
155 /* static tag bytes (protocol control messages) */
156 static char tag_msg = CEPH_MSGR_TAG_MSG;
157 static char tag_ack = CEPH_MSGR_TAG_ACK;
158 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
159
160 #ifdef CONFIG_LOCKDEP
161 static struct lock_class_key socket_class;
162 #endif
163
164 /*
165  * When skipping (ignoring) a block of input we read it into a "skip
166  * buffer," which is this many bytes in size.
167  */
168 #define SKIP_BUF_SIZE   1024
169
170 static void queue_con(struct ceph_connection *con);
171 static void con_work(struct work_struct *);
172 static void con_fault(struct ceph_connection *con);
173
174 /*
175  * Nicely render a sockaddr as a string.  An array of formatted
176  * strings is used, to approximate reentrancy.
177  */
178 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
179 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
180 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
181 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
182
183 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
184 static atomic_t addr_str_seq = ATOMIC_INIT(0);
185
186 static struct page *zero_page;          /* used in certain error cases */
187
188 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
189 {
190         int i;
191         char *s;
192         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
193         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
194
195         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
196         s = addr_str[i];
197
198         switch (ss->ss_family) {
199         case AF_INET:
200                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
201                          ntohs(in4->sin_port));
202                 break;
203
204         case AF_INET6:
205                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
206                          ntohs(in6->sin6_port));
207                 break;
208
209         default:
210                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
211                          ss->ss_family);
212         }
213
214         return s;
215 }
216 EXPORT_SYMBOL(ceph_pr_addr);
217
218 static void encode_my_addr(struct ceph_messenger *msgr)
219 {
220         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
221         ceph_encode_addr(&msgr->my_enc_addr);
222 }
223
224 /*
225  * work queue for all reading and writing to/from the socket.
226  */
227 static struct workqueue_struct *ceph_msgr_wq;
228
229 static void _ceph_msgr_exit(void)
230 {
231         if (ceph_msgr_wq) {
232                 destroy_workqueue(ceph_msgr_wq);
233                 ceph_msgr_wq = NULL;
234         }
235
236         BUG_ON(zero_page == NULL);
237         kunmap(zero_page);
238         page_cache_release(zero_page);
239         zero_page = NULL;
240 }
241
242 int ceph_msgr_init(void)
243 {
244         BUG_ON(zero_page != NULL);
245         zero_page = ZERO_PAGE(0);
246         page_cache_get(zero_page);
247
248         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
249         if (ceph_msgr_wq)
250                 return 0;
251
252         pr_err("msgr_init failed to create workqueue\n");
253         _ceph_msgr_exit();
254
255         return -ENOMEM;
256 }
257 EXPORT_SYMBOL(ceph_msgr_init);
258
259 void ceph_msgr_exit(void)
260 {
261         BUG_ON(ceph_msgr_wq == NULL);
262
263         _ceph_msgr_exit();
264 }
265 EXPORT_SYMBOL(ceph_msgr_exit);
266
267 void ceph_msgr_flush(void)
268 {
269         flush_workqueue(ceph_msgr_wq);
270 }
271 EXPORT_SYMBOL(ceph_msgr_flush);
272
273 /* Connection socket state transition functions */
274
275 static void con_sock_state_init(struct ceph_connection *con)
276 {
277         int old_state;
278
279         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
280         if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
281                 printk("%s: unexpected old state %d\n", __func__, old_state);
282         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
283              CON_SOCK_STATE_CLOSED);
284 }
285
286 static void con_sock_state_connecting(struct ceph_connection *con)
287 {
288         int old_state;
289
290         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
291         if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
292                 printk("%s: unexpected old state %d\n", __func__, old_state);
293         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
294              CON_SOCK_STATE_CONNECTING);
295 }
296
297 static void con_sock_state_connected(struct ceph_connection *con)
298 {
299         int old_state;
300
301         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
302         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
303                 printk("%s: unexpected old state %d\n", __func__, old_state);
304         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
305              CON_SOCK_STATE_CONNECTED);
306 }
307
308 static void con_sock_state_closing(struct ceph_connection *con)
309 {
310         int old_state;
311
312         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
313         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
314                         old_state != CON_SOCK_STATE_CONNECTED &&
315                         old_state != CON_SOCK_STATE_CLOSING))
316                 printk("%s: unexpected old state %d\n", __func__, old_state);
317         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
318              CON_SOCK_STATE_CLOSING);
319 }
320
321 static void con_sock_state_closed(struct ceph_connection *con)
322 {
323         int old_state;
324
325         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
326         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
327                     old_state != CON_SOCK_STATE_CLOSING &&
328                     old_state != CON_SOCK_STATE_CONNECTING &&
329                     old_state != CON_SOCK_STATE_CLOSED))
330                 printk("%s: unexpected old state %d\n", __func__, old_state);
331         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
332              CON_SOCK_STATE_CLOSED);
333 }
334
335 /*
336  * socket callback functions
337  */
338
339 /* data available on socket, or listen socket received a connect */
340 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
341 {
342         struct ceph_connection *con = sk->sk_user_data;
343         if (atomic_read(&con->msgr->stopping)) {
344                 return;
345         }
346
347         if (sk->sk_state != TCP_CLOSE_WAIT) {
348                 dout("%s on %p state = %lu, queueing work\n", __func__,
349                      con, con->state);
350                 queue_con(con);
351         }
352 }
353
354 /* socket has buffer space for writing */
355 static void ceph_sock_write_space(struct sock *sk)
356 {
357         struct ceph_connection *con = sk->sk_user_data;
358
359         /* only queue to workqueue if there is data we want to write,
360          * and there is sufficient space in the socket buffer to accept
361          * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
362          * doesn't get called again until try_write() fills the socket
363          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
364          * and net/core/stream.c:sk_stream_write_space().
365          */
366         if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
367                 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
368                         dout("%s %p queueing write work\n", __func__, con);
369                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
370                         queue_con(con);
371                 }
372         } else {
373                 dout("%s %p nothing to write\n", __func__, con);
374         }
375 }
376
377 /* socket's state has changed */
378 static void ceph_sock_state_change(struct sock *sk)
379 {
380         struct ceph_connection *con = sk->sk_user_data;
381
382         dout("%s %p state = %lu sk_state = %u\n", __func__,
383              con, con->state, sk->sk_state);
384
385         switch (sk->sk_state) {
386         case TCP_CLOSE:
387                 dout("%s TCP_CLOSE\n", __func__);
388         case TCP_CLOSE_WAIT:
389                 dout("%s TCP_CLOSE_WAIT\n", __func__);
390                 con_sock_state_closing(con);
391                 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
392                 queue_con(con);
393                 break;
394         case TCP_ESTABLISHED:
395                 dout("%s TCP_ESTABLISHED\n", __func__);
396                 con_sock_state_connected(con);
397                 queue_con(con);
398                 break;
399         default:        /* Everything else is uninteresting */
400                 break;
401         }
402 }
403
404 /*
405  * set up socket callbacks
406  */
407 static void set_sock_callbacks(struct socket *sock,
408                                struct ceph_connection *con)
409 {
410         struct sock *sk = sock->sk;
411         sk->sk_user_data = con;
412         sk->sk_data_ready = ceph_sock_data_ready;
413         sk->sk_write_space = ceph_sock_write_space;
414         sk->sk_state_change = ceph_sock_state_change;
415 }
416
417
418 /*
419  * socket helpers
420  */
421
422 /*
423  * initiate connection to a remote socket.
424  */
425 static int ceph_tcp_connect(struct ceph_connection *con)
426 {
427         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
428         struct socket *sock;
429         int ret;
430
431         BUG_ON(con->sock);
432         ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
433                                IPPROTO_TCP, &sock);
434         if (ret)
435                 return ret;
436         sock->sk->sk_allocation = GFP_NOFS;
437
438 #ifdef CONFIG_LOCKDEP
439         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
440 #endif
441
442         set_sock_callbacks(sock, con);
443
444         dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
445
446         con_sock_state_connecting(con);
447         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
448                                  O_NONBLOCK);
449         if (ret == -EINPROGRESS) {
450                 dout("connect %s EINPROGRESS sk_state = %u\n",
451                      ceph_pr_addr(&con->peer_addr.in_addr),
452                      sock->sk->sk_state);
453         } else if (ret < 0) {
454                 pr_err("connect %s error %d\n",
455                        ceph_pr_addr(&con->peer_addr.in_addr), ret);
456                 sock_release(sock);
457                 con->error_msg = "connect error";
458
459                 return ret;
460         }
461         con->sock = sock;
462         return 0;
463 }
464
465 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
466 {
467         struct kvec iov = {buf, len};
468         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
469         int r;
470
471         r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
472         if (r == -EAGAIN)
473                 r = 0;
474         return r;
475 }
476
477 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
478                      int page_offset, size_t length)
479 {
480         void *kaddr;
481         int ret;
482
483         BUG_ON(page_offset + length > PAGE_SIZE);
484
485         kaddr = kmap(page);
486         BUG_ON(!kaddr);
487         ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
488         kunmap(page);
489
490         return ret;
491 }
492
493 /*
494  * write something.  @more is true if caller will be sending more data
495  * shortly.
496  */
497 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
498                      size_t kvlen, size_t len, int more)
499 {
500         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
501         int r;
502
503         if (more)
504                 msg.msg_flags |= MSG_MORE;
505         else
506                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
507
508         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
509         if (r == -EAGAIN)
510                 r = 0;
511         return r;
512 }
513
514 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
515                      int offset, size_t size, bool more)
516 {
517         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
518         int ret;
519
520         ret = kernel_sendpage(sock, page, offset, size, flags);
521         if (ret == -EAGAIN)
522                 ret = 0;
523
524         return ret;
525 }
526
527
528 /*
529  * Shutdown/close the socket for the given connection.
530  */
531 static int con_close_socket(struct ceph_connection *con)
532 {
533         int rc = 0;
534
535         dout("con_close_socket on %p sock %p\n", con, con->sock);
536         if (con->sock) {
537                 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
538                 sock_release(con->sock);
539                 con->sock = NULL;
540         }
541
542         /*
543          * Forcibly clear the SOCK_CLOSED flag.  It gets set
544          * independent of the connection mutex, and we could have
545          * received a socket close event before we had the chance to
546          * shut the socket down.
547          */
548         con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
549
550         con_sock_state_closed(con);
551         return rc;
552 }
553
554 /*
555  * Reset a connection.  Discard all incoming and outgoing messages
556  * and clear *_seq state.
557  */
558 static void ceph_msg_remove(struct ceph_msg *msg)
559 {
560         list_del_init(&msg->list_head);
561         BUG_ON(msg->con == NULL);
562         msg->con->ops->put(msg->con);
563         msg->con = NULL;
564
565         ceph_msg_put(msg);
566 }
567 static void ceph_msg_remove_list(struct list_head *head)
568 {
569         while (!list_empty(head)) {
570                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
571                                                         list_head);
572                 ceph_msg_remove(msg);
573         }
574 }
575
576 static void reset_connection(struct ceph_connection *con)
577 {
578         /* reset connection, out_queue, msg_ and connect_seq */
579         /* discard existing out_queue and msg_seq */
580         dout("reset_connection %p\n", con);
581         ceph_msg_remove_list(&con->out_queue);
582         ceph_msg_remove_list(&con->out_sent);
583
584         if (con->in_msg) {
585                 BUG_ON(con->in_msg->con != con);
586                 con->in_msg->con = NULL;
587                 ceph_msg_put(con->in_msg);
588                 con->in_msg = NULL;
589                 con->ops->put(con);
590         }
591
592         con->connect_seq = 0;
593         con->out_seq = 0;
594         if (con->out_msg) {
595                 ceph_msg_put(con->out_msg);
596                 con->out_msg = NULL;
597         }
598         con->in_seq = 0;
599         con->in_seq_acked = 0;
600 }
601
602 /*
603  * mark a peer down.  drop any open connections.
604  */
605 void ceph_con_close(struct ceph_connection *con)
606 {
607         mutex_lock(&con->mutex);
608         dout("con_close %p peer %s\n", con,
609              ceph_pr_addr(&con->peer_addr.in_addr));
610         con->state = CON_STATE_CLOSED;
611
612         con_flag_clear(con, CON_FLAG_LOSSYTX);  /* so we retry next connect */
613         con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
614         con_flag_clear(con, CON_FLAG_WRITE_PENDING);
615         con_flag_clear(con, CON_FLAG_BACKOFF);
616
617         reset_connection(con);
618         con->peer_global_seq = 0;
619         cancel_delayed_work(&con->work);
620         con_close_socket(con);
621         mutex_unlock(&con->mutex);
622 }
623 EXPORT_SYMBOL(ceph_con_close);
624
625 /*
626  * Reopen a closed connection, with a new peer address.
627  */
628 void ceph_con_open(struct ceph_connection *con,
629                    __u8 entity_type, __u64 entity_num,
630                    struct ceph_entity_addr *addr)
631 {
632         mutex_lock(&con->mutex);
633         dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
634
635         WARN_ON(con->state != CON_STATE_CLOSED);
636         con->state = CON_STATE_PREOPEN;
637
638         con->peer_name.type = (__u8) entity_type;
639         con->peer_name.num = cpu_to_le64(entity_num);
640
641         memcpy(&con->peer_addr, addr, sizeof(*addr));
642         con->delay = 0;      /* reset backoff memory */
643         mutex_unlock(&con->mutex);
644         queue_con(con);
645 }
646 EXPORT_SYMBOL(ceph_con_open);
647
648 /*
649  * return true if this connection ever successfully opened
650  */
651 bool ceph_con_opened(struct ceph_connection *con)
652 {
653         return con->connect_seq > 0;
654 }
655
656 /*
657  * initialize a new connection.
658  */
659 void ceph_con_init(struct ceph_connection *con, void *private,
660         const struct ceph_connection_operations *ops,
661         struct ceph_messenger *msgr)
662 {
663         dout("con_init %p\n", con);
664         memset(con, 0, sizeof(*con));
665         con->private = private;
666         con->ops = ops;
667         con->msgr = msgr;
668
669         con_sock_state_init(con);
670
671         mutex_init(&con->mutex);
672         INIT_LIST_HEAD(&con->out_queue);
673         INIT_LIST_HEAD(&con->out_sent);
674         INIT_DELAYED_WORK(&con->work, con_work);
675
676         con->state = CON_STATE_CLOSED;
677 }
678 EXPORT_SYMBOL(ceph_con_init);
679
680
681 /*
682  * We maintain a global counter to order connection attempts.  Get
683  * a unique seq greater than @gt.
684  */
685 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
686 {
687         u32 ret;
688
689         spin_lock(&msgr->global_seq_lock);
690         if (msgr->global_seq < gt)
691                 msgr->global_seq = gt;
692         ret = ++msgr->global_seq;
693         spin_unlock(&msgr->global_seq_lock);
694         return ret;
695 }
696
697 static void con_out_kvec_reset(struct ceph_connection *con)
698 {
699         con->out_kvec_left = 0;
700         con->out_kvec_bytes = 0;
701         con->out_kvec_cur = &con->out_kvec[0];
702 }
703
704 static void con_out_kvec_add(struct ceph_connection *con,
705                                 size_t size, void *data)
706 {
707         int index;
708
709         index = con->out_kvec_left;
710         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
711
712         con->out_kvec[index].iov_len = size;
713         con->out_kvec[index].iov_base = data;
714         con->out_kvec_left++;
715         con->out_kvec_bytes += size;
716 }
717
718 #ifdef CONFIG_BLOCK
719 static void init_bio_iter(struct bio *bio, struct bio **bio_iter,
720                         unsigned int *bio_seg)
721 {
722         if (!bio) {
723                 *bio_iter = NULL;
724                 *bio_seg = 0;
725                 return;
726         }
727         *bio_iter = bio;
728         *bio_seg = (unsigned int) bio->bi_idx;
729 }
730
731 static void iter_bio_next(struct bio **bio_iter, unsigned int *seg)
732 {
733         if (*bio_iter == NULL)
734                 return;
735
736         BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
737
738         (*seg)++;
739         if (*seg == (*bio_iter)->bi_vcnt)
740                 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
741 }
742
743 /*
744  * For a bio data item, a piece is whatever remains of the next
745  * entry in the current bio iovec, or the first entry in the next
746  * bio in the list.
747  */
748 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data *data)
749 {
750         struct ceph_msg_data_cursor *cursor = &data->cursor;
751         struct bio *bio;
752
753         BUG_ON(data->type != CEPH_MSG_DATA_BIO);
754
755         bio = data->bio;
756         BUG_ON(!bio);
757         BUG_ON(!bio->bi_vcnt);
758         /* resid = bio->bi_size */
759
760         cursor->bio = bio;
761         cursor->vector_index = 0;
762         cursor->vector_offset = 0;
763         cursor->last_piece = !bio->bi_next && bio->bi_vcnt == 1;
764 }
765
766 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data *data,
767                                                 size_t *page_offset,
768                                                 size_t *length)
769 {
770         struct ceph_msg_data_cursor *cursor = &data->cursor;
771         struct bio *bio;
772         struct bio_vec *bio_vec;
773         unsigned int index;
774
775         BUG_ON(data->type != CEPH_MSG_DATA_BIO);
776
777         bio = cursor->bio;
778         BUG_ON(!bio);
779
780         index = cursor->vector_index;
781         BUG_ON(index >= (unsigned int) bio->bi_vcnt);
782
783         bio_vec = &bio->bi_io_vec[index];
784         BUG_ON(cursor->vector_offset >= bio_vec->bv_len);
785         *page_offset = (size_t) (bio_vec->bv_offset + cursor->vector_offset);
786         BUG_ON(*page_offset >= PAGE_SIZE);
787         *length = (size_t) (bio_vec->bv_len - cursor->vector_offset);
788         BUG_ON(*length > PAGE_SIZE);
789
790         return bio_vec->bv_page;
791 }
792
793 static bool ceph_msg_data_bio_advance(struct ceph_msg_data *data, size_t bytes)
794 {
795         struct ceph_msg_data_cursor *cursor = &data->cursor;
796         struct bio *bio;
797         struct bio_vec *bio_vec;
798         unsigned int index;
799
800         BUG_ON(data->type != CEPH_MSG_DATA_BIO);
801
802         bio = cursor->bio;
803         BUG_ON(!bio);
804
805         index = cursor->vector_index;
806         BUG_ON(index >= (unsigned int) bio->bi_vcnt);
807         bio_vec = &bio->bi_io_vec[index];
808         BUG_ON(cursor->vector_offset + bytes > bio_vec->bv_len);
809
810         /* Advance the cursor offset */
811
812         cursor->vector_offset += bytes;
813         if (cursor->vector_offset < bio_vec->bv_len)
814                 return false;   /* more bytes to process in this segment */
815
816         /* Move on to the next segment, and possibly the next bio */
817
818         if (++cursor->vector_index == (unsigned int) bio->bi_vcnt) {
819                 bio = bio->bi_next;
820                 cursor->bio = bio;
821                 cursor->vector_index = 0;
822         }
823         cursor->vector_offset = 0;
824
825         if (!cursor->last_piece && bio && !bio->bi_next)
826                 if (cursor->vector_index == (unsigned int) bio->bi_vcnt - 1)
827                         cursor->last_piece = true;
828
829         return true;
830 }
831 #endif
832
833 /*
834  * For a page array, a piece comes from the first page in the array
835  * that has not already been fully consumed.
836  */
837 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data *data)
838 {
839         struct ceph_msg_data_cursor *cursor = &data->cursor;
840         int page_count;
841
842         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
843
844         BUG_ON(!data->pages);
845         BUG_ON(!data->length);
846
847         page_count = calc_pages_for(data->alignment, (u64)data->length);
848         BUG_ON(page_count > (int) USHRT_MAX);
849         cursor->resid = data->length;
850         cursor->page_offset = data->alignment & ~PAGE_MASK;
851         cursor->page_index = 0;
852         cursor->page_count = (unsigned short) page_count;
853         cursor->last_piece = cursor->page_count == 1;
854 }
855
856 static struct page *ceph_msg_data_pages_next(struct ceph_msg_data *data,
857                                         size_t *page_offset,
858                                         size_t *length)
859 {
860         struct ceph_msg_data_cursor *cursor = &data->cursor;
861
862         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
863
864         BUG_ON(cursor->page_index >= cursor->page_count);
865         BUG_ON(cursor->page_offset >= PAGE_SIZE);
866         BUG_ON(!cursor->resid);
867
868         *page_offset = cursor->page_offset;
869         if (cursor->last_piece) {
870                 BUG_ON(*page_offset + cursor->resid > PAGE_SIZE);
871                 *length = cursor->resid;
872         } else {
873                 *length = PAGE_SIZE - *page_offset;
874         }
875
876         return data->pages[cursor->page_index];
877 }
878
879 static bool ceph_msg_data_pages_advance(struct ceph_msg_data *data,
880                                                 size_t bytes)
881 {
882         struct ceph_msg_data_cursor *cursor = &data->cursor;
883
884         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
885
886         BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
887         BUG_ON(bytes > cursor->resid);
888
889         /* Advance the cursor page offset */
890
891         cursor->resid -= bytes;
892         cursor->page_offset += bytes;
893         if (!bytes || cursor->page_offset & ~PAGE_MASK)
894                 return false;   /* more bytes to process in the current page */
895
896         /* Move on to the next page */
897
898         BUG_ON(cursor->page_index >= cursor->page_count);
899         cursor->page_offset = 0;
900         cursor->page_index++;
901         cursor->last_piece = cursor->page_index == cursor->page_count - 1;
902
903         return true;
904 }
905
906 /*
907  * For a pagelist, a piece is whatever remains to be consumed in the
908  * first page in the list, or the front of the next page.
909  */
910 static void ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data *data)
911 {
912         struct ceph_msg_data_cursor *cursor = &data->cursor;
913         struct ceph_pagelist *pagelist;
914         struct page *page;
915
916         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
917
918         pagelist = data->pagelist;
919         BUG_ON(!pagelist);
920         if (!pagelist->length)
921                 return;         /* pagelist can be assigned but empty */
922
923         BUG_ON(list_empty(&pagelist->head));
924         page = list_first_entry(&pagelist->head, struct page, lru);
925
926         cursor->page = page;
927         cursor->offset = 0;
928         cursor->last_piece = pagelist->length <= PAGE_SIZE;
929 }
930
931 static struct page *ceph_msg_data_pagelist_next(struct ceph_msg_data *data,
932                                                 size_t *page_offset,
933                                                 size_t *length)
934 {
935         struct ceph_msg_data_cursor *cursor = &data->cursor;
936         struct ceph_pagelist *pagelist;
937         size_t piece_end;
938
939         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
940
941         pagelist = data->pagelist;
942         BUG_ON(!pagelist);
943
944         BUG_ON(!cursor->page);
945         BUG_ON(cursor->offset >= pagelist->length);
946
947         if (cursor->last_piece) {
948                 /* pagelist offset is always 0 */
949                 piece_end = pagelist->length & ~PAGE_MASK;
950                 if (!piece_end)
951                         piece_end = PAGE_SIZE;
952         } else {
953                 piece_end = PAGE_SIZE;
954         }
955         *page_offset = cursor->offset & ~PAGE_MASK;
956         *length = piece_end - *page_offset;
957
958         return data->cursor.page;
959 }
960
961 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data *data,
962                                                 size_t bytes)
963 {
964         struct ceph_msg_data_cursor *cursor = &data->cursor;
965         struct ceph_pagelist *pagelist;
966
967         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
968
969         pagelist = data->pagelist;
970         BUG_ON(!pagelist);
971         BUG_ON(!cursor->page);
972         BUG_ON(cursor->offset + bytes > pagelist->length);
973         BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
974
975         /* Advance the cursor offset */
976
977         cursor->offset += bytes;
978         /* pagelist offset is always 0 */
979         if (!bytes || cursor->offset & ~PAGE_MASK)
980                 return false;   /* more bytes to process in the current page */
981
982         /* Move on to the next page */
983
984         BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
985         cursor->page = list_entry_next(cursor->page, lru);
986
987         /* cursor offset is at page boundary; pagelist offset is always 0 */
988         if (pagelist->length - cursor->offset <= PAGE_SIZE)
989                 cursor->last_piece = true;
990
991         return true;
992 }
993
994 /*
995  * Message data is handled (sent or received) in pieces, where each
996  * piece resides on a single page.  The network layer might not
997  * consume an entire piece at once.  A data item's cursor keeps
998  * track of which piece is next to process and how much remains to
999  * be processed in that piece.  It also tracks whether the current
1000  * piece is the last one in the data item.
1001  */
1002 static void ceph_msg_data_cursor_init(struct ceph_msg_data *data)
1003 {
1004         switch (data->type) {
1005         case CEPH_MSG_DATA_PAGELIST:
1006                 ceph_msg_data_pagelist_cursor_init(data);
1007                 break;
1008         case CEPH_MSG_DATA_PAGES:
1009                 ceph_msg_data_pages_cursor_init(data);
1010                 break;
1011 #ifdef CONFIG_BLOCK
1012         case CEPH_MSG_DATA_BIO:
1013                 ceph_msg_data_bio_cursor_init(data);
1014                 break;
1015 #endif /* CONFIG_BLOCK */
1016         case CEPH_MSG_DATA_NONE:
1017         default:
1018                 /* BUG(); */
1019                 break;
1020         }
1021 }
1022
1023 /*
1024  * Return the page containing the next piece to process for a given
1025  * data item, and supply the page offset and length of that piece.
1026  * Indicate whether this is the last piece in this data item.
1027  */
1028 static struct page *ceph_msg_data_next(struct ceph_msg_data *data,
1029                                         size_t *page_offset,
1030                                         size_t *length,
1031                                         bool *last_piece)
1032 {
1033         struct page *page;
1034
1035         switch (data->type) {
1036         case CEPH_MSG_DATA_PAGELIST:
1037                 page = ceph_msg_data_pagelist_next(data, page_offset, length);
1038                 break;
1039         case CEPH_MSG_DATA_PAGES:
1040                 page = ceph_msg_data_pages_next(data, page_offset, length);
1041                 break;
1042 #ifdef CONFIG_BLOCK
1043         case CEPH_MSG_DATA_BIO:
1044                 page = ceph_msg_data_bio_next(data, page_offset, length);
1045                 break;
1046 #endif /* CONFIG_BLOCK */
1047         case CEPH_MSG_DATA_NONE:
1048         default:
1049                 page = NULL;
1050                 break;
1051         }
1052         BUG_ON(!page);
1053         BUG_ON(*page_offset + *length > PAGE_SIZE);
1054         BUG_ON(!*length);
1055         if (last_piece)
1056                 *last_piece = data->cursor.last_piece;
1057
1058         return page;
1059 }
1060
1061 /*
1062  * Returns true if the result moves the cursor on to the next piece
1063  * of the data item.
1064  */
1065 static bool ceph_msg_data_advance(struct ceph_msg_data *data, size_t bytes)
1066 {
1067         bool new_piece;
1068
1069         switch (data->type) {
1070         case CEPH_MSG_DATA_PAGELIST:
1071                 new_piece = ceph_msg_data_pagelist_advance(data, bytes);
1072                 break;
1073         case CEPH_MSG_DATA_PAGES:
1074                 new_piece = ceph_msg_data_pages_advance(data, bytes);
1075                 break;
1076 #ifdef CONFIG_BLOCK
1077         case CEPH_MSG_DATA_BIO:
1078                 new_piece = ceph_msg_data_bio_advance(data, bytes);
1079                 break;
1080 #endif /* CONFIG_BLOCK */
1081         case CEPH_MSG_DATA_NONE:
1082         default:
1083                 BUG();
1084                 break;
1085         }
1086
1087         return new_piece;
1088 }
1089
1090 static void prepare_message_data(struct ceph_msg *msg,
1091                                 struct ceph_msg_pos *msg_pos)
1092 {
1093         BUG_ON(!msg);
1094         BUG_ON(!msg->hdr.data_len);
1095
1096         /* initialize page iterator */
1097         msg_pos->page = 0;
1098         if (ceph_msg_has_pages(msg))
1099                 msg_pos->page_pos = msg->p.alignment;
1100         else
1101                 msg_pos->page_pos = 0;
1102 #ifdef CONFIG_BLOCK
1103         if (ceph_msg_has_bio(msg))
1104                 init_bio_iter(msg->b.bio, &msg->b.bio_iter, &msg->b.bio_seg);
1105 #endif
1106         msg_pos->data_pos = 0;
1107
1108         /* Initialize data cursors */
1109
1110 #ifdef CONFIG_BLOCK
1111         if (ceph_msg_has_bio(msg))
1112                 ceph_msg_data_cursor_init(&msg->b);
1113 #endif /* CONFIG_BLOCK */
1114         if (ceph_msg_has_pages(msg))
1115                 ceph_msg_data_cursor_init(&msg->p);
1116         if (ceph_msg_has_pagelist(msg))
1117                 ceph_msg_data_cursor_init(&msg->l);
1118         if (ceph_msg_has_trail(msg))
1119                 ceph_msg_data_cursor_init(&msg->t);
1120
1121         msg_pos->did_page_crc = false;
1122 }
1123
1124 /*
1125  * Prepare footer for currently outgoing message, and finish things
1126  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1127  */
1128 static void prepare_write_message_footer(struct ceph_connection *con)
1129 {
1130         struct ceph_msg *m = con->out_msg;
1131         int v = con->out_kvec_left;
1132
1133         m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1134
1135         dout("prepare_write_message_footer %p\n", con);
1136         con->out_kvec_is_msg = true;
1137         con->out_kvec[v].iov_base = &m->footer;
1138         con->out_kvec[v].iov_len = sizeof(m->footer);
1139         con->out_kvec_bytes += sizeof(m->footer);
1140         con->out_kvec_left++;
1141         con->out_more = m->more_to_follow;
1142         con->out_msg_done = true;
1143 }
1144
1145 /*
1146  * Prepare headers for the next outgoing message.
1147  */
1148 static void prepare_write_message(struct ceph_connection *con)
1149 {
1150         struct ceph_msg *m;
1151         u32 crc;
1152
1153         con_out_kvec_reset(con);
1154         con->out_kvec_is_msg = true;
1155         con->out_msg_done = false;
1156
1157         /* Sneak an ack in there first?  If we can get it into the same
1158          * TCP packet that's a good thing. */
1159         if (con->in_seq > con->in_seq_acked) {
1160                 con->in_seq_acked = con->in_seq;
1161                 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1162                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1163                 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1164                         &con->out_temp_ack);
1165         }
1166
1167         BUG_ON(list_empty(&con->out_queue));
1168         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1169         con->out_msg = m;
1170         BUG_ON(m->con != con);
1171
1172         /* put message on sent list */
1173         ceph_msg_get(m);
1174         list_move_tail(&m->list_head, &con->out_sent);
1175
1176         /*
1177          * only assign outgoing seq # if we haven't sent this message
1178          * yet.  if it is requeued, resend with it's original seq.
1179          */
1180         if (m->needs_out_seq) {
1181                 m->hdr.seq = cpu_to_le64(++con->out_seq);
1182                 m->needs_out_seq = false;
1183         }
1184
1185         dout("prepare_write_message %p seq %lld type %d len %d+%d+%d (%zd)\n",
1186              m, con->out_seq, le16_to_cpu(m->hdr.type),
1187              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1188              le32_to_cpu(m->hdr.data_len), m->p.length);
1189         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1190
1191         /* tag + hdr + front + middle */
1192         con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1193         con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1194         con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1195
1196         if (m->middle)
1197                 con_out_kvec_add(con, m->middle->vec.iov_len,
1198                         m->middle->vec.iov_base);
1199
1200         /* fill in crc (except data pages), footer */
1201         crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1202         con->out_msg->hdr.crc = cpu_to_le32(crc);
1203         con->out_msg->footer.flags = 0;
1204
1205         crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1206         con->out_msg->footer.front_crc = cpu_to_le32(crc);
1207         if (m->middle) {
1208                 crc = crc32c(0, m->middle->vec.iov_base,
1209                                 m->middle->vec.iov_len);
1210                 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1211         } else
1212                 con->out_msg->footer.middle_crc = 0;
1213         dout("%s front_crc %u middle_crc %u\n", __func__,
1214              le32_to_cpu(con->out_msg->footer.front_crc),
1215              le32_to_cpu(con->out_msg->footer.middle_crc));
1216
1217         /* is there a data payload? */
1218         con->out_msg->footer.data_crc = 0;
1219         if (m->hdr.data_len) {
1220                 prepare_message_data(con->out_msg, &con->out_msg_pos);
1221                 con->out_more = 1;  /* data + footer will follow */
1222         } else {
1223                 /* no, queue up footer too and be done */
1224                 prepare_write_message_footer(con);
1225         }
1226
1227         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1228 }
1229
1230 /*
1231  * Prepare an ack.
1232  */
1233 static void prepare_write_ack(struct ceph_connection *con)
1234 {
1235         dout("prepare_write_ack %p %llu -> %llu\n", con,
1236              con->in_seq_acked, con->in_seq);
1237         con->in_seq_acked = con->in_seq;
1238
1239         con_out_kvec_reset(con);
1240
1241         con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1242
1243         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1244         con_out_kvec_add(con, sizeof (con->out_temp_ack),
1245                                 &con->out_temp_ack);
1246
1247         con->out_more = 1;  /* more will follow.. eventually.. */
1248         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1249 }
1250
1251 /*
1252  * Prepare to write keepalive byte.
1253  */
1254 static void prepare_write_keepalive(struct ceph_connection *con)
1255 {
1256         dout("prepare_write_keepalive %p\n", con);
1257         con_out_kvec_reset(con);
1258         con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1259         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1260 }
1261
1262 /*
1263  * Connection negotiation.
1264  */
1265
1266 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1267                                                 int *auth_proto)
1268 {
1269         struct ceph_auth_handshake *auth;
1270
1271         if (!con->ops->get_authorizer) {
1272                 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1273                 con->out_connect.authorizer_len = 0;
1274                 return NULL;
1275         }
1276
1277         /* Can't hold the mutex while getting authorizer */
1278         mutex_unlock(&con->mutex);
1279         auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1280         mutex_lock(&con->mutex);
1281
1282         if (IS_ERR(auth))
1283                 return auth;
1284         if (con->state != CON_STATE_NEGOTIATING)
1285                 return ERR_PTR(-EAGAIN);
1286
1287         con->auth_reply_buf = auth->authorizer_reply_buf;
1288         con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1289         return auth;
1290 }
1291
1292 /*
1293  * We connected to a peer and are saying hello.
1294  */
1295 static void prepare_write_banner(struct ceph_connection *con)
1296 {
1297         con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1298         con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1299                                         &con->msgr->my_enc_addr);
1300
1301         con->out_more = 0;
1302         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1303 }
1304
1305 static int prepare_write_connect(struct ceph_connection *con)
1306 {
1307         unsigned int global_seq = get_global_seq(con->msgr, 0);
1308         int proto;
1309         int auth_proto;
1310         struct ceph_auth_handshake *auth;
1311
1312         switch (con->peer_name.type) {
1313         case CEPH_ENTITY_TYPE_MON:
1314                 proto = CEPH_MONC_PROTOCOL;
1315                 break;
1316         case CEPH_ENTITY_TYPE_OSD:
1317                 proto = CEPH_OSDC_PROTOCOL;
1318                 break;
1319         case CEPH_ENTITY_TYPE_MDS:
1320                 proto = CEPH_MDSC_PROTOCOL;
1321                 break;
1322         default:
1323                 BUG();
1324         }
1325
1326         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1327              con->connect_seq, global_seq, proto);
1328
1329         con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1330         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1331         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1332         con->out_connect.global_seq = cpu_to_le32(global_seq);
1333         con->out_connect.protocol_version = cpu_to_le32(proto);
1334         con->out_connect.flags = 0;
1335
1336         auth_proto = CEPH_AUTH_UNKNOWN;
1337         auth = get_connect_authorizer(con, &auth_proto);
1338         if (IS_ERR(auth))
1339                 return PTR_ERR(auth);
1340
1341         con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1342         con->out_connect.authorizer_len = auth ?
1343                 cpu_to_le32(auth->authorizer_buf_len) : 0;
1344
1345         con_out_kvec_add(con, sizeof (con->out_connect),
1346                                         &con->out_connect);
1347         if (auth && auth->authorizer_buf_len)
1348                 con_out_kvec_add(con, auth->authorizer_buf_len,
1349                                         auth->authorizer_buf);
1350
1351         con->out_more = 0;
1352         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1353
1354         return 0;
1355 }
1356
1357 /*
1358  * write as much of pending kvecs to the socket as we can.
1359  *  1 -> done
1360  *  0 -> socket full, but more to do
1361  * <0 -> error
1362  */
1363 static int write_partial_kvec(struct ceph_connection *con)
1364 {
1365         int ret;
1366
1367         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1368         while (con->out_kvec_bytes > 0) {
1369                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1370                                        con->out_kvec_left, con->out_kvec_bytes,
1371                                        con->out_more);
1372                 if (ret <= 0)
1373                         goto out;
1374                 con->out_kvec_bytes -= ret;
1375                 if (con->out_kvec_bytes == 0)
1376                         break;            /* done */
1377
1378                 /* account for full iov entries consumed */
1379                 while (ret >= con->out_kvec_cur->iov_len) {
1380                         BUG_ON(!con->out_kvec_left);
1381                         ret -= con->out_kvec_cur->iov_len;
1382                         con->out_kvec_cur++;
1383                         con->out_kvec_left--;
1384                 }
1385                 /* and for a partially-consumed entry */
1386                 if (ret) {
1387                         con->out_kvec_cur->iov_len -= ret;
1388                         con->out_kvec_cur->iov_base += ret;
1389                 }
1390         }
1391         con->out_kvec_left = 0;
1392         con->out_kvec_is_msg = false;
1393         ret = 1;
1394 out:
1395         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1396              con->out_kvec_bytes, con->out_kvec_left, ret);
1397         return ret;  /* done! */
1398 }
1399
1400 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
1401                         size_t len, size_t sent, bool in_trail)
1402 {
1403         struct ceph_msg *msg = con->out_msg;
1404         struct ceph_msg_pos *msg_pos = &con->out_msg_pos;
1405         bool need_crc = false;
1406
1407         BUG_ON(!msg);
1408         BUG_ON(!sent);
1409
1410         msg_pos->data_pos += sent;
1411         msg_pos->page_pos += sent;
1412         if (in_trail)
1413                 need_crc = ceph_msg_data_advance(&msg->t, sent);
1414         else if (ceph_msg_has_pages(msg))
1415                 need_crc = ceph_msg_data_advance(&msg->p, sent);
1416         else if (ceph_msg_has_pagelist(msg))
1417                 need_crc = ceph_msg_data_advance(&msg->l, sent);
1418 #ifdef CONFIG_BLOCK
1419         else if (ceph_msg_has_bio(msg))
1420                 need_crc = ceph_msg_data_advance(&msg->b, sent);
1421 #endif /* CONFIG_BLOCK */
1422         BUG_ON(need_crc && sent != len);
1423
1424         if (sent < len)
1425                 return;
1426
1427         BUG_ON(sent != len);
1428         msg_pos->page_pos = 0;
1429         msg_pos->page++;
1430         msg_pos->did_page_crc = false;
1431 }
1432
1433 static void in_msg_pos_next(struct ceph_connection *con, size_t len,
1434                                 size_t received)
1435 {
1436         struct ceph_msg *msg = con->in_msg;
1437         struct ceph_msg_pos *msg_pos = &con->in_msg_pos;
1438
1439         BUG_ON(!msg);
1440         BUG_ON(!received);
1441
1442         msg_pos->data_pos += received;
1443         msg_pos->page_pos += received;
1444         if (received < len)
1445                 return;
1446
1447         BUG_ON(received != len);
1448         msg_pos->page_pos = 0;
1449         msg_pos->page++;
1450 #ifdef CONFIG_BLOCK
1451         if (msg->b.bio)
1452                 iter_bio_next(&msg->b.bio_iter, &msg->b.bio_seg);
1453 #endif /* CONFIG_BLOCK */
1454 }
1455
1456 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1457                                 unsigned int page_offset,
1458                                 unsigned int length)
1459 {
1460         char *kaddr;
1461
1462         kaddr = kmap(page);
1463         BUG_ON(kaddr == NULL);
1464         crc = crc32c(crc, kaddr + page_offset, length);
1465         kunmap(page);
1466
1467         return crc;
1468 }
1469 /*
1470  * Write as much message data payload as we can.  If we finish, queue
1471  * up the footer.
1472  *  1 -> done, footer is now queued in out_kvec[].
1473  *  0 -> socket full, but more to do
1474  * <0 -> error
1475  */
1476 static int write_partial_message_data(struct ceph_connection *con)
1477 {
1478         struct ceph_msg *msg = con->out_msg;
1479         struct ceph_msg_pos *msg_pos = &con->out_msg_pos;
1480         unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
1481         bool do_datacrc = !con->msgr->nocrc;
1482         int ret;
1483         int total_max_write;
1484         bool in_trail = false;
1485         size_t trail_len = 0;
1486         size_t trail_off = data_len;
1487
1488         if (ceph_msg_has_trail(msg)) {
1489                 trail_len = msg->t.pagelist->length;
1490                 trail_off -= trail_len;
1491         }
1492
1493         dout("%s %p msg %p page %d offset %d\n", __func__,
1494              con, msg, msg_pos->page, msg_pos->page_pos);
1495
1496         /*
1497          * Iterate through each page that contains data to be
1498          * written, and send as much as possible for each.
1499          *
1500          * If we are calculating the data crc (the default), we will
1501          * need to map the page.  If we have no pages, they have
1502          * been revoked, so use the zero page.
1503          */
1504         while (data_len > msg_pos->data_pos) {
1505                 struct page *page = NULL;
1506                 size_t page_offset;
1507                 size_t length;
1508                 bool use_cursor = false;
1509                 bool last_piece = true; /* preserve existing behavior */
1510
1511                 in_trail = in_trail || msg_pos->data_pos >= trail_off;
1512                 if (!in_trail)
1513                         total_max_write = trail_off - msg_pos->data_pos;
1514
1515                 if (in_trail) {
1516                         BUG_ON(!ceph_msg_has_trail(msg));
1517                         use_cursor = true;
1518                         page = ceph_msg_data_next(&msg->t, &page_offset,
1519                                                         &length, &last_piece);
1520                 } else if (ceph_msg_has_pages(msg)) {
1521                         use_cursor = true;
1522                         page = ceph_msg_data_next(&msg->p, &page_offset,
1523                                                         &length, &last_piece);
1524                 } else if (ceph_msg_has_pagelist(msg)) {
1525                         use_cursor = true;
1526                         page = ceph_msg_data_next(&msg->l, &page_offset,
1527                                                         &length, &last_piece);
1528 #ifdef CONFIG_BLOCK
1529                 } else if (ceph_msg_has_bio(msg)) {
1530                         use_cursor = true;
1531                         page = ceph_msg_data_next(&msg->b, &page_offset,
1532                                                         &length, &last_piece);
1533 #endif
1534                 } else {
1535                         page = zero_page;
1536                 }
1537                 if (!use_cursor) {
1538                         length = min_t(int, PAGE_SIZE - msg_pos->page_pos,
1539                                             total_max_write);
1540
1541                         page_offset = msg_pos->page_pos;
1542                 }
1543                 if (do_datacrc && !msg_pos->did_page_crc) {
1544                         u32 crc = le32_to_cpu(msg->footer.data_crc);
1545
1546                         crc = ceph_crc32c_page(crc, page, page_offset, length);
1547                         msg->footer.data_crc = cpu_to_le32(crc);
1548                         msg_pos->did_page_crc = true;
1549                 }
1550                 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1551                                       length, last_piece);
1552                 if (ret <= 0)
1553                         goto out;
1554
1555                 out_msg_pos_next(con, page, length, (size_t) ret, in_trail);
1556         }
1557
1558         dout("%s %p msg %p done\n", __func__, con, msg);
1559
1560         /* prepare and queue up footer, too */
1561         if (!do_datacrc)
1562                 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1563         con_out_kvec_reset(con);
1564         prepare_write_message_footer(con);
1565         ret = 1;
1566 out:
1567         return ret;
1568 }
1569
1570 /*
1571  * write some zeros
1572  */
1573 static int write_partial_skip(struct ceph_connection *con)
1574 {
1575         int ret;
1576
1577         while (con->out_skip > 0) {
1578                 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1579
1580                 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1581                 if (ret <= 0)
1582                         goto out;
1583                 con->out_skip -= ret;
1584         }
1585         ret = 1;
1586 out:
1587         return ret;
1588 }
1589
1590 /*
1591  * Prepare to read connection handshake, or an ack.
1592  */
1593 static void prepare_read_banner(struct ceph_connection *con)
1594 {
1595         dout("prepare_read_banner %p\n", con);
1596         con->in_base_pos = 0;
1597 }
1598
1599 static void prepare_read_connect(struct ceph_connection *con)
1600 {
1601         dout("prepare_read_connect %p\n", con);
1602         con->in_base_pos = 0;
1603 }
1604
1605 static void prepare_read_ack(struct ceph_connection *con)
1606 {
1607         dout("prepare_read_ack %p\n", con);
1608         con->in_base_pos = 0;
1609 }
1610
1611 static void prepare_read_tag(struct ceph_connection *con)
1612 {
1613         dout("prepare_read_tag %p\n", con);
1614         con->in_base_pos = 0;
1615         con->in_tag = CEPH_MSGR_TAG_READY;
1616 }
1617
1618 /*
1619  * Prepare to read a message.
1620  */
1621 static int prepare_read_message(struct ceph_connection *con)
1622 {
1623         dout("prepare_read_message %p\n", con);
1624         BUG_ON(con->in_msg != NULL);
1625         con->in_base_pos = 0;
1626         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1627         return 0;
1628 }
1629
1630
1631 static int read_partial(struct ceph_connection *con,
1632                         int end, int size, void *object)
1633 {
1634         while (con->in_base_pos < end) {
1635                 int left = end - con->in_base_pos;
1636                 int have = size - left;
1637                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1638                 if (ret <= 0)
1639                         return ret;
1640                 con->in_base_pos += ret;
1641         }
1642         return 1;
1643 }
1644
1645
1646 /*
1647  * Read all or part of the connect-side handshake on a new connection
1648  */
1649 static int read_partial_banner(struct ceph_connection *con)
1650 {
1651         int size;
1652         int end;
1653         int ret;
1654
1655         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1656
1657         /* peer's banner */
1658         size = strlen(CEPH_BANNER);
1659         end = size;
1660         ret = read_partial(con, end, size, con->in_banner);
1661         if (ret <= 0)
1662                 goto out;
1663
1664         size = sizeof (con->actual_peer_addr);
1665         end += size;
1666         ret = read_partial(con, end, size, &con->actual_peer_addr);
1667         if (ret <= 0)
1668                 goto out;
1669
1670         size = sizeof (con->peer_addr_for_me);
1671         end += size;
1672         ret = read_partial(con, end, size, &con->peer_addr_for_me);
1673         if (ret <= 0)
1674                 goto out;
1675
1676 out:
1677         return ret;
1678 }
1679
1680 static int read_partial_connect(struct ceph_connection *con)
1681 {
1682         int size;
1683         int end;
1684         int ret;
1685
1686         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1687
1688         size = sizeof (con->in_reply);
1689         end = size;
1690         ret = read_partial(con, end, size, &con->in_reply);
1691         if (ret <= 0)
1692                 goto out;
1693
1694         size = le32_to_cpu(con->in_reply.authorizer_len);
1695         end += size;
1696         ret = read_partial(con, end, size, con->auth_reply_buf);
1697         if (ret <= 0)
1698                 goto out;
1699
1700         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1701              con, (int)con->in_reply.tag,
1702              le32_to_cpu(con->in_reply.connect_seq),
1703              le32_to_cpu(con->in_reply.global_seq));
1704 out:
1705         return ret;
1706
1707 }
1708
1709 /*
1710  * Verify the hello banner looks okay.
1711  */
1712 static int verify_hello(struct ceph_connection *con)
1713 {
1714         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1715                 pr_err("connect to %s got bad banner\n",
1716                        ceph_pr_addr(&con->peer_addr.in_addr));
1717                 con->error_msg = "protocol error, bad banner";
1718                 return -1;
1719         }
1720         return 0;
1721 }
1722
1723 static bool addr_is_blank(struct sockaddr_storage *ss)
1724 {
1725         switch (ss->ss_family) {
1726         case AF_INET:
1727                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1728         case AF_INET6:
1729                 return
1730                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1731                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1732                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1733                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1734         }
1735         return false;
1736 }
1737
1738 static int addr_port(struct sockaddr_storage *ss)
1739 {
1740         switch (ss->ss_family) {
1741         case AF_INET:
1742                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1743         case AF_INET6:
1744                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1745         }
1746         return 0;
1747 }
1748
1749 static void addr_set_port(struct sockaddr_storage *ss, int p)
1750 {
1751         switch (ss->ss_family) {
1752         case AF_INET:
1753                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1754                 break;
1755         case AF_INET6:
1756                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1757                 break;
1758         }
1759 }
1760
1761 /*
1762  * Unlike other *_pton function semantics, zero indicates success.
1763  */
1764 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1765                 char delim, const char **ipend)
1766 {
1767         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1768         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1769
1770         memset(ss, 0, sizeof(*ss));
1771
1772         if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1773                 ss->ss_family = AF_INET;
1774                 return 0;
1775         }
1776
1777         if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1778                 ss->ss_family = AF_INET6;
1779                 return 0;
1780         }
1781
1782         return -EINVAL;
1783 }
1784
1785 /*
1786  * Extract hostname string and resolve using kernel DNS facility.
1787  */
1788 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1789 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1790                 struct sockaddr_storage *ss, char delim, const char **ipend)
1791 {
1792         const char *end, *delim_p;
1793         char *colon_p, *ip_addr = NULL;
1794         int ip_len, ret;
1795
1796         /*
1797          * The end of the hostname occurs immediately preceding the delimiter or
1798          * the port marker (':') where the delimiter takes precedence.
1799          */
1800         delim_p = memchr(name, delim, namelen);
1801         colon_p = memchr(name, ':', namelen);
1802
1803         if (delim_p && colon_p)
1804                 end = delim_p < colon_p ? delim_p : colon_p;
1805         else if (!delim_p && colon_p)
1806                 end = colon_p;
1807         else {
1808                 end = delim_p;
1809                 if (!end) /* case: hostname:/ */
1810                         end = name + namelen;
1811         }
1812
1813         if (end <= name)
1814                 return -EINVAL;
1815
1816         /* do dns_resolve upcall */
1817         ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1818         if (ip_len > 0)
1819                 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1820         else
1821                 ret = -ESRCH;
1822
1823         kfree(ip_addr);
1824
1825         *ipend = end;
1826
1827         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1828                         ret, ret ? "failed" : ceph_pr_addr(ss));
1829
1830         return ret;
1831 }
1832 #else
1833 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1834                 struct sockaddr_storage *ss, char delim, const char **ipend)
1835 {
1836         return -EINVAL;
1837 }
1838 #endif
1839
1840 /*
1841  * Parse a server name (IP or hostname). If a valid IP address is not found
1842  * then try to extract a hostname to resolve using userspace DNS upcall.
1843  */
1844 static int ceph_parse_server_name(const char *name, size_t namelen,
1845                         struct sockaddr_storage *ss, char delim, const char **ipend)
1846 {
1847         int ret;
1848
1849         ret = ceph_pton(name, namelen, ss, delim, ipend);
1850         if (ret)
1851                 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1852
1853         return ret;
1854 }
1855
1856 /*
1857  * Parse an ip[:port] list into an addr array.  Use the default
1858  * monitor port if a port isn't specified.
1859  */
1860 int ceph_parse_ips(const char *c, const char *end,
1861                    struct ceph_entity_addr *addr,
1862                    int max_count, int *count)
1863 {
1864         int i, ret = -EINVAL;
1865         const char *p = c;
1866
1867         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1868         for (i = 0; i < max_count; i++) {
1869                 const char *ipend;
1870                 struct sockaddr_storage *ss = &addr[i].in_addr;
1871                 int port;
1872                 char delim = ',';
1873
1874                 if (*p == '[') {
1875                         delim = ']';
1876                         p++;
1877                 }
1878
1879                 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1880                 if (ret)
1881                         goto bad;
1882                 ret = -EINVAL;
1883
1884                 p = ipend;
1885
1886                 if (delim == ']') {
1887                         if (*p != ']') {
1888                                 dout("missing matching ']'\n");
1889                                 goto bad;
1890                         }
1891                         p++;
1892                 }
1893
1894                 /* port? */
1895                 if (p < end && *p == ':') {
1896                         port = 0;
1897                         p++;
1898                         while (p < end && *p >= '0' && *p <= '9') {
1899                                 port = (port * 10) + (*p - '0');
1900                                 p++;
1901                         }
1902                         if (port > 65535 || port == 0)
1903                                 goto bad;
1904                 } else {
1905                         port = CEPH_MON_PORT;
1906                 }
1907
1908                 addr_set_port(ss, port);
1909
1910                 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1911
1912                 if (p == end)
1913                         break;
1914                 if (*p != ',')
1915                         goto bad;
1916                 p++;
1917         }
1918
1919         if (p != end)
1920                 goto bad;
1921
1922         if (count)
1923                 *count = i + 1;
1924         return 0;
1925
1926 bad:
1927         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1928         return ret;
1929 }
1930 EXPORT_SYMBOL(ceph_parse_ips);
1931
1932 static int process_banner(struct ceph_connection *con)
1933 {
1934         dout("process_banner on %p\n", con);
1935
1936         if (verify_hello(con) < 0)
1937                 return -1;
1938
1939         ceph_decode_addr(&con->actual_peer_addr);
1940         ceph_decode_addr(&con->peer_addr_for_me);
1941
1942         /*
1943          * Make sure the other end is who we wanted.  note that the other
1944          * end may not yet know their ip address, so if it's 0.0.0.0, give
1945          * them the benefit of the doubt.
1946          */
1947         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1948                    sizeof(con->peer_addr)) != 0 &&
1949             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1950               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1951                 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1952                            ceph_pr_addr(&con->peer_addr.in_addr),
1953                            (int)le32_to_cpu(con->peer_addr.nonce),
1954                            ceph_pr_addr(&con->actual_peer_addr.in_addr),
1955                            (int)le32_to_cpu(con->actual_peer_addr.nonce));
1956                 con->error_msg = "wrong peer at address";
1957                 return -1;
1958         }
1959
1960         /*
1961          * did we learn our address?
1962          */
1963         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1964                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1965
1966                 memcpy(&con->msgr->inst.addr.in_addr,
1967                        &con->peer_addr_for_me.in_addr,
1968                        sizeof(con->peer_addr_for_me.in_addr));
1969                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1970                 encode_my_addr(con->msgr);
1971                 dout("process_banner learned my addr is %s\n",
1972                      ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1973         }
1974
1975         return 0;
1976 }
1977
1978 static int process_connect(struct ceph_connection *con)
1979 {
1980         u64 sup_feat = con->msgr->supported_features;
1981         u64 req_feat = con->msgr->required_features;
1982         u64 server_feat = le64_to_cpu(con->in_reply.features);
1983         int ret;
1984
1985         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1986
1987         switch (con->in_reply.tag) {
1988         case CEPH_MSGR_TAG_FEATURES:
1989                 pr_err("%s%lld %s feature set mismatch,"
1990                        " my %llx < server's %llx, missing %llx\n",
1991                        ENTITY_NAME(con->peer_name),
1992                        ceph_pr_addr(&con->peer_addr.in_addr),
1993                        sup_feat, server_feat, server_feat & ~sup_feat);
1994                 con->error_msg = "missing required protocol features";
1995                 reset_connection(con);
1996                 return -1;
1997
1998         case CEPH_MSGR_TAG_BADPROTOVER:
1999                 pr_err("%s%lld %s protocol version mismatch,"
2000                        " my %d != server's %d\n",
2001                        ENTITY_NAME(con->peer_name),
2002                        ceph_pr_addr(&con->peer_addr.in_addr),
2003                        le32_to_cpu(con->out_connect.protocol_version),
2004                        le32_to_cpu(con->in_reply.protocol_version));
2005                 con->error_msg = "protocol version mismatch";
2006                 reset_connection(con);
2007                 return -1;
2008
2009         case CEPH_MSGR_TAG_BADAUTHORIZER:
2010                 con->auth_retry++;
2011                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2012                      con->auth_retry);
2013                 if (con->auth_retry == 2) {
2014                         con->error_msg = "connect authorization failure";
2015                         return -1;
2016                 }
2017                 con->auth_retry = 1;
2018                 con_out_kvec_reset(con);
2019                 ret = prepare_write_connect(con);
2020                 if (ret < 0)
2021                         return ret;
2022                 prepare_read_connect(con);
2023                 break;
2024
2025         case CEPH_MSGR_TAG_RESETSESSION:
2026                 /*
2027                  * If we connected with a large connect_seq but the peer
2028                  * has no record of a session with us (no connection, or
2029                  * connect_seq == 0), they will send RESETSESION to indicate
2030                  * that they must have reset their session, and may have
2031                  * dropped messages.
2032                  */
2033                 dout("process_connect got RESET peer seq %u\n",
2034                      le32_to_cpu(con->in_reply.connect_seq));
2035                 pr_err("%s%lld %s connection reset\n",
2036                        ENTITY_NAME(con->peer_name),
2037                        ceph_pr_addr(&con->peer_addr.in_addr));
2038                 reset_connection(con);
2039                 con_out_kvec_reset(con);
2040                 ret = prepare_write_connect(con);
2041                 if (ret < 0)
2042                         return ret;
2043                 prepare_read_connect(con);
2044
2045                 /* Tell ceph about it. */
2046                 mutex_unlock(&con->mutex);
2047                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2048                 if (con->ops->peer_reset)
2049                         con->ops->peer_reset(con);
2050                 mutex_lock(&con->mutex);
2051                 if (con->state != CON_STATE_NEGOTIATING)
2052                         return -EAGAIN;
2053                 break;
2054
2055         case CEPH_MSGR_TAG_RETRY_SESSION:
2056                 /*
2057                  * If we sent a smaller connect_seq than the peer has, try
2058                  * again with a larger value.
2059                  */
2060                 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2061                      le32_to_cpu(con->out_connect.connect_seq),
2062                      le32_to_cpu(con->in_reply.connect_seq));
2063                 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2064                 con_out_kvec_reset(con);
2065                 ret = prepare_write_connect(con);
2066                 if (ret < 0)
2067                         return ret;
2068                 prepare_read_connect(con);
2069                 break;
2070
2071         case CEPH_MSGR_TAG_RETRY_GLOBAL:
2072                 /*
2073                  * If we sent a smaller global_seq than the peer has, try
2074                  * again with a larger value.
2075                  */
2076                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2077                      con->peer_global_seq,
2078                      le32_to_cpu(con->in_reply.global_seq));
2079                 get_global_seq(con->msgr,
2080                                le32_to_cpu(con->in_reply.global_seq));
2081                 con_out_kvec_reset(con);
2082                 ret = prepare_write_connect(con);
2083                 if (ret < 0)
2084                         return ret;
2085                 prepare_read_connect(con);
2086                 break;
2087
2088         case CEPH_MSGR_TAG_READY:
2089                 if (req_feat & ~server_feat) {
2090                         pr_err("%s%lld %s protocol feature mismatch,"
2091                                " my required %llx > server's %llx, need %llx\n",
2092                                ENTITY_NAME(con->peer_name),
2093                                ceph_pr_addr(&con->peer_addr.in_addr),
2094                                req_feat, server_feat, req_feat & ~server_feat);
2095                         con->error_msg = "missing required protocol features";
2096                         reset_connection(con);
2097                         return -1;
2098                 }
2099
2100                 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2101                 con->state = CON_STATE_OPEN;
2102
2103                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2104                 con->connect_seq++;
2105                 con->peer_features = server_feat;
2106                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2107                      con->peer_global_seq,
2108                      le32_to_cpu(con->in_reply.connect_seq),
2109                      con->connect_seq);
2110                 WARN_ON(con->connect_seq !=
2111                         le32_to_cpu(con->in_reply.connect_seq));
2112
2113                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2114                         con_flag_set(con, CON_FLAG_LOSSYTX);
2115
2116                 con->delay = 0;      /* reset backoff memory */
2117
2118                 prepare_read_tag(con);
2119                 break;
2120
2121         case CEPH_MSGR_TAG_WAIT:
2122                 /*
2123                  * If there is a connection race (we are opening
2124                  * connections to each other), one of us may just have
2125                  * to WAIT.  This shouldn't happen if we are the
2126                  * client.
2127                  */
2128                 pr_err("process_connect got WAIT as client\n");
2129                 con->error_msg = "protocol error, got WAIT as client";
2130                 return -1;
2131
2132         default:
2133                 pr_err("connect protocol error, will retry\n");
2134                 con->error_msg = "protocol error, garbage tag during connect";
2135                 return -1;
2136         }
2137         return 0;
2138 }
2139
2140
2141 /*
2142  * read (part of) an ack
2143  */
2144 static int read_partial_ack(struct ceph_connection *con)
2145 {
2146         int size = sizeof (con->in_temp_ack);
2147         int end = size;
2148
2149         return read_partial(con, end, size, &con->in_temp_ack);
2150 }
2151
2152
2153 /*
2154  * We can finally discard anything that's been acked.
2155  */
2156 static void process_ack(struct ceph_connection *con)
2157 {
2158         struct ceph_msg *m;
2159         u64 ack = le64_to_cpu(con->in_temp_ack);
2160         u64 seq;
2161
2162         while (!list_empty(&con->out_sent)) {
2163                 m = list_first_entry(&con->out_sent, struct ceph_msg,
2164                                      list_head);
2165                 seq = le64_to_cpu(m->hdr.seq);
2166                 if (seq > ack)
2167                         break;
2168                 dout("got ack for seq %llu type %d at %p\n", seq,
2169                      le16_to_cpu(m->hdr.type), m);
2170                 m->ack_stamp = jiffies;
2171                 ceph_msg_remove(m);
2172         }
2173         prepare_read_tag(con);
2174 }
2175
2176
2177
2178
2179 static int read_partial_message_section(struct ceph_connection *con,
2180                                         struct kvec *section,
2181                                         unsigned int sec_len, u32 *crc)
2182 {
2183         int ret, left;
2184
2185         BUG_ON(!section);
2186
2187         while (section->iov_len < sec_len) {
2188                 BUG_ON(section->iov_base == NULL);
2189                 left = sec_len - section->iov_len;
2190                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2191                                        section->iov_len, left);
2192                 if (ret <= 0)
2193                         return ret;
2194                 section->iov_len += ret;
2195         }
2196         if (section->iov_len == sec_len)
2197                 *crc = crc32c(0, section->iov_base, section->iov_len);
2198
2199         return 1;
2200 }
2201
2202 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2203
2204 static int read_partial_message_pages(struct ceph_connection *con,
2205                                       struct page **pages,
2206                                       unsigned int data_len, bool do_datacrc)
2207 {
2208         struct ceph_msg_pos *msg_pos = &con->in_msg_pos;
2209         struct page *page;
2210         size_t page_offset;
2211         size_t length;
2212         unsigned int left;
2213         int ret;
2214
2215         /* (page) data */
2216         BUG_ON(pages == NULL);
2217         page = pages[msg_pos->page];
2218         page_offset = msg_pos->page_pos;
2219         BUG_ON(msg_pos->data_pos >= data_len);
2220         left = data_len - msg_pos->data_pos;
2221         BUG_ON(page_offset >= PAGE_SIZE);
2222         length = min_t(unsigned int, PAGE_SIZE - page_offset, left);
2223
2224         ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2225         if (ret <= 0)
2226                 return ret;
2227
2228         if (do_datacrc)
2229                 con->in_data_crc = ceph_crc32c_page(con->in_data_crc, page,
2230                                                         page_offset, ret);
2231
2232         in_msg_pos_next(con, length, ret);
2233
2234         return ret;
2235 }
2236
2237 #ifdef CONFIG_BLOCK
2238 static int read_partial_message_bio(struct ceph_connection *con,
2239                                     unsigned int data_len, bool do_datacrc)
2240 {
2241         struct ceph_msg *msg = con->in_msg;
2242         struct ceph_msg_pos *msg_pos = &con->in_msg_pos;
2243         struct bio_vec *bv;
2244         struct page *page;
2245         size_t page_offset;
2246         size_t length;
2247         unsigned int left;
2248         int ret;
2249
2250         BUG_ON(!msg);
2251         BUG_ON(!msg->b.bio_iter);
2252         bv = bio_iovec_idx(msg->b.bio_iter, msg->b.bio_seg);
2253         page = bv->bv_page;
2254         page_offset = bv->bv_offset + msg_pos->page_pos;
2255         BUG_ON(msg_pos->data_pos >= data_len);
2256         left = data_len - msg_pos->data_pos;
2257         BUG_ON(msg_pos->page_pos >= bv->bv_len);
2258         length = min_t(unsigned int, bv->bv_len - msg_pos->page_pos, left);
2259
2260         ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2261         if (ret <= 0)
2262                 return ret;
2263
2264         if (do_datacrc)
2265                 con->in_data_crc = ceph_crc32c_page(con->in_data_crc, page,
2266                                                         page_offset, ret);
2267
2268         in_msg_pos_next(con, length, ret);
2269
2270         return ret;
2271 }
2272 #endif
2273
2274 static int read_partial_msg_data(struct ceph_connection *con)
2275 {
2276         struct ceph_msg *msg = con->in_msg;
2277         struct ceph_msg_pos *msg_pos = &con->in_msg_pos;
2278         const bool do_datacrc = !con->msgr->nocrc;
2279         unsigned int data_len;
2280         int ret;
2281
2282         BUG_ON(!msg);
2283
2284         data_len = le32_to_cpu(con->in_hdr.data_len);
2285         while (msg_pos->data_pos < data_len) {
2286                 if (ceph_msg_has_pages(msg)) {
2287                         ret = read_partial_message_pages(con, msg->p.pages,
2288                                                  data_len, do_datacrc);
2289                         if (ret <= 0)
2290                                 return ret;
2291 #ifdef CONFIG_BLOCK
2292                 } else if (ceph_msg_has_bio(msg)) {
2293                         ret = read_partial_message_bio(con,
2294                                                  data_len, do_datacrc);
2295                         if (ret <= 0)
2296                                 return ret;
2297 #endif
2298                 } else {
2299                         BUG_ON(1);
2300                 }
2301         }
2302
2303         return 1;       /* must return > 0 to indicate success */
2304 }
2305
2306 /*
2307  * read (part of) a message.
2308  */
2309 static int read_partial_message(struct ceph_connection *con)
2310 {
2311         struct ceph_msg *m = con->in_msg;
2312         int size;
2313         int end;
2314         int ret;
2315         unsigned int front_len, middle_len, data_len;
2316         bool do_datacrc = !con->msgr->nocrc;
2317         u64 seq;
2318         u32 crc;
2319
2320         dout("read_partial_message con %p msg %p\n", con, m);
2321
2322         /* header */
2323         size = sizeof (con->in_hdr);
2324         end = size;
2325         ret = read_partial(con, end, size, &con->in_hdr);
2326         if (ret <= 0)
2327                 return ret;
2328
2329         crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2330         if (cpu_to_le32(crc) != con->in_hdr.crc) {
2331                 pr_err("read_partial_message bad hdr "
2332                        " crc %u != expected %u\n",
2333                        crc, con->in_hdr.crc);
2334                 return -EBADMSG;
2335         }
2336
2337         front_len = le32_to_cpu(con->in_hdr.front_len);
2338         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2339                 return -EIO;
2340         middle_len = le32_to_cpu(con->in_hdr.middle_len);
2341         if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2342                 return -EIO;
2343         data_len = le32_to_cpu(con->in_hdr.data_len);
2344         if (data_len > CEPH_MSG_MAX_DATA_LEN)
2345                 return -EIO;
2346
2347         /* verify seq# */
2348         seq = le64_to_cpu(con->in_hdr.seq);
2349         if ((s64)seq - (s64)con->in_seq < 1) {
2350                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2351                         ENTITY_NAME(con->peer_name),
2352                         ceph_pr_addr(&con->peer_addr.in_addr),
2353                         seq, con->in_seq + 1);
2354                 con->in_base_pos = -front_len - middle_len - data_len -
2355                         sizeof(m->footer);
2356                 con->in_tag = CEPH_MSGR_TAG_READY;
2357                 return 0;
2358         } else if ((s64)seq - (s64)con->in_seq > 1) {
2359                 pr_err("read_partial_message bad seq %lld expected %lld\n",
2360                        seq, con->in_seq + 1);
2361                 con->error_msg = "bad message sequence # for incoming message";
2362                 return -EBADMSG;
2363         }
2364
2365         /* allocate message? */
2366         if (!con->in_msg) {
2367                 int skip = 0;
2368
2369                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2370                      front_len, data_len);
2371                 ret = ceph_con_in_msg_alloc(con, &skip);
2372                 if (ret < 0)
2373                         return ret;
2374                 if (skip) {
2375                         /* skip this message */
2376                         dout("alloc_msg said skip message\n");
2377                         BUG_ON(con->in_msg);
2378                         con->in_base_pos = -front_len - middle_len - data_len -
2379                                 sizeof(m->footer);
2380                         con->in_tag = CEPH_MSGR_TAG_READY;
2381                         con->in_seq++;
2382                         return 0;
2383                 }
2384
2385                 BUG_ON(!con->in_msg);
2386                 BUG_ON(con->in_msg->con != con);
2387                 m = con->in_msg;
2388                 m->front.iov_len = 0;    /* haven't read it yet */
2389                 if (m->middle)
2390                         m->middle->vec.iov_len = 0;
2391
2392                 /* prepare for data payload, if any */
2393
2394                 if (data_len)
2395                         prepare_message_data(con->in_msg, &con->in_msg_pos);
2396         }
2397
2398         /* front */
2399         ret = read_partial_message_section(con, &m->front, front_len,
2400                                            &con->in_front_crc);
2401         if (ret <= 0)
2402                 return ret;
2403
2404         /* middle */
2405         if (m->middle) {
2406                 ret = read_partial_message_section(con, &m->middle->vec,
2407                                                    middle_len,
2408                                                    &con->in_middle_crc);
2409                 if (ret <= 0)
2410                         return ret;
2411         }
2412
2413         /* (page) data */
2414         if (data_len) {
2415                 ret = read_partial_msg_data(con);
2416                 if (ret <= 0)
2417                         return ret;
2418         }
2419
2420         /* footer */
2421         size = sizeof (m->footer);
2422         end += size;
2423         ret = read_partial(con, end, size, &m->footer);
2424         if (ret <= 0)
2425                 return ret;
2426
2427         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2428              m, front_len, m->footer.front_crc, middle_len,
2429              m->footer.middle_crc, data_len, m->footer.data_crc);
2430
2431         /* crc ok? */
2432         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2433                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2434                        m, con->in_front_crc, m->footer.front_crc);
2435                 return -EBADMSG;
2436         }
2437         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2438                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2439                        m, con->in_middle_crc, m->footer.middle_crc);
2440                 return -EBADMSG;
2441         }
2442         if (do_datacrc &&
2443             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2444             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2445                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2446                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2447                 return -EBADMSG;
2448         }
2449
2450         return 1; /* done! */
2451 }
2452
2453 /*
2454  * Process message.  This happens in the worker thread.  The callback should
2455  * be careful not to do anything that waits on other incoming messages or it
2456  * may deadlock.
2457  */
2458 static void process_message(struct ceph_connection *con)
2459 {
2460         struct ceph_msg *msg;
2461
2462         BUG_ON(con->in_msg->con != con);
2463         con->in_msg->con = NULL;
2464         msg = con->in_msg;
2465         con->in_msg = NULL;
2466         con->ops->put(con);
2467
2468         /* if first message, set peer_name */
2469         if (con->peer_name.type == 0)
2470                 con->peer_name = msg->hdr.src;
2471
2472         con->in_seq++;
2473         mutex_unlock(&con->mutex);
2474
2475         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2476              msg, le64_to_cpu(msg->hdr.seq),
2477              ENTITY_NAME(msg->hdr.src),
2478              le16_to_cpu(msg->hdr.type),
2479              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2480              le32_to_cpu(msg->hdr.front_len),
2481              le32_to_cpu(msg->hdr.data_len),
2482              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2483         con->ops->dispatch(con, msg);
2484
2485         mutex_lock(&con->mutex);
2486 }
2487
2488
2489 /*
2490  * Write something to the socket.  Called in a worker thread when the
2491  * socket appears to be writeable and we have something ready to send.
2492  */
2493 static int try_write(struct ceph_connection *con)
2494 {
2495         int ret = 1;
2496
2497         dout("try_write start %p state %lu\n", con, con->state);
2498
2499 more:
2500         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2501
2502         /* open the socket first? */
2503         if (con->state == CON_STATE_PREOPEN) {
2504                 BUG_ON(con->sock);
2505                 con->state = CON_STATE_CONNECTING;
2506
2507                 con_out_kvec_reset(con);
2508                 prepare_write_banner(con);
2509                 prepare_read_banner(con);
2510
2511                 BUG_ON(con->in_msg);
2512                 con->in_tag = CEPH_MSGR_TAG_READY;
2513                 dout("try_write initiating connect on %p new state %lu\n",
2514                      con, con->state);
2515                 ret = ceph_tcp_connect(con);
2516                 if (ret < 0) {
2517                         con->error_msg = "connect error";
2518                         goto out;
2519                 }
2520         }
2521
2522 more_kvec:
2523         /* kvec data queued? */
2524         if (con->out_skip) {
2525                 ret = write_partial_skip(con);
2526                 if (ret <= 0)
2527                         goto out;
2528         }
2529         if (con->out_kvec_left) {
2530                 ret = write_partial_kvec(con);
2531                 if (ret <= 0)
2532                         goto out;
2533         }
2534
2535         /* msg pages? */
2536         if (con->out_msg) {
2537                 if (con->out_msg_done) {
2538                         ceph_msg_put(con->out_msg);
2539                         con->out_msg = NULL;   /* we're done with this one */
2540                         goto do_next;
2541                 }
2542
2543                 ret = write_partial_message_data(con);
2544                 if (ret == 1)
2545                         goto more_kvec;  /* we need to send the footer, too! */
2546                 if (ret == 0)
2547                         goto out;
2548                 if (ret < 0) {
2549                         dout("try_write write_partial_message_data err %d\n",
2550                              ret);
2551                         goto out;
2552                 }
2553         }
2554
2555 do_next:
2556         if (con->state == CON_STATE_OPEN) {
2557                 /* is anything else pending? */
2558                 if (!list_empty(&con->out_queue)) {
2559                         prepare_write_message(con);
2560                         goto more;
2561                 }
2562                 if (con->in_seq > con->in_seq_acked) {
2563                         prepare_write_ack(con);
2564                         goto more;
2565                 }
2566                 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2567                         prepare_write_keepalive(con);
2568                         goto more;
2569                 }
2570         }
2571
2572         /* Nothing to do! */
2573         con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2574         dout("try_write nothing else to write.\n");
2575         ret = 0;
2576 out:
2577         dout("try_write done on %p ret %d\n", con, ret);
2578         return ret;
2579 }
2580
2581
2582
2583 /*
2584  * Read what we can from the socket.
2585  */
2586 static int try_read(struct ceph_connection *con)
2587 {
2588         int ret = -1;
2589
2590 more:
2591         dout("try_read start on %p state %lu\n", con, con->state);
2592         if (con->state != CON_STATE_CONNECTING &&
2593             con->state != CON_STATE_NEGOTIATING &&
2594             con->state != CON_STATE_OPEN)
2595                 return 0;
2596
2597         BUG_ON(!con->sock);
2598
2599         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2600              con->in_base_pos);
2601
2602         if (con->state == CON_STATE_CONNECTING) {
2603                 dout("try_read connecting\n");
2604                 ret = read_partial_banner(con);
2605                 if (ret <= 0)
2606                         goto out;
2607                 ret = process_banner(con);
2608                 if (ret < 0)
2609                         goto out;
2610
2611                 con->state = CON_STATE_NEGOTIATING;
2612
2613                 /*
2614                  * Received banner is good, exchange connection info.
2615                  * Do not reset out_kvec, as sending our banner raced
2616                  * with receiving peer banner after connect completed.
2617                  */
2618                 ret = prepare_write_connect(con);
2619                 if (ret < 0)
2620                         goto out;
2621                 prepare_read_connect(con);
2622
2623                 /* Send connection info before awaiting response */
2624                 goto out;
2625         }
2626
2627         if (con->state == CON_STATE_NEGOTIATING) {
2628                 dout("try_read negotiating\n");
2629                 ret = read_partial_connect(con);
2630                 if (ret <= 0)
2631                         goto out;
2632                 ret = process_connect(con);
2633                 if (ret < 0)
2634                         goto out;
2635                 goto more;
2636         }
2637
2638         WARN_ON(con->state != CON_STATE_OPEN);
2639
2640         if (con->in_base_pos < 0) {
2641                 /*
2642                  * skipping + discarding content.
2643                  *
2644                  * FIXME: there must be a better way to do this!
2645                  */
2646                 static char buf[SKIP_BUF_SIZE];
2647                 int skip = min((int) sizeof (buf), -con->in_base_pos);
2648
2649                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2650                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2651                 if (ret <= 0)
2652                         goto out;
2653                 con->in_base_pos += ret;
2654                 if (con->in_base_pos)
2655                         goto more;
2656         }
2657         if (con->in_tag == CEPH_MSGR_TAG_READY) {
2658                 /*
2659                  * what's next?
2660                  */
2661                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2662                 if (ret <= 0)
2663                         goto out;
2664                 dout("try_read got tag %d\n", (int)con->in_tag);
2665                 switch (con->in_tag) {
2666                 case CEPH_MSGR_TAG_MSG:
2667                         prepare_read_message(con);
2668                         break;
2669                 case CEPH_MSGR_TAG_ACK:
2670                         prepare_read_ack(con);
2671                         break;
2672                 case CEPH_MSGR_TAG_CLOSE:
2673                         con_close_socket(con);
2674                         con->state = CON_STATE_CLOSED;
2675                         goto out;
2676                 default:
2677                         goto bad_tag;
2678                 }
2679         }
2680         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2681                 ret = read_partial_message(con);
2682                 if (ret <= 0) {
2683                         switch (ret) {
2684                         case -EBADMSG:
2685                                 con->error_msg = "bad crc";
2686                                 ret = -EIO;
2687                                 break;
2688                         case -EIO:
2689                                 con->error_msg = "io error";
2690                                 break;
2691                         }
2692                         goto out;
2693                 }
2694                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2695                         goto more;
2696                 process_message(con);
2697                 if (con->state == CON_STATE_OPEN)
2698                         prepare_read_tag(con);
2699                 goto more;
2700         }
2701         if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2702                 ret = read_partial_ack(con);
2703                 if (ret <= 0)
2704                         goto out;
2705                 process_ack(con);
2706                 goto more;
2707         }
2708
2709 out:
2710         dout("try_read done on %p ret %d\n", con, ret);
2711         return ret;
2712
2713 bad_tag:
2714         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2715         con->error_msg = "protocol error, garbage tag";
2716         ret = -1;
2717         goto out;
2718 }
2719
2720
2721 /*
2722  * Atomically queue work on a connection after the specified delay.
2723  * Bump @con reference to avoid races with connection teardown.
2724  * Returns 0 if work was queued, or an error code otherwise.
2725  */
2726 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2727 {
2728         if (!con->ops->get(con)) {
2729                 dout("%s %p ref count 0\n", __func__, con);
2730
2731                 return -ENOENT;
2732         }
2733
2734         if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2735                 dout("%s %p - already queued\n", __func__, con);
2736                 con->ops->put(con);
2737
2738                 return -EBUSY;
2739         }
2740
2741         dout("%s %p %lu\n", __func__, con, delay);
2742
2743         return 0;
2744 }
2745
2746 static void queue_con(struct ceph_connection *con)
2747 {
2748         (void) queue_con_delay(con, 0);
2749 }
2750
2751 static bool con_sock_closed(struct ceph_connection *con)
2752 {
2753         if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2754                 return false;
2755
2756 #define CASE(x)                                                         \
2757         case CON_STATE_ ## x:                                           \
2758                 con->error_msg = "socket closed (con state " #x ")";    \
2759                 break;
2760
2761         switch (con->state) {
2762         CASE(CLOSED);
2763         CASE(PREOPEN);
2764         CASE(CONNECTING);
2765         CASE(NEGOTIATING);
2766         CASE(OPEN);
2767         CASE(STANDBY);
2768         default:
2769                 pr_warning("%s con %p unrecognized state %lu\n",
2770                         __func__, con, con->state);
2771                 con->error_msg = "unrecognized con state";
2772                 BUG();
2773                 break;
2774         }
2775 #undef CASE
2776
2777         return true;
2778 }
2779
2780 static bool con_backoff(struct ceph_connection *con)
2781 {
2782         int ret;
2783
2784         if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2785                 return false;
2786
2787         ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2788         if (ret) {
2789                 dout("%s: con %p FAILED to back off %lu\n", __func__,
2790                         con, con->delay);
2791                 BUG_ON(ret == -ENOENT);
2792                 con_flag_set(con, CON_FLAG_BACKOFF);
2793         }
2794
2795         return true;
2796 }
2797
2798 /* Finish fault handling; con->mutex must *not* be held here */
2799
2800 static void con_fault_finish(struct ceph_connection *con)
2801 {
2802         /*
2803          * in case we faulted due to authentication, invalidate our
2804          * current tickets so that we can get new ones.
2805          */
2806         if (con->auth_retry && con->ops->invalidate_authorizer) {
2807                 dout("calling invalidate_authorizer()\n");
2808                 con->ops->invalidate_authorizer(con);
2809         }
2810
2811         if (con->ops->fault)
2812                 con->ops->fault(con);
2813 }
2814
2815 /*
2816  * Do some work on a connection.  Drop a connection ref when we're done.
2817  */
2818 static void con_work(struct work_struct *work)
2819 {
2820         struct ceph_connection *con = container_of(work, struct ceph_connection,
2821                                                    work.work);
2822         bool fault;
2823
2824         mutex_lock(&con->mutex);
2825         while (true) {
2826                 int ret;
2827
2828                 if ((fault = con_sock_closed(con))) {
2829                         dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2830                         break;
2831                 }
2832                 if (con_backoff(con)) {
2833                         dout("%s: con %p BACKOFF\n", __func__, con);
2834                         break;
2835                 }
2836                 if (con->state == CON_STATE_STANDBY) {
2837                         dout("%s: con %p STANDBY\n", __func__, con);
2838                         break;
2839                 }
2840                 if (con->state == CON_STATE_CLOSED) {
2841                         dout("%s: con %p CLOSED\n", __func__, con);
2842                         BUG_ON(con->sock);
2843                         break;
2844                 }
2845                 if (con->state == CON_STATE_PREOPEN) {
2846                         dout("%s: con %p PREOPEN\n", __func__, con);
2847                         BUG_ON(con->sock);
2848                 }
2849
2850                 ret = try_read(con);
2851                 if (ret < 0) {
2852                         if (ret == -EAGAIN)
2853                                 continue;
2854                         con->error_msg = "socket error on read";
2855                         fault = true;
2856                         break;
2857                 }
2858
2859                 ret = try_write(con);
2860                 if (ret < 0) {
2861                         if (ret == -EAGAIN)
2862                                 continue;
2863                         con->error_msg = "socket error on write";
2864                         fault = true;
2865                 }
2866
2867                 break;  /* If we make it to here, we're done */
2868         }
2869         if (fault)
2870                 con_fault(con);
2871         mutex_unlock(&con->mutex);
2872
2873         if (fault)
2874                 con_fault_finish(con);
2875
2876         con->ops->put(con);
2877 }
2878
2879 /*
2880  * Generic error/fault handler.  A retry mechanism is used with
2881  * exponential backoff
2882  */
2883 static void con_fault(struct ceph_connection *con)
2884 {
2885         pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2886                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2887         dout("fault %p state %lu to peer %s\n",
2888              con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2889
2890         WARN_ON(con->state != CON_STATE_CONNECTING &&
2891                con->state != CON_STATE_NEGOTIATING &&
2892                con->state != CON_STATE_OPEN);
2893
2894         con_close_socket(con);
2895
2896         if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2897                 dout("fault on LOSSYTX channel, marking CLOSED\n");
2898                 con->state = CON_STATE_CLOSED;
2899                 return;
2900         }
2901
2902         if (con->in_msg) {
2903                 BUG_ON(con->in_msg->con != con);
2904                 con->in_msg->con = NULL;
2905                 ceph_msg_put(con->in_msg);
2906                 con->in_msg = NULL;
2907                 con->ops->put(con);
2908         }
2909
2910         /* Requeue anything that hasn't been acked */
2911         list_splice_init(&con->out_sent, &con->out_queue);
2912
2913         /* If there are no messages queued or keepalive pending, place
2914          * the connection in a STANDBY state */
2915         if (list_empty(&con->out_queue) &&
2916             !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2917                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2918                 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2919                 con->state = CON_STATE_STANDBY;
2920         } else {
2921                 /* retry after a delay. */
2922                 con->state = CON_STATE_PREOPEN;
2923                 if (con->delay == 0)
2924                         con->delay = BASE_DELAY_INTERVAL;
2925                 else if (con->delay < MAX_DELAY_INTERVAL)
2926                         con->delay *= 2;
2927                 con_flag_set(con, CON_FLAG_BACKOFF);
2928                 queue_con(con);
2929         }
2930 }
2931
2932
2933
2934 /*
2935  * initialize a new messenger instance
2936  */
2937 void ceph_messenger_init(struct ceph_messenger *msgr,
2938                         struct ceph_entity_addr *myaddr,
2939                         u32 supported_features,
2940                         u32 required_features,
2941                         bool nocrc)
2942 {
2943         msgr->supported_features = supported_features;
2944         msgr->required_features = required_features;
2945
2946         spin_lock_init(&msgr->global_seq_lock);
2947
2948         if (myaddr)
2949                 msgr->inst.addr = *myaddr;
2950
2951         /* select a random nonce */
2952         msgr->inst.addr.type = 0;
2953         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2954         encode_my_addr(msgr);
2955         msgr->nocrc = nocrc;
2956
2957         atomic_set(&msgr->stopping, 0);
2958
2959         dout("%s %p\n", __func__, msgr);
2960 }
2961 EXPORT_SYMBOL(ceph_messenger_init);
2962
2963 static void clear_standby(struct ceph_connection *con)
2964 {
2965         /* come back from STANDBY? */
2966         if (con->state == CON_STATE_STANDBY) {
2967                 dout("clear_standby %p and ++connect_seq\n", con);
2968                 con->state = CON_STATE_PREOPEN;
2969                 con->connect_seq++;
2970                 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2971                 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2972         }
2973 }
2974
2975 /*
2976  * Queue up an outgoing message on the given connection.
2977  */
2978 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2979 {
2980         /* set src+dst */
2981         msg->hdr.src = con->msgr->inst.name;
2982         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2983         msg->needs_out_seq = true;
2984
2985         mutex_lock(&con->mutex);
2986
2987         if (con->state == CON_STATE_CLOSED) {
2988                 dout("con_send %p closed, dropping %p\n", con, msg);
2989                 ceph_msg_put(msg);
2990                 mutex_unlock(&con->mutex);
2991                 return;
2992         }
2993
2994         BUG_ON(msg->con != NULL);
2995         msg->con = con->ops->get(con);
2996         BUG_ON(msg->con == NULL);
2997
2998         BUG_ON(!list_empty(&msg->list_head));
2999         list_add_tail(&msg->list_head, &con->out_queue);
3000         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3001              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3002              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3003              le32_to_cpu(msg->hdr.front_len),
3004              le32_to_cpu(msg->hdr.middle_len),
3005              le32_to_cpu(msg->hdr.data_len));
3006
3007         clear_standby(con);
3008         mutex_unlock(&con->mutex);
3009
3010         /* if there wasn't anything waiting to send before, queue
3011          * new work */
3012         if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3013                 queue_con(con);
3014 }
3015 EXPORT_SYMBOL(ceph_con_send);
3016
3017 /*
3018  * Revoke a message that was previously queued for send
3019  */
3020 void ceph_msg_revoke(struct ceph_msg *msg)
3021 {
3022         struct ceph_connection *con = msg->con;
3023
3024         if (!con)
3025                 return;         /* Message not in our possession */
3026
3027         mutex_lock(&con->mutex);
3028         if (!list_empty(&msg->list_head)) {
3029                 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3030                 list_del_init(&msg->list_head);
3031                 BUG_ON(msg->con == NULL);
3032                 msg->con->ops->put(msg->con);
3033                 msg->con = NULL;
3034                 msg->hdr.seq = 0;
3035
3036                 ceph_msg_put(msg);
3037         }
3038         if (con->out_msg == msg) {
3039                 dout("%s %p msg %p - was sending\n", __func__, con, msg);
3040                 con->out_msg = NULL;
3041                 if (con->out_kvec_is_msg) {
3042                         con->out_skip = con->out_kvec_bytes;
3043                         con->out_kvec_is_msg = false;
3044                 }
3045                 msg->hdr.seq = 0;
3046
3047                 ceph_msg_put(msg);
3048         }
3049         mutex_unlock(&con->mutex);
3050 }
3051
3052 /*
3053  * Revoke a message that we may be reading data into
3054  */
3055 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3056 {
3057         struct ceph_connection *con;
3058
3059         BUG_ON(msg == NULL);
3060         if (!msg->con) {
3061                 dout("%s msg %p null con\n", __func__, msg);
3062
3063                 return;         /* Message not in our possession */
3064         }
3065
3066         con = msg->con;
3067         mutex_lock(&con->mutex);
3068         if (con->in_msg == msg) {
3069                 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3070                 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3071                 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3072
3073                 /* skip rest of message */
3074                 dout("%s %p msg %p revoked\n", __func__, con, msg);
3075                 con->in_base_pos = con->in_base_pos -
3076                                 sizeof(struct ceph_msg_header) -
3077                                 front_len -
3078                                 middle_len -
3079                                 data_len -
3080                                 sizeof(struct ceph_msg_footer);
3081                 ceph_msg_put(con->in_msg);
3082                 con->in_msg = NULL;
3083                 con->in_tag = CEPH_MSGR_TAG_READY;
3084                 con->in_seq++;
3085         } else {
3086                 dout("%s %p in_msg %p msg %p no-op\n",
3087                      __func__, con, con->in_msg, msg);
3088         }
3089         mutex_unlock(&con->mutex);
3090 }
3091
3092 /*
3093  * Queue a keepalive byte to ensure the tcp connection is alive.
3094  */
3095 void ceph_con_keepalive(struct ceph_connection *con)
3096 {
3097         dout("con_keepalive %p\n", con);
3098         mutex_lock(&con->mutex);
3099         clear_standby(con);
3100         mutex_unlock(&con->mutex);
3101         if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3102             con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3103                 queue_con(con);
3104 }
3105 EXPORT_SYMBOL(ceph_con_keepalive);
3106
3107 static void ceph_msg_data_init(struct ceph_msg_data *data)
3108 {
3109         data->type = CEPH_MSG_DATA_NONE;
3110 }
3111
3112 void ceph_msg_data_set_pages(struct ceph_msg *msg, struct page **pages,
3113                 size_t length, size_t alignment)
3114 {
3115         BUG_ON(!pages);
3116         BUG_ON(!length);
3117         BUG_ON(msg->p.type != CEPH_MSG_DATA_NONE);
3118
3119         msg->p.type = CEPH_MSG_DATA_PAGES;
3120         msg->p.pages = pages;
3121         msg->p.length = length;
3122         msg->p.alignment = alignment & ~PAGE_MASK;
3123 }
3124 EXPORT_SYMBOL(ceph_msg_data_set_pages);
3125
3126 void ceph_msg_data_set_pagelist(struct ceph_msg *msg,
3127                                 struct ceph_pagelist *pagelist)
3128 {
3129         BUG_ON(!pagelist);
3130         BUG_ON(!pagelist->length);
3131         BUG_ON(msg->l.type != CEPH_MSG_DATA_NONE);
3132
3133         msg->l.type = CEPH_MSG_DATA_PAGELIST;
3134         msg->l.pagelist = pagelist;
3135 }
3136 EXPORT_SYMBOL(ceph_msg_data_set_pagelist);
3137
3138 void ceph_msg_data_set_bio(struct ceph_msg *msg, struct bio *bio)
3139 {
3140         BUG_ON(!bio);
3141         BUG_ON(msg->b.type != CEPH_MSG_DATA_NONE);
3142
3143         msg->b.type = CEPH_MSG_DATA_BIO;
3144         msg->b.bio = bio;
3145 }
3146 EXPORT_SYMBOL(ceph_msg_data_set_bio);
3147
3148 void ceph_msg_data_set_trail(struct ceph_msg *msg, struct ceph_pagelist *trail)
3149 {
3150         BUG_ON(!trail);
3151         BUG_ON(!trail->length);
3152         BUG_ON(msg->b.type != CEPH_MSG_DATA_NONE);
3153
3154         msg->t.type = CEPH_MSG_DATA_PAGELIST;
3155         msg->t.pagelist = trail;
3156 }
3157 EXPORT_SYMBOL(ceph_msg_data_set_trail);
3158
3159 /*
3160  * construct a new message with given type, size
3161  * the new msg has a ref count of 1.
3162  */
3163 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3164                               bool can_fail)
3165 {
3166         struct ceph_msg *m;
3167
3168         m = kzalloc(sizeof(*m), flags);
3169         if (m == NULL)
3170                 goto out;
3171
3172         m->hdr.type = cpu_to_le16(type);
3173         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3174         m->hdr.front_len = cpu_to_le32(front_len);
3175
3176         INIT_LIST_HEAD(&m->list_head);
3177         kref_init(&m->kref);
3178
3179         ceph_msg_data_init(&m->p);
3180         ceph_msg_data_init(&m->l);
3181         ceph_msg_data_init(&m->b);
3182         ceph_msg_data_init(&m->t);
3183
3184         /* front */
3185         m->front_max = front_len;
3186         if (front_len) {
3187                 if (front_len > PAGE_CACHE_SIZE) {
3188                         m->front.iov_base = __vmalloc(front_len, flags,
3189                                                       PAGE_KERNEL);
3190                         m->front_is_vmalloc = true;
3191                 } else {
3192                         m->front.iov_base = kmalloc(front_len, flags);
3193                 }
3194                 if (m->front.iov_base == NULL) {
3195                         dout("ceph_msg_new can't allocate %d bytes\n",
3196                              front_len);
3197                         goto out2;
3198                 }
3199         } else {
3200                 m->front.iov_base = NULL;
3201         }
3202         m->front.iov_len = front_len;
3203
3204         dout("ceph_msg_new %p front %d\n", m, front_len);
3205         return m;
3206
3207 out2:
3208         ceph_msg_put(m);
3209 out:
3210         if (!can_fail) {
3211                 pr_err("msg_new can't create type %d front %d\n", type,
3212                        front_len);
3213                 WARN_ON(1);
3214         } else {
3215                 dout("msg_new can't create type %d front %d\n", type,
3216                      front_len);
3217         }
3218         return NULL;
3219 }
3220 EXPORT_SYMBOL(ceph_msg_new);
3221
3222 /*
3223  * Allocate "middle" portion of a message, if it is needed and wasn't
3224  * allocated by alloc_msg.  This allows us to read a small fixed-size
3225  * per-type header in the front and then gracefully fail (i.e.,
3226  * propagate the error to the caller based on info in the front) when
3227  * the middle is too large.
3228  */
3229 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3230 {
3231         int type = le16_to_cpu(msg->hdr.type);
3232         int middle_len = le32_to_cpu(msg->hdr.middle_len);
3233
3234         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3235              ceph_msg_type_name(type), middle_len);
3236         BUG_ON(!middle_len);
3237         BUG_ON(msg->middle);
3238
3239         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3240         if (!msg->middle)
3241                 return -ENOMEM;
3242         return 0;
3243 }
3244
3245 /*
3246  * Allocate a message for receiving an incoming message on a
3247  * connection, and save the result in con->in_msg.  Uses the
3248  * connection's private alloc_msg op if available.
3249  *
3250  * Returns 0 on success, or a negative error code.
3251  *
3252  * On success, if we set *skip = 1:
3253  *  - the next message should be skipped and ignored.
3254  *  - con->in_msg == NULL
3255  * or if we set *skip = 0:
3256  *  - con->in_msg is non-null.
3257  * On error (ENOMEM, EAGAIN, ...),
3258  *  - con->in_msg == NULL
3259  */
3260 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3261 {
3262         struct ceph_msg_header *hdr = &con->in_hdr;
3263         int middle_len = le32_to_cpu(hdr->middle_len);
3264         struct ceph_msg *msg;
3265         int ret = 0;
3266
3267         BUG_ON(con->in_msg != NULL);
3268         BUG_ON(!con->ops->alloc_msg);
3269
3270         mutex_unlock(&con->mutex);
3271         msg = con->ops->alloc_msg(con, hdr, skip);
3272         mutex_lock(&con->mutex);
3273         if (con->state != CON_STATE_OPEN) {
3274                 if (msg)
3275                         ceph_msg_put(msg);
3276                 return -EAGAIN;
3277         }
3278         if (msg) {
3279                 BUG_ON(*skip);
3280                 con->in_msg = msg;
3281                 con->in_msg->con = con->ops->get(con);
3282                 BUG_ON(con->in_msg->con == NULL);
3283         } else {
3284                 /*
3285                  * Null message pointer means either we should skip
3286                  * this message or we couldn't allocate memory.  The
3287                  * former is not an error.
3288                  */
3289                 if (*skip)
3290                         return 0;
3291                 con->error_msg = "error allocating memory for incoming message";
3292
3293                 return -ENOMEM;
3294         }
3295         memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3296
3297         if (middle_len && !con->in_msg->middle) {
3298                 ret = ceph_alloc_middle(con, con->in_msg);
3299                 if (ret < 0) {
3300                         ceph_msg_put(con->in_msg);
3301                         con->in_msg = NULL;
3302                 }
3303         }
3304
3305         return ret;
3306 }
3307
3308
3309 /*
3310  * Free a generically kmalloc'd message.
3311  */
3312 void ceph_msg_kfree(struct ceph_msg *m)
3313 {
3314         dout("msg_kfree %p\n", m);
3315         if (m->front_is_vmalloc)
3316                 vfree(m->front.iov_base);
3317         else
3318                 kfree(m->front.iov_base);
3319         kfree(m);
3320 }
3321
3322 /*
3323  * Drop a msg ref.  Destroy as needed.
3324  */
3325 void ceph_msg_last_put(struct kref *kref)
3326 {
3327         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3328
3329         dout("ceph_msg_put last one on %p\n", m);
3330         WARN_ON(!list_empty(&m->list_head));
3331
3332         /* drop middle, data, if any */
3333         if (m->middle) {
3334                 ceph_buffer_put(m->middle);
3335                 m->middle = NULL;
3336         }
3337         if (ceph_msg_has_pages(m)) {
3338                 m->p.length = 0;
3339                 m->p.pages = NULL;
3340         }
3341
3342         if (ceph_msg_has_pagelist(m)) {
3343                 ceph_pagelist_release(m->l.pagelist);
3344                 kfree(m->l.pagelist);
3345                 m->l.pagelist = NULL;
3346         }
3347
3348         if (ceph_msg_has_trail(m))
3349                 m->t.pagelist = NULL;
3350
3351         if (m->pool)
3352                 ceph_msgpool_put(m->pool, m);
3353         else
3354                 ceph_msg_kfree(m);
3355 }
3356 EXPORT_SYMBOL(ceph_msg_last_put);
3357
3358 void ceph_msg_dump(struct ceph_msg *msg)
3359 {
3360         pr_debug("msg_dump %p (front_max %d length %zd)\n", msg,
3361                  msg->front_max, msg->p.length);
3362         print_hex_dump(KERN_DEBUG, "header: ",
3363                        DUMP_PREFIX_OFFSET, 16, 1,
3364                        &msg->hdr, sizeof(msg->hdr), true);
3365         print_hex_dump(KERN_DEBUG, " front: ",
3366                        DUMP_PREFIX_OFFSET, 16, 1,
3367                        msg->front.iov_base, msg->front.iov_len, true);
3368         if (msg->middle)
3369                 print_hex_dump(KERN_DEBUG, "middle: ",
3370                                DUMP_PREFIX_OFFSET, 16, 1,
3371                                msg->middle->vec.iov_base,
3372                                msg->middle->vec.iov_len, true);
3373         print_hex_dump(KERN_DEBUG, "footer: ",
3374                        DUMP_PREFIX_OFFSET, 16, 1,
3375                        &msg->footer, sizeof(msg->footer), true);
3376 }
3377 EXPORT_SYMBOL(ceph_msg_dump);