]> Pileus Git - ~andy/linux/blob - net/ceph/messenger.c
libceph: change type of ceph_tcp_sendpage() "more"
[~andy/linux] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef  CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif  /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17
18 #include <linux/ceph/libceph.h>
19 #include <linux/ceph/messenger.h>
20 #include <linux/ceph/decode.h>
21 #include <linux/ceph/pagelist.h>
22 #include <linux/export.h>
23
24 /*
25  * Ceph uses the messenger to exchange ceph_msg messages with other
26  * hosts in the system.  The messenger provides ordered and reliable
27  * delivery.  We tolerate TCP disconnects by reconnecting (with
28  * exponential backoff) in the case of a fault (disconnection, bad
29  * crc, protocol error).  Acks allow sent messages to be discarded by
30  * the sender.
31  */
32
33 /*
34  * We track the state of the socket on a given connection using
35  * values defined below.  The transition to a new socket state is
36  * handled by a function which verifies we aren't coming from an
37  * unexpected state.
38  *
39  *      --------
40  *      | NEW* |  transient initial state
41  *      --------
42  *          | con_sock_state_init()
43  *          v
44  *      ----------
45  *      | CLOSED |  initialized, but no socket (and no
46  *      ----------  TCP connection)
47  *       ^      \
48  *       |       \ con_sock_state_connecting()
49  *       |        ----------------------
50  *       |                              \
51  *       + con_sock_state_closed()       \
52  *       |+---------------------------    \
53  *       | \                          \    \
54  *       |  -----------                \    \
55  *       |  | CLOSING |  socket event;  \    \
56  *       |  -----------  await close     \    \
57  *       |       ^                        \   |
58  *       |       |                         \  |
59  *       |       + con_sock_state_closing() \ |
60  *       |      / \                         | |
61  *       |     /   ---------------          | |
62  *       |    /                   \         v v
63  *       |   /                    --------------
64  *       |  /    -----------------| CONNECTING |  socket created, TCP
65  *       |  |   /                 --------------  connect initiated
66  *       |  |   | con_sock_state_connected()
67  *       |  |   v
68  *      -------------
69  *      | CONNECTED |  TCP connection established
70  *      -------------
71  *
72  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
73  */
74
75 #define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
76 #define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
77 #define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
78 #define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
79 #define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
80
81 /*
82  * connection states
83  */
84 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
85 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
86 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
87 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
88 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
89 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
90
91 /*
92  * ceph_connection flag bits
93  */
94 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
95                                        * messages on errors */
96 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
97 #define CON_FLAG_WRITE_PENDING     2  /* we have data ready to send */
98 #define CON_FLAG_SOCK_CLOSED       3  /* socket state changed to closed */
99 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
100
101 static bool con_flag_valid(unsigned long con_flag)
102 {
103         switch (con_flag) {
104         case CON_FLAG_LOSSYTX:
105         case CON_FLAG_KEEPALIVE_PENDING:
106         case CON_FLAG_WRITE_PENDING:
107         case CON_FLAG_SOCK_CLOSED:
108         case CON_FLAG_BACKOFF:
109                 return true;
110         default:
111                 return false;
112         }
113 }
114
115 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
116 {
117         BUG_ON(!con_flag_valid(con_flag));
118
119         clear_bit(con_flag, &con->flags);
120 }
121
122 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
123 {
124         BUG_ON(!con_flag_valid(con_flag));
125
126         set_bit(con_flag, &con->flags);
127 }
128
129 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
130 {
131         BUG_ON(!con_flag_valid(con_flag));
132
133         return test_bit(con_flag, &con->flags);
134 }
135
136 static bool con_flag_test_and_clear(struct ceph_connection *con,
137                                         unsigned long con_flag)
138 {
139         BUG_ON(!con_flag_valid(con_flag));
140
141         return test_and_clear_bit(con_flag, &con->flags);
142 }
143
144 static bool con_flag_test_and_set(struct ceph_connection *con,
145                                         unsigned long con_flag)
146 {
147         BUG_ON(!con_flag_valid(con_flag));
148
149         return test_and_set_bit(con_flag, &con->flags);
150 }
151
152 /* static tag bytes (protocol control messages) */
153 static char tag_msg = CEPH_MSGR_TAG_MSG;
154 static char tag_ack = CEPH_MSGR_TAG_ACK;
155 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
156
157 #ifdef CONFIG_LOCKDEP
158 static struct lock_class_key socket_class;
159 #endif
160
161 /*
162  * When skipping (ignoring) a block of input we read it into a "skip
163  * buffer," which is this many bytes in size.
164  */
165 #define SKIP_BUF_SIZE   1024
166
167 static void queue_con(struct ceph_connection *con);
168 static void con_work(struct work_struct *);
169 static void con_fault(struct ceph_connection *con);
170
171 /*
172  * Nicely render a sockaddr as a string.  An array of formatted
173  * strings is used, to approximate reentrancy.
174  */
175 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
176 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
177 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
178 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
179
180 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
181 static atomic_t addr_str_seq = ATOMIC_INIT(0);
182
183 static struct page *zero_page;          /* used in certain error cases */
184
185 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
186 {
187         int i;
188         char *s;
189         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
190         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
191
192         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
193         s = addr_str[i];
194
195         switch (ss->ss_family) {
196         case AF_INET:
197                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
198                          ntohs(in4->sin_port));
199                 break;
200
201         case AF_INET6:
202                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
203                          ntohs(in6->sin6_port));
204                 break;
205
206         default:
207                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
208                          ss->ss_family);
209         }
210
211         return s;
212 }
213 EXPORT_SYMBOL(ceph_pr_addr);
214
215 static void encode_my_addr(struct ceph_messenger *msgr)
216 {
217         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
218         ceph_encode_addr(&msgr->my_enc_addr);
219 }
220
221 /*
222  * work queue for all reading and writing to/from the socket.
223  */
224 static struct workqueue_struct *ceph_msgr_wq;
225
226 static void _ceph_msgr_exit(void)
227 {
228         if (ceph_msgr_wq) {
229                 destroy_workqueue(ceph_msgr_wq);
230                 ceph_msgr_wq = NULL;
231         }
232
233         BUG_ON(zero_page == NULL);
234         kunmap(zero_page);
235         page_cache_release(zero_page);
236         zero_page = NULL;
237 }
238
239 int ceph_msgr_init(void)
240 {
241         BUG_ON(zero_page != NULL);
242         zero_page = ZERO_PAGE(0);
243         page_cache_get(zero_page);
244
245         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
246         if (ceph_msgr_wq)
247                 return 0;
248
249         pr_err("msgr_init failed to create workqueue\n");
250         _ceph_msgr_exit();
251
252         return -ENOMEM;
253 }
254 EXPORT_SYMBOL(ceph_msgr_init);
255
256 void ceph_msgr_exit(void)
257 {
258         BUG_ON(ceph_msgr_wq == NULL);
259
260         _ceph_msgr_exit();
261 }
262 EXPORT_SYMBOL(ceph_msgr_exit);
263
264 void ceph_msgr_flush(void)
265 {
266         flush_workqueue(ceph_msgr_wq);
267 }
268 EXPORT_SYMBOL(ceph_msgr_flush);
269
270 /* Connection socket state transition functions */
271
272 static void con_sock_state_init(struct ceph_connection *con)
273 {
274         int old_state;
275
276         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
277         if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
278                 printk("%s: unexpected old state %d\n", __func__, old_state);
279         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
280              CON_SOCK_STATE_CLOSED);
281 }
282
283 static void con_sock_state_connecting(struct ceph_connection *con)
284 {
285         int old_state;
286
287         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
288         if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
289                 printk("%s: unexpected old state %d\n", __func__, old_state);
290         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
291              CON_SOCK_STATE_CONNECTING);
292 }
293
294 static void con_sock_state_connected(struct ceph_connection *con)
295 {
296         int old_state;
297
298         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
299         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
300                 printk("%s: unexpected old state %d\n", __func__, old_state);
301         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
302              CON_SOCK_STATE_CONNECTED);
303 }
304
305 static void con_sock_state_closing(struct ceph_connection *con)
306 {
307         int old_state;
308
309         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
310         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
311                         old_state != CON_SOCK_STATE_CONNECTED &&
312                         old_state != CON_SOCK_STATE_CLOSING))
313                 printk("%s: unexpected old state %d\n", __func__, old_state);
314         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
315              CON_SOCK_STATE_CLOSING);
316 }
317
318 static void con_sock_state_closed(struct ceph_connection *con)
319 {
320         int old_state;
321
322         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
323         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
324                     old_state != CON_SOCK_STATE_CLOSING &&
325                     old_state != CON_SOCK_STATE_CONNECTING &&
326                     old_state != CON_SOCK_STATE_CLOSED))
327                 printk("%s: unexpected old state %d\n", __func__, old_state);
328         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
329              CON_SOCK_STATE_CLOSED);
330 }
331
332 /*
333  * socket callback functions
334  */
335
336 /* data available on socket, or listen socket received a connect */
337 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
338 {
339         struct ceph_connection *con = sk->sk_user_data;
340         if (atomic_read(&con->msgr->stopping)) {
341                 return;
342         }
343
344         if (sk->sk_state != TCP_CLOSE_WAIT) {
345                 dout("%s on %p state = %lu, queueing work\n", __func__,
346                      con, con->state);
347                 queue_con(con);
348         }
349 }
350
351 /* socket has buffer space for writing */
352 static void ceph_sock_write_space(struct sock *sk)
353 {
354         struct ceph_connection *con = sk->sk_user_data;
355
356         /* only queue to workqueue if there is data we want to write,
357          * and there is sufficient space in the socket buffer to accept
358          * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
359          * doesn't get called again until try_write() fills the socket
360          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
361          * and net/core/stream.c:sk_stream_write_space().
362          */
363         if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
364                 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
365                         dout("%s %p queueing write work\n", __func__, con);
366                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
367                         queue_con(con);
368                 }
369         } else {
370                 dout("%s %p nothing to write\n", __func__, con);
371         }
372 }
373
374 /* socket's state has changed */
375 static void ceph_sock_state_change(struct sock *sk)
376 {
377         struct ceph_connection *con = sk->sk_user_data;
378
379         dout("%s %p state = %lu sk_state = %u\n", __func__,
380              con, con->state, sk->sk_state);
381
382         switch (sk->sk_state) {
383         case TCP_CLOSE:
384                 dout("%s TCP_CLOSE\n", __func__);
385         case TCP_CLOSE_WAIT:
386                 dout("%s TCP_CLOSE_WAIT\n", __func__);
387                 con_sock_state_closing(con);
388                 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
389                 queue_con(con);
390                 break;
391         case TCP_ESTABLISHED:
392                 dout("%s TCP_ESTABLISHED\n", __func__);
393                 con_sock_state_connected(con);
394                 queue_con(con);
395                 break;
396         default:        /* Everything else is uninteresting */
397                 break;
398         }
399 }
400
401 /*
402  * set up socket callbacks
403  */
404 static void set_sock_callbacks(struct socket *sock,
405                                struct ceph_connection *con)
406 {
407         struct sock *sk = sock->sk;
408         sk->sk_user_data = con;
409         sk->sk_data_ready = ceph_sock_data_ready;
410         sk->sk_write_space = ceph_sock_write_space;
411         sk->sk_state_change = ceph_sock_state_change;
412 }
413
414
415 /*
416  * socket helpers
417  */
418
419 /*
420  * initiate connection to a remote socket.
421  */
422 static int ceph_tcp_connect(struct ceph_connection *con)
423 {
424         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
425         struct socket *sock;
426         int ret;
427
428         BUG_ON(con->sock);
429         ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
430                                IPPROTO_TCP, &sock);
431         if (ret)
432                 return ret;
433         sock->sk->sk_allocation = GFP_NOFS;
434
435 #ifdef CONFIG_LOCKDEP
436         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
437 #endif
438
439         set_sock_callbacks(sock, con);
440
441         dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
442
443         con_sock_state_connecting(con);
444         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
445                                  O_NONBLOCK);
446         if (ret == -EINPROGRESS) {
447                 dout("connect %s EINPROGRESS sk_state = %u\n",
448                      ceph_pr_addr(&con->peer_addr.in_addr),
449                      sock->sk->sk_state);
450         } else if (ret < 0) {
451                 pr_err("connect %s error %d\n",
452                        ceph_pr_addr(&con->peer_addr.in_addr), ret);
453                 sock_release(sock);
454                 con->error_msg = "connect error";
455
456                 return ret;
457         }
458         con->sock = sock;
459         return 0;
460 }
461
462 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
463 {
464         struct kvec iov = {buf, len};
465         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
466         int r;
467
468         r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
469         if (r == -EAGAIN)
470                 r = 0;
471         return r;
472 }
473
474 /*
475  * write something.  @more is true if caller will be sending more data
476  * shortly.
477  */
478 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
479                      size_t kvlen, size_t len, int more)
480 {
481         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
482         int r;
483
484         if (more)
485                 msg.msg_flags |= MSG_MORE;
486         else
487                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
488
489         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
490         if (r == -EAGAIN)
491                 r = 0;
492         return r;
493 }
494
495 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
496                      int offset, size_t size, bool more)
497 {
498         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
499         int ret;
500
501         ret = kernel_sendpage(sock, page, offset, size, flags);
502         if (ret == -EAGAIN)
503                 ret = 0;
504
505         return ret;
506 }
507
508
509 /*
510  * Shutdown/close the socket for the given connection.
511  */
512 static int con_close_socket(struct ceph_connection *con)
513 {
514         int rc = 0;
515
516         dout("con_close_socket on %p sock %p\n", con, con->sock);
517         if (con->sock) {
518                 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
519                 sock_release(con->sock);
520                 con->sock = NULL;
521         }
522
523         /*
524          * Forcibly clear the SOCK_CLOSED flag.  It gets set
525          * independent of the connection mutex, and we could have
526          * received a socket close event before we had the chance to
527          * shut the socket down.
528          */
529         con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
530
531         con_sock_state_closed(con);
532         return rc;
533 }
534
535 /*
536  * Reset a connection.  Discard all incoming and outgoing messages
537  * and clear *_seq state.
538  */
539 static void ceph_msg_remove(struct ceph_msg *msg)
540 {
541         list_del_init(&msg->list_head);
542         BUG_ON(msg->con == NULL);
543         msg->con->ops->put(msg->con);
544         msg->con = NULL;
545
546         ceph_msg_put(msg);
547 }
548 static void ceph_msg_remove_list(struct list_head *head)
549 {
550         while (!list_empty(head)) {
551                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
552                                                         list_head);
553                 ceph_msg_remove(msg);
554         }
555 }
556
557 static void reset_connection(struct ceph_connection *con)
558 {
559         /* reset connection, out_queue, msg_ and connect_seq */
560         /* discard existing out_queue and msg_seq */
561         dout("reset_connection %p\n", con);
562         ceph_msg_remove_list(&con->out_queue);
563         ceph_msg_remove_list(&con->out_sent);
564
565         if (con->in_msg) {
566                 BUG_ON(con->in_msg->con != con);
567                 con->in_msg->con = NULL;
568                 ceph_msg_put(con->in_msg);
569                 con->in_msg = NULL;
570                 con->ops->put(con);
571         }
572
573         con->connect_seq = 0;
574         con->out_seq = 0;
575         if (con->out_msg) {
576                 ceph_msg_put(con->out_msg);
577                 con->out_msg = NULL;
578         }
579         con->in_seq = 0;
580         con->in_seq_acked = 0;
581 }
582
583 /*
584  * mark a peer down.  drop any open connections.
585  */
586 void ceph_con_close(struct ceph_connection *con)
587 {
588         mutex_lock(&con->mutex);
589         dout("con_close %p peer %s\n", con,
590              ceph_pr_addr(&con->peer_addr.in_addr));
591         con->state = CON_STATE_CLOSED;
592
593         con_flag_clear(con, CON_FLAG_LOSSYTX);  /* so we retry next connect */
594         con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
595         con_flag_clear(con, CON_FLAG_WRITE_PENDING);
596         con_flag_clear(con, CON_FLAG_BACKOFF);
597
598         reset_connection(con);
599         con->peer_global_seq = 0;
600         cancel_delayed_work(&con->work);
601         con_close_socket(con);
602         mutex_unlock(&con->mutex);
603 }
604 EXPORT_SYMBOL(ceph_con_close);
605
606 /*
607  * Reopen a closed connection, with a new peer address.
608  */
609 void ceph_con_open(struct ceph_connection *con,
610                    __u8 entity_type, __u64 entity_num,
611                    struct ceph_entity_addr *addr)
612 {
613         mutex_lock(&con->mutex);
614         dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
615
616         WARN_ON(con->state != CON_STATE_CLOSED);
617         con->state = CON_STATE_PREOPEN;
618
619         con->peer_name.type = (__u8) entity_type;
620         con->peer_name.num = cpu_to_le64(entity_num);
621
622         memcpy(&con->peer_addr, addr, sizeof(*addr));
623         con->delay = 0;      /* reset backoff memory */
624         mutex_unlock(&con->mutex);
625         queue_con(con);
626 }
627 EXPORT_SYMBOL(ceph_con_open);
628
629 /*
630  * return true if this connection ever successfully opened
631  */
632 bool ceph_con_opened(struct ceph_connection *con)
633 {
634         return con->connect_seq > 0;
635 }
636
637 /*
638  * initialize a new connection.
639  */
640 void ceph_con_init(struct ceph_connection *con, void *private,
641         const struct ceph_connection_operations *ops,
642         struct ceph_messenger *msgr)
643 {
644         dout("con_init %p\n", con);
645         memset(con, 0, sizeof(*con));
646         con->private = private;
647         con->ops = ops;
648         con->msgr = msgr;
649
650         con_sock_state_init(con);
651
652         mutex_init(&con->mutex);
653         INIT_LIST_HEAD(&con->out_queue);
654         INIT_LIST_HEAD(&con->out_sent);
655         INIT_DELAYED_WORK(&con->work, con_work);
656
657         con->state = CON_STATE_CLOSED;
658 }
659 EXPORT_SYMBOL(ceph_con_init);
660
661
662 /*
663  * We maintain a global counter to order connection attempts.  Get
664  * a unique seq greater than @gt.
665  */
666 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
667 {
668         u32 ret;
669
670         spin_lock(&msgr->global_seq_lock);
671         if (msgr->global_seq < gt)
672                 msgr->global_seq = gt;
673         ret = ++msgr->global_seq;
674         spin_unlock(&msgr->global_seq_lock);
675         return ret;
676 }
677
678 static void con_out_kvec_reset(struct ceph_connection *con)
679 {
680         con->out_kvec_left = 0;
681         con->out_kvec_bytes = 0;
682         con->out_kvec_cur = &con->out_kvec[0];
683 }
684
685 static void con_out_kvec_add(struct ceph_connection *con,
686                                 size_t size, void *data)
687 {
688         int index;
689
690         index = con->out_kvec_left;
691         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
692
693         con->out_kvec[index].iov_len = size;
694         con->out_kvec[index].iov_base = data;
695         con->out_kvec_left++;
696         con->out_kvec_bytes += size;
697 }
698
699 #ifdef CONFIG_BLOCK
700 static void init_bio_iter(struct bio *bio, struct bio **bio_iter,
701                         unsigned int *bio_seg)
702 {
703         if (!bio) {
704                 *bio_iter = NULL;
705                 *bio_seg = 0;
706                 return;
707         }
708         *bio_iter = bio;
709         *bio_seg = (unsigned int) bio->bi_idx;
710 }
711
712 static void iter_bio_next(struct bio **bio_iter, unsigned int *seg)
713 {
714         if (*bio_iter == NULL)
715                 return;
716
717         BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
718
719         (*seg)++;
720         if (*seg == (*bio_iter)->bi_vcnt)
721                 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
722 }
723 #endif
724
725 static void prepare_write_message_data(struct ceph_connection *con)
726 {
727         struct ceph_msg *msg = con->out_msg;
728
729         BUG_ON(!msg);
730         BUG_ON(!msg->hdr.data_len);
731
732         /* initialize page iterator */
733         con->out_msg_pos.page = 0;
734         if (msg->pages)
735                 con->out_msg_pos.page_pos = msg->page_alignment;
736         else
737                 con->out_msg_pos.page_pos = 0;
738 #ifdef CONFIG_BLOCK
739         if (msg->bio)
740                 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
741 #endif
742         con->out_msg_pos.data_pos = 0;
743         con->out_msg_pos.did_page_crc = false;
744         con->out_more = 1;  /* data + footer will follow */
745 }
746
747 /*
748  * Prepare footer for currently outgoing message, and finish things
749  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
750  */
751 static void prepare_write_message_footer(struct ceph_connection *con)
752 {
753         struct ceph_msg *m = con->out_msg;
754         int v = con->out_kvec_left;
755
756         m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
757
758         dout("prepare_write_message_footer %p\n", con);
759         con->out_kvec_is_msg = true;
760         con->out_kvec[v].iov_base = &m->footer;
761         con->out_kvec[v].iov_len = sizeof(m->footer);
762         con->out_kvec_bytes += sizeof(m->footer);
763         con->out_kvec_left++;
764         con->out_more = m->more_to_follow;
765         con->out_msg_done = true;
766 }
767
768 /*
769  * Prepare headers for the next outgoing message.
770  */
771 static void prepare_write_message(struct ceph_connection *con)
772 {
773         struct ceph_msg *m;
774         u32 crc;
775
776         con_out_kvec_reset(con);
777         con->out_kvec_is_msg = true;
778         con->out_msg_done = false;
779
780         /* Sneak an ack in there first?  If we can get it into the same
781          * TCP packet that's a good thing. */
782         if (con->in_seq > con->in_seq_acked) {
783                 con->in_seq_acked = con->in_seq;
784                 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
785                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
786                 con_out_kvec_add(con, sizeof (con->out_temp_ack),
787                         &con->out_temp_ack);
788         }
789
790         BUG_ON(list_empty(&con->out_queue));
791         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
792         con->out_msg = m;
793         BUG_ON(m->con != con);
794
795         /* put message on sent list */
796         ceph_msg_get(m);
797         list_move_tail(&m->list_head, &con->out_sent);
798
799         /*
800          * only assign outgoing seq # if we haven't sent this message
801          * yet.  if it is requeued, resend with it's original seq.
802          */
803         if (m->needs_out_seq) {
804                 m->hdr.seq = cpu_to_le64(++con->out_seq);
805                 m->needs_out_seq = false;
806         }
807 #ifdef CONFIG_BLOCK
808         else
809                 m->bio_iter = NULL;
810 #endif
811
812         dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
813              m, con->out_seq, le16_to_cpu(m->hdr.type),
814              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
815              le32_to_cpu(m->hdr.data_len),
816              m->page_count);
817         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
818
819         /* tag + hdr + front + middle */
820         con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
821         con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
822         con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
823
824         if (m->middle)
825                 con_out_kvec_add(con, m->middle->vec.iov_len,
826                         m->middle->vec.iov_base);
827
828         /* fill in crc (except data pages), footer */
829         crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
830         con->out_msg->hdr.crc = cpu_to_le32(crc);
831         con->out_msg->footer.flags = 0;
832
833         crc = crc32c(0, m->front.iov_base, m->front.iov_len);
834         con->out_msg->footer.front_crc = cpu_to_le32(crc);
835         if (m->middle) {
836                 crc = crc32c(0, m->middle->vec.iov_base,
837                                 m->middle->vec.iov_len);
838                 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
839         } else
840                 con->out_msg->footer.middle_crc = 0;
841         dout("%s front_crc %u middle_crc %u\n", __func__,
842              le32_to_cpu(con->out_msg->footer.front_crc),
843              le32_to_cpu(con->out_msg->footer.middle_crc));
844
845         /* is there a data payload? */
846         con->out_msg->footer.data_crc = 0;
847         if (m->hdr.data_len)
848                 prepare_write_message_data(con);
849         else
850                 /* no, queue up footer too and be done */
851                 prepare_write_message_footer(con);
852
853         con_flag_set(con, CON_FLAG_WRITE_PENDING);
854 }
855
856 /*
857  * Prepare an ack.
858  */
859 static void prepare_write_ack(struct ceph_connection *con)
860 {
861         dout("prepare_write_ack %p %llu -> %llu\n", con,
862              con->in_seq_acked, con->in_seq);
863         con->in_seq_acked = con->in_seq;
864
865         con_out_kvec_reset(con);
866
867         con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
868
869         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
870         con_out_kvec_add(con, sizeof (con->out_temp_ack),
871                                 &con->out_temp_ack);
872
873         con->out_more = 1;  /* more will follow.. eventually.. */
874         con_flag_set(con, CON_FLAG_WRITE_PENDING);
875 }
876
877 /*
878  * Prepare to write keepalive byte.
879  */
880 static void prepare_write_keepalive(struct ceph_connection *con)
881 {
882         dout("prepare_write_keepalive %p\n", con);
883         con_out_kvec_reset(con);
884         con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
885         con_flag_set(con, CON_FLAG_WRITE_PENDING);
886 }
887
888 /*
889  * Connection negotiation.
890  */
891
892 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
893                                                 int *auth_proto)
894 {
895         struct ceph_auth_handshake *auth;
896
897         if (!con->ops->get_authorizer) {
898                 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
899                 con->out_connect.authorizer_len = 0;
900                 return NULL;
901         }
902
903         /* Can't hold the mutex while getting authorizer */
904         mutex_unlock(&con->mutex);
905         auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
906         mutex_lock(&con->mutex);
907
908         if (IS_ERR(auth))
909                 return auth;
910         if (con->state != CON_STATE_NEGOTIATING)
911                 return ERR_PTR(-EAGAIN);
912
913         con->auth_reply_buf = auth->authorizer_reply_buf;
914         con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
915         return auth;
916 }
917
918 /*
919  * We connected to a peer and are saying hello.
920  */
921 static void prepare_write_banner(struct ceph_connection *con)
922 {
923         con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
924         con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
925                                         &con->msgr->my_enc_addr);
926
927         con->out_more = 0;
928         con_flag_set(con, CON_FLAG_WRITE_PENDING);
929 }
930
931 static int prepare_write_connect(struct ceph_connection *con)
932 {
933         unsigned int global_seq = get_global_seq(con->msgr, 0);
934         int proto;
935         int auth_proto;
936         struct ceph_auth_handshake *auth;
937
938         switch (con->peer_name.type) {
939         case CEPH_ENTITY_TYPE_MON:
940                 proto = CEPH_MONC_PROTOCOL;
941                 break;
942         case CEPH_ENTITY_TYPE_OSD:
943                 proto = CEPH_OSDC_PROTOCOL;
944                 break;
945         case CEPH_ENTITY_TYPE_MDS:
946                 proto = CEPH_MDSC_PROTOCOL;
947                 break;
948         default:
949                 BUG();
950         }
951
952         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
953              con->connect_seq, global_seq, proto);
954
955         con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
956         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
957         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
958         con->out_connect.global_seq = cpu_to_le32(global_seq);
959         con->out_connect.protocol_version = cpu_to_le32(proto);
960         con->out_connect.flags = 0;
961
962         auth_proto = CEPH_AUTH_UNKNOWN;
963         auth = get_connect_authorizer(con, &auth_proto);
964         if (IS_ERR(auth))
965                 return PTR_ERR(auth);
966
967         con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
968         con->out_connect.authorizer_len = auth ?
969                 cpu_to_le32(auth->authorizer_buf_len) : 0;
970
971         con_out_kvec_add(con, sizeof (con->out_connect),
972                                         &con->out_connect);
973         if (auth && auth->authorizer_buf_len)
974                 con_out_kvec_add(con, auth->authorizer_buf_len,
975                                         auth->authorizer_buf);
976
977         con->out_more = 0;
978         con_flag_set(con, CON_FLAG_WRITE_PENDING);
979
980         return 0;
981 }
982
983 /*
984  * write as much of pending kvecs to the socket as we can.
985  *  1 -> done
986  *  0 -> socket full, but more to do
987  * <0 -> error
988  */
989 static int write_partial_kvec(struct ceph_connection *con)
990 {
991         int ret;
992
993         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
994         while (con->out_kvec_bytes > 0) {
995                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
996                                        con->out_kvec_left, con->out_kvec_bytes,
997                                        con->out_more);
998                 if (ret <= 0)
999                         goto out;
1000                 con->out_kvec_bytes -= ret;
1001                 if (con->out_kvec_bytes == 0)
1002                         break;            /* done */
1003
1004                 /* account for full iov entries consumed */
1005                 while (ret >= con->out_kvec_cur->iov_len) {
1006                         BUG_ON(!con->out_kvec_left);
1007                         ret -= con->out_kvec_cur->iov_len;
1008                         con->out_kvec_cur++;
1009                         con->out_kvec_left--;
1010                 }
1011                 /* and for a partially-consumed entry */
1012                 if (ret) {
1013                         con->out_kvec_cur->iov_len -= ret;
1014                         con->out_kvec_cur->iov_base += ret;
1015                 }
1016         }
1017         con->out_kvec_left = 0;
1018         con->out_kvec_is_msg = false;
1019         ret = 1;
1020 out:
1021         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1022              con->out_kvec_bytes, con->out_kvec_left, ret);
1023         return ret;  /* done! */
1024 }
1025
1026 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
1027                         size_t len, size_t sent, bool in_trail)
1028 {
1029         struct ceph_msg *msg = con->out_msg;
1030
1031         BUG_ON(!msg);
1032         BUG_ON(!sent);
1033
1034         con->out_msg_pos.data_pos += sent;
1035         con->out_msg_pos.page_pos += sent;
1036         if (sent < len)
1037                 return;
1038
1039         BUG_ON(sent != len);
1040         con->out_msg_pos.page_pos = 0;
1041         con->out_msg_pos.page++;
1042         con->out_msg_pos.did_page_crc = false;
1043         if (in_trail)
1044                 list_move_tail(&page->lru,
1045                                &msg->trail->head);
1046         else if (msg->pagelist)
1047                 list_move_tail(&page->lru,
1048                                &msg->pagelist->head);
1049 #ifdef CONFIG_BLOCK
1050         else if (msg->bio)
1051                 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
1052 #endif
1053 }
1054
1055 /*
1056  * Write as much message data payload as we can.  If we finish, queue
1057  * up the footer.
1058  *  1 -> done, footer is now queued in out_kvec[].
1059  *  0 -> socket full, but more to do
1060  * <0 -> error
1061  */
1062 static int write_partial_msg_pages(struct ceph_connection *con)
1063 {
1064         struct ceph_msg *msg = con->out_msg;
1065         unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
1066         size_t len;
1067         bool do_datacrc = !con->msgr->nocrc;
1068         int ret;
1069         int total_max_write;
1070         bool in_trail = false;
1071         const size_t trail_len = (msg->trail ? msg->trail->length : 0);
1072         const size_t trail_off = data_len - trail_len;
1073
1074         dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
1075              con, msg, con->out_msg_pos.page, msg->page_count,
1076              con->out_msg_pos.page_pos);
1077
1078         /*
1079          * Iterate through each page that contains data to be
1080          * written, and send as much as possible for each.
1081          *
1082          * If we are calculating the data crc (the default), we will
1083          * need to map the page.  If we have no pages, they have
1084          * been revoked, so use the zero page.
1085          */
1086         while (data_len > con->out_msg_pos.data_pos) {
1087                 struct page *page = NULL;
1088                 int max_write = PAGE_SIZE;
1089                 int bio_offset = 0;
1090
1091                 in_trail = in_trail || con->out_msg_pos.data_pos >= trail_off;
1092                 if (!in_trail)
1093                         total_max_write = trail_off - con->out_msg_pos.data_pos;
1094
1095                 if (in_trail) {
1096                         total_max_write = data_len - con->out_msg_pos.data_pos;
1097
1098                         page = list_first_entry(&msg->trail->head,
1099                                                 struct page, lru);
1100                 } else if (msg->pages) {
1101                         page = msg->pages[con->out_msg_pos.page];
1102                 } else if (msg->pagelist) {
1103                         page = list_first_entry(&msg->pagelist->head,
1104                                                 struct page, lru);
1105 #ifdef CONFIG_BLOCK
1106                 } else if (msg->bio) {
1107                         struct bio_vec *bv;
1108
1109                         bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
1110                         page = bv->bv_page;
1111                         bio_offset = bv->bv_offset;
1112                         max_write = bv->bv_len;
1113 #endif
1114                 } else {
1115                         page = zero_page;
1116                 }
1117                 len = min_t(int, max_write - con->out_msg_pos.page_pos,
1118                             total_max_write);
1119
1120                 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
1121                         void *base;
1122                         u32 crc = le32_to_cpu(msg->footer.data_crc);
1123                         char *kaddr;
1124
1125                         kaddr = kmap(page);
1126                         BUG_ON(kaddr == NULL);
1127                         base = kaddr + con->out_msg_pos.page_pos + bio_offset;
1128                         crc = crc32c(crc, base, len);
1129                         kunmap(page);
1130                         msg->footer.data_crc = cpu_to_le32(crc);
1131                         con->out_msg_pos.did_page_crc = true;
1132                 }
1133                 ret = ceph_tcp_sendpage(con->sock, page,
1134                                       con->out_msg_pos.page_pos + bio_offset,
1135                                       len, true);
1136                 if (ret <= 0)
1137                         goto out;
1138
1139                 out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1140         }
1141
1142         dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1143
1144         /* prepare and queue up footer, too */
1145         if (!do_datacrc)
1146                 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1147         con_out_kvec_reset(con);
1148         prepare_write_message_footer(con);
1149         ret = 1;
1150 out:
1151         return ret;
1152 }
1153
1154 /*
1155  * write some zeros
1156  */
1157 static int write_partial_skip(struct ceph_connection *con)
1158 {
1159         int ret;
1160
1161         while (con->out_skip > 0) {
1162                 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1163
1164                 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1165                 if (ret <= 0)
1166                         goto out;
1167                 con->out_skip -= ret;
1168         }
1169         ret = 1;
1170 out:
1171         return ret;
1172 }
1173
1174 /*
1175  * Prepare to read connection handshake, or an ack.
1176  */
1177 static void prepare_read_banner(struct ceph_connection *con)
1178 {
1179         dout("prepare_read_banner %p\n", con);
1180         con->in_base_pos = 0;
1181 }
1182
1183 static void prepare_read_connect(struct ceph_connection *con)
1184 {
1185         dout("prepare_read_connect %p\n", con);
1186         con->in_base_pos = 0;
1187 }
1188
1189 static void prepare_read_ack(struct ceph_connection *con)
1190 {
1191         dout("prepare_read_ack %p\n", con);
1192         con->in_base_pos = 0;
1193 }
1194
1195 static void prepare_read_tag(struct ceph_connection *con)
1196 {
1197         dout("prepare_read_tag %p\n", con);
1198         con->in_base_pos = 0;
1199         con->in_tag = CEPH_MSGR_TAG_READY;
1200 }
1201
1202 /*
1203  * Prepare to read a message.
1204  */
1205 static int prepare_read_message(struct ceph_connection *con)
1206 {
1207         dout("prepare_read_message %p\n", con);
1208         BUG_ON(con->in_msg != NULL);
1209         con->in_base_pos = 0;
1210         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1211         return 0;
1212 }
1213
1214
1215 static int read_partial(struct ceph_connection *con,
1216                         int end, int size, void *object)
1217 {
1218         while (con->in_base_pos < end) {
1219                 int left = end - con->in_base_pos;
1220                 int have = size - left;
1221                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1222                 if (ret <= 0)
1223                         return ret;
1224                 con->in_base_pos += ret;
1225         }
1226         return 1;
1227 }
1228
1229
1230 /*
1231  * Read all or part of the connect-side handshake on a new connection
1232  */
1233 static int read_partial_banner(struct ceph_connection *con)
1234 {
1235         int size;
1236         int end;
1237         int ret;
1238
1239         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1240
1241         /* peer's banner */
1242         size = strlen(CEPH_BANNER);
1243         end = size;
1244         ret = read_partial(con, end, size, con->in_banner);
1245         if (ret <= 0)
1246                 goto out;
1247
1248         size = sizeof (con->actual_peer_addr);
1249         end += size;
1250         ret = read_partial(con, end, size, &con->actual_peer_addr);
1251         if (ret <= 0)
1252                 goto out;
1253
1254         size = sizeof (con->peer_addr_for_me);
1255         end += size;
1256         ret = read_partial(con, end, size, &con->peer_addr_for_me);
1257         if (ret <= 0)
1258                 goto out;
1259
1260 out:
1261         return ret;
1262 }
1263
1264 static int read_partial_connect(struct ceph_connection *con)
1265 {
1266         int size;
1267         int end;
1268         int ret;
1269
1270         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1271
1272         size = sizeof (con->in_reply);
1273         end = size;
1274         ret = read_partial(con, end, size, &con->in_reply);
1275         if (ret <= 0)
1276                 goto out;
1277
1278         size = le32_to_cpu(con->in_reply.authorizer_len);
1279         end += size;
1280         ret = read_partial(con, end, size, con->auth_reply_buf);
1281         if (ret <= 0)
1282                 goto out;
1283
1284         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1285              con, (int)con->in_reply.tag,
1286              le32_to_cpu(con->in_reply.connect_seq),
1287              le32_to_cpu(con->in_reply.global_seq));
1288 out:
1289         return ret;
1290
1291 }
1292
1293 /*
1294  * Verify the hello banner looks okay.
1295  */
1296 static int verify_hello(struct ceph_connection *con)
1297 {
1298         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1299                 pr_err("connect to %s got bad banner\n",
1300                        ceph_pr_addr(&con->peer_addr.in_addr));
1301                 con->error_msg = "protocol error, bad banner";
1302                 return -1;
1303         }
1304         return 0;
1305 }
1306
1307 static bool addr_is_blank(struct sockaddr_storage *ss)
1308 {
1309         switch (ss->ss_family) {
1310         case AF_INET:
1311                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1312         case AF_INET6:
1313                 return
1314                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1315                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1316                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1317                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1318         }
1319         return false;
1320 }
1321
1322 static int addr_port(struct sockaddr_storage *ss)
1323 {
1324         switch (ss->ss_family) {
1325         case AF_INET:
1326                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1327         case AF_INET6:
1328                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1329         }
1330         return 0;
1331 }
1332
1333 static void addr_set_port(struct sockaddr_storage *ss, int p)
1334 {
1335         switch (ss->ss_family) {
1336         case AF_INET:
1337                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1338                 break;
1339         case AF_INET6:
1340                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1341                 break;
1342         }
1343 }
1344
1345 /*
1346  * Unlike other *_pton function semantics, zero indicates success.
1347  */
1348 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1349                 char delim, const char **ipend)
1350 {
1351         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1352         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1353
1354         memset(ss, 0, sizeof(*ss));
1355
1356         if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1357                 ss->ss_family = AF_INET;
1358                 return 0;
1359         }
1360
1361         if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1362                 ss->ss_family = AF_INET6;
1363                 return 0;
1364         }
1365
1366         return -EINVAL;
1367 }
1368
1369 /*
1370  * Extract hostname string and resolve using kernel DNS facility.
1371  */
1372 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1373 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1374                 struct sockaddr_storage *ss, char delim, const char **ipend)
1375 {
1376         const char *end, *delim_p;
1377         char *colon_p, *ip_addr = NULL;
1378         int ip_len, ret;
1379
1380         /*
1381          * The end of the hostname occurs immediately preceding the delimiter or
1382          * the port marker (':') where the delimiter takes precedence.
1383          */
1384         delim_p = memchr(name, delim, namelen);
1385         colon_p = memchr(name, ':', namelen);
1386
1387         if (delim_p && colon_p)
1388                 end = delim_p < colon_p ? delim_p : colon_p;
1389         else if (!delim_p && colon_p)
1390                 end = colon_p;
1391         else {
1392                 end = delim_p;
1393                 if (!end) /* case: hostname:/ */
1394                         end = name + namelen;
1395         }
1396
1397         if (end <= name)
1398                 return -EINVAL;
1399
1400         /* do dns_resolve upcall */
1401         ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1402         if (ip_len > 0)
1403                 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1404         else
1405                 ret = -ESRCH;
1406
1407         kfree(ip_addr);
1408
1409         *ipend = end;
1410
1411         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1412                         ret, ret ? "failed" : ceph_pr_addr(ss));
1413
1414         return ret;
1415 }
1416 #else
1417 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1418                 struct sockaddr_storage *ss, char delim, const char **ipend)
1419 {
1420         return -EINVAL;
1421 }
1422 #endif
1423
1424 /*
1425  * Parse a server name (IP or hostname). If a valid IP address is not found
1426  * then try to extract a hostname to resolve using userspace DNS upcall.
1427  */
1428 static int ceph_parse_server_name(const char *name, size_t namelen,
1429                         struct sockaddr_storage *ss, char delim, const char **ipend)
1430 {
1431         int ret;
1432
1433         ret = ceph_pton(name, namelen, ss, delim, ipend);
1434         if (ret)
1435                 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1436
1437         return ret;
1438 }
1439
1440 /*
1441  * Parse an ip[:port] list into an addr array.  Use the default
1442  * monitor port if a port isn't specified.
1443  */
1444 int ceph_parse_ips(const char *c, const char *end,
1445                    struct ceph_entity_addr *addr,
1446                    int max_count, int *count)
1447 {
1448         int i, ret = -EINVAL;
1449         const char *p = c;
1450
1451         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1452         for (i = 0; i < max_count; i++) {
1453                 const char *ipend;
1454                 struct sockaddr_storage *ss = &addr[i].in_addr;
1455                 int port;
1456                 char delim = ',';
1457
1458                 if (*p == '[') {
1459                         delim = ']';
1460                         p++;
1461                 }
1462
1463                 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1464                 if (ret)
1465                         goto bad;
1466                 ret = -EINVAL;
1467
1468                 p = ipend;
1469
1470                 if (delim == ']') {
1471                         if (*p != ']') {
1472                                 dout("missing matching ']'\n");
1473                                 goto bad;
1474                         }
1475                         p++;
1476                 }
1477
1478                 /* port? */
1479                 if (p < end && *p == ':') {
1480                         port = 0;
1481                         p++;
1482                         while (p < end && *p >= '0' && *p <= '9') {
1483                                 port = (port * 10) + (*p - '0');
1484                                 p++;
1485                         }
1486                         if (port > 65535 || port == 0)
1487                                 goto bad;
1488                 } else {
1489                         port = CEPH_MON_PORT;
1490                 }
1491
1492                 addr_set_port(ss, port);
1493
1494                 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1495
1496                 if (p == end)
1497                         break;
1498                 if (*p != ',')
1499                         goto bad;
1500                 p++;
1501         }
1502
1503         if (p != end)
1504                 goto bad;
1505
1506         if (count)
1507                 *count = i + 1;
1508         return 0;
1509
1510 bad:
1511         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1512         return ret;
1513 }
1514 EXPORT_SYMBOL(ceph_parse_ips);
1515
1516 static int process_banner(struct ceph_connection *con)
1517 {
1518         dout("process_banner on %p\n", con);
1519
1520         if (verify_hello(con) < 0)
1521                 return -1;
1522
1523         ceph_decode_addr(&con->actual_peer_addr);
1524         ceph_decode_addr(&con->peer_addr_for_me);
1525
1526         /*
1527          * Make sure the other end is who we wanted.  note that the other
1528          * end may not yet know their ip address, so if it's 0.0.0.0, give
1529          * them the benefit of the doubt.
1530          */
1531         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1532                    sizeof(con->peer_addr)) != 0 &&
1533             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1534               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1535                 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1536                            ceph_pr_addr(&con->peer_addr.in_addr),
1537                            (int)le32_to_cpu(con->peer_addr.nonce),
1538                            ceph_pr_addr(&con->actual_peer_addr.in_addr),
1539                            (int)le32_to_cpu(con->actual_peer_addr.nonce));
1540                 con->error_msg = "wrong peer at address";
1541                 return -1;
1542         }
1543
1544         /*
1545          * did we learn our address?
1546          */
1547         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1548                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1549
1550                 memcpy(&con->msgr->inst.addr.in_addr,
1551                        &con->peer_addr_for_me.in_addr,
1552                        sizeof(con->peer_addr_for_me.in_addr));
1553                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1554                 encode_my_addr(con->msgr);
1555                 dout("process_banner learned my addr is %s\n",
1556                      ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1557         }
1558
1559         return 0;
1560 }
1561
1562 static int process_connect(struct ceph_connection *con)
1563 {
1564         u64 sup_feat = con->msgr->supported_features;
1565         u64 req_feat = con->msgr->required_features;
1566         u64 server_feat = le64_to_cpu(con->in_reply.features);
1567         int ret;
1568
1569         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1570
1571         switch (con->in_reply.tag) {
1572         case CEPH_MSGR_TAG_FEATURES:
1573                 pr_err("%s%lld %s feature set mismatch,"
1574                        " my %llx < server's %llx, missing %llx\n",
1575                        ENTITY_NAME(con->peer_name),
1576                        ceph_pr_addr(&con->peer_addr.in_addr),
1577                        sup_feat, server_feat, server_feat & ~sup_feat);
1578                 con->error_msg = "missing required protocol features";
1579                 reset_connection(con);
1580                 return -1;
1581
1582         case CEPH_MSGR_TAG_BADPROTOVER:
1583                 pr_err("%s%lld %s protocol version mismatch,"
1584                        " my %d != server's %d\n",
1585                        ENTITY_NAME(con->peer_name),
1586                        ceph_pr_addr(&con->peer_addr.in_addr),
1587                        le32_to_cpu(con->out_connect.protocol_version),
1588                        le32_to_cpu(con->in_reply.protocol_version));
1589                 con->error_msg = "protocol version mismatch";
1590                 reset_connection(con);
1591                 return -1;
1592
1593         case CEPH_MSGR_TAG_BADAUTHORIZER:
1594                 con->auth_retry++;
1595                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1596                      con->auth_retry);
1597                 if (con->auth_retry == 2) {
1598                         con->error_msg = "connect authorization failure";
1599                         return -1;
1600                 }
1601                 con->auth_retry = 1;
1602                 con_out_kvec_reset(con);
1603                 ret = prepare_write_connect(con);
1604                 if (ret < 0)
1605                         return ret;
1606                 prepare_read_connect(con);
1607                 break;
1608
1609         case CEPH_MSGR_TAG_RESETSESSION:
1610                 /*
1611                  * If we connected with a large connect_seq but the peer
1612                  * has no record of a session with us (no connection, or
1613                  * connect_seq == 0), they will send RESETSESION to indicate
1614                  * that they must have reset their session, and may have
1615                  * dropped messages.
1616                  */
1617                 dout("process_connect got RESET peer seq %u\n",
1618                      le32_to_cpu(con->in_reply.connect_seq));
1619                 pr_err("%s%lld %s connection reset\n",
1620                        ENTITY_NAME(con->peer_name),
1621                        ceph_pr_addr(&con->peer_addr.in_addr));
1622                 reset_connection(con);
1623                 con_out_kvec_reset(con);
1624                 ret = prepare_write_connect(con);
1625                 if (ret < 0)
1626                         return ret;
1627                 prepare_read_connect(con);
1628
1629                 /* Tell ceph about it. */
1630                 mutex_unlock(&con->mutex);
1631                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1632                 if (con->ops->peer_reset)
1633                         con->ops->peer_reset(con);
1634                 mutex_lock(&con->mutex);
1635                 if (con->state != CON_STATE_NEGOTIATING)
1636                         return -EAGAIN;
1637                 break;
1638
1639         case CEPH_MSGR_TAG_RETRY_SESSION:
1640                 /*
1641                  * If we sent a smaller connect_seq than the peer has, try
1642                  * again with a larger value.
1643                  */
1644                 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1645                      le32_to_cpu(con->out_connect.connect_seq),
1646                      le32_to_cpu(con->in_reply.connect_seq));
1647                 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1648                 con_out_kvec_reset(con);
1649                 ret = prepare_write_connect(con);
1650                 if (ret < 0)
1651                         return ret;
1652                 prepare_read_connect(con);
1653                 break;
1654
1655         case CEPH_MSGR_TAG_RETRY_GLOBAL:
1656                 /*
1657                  * If we sent a smaller global_seq than the peer has, try
1658                  * again with a larger value.
1659                  */
1660                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1661                      con->peer_global_seq,
1662                      le32_to_cpu(con->in_reply.global_seq));
1663                 get_global_seq(con->msgr,
1664                                le32_to_cpu(con->in_reply.global_seq));
1665                 con_out_kvec_reset(con);
1666                 ret = prepare_write_connect(con);
1667                 if (ret < 0)
1668                         return ret;
1669                 prepare_read_connect(con);
1670                 break;
1671
1672         case CEPH_MSGR_TAG_READY:
1673                 if (req_feat & ~server_feat) {
1674                         pr_err("%s%lld %s protocol feature mismatch,"
1675                                " my required %llx > server's %llx, need %llx\n",
1676                                ENTITY_NAME(con->peer_name),
1677                                ceph_pr_addr(&con->peer_addr.in_addr),
1678                                req_feat, server_feat, req_feat & ~server_feat);
1679                         con->error_msg = "missing required protocol features";
1680                         reset_connection(con);
1681                         return -1;
1682                 }
1683
1684                 WARN_ON(con->state != CON_STATE_NEGOTIATING);
1685                 con->state = CON_STATE_OPEN;
1686
1687                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1688                 con->connect_seq++;
1689                 con->peer_features = server_feat;
1690                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1691                      con->peer_global_seq,
1692                      le32_to_cpu(con->in_reply.connect_seq),
1693                      con->connect_seq);
1694                 WARN_ON(con->connect_seq !=
1695                         le32_to_cpu(con->in_reply.connect_seq));
1696
1697                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1698                         con_flag_set(con, CON_FLAG_LOSSYTX);
1699
1700                 con->delay = 0;      /* reset backoff memory */
1701
1702                 prepare_read_tag(con);
1703                 break;
1704
1705         case CEPH_MSGR_TAG_WAIT:
1706                 /*
1707                  * If there is a connection race (we are opening
1708                  * connections to each other), one of us may just have
1709                  * to WAIT.  This shouldn't happen if we are the
1710                  * client.
1711                  */
1712                 pr_err("process_connect got WAIT as client\n");
1713                 con->error_msg = "protocol error, got WAIT as client";
1714                 return -1;
1715
1716         default:
1717                 pr_err("connect protocol error, will retry\n");
1718                 con->error_msg = "protocol error, garbage tag during connect";
1719                 return -1;
1720         }
1721         return 0;
1722 }
1723
1724
1725 /*
1726  * read (part of) an ack
1727  */
1728 static int read_partial_ack(struct ceph_connection *con)
1729 {
1730         int size = sizeof (con->in_temp_ack);
1731         int end = size;
1732
1733         return read_partial(con, end, size, &con->in_temp_ack);
1734 }
1735
1736
1737 /*
1738  * We can finally discard anything that's been acked.
1739  */
1740 static void process_ack(struct ceph_connection *con)
1741 {
1742         struct ceph_msg *m;
1743         u64 ack = le64_to_cpu(con->in_temp_ack);
1744         u64 seq;
1745
1746         while (!list_empty(&con->out_sent)) {
1747                 m = list_first_entry(&con->out_sent, struct ceph_msg,
1748                                      list_head);
1749                 seq = le64_to_cpu(m->hdr.seq);
1750                 if (seq > ack)
1751                         break;
1752                 dout("got ack for seq %llu type %d at %p\n", seq,
1753                      le16_to_cpu(m->hdr.type), m);
1754                 m->ack_stamp = jiffies;
1755                 ceph_msg_remove(m);
1756         }
1757         prepare_read_tag(con);
1758 }
1759
1760
1761
1762
1763 static int read_partial_message_section(struct ceph_connection *con,
1764                                         struct kvec *section,
1765                                         unsigned int sec_len, u32 *crc)
1766 {
1767         int ret, left;
1768
1769         BUG_ON(!section);
1770
1771         while (section->iov_len < sec_len) {
1772                 BUG_ON(section->iov_base == NULL);
1773                 left = sec_len - section->iov_len;
1774                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1775                                        section->iov_len, left);
1776                 if (ret <= 0)
1777                         return ret;
1778                 section->iov_len += ret;
1779         }
1780         if (section->iov_len == sec_len)
1781                 *crc = crc32c(0, section->iov_base, section->iov_len);
1782
1783         return 1;
1784 }
1785
1786 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
1787
1788 static int read_partial_message_pages(struct ceph_connection *con,
1789                                       struct page **pages,
1790                                       unsigned int data_len, bool do_datacrc)
1791 {
1792         void *p;
1793         int ret;
1794         int left;
1795
1796         left = min((int)(data_len - con->in_msg_pos.data_pos),
1797                    (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1798         /* (page) data */
1799         BUG_ON(pages == NULL);
1800         p = kmap(pages[con->in_msg_pos.page]);
1801         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1802                                left);
1803         if (ret > 0 && do_datacrc)
1804                 con->in_data_crc =
1805                         crc32c(con->in_data_crc,
1806                                   p + con->in_msg_pos.page_pos, ret);
1807         kunmap(pages[con->in_msg_pos.page]);
1808         if (ret <= 0)
1809                 return ret;
1810         con->in_msg_pos.data_pos += ret;
1811         con->in_msg_pos.page_pos += ret;
1812         if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1813                 con->in_msg_pos.page_pos = 0;
1814                 con->in_msg_pos.page++;
1815         }
1816
1817         return ret;
1818 }
1819
1820 #ifdef CONFIG_BLOCK
1821 static int read_partial_message_bio(struct ceph_connection *con,
1822                                     struct bio **bio_iter,
1823                                     unsigned int *bio_seg,
1824                                     unsigned int data_len, bool do_datacrc)
1825 {
1826         struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1827         void *p;
1828         int ret, left;
1829
1830         left = min((int)(data_len - con->in_msg_pos.data_pos),
1831                    (int)(bv->bv_len - con->in_msg_pos.page_pos));
1832
1833         p = kmap(bv->bv_page) + bv->bv_offset;
1834
1835         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1836                                left);
1837         if (ret > 0 && do_datacrc)
1838                 con->in_data_crc =
1839                         crc32c(con->in_data_crc,
1840                                   p + con->in_msg_pos.page_pos, ret);
1841         kunmap(bv->bv_page);
1842         if (ret <= 0)
1843                 return ret;
1844         con->in_msg_pos.data_pos += ret;
1845         con->in_msg_pos.page_pos += ret;
1846         if (con->in_msg_pos.page_pos == bv->bv_len) {
1847                 con->in_msg_pos.page_pos = 0;
1848                 iter_bio_next(bio_iter, bio_seg);
1849         }
1850
1851         return ret;
1852 }
1853 #endif
1854
1855 /*
1856  * read (part of) a message.
1857  */
1858 static int read_partial_message(struct ceph_connection *con)
1859 {
1860         struct ceph_msg *m = con->in_msg;
1861         int size;
1862         int end;
1863         int ret;
1864         unsigned int front_len, middle_len, data_len;
1865         bool do_datacrc = !con->msgr->nocrc;
1866         u64 seq;
1867         u32 crc;
1868
1869         dout("read_partial_message con %p msg %p\n", con, m);
1870
1871         /* header */
1872         size = sizeof (con->in_hdr);
1873         end = size;
1874         ret = read_partial(con, end, size, &con->in_hdr);
1875         if (ret <= 0)
1876                 return ret;
1877
1878         crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1879         if (cpu_to_le32(crc) != con->in_hdr.crc) {
1880                 pr_err("read_partial_message bad hdr "
1881                        " crc %u != expected %u\n",
1882                        crc, con->in_hdr.crc);
1883                 return -EBADMSG;
1884         }
1885
1886         front_len = le32_to_cpu(con->in_hdr.front_len);
1887         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1888                 return -EIO;
1889         middle_len = le32_to_cpu(con->in_hdr.middle_len);
1890         if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
1891                 return -EIO;
1892         data_len = le32_to_cpu(con->in_hdr.data_len);
1893         if (data_len > CEPH_MSG_MAX_DATA_LEN)
1894                 return -EIO;
1895
1896         /* verify seq# */
1897         seq = le64_to_cpu(con->in_hdr.seq);
1898         if ((s64)seq - (s64)con->in_seq < 1) {
1899                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1900                         ENTITY_NAME(con->peer_name),
1901                         ceph_pr_addr(&con->peer_addr.in_addr),
1902                         seq, con->in_seq + 1);
1903                 con->in_base_pos = -front_len - middle_len - data_len -
1904                         sizeof(m->footer);
1905                 con->in_tag = CEPH_MSGR_TAG_READY;
1906                 return 0;
1907         } else if ((s64)seq - (s64)con->in_seq > 1) {
1908                 pr_err("read_partial_message bad seq %lld expected %lld\n",
1909                        seq, con->in_seq + 1);
1910                 con->error_msg = "bad message sequence # for incoming message";
1911                 return -EBADMSG;
1912         }
1913
1914         /* allocate message? */
1915         if (!con->in_msg) {
1916                 int skip = 0;
1917
1918                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1919                      front_len, data_len);
1920                 ret = ceph_con_in_msg_alloc(con, &skip);
1921                 if (ret < 0)
1922                         return ret;
1923                 if (skip) {
1924                         /* skip this message */
1925                         dout("alloc_msg said skip message\n");
1926                         BUG_ON(con->in_msg);
1927                         con->in_base_pos = -front_len - middle_len - data_len -
1928                                 sizeof(m->footer);
1929                         con->in_tag = CEPH_MSGR_TAG_READY;
1930                         con->in_seq++;
1931                         return 0;
1932                 }
1933
1934                 BUG_ON(!con->in_msg);
1935                 BUG_ON(con->in_msg->con != con);
1936                 m = con->in_msg;
1937                 m->front.iov_len = 0;    /* haven't read it yet */
1938                 if (m->middle)
1939                         m->middle->vec.iov_len = 0;
1940
1941                 con->in_msg_pos.page = 0;
1942                 if (m->pages)
1943                         con->in_msg_pos.page_pos = m->page_alignment;
1944                 else
1945                         con->in_msg_pos.page_pos = 0;
1946                 con->in_msg_pos.data_pos = 0;
1947
1948 #ifdef CONFIG_BLOCK
1949                 if (m->bio)
1950                         init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1951 #endif
1952         }
1953
1954         /* front */
1955         ret = read_partial_message_section(con, &m->front, front_len,
1956                                            &con->in_front_crc);
1957         if (ret <= 0)
1958                 return ret;
1959
1960         /* middle */
1961         if (m->middle) {
1962                 ret = read_partial_message_section(con, &m->middle->vec,
1963                                                    middle_len,
1964                                                    &con->in_middle_crc);
1965                 if (ret <= 0)
1966                         return ret;
1967         }
1968
1969         /* (page) data */
1970         while (con->in_msg_pos.data_pos < data_len) {
1971                 if (m->pages) {
1972                         ret = read_partial_message_pages(con, m->pages,
1973                                                  data_len, do_datacrc);
1974                         if (ret <= 0)
1975                                 return ret;
1976 #ifdef CONFIG_BLOCK
1977                 } else if (m->bio) {
1978                         BUG_ON(!m->bio_iter);
1979                         ret = read_partial_message_bio(con,
1980                                                  &m->bio_iter, &m->bio_seg,
1981                                                  data_len, do_datacrc);
1982                         if (ret <= 0)
1983                                 return ret;
1984 #endif
1985                 } else {
1986                         BUG_ON(1);
1987                 }
1988         }
1989
1990         /* footer */
1991         size = sizeof (m->footer);
1992         end += size;
1993         ret = read_partial(con, end, size, &m->footer);
1994         if (ret <= 0)
1995                 return ret;
1996
1997         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1998              m, front_len, m->footer.front_crc, middle_len,
1999              m->footer.middle_crc, data_len, m->footer.data_crc);
2000
2001         /* crc ok? */
2002         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2003                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2004                        m, con->in_front_crc, m->footer.front_crc);
2005                 return -EBADMSG;
2006         }
2007         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2008                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2009                        m, con->in_middle_crc, m->footer.middle_crc);
2010                 return -EBADMSG;
2011         }
2012         if (do_datacrc &&
2013             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2014             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2015                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2016                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2017                 return -EBADMSG;
2018         }
2019
2020         return 1; /* done! */
2021 }
2022
2023 /*
2024  * Process message.  This happens in the worker thread.  The callback should
2025  * be careful not to do anything that waits on other incoming messages or it
2026  * may deadlock.
2027  */
2028 static void process_message(struct ceph_connection *con)
2029 {
2030         struct ceph_msg *msg;
2031
2032         BUG_ON(con->in_msg->con != con);
2033         con->in_msg->con = NULL;
2034         msg = con->in_msg;
2035         con->in_msg = NULL;
2036         con->ops->put(con);
2037
2038         /* if first message, set peer_name */
2039         if (con->peer_name.type == 0)
2040                 con->peer_name = msg->hdr.src;
2041
2042         con->in_seq++;
2043         mutex_unlock(&con->mutex);
2044
2045         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2046              msg, le64_to_cpu(msg->hdr.seq),
2047              ENTITY_NAME(msg->hdr.src),
2048              le16_to_cpu(msg->hdr.type),
2049              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2050              le32_to_cpu(msg->hdr.front_len),
2051              le32_to_cpu(msg->hdr.data_len),
2052              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2053         con->ops->dispatch(con, msg);
2054
2055         mutex_lock(&con->mutex);
2056 }
2057
2058
2059 /*
2060  * Write something to the socket.  Called in a worker thread when the
2061  * socket appears to be writeable and we have something ready to send.
2062  */
2063 static int try_write(struct ceph_connection *con)
2064 {
2065         int ret = 1;
2066
2067         dout("try_write start %p state %lu\n", con, con->state);
2068
2069 more:
2070         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2071
2072         /* open the socket first? */
2073         if (con->state == CON_STATE_PREOPEN) {
2074                 BUG_ON(con->sock);
2075                 con->state = CON_STATE_CONNECTING;
2076
2077                 con_out_kvec_reset(con);
2078                 prepare_write_banner(con);
2079                 prepare_read_banner(con);
2080
2081                 BUG_ON(con->in_msg);
2082                 con->in_tag = CEPH_MSGR_TAG_READY;
2083                 dout("try_write initiating connect on %p new state %lu\n",
2084                      con, con->state);
2085                 ret = ceph_tcp_connect(con);
2086                 if (ret < 0) {
2087                         con->error_msg = "connect error";
2088                         goto out;
2089                 }
2090         }
2091
2092 more_kvec:
2093         /* kvec data queued? */
2094         if (con->out_skip) {
2095                 ret = write_partial_skip(con);
2096                 if (ret <= 0)
2097                         goto out;
2098         }
2099         if (con->out_kvec_left) {
2100                 ret = write_partial_kvec(con);
2101                 if (ret <= 0)
2102                         goto out;
2103         }
2104
2105         /* msg pages? */
2106         if (con->out_msg) {
2107                 if (con->out_msg_done) {
2108                         ceph_msg_put(con->out_msg);
2109                         con->out_msg = NULL;   /* we're done with this one */
2110                         goto do_next;
2111                 }
2112
2113                 ret = write_partial_msg_pages(con);
2114                 if (ret == 1)
2115                         goto more_kvec;  /* we need to send the footer, too! */
2116                 if (ret == 0)
2117                         goto out;
2118                 if (ret < 0) {
2119                         dout("try_write write_partial_msg_pages err %d\n",
2120                              ret);
2121                         goto out;
2122                 }
2123         }
2124
2125 do_next:
2126         if (con->state == CON_STATE_OPEN) {
2127                 /* is anything else pending? */
2128                 if (!list_empty(&con->out_queue)) {
2129                         prepare_write_message(con);
2130                         goto more;
2131                 }
2132                 if (con->in_seq > con->in_seq_acked) {
2133                         prepare_write_ack(con);
2134                         goto more;
2135                 }
2136                 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2137                         prepare_write_keepalive(con);
2138                         goto more;
2139                 }
2140         }
2141
2142         /* Nothing to do! */
2143         con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2144         dout("try_write nothing else to write.\n");
2145         ret = 0;
2146 out:
2147         dout("try_write done on %p ret %d\n", con, ret);
2148         return ret;
2149 }
2150
2151
2152
2153 /*
2154  * Read what we can from the socket.
2155  */
2156 static int try_read(struct ceph_connection *con)
2157 {
2158         int ret = -1;
2159
2160 more:
2161         dout("try_read start on %p state %lu\n", con, con->state);
2162         if (con->state != CON_STATE_CONNECTING &&
2163             con->state != CON_STATE_NEGOTIATING &&
2164             con->state != CON_STATE_OPEN)
2165                 return 0;
2166
2167         BUG_ON(!con->sock);
2168
2169         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2170              con->in_base_pos);
2171
2172         if (con->state == CON_STATE_CONNECTING) {
2173                 dout("try_read connecting\n");
2174                 ret = read_partial_banner(con);
2175                 if (ret <= 0)
2176                         goto out;
2177                 ret = process_banner(con);
2178                 if (ret < 0)
2179                         goto out;
2180
2181                 con->state = CON_STATE_NEGOTIATING;
2182
2183                 /*
2184                  * Received banner is good, exchange connection info.
2185                  * Do not reset out_kvec, as sending our banner raced
2186                  * with receiving peer banner after connect completed.
2187                  */
2188                 ret = prepare_write_connect(con);
2189                 if (ret < 0)
2190                         goto out;
2191                 prepare_read_connect(con);
2192
2193                 /* Send connection info before awaiting response */
2194                 goto out;
2195         }
2196
2197         if (con->state == CON_STATE_NEGOTIATING) {
2198                 dout("try_read negotiating\n");
2199                 ret = read_partial_connect(con);
2200                 if (ret <= 0)
2201                         goto out;
2202                 ret = process_connect(con);
2203                 if (ret < 0)
2204                         goto out;
2205                 goto more;
2206         }
2207
2208         WARN_ON(con->state != CON_STATE_OPEN);
2209
2210         if (con->in_base_pos < 0) {
2211                 /*
2212                  * skipping + discarding content.
2213                  *
2214                  * FIXME: there must be a better way to do this!
2215                  */
2216                 static char buf[SKIP_BUF_SIZE];
2217                 int skip = min((int) sizeof (buf), -con->in_base_pos);
2218
2219                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2220                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2221                 if (ret <= 0)
2222                         goto out;
2223                 con->in_base_pos += ret;
2224                 if (con->in_base_pos)
2225                         goto more;
2226         }
2227         if (con->in_tag == CEPH_MSGR_TAG_READY) {
2228                 /*
2229                  * what's next?
2230                  */
2231                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2232                 if (ret <= 0)
2233                         goto out;
2234                 dout("try_read got tag %d\n", (int)con->in_tag);
2235                 switch (con->in_tag) {
2236                 case CEPH_MSGR_TAG_MSG:
2237                         prepare_read_message(con);
2238                         break;
2239                 case CEPH_MSGR_TAG_ACK:
2240                         prepare_read_ack(con);
2241                         break;
2242                 case CEPH_MSGR_TAG_CLOSE:
2243                         con_close_socket(con);
2244                         con->state = CON_STATE_CLOSED;
2245                         goto out;
2246                 default:
2247                         goto bad_tag;
2248                 }
2249         }
2250         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2251                 ret = read_partial_message(con);
2252                 if (ret <= 0) {
2253                         switch (ret) {
2254                         case -EBADMSG:
2255                                 con->error_msg = "bad crc";
2256                                 ret = -EIO;
2257                                 break;
2258                         case -EIO:
2259                                 con->error_msg = "io error";
2260                                 break;
2261                         }
2262                         goto out;
2263                 }
2264                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2265                         goto more;
2266                 process_message(con);
2267                 if (con->state == CON_STATE_OPEN)
2268                         prepare_read_tag(con);
2269                 goto more;
2270         }
2271         if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2272                 ret = read_partial_ack(con);
2273                 if (ret <= 0)
2274                         goto out;
2275                 process_ack(con);
2276                 goto more;
2277         }
2278
2279 out:
2280         dout("try_read done on %p ret %d\n", con, ret);
2281         return ret;
2282
2283 bad_tag:
2284         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2285         con->error_msg = "protocol error, garbage tag";
2286         ret = -1;
2287         goto out;
2288 }
2289
2290
2291 /*
2292  * Atomically queue work on a connection after the specified delay.
2293  * Bump @con reference to avoid races with connection teardown.
2294  * Returns 0 if work was queued, or an error code otherwise.
2295  */
2296 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2297 {
2298         if (!con->ops->get(con)) {
2299                 dout("%s %p ref count 0\n", __func__, con);
2300
2301                 return -ENOENT;
2302         }
2303
2304         if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2305                 dout("%s %p - already queued\n", __func__, con);
2306                 con->ops->put(con);
2307
2308                 return -EBUSY;
2309         }
2310
2311         dout("%s %p %lu\n", __func__, con, delay);
2312
2313         return 0;
2314 }
2315
2316 static void queue_con(struct ceph_connection *con)
2317 {
2318         (void) queue_con_delay(con, 0);
2319 }
2320
2321 static bool con_sock_closed(struct ceph_connection *con)
2322 {
2323         if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2324                 return false;
2325
2326 #define CASE(x)                                                         \
2327         case CON_STATE_ ## x:                                           \
2328                 con->error_msg = "socket closed (con state " #x ")";    \
2329                 break;
2330
2331         switch (con->state) {
2332         CASE(CLOSED);
2333         CASE(PREOPEN);
2334         CASE(CONNECTING);
2335         CASE(NEGOTIATING);
2336         CASE(OPEN);
2337         CASE(STANDBY);
2338         default:
2339                 pr_warning("%s con %p unrecognized state %lu\n",
2340                         __func__, con, con->state);
2341                 con->error_msg = "unrecognized con state";
2342                 BUG();
2343                 break;
2344         }
2345 #undef CASE
2346
2347         return true;
2348 }
2349
2350 static bool con_backoff(struct ceph_connection *con)
2351 {
2352         int ret;
2353
2354         if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2355                 return false;
2356
2357         ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2358         if (ret) {
2359                 dout("%s: con %p FAILED to back off %lu\n", __func__,
2360                         con, con->delay);
2361                 BUG_ON(ret == -ENOENT);
2362                 con_flag_set(con, CON_FLAG_BACKOFF);
2363         }
2364
2365         return true;
2366 }
2367
2368 /* Finish fault handling; con->mutex must *not* be held here */
2369
2370 static void con_fault_finish(struct ceph_connection *con)
2371 {
2372         /*
2373          * in case we faulted due to authentication, invalidate our
2374          * current tickets so that we can get new ones.
2375          */
2376         if (con->auth_retry && con->ops->invalidate_authorizer) {
2377                 dout("calling invalidate_authorizer()\n");
2378                 con->ops->invalidate_authorizer(con);
2379         }
2380
2381         if (con->ops->fault)
2382                 con->ops->fault(con);
2383 }
2384
2385 /*
2386  * Do some work on a connection.  Drop a connection ref when we're done.
2387  */
2388 static void con_work(struct work_struct *work)
2389 {
2390         struct ceph_connection *con = container_of(work, struct ceph_connection,
2391                                                    work.work);
2392         bool fault;
2393
2394         mutex_lock(&con->mutex);
2395         while (true) {
2396                 int ret;
2397
2398                 if ((fault = con_sock_closed(con))) {
2399                         dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2400                         break;
2401                 }
2402                 if (con_backoff(con)) {
2403                         dout("%s: con %p BACKOFF\n", __func__, con);
2404                         break;
2405                 }
2406                 if (con->state == CON_STATE_STANDBY) {
2407                         dout("%s: con %p STANDBY\n", __func__, con);
2408                         break;
2409                 }
2410                 if (con->state == CON_STATE_CLOSED) {
2411                         dout("%s: con %p CLOSED\n", __func__, con);
2412                         BUG_ON(con->sock);
2413                         break;
2414                 }
2415                 if (con->state == CON_STATE_PREOPEN) {
2416                         dout("%s: con %p PREOPEN\n", __func__, con);
2417                         BUG_ON(con->sock);
2418                 }
2419
2420                 ret = try_read(con);
2421                 if (ret < 0) {
2422                         if (ret == -EAGAIN)
2423                                 continue;
2424                         con->error_msg = "socket error on read";
2425                         fault = true;
2426                         break;
2427                 }
2428
2429                 ret = try_write(con);
2430                 if (ret < 0) {
2431                         if (ret == -EAGAIN)
2432                                 continue;
2433                         con->error_msg = "socket error on write";
2434                         fault = true;
2435                 }
2436
2437                 break;  /* If we make it to here, we're done */
2438         }
2439         if (fault)
2440                 con_fault(con);
2441         mutex_unlock(&con->mutex);
2442
2443         if (fault)
2444                 con_fault_finish(con);
2445
2446         con->ops->put(con);
2447 }
2448
2449 /*
2450  * Generic error/fault handler.  A retry mechanism is used with
2451  * exponential backoff
2452  */
2453 static void con_fault(struct ceph_connection *con)
2454 {
2455         pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2456                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2457         dout("fault %p state %lu to peer %s\n",
2458              con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2459
2460         WARN_ON(con->state != CON_STATE_CONNECTING &&
2461                con->state != CON_STATE_NEGOTIATING &&
2462                con->state != CON_STATE_OPEN);
2463
2464         con_close_socket(con);
2465
2466         if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2467                 dout("fault on LOSSYTX channel, marking CLOSED\n");
2468                 con->state = CON_STATE_CLOSED;
2469                 return;
2470         }
2471
2472         if (con->in_msg) {
2473                 BUG_ON(con->in_msg->con != con);
2474                 con->in_msg->con = NULL;
2475                 ceph_msg_put(con->in_msg);
2476                 con->in_msg = NULL;
2477                 con->ops->put(con);
2478         }
2479
2480         /* Requeue anything that hasn't been acked */
2481         list_splice_init(&con->out_sent, &con->out_queue);
2482
2483         /* If there are no messages queued or keepalive pending, place
2484          * the connection in a STANDBY state */
2485         if (list_empty(&con->out_queue) &&
2486             !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2487                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2488                 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2489                 con->state = CON_STATE_STANDBY;
2490         } else {
2491                 /* retry after a delay. */
2492                 con->state = CON_STATE_PREOPEN;
2493                 if (con->delay == 0)
2494                         con->delay = BASE_DELAY_INTERVAL;
2495                 else if (con->delay < MAX_DELAY_INTERVAL)
2496                         con->delay *= 2;
2497                 con_flag_set(con, CON_FLAG_BACKOFF);
2498                 queue_con(con);
2499         }
2500 }
2501
2502
2503
2504 /*
2505  * initialize a new messenger instance
2506  */
2507 void ceph_messenger_init(struct ceph_messenger *msgr,
2508                         struct ceph_entity_addr *myaddr,
2509                         u32 supported_features,
2510                         u32 required_features,
2511                         bool nocrc)
2512 {
2513         msgr->supported_features = supported_features;
2514         msgr->required_features = required_features;
2515
2516         spin_lock_init(&msgr->global_seq_lock);
2517
2518         if (myaddr)
2519                 msgr->inst.addr = *myaddr;
2520
2521         /* select a random nonce */
2522         msgr->inst.addr.type = 0;
2523         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2524         encode_my_addr(msgr);
2525         msgr->nocrc = nocrc;
2526
2527         atomic_set(&msgr->stopping, 0);
2528
2529         dout("%s %p\n", __func__, msgr);
2530 }
2531 EXPORT_SYMBOL(ceph_messenger_init);
2532
2533 static void clear_standby(struct ceph_connection *con)
2534 {
2535         /* come back from STANDBY? */
2536         if (con->state == CON_STATE_STANDBY) {
2537                 dout("clear_standby %p and ++connect_seq\n", con);
2538                 con->state = CON_STATE_PREOPEN;
2539                 con->connect_seq++;
2540                 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2541                 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2542         }
2543 }
2544
2545 /*
2546  * Queue up an outgoing message on the given connection.
2547  */
2548 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2549 {
2550         /* set src+dst */
2551         msg->hdr.src = con->msgr->inst.name;
2552         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2553         msg->needs_out_seq = true;
2554
2555         mutex_lock(&con->mutex);
2556
2557         if (con->state == CON_STATE_CLOSED) {
2558                 dout("con_send %p closed, dropping %p\n", con, msg);
2559                 ceph_msg_put(msg);
2560                 mutex_unlock(&con->mutex);
2561                 return;
2562         }
2563
2564         BUG_ON(msg->con != NULL);
2565         msg->con = con->ops->get(con);
2566         BUG_ON(msg->con == NULL);
2567
2568         BUG_ON(!list_empty(&msg->list_head));
2569         list_add_tail(&msg->list_head, &con->out_queue);
2570         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2571              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2572              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2573              le32_to_cpu(msg->hdr.front_len),
2574              le32_to_cpu(msg->hdr.middle_len),
2575              le32_to_cpu(msg->hdr.data_len));
2576
2577         clear_standby(con);
2578         mutex_unlock(&con->mutex);
2579
2580         /* if there wasn't anything waiting to send before, queue
2581          * new work */
2582         if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2583                 queue_con(con);
2584 }
2585 EXPORT_SYMBOL(ceph_con_send);
2586
2587 /*
2588  * Revoke a message that was previously queued for send
2589  */
2590 void ceph_msg_revoke(struct ceph_msg *msg)
2591 {
2592         struct ceph_connection *con = msg->con;
2593
2594         if (!con)
2595                 return;         /* Message not in our possession */
2596
2597         mutex_lock(&con->mutex);
2598         if (!list_empty(&msg->list_head)) {
2599                 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2600                 list_del_init(&msg->list_head);
2601                 BUG_ON(msg->con == NULL);
2602                 msg->con->ops->put(msg->con);
2603                 msg->con = NULL;
2604                 msg->hdr.seq = 0;
2605
2606                 ceph_msg_put(msg);
2607         }
2608         if (con->out_msg == msg) {
2609                 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2610                 con->out_msg = NULL;
2611                 if (con->out_kvec_is_msg) {
2612                         con->out_skip = con->out_kvec_bytes;
2613                         con->out_kvec_is_msg = false;
2614                 }
2615                 msg->hdr.seq = 0;
2616
2617                 ceph_msg_put(msg);
2618         }
2619         mutex_unlock(&con->mutex);
2620 }
2621
2622 /*
2623  * Revoke a message that we may be reading data into
2624  */
2625 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2626 {
2627         struct ceph_connection *con;
2628
2629         BUG_ON(msg == NULL);
2630         if (!msg->con) {
2631                 dout("%s msg %p null con\n", __func__, msg);
2632
2633                 return;         /* Message not in our possession */
2634         }
2635
2636         con = msg->con;
2637         mutex_lock(&con->mutex);
2638         if (con->in_msg == msg) {
2639                 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2640                 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2641                 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2642
2643                 /* skip rest of message */
2644                 dout("%s %p msg %p revoked\n", __func__, con, msg);
2645                 con->in_base_pos = con->in_base_pos -
2646                                 sizeof(struct ceph_msg_header) -
2647                                 front_len -
2648                                 middle_len -
2649                                 data_len -
2650                                 sizeof(struct ceph_msg_footer);
2651                 ceph_msg_put(con->in_msg);
2652                 con->in_msg = NULL;
2653                 con->in_tag = CEPH_MSGR_TAG_READY;
2654                 con->in_seq++;
2655         } else {
2656                 dout("%s %p in_msg %p msg %p no-op\n",
2657                      __func__, con, con->in_msg, msg);
2658         }
2659         mutex_unlock(&con->mutex);
2660 }
2661
2662 /*
2663  * Queue a keepalive byte to ensure the tcp connection is alive.
2664  */
2665 void ceph_con_keepalive(struct ceph_connection *con)
2666 {
2667         dout("con_keepalive %p\n", con);
2668         mutex_lock(&con->mutex);
2669         clear_standby(con);
2670         mutex_unlock(&con->mutex);
2671         if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
2672             con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2673                 queue_con(con);
2674 }
2675 EXPORT_SYMBOL(ceph_con_keepalive);
2676
2677
2678 /*
2679  * construct a new message with given type, size
2680  * the new msg has a ref count of 1.
2681  */
2682 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2683                               bool can_fail)
2684 {
2685         struct ceph_msg *m;
2686
2687         m = kmalloc(sizeof(*m), flags);
2688         if (m == NULL)
2689                 goto out;
2690         kref_init(&m->kref);
2691
2692         m->con = NULL;
2693         INIT_LIST_HEAD(&m->list_head);
2694
2695         m->hdr.tid = 0;
2696         m->hdr.type = cpu_to_le16(type);
2697         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2698         m->hdr.version = 0;
2699         m->hdr.front_len = cpu_to_le32(front_len);
2700         m->hdr.middle_len = 0;
2701         m->hdr.data_len = 0;
2702         m->hdr.data_off = 0;
2703         m->hdr.reserved = 0;
2704         m->footer.front_crc = 0;
2705         m->footer.middle_crc = 0;
2706         m->footer.data_crc = 0;
2707         m->footer.flags = 0;
2708         m->front_max = front_len;
2709         m->front_is_vmalloc = false;
2710         m->more_to_follow = false;
2711         m->ack_stamp = 0;
2712         m->pool = NULL;
2713
2714         /* middle */
2715         m->middle = NULL;
2716
2717         /* data */
2718         m->page_count = 0;
2719         m->page_alignment = 0;
2720         m->pages = NULL;
2721         m->pagelist = NULL;
2722 #ifdef  CONFIG_BLOCK
2723         m->bio = NULL;
2724         m->bio_iter = NULL;
2725         m->bio_seg = 0;
2726 #endif  /* CONFIG_BLOCK */
2727         m->trail = NULL;
2728
2729         /* front */
2730         if (front_len) {
2731                 if (front_len > PAGE_CACHE_SIZE) {
2732                         m->front.iov_base = __vmalloc(front_len, flags,
2733                                                       PAGE_KERNEL);
2734                         m->front_is_vmalloc = true;
2735                 } else {
2736                         m->front.iov_base = kmalloc(front_len, flags);
2737                 }
2738                 if (m->front.iov_base == NULL) {
2739                         dout("ceph_msg_new can't allocate %d bytes\n",
2740                              front_len);
2741                         goto out2;
2742                 }
2743         } else {
2744                 m->front.iov_base = NULL;
2745         }
2746         m->front.iov_len = front_len;
2747
2748         dout("ceph_msg_new %p front %d\n", m, front_len);
2749         return m;
2750
2751 out2:
2752         ceph_msg_put(m);
2753 out:
2754         if (!can_fail) {
2755                 pr_err("msg_new can't create type %d front %d\n", type,
2756                        front_len);
2757                 WARN_ON(1);
2758         } else {
2759                 dout("msg_new can't create type %d front %d\n", type,
2760                      front_len);
2761         }
2762         return NULL;
2763 }
2764 EXPORT_SYMBOL(ceph_msg_new);
2765
2766 /*
2767  * Allocate "middle" portion of a message, if it is needed and wasn't
2768  * allocated by alloc_msg.  This allows us to read a small fixed-size
2769  * per-type header in the front and then gracefully fail (i.e.,
2770  * propagate the error to the caller based on info in the front) when
2771  * the middle is too large.
2772  */
2773 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2774 {
2775         int type = le16_to_cpu(msg->hdr.type);
2776         int middle_len = le32_to_cpu(msg->hdr.middle_len);
2777
2778         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2779              ceph_msg_type_name(type), middle_len);
2780         BUG_ON(!middle_len);
2781         BUG_ON(msg->middle);
2782
2783         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2784         if (!msg->middle)
2785                 return -ENOMEM;
2786         return 0;
2787 }
2788
2789 /*
2790  * Allocate a message for receiving an incoming message on a
2791  * connection, and save the result in con->in_msg.  Uses the
2792  * connection's private alloc_msg op if available.
2793  *
2794  * Returns 0 on success, or a negative error code.
2795  *
2796  * On success, if we set *skip = 1:
2797  *  - the next message should be skipped and ignored.
2798  *  - con->in_msg == NULL
2799  * or if we set *skip = 0:
2800  *  - con->in_msg is non-null.
2801  * On error (ENOMEM, EAGAIN, ...),
2802  *  - con->in_msg == NULL
2803  */
2804 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
2805 {
2806         struct ceph_msg_header *hdr = &con->in_hdr;
2807         int middle_len = le32_to_cpu(hdr->middle_len);
2808         struct ceph_msg *msg;
2809         int ret = 0;
2810
2811         BUG_ON(con->in_msg != NULL);
2812         BUG_ON(!con->ops->alloc_msg);
2813
2814         mutex_unlock(&con->mutex);
2815         msg = con->ops->alloc_msg(con, hdr, skip);
2816         mutex_lock(&con->mutex);
2817         if (con->state != CON_STATE_OPEN) {
2818                 if (msg)
2819                         ceph_msg_put(msg);
2820                 return -EAGAIN;
2821         }
2822         if (msg) {
2823                 BUG_ON(*skip);
2824                 con->in_msg = msg;
2825                 con->in_msg->con = con->ops->get(con);
2826                 BUG_ON(con->in_msg->con == NULL);
2827         } else {
2828                 /*
2829                  * Null message pointer means either we should skip
2830                  * this message or we couldn't allocate memory.  The
2831                  * former is not an error.
2832                  */
2833                 if (*skip)
2834                         return 0;
2835                 con->error_msg = "error allocating memory for incoming message";
2836
2837                 return -ENOMEM;
2838         }
2839         memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2840
2841         if (middle_len && !con->in_msg->middle) {
2842                 ret = ceph_alloc_middle(con, con->in_msg);
2843                 if (ret < 0) {
2844                         ceph_msg_put(con->in_msg);
2845                         con->in_msg = NULL;
2846                 }
2847         }
2848
2849         return ret;
2850 }
2851
2852
2853 /*
2854  * Free a generically kmalloc'd message.
2855  */
2856 void ceph_msg_kfree(struct ceph_msg *m)
2857 {
2858         dout("msg_kfree %p\n", m);
2859         if (m->front_is_vmalloc)
2860                 vfree(m->front.iov_base);
2861         else
2862                 kfree(m->front.iov_base);
2863         kfree(m);
2864 }
2865
2866 /*
2867  * Drop a msg ref.  Destroy as needed.
2868  */
2869 void ceph_msg_last_put(struct kref *kref)
2870 {
2871         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2872
2873         dout("ceph_msg_put last one on %p\n", m);
2874         WARN_ON(!list_empty(&m->list_head));
2875
2876         /* drop middle, data, if any */
2877         if (m->middle) {
2878                 ceph_buffer_put(m->middle);
2879                 m->middle = NULL;
2880         }
2881         m->page_count = 0;
2882         m->pages = NULL;
2883
2884         if (m->pagelist) {
2885                 ceph_pagelist_release(m->pagelist);
2886                 kfree(m->pagelist);
2887                 m->pagelist = NULL;
2888         }
2889
2890         m->trail = NULL;
2891
2892         if (m->pool)
2893                 ceph_msgpool_put(m->pool, m);
2894         else
2895                 ceph_msg_kfree(m);
2896 }
2897 EXPORT_SYMBOL(ceph_msg_last_put);
2898
2899 void ceph_msg_dump(struct ceph_msg *msg)
2900 {
2901         pr_debug("msg_dump %p (front_max %d page_count %d)\n", msg,
2902                  msg->front_max, msg->page_count);
2903         print_hex_dump(KERN_DEBUG, "header: ",
2904                        DUMP_PREFIX_OFFSET, 16, 1,
2905                        &msg->hdr, sizeof(msg->hdr), true);
2906         print_hex_dump(KERN_DEBUG, " front: ",
2907                        DUMP_PREFIX_OFFSET, 16, 1,
2908                        msg->front.iov_base, msg->front.iov_len, true);
2909         if (msg->middle)
2910                 print_hex_dump(KERN_DEBUG, "middle: ",
2911                                DUMP_PREFIX_OFFSET, 16, 1,
2912                                msg->middle->vec.iov_base,
2913                                msg->middle->vec.iov_len, true);
2914         print_hex_dump(KERN_DEBUG, "footer: ",
2915                        DUMP_PREFIX_OFFSET, 16, 1,
2916                        &msg->footer, sizeof(msg->footer), true);
2917 }
2918 EXPORT_SYMBOL(ceph_msg_dump);