]> Pileus Git - ~andy/linux/blob - net/ceph/messenger.c
Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[~andy/linux] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef  CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif  /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17
18 #include <linux/ceph/libceph.h>
19 #include <linux/ceph/messenger.h>
20 #include <linux/ceph/decode.h>
21 #include <linux/ceph/pagelist.h>
22 #include <linux/export.h>
23
24 /*
25  * Ceph uses the messenger to exchange ceph_msg messages with other
26  * hosts in the system.  The messenger provides ordered and reliable
27  * delivery.  We tolerate TCP disconnects by reconnecting (with
28  * exponential backoff) in the case of a fault (disconnection, bad
29  * crc, protocol error).  Acks allow sent messages to be discarded by
30  * the sender.
31  */
32
33 /*
34  * We track the state of the socket on a given connection using
35  * values defined below.  The transition to a new socket state is
36  * handled by a function which verifies we aren't coming from an
37  * unexpected state.
38  *
39  *      --------
40  *      | NEW* |  transient initial state
41  *      --------
42  *          | con_sock_state_init()
43  *          v
44  *      ----------
45  *      | CLOSED |  initialized, but no socket (and no
46  *      ----------  TCP connection)
47  *       ^      \
48  *       |       \ con_sock_state_connecting()
49  *       |        ----------------------
50  *       |                              \
51  *       + con_sock_state_closed()       \
52  *       |+---------------------------    \
53  *       | \                          \    \
54  *       |  -----------                \    \
55  *       |  | CLOSING |  socket event;  \    \
56  *       |  -----------  await close     \    \
57  *       |       ^                        \   |
58  *       |       |                         \  |
59  *       |       + con_sock_state_closing() \ |
60  *       |      / \                         | |
61  *       |     /   ---------------          | |
62  *       |    /                   \         v v
63  *       |   /                    --------------
64  *       |  /    -----------------| CONNECTING |  socket created, TCP
65  *       |  |   /                 --------------  connect initiated
66  *       |  |   | con_sock_state_connected()
67  *       |  |   v
68  *      -------------
69  *      | CONNECTED |  TCP connection established
70  *      -------------
71  *
72  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
73  */
74
75 #define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
76 #define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
77 #define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
78 #define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
79 #define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
80
81 /*
82  * connection states
83  */
84 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
85 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
86 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
87 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
88 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
89 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
90
91 /*
92  * ceph_connection flag bits
93  */
94 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
95                                        * messages on errors */
96 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
97 #define CON_FLAG_WRITE_PENDING     2  /* we have data ready to send */
98 #define CON_FLAG_SOCK_CLOSED       3  /* socket state changed to closed */
99 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
100
101 static bool con_flag_valid(unsigned long con_flag)
102 {
103         switch (con_flag) {
104         case CON_FLAG_LOSSYTX:
105         case CON_FLAG_KEEPALIVE_PENDING:
106         case CON_FLAG_WRITE_PENDING:
107         case CON_FLAG_SOCK_CLOSED:
108         case CON_FLAG_BACKOFF:
109                 return true;
110         default:
111                 return false;
112         }
113 }
114
115 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
116 {
117         BUG_ON(!con_flag_valid(con_flag));
118
119         clear_bit(con_flag, &con->flags);
120 }
121
122 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
123 {
124         BUG_ON(!con_flag_valid(con_flag));
125
126         set_bit(con_flag, &con->flags);
127 }
128
129 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
130 {
131         BUG_ON(!con_flag_valid(con_flag));
132
133         return test_bit(con_flag, &con->flags);
134 }
135
136 static bool con_flag_test_and_clear(struct ceph_connection *con,
137                                         unsigned long con_flag)
138 {
139         BUG_ON(!con_flag_valid(con_flag));
140
141         return test_and_clear_bit(con_flag, &con->flags);
142 }
143
144 static bool con_flag_test_and_set(struct ceph_connection *con,
145                                         unsigned long con_flag)
146 {
147         BUG_ON(!con_flag_valid(con_flag));
148
149         return test_and_set_bit(con_flag, &con->flags);
150 }
151
152 /* static tag bytes (protocol control messages) */
153 static char tag_msg = CEPH_MSGR_TAG_MSG;
154 static char tag_ack = CEPH_MSGR_TAG_ACK;
155 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
156
157 #ifdef CONFIG_LOCKDEP
158 static struct lock_class_key socket_class;
159 #endif
160
161 /*
162  * When skipping (ignoring) a block of input we read it into a "skip
163  * buffer," which is this many bytes in size.
164  */
165 #define SKIP_BUF_SIZE   1024
166
167 static void queue_con(struct ceph_connection *con);
168 static void con_work(struct work_struct *);
169 static void con_fault(struct ceph_connection *con);
170
171 /*
172  * Nicely render a sockaddr as a string.  An array of formatted
173  * strings is used, to approximate reentrancy.
174  */
175 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
176 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
177 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
178 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
179
180 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
181 static atomic_t addr_str_seq = ATOMIC_INIT(0);
182
183 static struct page *zero_page;          /* used in certain error cases */
184
185 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
186 {
187         int i;
188         char *s;
189         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
190         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
191
192         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
193         s = addr_str[i];
194
195         switch (ss->ss_family) {
196         case AF_INET:
197                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
198                          ntohs(in4->sin_port));
199                 break;
200
201         case AF_INET6:
202                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
203                          ntohs(in6->sin6_port));
204                 break;
205
206         default:
207                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
208                          ss->ss_family);
209         }
210
211         return s;
212 }
213 EXPORT_SYMBOL(ceph_pr_addr);
214
215 static void encode_my_addr(struct ceph_messenger *msgr)
216 {
217         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
218         ceph_encode_addr(&msgr->my_enc_addr);
219 }
220
221 /*
222  * work queue for all reading and writing to/from the socket.
223  */
224 static struct workqueue_struct *ceph_msgr_wq;
225
226 static void _ceph_msgr_exit(void)
227 {
228         if (ceph_msgr_wq) {
229                 destroy_workqueue(ceph_msgr_wq);
230                 ceph_msgr_wq = NULL;
231         }
232
233         BUG_ON(zero_page == NULL);
234         kunmap(zero_page);
235         page_cache_release(zero_page);
236         zero_page = NULL;
237 }
238
239 int ceph_msgr_init(void)
240 {
241         BUG_ON(zero_page != NULL);
242         zero_page = ZERO_PAGE(0);
243         page_cache_get(zero_page);
244
245         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
246         if (ceph_msgr_wq)
247                 return 0;
248
249         pr_err("msgr_init failed to create workqueue\n");
250         _ceph_msgr_exit();
251
252         return -ENOMEM;
253 }
254 EXPORT_SYMBOL(ceph_msgr_init);
255
256 void ceph_msgr_exit(void)
257 {
258         BUG_ON(ceph_msgr_wq == NULL);
259
260         _ceph_msgr_exit();
261 }
262 EXPORT_SYMBOL(ceph_msgr_exit);
263
264 void ceph_msgr_flush(void)
265 {
266         flush_workqueue(ceph_msgr_wq);
267 }
268 EXPORT_SYMBOL(ceph_msgr_flush);
269
270 /* Connection socket state transition functions */
271
272 static void con_sock_state_init(struct ceph_connection *con)
273 {
274         int old_state;
275
276         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
277         if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
278                 printk("%s: unexpected old state %d\n", __func__, old_state);
279         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
280              CON_SOCK_STATE_CLOSED);
281 }
282
283 static void con_sock_state_connecting(struct ceph_connection *con)
284 {
285         int old_state;
286
287         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
288         if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
289                 printk("%s: unexpected old state %d\n", __func__, old_state);
290         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
291              CON_SOCK_STATE_CONNECTING);
292 }
293
294 static void con_sock_state_connected(struct ceph_connection *con)
295 {
296         int old_state;
297
298         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
299         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
300                 printk("%s: unexpected old state %d\n", __func__, old_state);
301         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
302              CON_SOCK_STATE_CONNECTED);
303 }
304
305 static void con_sock_state_closing(struct ceph_connection *con)
306 {
307         int old_state;
308
309         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
310         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
311                         old_state != CON_SOCK_STATE_CONNECTED &&
312                         old_state != CON_SOCK_STATE_CLOSING))
313                 printk("%s: unexpected old state %d\n", __func__, old_state);
314         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
315              CON_SOCK_STATE_CLOSING);
316 }
317
318 static void con_sock_state_closed(struct ceph_connection *con)
319 {
320         int old_state;
321
322         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
323         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
324                     old_state != CON_SOCK_STATE_CLOSING &&
325                     old_state != CON_SOCK_STATE_CONNECTING &&
326                     old_state != CON_SOCK_STATE_CLOSED))
327                 printk("%s: unexpected old state %d\n", __func__, old_state);
328         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
329              CON_SOCK_STATE_CLOSED);
330 }
331
332 /*
333  * socket callback functions
334  */
335
336 /* data available on socket, or listen socket received a connect */
337 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
338 {
339         struct ceph_connection *con = sk->sk_user_data;
340         if (atomic_read(&con->msgr->stopping)) {
341                 return;
342         }
343
344         if (sk->sk_state != TCP_CLOSE_WAIT) {
345                 dout("%s on %p state = %lu, queueing work\n", __func__,
346                      con, con->state);
347                 queue_con(con);
348         }
349 }
350
351 /* socket has buffer space for writing */
352 static void ceph_sock_write_space(struct sock *sk)
353 {
354         struct ceph_connection *con = sk->sk_user_data;
355
356         /* only queue to workqueue if there is data we want to write,
357          * and there is sufficient space in the socket buffer to accept
358          * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
359          * doesn't get called again until try_write() fills the socket
360          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
361          * and net/core/stream.c:sk_stream_write_space().
362          */
363         if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
364                 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
365                         dout("%s %p queueing write work\n", __func__, con);
366                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
367                         queue_con(con);
368                 }
369         } else {
370                 dout("%s %p nothing to write\n", __func__, con);
371         }
372 }
373
374 /* socket's state has changed */
375 static void ceph_sock_state_change(struct sock *sk)
376 {
377         struct ceph_connection *con = sk->sk_user_data;
378
379         dout("%s %p state = %lu sk_state = %u\n", __func__,
380              con, con->state, sk->sk_state);
381
382         switch (sk->sk_state) {
383         case TCP_CLOSE:
384                 dout("%s TCP_CLOSE\n", __func__);
385         case TCP_CLOSE_WAIT:
386                 dout("%s TCP_CLOSE_WAIT\n", __func__);
387                 con_sock_state_closing(con);
388                 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
389                 queue_con(con);
390                 break;
391         case TCP_ESTABLISHED:
392                 dout("%s TCP_ESTABLISHED\n", __func__);
393                 con_sock_state_connected(con);
394                 queue_con(con);
395                 break;
396         default:        /* Everything else is uninteresting */
397                 break;
398         }
399 }
400
401 /*
402  * set up socket callbacks
403  */
404 static void set_sock_callbacks(struct socket *sock,
405                                struct ceph_connection *con)
406 {
407         struct sock *sk = sock->sk;
408         sk->sk_user_data = con;
409         sk->sk_data_ready = ceph_sock_data_ready;
410         sk->sk_write_space = ceph_sock_write_space;
411         sk->sk_state_change = ceph_sock_state_change;
412 }
413
414
415 /*
416  * socket helpers
417  */
418
419 /*
420  * initiate connection to a remote socket.
421  */
422 static int ceph_tcp_connect(struct ceph_connection *con)
423 {
424         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
425         struct socket *sock;
426         int ret;
427
428         BUG_ON(con->sock);
429         ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
430                                IPPROTO_TCP, &sock);
431         if (ret)
432                 return ret;
433         sock->sk->sk_allocation = GFP_NOFS;
434
435 #ifdef CONFIG_LOCKDEP
436         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
437 #endif
438
439         set_sock_callbacks(sock, con);
440
441         dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
442
443         con_sock_state_connecting(con);
444         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
445                                  O_NONBLOCK);
446         if (ret == -EINPROGRESS) {
447                 dout("connect %s EINPROGRESS sk_state = %u\n",
448                      ceph_pr_addr(&con->peer_addr.in_addr),
449                      sock->sk->sk_state);
450         } else if (ret < 0) {
451                 pr_err("connect %s error %d\n",
452                        ceph_pr_addr(&con->peer_addr.in_addr), ret);
453                 sock_release(sock);
454                 con->error_msg = "connect error";
455
456                 return ret;
457         }
458         con->sock = sock;
459         return 0;
460 }
461
462 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
463 {
464         struct kvec iov = {buf, len};
465         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
466         int r;
467
468         r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
469         if (r == -EAGAIN)
470                 r = 0;
471         return r;
472 }
473
474 /*
475  * write something.  @more is true if caller will be sending more data
476  * shortly.
477  */
478 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
479                      size_t kvlen, size_t len, int more)
480 {
481         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
482         int r;
483
484         if (more)
485                 msg.msg_flags |= MSG_MORE;
486         else
487                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
488
489         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
490         if (r == -EAGAIN)
491                 r = 0;
492         return r;
493 }
494
495 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
496                      int offset, size_t size, int more)
497 {
498         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
499         int ret;
500
501         ret = kernel_sendpage(sock, page, offset, size, flags);
502         if (ret == -EAGAIN)
503                 ret = 0;
504
505         return ret;
506 }
507
508
509 /*
510  * Shutdown/close the socket for the given connection.
511  */
512 static int con_close_socket(struct ceph_connection *con)
513 {
514         int rc = 0;
515
516         dout("con_close_socket on %p sock %p\n", con, con->sock);
517         if (con->sock) {
518                 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
519                 sock_release(con->sock);
520                 con->sock = NULL;
521         }
522
523         /*
524          * Forcibly clear the SOCK_CLOSED flag.  It gets set
525          * independent of the connection mutex, and we could have
526          * received a socket close event before we had the chance to
527          * shut the socket down.
528          */
529         con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
530
531         con_sock_state_closed(con);
532         return rc;
533 }
534
535 /*
536  * Reset a connection.  Discard all incoming and outgoing messages
537  * and clear *_seq state.
538  */
539 static void ceph_msg_remove(struct ceph_msg *msg)
540 {
541         list_del_init(&msg->list_head);
542         BUG_ON(msg->con == NULL);
543         msg->con->ops->put(msg->con);
544         msg->con = NULL;
545
546         ceph_msg_put(msg);
547 }
548 static void ceph_msg_remove_list(struct list_head *head)
549 {
550         while (!list_empty(head)) {
551                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
552                                                         list_head);
553                 ceph_msg_remove(msg);
554         }
555 }
556
557 static void reset_connection(struct ceph_connection *con)
558 {
559         /* reset connection, out_queue, msg_ and connect_seq */
560         /* discard existing out_queue and msg_seq */
561         dout("reset_connection %p\n", con);
562         ceph_msg_remove_list(&con->out_queue);
563         ceph_msg_remove_list(&con->out_sent);
564
565         if (con->in_msg) {
566                 BUG_ON(con->in_msg->con != con);
567                 con->in_msg->con = NULL;
568                 ceph_msg_put(con->in_msg);
569                 con->in_msg = NULL;
570                 con->ops->put(con);
571         }
572
573         con->connect_seq = 0;
574         con->out_seq = 0;
575         if (con->out_msg) {
576                 ceph_msg_put(con->out_msg);
577                 con->out_msg = NULL;
578         }
579         con->in_seq = 0;
580         con->in_seq_acked = 0;
581 }
582
583 /*
584  * mark a peer down.  drop any open connections.
585  */
586 void ceph_con_close(struct ceph_connection *con)
587 {
588         mutex_lock(&con->mutex);
589         dout("con_close %p peer %s\n", con,
590              ceph_pr_addr(&con->peer_addr.in_addr));
591         con->state = CON_STATE_CLOSED;
592
593         con_flag_clear(con, CON_FLAG_LOSSYTX);  /* so we retry next connect */
594         con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
595         con_flag_clear(con, CON_FLAG_WRITE_PENDING);
596         con_flag_clear(con, CON_FLAG_BACKOFF);
597
598         reset_connection(con);
599         con->peer_global_seq = 0;
600         cancel_delayed_work(&con->work);
601         con_close_socket(con);
602         mutex_unlock(&con->mutex);
603 }
604 EXPORT_SYMBOL(ceph_con_close);
605
606 /*
607  * Reopen a closed connection, with a new peer address.
608  */
609 void ceph_con_open(struct ceph_connection *con,
610                    __u8 entity_type, __u64 entity_num,
611                    struct ceph_entity_addr *addr)
612 {
613         mutex_lock(&con->mutex);
614         dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
615
616         WARN_ON(con->state != CON_STATE_CLOSED);
617         con->state = CON_STATE_PREOPEN;
618
619         con->peer_name.type = (__u8) entity_type;
620         con->peer_name.num = cpu_to_le64(entity_num);
621
622         memcpy(&con->peer_addr, addr, sizeof(*addr));
623         con->delay = 0;      /* reset backoff memory */
624         mutex_unlock(&con->mutex);
625         queue_con(con);
626 }
627 EXPORT_SYMBOL(ceph_con_open);
628
629 /*
630  * return true if this connection ever successfully opened
631  */
632 bool ceph_con_opened(struct ceph_connection *con)
633 {
634         return con->connect_seq > 0;
635 }
636
637 /*
638  * initialize a new connection.
639  */
640 void ceph_con_init(struct ceph_connection *con, void *private,
641         const struct ceph_connection_operations *ops,
642         struct ceph_messenger *msgr)
643 {
644         dout("con_init %p\n", con);
645         memset(con, 0, sizeof(*con));
646         con->private = private;
647         con->ops = ops;
648         con->msgr = msgr;
649
650         con_sock_state_init(con);
651
652         mutex_init(&con->mutex);
653         INIT_LIST_HEAD(&con->out_queue);
654         INIT_LIST_HEAD(&con->out_sent);
655         INIT_DELAYED_WORK(&con->work, con_work);
656
657         con->state = CON_STATE_CLOSED;
658 }
659 EXPORT_SYMBOL(ceph_con_init);
660
661
662 /*
663  * We maintain a global counter to order connection attempts.  Get
664  * a unique seq greater than @gt.
665  */
666 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
667 {
668         u32 ret;
669
670         spin_lock(&msgr->global_seq_lock);
671         if (msgr->global_seq < gt)
672                 msgr->global_seq = gt;
673         ret = ++msgr->global_seq;
674         spin_unlock(&msgr->global_seq_lock);
675         return ret;
676 }
677
678 static void con_out_kvec_reset(struct ceph_connection *con)
679 {
680         con->out_kvec_left = 0;
681         con->out_kvec_bytes = 0;
682         con->out_kvec_cur = &con->out_kvec[0];
683 }
684
685 static void con_out_kvec_add(struct ceph_connection *con,
686                                 size_t size, void *data)
687 {
688         int index;
689
690         index = con->out_kvec_left;
691         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
692
693         con->out_kvec[index].iov_len = size;
694         con->out_kvec[index].iov_base = data;
695         con->out_kvec_left++;
696         con->out_kvec_bytes += size;
697 }
698
699 #ifdef CONFIG_BLOCK
700 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
701 {
702         if (!bio) {
703                 *iter = NULL;
704                 *seg = 0;
705                 return;
706         }
707         *iter = bio;
708         *seg = bio->bi_idx;
709 }
710
711 static void iter_bio_next(struct bio **bio_iter, int *seg)
712 {
713         if (*bio_iter == NULL)
714                 return;
715
716         BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
717
718         (*seg)++;
719         if (*seg == (*bio_iter)->bi_vcnt)
720                 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
721 }
722 #endif
723
724 static void prepare_write_message_data(struct ceph_connection *con)
725 {
726         struct ceph_msg *msg = con->out_msg;
727
728         BUG_ON(!msg);
729         BUG_ON(!msg->hdr.data_len);
730
731         /* initialize page iterator */
732         con->out_msg_pos.page = 0;
733         if (msg->pages)
734                 con->out_msg_pos.page_pos = msg->page_alignment;
735         else
736                 con->out_msg_pos.page_pos = 0;
737 #ifdef CONFIG_BLOCK
738         if (msg->bio)
739                 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
740 #endif
741         con->out_msg_pos.data_pos = 0;
742         con->out_msg_pos.did_page_crc = false;
743         con->out_more = 1;  /* data + footer will follow */
744 }
745
746 /*
747  * Prepare footer for currently outgoing message, and finish things
748  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
749  */
750 static void prepare_write_message_footer(struct ceph_connection *con)
751 {
752         struct ceph_msg *m = con->out_msg;
753         int v = con->out_kvec_left;
754
755         m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
756
757         dout("prepare_write_message_footer %p\n", con);
758         con->out_kvec_is_msg = true;
759         con->out_kvec[v].iov_base = &m->footer;
760         con->out_kvec[v].iov_len = sizeof(m->footer);
761         con->out_kvec_bytes += sizeof(m->footer);
762         con->out_kvec_left++;
763         con->out_more = m->more_to_follow;
764         con->out_msg_done = true;
765 }
766
767 /*
768  * Prepare headers for the next outgoing message.
769  */
770 static void prepare_write_message(struct ceph_connection *con)
771 {
772         struct ceph_msg *m;
773         u32 crc;
774
775         con_out_kvec_reset(con);
776         con->out_kvec_is_msg = true;
777         con->out_msg_done = false;
778
779         /* Sneak an ack in there first?  If we can get it into the same
780          * TCP packet that's a good thing. */
781         if (con->in_seq > con->in_seq_acked) {
782                 con->in_seq_acked = con->in_seq;
783                 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
784                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
785                 con_out_kvec_add(con, sizeof (con->out_temp_ack),
786                         &con->out_temp_ack);
787         }
788
789         BUG_ON(list_empty(&con->out_queue));
790         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
791         con->out_msg = m;
792         BUG_ON(m->con != con);
793
794         /* put message on sent list */
795         ceph_msg_get(m);
796         list_move_tail(&m->list_head, &con->out_sent);
797
798         /*
799          * only assign outgoing seq # if we haven't sent this message
800          * yet.  if it is requeued, resend with it's original seq.
801          */
802         if (m->needs_out_seq) {
803                 m->hdr.seq = cpu_to_le64(++con->out_seq);
804                 m->needs_out_seq = false;
805         }
806 #ifdef CONFIG_BLOCK
807         else
808                 m->bio_iter = NULL;
809 #endif
810
811         dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
812              m, con->out_seq, le16_to_cpu(m->hdr.type),
813              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
814              le32_to_cpu(m->hdr.data_len),
815              m->nr_pages);
816         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
817
818         /* tag + hdr + front + middle */
819         con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
820         con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
821         con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
822
823         if (m->middle)
824                 con_out_kvec_add(con, m->middle->vec.iov_len,
825                         m->middle->vec.iov_base);
826
827         /* fill in crc (except data pages), footer */
828         crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
829         con->out_msg->hdr.crc = cpu_to_le32(crc);
830         con->out_msg->footer.flags = 0;
831
832         crc = crc32c(0, m->front.iov_base, m->front.iov_len);
833         con->out_msg->footer.front_crc = cpu_to_le32(crc);
834         if (m->middle) {
835                 crc = crc32c(0, m->middle->vec.iov_base,
836                                 m->middle->vec.iov_len);
837                 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
838         } else
839                 con->out_msg->footer.middle_crc = 0;
840         dout("%s front_crc %u middle_crc %u\n", __func__,
841              le32_to_cpu(con->out_msg->footer.front_crc),
842              le32_to_cpu(con->out_msg->footer.middle_crc));
843
844         /* is there a data payload? */
845         con->out_msg->footer.data_crc = 0;
846         if (m->hdr.data_len)
847                 prepare_write_message_data(con);
848         else
849                 /* no, queue up footer too and be done */
850                 prepare_write_message_footer(con);
851
852         con_flag_set(con, CON_FLAG_WRITE_PENDING);
853 }
854
855 /*
856  * Prepare an ack.
857  */
858 static void prepare_write_ack(struct ceph_connection *con)
859 {
860         dout("prepare_write_ack %p %llu -> %llu\n", con,
861              con->in_seq_acked, con->in_seq);
862         con->in_seq_acked = con->in_seq;
863
864         con_out_kvec_reset(con);
865
866         con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
867
868         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
869         con_out_kvec_add(con, sizeof (con->out_temp_ack),
870                                 &con->out_temp_ack);
871
872         con->out_more = 1;  /* more will follow.. eventually.. */
873         con_flag_set(con, CON_FLAG_WRITE_PENDING);
874 }
875
876 /*
877  * Prepare to write keepalive byte.
878  */
879 static void prepare_write_keepalive(struct ceph_connection *con)
880 {
881         dout("prepare_write_keepalive %p\n", con);
882         con_out_kvec_reset(con);
883         con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
884         con_flag_set(con, CON_FLAG_WRITE_PENDING);
885 }
886
887 /*
888  * Connection negotiation.
889  */
890
891 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
892                                                 int *auth_proto)
893 {
894         struct ceph_auth_handshake *auth;
895
896         if (!con->ops->get_authorizer) {
897                 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
898                 con->out_connect.authorizer_len = 0;
899                 return NULL;
900         }
901
902         /* Can't hold the mutex while getting authorizer */
903         mutex_unlock(&con->mutex);
904         auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
905         mutex_lock(&con->mutex);
906
907         if (IS_ERR(auth))
908                 return auth;
909         if (con->state != CON_STATE_NEGOTIATING)
910                 return ERR_PTR(-EAGAIN);
911
912         con->auth_reply_buf = auth->authorizer_reply_buf;
913         con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
914         return auth;
915 }
916
917 /*
918  * We connected to a peer and are saying hello.
919  */
920 static void prepare_write_banner(struct ceph_connection *con)
921 {
922         con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
923         con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
924                                         &con->msgr->my_enc_addr);
925
926         con->out_more = 0;
927         con_flag_set(con, CON_FLAG_WRITE_PENDING);
928 }
929
930 static int prepare_write_connect(struct ceph_connection *con)
931 {
932         unsigned int global_seq = get_global_seq(con->msgr, 0);
933         int proto;
934         int auth_proto;
935         struct ceph_auth_handshake *auth;
936
937         switch (con->peer_name.type) {
938         case CEPH_ENTITY_TYPE_MON:
939                 proto = CEPH_MONC_PROTOCOL;
940                 break;
941         case CEPH_ENTITY_TYPE_OSD:
942                 proto = CEPH_OSDC_PROTOCOL;
943                 break;
944         case CEPH_ENTITY_TYPE_MDS:
945                 proto = CEPH_MDSC_PROTOCOL;
946                 break;
947         default:
948                 BUG();
949         }
950
951         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
952              con->connect_seq, global_seq, proto);
953
954         con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
955         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
956         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
957         con->out_connect.global_seq = cpu_to_le32(global_seq);
958         con->out_connect.protocol_version = cpu_to_le32(proto);
959         con->out_connect.flags = 0;
960
961         auth_proto = CEPH_AUTH_UNKNOWN;
962         auth = get_connect_authorizer(con, &auth_proto);
963         if (IS_ERR(auth))
964                 return PTR_ERR(auth);
965
966         con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
967         con->out_connect.authorizer_len = auth ?
968                 cpu_to_le32(auth->authorizer_buf_len) : 0;
969
970         con_out_kvec_add(con, sizeof (con->out_connect),
971                                         &con->out_connect);
972         if (auth && auth->authorizer_buf_len)
973                 con_out_kvec_add(con, auth->authorizer_buf_len,
974                                         auth->authorizer_buf);
975
976         con->out_more = 0;
977         con_flag_set(con, CON_FLAG_WRITE_PENDING);
978
979         return 0;
980 }
981
982 /*
983  * write as much of pending kvecs to the socket as we can.
984  *  1 -> done
985  *  0 -> socket full, but more to do
986  * <0 -> error
987  */
988 static int write_partial_kvec(struct ceph_connection *con)
989 {
990         int ret;
991
992         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
993         while (con->out_kvec_bytes > 0) {
994                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
995                                        con->out_kvec_left, con->out_kvec_bytes,
996                                        con->out_more);
997                 if (ret <= 0)
998                         goto out;
999                 con->out_kvec_bytes -= ret;
1000                 if (con->out_kvec_bytes == 0)
1001                         break;            /* done */
1002
1003                 /* account for full iov entries consumed */
1004                 while (ret >= con->out_kvec_cur->iov_len) {
1005                         BUG_ON(!con->out_kvec_left);
1006                         ret -= con->out_kvec_cur->iov_len;
1007                         con->out_kvec_cur++;
1008                         con->out_kvec_left--;
1009                 }
1010                 /* and for a partially-consumed entry */
1011                 if (ret) {
1012                         con->out_kvec_cur->iov_len -= ret;
1013                         con->out_kvec_cur->iov_base += ret;
1014                 }
1015         }
1016         con->out_kvec_left = 0;
1017         con->out_kvec_is_msg = false;
1018         ret = 1;
1019 out:
1020         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1021              con->out_kvec_bytes, con->out_kvec_left, ret);
1022         return ret;  /* done! */
1023 }
1024
1025 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
1026                         size_t len, size_t sent, bool in_trail)
1027 {
1028         struct ceph_msg *msg = con->out_msg;
1029
1030         BUG_ON(!msg);
1031         BUG_ON(!sent);
1032
1033         con->out_msg_pos.data_pos += sent;
1034         con->out_msg_pos.page_pos += sent;
1035         if (sent < len)
1036                 return;
1037
1038         BUG_ON(sent != len);
1039         con->out_msg_pos.page_pos = 0;
1040         con->out_msg_pos.page++;
1041         con->out_msg_pos.did_page_crc = false;
1042         if (in_trail)
1043                 list_move_tail(&page->lru,
1044                                &msg->trail->head);
1045         else if (msg->pagelist)
1046                 list_move_tail(&page->lru,
1047                                &msg->pagelist->head);
1048 #ifdef CONFIG_BLOCK
1049         else if (msg->bio)
1050                 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
1051 #endif
1052 }
1053
1054 /*
1055  * Write as much message data payload as we can.  If we finish, queue
1056  * up the footer.
1057  *  1 -> done, footer is now queued in out_kvec[].
1058  *  0 -> socket full, but more to do
1059  * <0 -> error
1060  */
1061 static int write_partial_msg_pages(struct ceph_connection *con)
1062 {
1063         struct ceph_msg *msg = con->out_msg;
1064         unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
1065         size_t len;
1066         bool do_datacrc = !con->msgr->nocrc;
1067         int ret;
1068         int total_max_write;
1069         bool in_trail = false;
1070         const size_t trail_len = (msg->trail ? msg->trail->length : 0);
1071         const size_t trail_off = data_len - trail_len;
1072
1073         dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
1074              con, msg, con->out_msg_pos.page, msg->nr_pages,
1075              con->out_msg_pos.page_pos);
1076
1077         /*
1078          * Iterate through each page that contains data to be
1079          * written, and send as much as possible for each.
1080          *
1081          * If we are calculating the data crc (the default), we will
1082          * need to map the page.  If we have no pages, they have
1083          * been revoked, so use the zero page.
1084          */
1085         while (data_len > con->out_msg_pos.data_pos) {
1086                 struct page *page = NULL;
1087                 int max_write = PAGE_SIZE;
1088                 int bio_offset = 0;
1089
1090                 in_trail = in_trail || con->out_msg_pos.data_pos >= trail_off;
1091                 if (!in_trail)
1092                         total_max_write = trail_off - con->out_msg_pos.data_pos;
1093
1094                 if (in_trail) {
1095                         total_max_write = data_len - con->out_msg_pos.data_pos;
1096
1097                         page = list_first_entry(&msg->trail->head,
1098                                                 struct page, lru);
1099                 } else if (msg->pages) {
1100                         page = msg->pages[con->out_msg_pos.page];
1101                 } else if (msg->pagelist) {
1102                         page = list_first_entry(&msg->pagelist->head,
1103                                                 struct page, lru);
1104 #ifdef CONFIG_BLOCK
1105                 } else if (msg->bio) {
1106                         struct bio_vec *bv;
1107
1108                         bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
1109                         page = bv->bv_page;
1110                         bio_offset = bv->bv_offset;
1111                         max_write = bv->bv_len;
1112 #endif
1113                 } else {
1114                         page = zero_page;
1115                 }
1116                 len = min_t(int, max_write - con->out_msg_pos.page_pos,
1117                             total_max_write);
1118
1119                 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
1120                         void *base;
1121                         u32 crc = le32_to_cpu(msg->footer.data_crc);
1122                         char *kaddr;
1123
1124                         kaddr = kmap(page);
1125                         BUG_ON(kaddr == NULL);
1126                         base = kaddr + con->out_msg_pos.page_pos + bio_offset;
1127                         crc = crc32c(crc, base, len);
1128                         kunmap(page);
1129                         msg->footer.data_crc = cpu_to_le32(crc);
1130                         con->out_msg_pos.did_page_crc = true;
1131                 }
1132                 ret = ceph_tcp_sendpage(con->sock, page,
1133                                       con->out_msg_pos.page_pos + bio_offset,
1134                                       len, 1);
1135                 if (ret <= 0)
1136                         goto out;
1137
1138                 out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1139         }
1140
1141         dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1142
1143         /* prepare and queue up footer, too */
1144         if (!do_datacrc)
1145                 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1146         con_out_kvec_reset(con);
1147         prepare_write_message_footer(con);
1148         ret = 1;
1149 out:
1150         return ret;
1151 }
1152
1153 /*
1154  * write some zeros
1155  */
1156 static int write_partial_skip(struct ceph_connection *con)
1157 {
1158         int ret;
1159
1160         while (con->out_skip > 0) {
1161                 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1162
1163                 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1164                 if (ret <= 0)
1165                         goto out;
1166                 con->out_skip -= ret;
1167         }
1168         ret = 1;
1169 out:
1170         return ret;
1171 }
1172
1173 /*
1174  * Prepare to read connection handshake, or an ack.
1175  */
1176 static void prepare_read_banner(struct ceph_connection *con)
1177 {
1178         dout("prepare_read_banner %p\n", con);
1179         con->in_base_pos = 0;
1180 }
1181
1182 static void prepare_read_connect(struct ceph_connection *con)
1183 {
1184         dout("prepare_read_connect %p\n", con);
1185         con->in_base_pos = 0;
1186 }
1187
1188 static void prepare_read_ack(struct ceph_connection *con)
1189 {
1190         dout("prepare_read_ack %p\n", con);
1191         con->in_base_pos = 0;
1192 }
1193
1194 static void prepare_read_tag(struct ceph_connection *con)
1195 {
1196         dout("prepare_read_tag %p\n", con);
1197         con->in_base_pos = 0;
1198         con->in_tag = CEPH_MSGR_TAG_READY;
1199 }
1200
1201 /*
1202  * Prepare to read a message.
1203  */
1204 static int prepare_read_message(struct ceph_connection *con)
1205 {
1206         dout("prepare_read_message %p\n", con);
1207         BUG_ON(con->in_msg != NULL);
1208         con->in_base_pos = 0;
1209         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1210         return 0;
1211 }
1212
1213
1214 static int read_partial(struct ceph_connection *con,
1215                         int end, int size, void *object)
1216 {
1217         while (con->in_base_pos < end) {
1218                 int left = end - con->in_base_pos;
1219                 int have = size - left;
1220                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1221                 if (ret <= 0)
1222                         return ret;
1223                 con->in_base_pos += ret;
1224         }
1225         return 1;
1226 }
1227
1228
1229 /*
1230  * Read all or part of the connect-side handshake on a new connection
1231  */
1232 static int read_partial_banner(struct ceph_connection *con)
1233 {
1234         int size;
1235         int end;
1236         int ret;
1237
1238         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1239
1240         /* peer's banner */
1241         size = strlen(CEPH_BANNER);
1242         end = size;
1243         ret = read_partial(con, end, size, con->in_banner);
1244         if (ret <= 0)
1245                 goto out;
1246
1247         size = sizeof (con->actual_peer_addr);
1248         end += size;
1249         ret = read_partial(con, end, size, &con->actual_peer_addr);
1250         if (ret <= 0)
1251                 goto out;
1252
1253         size = sizeof (con->peer_addr_for_me);
1254         end += size;
1255         ret = read_partial(con, end, size, &con->peer_addr_for_me);
1256         if (ret <= 0)
1257                 goto out;
1258
1259 out:
1260         return ret;
1261 }
1262
1263 static int read_partial_connect(struct ceph_connection *con)
1264 {
1265         int size;
1266         int end;
1267         int ret;
1268
1269         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1270
1271         size = sizeof (con->in_reply);
1272         end = size;
1273         ret = read_partial(con, end, size, &con->in_reply);
1274         if (ret <= 0)
1275                 goto out;
1276
1277         size = le32_to_cpu(con->in_reply.authorizer_len);
1278         end += size;
1279         ret = read_partial(con, end, size, con->auth_reply_buf);
1280         if (ret <= 0)
1281                 goto out;
1282
1283         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1284              con, (int)con->in_reply.tag,
1285              le32_to_cpu(con->in_reply.connect_seq),
1286              le32_to_cpu(con->in_reply.global_seq));
1287 out:
1288         return ret;
1289
1290 }
1291
1292 /*
1293  * Verify the hello banner looks okay.
1294  */
1295 static int verify_hello(struct ceph_connection *con)
1296 {
1297         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1298                 pr_err("connect to %s got bad banner\n",
1299                        ceph_pr_addr(&con->peer_addr.in_addr));
1300                 con->error_msg = "protocol error, bad banner";
1301                 return -1;
1302         }
1303         return 0;
1304 }
1305
1306 static bool addr_is_blank(struct sockaddr_storage *ss)
1307 {
1308         switch (ss->ss_family) {
1309         case AF_INET:
1310                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1311         case AF_INET6:
1312                 return
1313                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1314                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1315                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1316                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1317         }
1318         return false;
1319 }
1320
1321 static int addr_port(struct sockaddr_storage *ss)
1322 {
1323         switch (ss->ss_family) {
1324         case AF_INET:
1325                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1326         case AF_INET6:
1327                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1328         }
1329         return 0;
1330 }
1331
1332 static void addr_set_port(struct sockaddr_storage *ss, int p)
1333 {
1334         switch (ss->ss_family) {
1335         case AF_INET:
1336                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1337                 break;
1338         case AF_INET6:
1339                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1340                 break;
1341         }
1342 }
1343
1344 /*
1345  * Unlike other *_pton function semantics, zero indicates success.
1346  */
1347 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1348                 char delim, const char **ipend)
1349 {
1350         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1351         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1352
1353         memset(ss, 0, sizeof(*ss));
1354
1355         if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1356                 ss->ss_family = AF_INET;
1357                 return 0;
1358         }
1359
1360         if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1361                 ss->ss_family = AF_INET6;
1362                 return 0;
1363         }
1364
1365         return -EINVAL;
1366 }
1367
1368 /*
1369  * Extract hostname string and resolve using kernel DNS facility.
1370  */
1371 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1372 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1373                 struct sockaddr_storage *ss, char delim, const char **ipend)
1374 {
1375         const char *end, *delim_p;
1376         char *colon_p, *ip_addr = NULL;
1377         int ip_len, ret;
1378
1379         /*
1380          * The end of the hostname occurs immediately preceding the delimiter or
1381          * the port marker (':') where the delimiter takes precedence.
1382          */
1383         delim_p = memchr(name, delim, namelen);
1384         colon_p = memchr(name, ':', namelen);
1385
1386         if (delim_p && colon_p)
1387                 end = delim_p < colon_p ? delim_p : colon_p;
1388         else if (!delim_p && colon_p)
1389                 end = colon_p;
1390         else {
1391                 end = delim_p;
1392                 if (!end) /* case: hostname:/ */
1393                         end = name + namelen;
1394         }
1395
1396         if (end <= name)
1397                 return -EINVAL;
1398
1399         /* do dns_resolve upcall */
1400         ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1401         if (ip_len > 0)
1402                 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1403         else
1404                 ret = -ESRCH;
1405
1406         kfree(ip_addr);
1407
1408         *ipend = end;
1409
1410         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1411                         ret, ret ? "failed" : ceph_pr_addr(ss));
1412
1413         return ret;
1414 }
1415 #else
1416 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1417                 struct sockaddr_storage *ss, char delim, const char **ipend)
1418 {
1419         return -EINVAL;
1420 }
1421 #endif
1422
1423 /*
1424  * Parse a server name (IP or hostname). If a valid IP address is not found
1425  * then try to extract a hostname to resolve using userspace DNS upcall.
1426  */
1427 static int ceph_parse_server_name(const char *name, size_t namelen,
1428                         struct sockaddr_storage *ss, char delim, const char **ipend)
1429 {
1430         int ret;
1431
1432         ret = ceph_pton(name, namelen, ss, delim, ipend);
1433         if (ret)
1434                 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1435
1436         return ret;
1437 }
1438
1439 /*
1440  * Parse an ip[:port] list into an addr array.  Use the default
1441  * monitor port if a port isn't specified.
1442  */
1443 int ceph_parse_ips(const char *c, const char *end,
1444                    struct ceph_entity_addr *addr,
1445                    int max_count, int *count)
1446 {
1447         int i, ret = -EINVAL;
1448         const char *p = c;
1449
1450         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1451         for (i = 0; i < max_count; i++) {
1452                 const char *ipend;
1453                 struct sockaddr_storage *ss = &addr[i].in_addr;
1454                 int port;
1455                 char delim = ',';
1456
1457                 if (*p == '[') {
1458                         delim = ']';
1459                         p++;
1460                 }
1461
1462                 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1463                 if (ret)
1464                         goto bad;
1465                 ret = -EINVAL;
1466
1467                 p = ipend;
1468
1469                 if (delim == ']') {
1470                         if (*p != ']') {
1471                                 dout("missing matching ']'\n");
1472                                 goto bad;
1473                         }
1474                         p++;
1475                 }
1476
1477                 /* port? */
1478                 if (p < end && *p == ':') {
1479                         port = 0;
1480                         p++;
1481                         while (p < end && *p >= '0' && *p <= '9') {
1482                                 port = (port * 10) + (*p - '0');
1483                                 p++;
1484                         }
1485                         if (port > 65535 || port == 0)
1486                                 goto bad;
1487                 } else {
1488                         port = CEPH_MON_PORT;
1489                 }
1490
1491                 addr_set_port(ss, port);
1492
1493                 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1494
1495                 if (p == end)
1496                         break;
1497                 if (*p != ',')
1498                         goto bad;
1499                 p++;
1500         }
1501
1502         if (p != end)
1503                 goto bad;
1504
1505         if (count)
1506                 *count = i + 1;
1507         return 0;
1508
1509 bad:
1510         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1511         return ret;
1512 }
1513 EXPORT_SYMBOL(ceph_parse_ips);
1514
1515 static int process_banner(struct ceph_connection *con)
1516 {
1517         dout("process_banner on %p\n", con);
1518
1519         if (verify_hello(con) < 0)
1520                 return -1;
1521
1522         ceph_decode_addr(&con->actual_peer_addr);
1523         ceph_decode_addr(&con->peer_addr_for_me);
1524
1525         /*
1526          * Make sure the other end is who we wanted.  note that the other
1527          * end may not yet know their ip address, so if it's 0.0.0.0, give
1528          * them the benefit of the doubt.
1529          */
1530         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1531                    sizeof(con->peer_addr)) != 0 &&
1532             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1533               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1534                 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1535                            ceph_pr_addr(&con->peer_addr.in_addr),
1536                            (int)le32_to_cpu(con->peer_addr.nonce),
1537                            ceph_pr_addr(&con->actual_peer_addr.in_addr),
1538                            (int)le32_to_cpu(con->actual_peer_addr.nonce));
1539                 con->error_msg = "wrong peer at address";
1540                 return -1;
1541         }
1542
1543         /*
1544          * did we learn our address?
1545          */
1546         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1547                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1548
1549                 memcpy(&con->msgr->inst.addr.in_addr,
1550                        &con->peer_addr_for_me.in_addr,
1551                        sizeof(con->peer_addr_for_me.in_addr));
1552                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1553                 encode_my_addr(con->msgr);
1554                 dout("process_banner learned my addr is %s\n",
1555                      ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1556         }
1557
1558         return 0;
1559 }
1560
1561 static int process_connect(struct ceph_connection *con)
1562 {
1563         u64 sup_feat = con->msgr->supported_features;
1564         u64 req_feat = con->msgr->required_features;
1565         u64 server_feat = le64_to_cpu(con->in_reply.features);
1566         int ret;
1567
1568         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1569
1570         switch (con->in_reply.tag) {
1571         case CEPH_MSGR_TAG_FEATURES:
1572                 pr_err("%s%lld %s feature set mismatch,"
1573                        " my %llx < server's %llx, missing %llx\n",
1574                        ENTITY_NAME(con->peer_name),
1575                        ceph_pr_addr(&con->peer_addr.in_addr),
1576                        sup_feat, server_feat, server_feat & ~sup_feat);
1577                 con->error_msg = "missing required protocol features";
1578                 reset_connection(con);
1579                 return -1;
1580
1581         case CEPH_MSGR_TAG_BADPROTOVER:
1582                 pr_err("%s%lld %s protocol version mismatch,"
1583                        " my %d != server's %d\n",
1584                        ENTITY_NAME(con->peer_name),
1585                        ceph_pr_addr(&con->peer_addr.in_addr),
1586                        le32_to_cpu(con->out_connect.protocol_version),
1587                        le32_to_cpu(con->in_reply.protocol_version));
1588                 con->error_msg = "protocol version mismatch";
1589                 reset_connection(con);
1590                 return -1;
1591
1592         case CEPH_MSGR_TAG_BADAUTHORIZER:
1593                 con->auth_retry++;
1594                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1595                      con->auth_retry);
1596                 if (con->auth_retry == 2) {
1597                         con->error_msg = "connect authorization failure";
1598                         return -1;
1599                 }
1600                 con->auth_retry = 1;
1601                 con_out_kvec_reset(con);
1602                 ret = prepare_write_connect(con);
1603                 if (ret < 0)
1604                         return ret;
1605                 prepare_read_connect(con);
1606                 break;
1607
1608         case CEPH_MSGR_TAG_RESETSESSION:
1609                 /*
1610                  * If we connected with a large connect_seq but the peer
1611                  * has no record of a session with us (no connection, or
1612                  * connect_seq == 0), they will send RESETSESION to indicate
1613                  * that they must have reset their session, and may have
1614                  * dropped messages.
1615                  */
1616                 dout("process_connect got RESET peer seq %u\n",
1617                      le32_to_cpu(con->in_reply.connect_seq));
1618                 pr_err("%s%lld %s connection reset\n",
1619                        ENTITY_NAME(con->peer_name),
1620                        ceph_pr_addr(&con->peer_addr.in_addr));
1621                 reset_connection(con);
1622                 con_out_kvec_reset(con);
1623                 ret = prepare_write_connect(con);
1624                 if (ret < 0)
1625                         return ret;
1626                 prepare_read_connect(con);
1627
1628                 /* Tell ceph about it. */
1629                 mutex_unlock(&con->mutex);
1630                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1631                 if (con->ops->peer_reset)
1632                         con->ops->peer_reset(con);
1633                 mutex_lock(&con->mutex);
1634                 if (con->state != CON_STATE_NEGOTIATING)
1635                         return -EAGAIN;
1636                 break;
1637
1638         case CEPH_MSGR_TAG_RETRY_SESSION:
1639                 /*
1640                  * If we sent a smaller connect_seq than the peer has, try
1641                  * again with a larger value.
1642                  */
1643                 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1644                      le32_to_cpu(con->out_connect.connect_seq),
1645                      le32_to_cpu(con->in_reply.connect_seq));
1646                 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1647                 con_out_kvec_reset(con);
1648                 ret = prepare_write_connect(con);
1649                 if (ret < 0)
1650                         return ret;
1651                 prepare_read_connect(con);
1652                 break;
1653
1654         case CEPH_MSGR_TAG_RETRY_GLOBAL:
1655                 /*
1656                  * If we sent a smaller global_seq than the peer has, try
1657                  * again with a larger value.
1658                  */
1659                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1660                      con->peer_global_seq,
1661                      le32_to_cpu(con->in_reply.global_seq));
1662                 get_global_seq(con->msgr,
1663                                le32_to_cpu(con->in_reply.global_seq));
1664                 con_out_kvec_reset(con);
1665                 ret = prepare_write_connect(con);
1666                 if (ret < 0)
1667                         return ret;
1668                 prepare_read_connect(con);
1669                 break;
1670
1671         case CEPH_MSGR_TAG_READY:
1672                 if (req_feat & ~server_feat) {
1673                         pr_err("%s%lld %s protocol feature mismatch,"
1674                                " my required %llx > server's %llx, need %llx\n",
1675                                ENTITY_NAME(con->peer_name),
1676                                ceph_pr_addr(&con->peer_addr.in_addr),
1677                                req_feat, server_feat, req_feat & ~server_feat);
1678                         con->error_msg = "missing required protocol features";
1679                         reset_connection(con);
1680                         return -1;
1681                 }
1682
1683                 WARN_ON(con->state != CON_STATE_NEGOTIATING);
1684                 con->state = CON_STATE_OPEN;
1685
1686                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1687                 con->connect_seq++;
1688                 con->peer_features = server_feat;
1689                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1690                      con->peer_global_seq,
1691                      le32_to_cpu(con->in_reply.connect_seq),
1692                      con->connect_seq);
1693                 WARN_ON(con->connect_seq !=
1694                         le32_to_cpu(con->in_reply.connect_seq));
1695
1696                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1697                         con_flag_set(con, CON_FLAG_LOSSYTX);
1698
1699                 con->delay = 0;      /* reset backoff memory */
1700
1701                 prepare_read_tag(con);
1702                 break;
1703
1704         case CEPH_MSGR_TAG_WAIT:
1705                 /*
1706                  * If there is a connection race (we are opening
1707                  * connections to each other), one of us may just have
1708                  * to WAIT.  This shouldn't happen if we are the
1709                  * client.
1710                  */
1711                 pr_err("process_connect got WAIT as client\n");
1712                 con->error_msg = "protocol error, got WAIT as client";
1713                 return -1;
1714
1715         default:
1716                 pr_err("connect protocol error, will retry\n");
1717                 con->error_msg = "protocol error, garbage tag during connect";
1718                 return -1;
1719         }
1720         return 0;
1721 }
1722
1723
1724 /*
1725  * read (part of) an ack
1726  */
1727 static int read_partial_ack(struct ceph_connection *con)
1728 {
1729         int size = sizeof (con->in_temp_ack);
1730         int end = size;
1731
1732         return read_partial(con, end, size, &con->in_temp_ack);
1733 }
1734
1735
1736 /*
1737  * We can finally discard anything that's been acked.
1738  */
1739 static void process_ack(struct ceph_connection *con)
1740 {
1741         struct ceph_msg *m;
1742         u64 ack = le64_to_cpu(con->in_temp_ack);
1743         u64 seq;
1744
1745         while (!list_empty(&con->out_sent)) {
1746                 m = list_first_entry(&con->out_sent, struct ceph_msg,
1747                                      list_head);
1748                 seq = le64_to_cpu(m->hdr.seq);
1749                 if (seq > ack)
1750                         break;
1751                 dout("got ack for seq %llu type %d at %p\n", seq,
1752                      le16_to_cpu(m->hdr.type), m);
1753                 m->ack_stamp = jiffies;
1754                 ceph_msg_remove(m);
1755         }
1756         prepare_read_tag(con);
1757 }
1758
1759
1760
1761
1762 static int read_partial_message_section(struct ceph_connection *con,
1763                                         struct kvec *section,
1764                                         unsigned int sec_len, u32 *crc)
1765 {
1766         int ret, left;
1767
1768         BUG_ON(!section);
1769
1770         while (section->iov_len < sec_len) {
1771                 BUG_ON(section->iov_base == NULL);
1772                 left = sec_len - section->iov_len;
1773                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1774                                        section->iov_len, left);
1775                 if (ret <= 0)
1776                         return ret;
1777                 section->iov_len += ret;
1778         }
1779         if (section->iov_len == sec_len)
1780                 *crc = crc32c(0, section->iov_base, section->iov_len);
1781
1782         return 1;
1783 }
1784
1785 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
1786
1787 static int read_partial_message_pages(struct ceph_connection *con,
1788                                       struct page **pages,
1789                                       unsigned int data_len, bool do_datacrc)
1790 {
1791         void *p;
1792         int ret;
1793         int left;
1794
1795         left = min((int)(data_len - con->in_msg_pos.data_pos),
1796                    (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1797         /* (page) data */
1798         BUG_ON(pages == NULL);
1799         p = kmap(pages[con->in_msg_pos.page]);
1800         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1801                                left);
1802         if (ret > 0 && do_datacrc)
1803                 con->in_data_crc =
1804                         crc32c(con->in_data_crc,
1805                                   p + con->in_msg_pos.page_pos, ret);
1806         kunmap(pages[con->in_msg_pos.page]);
1807         if (ret <= 0)
1808                 return ret;
1809         con->in_msg_pos.data_pos += ret;
1810         con->in_msg_pos.page_pos += ret;
1811         if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1812                 con->in_msg_pos.page_pos = 0;
1813                 con->in_msg_pos.page++;
1814         }
1815
1816         return ret;
1817 }
1818
1819 #ifdef CONFIG_BLOCK
1820 static int read_partial_message_bio(struct ceph_connection *con,
1821                                     struct bio **bio_iter, int *bio_seg,
1822                                     unsigned int data_len, bool do_datacrc)
1823 {
1824         struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1825         void *p;
1826         int ret, left;
1827
1828         left = min((int)(data_len - con->in_msg_pos.data_pos),
1829                    (int)(bv->bv_len - con->in_msg_pos.page_pos));
1830
1831         p = kmap(bv->bv_page) + bv->bv_offset;
1832
1833         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1834                                left);
1835         if (ret > 0 && do_datacrc)
1836                 con->in_data_crc =
1837                         crc32c(con->in_data_crc,
1838                                   p + con->in_msg_pos.page_pos, ret);
1839         kunmap(bv->bv_page);
1840         if (ret <= 0)
1841                 return ret;
1842         con->in_msg_pos.data_pos += ret;
1843         con->in_msg_pos.page_pos += ret;
1844         if (con->in_msg_pos.page_pos == bv->bv_len) {
1845                 con->in_msg_pos.page_pos = 0;
1846                 iter_bio_next(bio_iter, bio_seg);
1847         }
1848
1849         return ret;
1850 }
1851 #endif
1852
1853 /*
1854  * read (part of) a message.
1855  */
1856 static int read_partial_message(struct ceph_connection *con)
1857 {
1858         struct ceph_msg *m = con->in_msg;
1859         int size;
1860         int end;
1861         int ret;
1862         unsigned int front_len, middle_len, data_len;
1863         bool do_datacrc = !con->msgr->nocrc;
1864         u64 seq;
1865         u32 crc;
1866
1867         dout("read_partial_message con %p msg %p\n", con, m);
1868
1869         /* header */
1870         size = sizeof (con->in_hdr);
1871         end = size;
1872         ret = read_partial(con, end, size, &con->in_hdr);
1873         if (ret <= 0)
1874                 return ret;
1875
1876         crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1877         if (cpu_to_le32(crc) != con->in_hdr.crc) {
1878                 pr_err("read_partial_message bad hdr "
1879                        " crc %u != expected %u\n",
1880                        crc, con->in_hdr.crc);
1881                 return -EBADMSG;
1882         }
1883
1884         front_len = le32_to_cpu(con->in_hdr.front_len);
1885         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1886                 return -EIO;
1887         middle_len = le32_to_cpu(con->in_hdr.middle_len);
1888         if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1889                 return -EIO;
1890         data_len = le32_to_cpu(con->in_hdr.data_len);
1891         if (data_len > CEPH_MSG_MAX_DATA_LEN)
1892                 return -EIO;
1893
1894         /* verify seq# */
1895         seq = le64_to_cpu(con->in_hdr.seq);
1896         if ((s64)seq - (s64)con->in_seq < 1) {
1897                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1898                         ENTITY_NAME(con->peer_name),
1899                         ceph_pr_addr(&con->peer_addr.in_addr),
1900                         seq, con->in_seq + 1);
1901                 con->in_base_pos = -front_len - middle_len - data_len -
1902                         sizeof(m->footer);
1903                 con->in_tag = CEPH_MSGR_TAG_READY;
1904                 return 0;
1905         } else if ((s64)seq - (s64)con->in_seq > 1) {
1906                 pr_err("read_partial_message bad seq %lld expected %lld\n",
1907                        seq, con->in_seq + 1);
1908                 con->error_msg = "bad message sequence # for incoming message";
1909                 return -EBADMSG;
1910         }
1911
1912         /* allocate message? */
1913         if (!con->in_msg) {
1914                 int skip = 0;
1915
1916                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1917                      con->in_hdr.front_len, con->in_hdr.data_len);
1918                 ret = ceph_con_in_msg_alloc(con, &skip);
1919                 if (ret < 0)
1920                         return ret;
1921                 if (skip) {
1922                         /* skip this message */
1923                         dout("alloc_msg said skip message\n");
1924                         BUG_ON(con->in_msg);
1925                         con->in_base_pos = -front_len - middle_len - data_len -
1926                                 sizeof(m->footer);
1927                         con->in_tag = CEPH_MSGR_TAG_READY;
1928                         con->in_seq++;
1929                         return 0;
1930                 }
1931
1932                 BUG_ON(!con->in_msg);
1933                 BUG_ON(con->in_msg->con != con);
1934                 m = con->in_msg;
1935                 m->front.iov_len = 0;    /* haven't read it yet */
1936                 if (m->middle)
1937                         m->middle->vec.iov_len = 0;
1938
1939                 con->in_msg_pos.page = 0;
1940                 if (m->pages)
1941                         con->in_msg_pos.page_pos = m->page_alignment;
1942                 else
1943                         con->in_msg_pos.page_pos = 0;
1944                 con->in_msg_pos.data_pos = 0;
1945
1946 #ifdef CONFIG_BLOCK
1947                 if (m->bio)
1948                         init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1949 #endif
1950         }
1951
1952         /* front */
1953         ret = read_partial_message_section(con, &m->front, front_len,
1954                                            &con->in_front_crc);
1955         if (ret <= 0)
1956                 return ret;
1957
1958         /* middle */
1959         if (m->middle) {
1960                 ret = read_partial_message_section(con, &m->middle->vec,
1961                                                    middle_len,
1962                                                    &con->in_middle_crc);
1963                 if (ret <= 0)
1964                         return ret;
1965         }
1966
1967         /* (page) data */
1968         while (con->in_msg_pos.data_pos < data_len) {
1969                 if (m->pages) {
1970                         ret = read_partial_message_pages(con, m->pages,
1971                                                  data_len, do_datacrc);
1972                         if (ret <= 0)
1973                                 return ret;
1974 #ifdef CONFIG_BLOCK
1975                 } else if (m->bio) {
1976                         BUG_ON(!m->bio_iter);
1977                         ret = read_partial_message_bio(con,
1978                                                  &m->bio_iter, &m->bio_seg,
1979                                                  data_len, do_datacrc);
1980                         if (ret <= 0)
1981                                 return ret;
1982 #endif
1983                 } else {
1984                         BUG_ON(1);
1985                 }
1986         }
1987
1988         /* footer */
1989         size = sizeof (m->footer);
1990         end += size;
1991         ret = read_partial(con, end, size, &m->footer);
1992         if (ret <= 0)
1993                 return ret;
1994
1995         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1996              m, front_len, m->footer.front_crc, middle_len,
1997              m->footer.middle_crc, data_len, m->footer.data_crc);
1998
1999         /* crc ok? */
2000         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2001                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2002                        m, con->in_front_crc, m->footer.front_crc);
2003                 return -EBADMSG;
2004         }
2005         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2006                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2007                        m, con->in_middle_crc, m->footer.middle_crc);
2008                 return -EBADMSG;
2009         }
2010         if (do_datacrc &&
2011             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2012             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2013                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2014                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2015                 return -EBADMSG;
2016         }
2017
2018         return 1; /* done! */
2019 }
2020
2021 /*
2022  * Process message.  This happens in the worker thread.  The callback should
2023  * be careful not to do anything that waits on other incoming messages or it
2024  * may deadlock.
2025  */
2026 static void process_message(struct ceph_connection *con)
2027 {
2028         struct ceph_msg *msg;
2029
2030         BUG_ON(con->in_msg->con != con);
2031         con->in_msg->con = NULL;
2032         msg = con->in_msg;
2033         con->in_msg = NULL;
2034         con->ops->put(con);
2035
2036         /* if first message, set peer_name */
2037         if (con->peer_name.type == 0)
2038                 con->peer_name = msg->hdr.src;
2039
2040         con->in_seq++;
2041         mutex_unlock(&con->mutex);
2042
2043         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2044              msg, le64_to_cpu(msg->hdr.seq),
2045              ENTITY_NAME(msg->hdr.src),
2046              le16_to_cpu(msg->hdr.type),
2047              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2048              le32_to_cpu(msg->hdr.front_len),
2049              le32_to_cpu(msg->hdr.data_len),
2050              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2051         con->ops->dispatch(con, msg);
2052
2053         mutex_lock(&con->mutex);
2054 }
2055
2056
2057 /*
2058  * Write something to the socket.  Called in a worker thread when the
2059  * socket appears to be writeable and we have something ready to send.
2060  */
2061 static int try_write(struct ceph_connection *con)
2062 {
2063         int ret = 1;
2064
2065         dout("try_write start %p state %lu\n", con, con->state);
2066
2067 more:
2068         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2069
2070         /* open the socket first? */
2071         if (con->state == CON_STATE_PREOPEN) {
2072                 BUG_ON(con->sock);
2073                 con->state = CON_STATE_CONNECTING;
2074
2075                 con_out_kvec_reset(con);
2076                 prepare_write_banner(con);
2077                 prepare_read_banner(con);
2078
2079                 BUG_ON(con->in_msg);
2080                 con->in_tag = CEPH_MSGR_TAG_READY;
2081                 dout("try_write initiating connect on %p new state %lu\n",
2082                      con, con->state);
2083                 ret = ceph_tcp_connect(con);
2084                 if (ret < 0) {
2085                         con->error_msg = "connect error";
2086                         goto out;
2087                 }
2088         }
2089
2090 more_kvec:
2091         /* kvec data queued? */
2092         if (con->out_skip) {
2093                 ret = write_partial_skip(con);
2094                 if (ret <= 0)
2095                         goto out;
2096         }
2097         if (con->out_kvec_left) {
2098                 ret = write_partial_kvec(con);
2099                 if (ret <= 0)
2100                         goto out;
2101         }
2102
2103         /* msg pages? */
2104         if (con->out_msg) {
2105                 if (con->out_msg_done) {
2106                         ceph_msg_put(con->out_msg);
2107                         con->out_msg = NULL;   /* we're done with this one */
2108                         goto do_next;
2109                 }
2110
2111                 ret = write_partial_msg_pages(con);
2112                 if (ret == 1)
2113                         goto more_kvec;  /* we need to send the footer, too! */
2114                 if (ret == 0)
2115                         goto out;
2116                 if (ret < 0) {
2117                         dout("try_write write_partial_msg_pages err %d\n",
2118                              ret);
2119                         goto out;
2120                 }
2121         }
2122
2123 do_next:
2124         if (con->state == CON_STATE_OPEN) {
2125                 /* is anything else pending? */
2126                 if (!list_empty(&con->out_queue)) {
2127                         prepare_write_message(con);
2128                         goto more;
2129                 }
2130                 if (con->in_seq > con->in_seq_acked) {
2131                         prepare_write_ack(con);
2132                         goto more;
2133                 }
2134                 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2135                         prepare_write_keepalive(con);
2136                         goto more;
2137                 }
2138         }
2139
2140         /* Nothing to do! */
2141         con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2142         dout("try_write nothing else to write.\n");
2143         ret = 0;
2144 out:
2145         dout("try_write done on %p ret %d\n", con, ret);
2146         return ret;
2147 }
2148
2149
2150
2151 /*
2152  * Read what we can from the socket.
2153  */
2154 static int try_read(struct ceph_connection *con)
2155 {
2156         int ret = -1;
2157
2158 more:
2159         dout("try_read start on %p state %lu\n", con, con->state);
2160         if (con->state != CON_STATE_CONNECTING &&
2161             con->state != CON_STATE_NEGOTIATING &&
2162             con->state != CON_STATE_OPEN)
2163                 return 0;
2164
2165         BUG_ON(!con->sock);
2166
2167         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2168              con->in_base_pos);
2169
2170         if (con->state == CON_STATE_CONNECTING) {
2171                 dout("try_read connecting\n");
2172                 ret = read_partial_banner(con);
2173                 if (ret <= 0)
2174                         goto out;
2175                 ret = process_banner(con);
2176                 if (ret < 0)
2177                         goto out;
2178
2179                 con->state = CON_STATE_NEGOTIATING;
2180
2181                 /*
2182                  * Received banner is good, exchange connection info.
2183                  * Do not reset out_kvec, as sending our banner raced
2184                  * with receiving peer banner after connect completed.
2185                  */
2186                 ret = prepare_write_connect(con);
2187                 if (ret < 0)
2188                         goto out;
2189                 prepare_read_connect(con);
2190
2191                 /* Send connection info before awaiting response */
2192                 goto out;
2193         }
2194
2195         if (con->state == CON_STATE_NEGOTIATING) {
2196                 dout("try_read negotiating\n");
2197                 ret = read_partial_connect(con);
2198                 if (ret <= 0)
2199                         goto out;
2200                 ret = process_connect(con);
2201                 if (ret < 0)
2202                         goto out;
2203                 goto more;
2204         }
2205
2206         WARN_ON(con->state != CON_STATE_OPEN);
2207
2208         if (con->in_base_pos < 0) {
2209                 /*
2210                  * skipping + discarding content.
2211                  *
2212                  * FIXME: there must be a better way to do this!
2213                  */
2214                 static char buf[SKIP_BUF_SIZE];
2215                 int skip = min((int) sizeof (buf), -con->in_base_pos);
2216
2217                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2218                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2219                 if (ret <= 0)
2220                         goto out;
2221                 con->in_base_pos += ret;
2222                 if (con->in_base_pos)
2223                         goto more;
2224         }
2225         if (con->in_tag == CEPH_MSGR_TAG_READY) {
2226                 /*
2227                  * what's next?
2228                  */
2229                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2230                 if (ret <= 0)
2231                         goto out;
2232                 dout("try_read got tag %d\n", (int)con->in_tag);
2233                 switch (con->in_tag) {
2234                 case CEPH_MSGR_TAG_MSG:
2235                         prepare_read_message(con);
2236                         break;
2237                 case CEPH_MSGR_TAG_ACK:
2238                         prepare_read_ack(con);
2239                         break;
2240                 case CEPH_MSGR_TAG_CLOSE:
2241                         con_close_socket(con);
2242                         con->state = CON_STATE_CLOSED;
2243                         goto out;
2244                 default:
2245                         goto bad_tag;
2246                 }
2247         }
2248         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2249                 ret = read_partial_message(con);
2250                 if (ret <= 0) {
2251                         switch (ret) {
2252                         case -EBADMSG:
2253                                 con->error_msg = "bad crc";
2254                                 ret = -EIO;
2255                                 break;
2256                         case -EIO:
2257                                 con->error_msg = "io error";
2258                                 break;
2259                         }
2260                         goto out;
2261                 }
2262                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2263                         goto more;
2264                 process_message(con);
2265                 if (con->state == CON_STATE_OPEN)
2266                         prepare_read_tag(con);
2267                 goto more;
2268         }
2269         if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2270                 ret = read_partial_ack(con);
2271                 if (ret <= 0)
2272                         goto out;
2273                 process_ack(con);
2274                 goto more;
2275         }
2276
2277 out:
2278         dout("try_read done on %p ret %d\n", con, ret);
2279         return ret;
2280
2281 bad_tag:
2282         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2283         con->error_msg = "protocol error, garbage tag";
2284         ret = -1;
2285         goto out;
2286 }
2287
2288
2289 /*
2290  * Atomically queue work on a connection after the specified delay.
2291  * Bump @con reference to avoid races with connection teardown.
2292  * Returns 0 if work was queued, or an error code otherwise.
2293  */
2294 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2295 {
2296         if (!con->ops->get(con)) {
2297                 dout("%s %p ref count 0\n", __func__, con);
2298
2299                 return -ENOENT;
2300         }
2301
2302         if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2303                 dout("%s %p - already queued\n", __func__, con);
2304                 con->ops->put(con);
2305
2306                 return -EBUSY;
2307         }
2308
2309         dout("%s %p %lu\n", __func__, con, delay);
2310
2311         return 0;
2312 }
2313
2314 static void queue_con(struct ceph_connection *con)
2315 {
2316         (void) queue_con_delay(con, 0);
2317 }
2318
2319 static bool con_sock_closed(struct ceph_connection *con)
2320 {
2321         if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2322                 return false;
2323
2324 #define CASE(x)                                                         \
2325         case CON_STATE_ ## x:                                           \
2326                 con->error_msg = "socket closed (con state " #x ")";    \
2327                 break;
2328
2329         switch (con->state) {
2330         CASE(CLOSED);
2331         CASE(PREOPEN);
2332         CASE(CONNECTING);
2333         CASE(NEGOTIATING);
2334         CASE(OPEN);
2335         CASE(STANDBY);
2336         default:
2337                 pr_warning("%s con %p unrecognized state %lu\n",
2338                         __func__, con, con->state);
2339                 con->error_msg = "unrecognized con state";
2340                 BUG();
2341                 break;
2342         }
2343 #undef CASE
2344
2345         return true;
2346 }
2347
2348 static bool con_backoff(struct ceph_connection *con)
2349 {
2350         int ret;
2351
2352         if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2353                 return false;
2354
2355         ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2356         if (ret) {
2357                 dout("%s: con %p FAILED to back off %lu\n", __func__,
2358                         con, con->delay);
2359                 BUG_ON(ret == -ENOENT);
2360                 con_flag_set(con, CON_FLAG_BACKOFF);
2361         }
2362
2363         return true;
2364 }
2365
2366 /* Finish fault handling; con->mutex must *not* be held here */
2367
2368 static void con_fault_finish(struct ceph_connection *con)
2369 {
2370         /*
2371          * in case we faulted due to authentication, invalidate our
2372          * current tickets so that we can get new ones.
2373          */
2374         if (con->auth_retry && con->ops->invalidate_authorizer) {
2375                 dout("calling invalidate_authorizer()\n");
2376                 con->ops->invalidate_authorizer(con);
2377         }
2378
2379         if (con->ops->fault)
2380                 con->ops->fault(con);
2381 }
2382
2383 /*
2384  * Do some work on a connection.  Drop a connection ref when we're done.
2385  */
2386 static void con_work(struct work_struct *work)
2387 {
2388         struct ceph_connection *con = container_of(work, struct ceph_connection,
2389                                                    work.work);
2390         bool fault;
2391
2392         mutex_lock(&con->mutex);
2393         while (true) {
2394                 int ret;
2395
2396                 if ((fault = con_sock_closed(con))) {
2397                         dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2398                         break;
2399                 }
2400                 if (con_backoff(con)) {
2401                         dout("%s: con %p BACKOFF\n", __func__, con);
2402                         break;
2403                 }
2404                 if (con->state == CON_STATE_STANDBY) {
2405                         dout("%s: con %p STANDBY\n", __func__, con);
2406                         break;
2407                 }
2408                 if (con->state == CON_STATE_CLOSED) {
2409                         dout("%s: con %p CLOSED\n", __func__, con);
2410                         BUG_ON(con->sock);
2411                         break;
2412                 }
2413                 if (con->state == CON_STATE_PREOPEN) {
2414                         dout("%s: con %p PREOPEN\n", __func__, con);
2415                         BUG_ON(con->sock);
2416                 }
2417
2418                 ret = try_read(con);
2419                 if (ret < 0) {
2420                         if (ret == -EAGAIN)
2421                                 continue;
2422                         con->error_msg = "socket error on read";
2423                         fault = true;
2424                         break;
2425                 }
2426
2427                 ret = try_write(con);
2428                 if (ret < 0) {
2429                         if (ret == -EAGAIN)
2430                                 continue;
2431                         con->error_msg = "socket error on write";
2432                         fault = true;
2433                 }
2434
2435                 break;  /* If we make it to here, we're done */
2436         }
2437         if (fault)
2438                 con_fault(con);
2439         mutex_unlock(&con->mutex);
2440
2441         if (fault)
2442                 con_fault_finish(con);
2443
2444         con->ops->put(con);
2445 }
2446
2447 /*
2448  * Generic error/fault handler.  A retry mechanism is used with
2449  * exponential backoff
2450  */
2451 static void con_fault(struct ceph_connection *con)
2452 {
2453         pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2454                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2455         dout("fault %p state %lu to peer %s\n",
2456              con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2457
2458         WARN_ON(con->state != CON_STATE_CONNECTING &&
2459                con->state != CON_STATE_NEGOTIATING &&
2460                con->state != CON_STATE_OPEN);
2461
2462         con_close_socket(con);
2463
2464         if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2465                 dout("fault on LOSSYTX channel, marking CLOSED\n");
2466                 con->state = CON_STATE_CLOSED;
2467                 return;
2468         }
2469
2470         if (con->in_msg) {
2471                 BUG_ON(con->in_msg->con != con);
2472                 con->in_msg->con = NULL;
2473                 ceph_msg_put(con->in_msg);
2474                 con->in_msg = NULL;
2475                 con->ops->put(con);
2476         }
2477
2478         /* Requeue anything that hasn't been acked */
2479         list_splice_init(&con->out_sent, &con->out_queue);
2480
2481         /* If there are no messages queued or keepalive pending, place
2482          * the connection in a STANDBY state */
2483         if (list_empty(&con->out_queue) &&
2484             !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2485                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2486                 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2487                 con->state = CON_STATE_STANDBY;
2488         } else {
2489                 /* retry after a delay. */
2490                 con->state = CON_STATE_PREOPEN;
2491                 if (con->delay == 0)
2492                         con->delay = BASE_DELAY_INTERVAL;
2493                 else if (con->delay < MAX_DELAY_INTERVAL)
2494                         con->delay *= 2;
2495                 con_flag_set(con, CON_FLAG_BACKOFF);
2496                 queue_con(con);
2497         }
2498 }
2499
2500
2501
2502 /*
2503  * initialize a new messenger instance
2504  */
2505 void ceph_messenger_init(struct ceph_messenger *msgr,
2506                         struct ceph_entity_addr *myaddr,
2507                         u32 supported_features,
2508                         u32 required_features,
2509                         bool nocrc)
2510 {
2511         msgr->supported_features = supported_features;
2512         msgr->required_features = required_features;
2513
2514         spin_lock_init(&msgr->global_seq_lock);
2515
2516         if (myaddr)
2517                 msgr->inst.addr = *myaddr;
2518
2519         /* select a random nonce */
2520         msgr->inst.addr.type = 0;
2521         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2522         encode_my_addr(msgr);
2523         msgr->nocrc = nocrc;
2524
2525         atomic_set(&msgr->stopping, 0);
2526
2527         dout("%s %p\n", __func__, msgr);
2528 }
2529 EXPORT_SYMBOL(ceph_messenger_init);
2530
2531 static void clear_standby(struct ceph_connection *con)
2532 {
2533         /* come back from STANDBY? */
2534         if (con->state == CON_STATE_STANDBY) {
2535                 dout("clear_standby %p and ++connect_seq\n", con);
2536                 con->state = CON_STATE_PREOPEN;
2537                 con->connect_seq++;
2538                 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2539                 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2540         }
2541 }
2542
2543 /*
2544  * Queue up an outgoing message on the given connection.
2545  */
2546 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2547 {
2548         /* set src+dst */
2549         msg->hdr.src = con->msgr->inst.name;
2550         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2551         msg->needs_out_seq = true;
2552
2553         mutex_lock(&con->mutex);
2554
2555         if (con->state == CON_STATE_CLOSED) {
2556                 dout("con_send %p closed, dropping %p\n", con, msg);
2557                 ceph_msg_put(msg);
2558                 mutex_unlock(&con->mutex);
2559                 return;
2560         }
2561
2562         BUG_ON(msg->con != NULL);
2563         msg->con = con->ops->get(con);
2564         BUG_ON(msg->con == NULL);
2565
2566         BUG_ON(!list_empty(&msg->list_head));
2567         list_add_tail(&msg->list_head, &con->out_queue);
2568         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2569              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2570              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2571              le32_to_cpu(msg->hdr.front_len),
2572              le32_to_cpu(msg->hdr.middle_len),
2573              le32_to_cpu(msg->hdr.data_len));
2574
2575         clear_standby(con);
2576         mutex_unlock(&con->mutex);
2577
2578         /* if there wasn't anything waiting to send before, queue
2579          * new work */
2580         if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2581                 queue_con(con);
2582 }
2583 EXPORT_SYMBOL(ceph_con_send);
2584
2585 /*
2586  * Revoke a message that was previously queued for send
2587  */
2588 void ceph_msg_revoke(struct ceph_msg *msg)
2589 {
2590         struct ceph_connection *con = msg->con;
2591
2592         if (!con)
2593                 return;         /* Message not in our possession */
2594
2595         mutex_lock(&con->mutex);
2596         if (!list_empty(&msg->list_head)) {
2597                 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2598                 list_del_init(&msg->list_head);
2599                 BUG_ON(msg->con == NULL);
2600                 msg->con->ops->put(msg->con);
2601                 msg->con = NULL;
2602                 msg->hdr.seq = 0;
2603
2604                 ceph_msg_put(msg);
2605         }
2606         if (con->out_msg == msg) {
2607                 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2608                 con->out_msg = NULL;
2609                 if (con->out_kvec_is_msg) {
2610                         con->out_skip = con->out_kvec_bytes;
2611                         con->out_kvec_is_msg = false;
2612                 }
2613                 msg->hdr.seq = 0;
2614
2615                 ceph_msg_put(msg);
2616         }
2617         mutex_unlock(&con->mutex);
2618 }
2619
2620 /*
2621  * Revoke a message that we may be reading data into
2622  */
2623 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2624 {
2625         struct ceph_connection *con;
2626
2627         BUG_ON(msg == NULL);
2628         if (!msg->con) {
2629                 dout("%s msg %p null con\n", __func__, msg);
2630
2631                 return;         /* Message not in our possession */
2632         }
2633
2634         con = msg->con;
2635         mutex_lock(&con->mutex);
2636         if (con->in_msg == msg) {
2637                 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2638                 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2639                 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2640
2641                 /* skip rest of message */
2642                 dout("%s %p msg %p revoked\n", __func__, con, msg);
2643                 con->in_base_pos = con->in_base_pos -
2644                                 sizeof(struct ceph_msg_header) -
2645                                 front_len -
2646                                 middle_len -
2647                                 data_len -
2648                                 sizeof(struct ceph_msg_footer);
2649                 ceph_msg_put(con->in_msg);
2650                 con->in_msg = NULL;
2651                 con->in_tag = CEPH_MSGR_TAG_READY;
2652                 con->in_seq++;
2653         } else {
2654                 dout("%s %p in_msg %p msg %p no-op\n",
2655                      __func__, con, con->in_msg, msg);
2656         }
2657         mutex_unlock(&con->mutex);
2658 }
2659
2660 /*
2661  * Queue a keepalive byte to ensure the tcp connection is alive.
2662  */
2663 void ceph_con_keepalive(struct ceph_connection *con)
2664 {
2665         dout("con_keepalive %p\n", con);
2666         mutex_lock(&con->mutex);
2667         clear_standby(con);
2668         mutex_unlock(&con->mutex);
2669         if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
2670             con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2671                 queue_con(con);
2672 }
2673 EXPORT_SYMBOL(ceph_con_keepalive);
2674
2675
2676 /*
2677  * construct a new message with given type, size
2678  * the new msg has a ref count of 1.
2679  */
2680 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2681                               bool can_fail)
2682 {
2683         struct ceph_msg *m;
2684
2685         m = kmalloc(sizeof(*m), flags);
2686         if (m == NULL)
2687                 goto out;
2688         kref_init(&m->kref);
2689
2690         m->con = NULL;
2691         INIT_LIST_HEAD(&m->list_head);
2692
2693         m->hdr.tid = 0;
2694         m->hdr.type = cpu_to_le16(type);
2695         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2696         m->hdr.version = 0;
2697         m->hdr.front_len = cpu_to_le32(front_len);
2698         m->hdr.middle_len = 0;
2699         m->hdr.data_len = 0;
2700         m->hdr.data_off = 0;
2701         m->hdr.reserved = 0;
2702         m->footer.front_crc = 0;
2703         m->footer.middle_crc = 0;
2704         m->footer.data_crc = 0;
2705         m->footer.flags = 0;
2706         m->front_max = front_len;
2707         m->front_is_vmalloc = false;
2708         m->more_to_follow = false;
2709         m->ack_stamp = 0;
2710         m->pool = NULL;
2711
2712         /* middle */
2713         m->middle = NULL;
2714
2715         /* data */
2716         m->nr_pages = 0;
2717         m->page_alignment = 0;
2718         m->pages = NULL;
2719         m->pagelist = NULL;
2720 #ifdef  CONFIG_BLOCK
2721         m->bio = NULL;
2722         m->bio_iter = NULL;
2723         m->bio_seg = 0;
2724 #endif  /* CONFIG_BLOCK */
2725         m->trail = NULL;
2726
2727         /* front */
2728         if (front_len) {
2729                 if (front_len > PAGE_CACHE_SIZE) {
2730                         m->front.iov_base = __vmalloc(front_len, flags,
2731                                                       PAGE_KERNEL);
2732                         m->front_is_vmalloc = true;
2733                 } else {
2734                         m->front.iov_base = kmalloc(front_len, flags);
2735                 }
2736                 if (m->front.iov_base == NULL) {
2737                         dout("ceph_msg_new can't allocate %d bytes\n",
2738                              front_len);
2739                         goto out2;
2740                 }
2741         } else {
2742                 m->front.iov_base = NULL;
2743         }
2744         m->front.iov_len = front_len;
2745
2746         dout("ceph_msg_new %p front %d\n", m, front_len);
2747         return m;
2748
2749 out2:
2750         ceph_msg_put(m);
2751 out:
2752         if (!can_fail) {
2753                 pr_err("msg_new can't create type %d front %d\n", type,
2754                        front_len);
2755                 WARN_ON(1);
2756         } else {
2757                 dout("msg_new can't create type %d front %d\n", type,
2758                      front_len);
2759         }
2760         return NULL;
2761 }
2762 EXPORT_SYMBOL(ceph_msg_new);
2763
2764 /*
2765  * Allocate "middle" portion of a message, if it is needed and wasn't
2766  * allocated by alloc_msg.  This allows us to read a small fixed-size
2767  * per-type header in the front and then gracefully fail (i.e.,
2768  * propagate the error to the caller based on info in the front) when
2769  * the middle is too large.
2770  */
2771 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2772 {
2773         int type = le16_to_cpu(msg->hdr.type);
2774         int middle_len = le32_to_cpu(msg->hdr.middle_len);
2775
2776         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2777              ceph_msg_type_name(type), middle_len);
2778         BUG_ON(!middle_len);
2779         BUG_ON(msg->middle);
2780
2781         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2782         if (!msg->middle)
2783                 return -ENOMEM;
2784         return 0;
2785 }
2786
2787 /*
2788  * Allocate a message for receiving an incoming message on a
2789  * connection, and save the result in con->in_msg.  Uses the
2790  * connection's private alloc_msg op if available.
2791  *
2792  * Returns 0 on success, or a negative error code.
2793  *
2794  * On success, if we set *skip = 1:
2795  *  - the next message should be skipped and ignored.
2796  *  - con->in_msg == NULL
2797  * or if we set *skip = 0:
2798  *  - con->in_msg is non-null.
2799  * On error (ENOMEM, EAGAIN, ...),
2800  *  - con->in_msg == NULL
2801  */
2802 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
2803 {
2804         struct ceph_msg_header *hdr = &con->in_hdr;
2805         int type = le16_to_cpu(hdr->type);
2806         int front_len = le32_to_cpu(hdr->front_len);
2807         int middle_len = le32_to_cpu(hdr->middle_len);
2808         int ret = 0;
2809
2810         BUG_ON(con->in_msg != NULL);
2811
2812         if (con->ops->alloc_msg) {
2813                 struct ceph_msg *msg;
2814
2815                 mutex_unlock(&con->mutex);
2816                 msg = con->ops->alloc_msg(con, hdr, skip);
2817                 mutex_lock(&con->mutex);
2818                 if (con->state != CON_STATE_OPEN) {
2819                         if (msg)
2820                                 ceph_msg_put(msg);
2821                         return -EAGAIN;
2822                 }
2823                 con->in_msg = msg;
2824                 if (con->in_msg) {
2825                         con->in_msg->con = con->ops->get(con);
2826                         BUG_ON(con->in_msg->con == NULL);
2827                 }
2828                 if (*skip) {
2829                         con->in_msg = NULL;
2830                         return 0;
2831                 }
2832                 if (!con->in_msg) {
2833                         con->error_msg =
2834                                 "error allocating memory for incoming message";
2835                         return -ENOMEM;
2836                 }
2837         }
2838         if (!con->in_msg) {
2839                 con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2840                 if (!con->in_msg) {
2841                         pr_err("unable to allocate msg type %d len %d\n",
2842                                type, front_len);
2843                         return -ENOMEM;
2844                 }
2845                 con->in_msg->con = con->ops->get(con);
2846                 BUG_ON(con->in_msg->con == NULL);
2847                 con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2848         }
2849         memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2850
2851         if (middle_len && !con->in_msg->middle) {
2852                 ret = ceph_alloc_middle(con, con->in_msg);
2853                 if (ret < 0) {
2854                         ceph_msg_put(con->in_msg);
2855                         con->in_msg = NULL;
2856                 }
2857         }
2858
2859         return ret;
2860 }
2861
2862
2863 /*
2864  * Free a generically kmalloc'd message.
2865  */
2866 void ceph_msg_kfree(struct ceph_msg *m)
2867 {
2868         dout("msg_kfree %p\n", m);
2869         if (m->front_is_vmalloc)
2870                 vfree(m->front.iov_base);
2871         else
2872                 kfree(m->front.iov_base);
2873         kfree(m);
2874 }
2875
2876 /*
2877  * Drop a msg ref.  Destroy as needed.
2878  */
2879 void ceph_msg_last_put(struct kref *kref)
2880 {
2881         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2882
2883         dout("ceph_msg_put last one on %p\n", m);
2884         WARN_ON(!list_empty(&m->list_head));
2885
2886         /* drop middle, data, if any */
2887         if (m->middle) {
2888                 ceph_buffer_put(m->middle);
2889                 m->middle = NULL;
2890         }
2891         m->nr_pages = 0;
2892         m->pages = NULL;
2893
2894         if (m->pagelist) {
2895                 ceph_pagelist_release(m->pagelist);
2896                 kfree(m->pagelist);
2897                 m->pagelist = NULL;
2898         }
2899
2900         m->trail = NULL;
2901
2902         if (m->pool)
2903                 ceph_msgpool_put(m->pool, m);
2904         else
2905                 ceph_msg_kfree(m);
2906 }
2907 EXPORT_SYMBOL(ceph_msg_last_put);
2908
2909 void ceph_msg_dump(struct ceph_msg *msg)
2910 {
2911         pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2912                  msg->front_max, msg->nr_pages);
2913         print_hex_dump(KERN_DEBUG, "header: ",
2914                        DUMP_PREFIX_OFFSET, 16, 1,
2915                        &msg->hdr, sizeof(msg->hdr), true);
2916         print_hex_dump(KERN_DEBUG, " front: ",
2917                        DUMP_PREFIX_OFFSET, 16, 1,
2918                        msg->front.iov_base, msg->front.iov_len, true);
2919         if (msg->middle)
2920                 print_hex_dump(KERN_DEBUG, "middle: ",
2921                                DUMP_PREFIX_OFFSET, 16, 1,
2922                                msg->middle->vec.iov_base,
2923                                msg->middle->vec.iov_len, true);
2924         print_hex_dump(KERN_DEBUG, "footer: ",
2925                        DUMP_PREFIX_OFFSET, 16, 1,
2926                        &msg->footer, sizeof(msg->footer), true);
2927 }
2928 EXPORT_SYMBOL(ceph_msg_dump);