]> Pileus Git - ~andy/linux/blob - net/ceph/messenger.c
libceph: define ceph_msg_has_*() data macros
[~andy/linux] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef  CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif  /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17
18 #include <linux/ceph/libceph.h>
19 #include <linux/ceph/messenger.h>
20 #include <linux/ceph/decode.h>
21 #include <linux/ceph/pagelist.h>
22 #include <linux/export.h>
23
24 /*
25  * Ceph uses the messenger to exchange ceph_msg messages with other
26  * hosts in the system.  The messenger provides ordered and reliable
27  * delivery.  We tolerate TCP disconnects by reconnecting (with
28  * exponential backoff) in the case of a fault (disconnection, bad
29  * crc, protocol error).  Acks allow sent messages to be discarded by
30  * the sender.
31  */
32
33 /*
34  * We track the state of the socket on a given connection using
35  * values defined below.  The transition to a new socket state is
36  * handled by a function which verifies we aren't coming from an
37  * unexpected state.
38  *
39  *      --------
40  *      | NEW* |  transient initial state
41  *      --------
42  *          | con_sock_state_init()
43  *          v
44  *      ----------
45  *      | CLOSED |  initialized, but no socket (and no
46  *      ----------  TCP connection)
47  *       ^      \
48  *       |       \ con_sock_state_connecting()
49  *       |        ----------------------
50  *       |                              \
51  *       + con_sock_state_closed()       \
52  *       |+---------------------------    \
53  *       | \                          \    \
54  *       |  -----------                \    \
55  *       |  | CLOSING |  socket event;  \    \
56  *       |  -----------  await close     \    \
57  *       |       ^                        \   |
58  *       |       |                         \  |
59  *       |       + con_sock_state_closing() \ |
60  *       |      / \                         | |
61  *       |     /   ---------------          | |
62  *       |    /                   \         v v
63  *       |   /                    --------------
64  *       |  /    -----------------| CONNECTING |  socket created, TCP
65  *       |  |   /                 --------------  connect initiated
66  *       |  |   | con_sock_state_connected()
67  *       |  |   v
68  *      -------------
69  *      | CONNECTED |  TCP connection established
70  *      -------------
71  *
72  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
73  */
74
75 #define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
76 #define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
77 #define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
78 #define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
79 #define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
80
81 /*
82  * connection states
83  */
84 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
85 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
86 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
87 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
88 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
89 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
90
91 /*
92  * ceph_connection flag bits
93  */
94 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
95                                        * messages on errors */
96 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
97 #define CON_FLAG_WRITE_PENDING     2  /* we have data ready to send */
98 #define CON_FLAG_SOCK_CLOSED       3  /* socket state changed to closed */
99 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
100
101 static bool con_flag_valid(unsigned long con_flag)
102 {
103         switch (con_flag) {
104         case CON_FLAG_LOSSYTX:
105         case CON_FLAG_KEEPALIVE_PENDING:
106         case CON_FLAG_WRITE_PENDING:
107         case CON_FLAG_SOCK_CLOSED:
108         case CON_FLAG_BACKOFF:
109                 return true;
110         default:
111                 return false;
112         }
113 }
114
115 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
116 {
117         BUG_ON(!con_flag_valid(con_flag));
118
119         clear_bit(con_flag, &con->flags);
120 }
121
122 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
123 {
124         BUG_ON(!con_flag_valid(con_flag));
125
126         set_bit(con_flag, &con->flags);
127 }
128
129 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
130 {
131         BUG_ON(!con_flag_valid(con_flag));
132
133         return test_bit(con_flag, &con->flags);
134 }
135
136 static bool con_flag_test_and_clear(struct ceph_connection *con,
137                                         unsigned long con_flag)
138 {
139         BUG_ON(!con_flag_valid(con_flag));
140
141         return test_and_clear_bit(con_flag, &con->flags);
142 }
143
144 static bool con_flag_test_and_set(struct ceph_connection *con,
145                                         unsigned long con_flag)
146 {
147         BUG_ON(!con_flag_valid(con_flag));
148
149         return test_and_set_bit(con_flag, &con->flags);
150 }
151
152 /* static tag bytes (protocol control messages) */
153 static char tag_msg = CEPH_MSGR_TAG_MSG;
154 static char tag_ack = CEPH_MSGR_TAG_ACK;
155 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
156
157 #ifdef CONFIG_LOCKDEP
158 static struct lock_class_key socket_class;
159 #endif
160
161 /*
162  * When skipping (ignoring) a block of input we read it into a "skip
163  * buffer," which is this many bytes in size.
164  */
165 #define SKIP_BUF_SIZE   1024
166
167 static void queue_con(struct ceph_connection *con);
168 static void con_work(struct work_struct *);
169 static void con_fault(struct ceph_connection *con);
170
171 /*
172  * Nicely render a sockaddr as a string.  An array of formatted
173  * strings is used, to approximate reentrancy.
174  */
175 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
176 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
177 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
178 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
179
180 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
181 static atomic_t addr_str_seq = ATOMIC_INIT(0);
182
183 static struct page *zero_page;          /* used in certain error cases */
184
185 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
186 {
187         int i;
188         char *s;
189         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
190         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
191
192         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
193         s = addr_str[i];
194
195         switch (ss->ss_family) {
196         case AF_INET:
197                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
198                          ntohs(in4->sin_port));
199                 break;
200
201         case AF_INET6:
202                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
203                          ntohs(in6->sin6_port));
204                 break;
205
206         default:
207                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
208                          ss->ss_family);
209         }
210
211         return s;
212 }
213 EXPORT_SYMBOL(ceph_pr_addr);
214
215 static void encode_my_addr(struct ceph_messenger *msgr)
216 {
217         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
218         ceph_encode_addr(&msgr->my_enc_addr);
219 }
220
221 /*
222  * work queue for all reading and writing to/from the socket.
223  */
224 static struct workqueue_struct *ceph_msgr_wq;
225
226 static void _ceph_msgr_exit(void)
227 {
228         if (ceph_msgr_wq) {
229                 destroy_workqueue(ceph_msgr_wq);
230                 ceph_msgr_wq = NULL;
231         }
232
233         BUG_ON(zero_page == NULL);
234         kunmap(zero_page);
235         page_cache_release(zero_page);
236         zero_page = NULL;
237 }
238
239 int ceph_msgr_init(void)
240 {
241         BUG_ON(zero_page != NULL);
242         zero_page = ZERO_PAGE(0);
243         page_cache_get(zero_page);
244
245         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
246         if (ceph_msgr_wq)
247                 return 0;
248
249         pr_err("msgr_init failed to create workqueue\n");
250         _ceph_msgr_exit();
251
252         return -ENOMEM;
253 }
254 EXPORT_SYMBOL(ceph_msgr_init);
255
256 void ceph_msgr_exit(void)
257 {
258         BUG_ON(ceph_msgr_wq == NULL);
259
260         _ceph_msgr_exit();
261 }
262 EXPORT_SYMBOL(ceph_msgr_exit);
263
264 void ceph_msgr_flush(void)
265 {
266         flush_workqueue(ceph_msgr_wq);
267 }
268 EXPORT_SYMBOL(ceph_msgr_flush);
269
270 /* Connection socket state transition functions */
271
272 static void con_sock_state_init(struct ceph_connection *con)
273 {
274         int old_state;
275
276         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
277         if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
278                 printk("%s: unexpected old state %d\n", __func__, old_state);
279         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
280              CON_SOCK_STATE_CLOSED);
281 }
282
283 static void con_sock_state_connecting(struct ceph_connection *con)
284 {
285         int old_state;
286
287         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
288         if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
289                 printk("%s: unexpected old state %d\n", __func__, old_state);
290         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
291              CON_SOCK_STATE_CONNECTING);
292 }
293
294 static void con_sock_state_connected(struct ceph_connection *con)
295 {
296         int old_state;
297
298         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
299         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
300                 printk("%s: unexpected old state %d\n", __func__, old_state);
301         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
302              CON_SOCK_STATE_CONNECTED);
303 }
304
305 static void con_sock_state_closing(struct ceph_connection *con)
306 {
307         int old_state;
308
309         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
310         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
311                         old_state != CON_SOCK_STATE_CONNECTED &&
312                         old_state != CON_SOCK_STATE_CLOSING))
313                 printk("%s: unexpected old state %d\n", __func__, old_state);
314         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
315              CON_SOCK_STATE_CLOSING);
316 }
317
318 static void con_sock_state_closed(struct ceph_connection *con)
319 {
320         int old_state;
321
322         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
323         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
324                     old_state != CON_SOCK_STATE_CLOSING &&
325                     old_state != CON_SOCK_STATE_CONNECTING &&
326                     old_state != CON_SOCK_STATE_CLOSED))
327                 printk("%s: unexpected old state %d\n", __func__, old_state);
328         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
329              CON_SOCK_STATE_CLOSED);
330 }
331
332 /*
333  * socket callback functions
334  */
335
336 /* data available on socket, or listen socket received a connect */
337 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
338 {
339         struct ceph_connection *con = sk->sk_user_data;
340         if (atomic_read(&con->msgr->stopping)) {
341                 return;
342         }
343
344         if (sk->sk_state != TCP_CLOSE_WAIT) {
345                 dout("%s on %p state = %lu, queueing work\n", __func__,
346                      con, con->state);
347                 queue_con(con);
348         }
349 }
350
351 /* socket has buffer space for writing */
352 static void ceph_sock_write_space(struct sock *sk)
353 {
354         struct ceph_connection *con = sk->sk_user_data;
355
356         /* only queue to workqueue if there is data we want to write,
357          * and there is sufficient space in the socket buffer to accept
358          * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
359          * doesn't get called again until try_write() fills the socket
360          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
361          * and net/core/stream.c:sk_stream_write_space().
362          */
363         if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
364                 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
365                         dout("%s %p queueing write work\n", __func__, con);
366                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
367                         queue_con(con);
368                 }
369         } else {
370                 dout("%s %p nothing to write\n", __func__, con);
371         }
372 }
373
374 /* socket's state has changed */
375 static void ceph_sock_state_change(struct sock *sk)
376 {
377         struct ceph_connection *con = sk->sk_user_data;
378
379         dout("%s %p state = %lu sk_state = %u\n", __func__,
380              con, con->state, sk->sk_state);
381
382         switch (sk->sk_state) {
383         case TCP_CLOSE:
384                 dout("%s TCP_CLOSE\n", __func__);
385         case TCP_CLOSE_WAIT:
386                 dout("%s TCP_CLOSE_WAIT\n", __func__);
387                 con_sock_state_closing(con);
388                 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
389                 queue_con(con);
390                 break;
391         case TCP_ESTABLISHED:
392                 dout("%s TCP_ESTABLISHED\n", __func__);
393                 con_sock_state_connected(con);
394                 queue_con(con);
395                 break;
396         default:        /* Everything else is uninteresting */
397                 break;
398         }
399 }
400
401 /*
402  * set up socket callbacks
403  */
404 static void set_sock_callbacks(struct socket *sock,
405                                struct ceph_connection *con)
406 {
407         struct sock *sk = sock->sk;
408         sk->sk_user_data = con;
409         sk->sk_data_ready = ceph_sock_data_ready;
410         sk->sk_write_space = ceph_sock_write_space;
411         sk->sk_state_change = ceph_sock_state_change;
412 }
413
414
415 /*
416  * socket helpers
417  */
418
419 /*
420  * initiate connection to a remote socket.
421  */
422 static int ceph_tcp_connect(struct ceph_connection *con)
423 {
424         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
425         struct socket *sock;
426         int ret;
427
428         BUG_ON(con->sock);
429         ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
430                                IPPROTO_TCP, &sock);
431         if (ret)
432                 return ret;
433         sock->sk->sk_allocation = GFP_NOFS;
434
435 #ifdef CONFIG_LOCKDEP
436         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
437 #endif
438
439         set_sock_callbacks(sock, con);
440
441         dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
442
443         con_sock_state_connecting(con);
444         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
445                                  O_NONBLOCK);
446         if (ret == -EINPROGRESS) {
447                 dout("connect %s EINPROGRESS sk_state = %u\n",
448                      ceph_pr_addr(&con->peer_addr.in_addr),
449                      sock->sk->sk_state);
450         } else if (ret < 0) {
451                 pr_err("connect %s error %d\n",
452                        ceph_pr_addr(&con->peer_addr.in_addr), ret);
453                 sock_release(sock);
454                 con->error_msg = "connect error";
455
456                 return ret;
457         }
458         con->sock = sock;
459         return 0;
460 }
461
462 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
463 {
464         struct kvec iov = {buf, len};
465         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
466         int r;
467
468         r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
469         if (r == -EAGAIN)
470                 r = 0;
471         return r;
472 }
473
474 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
475                      int page_offset, size_t length)
476 {
477         void *kaddr;
478         int ret;
479
480         BUG_ON(page_offset + length > PAGE_SIZE);
481
482         kaddr = kmap(page);
483         BUG_ON(!kaddr);
484         ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
485         kunmap(page);
486
487         return ret;
488 }
489
490 /*
491  * write something.  @more is true if caller will be sending more data
492  * shortly.
493  */
494 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
495                      size_t kvlen, size_t len, int more)
496 {
497         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
498         int r;
499
500         if (more)
501                 msg.msg_flags |= MSG_MORE;
502         else
503                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
504
505         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
506         if (r == -EAGAIN)
507                 r = 0;
508         return r;
509 }
510
511 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
512                      int offset, size_t size, bool more)
513 {
514         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
515         int ret;
516
517         ret = kernel_sendpage(sock, page, offset, size, flags);
518         if (ret == -EAGAIN)
519                 ret = 0;
520
521         return ret;
522 }
523
524
525 /*
526  * Shutdown/close the socket for the given connection.
527  */
528 static int con_close_socket(struct ceph_connection *con)
529 {
530         int rc = 0;
531
532         dout("con_close_socket on %p sock %p\n", con, con->sock);
533         if (con->sock) {
534                 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
535                 sock_release(con->sock);
536                 con->sock = NULL;
537         }
538
539         /*
540          * Forcibly clear the SOCK_CLOSED flag.  It gets set
541          * independent of the connection mutex, and we could have
542          * received a socket close event before we had the chance to
543          * shut the socket down.
544          */
545         con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
546
547         con_sock_state_closed(con);
548         return rc;
549 }
550
551 /*
552  * Reset a connection.  Discard all incoming and outgoing messages
553  * and clear *_seq state.
554  */
555 static void ceph_msg_remove(struct ceph_msg *msg)
556 {
557         list_del_init(&msg->list_head);
558         BUG_ON(msg->con == NULL);
559         msg->con->ops->put(msg->con);
560         msg->con = NULL;
561
562         ceph_msg_put(msg);
563 }
564 static void ceph_msg_remove_list(struct list_head *head)
565 {
566         while (!list_empty(head)) {
567                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
568                                                         list_head);
569                 ceph_msg_remove(msg);
570         }
571 }
572
573 static void reset_connection(struct ceph_connection *con)
574 {
575         /* reset connection, out_queue, msg_ and connect_seq */
576         /* discard existing out_queue and msg_seq */
577         dout("reset_connection %p\n", con);
578         ceph_msg_remove_list(&con->out_queue);
579         ceph_msg_remove_list(&con->out_sent);
580
581         if (con->in_msg) {
582                 BUG_ON(con->in_msg->con != con);
583                 con->in_msg->con = NULL;
584                 ceph_msg_put(con->in_msg);
585                 con->in_msg = NULL;
586                 con->ops->put(con);
587         }
588
589         con->connect_seq = 0;
590         con->out_seq = 0;
591         if (con->out_msg) {
592                 ceph_msg_put(con->out_msg);
593                 con->out_msg = NULL;
594         }
595         con->in_seq = 0;
596         con->in_seq_acked = 0;
597 }
598
599 /*
600  * mark a peer down.  drop any open connections.
601  */
602 void ceph_con_close(struct ceph_connection *con)
603 {
604         mutex_lock(&con->mutex);
605         dout("con_close %p peer %s\n", con,
606              ceph_pr_addr(&con->peer_addr.in_addr));
607         con->state = CON_STATE_CLOSED;
608
609         con_flag_clear(con, CON_FLAG_LOSSYTX);  /* so we retry next connect */
610         con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
611         con_flag_clear(con, CON_FLAG_WRITE_PENDING);
612         con_flag_clear(con, CON_FLAG_BACKOFF);
613
614         reset_connection(con);
615         con->peer_global_seq = 0;
616         cancel_delayed_work(&con->work);
617         con_close_socket(con);
618         mutex_unlock(&con->mutex);
619 }
620 EXPORT_SYMBOL(ceph_con_close);
621
622 /*
623  * Reopen a closed connection, with a new peer address.
624  */
625 void ceph_con_open(struct ceph_connection *con,
626                    __u8 entity_type, __u64 entity_num,
627                    struct ceph_entity_addr *addr)
628 {
629         mutex_lock(&con->mutex);
630         dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
631
632         WARN_ON(con->state != CON_STATE_CLOSED);
633         con->state = CON_STATE_PREOPEN;
634
635         con->peer_name.type = (__u8) entity_type;
636         con->peer_name.num = cpu_to_le64(entity_num);
637
638         memcpy(&con->peer_addr, addr, sizeof(*addr));
639         con->delay = 0;      /* reset backoff memory */
640         mutex_unlock(&con->mutex);
641         queue_con(con);
642 }
643 EXPORT_SYMBOL(ceph_con_open);
644
645 /*
646  * return true if this connection ever successfully opened
647  */
648 bool ceph_con_opened(struct ceph_connection *con)
649 {
650         return con->connect_seq > 0;
651 }
652
653 /*
654  * initialize a new connection.
655  */
656 void ceph_con_init(struct ceph_connection *con, void *private,
657         const struct ceph_connection_operations *ops,
658         struct ceph_messenger *msgr)
659 {
660         dout("con_init %p\n", con);
661         memset(con, 0, sizeof(*con));
662         con->private = private;
663         con->ops = ops;
664         con->msgr = msgr;
665
666         con_sock_state_init(con);
667
668         mutex_init(&con->mutex);
669         INIT_LIST_HEAD(&con->out_queue);
670         INIT_LIST_HEAD(&con->out_sent);
671         INIT_DELAYED_WORK(&con->work, con_work);
672
673         con->state = CON_STATE_CLOSED;
674 }
675 EXPORT_SYMBOL(ceph_con_init);
676
677
678 /*
679  * We maintain a global counter to order connection attempts.  Get
680  * a unique seq greater than @gt.
681  */
682 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
683 {
684         u32 ret;
685
686         spin_lock(&msgr->global_seq_lock);
687         if (msgr->global_seq < gt)
688                 msgr->global_seq = gt;
689         ret = ++msgr->global_seq;
690         spin_unlock(&msgr->global_seq_lock);
691         return ret;
692 }
693
694 static void con_out_kvec_reset(struct ceph_connection *con)
695 {
696         con->out_kvec_left = 0;
697         con->out_kvec_bytes = 0;
698         con->out_kvec_cur = &con->out_kvec[0];
699 }
700
701 static void con_out_kvec_add(struct ceph_connection *con,
702                                 size_t size, void *data)
703 {
704         int index;
705
706         index = con->out_kvec_left;
707         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
708
709         con->out_kvec[index].iov_len = size;
710         con->out_kvec[index].iov_base = data;
711         con->out_kvec_left++;
712         con->out_kvec_bytes += size;
713 }
714
715 #ifdef CONFIG_BLOCK
716 static void init_bio_iter(struct bio *bio, struct bio **bio_iter,
717                         unsigned int *bio_seg)
718 {
719         if (!bio) {
720                 *bio_iter = NULL;
721                 *bio_seg = 0;
722                 return;
723         }
724         *bio_iter = bio;
725         *bio_seg = (unsigned int) bio->bi_idx;
726 }
727
728 static void iter_bio_next(struct bio **bio_iter, unsigned int *seg)
729 {
730         if (*bio_iter == NULL)
731                 return;
732
733         BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
734
735         (*seg)++;
736         if (*seg == (*bio_iter)->bi_vcnt)
737                 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
738 }
739 #endif
740
741 static void prepare_message_data(struct ceph_msg *msg,
742                                 struct ceph_msg_pos *msg_pos)
743 {
744         BUG_ON(!msg);
745         BUG_ON(!msg->hdr.data_len);
746
747         /* initialize page iterator */
748         msg_pos->page = 0;
749         if (ceph_msg_has_pages(msg))
750                 msg_pos->page_pos = msg->page_alignment;
751         else
752                 msg_pos->page_pos = 0;
753 #ifdef CONFIG_BLOCK
754         if (ceph_msg_has_bio(msg))
755                 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
756 #endif
757         msg_pos->data_pos = 0;
758         msg_pos->did_page_crc = false;
759 }
760
761 /*
762  * Prepare footer for currently outgoing message, and finish things
763  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
764  */
765 static void prepare_write_message_footer(struct ceph_connection *con)
766 {
767         struct ceph_msg *m = con->out_msg;
768         int v = con->out_kvec_left;
769
770         m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
771
772         dout("prepare_write_message_footer %p\n", con);
773         con->out_kvec_is_msg = true;
774         con->out_kvec[v].iov_base = &m->footer;
775         con->out_kvec[v].iov_len = sizeof(m->footer);
776         con->out_kvec_bytes += sizeof(m->footer);
777         con->out_kvec_left++;
778         con->out_more = m->more_to_follow;
779         con->out_msg_done = true;
780 }
781
782 /*
783  * Prepare headers for the next outgoing message.
784  */
785 static void prepare_write_message(struct ceph_connection *con)
786 {
787         struct ceph_msg *m;
788         u32 crc;
789
790         con_out_kvec_reset(con);
791         con->out_kvec_is_msg = true;
792         con->out_msg_done = false;
793
794         /* Sneak an ack in there first?  If we can get it into the same
795          * TCP packet that's a good thing. */
796         if (con->in_seq > con->in_seq_acked) {
797                 con->in_seq_acked = con->in_seq;
798                 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
799                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
800                 con_out_kvec_add(con, sizeof (con->out_temp_ack),
801                         &con->out_temp_ack);
802         }
803
804         BUG_ON(list_empty(&con->out_queue));
805         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
806         con->out_msg = m;
807         BUG_ON(m->con != con);
808
809         /* put message on sent list */
810         ceph_msg_get(m);
811         list_move_tail(&m->list_head, &con->out_sent);
812
813         /*
814          * only assign outgoing seq # if we haven't sent this message
815          * yet.  if it is requeued, resend with it's original seq.
816          */
817         if (m->needs_out_seq) {
818                 m->hdr.seq = cpu_to_le64(++con->out_seq);
819                 m->needs_out_seq = false;
820         }
821
822         dout("prepare_write_message %p seq %lld type %d len %d+%d+%d (%zd)\n",
823              m, con->out_seq, le16_to_cpu(m->hdr.type),
824              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
825              le32_to_cpu(m->hdr.data_len), m->length);
826         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
827
828         /* tag + hdr + front + middle */
829         con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
830         con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
831         con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
832
833         if (m->middle)
834                 con_out_kvec_add(con, m->middle->vec.iov_len,
835                         m->middle->vec.iov_base);
836
837         /* fill in crc (except data pages), footer */
838         crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
839         con->out_msg->hdr.crc = cpu_to_le32(crc);
840         con->out_msg->footer.flags = 0;
841
842         crc = crc32c(0, m->front.iov_base, m->front.iov_len);
843         con->out_msg->footer.front_crc = cpu_to_le32(crc);
844         if (m->middle) {
845                 crc = crc32c(0, m->middle->vec.iov_base,
846                                 m->middle->vec.iov_len);
847                 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
848         } else
849                 con->out_msg->footer.middle_crc = 0;
850         dout("%s front_crc %u middle_crc %u\n", __func__,
851              le32_to_cpu(con->out_msg->footer.front_crc),
852              le32_to_cpu(con->out_msg->footer.middle_crc));
853
854         /* is there a data payload? */
855         con->out_msg->footer.data_crc = 0;
856         if (m->hdr.data_len) {
857                 prepare_message_data(con->out_msg, &con->out_msg_pos);
858                 con->out_more = 1;  /* data + footer will follow */
859         } else {
860                 /* no, queue up footer too and be done */
861                 prepare_write_message_footer(con);
862         }
863
864         con_flag_set(con, CON_FLAG_WRITE_PENDING);
865 }
866
867 /*
868  * Prepare an ack.
869  */
870 static void prepare_write_ack(struct ceph_connection *con)
871 {
872         dout("prepare_write_ack %p %llu -> %llu\n", con,
873              con->in_seq_acked, con->in_seq);
874         con->in_seq_acked = con->in_seq;
875
876         con_out_kvec_reset(con);
877
878         con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
879
880         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
881         con_out_kvec_add(con, sizeof (con->out_temp_ack),
882                                 &con->out_temp_ack);
883
884         con->out_more = 1;  /* more will follow.. eventually.. */
885         con_flag_set(con, CON_FLAG_WRITE_PENDING);
886 }
887
888 /*
889  * Prepare to write keepalive byte.
890  */
891 static void prepare_write_keepalive(struct ceph_connection *con)
892 {
893         dout("prepare_write_keepalive %p\n", con);
894         con_out_kvec_reset(con);
895         con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
896         con_flag_set(con, CON_FLAG_WRITE_PENDING);
897 }
898
899 /*
900  * Connection negotiation.
901  */
902
903 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
904                                                 int *auth_proto)
905 {
906         struct ceph_auth_handshake *auth;
907
908         if (!con->ops->get_authorizer) {
909                 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
910                 con->out_connect.authorizer_len = 0;
911                 return NULL;
912         }
913
914         /* Can't hold the mutex while getting authorizer */
915         mutex_unlock(&con->mutex);
916         auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
917         mutex_lock(&con->mutex);
918
919         if (IS_ERR(auth))
920                 return auth;
921         if (con->state != CON_STATE_NEGOTIATING)
922                 return ERR_PTR(-EAGAIN);
923
924         con->auth_reply_buf = auth->authorizer_reply_buf;
925         con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
926         return auth;
927 }
928
929 /*
930  * We connected to a peer and are saying hello.
931  */
932 static void prepare_write_banner(struct ceph_connection *con)
933 {
934         con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
935         con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
936                                         &con->msgr->my_enc_addr);
937
938         con->out_more = 0;
939         con_flag_set(con, CON_FLAG_WRITE_PENDING);
940 }
941
942 static int prepare_write_connect(struct ceph_connection *con)
943 {
944         unsigned int global_seq = get_global_seq(con->msgr, 0);
945         int proto;
946         int auth_proto;
947         struct ceph_auth_handshake *auth;
948
949         switch (con->peer_name.type) {
950         case CEPH_ENTITY_TYPE_MON:
951                 proto = CEPH_MONC_PROTOCOL;
952                 break;
953         case CEPH_ENTITY_TYPE_OSD:
954                 proto = CEPH_OSDC_PROTOCOL;
955                 break;
956         case CEPH_ENTITY_TYPE_MDS:
957                 proto = CEPH_MDSC_PROTOCOL;
958                 break;
959         default:
960                 BUG();
961         }
962
963         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
964              con->connect_seq, global_seq, proto);
965
966         con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
967         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
968         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
969         con->out_connect.global_seq = cpu_to_le32(global_seq);
970         con->out_connect.protocol_version = cpu_to_le32(proto);
971         con->out_connect.flags = 0;
972
973         auth_proto = CEPH_AUTH_UNKNOWN;
974         auth = get_connect_authorizer(con, &auth_proto);
975         if (IS_ERR(auth))
976                 return PTR_ERR(auth);
977
978         con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
979         con->out_connect.authorizer_len = auth ?
980                 cpu_to_le32(auth->authorizer_buf_len) : 0;
981
982         con_out_kvec_add(con, sizeof (con->out_connect),
983                                         &con->out_connect);
984         if (auth && auth->authorizer_buf_len)
985                 con_out_kvec_add(con, auth->authorizer_buf_len,
986                                         auth->authorizer_buf);
987
988         con->out_more = 0;
989         con_flag_set(con, CON_FLAG_WRITE_PENDING);
990
991         return 0;
992 }
993
994 /*
995  * write as much of pending kvecs to the socket as we can.
996  *  1 -> done
997  *  0 -> socket full, but more to do
998  * <0 -> error
999  */
1000 static int write_partial_kvec(struct ceph_connection *con)
1001 {
1002         int ret;
1003
1004         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1005         while (con->out_kvec_bytes > 0) {
1006                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1007                                        con->out_kvec_left, con->out_kvec_bytes,
1008                                        con->out_more);
1009                 if (ret <= 0)
1010                         goto out;
1011                 con->out_kvec_bytes -= ret;
1012                 if (con->out_kvec_bytes == 0)
1013                         break;            /* done */
1014
1015                 /* account for full iov entries consumed */
1016                 while (ret >= con->out_kvec_cur->iov_len) {
1017                         BUG_ON(!con->out_kvec_left);
1018                         ret -= con->out_kvec_cur->iov_len;
1019                         con->out_kvec_cur++;
1020                         con->out_kvec_left--;
1021                 }
1022                 /* and for a partially-consumed entry */
1023                 if (ret) {
1024                         con->out_kvec_cur->iov_len -= ret;
1025                         con->out_kvec_cur->iov_base += ret;
1026                 }
1027         }
1028         con->out_kvec_left = 0;
1029         con->out_kvec_is_msg = false;
1030         ret = 1;
1031 out:
1032         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1033              con->out_kvec_bytes, con->out_kvec_left, ret);
1034         return ret;  /* done! */
1035 }
1036
1037 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
1038                         size_t len, size_t sent, bool in_trail)
1039 {
1040         struct ceph_msg *msg = con->out_msg;
1041         struct ceph_msg_pos *msg_pos = &con->out_msg_pos;
1042
1043         BUG_ON(!msg);
1044         BUG_ON(!sent);
1045
1046         msg_pos->data_pos += sent;
1047         msg_pos->page_pos += sent;
1048         if (sent < len)
1049                 return;
1050
1051         BUG_ON(sent != len);
1052         msg_pos->page_pos = 0;
1053         msg_pos->page++;
1054         msg_pos->did_page_crc = false;
1055         if (in_trail) {
1056                 BUG_ON(!ceph_msg_has_trail(msg));
1057                 list_rotate_left(&msg->trail->head);
1058         } else if (ceph_msg_has_pagelist(msg)) {
1059                 list_rotate_left(&msg->pagelist->head);
1060 #ifdef CONFIG_BLOCK
1061         } else if (ceph_msg_has_bio(msg)) {
1062                 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
1063 #endif
1064         }
1065 }
1066
1067 static void in_msg_pos_next(struct ceph_connection *con, size_t len,
1068                                 size_t received)
1069 {
1070         struct ceph_msg *msg = con->in_msg;
1071         struct ceph_msg_pos *msg_pos = &con->in_msg_pos;
1072
1073         BUG_ON(!msg);
1074         BUG_ON(!received);
1075
1076         msg_pos->data_pos += received;
1077         msg_pos->page_pos += received;
1078         if (received < len)
1079                 return;
1080
1081         BUG_ON(received != len);
1082         msg_pos->page_pos = 0;
1083         msg_pos->page++;
1084 #ifdef CONFIG_BLOCK
1085         if (msg->bio)
1086                 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
1087 #endif /* CONFIG_BLOCK */
1088 }
1089
1090 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1091                                 unsigned int page_offset,
1092                                 unsigned int length)
1093 {
1094         char *kaddr;
1095
1096         kaddr = kmap(page);
1097         BUG_ON(kaddr == NULL);
1098         crc = crc32c(crc, kaddr + page_offset, length);
1099         kunmap(page);
1100
1101         return crc;
1102 }
1103 /*
1104  * Write as much message data payload as we can.  If we finish, queue
1105  * up the footer.
1106  *  1 -> done, footer is now queued in out_kvec[].
1107  *  0 -> socket full, but more to do
1108  * <0 -> error
1109  */
1110 static int write_partial_message_data(struct ceph_connection *con)
1111 {
1112         struct ceph_msg *msg = con->out_msg;
1113         struct ceph_msg_pos *msg_pos = &con->out_msg_pos;
1114         unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
1115         bool do_datacrc = !con->msgr->nocrc;
1116         int ret;
1117         int total_max_write;
1118         bool in_trail = false;
1119         size_t trail_len = 0;
1120         size_t trail_off = data_len;
1121
1122         if (ceph_msg_has_trail(msg)) {
1123                 trail_len = msg->trail->length;
1124                 trail_off -= trail_len;
1125         }
1126
1127         dout("%s %p msg %p page %d offset %d\n", __func__,
1128              con, msg, msg_pos->page, msg_pos->page_pos);
1129
1130         /*
1131          * Iterate through each page that contains data to be
1132          * written, and send as much as possible for each.
1133          *
1134          * If we are calculating the data crc (the default), we will
1135          * need to map the page.  If we have no pages, they have
1136          * been revoked, so use the zero page.
1137          */
1138         while (data_len > msg_pos->data_pos) {
1139                 struct page *page = NULL;
1140                 size_t page_offset;
1141                 size_t length;
1142                 int max_write = PAGE_SIZE;
1143                 int bio_offset = 0;
1144
1145                 in_trail = in_trail || msg_pos->data_pos >= trail_off;
1146                 if (!in_trail)
1147                         total_max_write = trail_off - msg_pos->data_pos;
1148
1149                 if (in_trail) {
1150                         BUG_ON(!ceph_msg_has_trail(msg));
1151                         total_max_write = data_len - msg_pos->data_pos;
1152                         page = list_first_entry(&msg->trail->head,
1153                                                 struct page, lru);
1154                 } else if (ceph_msg_has_pages(msg)) {
1155                         page = msg->pages[msg_pos->page];
1156                 } else if (ceph_msg_has_pagelist(msg)) {
1157                         page = list_first_entry(&msg->pagelist->head,
1158                                                 struct page, lru);
1159 #ifdef CONFIG_BLOCK
1160                 } else if (ceph_msg_has_bio(msg)) {
1161                         struct bio_vec *bv;
1162
1163                         bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
1164                         page = bv->bv_page;
1165                         bio_offset = bv->bv_offset;
1166                         max_write = bv->bv_len;
1167 #endif
1168                 } else {
1169                         page = zero_page;
1170                 }
1171                 length = min_t(int, max_write - msg_pos->page_pos,
1172                             total_max_write);
1173
1174                 page_offset = msg_pos->page_pos + bio_offset;
1175                 if (do_datacrc && !msg_pos->did_page_crc) {
1176                         u32 crc = le32_to_cpu(msg->footer.data_crc);
1177
1178                         crc = ceph_crc32c_page(crc, page, page_offset, length);
1179                         msg->footer.data_crc = cpu_to_le32(crc);
1180                         msg_pos->did_page_crc = true;
1181                 }
1182                 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1183                                       length, true);
1184                 if (ret <= 0)
1185                         goto out;
1186
1187                 out_msg_pos_next(con, page, length, (size_t) ret, in_trail);
1188         }
1189
1190         dout("%s %p msg %p done\n", __func__, con, msg);
1191
1192         /* prepare and queue up footer, too */
1193         if (!do_datacrc)
1194                 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1195         con_out_kvec_reset(con);
1196         prepare_write_message_footer(con);
1197         ret = 1;
1198 out:
1199         return ret;
1200 }
1201
1202 /*
1203  * write some zeros
1204  */
1205 static int write_partial_skip(struct ceph_connection *con)
1206 {
1207         int ret;
1208
1209         while (con->out_skip > 0) {
1210                 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1211
1212                 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1213                 if (ret <= 0)
1214                         goto out;
1215                 con->out_skip -= ret;
1216         }
1217         ret = 1;
1218 out:
1219         return ret;
1220 }
1221
1222 /*
1223  * Prepare to read connection handshake, or an ack.
1224  */
1225 static void prepare_read_banner(struct ceph_connection *con)
1226 {
1227         dout("prepare_read_banner %p\n", con);
1228         con->in_base_pos = 0;
1229 }
1230
1231 static void prepare_read_connect(struct ceph_connection *con)
1232 {
1233         dout("prepare_read_connect %p\n", con);
1234         con->in_base_pos = 0;
1235 }
1236
1237 static void prepare_read_ack(struct ceph_connection *con)
1238 {
1239         dout("prepare_read_ack %p\n", con);
1240         con->in_base_pos = 0;
1241 }
1242
1243 static void prepare_read_tag(struct ceph_connection *con)
1244 {
1245         dout("prepare_read_tag %p\n", con);
1246         con->in_base_pos = 0;
1247         con->in_tag = CEPH_MSGR_TAG_READY;
1248 }
1249
1250 /*
1251  * Prepare to read a message.
1252  */
1253 static int prepare_read_message(struct ceph_connection *con)
1254 {
1255         dout("prepare_read_message %p\n", con);
1256         BUG_ON(con->in_msg != NULL);
1257         con->in_base_pos = 0;
1258         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1259         return 0;
1260 }
1261
1262
1263 static int read_partial(struct ceph_connection *con,
1264                         int end, int size, void *object)
1265 {
1266         while (con->in_base_pos < end) {
1267                 int left = end - con->in_base_pos;
1268                 int have = size - left;
1269                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1270                 if (ret <= 0)
1271                         return ret;
1272                 con->in_base_pos += ret;
1273         }
1274         return 1;
1275 }
1276
1277
1278 /*
1279  * Read all or part of the connect-side handshake on a new connection
1280  */
1281 static int read_partial_banner(struct ceph_connection *con)
1282 {
1283         int size;
1284         int end;
1285         int ret;
1286
1287         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1288
1289         /* peer's banner */
1290         size = strlen(CEPH_BANNER);
1291         end = size;
1292         ret = read_partial(con, end, size, con->in_banner);
1293         if (ret <= 0)
1294                 goto out;
1295
1296         size = sizeof (con->actual_peer_addr);
1297         end += size;
1298         ret = read_partial(con, end, size, &con->actual_peer_addr);
1299         if (ret <= 0)
1300                 goto out;
1301
1302         size = sizeof (con->peer_addr_for_me);
1303         end += size;
1304         ret = read_partial(con, end, size, &con->peer_addr_for_me);
1305         if (ret <= 0)
1306                 goto out;
1307
1308 out:
1309         return ret;
1310 }
1311
1312 static int read_partial_connect(struct ceph_connection *con)
1313 {
1314         int size;
1315         int end;
1316         int ret;
1317
1318         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1319
1320         size = sizeof (con->in_reply);
1321         end = size;
1322         ret = read_partial(con, end, size, &con->in_reply);
1323         if (ret <= 0)
1324                 goto out;
1325
1326         size = le32_to_cpu(con->in_reply.authorizer_len);
1327         end += size;
1328         ret = read_partial(con, end, size, con->auth_reply_buf);
1329         if (ret <= 0)
1330                 goto out;
1331
1332         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1333              con, (int)con->in_reply.tag,
1334              le32_to_cpu(con->in_reply.connect_seq),
1335              le32_to_cpu(con->in_reply.global_seq));
1336 out:
1337         return ret;
1338
1339 }
1340
1341 /*
1342  * Verify the hello banner looks okay.
1343  */
1344 static int verify_hello(struct ceph_connection *con)
1345 {
1346         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1347                 pr_err("connect to %s got bad banner\n",
1348                        ceph_pr_addr(&con->peer_addr.in_addr));
1349                 con->error_msg = "protocol error, bad banner";
1350                 return -1;
1351         }
1352         return 0;
1353 }
1354
1355 static bool addr_is_blank(struct sockaddr_storage *ss)
1356 {
1357         switch (ss->ss_family) {
1358         case AF_INET:
1359                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1360         case AF_INET6:
1361                 return
1362                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1363                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1364                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1365                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1366         }
1367         return false;
1368 }
1369
1370 static int addr_port(struct sockaddr_storage *ss)
1371 {
1372         switch (ss->ss_family) {
1373         case AF_INET:
1374                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1375         case AF_INET6:
1376                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1377         }
1378         return 0;
1379 }
1380
1381 static void addr_set_port(struct sockaddr_storage *ss, int p)
1382 {
1383         switch (ss->ss_family) {
1384         case AF_INET:
1385                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1386                 break;
1387         case AF_INET6:
1388                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1389                 break;
1390         }
1391 }
1392
1393 /*
1394  * Unlike other *_pton function semantics, zero indicates success.
1395  */
1396 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1397                 char delim, const char **ipend)
1398 {
1399         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1400         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1401
1402         memset(ss, 0, sizeof(*ss));
1403
1404         if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1405                 ss->ss_family = AF_INET;
1406                 return 0;
1407         }
1408
1409         if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1410                 ss->ss_family = AF_INET6;
1411                 return 0;
1412         }
1413
1414         return -EINVAL;
1415 }
1416
1417 /*
1418  * Extract hostname string and resolve using kernel DNS facility.
1419  */
1420 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1421 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1422                 struct sockaddr_storage *ss, char delim, const char **ipend)
1423 {
1424         const char *end, *delim_p;
1425         char *colon_p, *ip_addr = NULL;
1426         int ip_len, ret;
1427
1428         /*
1429          * The end of the hostname occurs immediately preceding the delimiter or
1430          * the port marker (':') where the delimiter takes precedence.
1431          */
1432         delim_p = memchr(name, delim, namelen);
1433         colon_p = memchr(name, ':', namelen);
1434
1435         if (delim_p && colon_p)
1436                 end = delim_p < colon_p ? delim_p : colon_p;
1437         else if (!delim_p && colon_p)
1438                 end = colon_p;
1439         else {
1440                 end = delim_p;
1441                 if (!end) /* case: hostname:/ */
1442                         end = name + namelen;
1443         }
1444
1445         if (end <= name)
1446                 return -EINVAL;
1447
1448         /* do dns_resolve upcall */
1449         ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1450         if (ip_len > 0)
1451                 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1452         else
1453                 ret = -ESRCH;
1454
1455         kfree(ip_addr);
1456
1457         *ipend = end;
1458
1459         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1460                         ret, ret ? "failed" : ceph_pr_addr(ss));
1461
1462         return ret;
1463 }
1464 #else
1465 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1466                 struct sockaddr_storage *ss, char delim, const char **ipend)
1467 {
1468         return -EINVAL;
1469 }
1470 #endif
1471
1472 /*
1473  * Parse a server name (IP or hostname). If a valid IP address is not found
1474  * then try to extract a hostname to resolve using userspace DNS upcall.
1475  */
1476 static int ceph_parse_server_name(const char *name, size_t namelen,
1477                         struct sockaddr_storage *ss, char delim, const char **ipend)
1478 {
1479         int ret;
1480
1481         ret = ceph_pton(name, namelen, ss, delim, ipend);
1482         if (ret)
1483                 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1484
1485         return ret;
1486 }
1487
1488 /*
1489  * Parse an ip[:port] list into an addr array.  Use the default
1490  * monitor port if a port isn't specified.
1491  */
1492 int ceph_parse_ips(const char *c, const char *end,
1493                    struct ceph_entity_addr *addr,
1494                    int max_count, int *count)
1495 {
1496         int i, ret = -EINVAL;
1497         const char *p = c;
1498
1499         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1500         for (i = 0; i < max_count; i++) {
1501                 const char *ipend;
1502                 struct sockaddr_storage *ss = &addr[i].in_addr;
1503                 int port;
1504                 char delim = ',';
1505
1506                 if (*p == '[') {
1507                         delim = ']';
1508                         p++;
1509                 }
1510
1511                 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1512                 if (ret)
1513                         goto bad;
1514                 ret = -EINVAL;
1515
1516                 p = ipend;
1517
1518                 if (delim == ']') {
1519                         if (*p != ']') {
1520                                 dout("missing matching ']'\n");
1521                                 goto bad;
1522                         }
1523                         p++;
1524                 }
1525
1526                 /* port? */
1527                 if (p < end && *p == ':') {
1528                         port = 0;
1529                         p++;
1530                         while (p < end && *p >= '0' && *p <= '9') {
1531                                 port = (port * 10) + (*p - '0');
1532                                 p++;
1533                         }
1534                         if (port > 65535 || port == 0)
1535                                 goto bad;
1536                 } else {
1537                         port = CEPH_MON_PORT;
1538                 }
1539
1540                 addr_set_port(ss, port);
1541
1542                 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1543
1544                 if (p == end)
1545                         break;
1546                 if (*p != ',')
1547                         goto bad;
1548                 p++;
1549         }
1550
1551         if (p != end)
1552                 goto bad;
1553
1554         if (count)
1555                 *count = i + 1;
1556         return 0;
1557
1558 bad:
1559         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1560         return ret;
1561 }
1562 EXPORT_SYMBOL(ceph_parse_ips);
1563
1564 static int process_banner(struct ceph_connection *con)
1565 {
1566         dout("process_banner on %p\n", con);
1567
1568         if (verify_hello(con) < 0)
1569                 return -1;
1570
1571         ceph_decode_addr(&con->actual_peer_addr);
1572         ceph_decode_addr(&con->peer_addr_for_me);
1573
1574         /*
1575          * Make sure the other end is who we wanted.  note that the other
1576          * end may not yet know their ip address, so if it's 0.0.0.0, give
1577          * them the benefit of the doubt.
1578          */
1579         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1580                    sizeof(con->peer_addr)) != 0 &&
1581             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1582               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1583                 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1584                            ceph_pr_addr(&con->peer_addr.in_addr),
1585                            (int)le32_to_cpu(con->peer_addr.nonce),
1586                            ceph_pr_addr(&con->actual_peer_addr.in_addr),
1587                            (int)le32_to_cpu(con->actual_peer_addr.nonce));
1588                 con->error_msg = "wrong peer at address";
1589                 return -1;
1590         }
1591
1592         /*
1593          * did we learn our address?
1594          */
1595         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1596                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1597
1598                 memcpy(&con->msgr->inst.addr.in_addr,
1599                        &con->peer_addr_for_me.in_addr,
1600                        sizeof(con->peer_addr_for_me.in_addr));
1601                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1602                 encode_my_addr(con->msgr);
1603                 dout("process_banner learned my addr is %s\n",
1604                      ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1605         }
1606
1607         return 0;
1608 }
1609
1610 static int process_connect(struct ceph_connection *con)
1611 {
1612         u64 sup_feat = con->msgr->supported_features;
1613         u64 req_feat = con->msgr->required_features;
1614         u64 server_feat = le64_to_cpu(con->in_reply.features);
1615         int ret;
1616
1617         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1618
1619         switch (con->in_reply.tag) {
1620         case CEPH_MSGR_TAG_FEATURES:
1621                 pr_err("%s%lld %s feature set mismatch,"
1622                        " my %llx < server's %llx, missing %llx\n",
1623                        ENTITY_NAME(con->peer_name),
1624                        ceph_pr_addr(&con->peer_addr.in_addr),
1625                        sup_feat, server_feat, server_feat & ~sup_feat);
1626                 con->error_msg = "missing required protocol features";
1627                 reset_connection(con);
1628                 return -1;
1629
1630         case CEPH_MSGR_TAG_BADPROTOVER:
1631                 pr_err("%s%lld %s protocol version mismatch,"
1632                        " my %d != server's %d\n",
1633                        ENTITY_NAME(con->peer_name),
1634                        ceph_pr_addr(&con->peer_addr.in_addr),
1635                        le32_to_cpu(con->out_connect.protocol_version),
1636                        le32_to_cpu(con->in_reply.protocol_version));
1637                 con->error_msg = "protocol version mismatch";
1638                 reset_connection(con);
1639                 return -1;
1640
1641         case CEPH_MSGR_TAG_BADAUTHORIZER:
1642                 con->auth_retry++;
1643                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1644                      con->auth_retry);
1645                 if (con->auth_retry == 2) {
1646                         con->error_msg = "connect authorization failure";
1647                         return -1;
1648                 }
1649                 con->auth_retry = 1;
1650                 con_out_kvec_reset(con);
1651                 ret = prepare_write_connect(con);
1652                 if (ret < 0)
1653                         return ret;
1654                 prepare_read_connect(con);
1655                 break;
1656
1657         case CEPH_MSGR_TAG_RESETSESSION:
1658                 /*
1659                  * If we connected with a large connect_seq but the peer
1660                  * has no record of a session with us (no connection, or
1661                  * connect_seq == 0), they will send RESETSESION to indicate
1662                  * that they must have reset their session, and may have
1663                  * dropped messages.
1664                  */
1665                 dout("process_connect got RESET peer seq %u\n",
1666                      le32_to_cpu(con->in_reply.connect_seq));
1667                 pr_err("%s%lld %s connection reset\n",
1668                        ENTITY_NAME(con->peer_name),
1669                        ceph_pr_addr(&con->peer_addr.in_addr));
1670                 reset_connection(con);
1671                 con_out_kvec_reset(con);
1672                 ret = prepare_write_connect(con);
1673                 if (ret < 0)
1674                         return ret;
1675                 prepare_read_connect(con);
1676
1677                 /* Tell ceph about it. */
1678                 mutex_unlock(&con->mutex);
1679                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1680                 if (con->ops->peer_reset)
1681                         con->ops->peer_reset(con);
1682                 mutex_lock(&con->mutex);
1683                 if (con->state != CON_STATE_NEGOTIATING)
1684                         return -EAGAIN;
1685                 break;
1686
1687         case CEPH_MSGR_TAG_RETRY_SESSION:
1688                 /*
1689                  * If we sent a smaller connect_seq than the peer has, try
1690                  * again with a larger value.
1691                  */
1692                 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1693                      le32_to_cpu(con->out_connect.connect_seq),
1694                      le32_to_cpu(con->in_reply.connect_seq));
1695                 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1696                 con_out_kvec_reset(con);
1697                 ret = prepare_write_connect(con);
1698                 if (ret < 0)
1699                         return ret;
1700                 prepare_read_connect(con);
1701                 break;
1702
1703         case CEPH_MSGR_TAG_RETRY_GLOBAL:
1704                 /*
1705                  * If we sent a smaller global_seq than the peer has, try
1706                  * again with a larger value.
1707                  */
1708                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1709                      con->peer_global_seq,
1710                      le32_to_cpu(con->in_reply.global_seq));
1711                 get_global_seq(con->msgr,
1712                                le32_to_cpu(con->in_reply.global_seq));
1713                 con_out_kvec_reset(con);
1714                 ret = prepare_write_connect(con);
1715                 if (ret < 0)
1716                         return ret;
1717                 prepare_read_connect(con);
1718                 break;
1719
1720         case CEPH_MSGR_TAG_READY:
1721                 if (req_feat & ~server_feat) {
1722                         pr_err("%s%lld %s protocol feature mismatch,"
1723                                " my required %llx > server's %llx, need %llx\n",
1724                                ENTITY_NAME(con->peer_name),
1725                                ceph_pr_addr(&con->peer_addr.in_addr),
1726                                req_feat, server_feat, req_feat & ~server_feat);
1727                         con->error_msg = "missing required protocol features";
1728                         reset_connection(con);
1729                         return -1;
1730                 }
1731
1732                 WARN_ON(con->state != CON_STATE_NEGOTIATING);
1733                 con->state = CON_STATE_OPEN;
1734
1735                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1736                 con->connect_seq++;
1737                 con->peer_features = server_feat;
1738                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1739                      con->peer_global_seq,
1740                      le32_to_cpu(con->in_reply.connect_seq),
1741                      con->connect_seq);
1742                 WARN_ON(con->connect_seq !=
1743                         le32_to_cpu(con->in_reply.connect_seq));
1744
1745                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1746                         con_flag_set(con, CON_FLAG_LOSSYTX);
1747
1748                 con->delay = 0;      /* reset backoff memory */
1749
1750                 prepare_read_tag(con);
1751                 break;
1752
1753         case CEPH_MSGR_TAG_WAIT:
1754                 /*
1755                  * If there is a connection race (we are opening
1756                  * connections to each other), one of us may just have
1757                  * to WAIT.  This shouldn't happen if we are the
1758                  * client.
1759                  */
1760                 pr_err("process_connect got WAIT as client\n");
1761                 con->error_msg = "protocol error, got WAIT as client";
1762                 return -1;
1763
1764         default:
1765                 pr_err("connect protocol error, will retry\n");
1766                 con->error_msg = "protocol error, garbage tag during connect";
1767                 return -1;
1768         }
1769         return 0;
1770 }
1771
1772
1773 /*
1774  * read (part of) an ack
1775  */
1776 static int read_partial_ack(struct ceph_connection *con)
1777 {
1778         int size = sizeof (con->in_temp_ack);
1779         int end = size;
1780
1781         return read_partial(con, end, size, &con->in_temp_ack);
1782 }
1783
1784
1785 /*
1786  * We can finally discard anything that's been acked.
1787  */
1788 static void process_ack(struct ceph_connection *con)
1789 {
1790         struct ceph_msg *m;
1791         u64 ack = le64_to_cpu(con->in_temp_ack);
1792         u64 seq;
1793
1794         while (!list_empty(&con->out_sent)) {
1795                 m = list_first_entry(&con->out_sent, struct ceph_msg,
1796                                      list_head);
1797                 seq = le64_to_cpu(m->hdr.seq);
1798                 if (seq > ack)
1799                         break;
1800                 dout("got ack for seq %llu type %d at %p\n", seq,
1801                      le16_to_cpu(m->hdr.type), m);
1802                 m->ack_stamp = jiffies;
1803                 ceph_msg_remove(m);
1804         }
1805         prepare_read_tag(con);
1806 }
1807
1808
1809
1810
1811 static int read_partial_message_section(struct ceph_connection *con,
1812                                         struct kvec *section,
1813                                         unsigned int sec_len, u32 *crc)
1814 {
1815         int ret, left;
1816
1817         BUG_ON(!section);
1818
1819         while (section->iov_len < sec_len) {
1820                 BUG_ON(section->iov_base == NULL);
1821                 left = sec_len - section->iov_len;
1822                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1823                                        section->iov_len, left);
1824                 if (ret <= 0)
1825                         return ret;
1826                 section->iov_len += ret;
1827         }
1828         if (section->iov_len == sec_len)
1829                 *crc = crc32c(0, section->iov_base, section->iov_len);
1830
1831         return 1;
1832 }
1833
1834 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
1835
1836 static int read_partial_message_pages(struct ceph_connection *con,
1837                                       struct page **pages,
1838                                       unsigned int data_len, bool do_datacrc)
1839 {
1840         struct ceph_msg_pos *msg_pos = &con->in_msg_pos;
1841         struct page *page;
1842         size_t page_offset;
1843         size_t length;
1844         unsigned int left;
1845         int ret;
1846
1847         /* (page) data */
1848         BUG_ON(pages == NULL);
1849         page = pages[msg_pos->page];
1850         page_offset = msg_pos->page_pos;
1851         BUG_ON(msg_pos->data_pos >= data_len);
1852         left = data_len - msg_pos->data_pos;
1853         BUG_ON(page_offset >= PAGE_SIZE);
1854         length = min_t(unsigned int, PAGE_SIZE - page_offset, left);
1855
1856         ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
1857         if (ret <= 0)
1858                 return ret;
1859
1860         if (do_datacrc)
1861                 con->in_data_crc = ceph_crc32c_page(con->in_data_crc, page,
1862                                                         page_offset, ret);
1863
1864         in_msg_pos_next(con, length, ret);
1865
1866         return ret;
1867 }
1868
1869 #ifdef CONFIG_BLOCK
1870 static int read_partial_message_bio(struct ceph_connection *con,
1871                                     unsigned int data_len, bool do_datacrc)
1872 {
1873         struct ceph_msg *msg = con->in_msg;
1874         struct ceph_msg_pos *msg_pos = &con->in_msg_pos;
1875         struct bio_vec *bv;
1876         struct page *page;
1877         size_t page_offset;
1878         size_t length;
1879         unsigned int left;
1880         int ret;
1881
1882         BUG_ON(!msg);
1883         BUG_ON(!msg->bio_iter);
1884         bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
1885         page = bv->bv_page;
1886         page_offset = bv->bv_offset + msg_pos->page_pos;
1887         BUG_ON(msg_pos->data_pos >= data_len);
1888         left = data_len - msg_pos->data_pos;
1889         BUG_ON(msg_pos->page_pos >= bv->bv_len);
1890         length = min_t(unsigned int, bv->bv_len - msg_pos->page_pos, left);
1891
1892         ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
1893         if (ret <= 0)
1894                 return ret;
1895
1896         if (do_datacrc)
1897                 con->in_data_crc = ceph_crc32c_page(con->in_data_crc, page,
1898                                                         page_offset, ret);
1899
1900         in_msg_pos_next(con, length, ret);
1901
1902         return ret;
1903 }
1904 #endif
1905
1906 static int read_partial_msg_data(struct ceph_connection *con)
1907 {
1908         struct ceph_msg *msg = con->in_msg;
1909         struct ceph_msg_pos *msg_pos = &con->in_msg_pos;
1910         const bool do_datacrc = !con->msgr->nocrc;
1911         unsigned int data_len;
1912         int ret;
1913
1914         BUG_ON(!msg);
1915
1916         data_len = le32_to_cpu(con->in_hdr.data_len);
1917         while (msg_pos->data_pos < data_len) {
1918                 if (ceph_msg_has_pages(msg)) {
1919                         ret = read_partial_message_pages(con, msg->pages,
1920                                                  data_len, do_datacrc);
1921                         if (ret <= 0)
1922                                 return ret;
1923 #ifdef CONFIG_BLOCK
1924                 } else if (ceph_msg_has_bio(msg)) {
1925                         ret = read_partial_message_bio(con,
1926                                                  data_len, do_datacrc);
1927                         if (ret <= 0)
1928                                 return ret;
1929 #endif
1930                 } else {
1931                         BUG_ON(1);
1932                 }
1933         }
1934
1935         return 1;       /* must return > 0 to indicate success */
1936 }
1937
1938 /*
1939  * read (part of) a message.
1940  */
1941 static int read_partial_message(struct ceph_connection *con)
1942 {
1943         struct ceph_msg *m = con->in_msg;
1944         int size;
1945         int end;
1946         int ret;
1947         unsigned int front_len, middle_len, data_len;
1948         bool do_datacrc = !con->msgr->nocrc;
1949         u64 seq;
1950         u32 crc;
1951
1952         dout("read_partial_message con %p msg %p\n", con, m);
1953
1954         /* header */
1955         size = sizeof (con->in_hdr);
1956         end = size;
1957         ret = read_partial(con, end, size, &con->in_hdr);
1958         if (ret <= 0)
1959                 return ret;
1960
1961         crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1962         if (cpu_to_le32(crc) != con->in_hdr.crc) {
1963                 pr_err("read_partial_message bad hdr "
1964                        " crc %u != expected %u\n",
1965                        crc, con->in_hdr.crc);
1966                 return -EBADMSG;
1967         }
1968
1969         front_len = le32_to_cpu(con->in_hdr.front_len);
1970         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1971                 return -EIO;
1972         middle_len = le32_to_cpu(con->in_hdr.middle_len);
1973         if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
1974                 return -EIO;
1975         data_len = le32_to_cpu(con->in_hdr.data_len);
1976         if (data_len > CEPH_MSG_MAX_DATA_LEN)
1977                 return -EIO;
1978
1979         /* verify seq# */
1980         seq = le64_to_cpu(con->in_hdr.seq);
1981         if ((s64)seq - (s64)con->in_seq < 1) {
1982                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1983                         ENTITY_NAME(con->peer_name),
1984                         ceph_pr_addr(&con->peer_addr.in_addr),
1985                         seq, con->in_seq + 1);
1986                 con->in_base_pos = -front_len - middle_len - data_len -
1987                         sizeof(m->footer);
1988                 con->in_tag = CEPH_MSGR_TAG_READY;
1989                 return 0;
1990         } else if ((s64)seq - (s64)con->in_seq > 1) {
1991                 pr_err("read_partial_message bad seq %lld expected %lld\n",
1992                        seq, con->in_seq + 1);
1993                 con->error_msg = "bad message sequence # for incoming message";
1994                 return -EBADMSG;
1995         }
1996
1997         /* allocate message? */
1998         if (!con->in_msg) {
1999                 int skip = 0;
2000
2001                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2002                      front_len, data_len);
2003                 ret = ceph_con_in_msg_alloc(con, &skip);
2004                 if (ret < 0)
2005                         return ret;
2006                 if (skip) {
2007                         /* skip this message */
2008                         dout("alloc_msg said skip message\n");
2009                         BUG_ON(con->in_msg);
2010                         con->in_base_pos = -front_len - middle_len - data_len -
2011                                 sizeof(m->footer);
2012                         con->in_tag = CEPH_MSGR_TAG_READY;
2013                         con->in_seq++;
2014                         return 0;
2015                 }
2016
2017                 BUG_ON(!con->in_msg);
2018                 BUG_ON(con->in_msg->con != con);
2019                 m = con->in_msg;
2020                 m->front.iov_len = 0;    /* haven't read it yet */
2021                 if (m->middle)
2022                         m->middle->vec.iov_len = 0;
2023
2024                 /* prepare for data payload, if any */
2025
2026                 if (data_len)
2027                         prepare_message_data(con->in_msg, &con->in_msg_pos);
2028         }
2029
2030         /* front */
2031         ret = read_partial_message_section(con, &m->front, front_len,
2032                                            &con->in_front_crc);
2033         if (ret <= 0)
2034                 return ret;
2035
2036         /* middle */
2037         if (m->middle) {
2038                 ret = read_partial_message_section(con, &m->middle->vec,
2039                                                    middle_len,
2040                                                    &con->in_middle_crc);
2041                 if (ret <= 0)
2042                         return ret;
2043         }
2044
2045         /* (page) data */
2046         if (data_len) {
2047                 ret = read_partial_msg_data(con);
2048                 if (ret <= 0)
2049                         return ret;
2050         }
2051
2052         /* footer */
2053         size = sizeof (m->footer);
2054         end += size;
2055         ret = read_partial(con, end, size, &m->footer);
2056         if (ret <= 0)
2057                 return ret;
2058
2059         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2060              m, front_len, m->footer.front_crc, middle_len,
2061              m->footer.middle_crc, data_len, m->footer.data_crc);
2062
2063         /* crc ok? */
2064         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2065                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2066                        m, con->in_front_crc, m->footer.front_crc);
2067                 return -EBADMSG;
2068         }
2069         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2070                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2071                        m, con->in_middle_crc, m->footer.middle_crc);
2072                 return -EBADMSG;
2073         }
2074         if (do_datacrc &&
2075             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2076             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2077                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2078                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2079                 return -EBADMSG;
2080         }
2081
2082         return 1; /* done! */
2083 }
2084
2085 /*
2086  * Process message.  This happens in the worker thread.  The callback should
2087  * be careful not to do anything that waits on other incoming messages or it
2088  * may deadlock.
2089  */
2090 static void process_message(struct ceph_connection *con)
2091 {
2092         struct ceph_msg *msg;
2093
2094         BUG_ON(con->in_msg->con != con);
2095         con->in_msg->con = NULL;
2096         msg = con->in_msg;
2097         con->in_msg = NULL;
2098         con->ops->put(con);
2099
2100         /* if first message, set peer_name */
2101         if (con->peer_name.type == 0)
2102                 con->peer_name = msg->hdr.src;
2103
2104         con->in_seq++;
2105         mutex_unlock(&con->mutex);
2106
2107         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2108              msg, le64_to_cpu(msg->hdr.seq),
2109              ENTITY_NAME(msg->hdr.src),
2110              le16_to_cpu(msg->hdr.type),
2111              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2112              le32_to_cpu(msg->hdr.front_len),
2113              le32_to_cpu(msg->hdr.data_len),
2114              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2115         con->ops->dispatch(con, msg);
2116
2117         mutex_lock(&con->mutex);
2118 }
2119
2120
2121 /*
2122  * Write something to the socket.  Called in a worker thread when the
2123  * socket appears to be writeable and we have something ready to send.
2124  */
2125 static int try_write(struct ceph_connection *con)
2126 {
2127         int ret = 1;
2128
2129         dout("try_write start %p state %lu\n", con, con->state);
2130
2131 more:
2132         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2133
2134         /* open the socket first? */
2135         if (con->state == CON_STATE_PREOPEN) {
2136                 BUG_ON(con->sock);
2137                 con->state = CON_STATE_CONNECTING;
2138
2139                 con_out_kvec_reset(con);
2140                 prepare_write_banner(con);
2141                 prepare_read_banner(con);
2142
2143                 BUG_ON(con->in_msg);
2144                 con->in_tag = CEPH_MSGR_TAG_READY;
2145                 dout("try_write initiating connect on %p new state %lu\n",
2146                      con, con->state);
2147                 ret = ceph_tcp_connect(con);
2148                 if (ret < 0) {
2149                         con->error_msg = "connect error";
2150                         goto out;
2151                 }
2152         }
2153
2154 more_kvec:
2155         /* kvec data queued? */
2156         if (con->out_skip) {
2157                 ret = write_partial_skip(con);
2158                 if (ret <= 0)
2159                         goto out;
2160         }
2161         if (con->out_kvec_left) {
2162                 ret = write_partial_kvec(con);
2163                 if (ret <= 0)
2164                         goto out;
2165         }
2166
2167         /* msg pages? */
2168         if (con->out_msg) {
2169                 if (con->out_msg_done) {
2170                         ceph_msg_put(con->out_msg);
2171                         con->out_msg = NULL;   /* we're done with this one */
2172                         goto do_next;
2173                 }
2174
2175                 ret = write_partial_message_data(con);
2176                 if (ret == 1)
2177                         goto more_kvec;  /* we need to send the footer, too! */
2178                 if (ret == 0)
2179                         goto out;
2180                 if (ret < 0) {
2181                         dout("try_write write_partial_message_data err %d\n",
2182                              ret);
2183                         goto out;
2184                 }
2185         }
2186
2187 do_next:
2188         if (con->state == CON_STATE_OPEN) {
2189                 /* is anything else pending? */
2190                 if (!list_empty(&con->out_queue)) {
2191                         prepare_write_message(con);
2192                         goto more;
2193                 }
2194                 if (con->in_seq > con->in_seq_acked) {
2195                         prepare_write_ack(con);
2196                         goto more;
2197                 }
2198                 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2199                         prepare_write_keepalive(con);
2200                         goto more;
2201                 }
2202         }
2203
2204         /* Nothing to do! */
2205         con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2206         dout("try_write nothing else to write.\n");
2207         ret = 0;
2208 out:
2209         dout("try_write done on %p ret %d\n", con, ret);
2210         return ret;
2211 }
2212
2213
2214
2215 /*
2216  * Read what we can from the socket.
2217  */
2218 static int try_read(struct ceph_connection *con)
2219 {
2220         int ret = -1;
2221
2222 more:
2223         dout("try_read start on %p state %lu\n", con, con->state);
2224         if (con->state != CON_STATE_CONNECTING &&
2225             con->state != CON_STATE_NEGOTIATING &&
2226             con->state != CON_STATE_OPEN)
2227                 return 0;
2228
2229         BUG_ON(!con->sock);
2230
2231         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2232              con->in_base_pos);
2233
2234         if (con->state == CON_STATE_CONNECTING) {
2235                 dout("try_read connecting\n");
2236                 ret = read_partial_banner(con);
2237                 if (ret <= 0)
2238                         goto out;
2239                 ret = process_banner(con);
2240                 if (ret < 0)
2241                         goto out;
2242
2243                 con->state = CON_STATE_NEGOTIATING;
2244
2245                 /*
2246                  * Received banner is good, exchange connection info.
2247                  * Do not reset out_kvec, as sending our banner raced
2248                  * with receiving peer banner after connect completed.
2249                  */
2250                 ret = prepare_write_connect(con);
2251                 if (ret < 0)
2252                         goto out;
2253                 prepare_read_connect(con);
2254
2255                 /* Send connection info before awaiting response */
2256                 goto out;
2257         }
2258
2259         if (con->state == CON_STATE_NEGOTIATING) {
2260                 dout("try_read negotiating\n");
2261                 ret = read_partial_connect(con);
2262                 if (ret <= 0)
2263                         goto out;
2264                 ret = process_connect(con);
2265                 if (ret < 0)
2266                         goto out;
2267                 goto more;
2268         }
2269
2270         WARN_ON(con->state != CON_STATE_OPEN);
2271
2272         if (con->in_base_pos < 0) {
2273                 /*
2274                  * skipping + discarding content.
2275                  *
2276                  * FIXME: there must be a better way to do this!
2277                  */
2278                 static char buf[SKIP_BUF_SIZE];
2279                 int skip = min((int) sizeof (buf), -con->in_base_pos);
2280
2281                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2282                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2283                 if (ret <= 0)
2284                         goto out;
2285                 con->in_base_pos += ret;
2286                 if (con->in_base_pos)
2287                         goto more;
2288         }
2289         if (con->in_tag == CEPH_MSGR_TAG_READY) {
2290                 /*
2291                  * what's next?
2292                  */
2293                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2294                 if (ret <= 0)
2295                         goto out;
2296                 dout("try_read got tag %d\n", (int)con->in_tag);
2297                 switch (con->in_tag) {
2298                 case CEPH_MSGR_TAG_MSG:
2299                         prepare_read_message(con);
2300                         break;
2301                 case CEPH_MSGR_TAG_ACK:
2302                         prepare_read_ack(con);
2303                         break;
2304                 case CEPH_MSGR_TAG_CLOSE:
2305                         con_close_socket(con);
2306                         con->state = CON_STATE_CLOSED;
2307                         goto out;
2308                 default:
2309                         goto bad_tag;
2310                 }
2311         }
2312         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2313                 ret = read_partial_message(con);
2314                 if (ret <= 0) {
2315                         switch (ret) {
2316                         case -EBADMSG:
2317                                 con->error_msg = "bad crc";
2318                                 ret = -EIO;
2319                                 break;
2320                         case -EIO:
2321                                 con->error_msg = "io error";
2322                                 break;
2323                         }
2324                         goto out;
2325                 }
2326                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2327                         goto more;
2328                 process_message(con);
2329                 if (con->state == CON_STATE_OPEN)
2330                         prepare_read_tag(con);
2331                 goto more;
2332         }
2333         if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2334                 ret = read_partial_ack(con);
2335                 if (ret <= 0)
2336                         goto out;
2337                 process_ack(con);
2338                 goto more;
2339         }
2340
2341 out:
2342         dout("try_read done on %p ret %d\n", con, ret);
2343         return ret;
2344
2345 bad_tag:
2346         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2347         con->error_msg = "protocol error, garbage tag";
2348         ret = -1;
2349         goto out;
2350 }
2351
2352
2353 /*
2354  * Atomically queue work on a connection after the specified delay.
2355  * Bump @con reference to avoid races with connection teardown.
2356  * Returns 0 if work was queued, or an error code otherwise.
2357  */
2358 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2359 {
2360         if (!con->ops->get(con)) {
2361                 dout("%s %p ref count 0\n", __func__, con);
2362
2363                 return -ENOENT;
2364         }
2365
2366         if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2367                 dout("%s %p - already queued\n", __func__, con);
2368                 con->ops->put(con);
2369
2370                 return -EBUSY;
2371         }
2372
2373         dout("%s %p %lu\n", __func__, con, delay);
2374
2375         return 0;
2376 }
2377
2378 static void queue_con(struct ceph_connection *con)
2379 {
2380         (void) queue_con_delay(con, 0);
2381 }
2382
2383 static bool con_sock_closed(struct ceph_connection *con)
2384 {
2385         if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2386                 return false;
2387
2388 #define CASE(x)                                                         \
2389         case CON_STATE_ ## x:                                           \
2390                 con->error_msg = "socket closed (con state " #x ")";    \
2391                 break;
2392
2393         switch (con->state) {
2394         CASE(CLOSED);
2395         CASE(PREOPEN);
2396         CASE(CONNECTING);
2397         CASE(NEGOTIATING);
2398         CASE(OPEN);
2399         CASE(STANDBY);
2400         default:
2401                 pr_warning("%s con %p unrecognized state %lu\n",
2402                         __func__, con, con->state);
2403                 con->error_msg = "unrecognized con state";
2404                 BUG();
2405                 break;
2406         }
2407 #undef CASE
2408
2409         return true;
2410 }
2411
2412 static bool con_backoff(struct ceph_connection *con)
2413 {
2414         int ret;
2415
2416         if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2417                 return false;
2418
2419         ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2420         if (ret) {
2421                 dout("%s: con %p FAILED to back off %lu\n", __func__,
2422                         con, con->delay);
2423                 BUG_ON(ret == -ENOENT);
2424                 con_flag_set(con, CON_FLAG_BACKOFF);
2425         }
2426
2427         return true;
2428 }
2429
2430 /* Finish fault handling; con->mutex must *not* be held here */
2431
2432 static void con_fault_finish(struct ceph_connection *con)
2433 {
2434         /*
2435          * in case we faulted due to authentication, invalidate our
2436          * current tickets so that we can get new ones.
2437          */
2438         if (con->auth_retry && con->ops->invalidate_authorizer) {
2439                 dout("calling invalidate_authorizer()\n");
2440                 con->ops->invalidate_authorizer(con);
2441         }
2442
2443         if (con->ops->fault)
2444                 con->ops->fault(con);
2445 }
2446
2447 /*
2448  * Do some work on a connection.  Drop a connection ref when we're done.
2449  */
2450 static void con_work(struct work_struct *work)
2451 {
2452         struct ceph_connection *con = container_of(work, struct ceph_connection,
2453                                                    work.work);
2454         bool fault;
2455
2456         mutex_lock(&con->mutex);
2457         while (true) {
2458                 int ret;
2459
2460                 if ((fault = con_sock_closed(con))) {
2461                         dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2462                         break;
2463                 }
2464                 if (con_backoff(con)) {
2465                         dout("%s: con %p BACKOFF\n", __func__, con);
2466                         break;
2467                 }
2468                 if (con->state == CON_STATE_STANDBY) {
2469                         dout("%s: con %p STANDBY\n", __func__, con);
2470                         break;
2471                 }
2472                 if (con->state == CON_STATE_CLOSED) {
2473                         dout("%s: con %p CLOSED\n", __func__, con);
2474                         BUG_ON(con->sock);
2475                         break;
2476                 }
2477                 if (con->state == CON_STATE_PREOPEN) {
2478                         dout("%s: con %p PREOPEN\n", __func__, con);
2479                         BUG_ON(con->sock);
2480                 }
2481
2482                 ret = try_read(con);
2483                 if (ret < 0) {
2484                         if (ret == -EAGAIN)
2485                                 continue;
2486                         con->error_msg = "socket error on read";
2487                         fault = true;
2488                         break;
2489                 }
2490
2491                 ret = try_write(con);
2492                 if (ret < 0) {
2493                         if (ret == -EAGAIN)
2494                                 continue;
2495                         con->error_msg = "socket error on write";
2496                         fault = true;
2497                 }
2498
2499                 break;  /* If we make it to here, we're done */
2500         }
2501         if (fault)
2502                 con_fault(con);
2503         mutex_unlock(&con->mutex);
2504
2505         if (fault)
2506                 con_fault_finish(con);
2507
2508         con->ops->put(con);
2509 }
2510
2511 /*
2512  * Generic error/fault handler.  A retry mechanism is used with
2513  * exponential backoff
2514  */
2515 static void con_fault(struct ceph_connection *con)
2516 {
2517         pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2518                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2519         dout("fault %p state %lu to peer %s\n",
2520              con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2521
2522         WARN_ON(con->state != CON_STATE_CONNECTING &&
2523                con->state != CON_STATE_NEGOTIATING &&
2524                con->state != CON_STATE_OPEN);
2525
2526         con_close_socket(con);
2527
2528         if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2529                 dout("fault on LOSSYTX channel, marking CLOSED\n");
2530                 con->state = CON_STATE_CLOSED;
2531                 return;
2532         }
2533
2534         if (con->in_msg) {
2535                 BUG_ON(con->in_msg->con != con);
2536                 con->in_msg->con = NULL;
2537                 ceph_msg_put(con->in_msg);
2538                 con->in_msg = NULL;
2539                 con->ops->put(con);
2540         }
2541
2542         /* Requeue anything that hasn't been acked */
2543         list_splice_init(&con->out_sent, &con->out_queue);
2544
2545         /* If there are no messages queued or keepalive pending, place
2546          * the connection in a STANDBY state */
2547         if (list_empty(&con->out_queue) &&
2548             !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2549                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2550                 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2551                 con->state = CON_STATE_STANDBY;
2552         } else {
2553                 /* retry after a delay. */
2554                 con->state = CON_STATE_PREOPEN;
2555                 if (con->delay == 0)
2556                         con->delay = BASE_DELAY_INTERVAL;
2557                 else if (con->delay < MAX_DELAY_INTERVAL)
2558                         con->delay *= 2;
2559                 con_flag_set(con, CON_FLAG_BACKOFF);
2560                 queue_con(con);
2561         }
2562 }
2563
2564
2565
2566 /*
2567  * initialize a new messenger instance
2568  */
2569 void ceph_messenger_init(struct ceph_messenger *msgr,
2570                         struct ceph_entity_addr *myaddr,
2571                         u32 supported_features,
2572                         u32 required_features,
2573                         bool nocrc)
2574 {
2575         msgr->supported_features = supported_features;
2576         msgr->required_features = required_features;
2577
2578         spin_lock_init(&msgr->global_seq_lock);
2579
2580         if (myaddr)
2581                 msgr->inst.addr = *myaddr;
2582
2583         /* select a random nonce */
2584         msgr->inst.addr.type = 0;
2585         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2586         encode_my_addr(msgr);
2587         msgr->nocrc = nocrc;
2588
2589         atomic_set(&msgr->stopping, 0);
2590
2591         dout("%s %p\n", __func__, msgr);
2592 }
2593 EXPORT_SYMBOL(ceph_messenger_init);
2594
2595 static void clear_standby(struct ceph_connection *con)
2596 {
2597         /* come back from STANDBY? */
2598         if (con->state == CON_STATE_STANDBY) {
2599                 dout("clear_standby %p and ++connect_seq\n", con);
2600                 con->state = CON_STATE_PREOPEN;
2601                 con->connect_seq++;
2602                 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2603                 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2604         }
2605 }
2606
2607 /*
2608  * Queue up an outgoing message on the given connection.
2609  */
2610 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2611 {
2612         /* set src+dst */
2613         msg->hdr.src = con->msgr->inst.name;
2614         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2615         msg->needs_out_seq = true;
2616
2617         mutex_lock(&con->mutex);
2618
2619         if (con->state == CON_STATE_CLOSED) {
2620                 dout("con_send %p closed, dropping %p\n", con, msg);
2621                 ceph_msg_put(msg);
2622                 mutex_unlock(&con->mutex);
2623                 return;
2624         }
2625
2626         BUG_ON(msg->con != NULL);
2627         msg->con = con->ops->get(con);
2628         BUG_ON(msg->con == NULL);
2629
2630         BUG_ON(!list_empty(&msg->list_head));
2631         list_add_tail(&msg->list_head, &con->out_queue);
2632         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2633              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2634              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2635              le32_to_cpu(msg->hdr.front_len),
2636              le32_to_cpu(msg->hdr.middle_len),
2637              le32_to_cpu(msg->hdr.data_len));
2638
2639         clear_standby(con);
2640         mutex_unlock(&con->mutex);
2641
2642         /* if there wasn't anything waiting to send before, queue
2643          * new work */
2644         if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2645                 queue_con(con);
2646 }
2647 EXPORT_SYMBOL(ceph_con_send);
2648
2649 /*
2650  * Revoke a message that was previously queued for send
2651  */
2652 void ceph_msg_revoke(struct ceph_msg *msg)
2653 {
2654         struct ceph_connection *con = msg->con;
2655
2656         if (!con)
2657                 return;         /* Message not in our possession */
2658
2659         mutex_lock(&con->mutex);
2660         if (!list_empty(&msg->list_head)) {
2661                 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2662                 list_del_init(&msg->list_head);
2663                 BUG_ON(msg->con == NULL);
2664                 msg->con->ops->put(msg->con);
2665                 msg->con = NULL;
2666                 msg->hdr.seq = 0;
2667
2668                 ceph_msg_put(msg);
2669         }
2670         if (con->out_msg == msg) {
2671                 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2672                 con->out_msg = NULL;
2673                 if (con->out_kvec_is_msg) {
2674                         con->out_skip = con->out_kvec_bytes;
2675                         con->out_kvec_is_msg = false;
2676                 }
2677                 msg->hdr.seq = 0;
2678
2679                 ceph_msg_put(msg);
2680         }
2681         mutex_unlock(&con->mutex);
2682 }
2683
2684 /*
2685  * Revoke a message that we may be reading data into
2686  */
2687 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2688 {
2689         struct ceph_connection *con;
2690
2691         BUG_ON(msg == NULL);
2692         if (!msg->con) {
2693                 dout("%s msg %p null con\n", __func__, msg);
2694
2695                 return;         /* Message not in our possession */
2696         }
2697
2698         con = msg->con;
2699         mutex_lock(&con->mutex);
2700         if (con->in_msg == msg) {
2701                 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2702                 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2703                 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2704
2705                 /* skip rest of message */
2706                 dout("%s %p msg %p revoked\n", __func__, con, msg);
2707                 con->in_base_pos = con->in_base_pos -
2708                                 sizeof(struct ceph_msg_header) -
2709                                 front_len -
2710                                 middle_len -
2711                                 data_len -
2712                                 sizeof(struct ceph_msg_footer);
2713                 ceph_msg_put(con->in_msg);
2714                 con->in_msg = NULL;
2715                 con->in_tag = CEPH_MSGR_TAG_READY;
2716                 con->in_seq++;
2717         } else {
2718                 dout("%s %p in_msg %p msg %p no-op\n",
2719                      __func__, con, con->in_msg, msg);
2720         }
2721         mutex_unlock(&con->mutex);
2722 }
2723
2724 /*
2725  * Queue a keepalive byte to ensure the tcp connection is alive.
2726  */
2727 void ceph_con_keepalive(struct ceph_connection *con)
2728 {
2729         dout("con_keepalive %p\n", con);
2730         mutex_lock(&con->mutex);
2731         clear_standby(con);
2732         mutex_unlock(&con->mutex);
2733         if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
2734             con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2735                 queue_con(con);
2736 }
2737 EXPORT_SYMBOL(ceph_con_keepalive);
2738
2739 void ceph_msg_data_set_pages(struct ceph_msg *msg, struct page **pages,
2740                 size_t length, size_t alignment)
2741 {
2742         BUG_ON(!pages);
2743         BUG_ON(!length);
2744         BUG_ON(msg->pages);
2745         BUG_ON(msg->length);
2746
2747         msg->pages = pages;
2748         msg->length = length;
2749         msg->page_alignment = alignment & ~PAGE_MASK;
2750 }
2751 EXPORT_SYMBOL(ceph_msg_data_set_pages);
2752
2753 void ceph_msg_data_set_pagelist(struct ceph_msg *msg,
2754                                 struct ceph_pagelist *pagelist)
2755 {
2756         BUG_ON(!pagelist);
2757         BUG_ON(!pagelist->length);
2758         BUG_ON(msg->pagelist);
2759
2760         msg->pagelist = pagelist;
2761 }
2762 EXPORT_SYMBOL(ceph_msg_data_set_pagelist);
2763
2764 void ceph_msg_data_set_bio(struct ceph_msg *msg, struct bio *bio)
2765 {
2766         BUG_ON(!bio);
2767         BUG_ON(msg->bio);
2768
2769         msg->bio = bio;
2770 }
2771 EXPORT_SYMBOL(ceph_msg_data_set_bio);
2772
2773 void ceph_msg_data_set_trail(struct ceph_msg *msg, struct ceph_pagelist *trail)
2774 {
2775         BUG_ON(!trail);
2776         BUG_ON(!trail->length);
2777         BUG_ON(msg->trail);
2778
2779         msg->trail = trail;
2780 }
2781 EXPORT_SYMBOL(ceph_msg_data_set_trail);
2782
2783 /*
2784  * construct a new message with given type, size
2785  * the new msg has a ref count of 1.
2786  */
2787 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2788                               bool can_fail)
2789 {
2790         struct ceph_msg *m;
2791
2792         m = kzalloc(sizeof(*m), flags);
2793         if (m == NULL)
2794                 goto out;
2795
2796         m->hdr.type = cpu_to_le16(type);
2797         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2798         m->hdr.front_len = cpu_to_le32(front_len);
2799
2800         INIT_LIST_HEAD(&m->list_head);
2801         kref_init(&m->kref);
2802
2803         /* front */
2804         m->front_max = front_len;
2805         if (front_len) {
2806                 if (front_len > PAGE_CACHE_SIZE) {
2807                         m->front.iov_base = __vmalloc(front_len, flags,
2808                                                       PAGE_KERNEL);
2809                         m->front_is_vmalloc = true;
2810                 } else {
2811                         m->front.iov_base = kmalloc(front_len, flags);
2812                 }
2813                 if (m->front.iov_base == NULL) {
2814                         dout("ceph_msg_new can't allocate %d bytes\n",
2815                              front_len);
2816                         goto out2;
2817                 }
2818         } else {
2819                 m->front.iov_base = NULL;
2820         }
2821         m->front.iov_len = front_len;
2822
2823         dout("ceph_msg_new %p front %d\n", m, front_len);
2824         return m;
2825
2826 out2:
2827         ceph_msg_put(m);
2828 out:
2829         if (!can_fail) {
2830                 pr_err("msg_new can't create type %d front %d\n", type,
2831                        front_len);
2832                 WARN_ON(1);
2833         } else {
2834                 dout("msg_new can't create type %d front %d\n", type,
2835                      front_len);
2836         }
2837         return NULL;
2838 }
2839 EXPORT_SYMBOL(ceph_msg_new);
2840
2841 /*
2842  * Allocate "middle" portion of a message, if it is needed and wasn't
2843  * allocated by alloc_msg.  This allows us to read a small fixed-size
2844  * per-type header in the front and then gracefully fail (i.e.,
2845  * propagate the error to the caller based on info in the front) when
2846  * the middle is too large.
2847  */
2848 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2849 {
2850         int type = le16_to_cpu(msg->hdr.type);
2851         int middle_len = le32_to_cpu(msg->hdr.middle_len);
2852
2853         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2854              ceph_msg_type_name(type), middle_len);
2855         BUG_ON(!middle_len);
2856         BUG_ON(msg->middle);
2857
2858         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2859         if (!msg->middle)
2860                 return -ENOMEM;
2861         return 0;
2862 }
2863
2864 /*
2865  * Allocate a message for receiving an incoming message on a
2866  * connection, and save the result in con->in_msg.  Uses the
2867  * connection's private alloc_msg op if available.
2868  *
2869  * Returns 0 on success, or a negative error code.
2870  *
2871  * On success, if we set *skip = 1:
2872  *  - the next message should be skipped and ignored.
2873  *  - con->in_msg == NULL
2874  * or if we set *skip = 0:
2875  *  - con->in_msg is non-null.
2876  * On error (ENOMEM, EAGAIN, ...),
2877  *  - con->in_msg == NULL
2878  */
2879 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
2880 {
2881         struct ceph_msg_header *hdr = &con->in_hdr;
2882         int middle_len = le32_to_cpu(hdr->middle_len);
2883         struct ceph_msg *msg;
2884         int ret = 0;
2885
2886         BUG_ON(con->in_msg != NULL);
2887         BUG_ON(!con->ops->alloc_msg);
2888
2889         mutex_unlock(&con->mutex);
2890         msg = con->ops->alloc_msg(con, hdr, skip);
2891         mutex_lock(&con->mutex);
2892         if (con->state != CON_STATE_OPEN) {
2893                 if (msg)
2894                         ceph_msg_put(msg);
2895                 return -EAGAIN;
2896         }
2897         if (msg) {
2898                 BUG_ON(*skip);
2899                 con->in_msg = msg;
2900                 con->in_msg->con = con->ops->get(con);
2901                 BUG_ON(con->in_msg->con == NULL);
2902         } else {
2903                 /*
2904                  * Null message pointer means either we should skip
2905                  * this message or we couldn't allocate memory.  The
2906                  * former is not an error.
2907                  */
2908                 if (*skip)
2909                         return 0;
2910                 con->error_msg = "error allocating memory for incoming message";
2911
2912                 return -ENOMEM;
2913         }
2914         memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2915
2916         if (middle_len && !con->in_msg->middle) {
2917                 ret = ceph_alloc_middle(con, con->in_msg);
2918                 if (ret < 0) {
2919                         ceph_msg_put(con->in_msg);
2920                         con->in_msg = NULL;
2921                 }
2922         }
2923
2924         return ret;
2925 }
2926
2927
2928 /*
2929  * Free a generically kmalloc'd message.
2930  */
2931 void ceph_msg_kfree(struct ceph_msg *m)
2932 {
2933         dout("msg_kfree %p\n", m);
2934         if (m->front_is_vmalloc)
2935                 vfree(m->front.iov_base);
2936         else
2937                 kfree(m->front.iov_base);
2938         kfree(m);
2939 }
2940
2941 /*
2942  * Drop a msg ref.  Destroy as needed.
2943  */
2944 void ceph_msg_last_put(struct kref *kref)
2945 {
2946         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2947
2948         dout("ceph_msg_put last one on %p\n", m);
2949         WARN_ON(!list_empty(&m->list_head));
2950
2951         /* drop middle, data, if any */
2952         if (m->middle) {
2953                 ceph_buffer_put(m->middle);
2954                 m->middle = NULL;
2955         }
2956         if (ceph_msg_has_pages(m)) {
2957                 m->length = 0;
2958                 m->pages = NULL;
2959         }
2960
2961         if (ceph_msg_has_pagelist(m)) {
2962                 ceph_pagelist_release(m->pagelist);
2963                 kfree(m->pagelist);
2964                 m->pagelist = NULL;
2965         }
2966
2967         if (ceph_msg_has_trail(m))
2968                 m->trail = NULL;
2969
2970         if (m->pool)
2971                 ceph_msgpool_put(m->pool, m);
2972         else
2973                 ceph_msg_kfree(m);
2974 }
2975 EXPORT_SYMBOL(ceph_msg_last_put);
2976
2977 void ceph_msg_dump(struct ceph_msg *msg)
2978 {
2979         pr_debug("msg_dump %p (front_max %d length %zd)\n", msg,
2980                  msg->front_max, msg->length);
2981         print_hex_dump(KERN_DEBUG, "header: ",
2982                        DUMP_PREFIX_OFFSET, 16, 1,
2983                        &msg->hdr, sizeof(msg->hdr), true);
2984         print_hex_dump(KERN_DEBUG, " front: ",
2985                        DUMP_PREFIX_OFFSET, 16, 1,
2986                        msg->front.iov_base, msg->front.iov_len, true);
2987         if (msg->middle)
2988                 print_hex_dump(KERN_DEBUG, "middle: ",
2989                                DUMP_PREFIX_OFFSET, 16, 1,
2990                                msg->middle->vec.iov_base,
2991                                msg->middle->vec.iov_len, true);
2992         print_hex_dump(KERN_DEBUG, "footer: ",
2993                        DUMP_PREFIX_OFFSET, 16, 1,
2994                        &msg->footer, sizeof(msg->footer), true);
2995 }
2996 EXPORT_SYMBOL(ceph_msg_dump);